

PERMIT APPLICATION

# **RCRA OPERATING PERMIT RENEWAL APPLICATION**

Safety-Kleen Systems, Inc. Medley Service Center 8755 Northwest 95<sup>th</sup> St. Medley, FL 33178 FLD 984 167 791

Revision 0

September 20, 2022

Prepared by:

Safety-Kleen Systems, Inc. 42 Longwater Drive Norwell, MA 02061

# Safety-Kleen Medley, FL RCRA Operating Permit Renewal 2022

## **Table of Contents**

| Permit Application Certification Signature Form 62-730.900(2)(d)                                                                                                                                                                                                                                      | 1-4     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8700-12FL – Florida Notification of Regulated Activity Form                                                                                                                                                                                                                                           | 1-7     |
| (Tab #1) Part I                                                                                                                                                                                                                                                                                       | Page(s) |
| Part I Application Form 62-730.900(2)(a)                                                                                                                                                                                                                                                              | 1-4     |
| Part I.B.3 Facility Layout and Traffic Patterns                                                                                                                                                                                                                                                       | 1-2     |
| Part I.B.4 Site Topography & Surrounding Land Use                                                                                                                                                                                                                                                     | 2       |
| Part I.B.5 100-Year Floodplain Area                                                                                                                                                                                                                                                                   | 2-3     |
| Part I.D.3 Operating Information Process-Codes & Design Capacities                                                                                                                                                                                                                                    | 3-4     |
| Part I.D.4 Description of the Facility                                                                                                                                                                                                                                                                | 4-11    |
| Part I.D.5 Operating Information/Hazardous Debris                                                                                                                                                                                                                                                     | 11      |
| Personal Protective Equipment (PPE) Requirements at the Facility<br>Figure 2.1-1 Facility Layout and Access Control Features<br>Figure 2.1-2 Truck Traffic Patterns                                                                                                                                   | 12      |
| Figure 2.2-1 Topographic Map<br>Figure 2.2-2 Site Location Map<br>Figure 2.2-3 Surrounding Land Use Map<br>Figure 2.2-4 Legal Boundaries<br>Figure 2.2-5 Stormwater Drainage Plan<br>Figure 2.2-6 Locations of Hazardous Waste Storage Areas<br>Figure 2.2-7 Wind Rose<br>Table 2.2-1 Well Search Map |         |
| (Tab #2) Part II                                                                                                                                                                                                                                                                                      |         |
| Part II.A.1 General                                                                                                                                                                                                                                                                                   | 1-4     |
| Part II.A.2 Financial Responsibility Information                                                                                                                                                                                                                                                      | 4       |
| Part II.A.4 Facility Security Information<br>Closure Cost Estimate Worksheet<br>Hazardous Waste Facility Certificate of Liability Insurance                                                                                                                                                           | 4-5     |
| Part II.A.4.e Training – Introductory and Continuing<br>Table 6.1-1 Typical Outline of Initial Training Topics<br>Table 6.1-2 Job Description Branch General Manager                                                                                                                                  | 6-12    |

| Table 6.1-3 Job Description Customer Service Manager<br>Table 6.1-4 Job Description Account Manager<br>Table 6.1-5 Job Description Branch Administrator<br>Table 6.1-6 Job Description Material Handler<br>Table 6.1-7 Job Description Sales and Service Associate<br>Table 6.1-8 Job Description Sales and Service Representative<br>Table 6.1-9 Job Description Oil Sales and Service Representative<br>Table 6.1-10 Job Description Oil/VAC Sales and Service Representative<br>Table 6.1-11 Job Description Vacuum Sales and Service Representative<br>Table 6.1-12 Continuing Training Topics for Branch Employees |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Part II.A.5 Waste Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13-21 |
| Part II.A.6 Waste Analysis Plan (WAP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21    |
| Part II.A.7 Required Notices, Manifest System, Recordkeeping/Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21-25 |
| Part II.A.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25    |
| (Tab #3) Part II PPP-CP (Has its Own Table of Contents)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Emergency Contact List<br>Contingency Plan Quick Reference Guide<br>Figure 5.1-3 Evacuation Routes<br>Figure 5.6-1 Locations of Emergency Equipment<br>Table 5.2-1 Inspection Schedule<br>Table 5.6-1 Emergency Response Equipment<br>Table 5.8-1 Description and Uses of Emergency Equipment<br>CO Safety Security Inspection<br>Appendix A Example Letters to Local Authorities                                                                                                                                                                                                                                       |       |
| (Tab #4) Part II WAP<br>Exhibit C-1 Statistical Model (Gibbons)<br>Exhibit C-3 California Annual Recharacterization Sampling Analysis<br>Exhibit C-4 Sample Testing Protocol<br>Exhibit C-5 Sampling Procedures                                                                                                                                                                                                                                                                                                                                                                                                         | 1-11  |
| (Tab #5) Part II.B<br>Figure 8.1-1 Container Storage Area<br>Form Branch Generated Hazardous Waste Container Inspection Log<br>Form CO CSA Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-7   |
| (Tab #6) Part II.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-7   |

Moorman Analog Automatic Tank Gauge Info. Figure 9.1-1 Piping System Details

| Figure 9.2-1 Tank Storage Area                                                                                 |               |
|----------------------------------------------------------------------------------------------------------------|---------------|
| Figure 9.3-1 Return/Fill Shelter<br>Form CO Return and Fill Area                                               |               |
| Form CO Tank Systems Inspection                                                                                |               |
| RCRA-Permitted Hazardous Waste Tank (Used Solvent) Tank Inspection re                                          | port          |
| (Tab #7) Part II.I Miscellaneous Units                                                                         | 1-4           |
| Dolton Return and Fill IH Study                                                                                |               |
| Routine Branch IH Sampling Event                                                                               |               |
| Drum Washer/Wet Dumpster Drawings                                                                              |               |
| (Tab #8) Part II.K Closure Plan                                                                                | 1-8           |
| Figure 10.3-1 Typical Closure Schedule                                                                         |               |
| (Tab #9) Part II.P Form 62-730.900(2)(c)                                                                       | 1-2           |
| Part II.P.2 Information Requirements Regarding Solid Waste Management Units                                    | s 1- <b>2</b> |
| Part II.P.3 Prior/Current Releases                                                                             | 1-3           |
| (Tab #10) Part II.Q Information Requirements for SWMUs                                                         | 1-2           |
| Figure Part II-Q                                                                                               |               |
| Appendix A 2018-2022 Annual Groundwater Reports                                                                |               |
| (Tab #11) Part II.S Subpart BB and CC                                                                          | 1-14          |
| Figure 11.1-1 Environmental Piping Isometric                                                                   |               |
| Figure 11.1-2 HW Tank/Piping Equipment Subpart BB Tags                                                         |               |
| Figure 11.1-3 Leak Detection and Repair Record Example                                                         |               |
| Form CO Tank System BB Equipment                                                                               |               |
| Table 11.2-1 Summary of Tank Management Units Subjected to Subpart (                                           |               |
| Table 11.2-2 Summary of Container Management Units Subjected to Sub<br>Table 11.2-3 Subpart CC Control Options | part CC       |
| Appendix A Site Photographs                                                                                    |               |
|                                                                                                                |               |

Appendix B Annual Recharacterization Chemical Analysis Reports

Appendix C Secondary Containment Calculations

Appendix D Subpart BB/CC Information Branch Overview Training Guidelines

| Revis | ion N | Jumber | r 0 |  |
|-------|-------|--------|-----|--|
| Date  | 9/2   | 0/2022 |     |  |
| Page  | 1     | of     | 3   |  |

### APPLICATION FOR A HAZARDOUS WASTE FACILITY PERMIT CERTIFICATION TO BE COMPLETED BY ALL APPLICANTS

#### Signature and Certification

Facility Name Safety-Kleen Systems, Inc.

EPA/DEP I.D. No. FLD 984 171 694

The following certifications must be included with the submittal of an application for a hazardous waste authorization. The certifications must be signed by the owner of a sole proprietorship; or by a general partner of a partnership; or by a principal executive officer of at least the level of vice president of a corporation or business association, or by a duly authorized representative of that person. If the same person is a facility operator, facility owner, and real property owner, that person can cross out and initial the signature blocks under "1. Facility Operator" and "2. Facility Owner," and add the words "Facility Owner and Operator" at the line "Signature of the Land Owner or Authorized Representative."

#### 1. Facility Operator

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Further, I agree to comply with the provisions of Chapter 403, Florida Statutes, and all rules of the Department of Environmental Protection. It is understood that the permit is only transferable in accordance with Chapter 62-730, Florida Administrative Code (F.A.C.), and, if granted a permit, the Department of Environmental Protection will be notified prior to the sale or legal transfer of the permitted facility.

# Maggie Tenant Digitally signed by Maggie Tenant Date: 2022.09.09 18:40:01 -04'00'

Signature of the Operator or Authorized Representative\*

Maggie Tenant, VP Environmental Compliance

Name and Title (Please type or print)

Date 9/9/2022

E-mail address

ddress maggie.tenant@safety-kleen.com

Telephone (734) 516-0291

\* Attach a letter of authorization

Page 1 of 4

DEP Form 62-730.900(2)(d), incorporated in Rule 62-730.220(2)(a), F.A.C., Effective Date: 12/2019

| Revis | ion 1 | Numb   | er | 0 |  |
|-------|-------|--------|----|---|--|
| Date  | 9/2   | 0/2022 | 2  |   |  |
| Page  | 2     | of     | 3  |   |  |

#### 2. Facility Owner

This is to certify that I understand this application is submitted for the purpose of obtaining a permit to construct, operate, or conduct remedial activities at a hazardous waste management facility on the property as described. As owner of the facility, I understand fully that the facility operator and I are jointly responsible for compliance with the provisions of Chapter 403, Florida Statutes, and all rules of the Department of Environmental Protection.

### Maggie Tenant Digitally signed by Maggie Tenant Date: 2022.09.09 18:40:35 -04'00'

Signature of the Facility Owner or Authorized Representative\*

Maggie Tenant, VP Environmental Compliance

Name and Title (Please type or print)

Date 9/9/2022

E-mail address maggie.tenant@safety-kleen.com

Telephone (<u>734</u>) <u>516-0291</u>

\* Attach a letter of authorization

#### 3. Land Owner

This is to certify that I, as land owner, understand that this application is submitted for the purpose of obtaining a permit for the construction, operation, postclosure or corrective actions of a hazardous waste management facility on the property as described. For hazardous waste facilities that close with waste in place, I further understand that I am responsible for providing the notice in the deed to the property required by 40 CFR 264.119 and 265.119, as adopted by reference in Chapter 62-730, F.A.C.

#### Maggie Tenant Digitally signed by Maggie Tenant Date: 2022.09.09 18:42:50 -04'00'

Signature of the Land Owner or Authorized Representative\*

Maggie Tenant, VP Environmental Compliance

Name and Title (Please type or print)

Date 9/9/2022

E-mail address maggie.tenant@safety-kleen.com

Telephone (734) 516-0291

\* Attach a letter of authorization

Page 2 of 4

#### SAFETY-KLEEN SYSTEMS, INC.

#### **Consent Resolution of the Directors**

#### June 18, 2014

The undersigned, being all of the Directors of Safety-Kleen Systems, Inc., a Wisconsin corporation (the "Company"), hereby consent to and adopt the following resolutions effective as of the above date.

- **Resolved:** That each individual with the title of President, Senior Vice President, Vice President, Director, Manager or Member of the Company, or any of its subsidiaries, shall have the power and authority to sign, certify, and deliver on behalf of the Company or any subsidiary, any necessary or desirable environmental documents, including, without limitation, any permit applications or amendments and any environmental reports in any way related to the operations of the Company or its subsidiaries. In addition to the foregoing, to the extent that the Company operates any facility with more than 250 people or having gross annual sales or expenditures in excess of the \$25,000,000, the General Manager of such facility shall have all of the foregoing authority with respect to the operations of any such facility.
- **Resolved:** That the President, and any Senior Vice President, Vice President or Secretary or Assistant Secretary of the Company may designate an employee of an affiliated company to sign and certify, on behalf of the Company or any subsidiary, any necessary or desirable environmental documents, including, without limitation, any permit applications, transportation related documents and environmental reports in any way related to the operations of the Company or one of its subsidiaries.
- **Resolved:** That the Secretary or any Assistant Secretary of the Company is hereby authorized on behalf of the Company to certify as to who are the officers of the Company and to the due authority of any officer or other person executing any of the foregoing documents or any other documents on behalf of the Company, and any governmental official or other third party shall be entitled to fully rely on any such certification.

WITNESS the execution hereof under seal as of the date first above written.

Eric Gerstenberg, Direg or James/M. Rutledge, Directør

| Revis | ion | Numb  | er | 0 |  |
|-------|-----|-------|----|---|--|
| Date  | 9/2 | 0/202 | 2  |   |  |
| Page  | 3   | of    | 3  |   |  |

#### 4. Professional Engineer Registered in Florida

Complete this certification when required to do so by Chapter 471, F.S., or when not exempted by Rule 62-730.220(9), F.A.C.

This is to certify that the engineering features of this hazardous waste management facility have been designed or examined by me and found to conform to engineering principles applicable to such facilities. In my professional judgement, this facility, when properly constructed, maintained and operated, or closed, will comply with all applicable statutes of the State of Florida and rules of the Department of Environmental Protection.

Signature

N.D. Eryou, PhD, P.E. Name (please type) Florida Registration Number 46888 Mailing Address 5051 Castell Drive, Suite 244 Street or P.O. Box Naples FL 34103 City State Zip dennis@eryouengineering.com Date 9/15/2022 E-mail address Telephone (516) 449-5814 Digitally (PLEASE AFFIX SEAL) signed by millin Norman Dennis Eryou, PE Date:

> 2022.09.14 19:40:30 -04'00'

Page 3 of 4

| SUPERIOR PROVIDENCE                                                                                                       | 8700-12FL - FLORIDA NOTIFICATION OF<br>REGULATED WASTE ACTIVITY<br>DEP Waste Management Division-HWRS, MS4560<br>2600 Blair Stone Rd. Tallahassee, FL 32399-2400<br>(850) 245-8707 |          |            |          |         |                  |             | 4                                     | Date Received<br>(for FDEP Official Use Only) |                                                           |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|---------|------------------|-------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------------------|
| EPA ID: F L                                                                                                               | D 9 8 4                                                                                                                                                                            | 1        | 7 1        | 6        | 9       | 4                |             | use the instructions<br>latory fields | s doc                                         | cument to complete this form                              |
| 1. Reason for Subm                                                                                                        | ittal: (all submitters                                                                                                                                                             | must co  | mplete pag | ges I an | nd 2 ar | nd sign          | page 7. Pag | es 3 through 6 - complet              | te as a                                       | pplicable)                                                |
| Mark 'X' in To obtain a new EPA ID number (for hazardous waste, universal waste, used oil activities, or PCW activities). |                                                                                                                                                                                    |          |            |          |         |                  |             |                                       |                                               |                                                           |
| (must choose one if a notification)                                                                                       |                                                                                                                                                                                    |          |            |          |         |                  |             | apdate status and facility            |                                               | tification information).<br>st complete pages 1, 2, 3, 7) |
|                                                                                                                           |                                                                                                                                                                                    |          |            |          |         |                  |             | ng Electronic Manife                  |                                               |                                                           |
|                                                                                                                           | Submitting ne                                                                                                                                                                      | -        | -          |          |         |                  |             |                                       | .31 D.1                                       | oxer activities.                                          |
| FL Registration(s)                                                                                                        | UW Merc                                                                                                                                                                            |          |            |          |         | _                |             | rter (see page 5)                     | Ľ                                             | Used Oil (see page 6)                                     |
| 2. Facility or Business                                                                                                   | Name:*                                                                                                                                                                             |          |            |          |         |                  |             |                                       |                                               |                                                           |
|                                                                                                                           |                                                                                                                                                                                    |          | Sat        | fety-I   | Klee    | en Sy            | /stems, l   | nc.                                   |                                               |                                                           |
| 3. Facility Physical Loc                                                                                                  | cation Information                                                                                                                                                                 | : (No P. | O. Boxes)  |          |         |                  |             |                                       |                                               |                                                           |
| Physical Street Address                                                                                                   | *:                                                                                                                                                                                 |          |            | 8755     | 5 NIV   | M 05             | th Street   |                                       |                                               | Vessel                                                    |
| City or Town:                                                                                                             |                                                                                                                                                                                    |          |            | 0100     | 5144    | v 55             |             |                                       | Cip Co                                        | ode:                                                      |
|                                                                                                                           | Me                                                                                                                                                                                 | edley    |            |          |         |                  |             | FL                                    |                                               | 33178                                                     |
| County*:                                                                                                                  | Miami-Da                                                                                                                                                                           | de       |            |          | Co      | untry (i         | f not USA)* |                                       |                                               |                                                           |
| 4. Facility or Business I                                                                                                 | Mailing Address:                                                                                                                                                                   |          |            |          |         |                  |             |                                       |                                               |                                                           |
| Same address as $\#3$                                                                                                     | above or*:                                                                                                                                                                         |          |            |          |         |                  | c           |                                       | _                                             |                                                           |
| City or Town*:                                                                                                            |                                                                                                                                                                                    |          |            | Sta      | ate*:   |                  | Zip/Po      | stal Code*:                           | Co                                            | suntry (if not USA):                                      |
| 5. Facility North Amer                                                                                                    | ican Industry Clas                                                                                                                                                                 | sificati | on Syster  | n (NA    | ICS)    | Code             | (s)*: (at l | east 5 digits)                        |                                               |                                                           |
| A. <u>562</u>                                                                                                             | 1 1 2 (requi                                                                                                                                                                       | ired)    |            |          |         | в.               |             |                                       |                                               |                                                           |
| c                                                                                                                         |                                                                                                                                                                                    |          |            |          |         | D.               |             |                                       |                                               |                                                           |
| 6. Facility or Business                                                                                                   | RCRA Contact Pe                                                                                                                                                                    |          |            |          | s as #  | <u>3</u> at      | ove or:     | mid 0                                 |                                               |                                                           |
| First Name*:<br>Je                                                                                                        | eff                                                                                                                                                                                | Las      | t Name*    |          | urtis   | \$               |             | Title*<br>Sr. Environi                | men                                           | tal Compliance                                            |
|                                                                                                                           | 61-523-4719                                                                                                                                                                        | Exte     | ension*:   |          |         |                  |             | Fax*                                  | 56                                            | 1-731-1696                                                |
| E-Mail*:                                                                                                                  |                                                                                                                                                                                    |          |            | jeff.    | curti   | is@s             | afety-kle   | een.com                               |                                               |                                                           |
| Street or P.O. Box (or sa                                                                                                 | ame address box is                                                                                                                                                                 | checked  | d)*:       |          |         |                  |             |                                       |                                               |                                                           |
| City or Town*:                                                                                                            |                                                                                                                                                                                    |          |            |          | Stat    | e <sup>∓</sup> : |             | Zip Code*:                            |                                               | Country (if not USA):                                     |

DEP Form 62-730.900(1)(b), adopted by reference in rule 62-730.150(2)(a), 62-710.500(1), and 62-737.400(3)(a)2., F.A.C. Effective Date: 12/2019 Page 1 of 10

| RCRA Hazardous Waste Status Notification or Out of I                                                                                                | EPA ID No.*                     | FLD984171694       |                      |                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|----------------------|-----------------------------------|
| 7. Real Property (FL Land) Owner of the Facility's Physical I                                                                                       | Location (List additional       | owners             | in the comments sect | ັດາ.)                             |
| Name of Owner*                                                                                                                                      | Date became Owner*: 7 / 30 / 91 |                    |                      |                                   |
| Safety-Kleen Systems, Inc.                                                                                                                          |                                 | New Owner mm dd yy |                      |                                   |
| Street or P.O. Box (or same address box is checked)*: 4210                                                                                          | ngwater Drive                   | Phone              | Number*:             | 781-792-5000                      |
| City or Town*                                                                                                                                       | State*                          | Zip Co             | de*: 0001            | Country (if not USA):             |
| E-Mail*: ieff.                                                                                                                                      | MA MA                           |                    | 2061                 |                                   |
| Owner Type*:     Image: Private in Federal in Municipal in State                                                                                    | curtis@safety-kle               |                    | )III                 |                                   |
| Comments:                                                                                                                                           |                                 |                    |                      |                                   |
| connicas.                                                                                                                                           |                                 |                    |                      |                                   |
| 8. Facility Operator (List additional Operators in the comments section                                                                             | on), Same address as #_         | 7 abov             | ve or:               |                                   |
| Name of Operator*                                                                                                                                   |                                 | Date b             | occame Operator*:    | 7 / 30 / 91                       |
| Safety-Kleen Systems, Inc.                                                                                                                          |                                 |                    | New Operator         |                                   |
| Street or P.O. Box (or same address box is checked)*:                                                                                               |                                 | Phone              | Number*:             |                                   |
| City or Town*:                                                                                                                                      | State*:                         | Zip Co             | ode*:                | Country (if not USA):             |
| E-Mail*:                                                                                                                                            |                                 | <u> </u>           |                      |                                   |
| Operator Type*: Private Federal Municipal                                                                                                           | State County                    | Other              |                      |                                   |
| Comments:                                                                                                                                           | State and County Part           |                    |                      | -                                 |
|                                                                                                                                                     |                                 |                    |                      |                                   |
| 9. RCRA Hazardous Waste Activities at this Faci                                                                                                     | lity: (Mark 'X' in              | all tha            | t apply):            |                                   |
| (1) Generator of Hazardous Waste                                                                                                                    |                                 |                    |                      |                                   |
| Yes No (This does not include Universal Waste or Use                                                                                                | d Oil)                          |                    |                      |                                   |
| If YES, Choose only one of the following three categories.                                                                                          |                                 |                    |                      |                                   |
| a. Large Quantity Generator (LQG):                                                                                                                  |                                 |                    |                      |                                   |
| - Generates in any calendar month (includes quant                                                                                                   | ities imported by impo          | rter site          | ) 1,000 kilograms o  | or greater per month (kg/mo)      |
| (2,200 lbs/mo.) of non-acute hazardous waste; or                                                                                                    |                                 | 11 /               | (2211.1.) 5.         |                                   |
| <ul> <li>Generates in any calendar month, or accumulates</li> <li>- {\$\vec{m}\$ merates in any calendar month, or accumulates material.</li> </ul> |                                 |                    |                      |                                   |
| <b>b.</b> Small Quantity Generator (SQG):                                                                                                           |                                 |                    | $\eta_t$             |                                   |
| - Generates in any calendar month greater than 100<br>waste and/or 1 kg (2.2 lbs) or less of acute hazar<br>cleanup material.                       |                                 |                    |                      |                                   |
| c. Very Small Quantity Generator (VSQG):                                                                                                            |                                 |                    |                      |                                   |
| - Generates in any calendar month 100 kg/mo or le hazardous waste.                                                                                  | ess (220 lbs.) of non-ac        | ute haza           | ardous waste and/o   | r 1 kg (2.2 lbs) or less of acute |
| In addition, indicate other generator activities that apply.                                                                                        |                                 |                    |                      |                                   |
| d. Short-Term Generator (one-time, not on-going)                                                                                                    |                                 |                    |                      |                                   |
| e. Mixed Waste (hazardous and radioactive) Generator                                                                                                |                                 |                    |                      |                                   |
| <b>f</b> . United States Importer of hazardous waste                                                                                                |                                 |                    |                      |                                   |
| g. LQG notifying of VSQG Hazardous Waste Under-Con                                                                                                  |                                 |                    | ant to 40 CFR 262    | 17(f). (Addendum A Required)      |
| h. Episodic: Not lasting more than 60 days: SQGLC                                                                                                   |                                 |                    |                      |                                   |
| <b>i</b> . Electronic Manifest Broker, as defined in 40 CFR 260                                                                                     |                                 |                    |                      | m to obtain, complete, and        |
| transmit an electronic manifest under a contractual re-                                                                                             | lationship with a hazar         | uous wa            | usic generator.      |                                   |

DEP Form 62-730.900(1)(b), adopted by reference in rule 62-730.150(2)(a), 62-710.500(1), and 62-737.400(3)(a)2, F.A.C. Effective Date: 12/2019 Page 2 of 10

| RCRA Hazardous                                                                                                                   | Waste Status Noti      | fication or Out of             | Business Notificat                                       | tion                    | EPA ID No.*<br>FLD984                             | 4171694            |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|----------------------------------------------------------|-------------------------|---------------------------------------------------|--------------------|
| 9. RCRA Haza                                                                                                                     | rdous Waste Act        | ivities at this Fa             | acility continued:                                       | (Mark 'X' in all        | that apply):                                      |                    |
| For Items 3 throug                                                                                                               | gh 9, mark 'X' in all  | that apply.                    | ν.                                                       |                         | 2                                                 | 1)                 |
| (2) Treater, Sto                                                                                                                 | orer, or Disposer of l | Hazardous Waste (              | at your facility—Choo                                    | ose Only One) Note:     | A hazardous waste pern                            | nit may be         |
| required for                                                                                                                     | this activity.         |                                |                                                          |                         |                                                   |                    |
| 🔀 a. Ope                                                                                                                         | erating Commercial T   | SD                             |                                                          |                         |                                                   |                    |
| b. Op                                                                                                                            | erating Non-Commer     | cial TSD                       |                                                          |                         |                                                   |                    |
| c. Noi                                                                                                                           | n-Operating: Postclos  | ure or Corrective A            | ction Permit or Order                                    | (HSWA, etc.)            |                                                   |                    |
| (3) Recycle                                                                                                                      | r of Hazardous Was     | te (at your facility)          |                                                          |                         |                                                   |                    |
| Specify:                                                                                                                         |                        | Non-Commercia                  |                                                          |                         |                                                   |                    |
| Specify:                                                                                                                         |                        |                                | s not store prior to ree<br>brage prior to recycling.    | ycling.                 |                                                   |                    |
| (4) <b>Exemp</b>                                                                                                                 | Boiler and/or Indu     | strial Furnace                 |                                                          |                         |                                                   |                    |
|                                                                                                                                  | Small Quantity On-si   |                                |                                                          |                         |                                                   |                    |
|                                                                                                                                  | Smelting, Melting, an  | ÷                              | -                                                        | 1 - 4 O(1 E 114)        |                                                   |                    |
| Choose                                                                                                                           | e this management ac   | tivity ONLY if you             | intity Waste General<br>attach<br>thorization OR the aut |                         |                                                   |                    |
|                                                                                                                                  | es Hazardous Waste     |                                |                                                          | 5                       |                                                   |                    |
| (7) Underg                                                                                                                       | round Injection Co     | ntrol                          |                                                          |                         |                                                   |                    |
|                                                                                                                                  | ized Trader— Mark      | all that apply                 |                                                          |                         |                                                   |                    |
|                                                                                                                                  | mporter<br>Exporter    |                                |                                                          |                         |                                                   |                    |
|                                                                                                                                  |                        | nt Lead-Acid Batte             | ries (SLABs) under 4                                     | 10 CFR subpart G        | - Mark all that apply                             |                    |
|                                                                                                                                  | mporter                | n Dead-Acta Datte              |                                                          | o er resubpart o        | mark an mar appry                                 |                    |
| b. 1                                                                                                                             | Exporter               |                                |                                                          |                         |                                                   |                    |
|                                                                                                                                  | •                      | 0                              |                                                          |                         | of the Federal hazardous                          | wastes handled at  |
|                                                                                                                                  |                        |                                | in the regulations (e.g<br>sually transported. U         |                         | , K019, P012, U112).<br>Iditional page if more sp | aces are needed.   |
| I                                                                                                                                | 2                      | 3                              | 4                                                        | 5                       | 6                                                 | 7                  |
| D001                                                                                                                             | D002                   | D003                           | D004                                                     | D005                    | D006                                              | D007               |
| 8 0000                                                                                                                           | 9 0000                 | 10                             | //<br>D011                                               | 12                      |                                                   | <sup>14</sup> D019 |
| D008                                                                                                                             | D009                   | D010                           | D011                                                     | D012                    | D018                                              | 21                 |
| D021                                                                                                                             | <sup>76</sup> D022     | D023                           | <sup>78</sup> D024                                       | <sup>19</sup> D025      | <sup>20</sup> D026                                | D027               |
| 11. Other Statu                                                                                                                  | s Changes (If no       | longer handling wa             | ste or closed, items 9                                   | and 10 should be lef    | t blank and items 12-16                           | skipped):          |
| (A) Central Accu                                                                                                                 | mulation Area (CA      | A) or Facility Clos            | ed:                                                      |                         |                                                   |                    |
| Central A                                                                                                                        | ccumulation Area (C    | AA)                            |                                                          |                         |                                                   |                    |
|                                                                                                                                  |                        | s section only if <u>all</u> b | ousiness activities at th                                | nis facility have cease | ed.)                                              |                    |
| (B) Closure Date                                                                                                                 |                        |                                |                                                          |                         |                                                   |                    |
| <ul> <li>(1) Expected closure date (date in mm/dd/yyyy)</li> <li>(2) Requesting new closure date (date in mm/dd/yyyy)</li> </ul> |                        |                                |                                                          |                         |                                                   |                    |
|                                                                                                                                  |                        |                                |                                                          |                         | уу)                                               |                    |
|                                                                                                                                  |                        |                                | (date in mr                                              |                         |                                                   |                    |
|                                                                                                                                  | -                      |                                | nce standards in 40 C                                    |                         |                                                   |                    |
|                                                                                                                                  |                        | with the closure perf          | ormance standards in                                     |                         |                                                   |                    |
| (C) Property Ta                                                                                                                  | ax Default             |                                | (D) Petiti                                               | ion for Bankruptcy      | Protection                                        |                    |

DEP Form 62-730.900(1)(b), adopted by reference in rule 62-730.150(2)(a), 62-710.500(1), and 62-737.400(3)(a)2., F.A.C. Effective Date: 12/2019 Page 3 of 10

| Universal Waste Notification and Mercury Transporter/Handler Registration EPA ID No.* FLD                                                                                                                                                                                                                                                                                                                                                                     | 984171694                                       |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|--|
| 12. Universal Waste (UW) Activities (Mark 'X' and complete all that apply):                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |  |  |  |  |  |  |
| A. Federal Notification                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                              |  |  |  |  |  |  |
| Federally Defined Large Quantity Handler (LQH) = Generate/Accumulate: <u>5,000 kg (11,000 lb) or more</u> of a of UW accumulated (at any one time)                                                                                                                                                                                                                                                                                                            | iny combination                                 |  |  |  |  |  |  |
| Accumulates: 🗌 a. UW Batteries 📄 b. Pesticides 🗌 c. Pharmaceuticals                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |  |  |  |  |  |
| d. Mercury Containing Devices       e. Mercury Containing Lamps         Destination Facility for UW       Note: For this activity, a facility must treat, dispose, or recycle a UW.<br>A permit is required for storage prior to recycling.                                                                                                                                                                                                                   |                                                 |  |  |  |  |  |  |
| B. Florida Universal Pharmaceutical Waste (UPW): one-time notification                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |  |  |  |  |  |  |
| Pharmaceuticals LQH = 5,000 kg or more of Universal Pharmaceutical Waste (UPW) accumulated (at any one time)                                                                                                                                                                                                                                                                                                                                                  |                                                 |  |  |  |  |  |  |
| Pharmaceuticals Acute LQH = more than 1 kg (2.2 lb) of acutely hazardous ("P-listed") pharmaceutical waste (UPW                                                                                                                                                                                                                                                                                                                                               | ) accumulated (at any                           |  |  |  |  |  |  |
| <ul> <li>one time)</li> <li>Reverse Distributor of Universal Pharmaceutical Waste (UPW) (must be permitted with the Florida Department of Busi Regulation [DBPR])</li> <li>Florida Universal Pharmaceutical Waste (UPW) Transporter</li> </ul>                                                                                                                                                                                                                | ness and Professional                           |  |  |  |  |  |  |
| C. Florida Annual Mercury Handler Registration:                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |  |  |  |  |  |  |
| For-hire transporters, transfer facilities, handlers, reclamation and recovery facilities of Mercury-Containing Devices operating in the State of Florida are required to register annually with the Department using this s [Chapter 62-737, F.A.C.]. A one-time fee of \$1,000 is required for first time registration as a Large Quantity for-h Mercury-Containing Lamps and Devices as detailed in 62-737.400(3)(a)3.,F.A.C. (please contact FDEP first). | ection of the form                              |  |  |  |  |  |  |
| If you <u>only</u> generate lamps and/or devices or manage pharmaceuticals, do not register or complete the inf                                                                                                                                                                                                                                                                                                                                               | formation below.                                |  |  |  |  |  |  |
| <ul> <li>(1) This form is being submitted as a Florida Registration of Universal Waste Mercury Transporter/Hat Activities</li> <li>Ist Annual Registration Annual Renewal One-time \$1,000 fee for Mercury for-hire first time LQH re</li> </ul>                                                                                                                                                                                                              |                                                 |  |  |  |  |  |  |
| <ul> <li>For-hire Transporter of Universal Waste Mercury-Containing Lamps or Devices</li> <li>For-hire Transfer Facility of Universal Waste Mercury-Containing Lamps or Devices</li> <li>Mercury-Containing Devices (thermostats, etc.) SQH = less than 100 kg accumulated by for-hire handler</li> <li>Mercury-Containing Lamps SQH = less than 2,000 kg (8,000 lamps) accumulated by for-hire handler</li> </ul>                                            | Annual<br>Registration<br>Required              |  |  |  |  |  |  |
| Mercury-Containing Devices $LQH = 100$ kg (220 b) or more accumulated at any one time by for-hire handler                                                                                                                                                                                                                                                                                                                                                     | Annual Registration +<br>one- time \$1,000 fee+ |  |  |  |  |  |  |
| Mercury-Containing Lamps LQH = 2,000 kg (4400 lbs/8,000 lamps) or more accumulated by for-hire handler                                                                                                                                                                                                                                                                                                                                                        | More Requirements<br>(contact FDEP)             |  |  |  |  |  |  |
| (2) Mercury Recovery and/or Reclamation Facility (A <u>hazardous waste permit</u> is required for this activity)<br>Ist Annual Registration Annual Renewal                                                                                                                                                                                                                                                                                                    | Annual Registration<br>Required                 |  |  |  |  |  |  |
| 13. Other State Regulated Waste Activities: Petroleum Contact Water (PCW) Recovery Transpo                                                                                                                                                                                                                                                                                                                                                                    | Fop Bulb Crusher(s).                            |  |  |  |  |  |  |
| Note: A water facility permit may be required for this activity. An annual report is required for a recovery facility pursuant to Rule [6.                                                                                                                                                                                                                                                                                                                    | 2-740.300(5)] F.A.C.                            |  |  |  |  |  |  |

DEP Form 62-730,900(1)(b), adopted by reference in rule 62-730,150(2)(a), 62-710,500(1), and 62-737,400(3)(a)2,, F.A.C. Effective Date: 12/2019 Page 4 of 10

| Hazardous Waste Transporter and Academic Laboratories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA ID No.*                                   | FLD984171694                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|
| 14. HW Transporter Activities: (Mark 'X' and complete all that apply if you nee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed to register your H                         | W Transporter activities)                                   |
| Transporters of and Transfer Facilities for Hazardous Waste in the State of renew their registration. Evidence of casualty/liability insurance pursuant to 62-730. Transporters and transfer facilities may only begin operations after receiving approval from the state of the state | 170(2)(a) is required a                       | ed to register and annually<br>s part of this registration. |
| Generators who transport waste only within the boundaries of their facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | should NOT registe                            | er in box 14.A below.                                       |
| A. HW Transporter Registration Information (must be completed annual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lly and when this inf                         | ormation changes)                                           |
| This form is:       Initial Registration       Renewal       Notification of         1. For own waste only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | changes Canc                                  | el Registration                                             |
| 2. For commercial purposes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                             |
| 3. Both commercial and own waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                                             |
| 4. Transportation Mode Air Rail Highway Water C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other - specify                               |                                                             |
| B. HW Transfer Facility Registration Information (must be completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | annually and when t                           | this information changes)                                   |
| This facility is a Hazardous Waste Transfer Facility: (as listed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Item 3) Storage Volu                          | ıme                                                         |
| This form is: 🔲 Initial Registration 🔲 Renewal 🔲 Notification of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | î changes 🔲 Canc                              | cel Registration                                            |
| Note: Hazardous Waste transfer facilities must comply with the requirements of R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rule 62-730.171, F.A.                         | C., and Rule 62-730.182, F.A.C                              |
| The Transfer Facility records required under the provisions of Rule 62-730.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               | pt at (check one):                                          |
| Our mailing (business) address The site (facility)<br>Please enter the EPA ID Number of the HW Transporter who carries the insurance for this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                             |
| Please see 14.C for additional items to be submitted for registration of a Hazardou Florida Administrative Code (F.A.C.)]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is Waste Transfer Fa                          | cility [Rule 62-730.171(3),                                 |
| C. The following items are required to be submitted with the initial notification for a trasubmitted with any subsequent submission [Rule 62-730.171(3), Florida Administration]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ansfer facility and any tive Code (F.A.C.)] : | y changed items must be                                     |
| Certification by a responsible corporate officer of the transporter facility that the pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oposed location satisfie                      | es the criteria of                                          |
| Section 403.7211(2), Florida Statutes (F.S.) [Rule 62-730.171(3)(a)1., F.A.C.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                             |
| Evidence of the transporter facility's financial responsibility [Rule 62-730.171(3)(a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                                                             |
| A brief general description of the transfer facility operations [Rule 62-730.171(3)(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )4., F.A.C.]                                  |                                                             |
| A copy of the facility closure plan [Rule 62-730.171(3)(a)5., F.A.C.]<br>A copy of the contingency and emergency plan [Rule 62-730.171(3)(a)6., F.A.C.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |                                                             |
| A map or maps of the transfer facility [Rule 62-730.171(3)(a)7., F.A.C.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                                             |
| 15. Eligible Academic Entities with Laboratories-Notification for op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ting into or withd                            | lrawing from managing                                       |
| laboratory hazardous wastes pursuant to 40 CFR Part 262 Subpart K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                             |
| 1. Opting into or currently operating under 40 CFR Part 262 Subpart K for the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anagement of hazard                           | ous wastes in laboratories                                  |
| See the item-by-item instructions for definitions of types of eligible acad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lemic entities. Mark a                        | all that apply:                                             |
| <ul> <li>a. College or University</li> <li>b. Teaching Hospital that is owned by or has a formal written affiliation a</li> <li>c. Non-profit Institute that is owned by or has a formal written affiliation a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |                                                             |
| 2. Withdrawing from 40 CFR Part 262 Subpart K for the management of hazardo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ous wastes in laborate                        | ories                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                             |                                                             |

sinat t

DEP Form 62-730.900(1)(b), adopted by reference in rule 62-730.150(2)(a), 62-710.500(1), and 62-737.400(3)(a)2., F.A.C. Effective Date: 12/2019 Page 5 of 10

| Used Oil and Hazardous Secondary Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA ID No.*                  | FLD984171694                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|
| 16. Used Oil and Used Oil Filter Activities: (Mark 'X' and complete all tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t apply)                     |                                  |
| Transporters (exemptions in 40 CFR 279.40(a)(1-4)), transfer facilities, processors, a <u>annually register</u> with the Department using this form. An annual \$100 registration fee i collection centers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                  |
| This form is: 🔲 Initial Registration 🔲 Renewal 🔲 Notification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of changes 🔲 Cano            | cel Registration                 |
| If applicable, a check or money order, in the amount of \$100, payable to Florida UO Collection Centers must check 16.(2) of this form (not as a registration).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a Department of Environn     | nental Protection is enclosed.   |
| (1) Used Oil Transporter - mark 'X' in all that apply: (occurring in Florida)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                  |
| a. Transporter (off-site) and noncontiguous locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                  |
| b. Transfer Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                                  |
| <ul> <li>(2) Collection Center (From businesses, no more than 55 gal per shipment)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                  |
| (3) Used Oil Processor (A permit is required.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                  |
| (4) Used Oil Re-refiner (A permit is required.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                  |
| (5) Off-Specification Used Oil Burner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                  |
| Utility Boiler Industrial Boiler Industrial Furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                  |
| (6) Used Oil Fuel Marketer On-Spec Off-Spec     (7) Used Oil Filter Management (must annually register)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                                  |
| <ul> <li>a. Transporter</li> <li>b. Transfer Facility</li> <li>c. Processor (Annual Report Required)</li> <li>d. End User (see instructions for definition)</li> <li>(8) The records required under the provisions of Rule 62-710.510, FAC, are kept at (check of the construction of the second second</li></ul> | ieck one):                   |                                  |
| <ul> <li>(9) Used Oil Transporters: (Exemptions in 40 CFR 279.40(a)(1-4))</li> <li>ARL registered UO transporters must submit an annual report except generation of the second s</li></ul>        | ators transperting UO fro    | m noncontiguous operations       |
| - within their own company.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e e                          |                                  |
| <ul> <li>UCstransporters transporting off-site over public highways only within thei</li> <li>UC transporters transporting more than 500 gallons/year must submit proo submission as a certified used oil transporter in section 19 (except those ex</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f of insurance annually, a   | nd must sign and certify this    |
| The used oil annual report is attached Evidence of Liability Insurance p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ursuant to 62-710.600(2)(    | (e)., F.A.C. is attached.        |
| 17. Notification of Hazardous Secondary Material (HSM) Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                  |
| (1) Notifying under 40 CFR 260.42 that you will begin managing, are managing, under 40 CFR 260.30, 40 CFR 261.4(a)(23), (24), or (27). (Addendum C Requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | zardous secondary material       |
| (2) Notifying under 40 CFR 260.43(a)(4)(iii) that the product of your recycling pr<br>comparable to or unable to be compared to a legitimate product or intermediat<br>(Addendum C Required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                  |
| DEP Form 62-730.900(1)(b), adopted by reference in rule 62-730.150(2)(a), 62-710.500(1), and 62-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 737.400(3)(a)2., F.A.C. Effe | ctive Date: 12/2019 Page 6 of 10 |

| Required signature page                                                                                                                                                                                                                                                                        | 2                                              | EPA ID No.*                                      | FLD984171694                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------|
| 18. Comments (attach a page if more space is needed):                                                                                                                                                                                                                                          |                                                |                                                  |                                 |
| #10 Continued: D028, D029, D030, D031, D032,<br>D040, D041, D042, D043, F001, F002, F003, F00<br>U056, U058, U069, U122, U159                                                                                                                                                                  |                                                |                                                  |                                 |
|                                                                                                                                                                                                                                                                                                |                                                |                                                  |                                 |
| <b>19. Certification:</b> I certify under penalty of law that this document a accordance with a system designed to assure that qualified personnel submitted is, to the best of my knowledge and belief, true, accurate, false information, including the possibility of fine and imprisonment | properly gather and e<br>and complete. I am av | evaluate the informat<br>vare that there are sig | ion submitted. The information  |
| <b>I certify as a Used Oil Transporter</b> that I am familiar with the tation and have an annual and new employee training program in pla bility is demonstrated by the Used Oil Transporter Certificate of Liab                                                                               | ce covering the applic                         | able used oil rules. H                           | Evidence of financial responsi- |
| Signature of owner, operator, or an authorized representative:                                                                                                                                                                                                                                 | Date Signed (mn                                | 1-dd-yyyy):                                      |                                 |
| pag-f                                                                                                                                                                                                                                                                                          | X                                              | 4181-                                            | 1022                            |
| Print Name (First, Middle Initial, Last):                                                                                                                                                                                                                                                      | Title:                                         |                                                  |                                 |
| Jeffrey S. Curtis                                                                                                                                                                                                                                                                              | Sr. En                                         | vironmental C                                    | ompliance Mgr.                  |
| Organization:<br>Safety-Kleen Systems, Inc.                                                                                                                                                                                                                                                    | Used Oil                                       |                                                  | 2                               |
| Email:<br>ieff.curtis@sa                                                                                                                                                                                                                                                                       | fety-kleen.com                                 |                                                  | 40<br>-1                        |
| Signature of owner, operator, or an authorized representative:                                                                                                                                                                                                                                 |                                                |                                                  |                                 |
| Print Name (First, Middle Initial, Last):                                                                                                                                                                                                                                                      | Title:                                         |                                                  |                                 |
| Organization:                                                                                                                                                                                                                                                                                  | Used Oil                                       |                                                  |                                 |
|                                                                                                                                                                                                                                                                                                |                                                |                                                  |                                 |
| Email:                                                                                                                                                                                                                                                                                         |                                                |                                                  |                                 |
| If the person that filled in this form is not the Facility Contact or Op                                                                                                                                                                                                                       | erator, please compl                           | ete the information                              | below:                          |
| Name of person completing this form) (Phone Numbe                                                                                                                                                                                                                                              | r)                                             | (E-mail Address)                                 |                                 |
| FP Form 62-730 9(l(1)(b) adopted by reference in rule 62-730 150(2)(a) 62-71                                                                                                                                                                                                                   |                                                |                                                  | tive Date: 12/2010 Page 7 of    |

Tab 1 Part I

| Revision Number | 0 |
|-----------------|---|
| Date 09/20/2022 |   |
| Page 1 of 4     |   |

Zip

#### APPLICATION FOR A HAZARDOUS WASTE PERMIT PART I – GENERAL TO BE COMPLETED BY ALL APPLICANTS

Please Type or Print

| A. | General Information [40 CFR Part 270.13 (a)]                                                                                                                                                                                                                                                                                                                                          |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1. | Type of Facility in accordance with Part 270.13(a)                                                                                                                                                                                                                                                                                                                                    |   |
|    | $\Box$ Tanks $\Box$ Piles $\Box$ Surface Impoundment                                                                                                                                                                                                                                                                                                                                  |   |
|    | □ Incineration □ Containment Building                                                                                                                                                                                                                                                                                                                                                 |   |
|    | Boiler / Industrial Furnace Type of Unit                                                                                                                                                                                                                                                                                                                                              |   |
|    | □ Miscellaneous Unit 1ype of Unit                                                                                                                                                                                                                                                                                                                                                     |   |
|    | ✓ STORAGE<br>✓ Containers ✓ Tanks □ Piles                                                                                                                                                                                                                                                                                                                                             |   |
|    | □ Surface Impoundment □ Containment Building                                                                                                                                                                                                                                                                                                                                          |   |
|    | Miscellaneous Unit Type of Unit                                                                                                                                                                                                                                                                                                                                                       |   |
|    | □ DISPOSAL                                                                                                                                                                                                                                                                                                                                                                            |   |
|    | <ul> <li>Landfill</li> <li>Land Treatment</li> <li>Surface Impoundment</li> <li>Miscellaneous Units</li> <li>Type of Unit</li> </ul>                                                                                                                                                                                                                                                  |   |
| 2. | <ul> <li>Type of application [40 CFR Part 270.13 (a)]:</li> <li>□ Construction Permit</li> <li>☑ Operation Permit</li> <li>□ Construction &amp; Operation Permit</li> <li>□ Research, Development &amp; Demonstration (RD&amp;D) Permit</li> <li>□ Postclosure Permit</li> <li>□ Clean Closure Plan</li> <li>□ Subpart H Remedial Action Plan</li> <li>□ Corrective Action</li> </ul> |   |
| 2  | Revision Number: $0 - 09/20/22$                                                                                                                                                                                                                                                                                                                                                       |   |
| 3. | Revision Number:                                                                                                                                                                                                                                                                                                                                                                      |   |
| 4. | Date Current Operation Began, or is expected to begin: <u>07 / 16 / 1992</u>                                                                                                                                                                                                                                                                                                          |   |
| 5. | Facility Name [40 CFR Part 270.13 (b)] Safety-Kleen Systems, Inc.                                                                                                                                                                                                                                                                                                                     |   |
| 6. | EPA/DEP I.D. No. FLD 984 171 694                                                                                                                                                                                                                                                                                                                                                      |   |
| 7. | Facility Location or Street Address [40 CFR Part 270.13 (b)] 8755 Northwest 95th St, Medley, FL 3317                                                                                                                                                                                                                                                                                  | 8 |
| 8. | Facility Mailing Address 8755 Northwest 95th Street                                                                                                                                                                                                                                                                                                                                   |   |
|    | Street or P.O. Box                                                                                                                                                                                                                                                                                                                                                                    |   |
|    | Medley FL 33178                                                                                                                                                                                                                                                                                                                                                                       |   |
| 0  | City State $Zip$                                                                                                                                                                                                                                                                                                                                                                      |   |
| 9. | Contact Person   Jeff Curtis   Telephone (561)   523-4719                                                                                                                                                                                                                                                                                                                             |   |
|    | Title Sr. Environmental Compliance Manager                                                                                                                                                                                                                                                                                                                                            |   |
|    | Mailing Address 5610 Alpha Drive                                                                                                                                                                                                                                                                                                                                                      |   |
|    | Street or P.O. Box                                                                                                                                                                                                                                                                                                                                                                    |   |
|    | Boynton Beach FL 33426                                                                                                                                                                                                                                                                                                                                                                |   |

Page 1 of 4

State

City

| Revision  | Numbe   | r | 0 |
|-----------|---------|---|---|
| Date 09/2 | 20/2022 | 2 |   |
| Page 2    | of      | 4 |   |

|                                                            | Contact E-mailjef                                                                                                                                                                      | f.curtis@safety-kleen.co                                                                                                 | om                                                                                                            |              |                 |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| 0.                                                         | Operator Name [40 C                                                                                                                                                                    | CFR Part 270.13 (d)]                                                                                                     | Safety-Kleen Systems, In                                                                                      | с.           |                 |
|                                                            | Telephone ( <u>781</u> )                                                                                                                                                               | 792-5000                                                                                                                 |                                                                                                               |              |                 |
|                                                            | Mailing Address                                                                                                                                                                        | 42 Longwater                                                                                                             | Dr                                                                                                            |              |                 |
|                                                            |                                                                                                                                                                                        | Norwell                                                                                                                  | Street or P.O. E<br>MA                                                                                        | Box          | 02061           |
|                                                            | Operator E-mail                                                                                                                                                                        | City                                                                                                                     | State                                                                                                         |              | Zip             |
| 1.                                                         | Facility owner's nam                                                                                                                                                                   | e [40 CFR Part 270.13                                                                                                    | (e)] Safety-Kleen Syste                                                                                       | ems, Inc.    |                 |
|                                                            | Telephone ( <u>781</u> )                                                                                                                                                               |                                                                                                                          |                                                                                                               |              |                 |
|                                                            | Mailing address                                                                                                                                                                        | 42 Longwater                                                                                                             | Dr                                                                                                            |              |                 |
|                                                            | ·                                                                                                                                                                                      | Norwell                                                                                                                  | Street or P.O. E<br>MA                                                                                        |              | .061            |
|                                                            | E-mail address                                                                                                                                                                         | City                                                                                                                     | State                                                                                                         | Z            | Zip             |
| 2.                                                         | Legal structure [40 C                                                                                                                                                                  |                                                                                                                          |                                                                                                               |              |                 |
|                                                            |                                                                                                                                                                                        | □ State government                                                                                                       | □ Federal government                                                                                          | □ Other      |                 |
| 3.                                                         | -                                                                                                                                                                                      | nership, or business is o                                                                                                | Derating under an assume                                                                                      |              | cify the county |
| 3.                                                         | If an individual, parti<br>and state where the n                                                                                                                                       | nership, or business is o<br>ame is registered.                                                                          | -                                                                                                             | ed name, spe |                 |
| _                                                          | If an individual, parts<br>and state where the n<br>County <u>N/A</u>                                                                                                                  | nership, or business is o<br>ame is registered.                                                                          | perating under an assume                                                                                      | ed name, spe |                 |
| _                                                          | If an individual, parts<br>and state where the n<br>County <u>N/A</u>                                                                                                                  | nership, or business is o<br>ame is registered.<br>is a corporation, indicat                                             | perating under an assume                                                                                      | ed name, spe |                 |
| 4.                                                         | If an individual, parti<br>and state where the n<br>County <u>N/A</u><br>If the legal structure<br>State of Incorporation                                                              | nership, or business is o<br>ame is registered.<br>is a corporation, indicat                                             | perating under an assume<br>State<br>e the state of incorporatio                                              | ed name, spe |                 |
| 4.                                                         | If an individual, parts<br>and state where the n<br>County <u>N/A</u><br>If the legal structure<br>State of Incorporation<br>If the legal structure                                    | nership, or business is o<br>ame is registered.<br>is a corporation, indicat<br>nWisconsin<br>is an individual or partr  | perating under an assume<br>State<br>e the state of incorporatio                                              | ed name, spe |                 |
| 4.                                                         | If an individual, parti<br>and state where the n<br>County <u>N/A</u><br>If the legal structure<br>State of Incorporation<br>If the legal structure<br>Name                            | nership, or business is o<br>ame is registered.<br>is a corporation, indicat<br>n Wisconsin<br>is an individual or partr | perating under an assume<br>State<br>e the state of incorporation<br>tership, list the owners.                | ed name, spe |                 |
| 4.                                                         | If an individual, parti<br>and state where the n<br>County <u>N/A</u><br>If the legal structure<br>State of Incorporation<br>If the legal structure<br>Name <u></u><br>Address <u></u> | nership, or business is o<br>ame is registered.<br>is a corporation, indicat<br>n                                        | perating under an assume<br>State<br>e the state of incorporation<br>tership, list the owners.<br>N/A         | ed name, spe | Zip             |
| 4.                                                         | If an individual, parti<br>and state where the n<br>County <u>N/A</u><br>If the legal structure<br>State of Incorporation<br>If the legal structure<br>Name<br>Address<br>Str<br>Name  | nership, or business is o<br>ame is registered.<br>is a corporation, indicat<br>n                                        | perating under an assume<br>State<br>e the state of incorporation<br>tership, list the owners.<br>N/A<br>City | ed name, spe | Zip             |
| <ol> <li>3.</li> <li>4.</li> <li>5.</li> <li>6.</li> </ol> | If an individual, parti<br>and state where the n<br>County <u>N/A</u><br>If the legal structure<br>State of Incorporation<br>If the legal structure<br>Name<br>Address<br>Str<br>Name  | nership, or business is o<br>ame is registered.<br>is a corporation, indicat<br>n                                        | perating under an assume<br>State<br>e the state of incorporation<br>tership, list the owners.<br>N/A<br>City | ed name, spe | Zip             |

Page 2 of 4

| Revis | ion Numb  | er 0 |
|-------|-----------|------|
| Date  | 09/20/202 | 22   |
| Page  | 3 of      | 4    |

If leased, indicate land owner's name.

|     | Address         |                                      |                |              |       |
|-----|-----------------|--------------------------------------|----------------|--------------|-------|
|     |                 | Street or P.O. Box                   | City           | State        | Zip   |
|     | E-mail addre    | ess                                  |                |              |       |
| 17. | Name of En      | gineer N.D Eryou, PhD, PE            | Registra       | ation No4688 | 8     |
|     | Address         | 5051 Castell Drive, Suite 244        | Naples         | FL           | 34103 |
|     |                 | Street or P.O. Box                   | City           | State        | Zip   |
|     | Associated v    | with:Eryou Consulting Engineers      |                |              |       |
| 18. | Is the facility | y located on Tribal land [40 CFR Par | t 270.13 (f)]? | □ Yes        | ✔ No  |

19. Existing or pending environmental permits (attach a separate sheet, if necessary): [40 CFR Part 270.13 (k)]

| NAME OF<br>PERMIT | AGENCY | PERMIT<br>NUMBER | DATE<br>ISSUED | EXPIRATION<br>DATE |
|-------------------|--------|------------------|----------------|--------------------|
| HW Permit         | FDEP   | 56019-011-НО     | 5/21/2018      | 3/19/2023          |
| Industrial Waste  | DERM   | IW-00033         | 6/1/2022       | 5/31/2023          |
| LW Transporter    | DERM   | LW-000046        | 4/1/2022       | 3/31/2023          |
| Air               | DERM   | AP-001521        | 7/1/2022       | 6/30/2023          |

#### **B.** Site Information [40 CFR Part 270.13 (b)]

| 1. The facility is located in | Miami-Dade | county. |  |
|-------------------------------|------------|---------|--|
|-------------------------------|------------|---------|--|

| The nearest community to the facility is |           | Medley               |  |
|------------------------------------------|-----------|----------------------|--|
| Latitude                                 | 25.860192 | Longitude -80.340385 |  |

Method and datum Google Maps

- 2. The area of the facility site is 4.5 acres.
- 3. Attach a scale drawing and photographs of the facility showing the location of all past, present, and future treatment, storage and disposal areas. Include photographs and the locations of all Solid Waste Management Units and Areas of Concern. Also, show the hazardous wastes traffic pattern including estimated volume and control [40 CFR Part 270.13 (h)].
- 4. Attach a topographic map which shows all the features indicated in the instructions for this part.
- 5. Is the facility located in a 100-year flood plain?  $\Box$  Yes  $\blacksquare$  No
- 6. The facility complies with the wellhead protection requirements of Chapter 62-521, F.A.C.

 $\checkmark$  Yes  $\Box$  No

Page 3 of 4

| Revisi | on Num   | ıber | 0 |
|--------|----------|------|---|
| Date   | 9/20/202 | 22   |   |
| Page 4 | 4 of     | 4    |   |

#### C. Land Use Information

| 1. | The present zoning of the site isLight Industrial               |
|----|-----------------------------------------------------------------|
| 2. | If a zoning change is needed, what should the new zoning be?N/A |
| D. | Operating Information                                           |
| 1. | Is waste generated on-site?  ✓ Yes □ No                         |
| 2. | List the NAICS codes (5 to 6 digits) [40 CFR Part 270.13 (c)]   |
|    |                                                                 |

- 3. Use the codes and units provided in the instructions to complete the following table. Specify [40 CFR Part 270.13 (i and j)]:
  - a. Each process used for treating, storing or disposing of hazardous waste (including design capacities) at the facility, and;
  - b. The hazardous waste(s) listed or designated in 40 CFR Part 261, including the annual quantities, to be treated, stored, or disposed by each process at the facility.

|                | PROCESS DESIGN   | HAZARDOUS | ANNUAL QUANITY  |
|----------------|------------------|-----------|-----------------|
| PROCESS CODE   | CAPACITY AND     | WASTE     | OF HAZARDOUS    |
|                | UNITS OF MEASURE | CODE      | WASTE AND UNITS |
|                | UNITS OF MEASURE | CODE      |                 |
|                |                  |           | OF MEASURE      |
|                |                  |           |                 |
| See Part I.D.3 |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |
|                |                  |           |                 |

4. A brief description of the facility [40 CFR Part 270.13 (m)]:

Please see Part I.D.4

5. For hazardous debris, a description of the debris category(ies) and contaminant category(ies) to be treated, stored or disposed of at the facility [40 CFR Part 270.13 (n)]:

Please see Part I.D.5

#### Part I

**B**.

# 3. FACILITY LAYOUT AND TRAFFIC PATTERNS (40 CFR Part 270.13(b))

Site Information (40 CFR Part 270.13(b))

Figure 2.1-1, found at the end of Part I, is a scale drawing showing the facility layout. Site photographs are provided in Appendix A at the end of the permit application. The non-building areas of the facility are paved with asphalt or concrete as noted on Figure 2.1-1. Other minor unpaved areas are vegetated with grass.

Figure 2.1-2, found at the end of Part I, shows the site traffic patterns. Estimated annual volumes of hazardous wastes moving through the facility are found on page 3 (Process – Codes and Design Capabilities). The majority of the vehicular traffic enters and exits the facility through a mechanically operated gate at the Southwest corner of the facility. One additional manually operated gate is located at the Northwest corner of the facility. Loading/unloading operations of containerized waste occurs at the concrete dock area (Area B), and the South side of the Return/Fill Shelter (Area A). Approximately once per week a tractor trailer removes containerized waste for transfer to a Safety-Kleen or Clean Harbors TSDF. This truck backs up to the concrete dock, located on the Southeastern corner the building in Area B, to load waste containers and unload product. Local facility route trucks may also unload containerized waste inside the Return/Fill Shelter (Area A), and at the dock (Area B). The trucks dispatched from the recycle center to deliver parts washer solvent and pick up used parts washer solvent will perform these activities at the above-ground tank truck loading area (Area D) approximately once every 20 days. Used oil loading/unloading also occurs in Area D. Truck-to-building transfer of Fluid Recover Service (FRS) wastes will occur on asphalt or concrete surfaces within the compound (Areas A, B and E).

U.S. 27, Okeechobee Road is the major access road to the facility. This access road is designed in accordance with engineering criteria appropriate for sustaining the traffic volume and loading for the industrial activities in this area. The facility route trucks that travel the routes between the branch and customers use the two-lane road within the industrial park.

Traffic from this facility is not expected to have a major effect on local traffic conditions. The facility and adjacent facilities have been in operation since at least 1992. The roads have been able to sustain the loads being transported over them since operations began.

Part I

#### **B.** Site Information

#### 4. SITE TOPOGRAPHY AND SURROUNDING LAND USE

Figure 2.2-1 is a USGS topographic map showing the facility. Due to the small size of the site, all of the information requested in FDEP's application form cannot be placed on one map. Therefore, additional maps are provided here to present the additional information requested in the application form.

#### 5. 100-Year Floodplain Area

Based on information available (Figure 2.2-2), the majority of the facility is located in Zone X. This area has been classified as "areas outside of 100-year floodplains". There is a small portion of the eastern facility property that lies in Zone AH. This area has been classified as "areas of 100-year shallow flooding with a constant water-surface elevation (usually areas of ponding) where average depths are between 1 and 3 feet". There are also areas surrounding the property that fall into Zone AH. No special flood management procedures are necessary.

# Surface Water Bodies Within One-Quarter Mile of the Facility Property Boundary (e.g., Intermittent Streams and Springs)

Surface water bodies located within one-quarter mile of the facility property boundary include unnamed lakes to the northeast and southeast.

#### Surrounding Land Uses

Surrounding land uses are shown in Figure 2.2-3.

#### Legal Boundaries of the Facility

Figure 2.2-4 shows the property boundaries.

#### Ground Water Monitoring Wells Onsite

There are three (3) monitoring wells located onsite, see Figure 2.1-1: MW-1 on the west side of the tank farm, MW-2 on the east side of the tank farm, and MW-3 on the north side of the tank farm. These wells are sampled, and analyzed, annually per requirements of the facilities Industrial Waste Operating Permit (IW-333), issued by the Miami-Dade County Regulatory and Economic Resources Department.

| Waste Type                         | Process Design | Process    | Estimated   | <i>R Part 270.13(i)(j))</i> Waste Codes               |  |  |
|------------------------------------|----------------|------------|-------------|-------------------------------------------------------|--|--|
| waste Type                         | Capacity       | Code(s)    | Annual      | Waste Coulds                                          |  |  |
|                                    | (Gallons)      | 0000(5)    | Amt. (Tons) |                                                       |  |  |
| Spent Parts Washer                 | 20,000         | S01*       | 542         | D001 and D-codes listed in                            |  |  |
| Solvent                            |                | S02**      |             | Note below                                            |  |  |
| Branch-Generated Liquids           | 6,912          | S01*       | 6           | D001 and D-codes listed in                            |  |  |
| Solids (Debris)                    |                |            |             | Note below; F002, F003, F005                          |  |  |
| Dumpster Sediment                  | 6,912          | S01*       | Included    | D001 and D-codes listed in note                       |  |  |
|                                    |                |            | above       | below                                                 |  |  |
| Tank Bottoms                       | 6,912          | S01*       | Included    | D001 and D-codes listed in note                       |  |  |
|                                    |                |            | above       | below                                                 |  |  |
| Used Immersion Cleaner<br>(IC 699) | 6,912          | S01*       | 21          | D-codes listed in note below                          |  |  |
| Dry Cleaning Waste                 | 6,912          | S01*       | 234         | F002 and D-codes listed in note                       |  |  |
| (Perchloroethylene)                |                |            |             | below                                                 |  |  |
| Dry Cleaning Waste                 | 6,912          | S01*       | Included    | D001 and D-codes listed in note                       |  |  |
| (Non-perchloroethylene)            |                |            | above       | below                                                 |  |  |
| Paint Wastes                       | 6,912          | S01*       | 46          | D001, F003, F005 and D-codes                          |  |  |
|                                    |                |            |             | listed in note below                                  |  |  |
| Retain Samples From                | 6,912          | S01*       | 3           | D008, D018, D039, D040                                |  |  |
| Used Oil Operations                |                | *          |             |                                                       |  |  |
| Spent Aerosol Cans                 | 6,912          | S01*       | < 1         | D001, D035                                            |  |  |
| Fluid Recovery Service             | 11,880         | S01***     | 167         | Transfer wastes-waste codes                           |  |  |
| (FRS) Transfer Wastes              |                |            |             | assigned by generator.                                |  |  |
|                                    |                | ate ate at |             | (Includes F001/F004)                                  |  |  |
| Aqueous Brake Cleaner              | 11,880         | S01***     | 14          | Transfer wastes – none, unless assigned by generator. |  |  |
| Mercury-Containing                 | N/A            | N/A***     | Less than   | N/A-handled as non-hazardous                          |  |  |
| Lamps/Devices                      |                |            | 2.2         | transfer wastes                                       |  |  |

#### Part I

NOTES:

D-Codes: D004, D005, D006, D007, D008, D009, D010, D011, D018, D019, D021, D022, D023, D024, D025, D026, D027, D028, D029, D030, D032, D033, D034, D035, D036, D037, D038, D039, D040, D041, D042, D043

\* This waste will be stored in containers in the warehouse container storage area. The maximum capacity in the warehouse container storage area for hazardous waste and Product is 29,400 gallons, with 6,912 gallons being hazardous waste.

- \*\* The RCRA-Permitted Hazardous Waste Tank (Used Solvent) has a capacity of 20,000 gallons and may be filled to 19,000 gallons
- \*\*\* This waste will be held for transfer in containers in the transfer waste area(s). There is one transfer waste area located inside the warehouse adjacent to the container storage area.

#### Part I

#### D. Operating Information

4. Description of the Facility/Nature of the Business (40 CFR Part 270.13(m))

Safety-Kleen Systems, Inc. of Norwell, MA is an international, service-oriented company whose customers are primarily engaged in automotive repair and industrial maintenance. Since 1968, Safety-Kleen has been offering a leasing service for petroleum-based hydrocarbon solvents and small parts washing equipment.

Safety-Kleen's solvent cycle is essentially a closed loop, moving from the Branch to the customer, from the customer to the Branch, from the Branch to the recycle facility, and then from the recycle center back to the Branch for redistribution to customers. This closed loop supplies Safety-Kleen with most of its solvent requirements (nearly two-thirds of the clean solvent delivered to the field has been previously used by its customers). Ownership of the solvent remains with Safety-Kleen. Solvent containers (product and waste) are transported in specially-equipped, enclosed route trucks. Five aboveground tanks are located at the Safety-Kleen Medley facility. These tanks are used for the storage of: one (20,000-gallon) hazardous waste (used parts washer solvent), one (20,000-gallon) clean product 150 premium parts washer solvent, one (20,000-gallon) used oil, one (15,000-gallon) used oil, and one (10,000-gallon) oily water. These tanks are located tanks storage unit. See figure 2.1-1.

The Safety-Kleen parts washing equipment, together with the solvents, are leased to customers; the leasing charge includes regularly scheduled solvent changes and machine maintenance. The business is conducted from local Branches (sales branches) located in 45 states. The Branches warehouse the products and equipment required to service the customers in their sales areas. On a contractual basis, service representatives furnish clean solvent to the customers, pick up the used solvent, and ensure that the leased equipment is in good working order. In 1979, Safety-Kleen expanded their scope of

operations to make their solvent leasing service available to owners of parts cleaning equipment, regardless of manufacturer, using Safety-Kleen's solvents.

Basically, Safety-Kleen handles two types of parts washers. The original service offered by the company in 1968 was the parts cleaner service and it remains the primary business activity. This service involves the leasing of a small parts degreasing unit which consists of a sink affixed to a container of parts washer solvent. On a regularly scheduled basis, a Safety-Kleen sales representative cleans and inspects the parts washer machine and replaces the container of used solvent with one of clean product. Safety-Kleen has also established a parts cleaner service for users who own their machines. This service provides a solvent reclamation service to these customers regardless of machine model. All clean parts washer solvents are delivered to customers in containers. All spent parts washer solvents are transported from the customer to the Branch in containers.

Upon return of the used parts washer solvent to the branch, the material is transferred from the containers to a wet dumpster located inside the Return/Fill Shelter. Most of the 150 premium parts washer solvent used by customers will be utilized by the Branch for the washing of used parts washer containers. After used parts washer containers have been washed, the spent solvent is pumped from the wet dumpsters via piping to the RCRA-Permitted Hazardous Waste Tank (Used Solvent). Cleaned containers are filled with product 150 premium parts washer solvent in preparation for the next day's services in the Return/Fill Shelter. Periodically (approximately every 20 days), a tanker truck is dispatched from one of the Safety-Kleen TSDF's to deliver a load of clean solvent and collect the used parts washer solvent (hazardous waste) at the Branch. Containers of clean solvent may be stored at the return/fill shelter or in the permitted storage areas. Containers of used parts washer solvent are normally transferred and dumped into the wet dumpsters each day after trucks return from services but may be stored in the permitted container storage area in the event they are not dumped after return to the branch on a specific day.

A second type of parts washer, the immersion cleaner, is available for the removal of varnish and gum from such things as carburetors and transmissions. This machine consists of an immersible basket with an agitator affixed to a container of the immersion cleaner. The spent immersion cleaner solvent remains in the container after delivery to the Branch, where it may be stored in the 10-day transfer area, or permitted container

storage area, of the warehouse. Weekly, a tractor trailer truck is dispatched from a Clean Harbors/Safety-Kleen TSDF to deliver clean immersion cleaner solvent and collect the containers of spent immersion cleaner solvent for reclamation. Warehouse space is dedicated for the storage of clean immersion cleaner. The immersion cleaner remains in the original covered containers during transfer between the Branch and the TSDF's.

Safety-Kleen provides a dry-cleaning waste reclamation service where containers of drycleaning wastes are collected and stored temporarily at the Branch before shipment to the permitted TSDF's for reclamation and processing. Dry cleaning wastes may be managed as permitted or 10-day transfer wastes. All dry-cleaning wastes remain in their original containers while at the Medley facility.

Safety-Kleen also provides a paint waste reclamation service. Wastes containing various thinners and paints are collected in containers and stored temporarily at the Branch before shipment to permitted Safety-Kleen/Clean Harbors TSDF for reclamation and processing. Paint wastes may be managed as permitted or 10-day transfer wastes. All paint wastes remain in their original containers while at the Medley facility.

Fluid Recovery Services (FRS) is a containerized waste service (CWS) program managed by the Safety-Kleen Medley Branch to collect and transfer various other containerized hazardous, and non-hazardous wastes to the appropriate Clean Harbors/Safety-Kleen TSDFs for processing. Hazardous wastes managed under this program are managed as 10-day transfer wastes. Examples of the types of waste that may be received from FRS customers include, but are not limited to:

- Spent hydrocarbon distillates, such as waste fuel, oil, petroleum, naphtha, etc.;
- Lubricating oils, hydraulic oils, synthetic oils, used antifreeze, and machine oils;
- Industrial halogenated solvents such as 1,1,1-trichloroethane, tetrachloroethylene, Freon, and trichloroethane;
- Photographic and x-ray related wastes, acids;
- Paint and lacquer thinners, acids/bases, various return/damaged products from national retail chains;
- Other hazardous and nonhazardous halogenated and nonhalogenated wastes.

# Note: All waste containers are unloaded within 72 hrs. of arrival at the facility and are shipped outbound within 72 hrs. of being loaded for shipment.

#### **10-Day Transfer Storage Areas**

10-day transfer container storage takes place in the main warehouse to the east of the container storage area (this area is approximately 18' x 19'4") (see figure 8.1-1 in section Part II.B). Signage clearly marks this area as 10-day transfer storage and it is separated from the permitted container storage area. If additional space is needed, transfer wastes may be stored in the permitted container storage area for short periods of time. All hazardous waste containers located in the 10-day transfer area(s) are manifested and intransit to other permitted facilities. Safety-Kleen Medley is not the designated facility for wastes located in the 10-day transfer area(s). Safety-Kleen tracks the 10-day transfer limit through its' WINWeb (Waste Information Network) system. Transfer wastes delivered to the facility are documented into a "virtual hub" which shows the manifest number, designated facility, number of containers, and hub receipt date. In the case of Safety-Kleen Medley's transfer waste activities, the virtual hub is MFLH. All personnel have access to this database and can track the number of days each container has been at the facility. In addition, the facility waste tracking information can be accessed by running a "Hub Waste Transfer Report", and this report can be run for any time period. This report will show the generator name, EPA ID number if applicable, address, hub (transfer facility) receive date, hub (transfer facility) outbound ship date, and manifest number.

Safety-Kleen offers a service for the collection of bulk used oil commonly referred to as Safety-Kleen Oil Services (SKOS). Straight tanker trucks are used to collect and transport bulk used oil. After collection, the used oil is transported to the branch and offloaded into one of the used oil storage tanks. From there, the used oil is typically transported to the Safety-Kleen Systems, Inc. Pompano Beach/Ocala oil terminal for storage until being loaded onto railcars. The used oil is then typically transported via rail to the Safety-Kleen East Chicago, IN re-refinery for processing. Used oil is subject to specific acceptance criteria prior to collection and divided into three (3) groups.

Group 1 used oils are derived from automotive sources (auto maintenance, auto retail, dealerships, fleet rental & leasing, quick lubes, marine transportation, mechanical & equipment service, taxi/bus/other local transportation, airlines, railroads, trucking & transportation companies, utilities – natural gas & propane distribution,

telecommunications/cable, and water/sewer, etc.) Prior to collection, used oil at these sites is field tested using a TIF Halogen Leak Detector. Used oil failing the TIF test for SQG/LQG generators will then be tested using the Dexsil Clor-D-Tect kit. Used oil passing this test may be collected, and used oil failing this test may not be collected. It may be collected at a later date, provided a sample of the used oil has passed the rebuttable presumption for used oil using an analytical method from SW-846.

Group 2 used oils are derived from non-automotive sources and may be acceptable if they receive approval from the Central Profile Group (CPG). Examples of group 2 oil sources are: (utility – electrical distribution/power generation, agricultural production, chemical manufacturing/distribution, electrical equipment & computer manufacturers, exploration – drilling/seismic, fabricated metal products, manufacturers –

furniture/millwork/cabinets, fixtures/machine (including medical)/miscellaneous, mining/minerals, primary metal manufacturing, natural gas pipeline/processing, manufacturers – plastic/rubber/glass, oil & gas producers, oilsands mines/SAGD facilities, food & kindred products, manufacturers – asphalt/paper products & packaging materials/shoe/leather/textiles & apparel, printing, lumber/wood products, lumber mills, pulp & paper mills, biotechnology, pharmaceutical, refineries, ship builders, steel mills, asphalt terminal, liquid/petroleum, pipeline, liquid/petroleum terminal, manufacturers – transportation equipment, etc.) Group 2 used oils require a pre-qualification sample to be taken and submitted for analysis (Flash point, PCB's, Halogens, Silicone, and VOC's). Pre-qualification results must be approved prior to initial collection. If the generating process changes, or if no oil is picked up for over one year, a pre-qualification sample must be submitted for approval again. Field testing procedures are the same as the above group 1.

Group 3 are any oils not falling into the Group 1/2 categories and will not be accepted into the SKOS program. Examples of Group 3 oils are, but not limited to: (electrical insulating oil/transformer oil, gasoline, form release oil, rust preventatives, silicone heat transfer fluid, hydraulic oil dye, diesel fuel treatment, motor flushes, penetrating oil, kerosene, cooking oil, crude oil, distillate fuels, animal fats, TSCA regulated oils, urethane coating, etc.)

In 1990, Safety-Kleen began offering a service for the collection of spent antifreeze (ethylene glycol) from automobile service stations. All antifreeze is collected by Safety-

Kleen with the intent of it being recycled. At the customer's location, Safety-Kleen pumps waste ethylene glycol (antifreeze) into a Safety-Kleen used oil tanker truck. This truck transports the used antifreeze (glycol) to the Medley branch, for off-loading into dedicated storage tanks. The comingled material (used antifreeze/used oil) is sent to the SK East Chicago re-refinery where the ethylene glycol is separated by distillation. The glycol is then sent to a recycler for processing into a pure product which is then sold on the open market. This procedure is in accordance with FDEP's the Best Management Practices for Managing Used Antifreeze at Vehicle Repair Facilites, dated May 22, 2012. The Florida Department of Environmental Protection (FDEP) has determined this waste stream can be handled as non-hazardous as long as it is destined for recycling. If used antifreeze collected by the Safety-Kleen Medley facility is sent to a facility other than the East Chicago re-refinery it will be managed as follows. The material will be segregated and off-loaded into a separate storage container/tote, then sampled and analyzed for glycol percentage. If the glycol percentage is acceptable it is sent to a recycler. If the glycol percentage is not acceptable a representative sample will be taken and sent for TCLP analysis to determine if it is a hazardous waste. It will be managed properly according to the TCLP analysis result. In addition, Safety-Kleen sells its' own private label antifreeze in 55-gallon containers. Customers will then place used antifreeze in these containers to be shipped back to the branch. This material is then shipped to SK distribution centers, and then shipped to a recycler.

In 1996, the Branch became registered in Florida as a transporter and storage facility for mercury-containing lamps and devices destined for recycling. This registration includes a commitment to comply with the requirements of Florida Administrative Code (FAC) 62-737.400. As a registered small quantity handler of universal waste lamps/mercury devices, the Branch can store up to 2,000 kg of lamps or 100 kg of mercury devices at any one time. Safety-Kleen provides customers with empty four-foot and eight-foot boxes which hold up to 39 lamps. Boxes containing lamps are picked up from customers and are handled at the Branch as non-hazardous transfer wastes. The boxes are stored at the Branch in a designated area. All containers (boxes) are labeled in accordance with FAC 62-737.400(5)(b) and are partially isolated from other transfer wastes to avoid potential for accidental breakage. The boxes are periodically shipped to a permitted mercury recovery or reclamation facility. Prior to shipment out of the Branch, the boxes are placed on pallets and shrink-wrapped with plastic. Safety-Kleen also manages universal waste batteries. All applicable batteries, per 40 CFR Part 273.2 & 273.9, are

managed in accordance with the Standards For Universal Waste Management found in 40 CFR Part 273. Batteries not meeting these standards may be managed as 10-day transfer hazardous waste. Universal waste lamps, mercury devices & batteries are stored inside the transfer waste areas.

Safety-Kleen offers a Vacuum Services Program. This program is for the collection of non-hazardous waste streams, both liquid and solids/sludges. The Medley branch operates this program with straight tanker trucks that hold approximately 3,500 gallons of material. The primary services offered under this program are:

- Clean-out of oil/water separators, sumps, pits, and trench drains;
- Pumping of open-top drums and other containers of material already removed from oil/water separators, sumps, pits, and trench drains;
- Pumping of other containers of material as approved on a case-by-case basis;
- Transfer of approved pre-qualified non-hazardous materials from one point to another (ex: from pit to containers). Materials collected under this program are shipped to a permitted wastewater treatment facility for processing.

Containers of hazardous waste are picked up at customer locations and transported back to the Branch in route trucks. All hazardous materials collected and transported to the Safety-Kleen Medley branch are properly packaged in USDOT authorized packages. The types of container will depend on the material, and requirements found in 49 CFR Part 173 for authorized packaging. For example:

- Used parts washer solvent 5, 15, 30, 55-gallon containers (metal drums DM)
- Dry-cleaning wastes (Perchloroethylene) 15, 30-gallon containers (plastic/poly drums DF)
- Dry-cleaning wastes (Petroleum-Naphtha) 15,30-gallon containers (metal drums DM)
- Paint Related wastes 5, 15, 30, 55-gallon containers (metal drums DM)
- Immersion Cleaner wastes 15-gallon containers (metal drums DM)
- Used Antifreeze 55-gallon containers (metal drums DM, or poly drums DF) Transfer wastes are containerized and transported after identifying the proper shipping name and consultation with authorized packaging requirements found in 49 CFR Part 173.

Each route truck is equipped with a hand-truck and electric lift gate for movement of containers. Upon arrival at the Branch, containers are off-loaded at the docks (Areas A&B, figure 2.1-1) from route trucks and placed on pallets. Containers of used parts washer solvent are unloaded at Area A, then staged on the Return/Fill Shelter dock awaiting dumping by hand into the wet dumpster, then drum washing. As used parts washer drums are dumped into the wet dumpster the used parts washer solvent is transferred via piping to the RCRA-Permitted Hazardous Waste Tank (Used Solvent). All other containerized wastes are moved from the unloading areas on pallets to the appropriate permitted storage area(s) or 10-day transfer waste area(s). Forklifts are used for loading containerized hazardous/non-hazardous wastes onto the weekly tractor trailer truck for transfer to Clean Harbors/Safety-Kleen TSDF's. These containers will be moved directly onto the truck, which will be parked at the concrete loading dock on the southeastern corner of the warehouse building (Area B, figure 2.1-2).

#### Part 1

#### D. Operating Information

#### 5. Hazardous Debris (40 CFR Part 270.13(n))

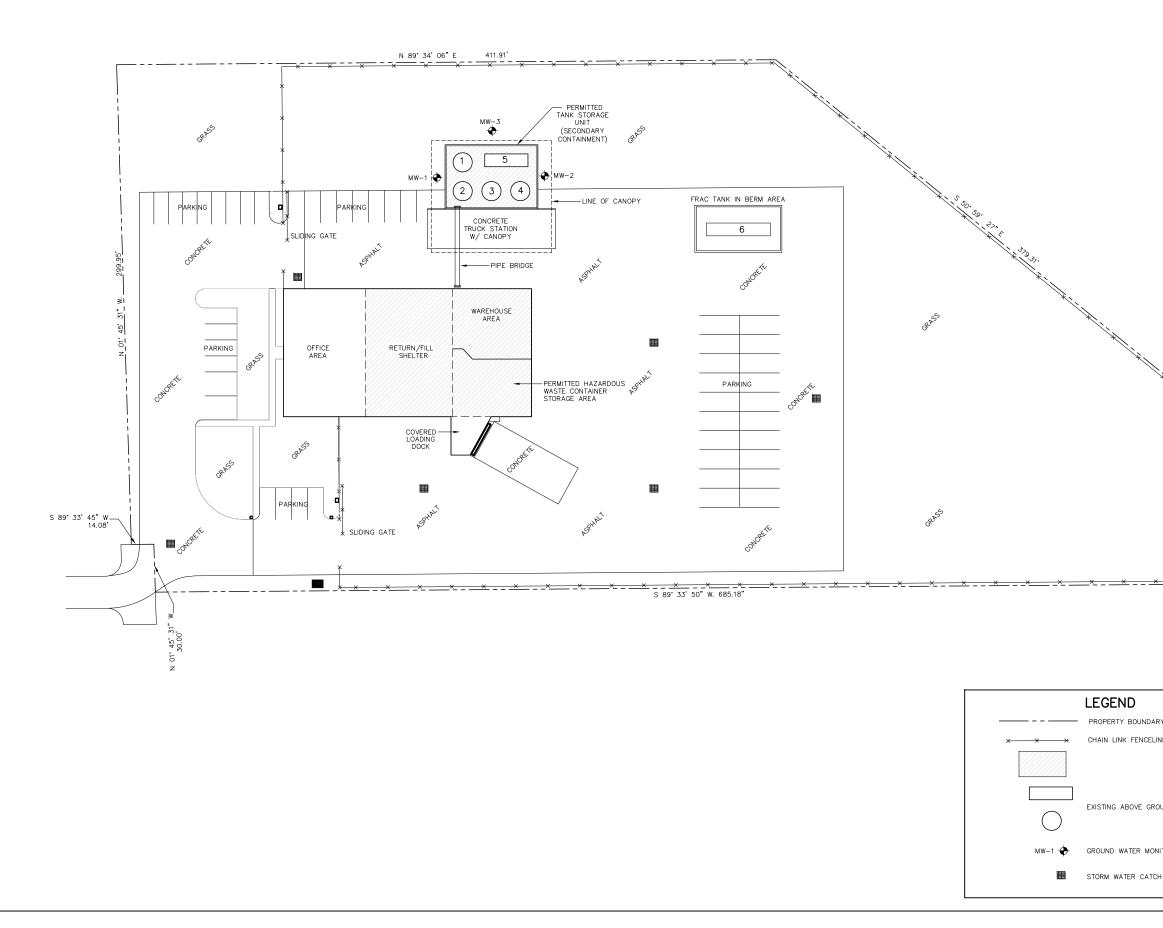
The Safety-Kleen Medley branch does not treat, store, or dispose of any hazardous debris, as defined in 40 CFR Part 268.2(g), at the facility.

### Personal Protective Equipment (PPE) Requirements at the Branch

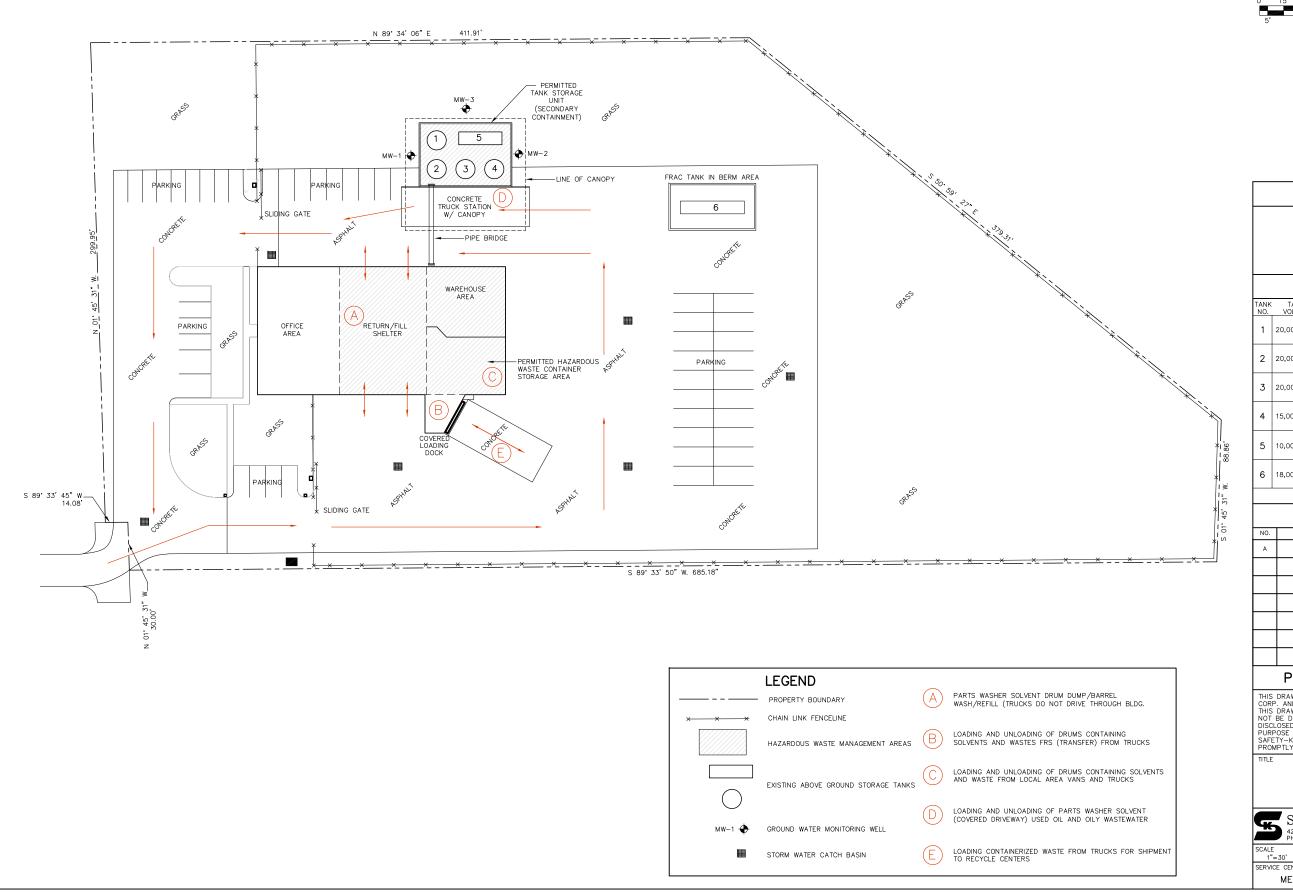
| Task                                             | Gloves       | Uniform | Apron | Foot<br>Wear | Safety<br>Glasses | Hard<br>Hat | Hearing                     | Respirator                              |
|--------------------------------------------------|--------------|---------|-------|--------------|-------------------|-------------|-----------------------------|-----------------------------------------|
| Material handling-<br>containers (bulk/non-bulk) | Yes<br>(Cr)* | Yes     |       | ST w/M       | Yes               | Yes         |                             |                                         |
| Return/Fill Operations                           | Yes (Np)     | Yes     | Yes   | ST w/M       | Yes               | Yes         | Yes<br>w/pneumatic<br>tools |                                         |
| Tank Truck Load/Unload                           | Yes (Np)     | Yes     |       | ST w/SR      | Yes               | Yes         |                             |                                         |
| Spill Response (incidental)                      | Yes (Np)     | Yes     | Yes   | ST w/SR      | Yes               | Yes         |                             | APR-<br>HF/FF/Org.<br>vapor/acid<br>gas |
| Visitor in Operational areas                     |              |         |       | Closed toe   | Yes               | Yes         |                             |                                         |

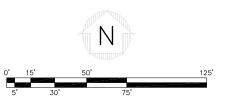
The following PPE is required for all persons working at or visiting the branch.

**Gloves:** Cr = cut resistant,  $(Cr)^* = cut resistant$  (if chemical present – supported Neoprene glove,


Np = Supported Neoprene Glove (outer)

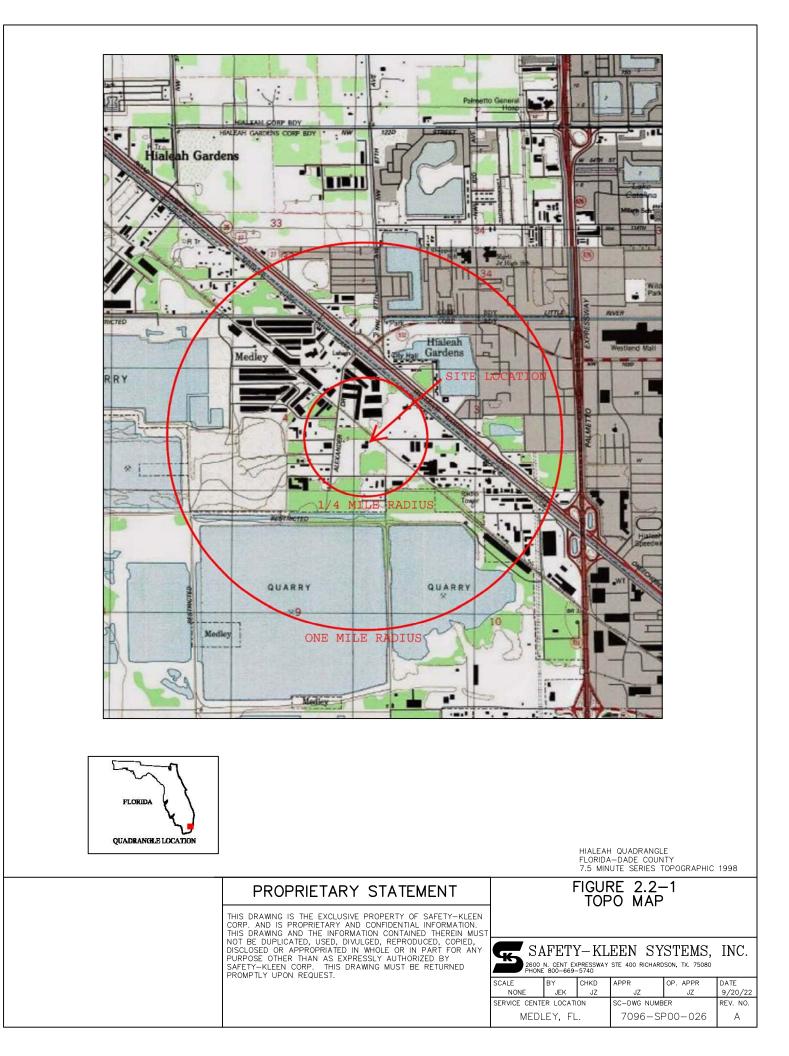
**Hard Hat:** hard hats to be available at all times, and used when in operational areas **Apron:** Tychem QC apron

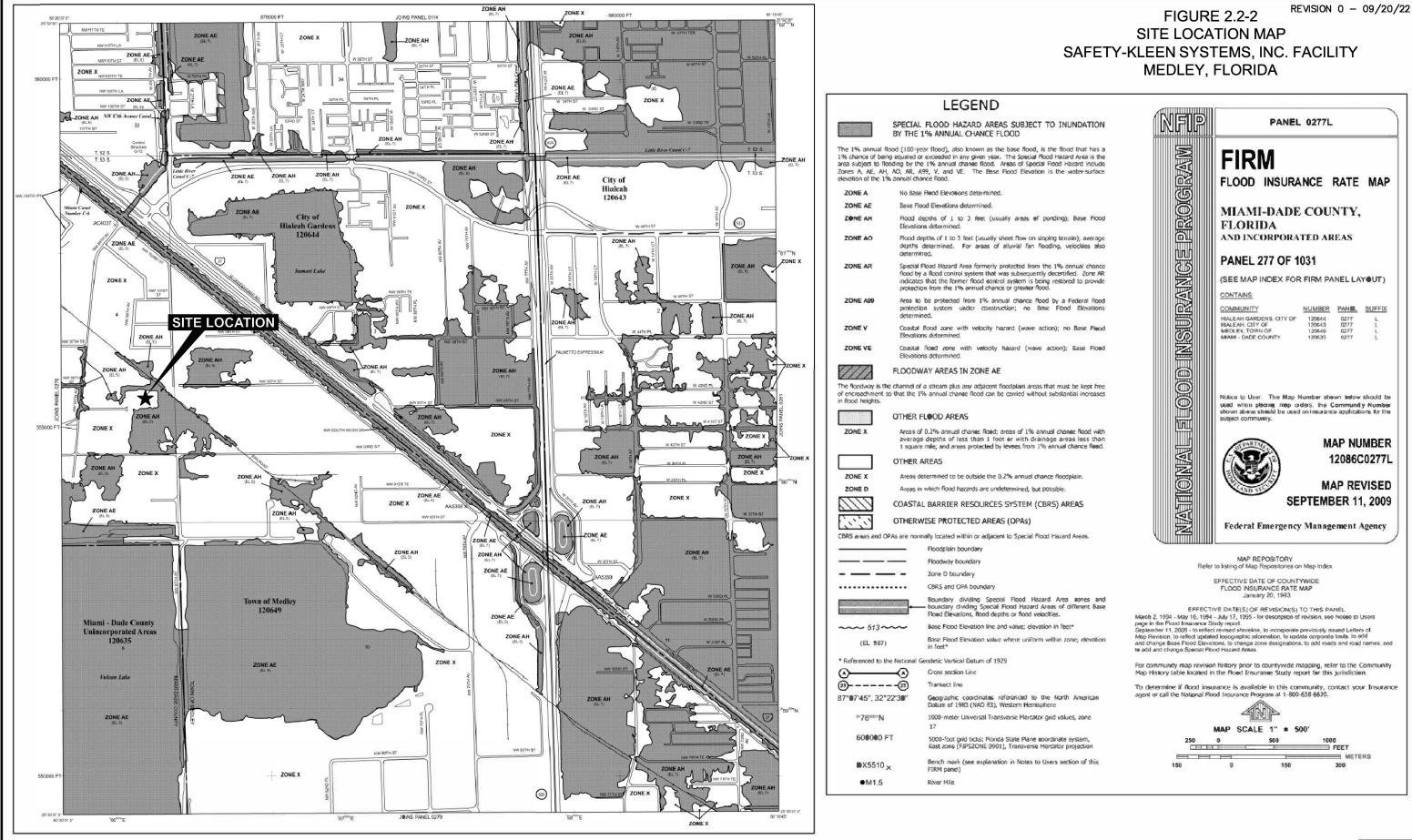

Footwear: ST w/M = steel toes with metatarsal guard, ST w/SR = steel toes with slip resistant soles


**Respirator/Cartridge Type:** APR (air purifying respirator) HF (half face) FF (full face) Organic vapor/acid gas – cartridge type

Safety-Kleen constructed the Medley Branch with the intent that it will be a long-term facility for the distribution of Safety-Kleen products. No on-site disposal activity occurs at the facility and, hence no disposal capacity will be exhausted that will necessitate closure of the facility.




|                                           | 0'                                                                                                                                             | 15'<br>30'                                                                                                                                                                                                                                                                                                                                                                                                          | 50'                                                                    | 75'                                      |                                 |                                      | 125                               | y.                 |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------|--------------------|--|--|
|                                           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     | GENER                                                                  |                                          |                                 | S                                    |                                   |                    |  |  |
|                                           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                          |                                 |                                      |                                   |                    |  |  |
|                                           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     | TANK                                                                   | LEG                                      | END                             | )                                    |                                   |                    |  |  |
|                                           | TANK<br>NO.                                                                                                                                    | TANK<br>VOLUME                                                                                                                                                                                                                                                                                                                                                                                                      | TANK<br>CONTENTS<br>FRESH                                              |                                          | REMARKS                         |                                      |                                   |                    |  |  |
| ×                                         | 1                                                                                                                                              | 20,000 USG<br>20,000 USG                                                                                                                                                                                                                                                                                                                                                                                            | USED<br>SOLVENT                                                        |                                          |                                 |                                      |                                   |                    |  |  |
| ×.                                        | 3                                                                                                                                              | 20,000 USG                                                                                                                                                                                                                                                                                                                                                                                                          | USED                                                                   |                                          |                                 |                                      |                                   |                    |  |  |
| N. A. | 4                                                                                                                                              | 15,000 USG                                                                                                                                                                                                                                                                                                                                                                                                          | USED<br>OIL                                                            |                                          |                                 |                                      |                                   |                    |  |  |
| 88  <br>                                  | 5                                                                                                                                              | 10,000 USG                                                                                                                                                                                                                                                                                                                                                                                                          | OILY WATER                                                             |                                          |                                 |                                      |                                   |                    |  |  |
| × <br>  3                                 | 6                                                                                                                                              | 18,000 USG                                                                                                                                                                                                                                                                                                                                                                                                          | OILY WATER                                                             |                                          |                                 |                                      |                                   |                    |  |  |
| +5 <sup>1</sup> 31                        |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     | REV                                                                    | 15101                                    | ١S                              |                                      |                                   |                    |  |  |
| - 10 s                                    | NO.                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                          |                                 | BY CHK APPR DATE                     |                                   |                    |  |  |
| <u> </u>                                  | A                                                                                                                                              | ISSU                                                                                                                                                                                                                                                                                                                                                                                                                | ED FOR PERMI                                                           | r                                        | JEK                             | JZ                                   | JZ                                | 092022             |  |  |
|                                           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                          |                                 |                                      |                                   |                    |  |  |
|                                           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                          |                                 |                                      |                                   |                    |  |  |
|                                           | $\vdash$                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                          |                                 |                                      |                                   |                    |  |  |
|                                           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                          |                                 |                                      |                                   |                    |  |  |
|                                           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     | RIETAF                                                                 |                                          |                                 |                                      |                                   |                    |  |  |
| RY                                        | THIS<br>NOT<br>DISC<br>PURI<br>SAFE                                                                                                            | DRAWING IS<br>P. AND IS PR<br>DRAWING AN<br>BE DUPLICAT<br>LOSED OR AF<br>POSE OTHER<br>ETY-KLEEN C                                                                                                                                                                                                                                                                                                                 | ID THE INFOR<br>ED, USED, D<br>PROPRIATED<br>THAN AS EX<br>ORP. THIS E | MATION<br>IVULGED,<br>IN WHOU<br>PRESSLY | CONTA<br>REPRO<br>E OR<br>AUTHO | INED TI<br>DUCED<br>IN PAR<br>DRIZED | HEREIN<br>), COPII<br>T FOR<br>BY | MUST<br>ED,<br>ANY |  |  |
| OUND STORAGE TANKS                        | SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED<br>PROMPTLY UPON REQUEST.<br>THE FIGURE 2.1-1<br>FACILITY LAYOUT &<br>ACCESS CONTROL FEATURES |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                          |                                 |                                      |                                   | S                  |  |  |
| NITORING WELL                             | G                                                                                                                                              | 42 LONGW                                                                                                                                                                                                                                                                                                                                                                                                            | TY-KLI                                                                 |                                          |                                 |                                      | [S, ]                             | INC.               |  |  |
| CH BASIN                                  | 1"                                                                                                                                             | 42         LONGWATER         DRIVE, NORWELL, MA.         02061           PHONE:         781-792-5000         DEVENDER         DEVENDER         DATE           1"=30'         JK         CHKD         APPROVED         OPERATIONS         DATE           1"=30'         JK         JZ         JZ         JZ         9/20/22           SERVICE         CENTER         LOCATION         SC-DWG NUMBER         REV. NO. |                                                                        |                                          |                                 |                                      |                                   | /20/22             |  |  |
|                                           |                                                                                                                                                | MEDLEY,                                                                                                                                                                                                                                                                                                                                                                                                             | FL                                                                     | 7096                                     | -SPC                            | 00-00                                | 01                                | А                  |  |  |






GENERAL NOTES

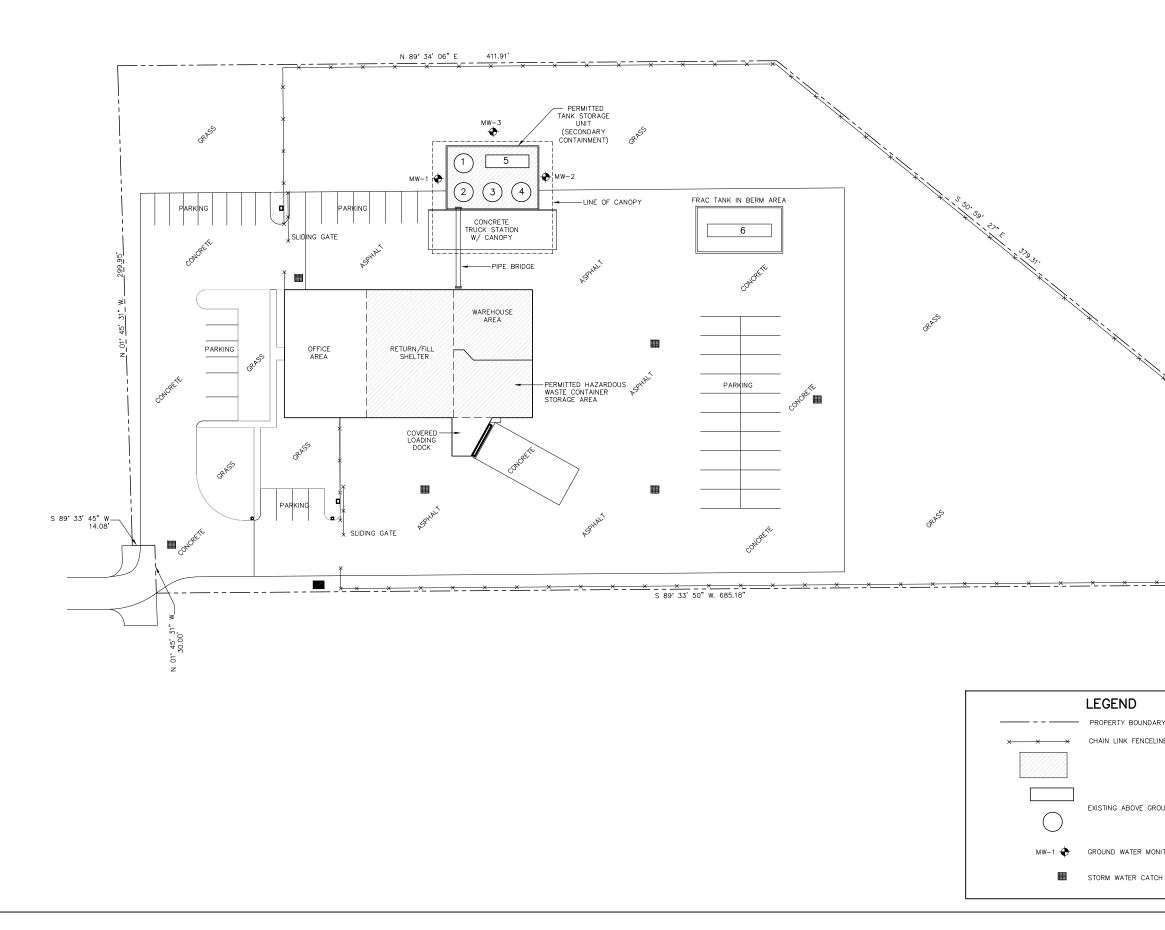
| TANK LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                  |                |     |                |      |               |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|----------------|-----|----------------|------|---------------|--|--|--|
| TANK<br>NO.                                                                                                                                                                                                                                                                                                                                                                                                                   | TANK TANK REMARKS                                                                           |                  |                |     |                |      |               |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,000 USG                                                                                  | FRESH<br>SOLVENT |                |     |                |      |               |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,000 USG                                                                                  | USED<br>SOLVENT  |                |     |                |      |               |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,000 USG                                                                                  | USED<br>OIL      |                |     |                |      |               |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                             | 15,000 USG                                                                                  | USED<br>OIL      |                |     |                |      |               |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000 USG                                                                                  | OILY WATER       | 2              |     |                |      |               |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                             | 18,000 USG                                                                                  | OILY WATER       | 2              |     |                |      |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                  |                |     |                |      |               |  |  |  |
| REVISIONS                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                  |                |     |                |      |               |  |  |  |
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             | ESCRIPTION       |                | BY  | СНК            | APPR | DATE          |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                             | ISSU                                                                                        | D FOR PERMI      | Т              | JEK | JZ             | JZ   | 092022        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                  |                |     |                |      |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                  |                |     |                |      |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                  |                |     |                |      |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                  |                |     |                |      |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                  |                |     |                |      |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                  |                |     |                |      |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | RIETAF           |                |     |                |      |               |  |  |  |
| THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION.<br>THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST<br>NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED,<br>DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY<br>PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY<br>SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED<br>PROWFILY UPON REQUEST. |                                                                                             |                  |                |     |                |      |               |  |  |  |
| FIGURE 2.1–2<br>TRUCK TRAFFIC<br>PATTERNS                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                  |                |     |                |      |               |  |  |  |
| G*                                                                                                                                                                                                                                                                                                                                                                                                                            | SAFETY-KLEEN SYSTEMS, INC.<br>42 LONGWATER DRIVE, NORWELL, MA. 02061<br>PHONE: 781-792-5000 |                  |                |     |                |      |               |  |  |  |
| SCALE<br>1"                                                                                                                                                                                                                                                                                                                                                                                                                   | =30' BY                                                                                     |                  | APPROVED<br>JZ | OF  | PERATION<br>JZ |      | ATE<br>/20/22 |  |  |  |
| SERVICE CENTER LOCATION SC-DWG N                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                  |                |     | 0-00           | R    | EV. NO.<br>A  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                           |                  |                |     |                |      |               |  |  |  |



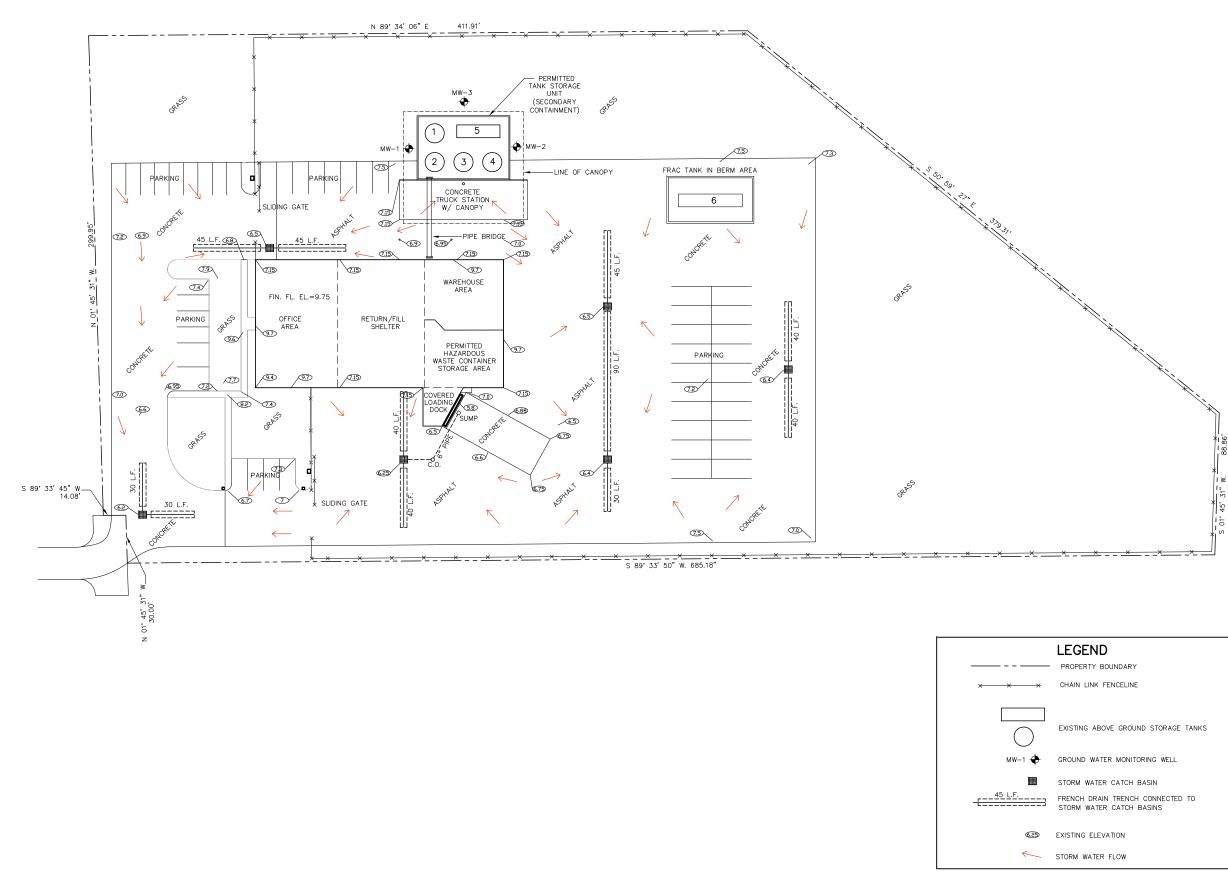


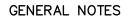


#### ADJACENT PROPERTY OWNERS


- 1. FLORIDA WOOD/MEDLEY METAL RECYCLING
- 2. EAGLE METAL PROCESSING
- 3. FLORIDA EAST COAST RR CO.
- 4. US FOUNDRY
- 5. US FOUNDRY
- 6. PEPSICO
- 7. TROPICAL TRAILER LEASING
- 8. SANTAFE TILE

#### LAND USE


WDDD/METAL RECYCLING FACILITY METAL PRDCESSING & RECYCLING RAILRDAD ASSESSMENT HEAVY INDUSTRIAL VACANT LAND/PARKING FDDD/BEVERAGE MANUFACTURING TRAILER LEASE/STDRAGE FACILITY TILE COMPANY WAREHDUSE


# FLORIDA QUADRANGLE LOCATION

|  | PROPRIETARY STATEMENT                                                                                                                                                                                                                 |                                                                                                           |           |            |             |                | IAP             |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------|------------|-------------|----------------|-----------------|
|  | THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION.<br>THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST<br>NOT BE DUPLICATED. USED. DIVULGED, REPRODUCED, COPIED. |                                                                                                           |           |            |             |                |                 |
|  | DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY<br>PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY<br>SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED<br>PROMPTLY UPON REQUEST.                                                  | SAFETY-KLEEN SYSTEMS, IN<br>2600 N. CENT EXPRESSIVALY STE 400 RICHARDSON, TX. 75080<br>PHONE 800-669-5740 |           |            |             |                | INC.            |
|  |                                                                                                                                                                                                                                       | SCALE<br>NONE                                                                                             | BY<br>JEK | CHKD<br>JZ | APPR<br>JZ  | OP. APPR<br>JZ | DATE<br>9/20/22 |
|  | s                                                                                                                                                                                                                                     |                                                                                                           | ER LOCAT  | ION        | SC-DWG NUMB | ER             | REV. NO.        |
|  |                                                                                                                                                                                                                                       | MED                                                                                                       | LEY, Fl   | -•         | 7096-SF     | P00-028        | А               |



|                             | 0'                                                                                                                                                                                   | 15'<br>30'                                                              | 50'                                     | 75                       |                |            | 125           |                          |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|--------------------------|----------------|------------|---------------|--------------------------|--|
|                             |                                                                                                                                                                                      |                                                                         | GENER                                   | AL N                     | IOTE           | S          |               |                          |  |
|                             | TANK LEGEND                                                                                                                                                                          |                                                                         |                                         |                          |                |            |               |                          |  |
|                             | <u>NO.</u>                                                                                                                                                                           | 20,000 USG                                                              | FRESH<br>SOLVENT                        |                          |                | REMAR      |               |                          |  |
|                             | 2                                                                                                                                                                                    | 20,000 USG                                                              | USED<br>SOLVENT                         |                          |                |            |               |                          |  |
|                             | 3                                                                                                                                                                                    | 20,000 USG                                                              | USED                                    |                          |                |            |               |                          |  |
|                             | 4                                                                                                                                                                                    | 15,000 USG                                                              | USED                                    |                          |                |            |               |                          |  |
| - 188<br>  - 188<br>  - 188 | 5                                                                                                                                                                                    | 10,000 USG                                                              | OILY WATER                              |                          |                |            |               |                          |  |
| *                           | 6                                                                                                                                                                                    | 18,000 USG                                                              | OILY WATER                              |                          |                |            |               |                          |  |
|                             | REVISIONS                                                                                                                                                                            |                                                                         |                                         |                          |                |            |               |                          |  |
| s 01.                       | NO.                                                                                                                                                                                  |                                                                         | ESCRIPTION                              | r                        | BY<br>JEK      | CHK<br>JZ  | APPR<br>JZ    | DATE<br>092022           |  |
| ×                           |                                                                                                                                                                                      | 1550                                                                    | LU I UN L'EKMI                          |                          | UEA            | υZ         | JZ            | 032022                   |  |
|                             |                                                                                                                                                                                      |                                                                         |                                         |                          |                |            |               |                          |  |
|                             | _                                                                                                                                                                                    |                                                                         |                                         |                          |                |            |               |                          |  |
|                             |                                                                                                                                                                                      |                                                                         |                                         |                          |                |            |               |                          |  |
|                             |                                                                                                                                                                                      |                                                                         |                                         |                          |                |            |               |                          |  |
|                             | PROPRIETARY STATEMENT                                                                                                                                                                |                                                                         |                                         |                          |                |            |               |                          |  |
| RY                          | DISC                                                                                                                                                                                 | DRAWING IS<br>P. AND IS PR<br>DRAWING AN<br>BE DUPLICAT<br>CLOSED OR AF | PPROPRIATED                             | IN WHO                   | LE OR          | IN PAR     | T FOR         | EU,                      |  |
|                             | DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY<br>PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY<br>SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED<br>PROMPTLY UPON REQUEST. |                                                                         |                                         |                          |                |            |               |                          |  |
| DUND STORAGE TANKS          | FIGURE 2.2-4<br>LEGAL BOUNDARIES                                                                                                                                                     |                                                                         |                                         |                          |                |            |               |                          |  |
| NTORING WELL                | Ģ                                                                                                                                                                                    | 42 LONGW                                                                | TY— KLI<br>ATER DRIVE, N<br>31—792—5000 | EEN<br>orwell, 1         | SYS<br>ma. 020 | <b>TEN</b> | <b>i</b> s, 1 | INC.                     |  |
| H BASIN                     |                                                                                                                                                                                      | E BY<br>'=30' JE                                                        | CHKD /<br>CATION :                      | APPROVED<br>JZ<br>SC-DWG | NUMBER         |            | 9<br>RE       | ATE<br>/20/22<br>EV. NO. |  |
|                             |                                                                                                                                                                                      | MEDLEY,                                                                 | FL                                      | 7096                     | -SPC           | 00-00      | 1             | A                        |  |





Ν

1. FRENCH DRAIN STRUCTURES ARE A 16" PERFORATED CMP PIPE AT ELEVATION 6.0. BOTTOM OF TRENCH IS 15" DEEP AND 36" WIDE. MASONRY PLUG AT END OF TRENCH.

### TANK LEGEND

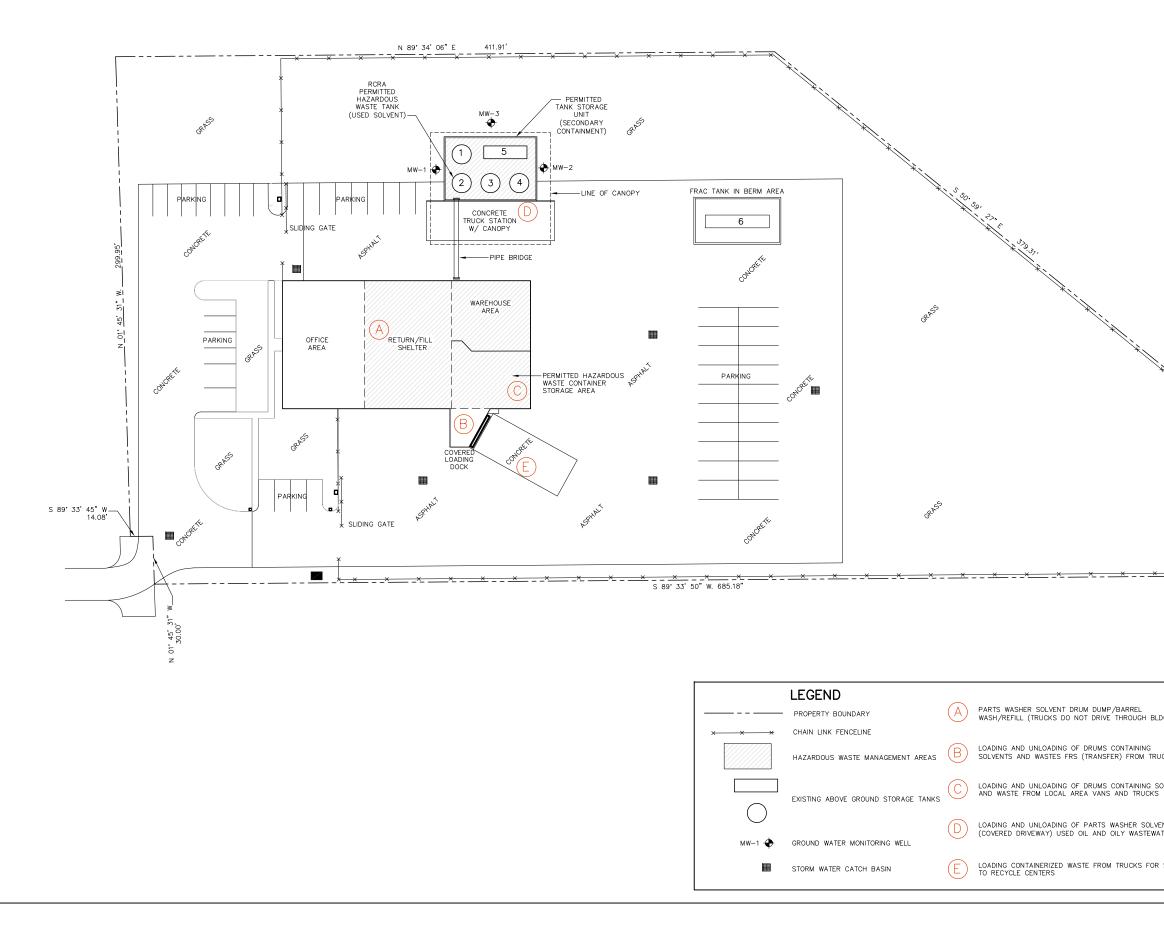
| TANK<br>NO. | TANK<br>VOLUME | TANK<br>CONTENTS | REMARKS |
|-------------|----------------|------------------|---------|
| 1           | 20,000 USG     | FRESH<br>SOLVENT |         |
| 2           | 20,000 USG     | USED<br>SOLVENT  |         |
| 3           | 20,000 USG     | USED<br>OIL      |         |
| 4           | 15,000 USG     | USED<br>OIL      |         |
| 5           | 10,000 USG     | OILY WATER       |         |
| 6           | 18,000 USG     | OILY WATER       |         |

#### REVISIONS

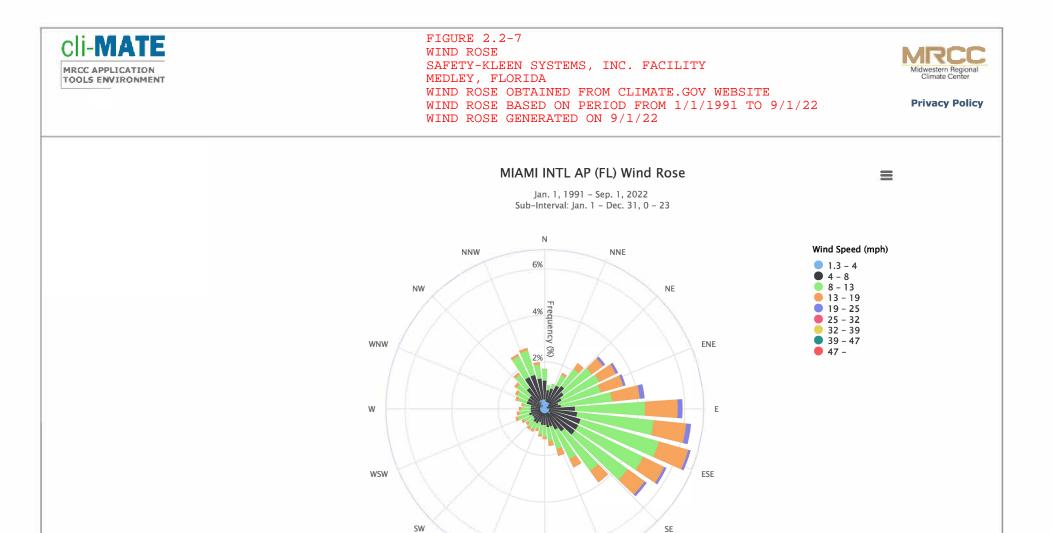
| NO. | DESCRIPTION       | BY  | CHK | APPR | DATE   |  |  |  |
|-----|-------------------|-----|-----|------|--------|--|--|--|
| А   | ISSUED FOR PERMIT | JEK | JZ  | JZ   | 092022 |  |  |  |
|     |                   |     |     |      |        |  |  |  |
|     |                   |     |     |      |        |  |  |  |
|     |                   |     |     |      |        |  |  |  |
|     |                   |     |     |      |        |  |  |  |
|     |                   |     |     |      |        |  |  |  |
|     |                   |     |     |      |        |  |  |  |
|     |                   |     |     |      |        |  |  |  |

#### PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.


#### TITLE FIGURE 2.2-5 SITE STORM WATER DRAINAGE

| SAFETY-KLEEN SYSTEMS, INC.<br><sup>42</sup> LONGWATER DRIVE, NORWELL, MA. 02061<br>PHONE: 781-792-5000 |  |  |             |                 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|--|--|-------------|-----------------|--|--|--|--|
| SCALE<br>1"=30'                                                                                        |  |  |             | DATE<br>9/20/22 |  |  |  |  |
| SERVICE CENTER LOCATION                                                                                |  |  | SC-DWG NUME | REV. NO.        |  |  |  |  |


7096-SP00-001

А

MEDLEY, FL



|                  | 0' 15' 50' 125'                                                                                                                                                                                                                                               |                                                            |                             |     |                      |                 |               |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|-----|----------------------|-----------------|---------------|--|
|                  |                                                                                                                                                                                                                                                               | 50'<br>30'                                                 | 75'                         |     | _                    | 125             | ŕ             |  |
|                  |                                                                                                                                                                                                                                                               |                                                            |                             |     |                      |                 |               |  |
|                  |                                                                                                                                                                                                                                                               |                                                            |                             |     |                      |                 |               |  |
|                  |                                                                                                                                                                                                                                                               |                                                            |                             |     |                      |                 |               |  |
|                  |                                                                                                                                                                                                                                                               |                                                            |                             |     |                      |                 |               |  |
|                  |                                                                                                                                                                                                                                                               | GENER                                                      | AL N                        | OTE | S                    |                 |               |  |
|                  |                                                                                                                                                                                                                                                               |                                                            |                             |     |                      |                 |               |  |
|                  |                                                                                                                                                                                                                                                               | TANK                                                       | LEG                         | ENC | )                    |                 |               |  |
|                  | TANK TANK<br>NO. VOLUM                                                                                                                                                                                                                                        | TANK                                                       |                             |     | REMARK               | s               |               |  |
|                  | 1 20,000 0                                                                                                                                                                                                                                                    | EDECU                                                      |                             |     |                      |                 |               |  |
| ¥                | 2 20,000                                                                                                                                                                                                                                                      | JSG USED<br>SOLVENT                                        |                             |     |                      |                 |               |  |
| ×                | 3 20,000 0                                                                                                                                                                                                                                                    | JSG USED<br>OIL                                            |                             |     |                      |                 |               |  |
| *                | <b>4</b> 15,000 U                                                                                                                                                                                                                                             | JSG USED<br>OIL                                            |                             |     |                      |                 |               |  |
| ×1.88<br>  89    | 5 10,000 l                                                                                                                                                                                                                                                    | JSG OILY WATER                                             |                             |     |                      |                 |               |  |
| × <br>×          | 6 18,000 U                                                                                                                                                                                                                                                    | JSG OILY WATER                                             |                             |     |                      |                 |               |  |
| 45' 31 <u>"</u>  | REVISIONS                                                                                                                                                                                                                                                     |                                                            |                             |     |                      |                 |               |  |
| ×I<br>1-1<br>1-1 | NO.                                                                                                                                                                                                                                                           | DESCRIPTION                                                |                             | BY  | СНК                  | APPR            | DATE          |  |
| <u></u>          | A                                                                                                                                                                                                                                                             | ISSUED FOR PERMI                                           | r                           | JEK | JZ                   | JZ              | 092022        |  |
|                  |                                                                                                                                                                                                                                                               |                                                            |                             |     |                      |                 |               |  |
|                  |                                                                                                                                                                                                                                                               |                                                            |                             |     |                      |                 |               |  |
|                  |                                                                                                                                                                                                                                                               |                                                            |                             |     |                      |                 |               |  |
|                  |                                                                                                                                                                                                                                                               |                                                            | <u>ې ۲۱</u>                 | ΤΔΤ |                      | <u>.</u><br>ТИТ |               |  |
| LDG.             | PROPRIETARY STATEMENT<br>THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION.<br>THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST<br>NOT BE DUPLICATED, USED, DIVULCED, REPRODUCED, COPED. |                                                            |                             |     |                      |                 |               |  |
| RUCKS            | DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY<br>PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY<br>SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED<br>PROMPTLY UPON REQUEST.                                                                          |                                                            |                             |     |                      |                 |               |  |
| SOLVENTS<br>S    | FIGURE 2.2-6<br>LOCATIONS OF HAZARDOUS                                                                                                                                                                                                                        |                                                            |                             |     |                      |                 |               |  |
| /ENT<br>ATER     | G SA                                                                                                                                                                                                                                                          | ASTE STO<br>FETY-KLI                                       | EEN (                       | SYS | TEM                  |                 | INC.          |  |
| R SHIPMENT       | PHONE                                                                                                                                                                                                                                                         | NGWATER DRIVE, N<br>E: 781-792-5000<br>BY CHKD ,<br>JEK JZ | ORWELL, M<br>APPROVED<br>JZ | _   | 61<br>PERATION<br>JZ |                 | ATE<br>/20/22 |  |
|                  | SERVICE CENTER                                                                                                                                                                                                                                                |                                                            | sc-dwg N<br>7096            |     |                      | R               | EV. NO.<br>A  |  |



Click and drag to zoom

#### MIAMI INTL AP (FL) - Wind Frequency Table (percentage)

SSW

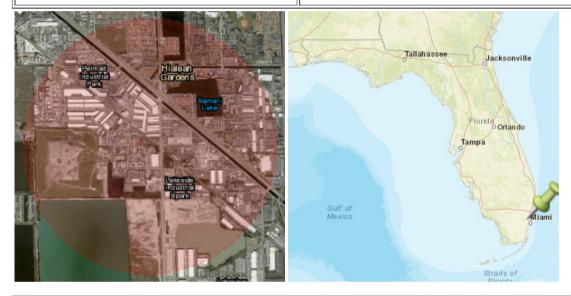
(Greater than or equal to initial interval value and Less than ending interval value.)

Range 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Total (mph)

SSE

S




## Florida Department of Environmental Protection



Map Direct AIR (Area of Interest Report) Standard Map

| Point of Interest:                            |
|-----------------------------------------------|
| 25°51'37.9457" x -80°20'24.8363"              |
| 25.860540474048182 x -80.34023230911245       |
| Search Radius: 1 mile                         |
| Report Created on Thu Jul 14 2022 at 11:43:37 |
| Map Direct v7.220630                          |
|                                               |

Township/Range/Section: 53S40E4 Medley, Miami-Dade County 33178 FDEP Regulatory District: Southeast District Water Management District: SFWMD FL House District 103 :: FL Senate District 36 US Congressional District 25 HUC Basin Area: Florida Southeast Coast Waterbody ID: 3290 State Land DM ID: 139211



## Search Result Summary

| Features<br>Found | Data Layer                                                                                 | Metadata                    | Spreadsheet                |
|-------------------|--------------------------------------------------------------------------------------------|-----------------------------|----------------------------|
| 1                 | Wastewater Facility Regulation (WAFR) - Wastewater Facilities                              | <u>Layer</u><br>Information | Download as<br>Spreadsheet |
| 0                 | Wastewater Facility Regulation (WAFR) - Wastewater Sites                                   | <u>Layer</u><br>Information |                            |
| 5                 | Underground Injection Control (UIC) Class V Non-ASR Wells                                  | Layer<br>Information        | Download as<br>Spreadsheet |
| 0                 | Underground Injection Control (UIC) Class V ASR Wells                                      | Layer<br>Information        |                            |
| 1                 | Underground Injection Control (UIC) Class I Wells                                          | Layer<br>Information        | Download as<br>Spreadsheet |
| 0                 | Source Water Assessment and Protection Program (SWAPP) Ground<br>Water Areas (Non Federal) | Layer<br>Information        |                            |
| 0                 | Ground Water Contamination Areas                                                           | Layer<br>Information        |                            |
| 0                 | Public Water Supply (PWS) Plants (Non-Federal)                                             | Layer<br>Information        |                            |

| 0 | Public Water Supply (PWS) Wells (Non-Federal)                 | <u>Layer</u><br>Information |  |
|---|---------------------------------------------------------------|-----------------------------|--|
| 0 | Private Wells from Generalized Well Information System (GWIS) | <u>Layer</u><br>Information |  |

# Search Result Details

## Wastewater Facility Regulation (WAFR) - Wastewater Facilities: 1 Found.

| LOCATIONAL ID                     | 25305                         |
|-----------------------------------|-------------------------------|
| WAFR FACILITY ID                  | 36546                         |
| FACILITY ID                       | FLG110614                     |
| FACILITY NAME                     | Quickcrete Ready Mix          |
| ENVIRONMENTAL<br>INTEREST         | Industrial Wastewater Program |
| MANAGED<br>ENTITY TYPE            | Wastewater Facility           |
| FACILITY TYPE                     | СВР                           |
| FACILITY STATUS                   | A                             |
| NPDES                             | Υ                             |
| DESIGN CAPACITY                   |                               |
| PERMITTED<br>CAPACITY             |                               |
| PRETREAT REQ                      | Ν                             |
| OFFICE NAME                       | Southeast District            |
| DISTRICT NAME                     | SED                           |
| COUNTY                            | 13                            |
| COUNTY NAME                       | Miami-Dade                    |
| QA STATUS                         | REVIEWED                      |
| LAT DD                            | 25                            |
| LAT MM                            | 51                            |
| LAT SS                            | 24.7219                       |
| LONG DD                           | 80                            |
| LONG MM                           | 20                            |
| LONG SS                           | 22.2212                       |
| DCD DATUM ID                      | HARN                          |
| DETERMINATION<br>DATE             | 02/27/2007                    |
| CMCD<br>COORDINATE<br>METHOD ID   | ррно                          |
| COLLECTOR<br>USERNAME             | LAKHAN_S                      |
| CAC1<br>COORDINATE<br>ACCURACY ID | 4                             |
| OOIC OBJECT OF<br>INTEREST ID     | Facility                      |
| VERIFICATION<br>DATE              | 02/27/2007                    |
| VERIFY CMCD<br>METHOD ID          | ррно                          |
| VERIFIER<br>USERNAME              | LAKHAN_S                      |
| PPC POINT<br>PROXIMITY ID         | CENTR                         |

|          | Open Web Page<br>(https://prodenv.dep.state.fl.us/DepNexus/public/electronic-<br>documents/FLG110614/gis-facility!search) |   |
|----------|---------------------------------------------------------------------------------------------------------------------------|---|
| OBJECTID | 1658                                                                                                                      | Ī |

## Underground Injection Control (UIC) Class V Non-ASR Wells: 5 Found.

| FACILITY ID         | 104003                                              | 111 | FACILITY ID                              | 62  | 709                          |
|---------------------|-----------------------------------------------------|-----|------------------------------------------|-----|------------------------------|
| FACILITY NAME       | SHELL OIL PRODUCTS COMPANY                          |     |                                          |     | LMS SPRINGS GDN.             |
| FACILITY TYPE       | CLASS V INJECTION WELLS                             | ill | FACILITY NAME                            |     | NDOMINIUM APTS               |
| FACILITY STATUS     | ACTIVE                                              | ill | FACILITY TYPE                            | CL/ | ASS V INJECTION WELLS        |
|                     | F&Z II CORPARATION-SHELL                            | ╢   | FACILITY STATUS                          | AC  | TIVE                         |
| ADDRESS             | SERVICE STATION                                     |     | ADDRESS                                  | N۷  | V 103RD ST. & 80TH AVE.      |
| СІТҮ                | HIALEAH                                             | ]   | CITY                                     | MI  | AMI                          |
| ZIP5                | 33016                                               | ]   | ZIP5                                     |     |                              |
| ZIP4                |                                                     |     | ZIP4                                     |     |                              |
| WELL NUMBER         | SWD1                                                |     | WELL NUMBER                              | 1   |                              |
| WELL STATUS         | ACTIVE                                              | ]   | WELL STATUS                              | AC  | TIVE                         |
| INJECTION WELL TYPE | STORMWATER DRAINAGE WELL                            |     | INJECTION WELL TYPE                      |     | /IMMING POOL DRAINAGE        |
| TOTAL WELL DEPTH    |                                                     | ]   |                                          | WE  |                              |
| TOTAL CASING DEPTH  |                                                     | ]   | TOTAL WELL DEPTH                         | 85  |                              |
| CONSTRUCTION        |                                                     | ]   | TOTAL CASING DEPTH                       | 0   |                              |
| COMPLETED DATE      |                                                     |     | CONSTRUCTION<br>COMPLETED DATE           | 10, | /18/1984                     |
| DISTRICT            | SED                                                 |     | DISTRICT                                 | SEI | O                            |
| OFFICE              |                                                     |     | OFFICE                                   |     |                              |
| COUNTY              | 13                                                  |     | COUNTY                                   | 13  |                              |
| COUNTY NAME         | MIAMI-DADE                                          | ļ   |                                          | _   | AMI-DADE                     |
| OBJECT OF INTEREST  | Non-ASR Class V Injection Well                      |     |                                          |     |                              |
| PROXIMITY ID        | APPRX                                               |     | OBJECT OF INTEREST                       |     | n-ASR Class V Injection Well |
| LAT DD              | 25                                                  |     | PROXIMITY ID                             |     | PRX                          |
| LAT MM              | 52                                                  |     | LAT DD                                   | 25  |                              |
| LAT SS              | 6                                                   |     |                                          | 52  |                              |
| LONG DD             | 80                                                  |     | LAT SS                                   |     | )839                         |
| LONG MM             | 20                                                  |     | LONG DD                                  | 80  |                              |
| LONG SS             | 36                                                  |     | LONG MM                                  | 19  |                              |
| DATUM ID            | NAD83                                               |     | LONG SS                                  |     | .6315                        |
| COORDINATE METHOD   | DMAP                                                | 111 | DATUM ID                                 |     | .D83                         |
| ID                  |                                                     |     |                                          | DP  | НО                           |
| ACCURACY LEVEL      | 6                                                   |     | ACCURACY LEVEL                           | 4   |                              |
| ACCURACY            | 50 - 999.99 meters                                  |     | ACCURACY                                 |     | - 20 meters                  |
| QA STATUS           | NOT REVIEWED                                        |     | QA STATUS                                |     | VIEWED                       |
| OBJECTID            | 18459                                               |     | OBJECTID                                 | 94  | 56                           |
| Control (UIC) C     | derground Injection<br>lass V Non-ASR Wells         |     | #4 of 5 from Under<br>Control (UIC) Clas |     | V Non-ASR Wells              |
| FACILITY ID         | 60453                                               |     | FACILITY ID                              | _   | 104323                       |
|                     | AL CRAFT INDUSTRIES                                 |     |                                          |     | MIGUEL GONZOLEZ              |
| FACILITY TYPE       |                                                     |     |                                          |     | CLASS V INJECTION WELLS      |
| FACILITY STATUS     |                                                     |     | FACILITY STATUS                          |     |                              |
| ADDRESS             | 9869 NW 79TH AVE.                                   |     | ADDRESS                                  |     | 1110 BRICKELL AVENUE         |
| CITY                | HIALEAH                                             |     | СІТҮ                                     |     | MIAMI                        |
| ZIP5                |                                                     |     | ZIP5                                     |     | 33131                        |
| ZIP4                |                                                     |     | ZIP4                                     |     |                              |
| WELL NUMBER         | 1                                                   |     | WELL NUMBER                              |     | SWD1                         |
| WELL STATUS         | ACTIVE                                              |     | WELL STATUS                              |     | ACTIVE                       |
| INJECTION WELL TYPE | A/C RETURN-FLOW WELL (CLOSED-<br>LOOP,NO ADDITIVES) |     | INJECTION WELL TYPE                      |     | SWIMMING POOL DRAINAG        |
|                     |                                                     | THE | TOTAL WELL DEPTH                         |     |                              |

#### 7/1

#### Map Direct AIR

SED

13

DMAP

18605

50 - 999.99 meters NOT REVIEWED

6

MIAMI-DADE

Non-ASR Class V Injection

| 1/22, 11:44 AM                 |                                                     |                        |
|--------------------------------|-----------------------------------------------------|------------------------|
| TOTAL CASING DEPTH             | 0                                                   | TOTAL CASING DEPTH     |
| CONSTRUCTION<br>COMPLETED DATE | 07/20/1984                                          | CONSTRUCTION COMPLETED |
| DISTRICT                       | SED                                                 | DISTRICT               |
| OFFICE                         |                                                     | OFFICE                 |
| COUNTY                         | 13                                                  | COUNTY                 |
| COUNTY NAME                    | MIAMI-DADE                                          | COUNTY NAME            |
| OBJECT OF INTEREST             | Non-ASR Class V Injection Well                      | OBJECT OF INTEREST     |
| PROXIMITY ID                   | APPRX                                               |                        |
| LAT DD                         | 25                                                  |                        |
| LAT MM                         | 51                                                  | LAT DD                 |
| LAT SS                         | 46.2494                                             |                        |
| LONG DD                        | 80                                                  | LAT SS                 |
| LONG MM                        | 19                                                  | LONG DD                |
| LONG SS                        | 30.4812                                             | LONG MM                |
| DATUM ID                       | NAD83                                               | LONG SS                |
| COORDINATE                     |                                                     | DATUM ID               |
| METHOD ID                      | ОРНО                                                | COORDINATE METHOD ID   |
| ACCURACY LEVEL                 | 4                                                   | ACCURACY LEVEL         |
| ACCURACY                       | 11 - 20 meters                                      | ACCURACY               |
| QA STATUS                      | REVIEWED                                            | QA STATUS              |
| OBJECTID                       | 6935                                                | OBJECTID               |
| FACILITY NAME                  |                                                     |                        |
| FACILITY ID                    |                                                     |                        |
| FACILITY TYPE                  | CLASS V INJECTION WELLS                             |                        |
| FACILITY STATUS                | ACTIVE                                              |                        |
| ADDRESS                        | 5850 LEVATE                                         |                        |
| CITY                           | CORAL GABLES                                        |                        |
| ZIP5                           |                                                     |                        |
| ZIP4                           |                                                     |                        |
| WELL NUMBER                    | 1                                                   |                        |
| WELL STATUS                    | ACTIVE                                              |                        |
| INJECTION WELL TYPE            | A/C RETURN-FLOW WELL (CLOSED-<br>LOOP,NO ADDITIVES) |                        |
| TOTAL WELL DEPTH               | 0                                                   |                        |
| TOTAL CASING DEPTH             | 0                                                   |                        |
| CONSTRUCTION<br>COMPLETED DATE | 11/15/1984                                          |                        |
| DISTRICT                       | SED                                                 |                        |
| OFFICE                         |                                                     |                        |
| COUNTY                         | 13                                                  |                        |
| COUNTY NAME                    | MIAMI-DADE                                          |                        |
| OBJECT OF INTEREST             | Non-ASR Class V Injection Well                      |                        |
| PROXIMITY ID                   | APPRX                                               |                        |
| LAT DD                         | 25                                                  |                        |
| LAT MM                         | 51                                                  |                        |
| LAT SS                         | 48.334                                              |                        |
| LONG DD                        | 80                                                  |                        |
| LONG MM                        | 19                                                  |                        |
| LONG SS                        | 35.2207                                             |                        |
| DATUM ID                       | NAD83                                               |                        |
| COORDINATE<br>METHOD ID        | DMAP                                                |                        |
|                                |                                                     |                        |

50 - 999.99 meters REVIEWED

6

ТГ

ACCURACY LEVEL

ACCURACY

QA STATUS

#### Underground Injection Control (UIC) Class I Wells: 1 Found.

||10016

| #1 of 1 from Underground Injection<br>Control (UIC) Class I Wells |                                            |  |  |  |  |  |
|-------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| FACILITY ID                                                       | 101022                                     |  |  |  |  |  |
| FACILITY NAME                                                     | MEDLEY LANDFILL - WASTE<br>MANAGEMENT INC. |  |  |  |  |  |
| FACILITY TYPE                                                     | CLASS I INJECTION WELLS                    |  |  |  |  |  |
| FACILITY STATUS                                                   | ACTIVE                                     |  |  |  |  |  |
| ADDRESS                                                           | 9350 NW 89TH AVE                           |  |  |  |  |  |
| CITY                                                              | MEDLEY                                     |  |  |  |  |  |
| ZIP5                                                              | 33178                                      |  |  |  |  |  |
| ZIP4                                                              | 1402                                       |  |  |  |  |  |
| WELL NUMBER                                                       | IW-1                                       |  |  |  |  |  |
| WELL STATUS                                                       | ACTIVE                                     |  |  |  |  |  |
| INJECTION WELL TYPE                                               | INDUSTRIAL WASTEWATER WELL                 |  |  |  |  |  |
| TOTAL WELL DEPTH                                                  | 3512                                       |  |  |  |  |  |
| TOTAL CASING DEPTH                                                | 2778                                       |  |  |  |  |  |
| CONSTRUCTION<br>COMPLETED DATE                                    | 05/08/2014                                 |  |  |  |  |  |
| DISTRICT                                                          | SED                                        |  |  |  |  |  |
| OFFICE                                                            |                                            |  |  |  |  |  |
| COUNTY                                                            | 13                                         |  |  |  |  |  |
| COUNTY NAME                                                       | MIAMI-DADE                                 |  |  |  |  |  |
| OBJECT OF INTEREST                                                | Class I Injection Well                     |  |  |  |  |  |
| PROXIMITY ID                                                      | APPRX                                      |  |  |  |  |  |
| LAT DD                                                            | 25                                         |  |  |  |  |  |
| LAT MM                                                            | 51                                         |  |  |  |  |  |
| LAT SS                                                            | 33                                         |  |  |  |  |  |
| LONG DD                                                           | 80                                         |  |  |  |  |  |
| LONG MM                                                           | 20                                         |  |  |  |  |  |
| LONG SS                                                           | 36.5136                                    |  |  |  |  |  |
| DATUM ID                                                          | NAD83                                      |  |  |  |  |  |
| COORDINATE METHOD                                                 | ZIP4                                       |  |  |  |  |  |
| ACCURACY LEVEL                                                    | 6                                          |  |  |  |  |  |
| ACCURACY                                                          | 50 - 999.99 meters                         |  |  |  |  |  |
| QA STATUS                                                         | REVIEWED                                   |  |  |  |  |  |
| OBJECTID                                                          | 373                                        |  |  |  |  |  |

#### No Results Found:

Ground Water Contamination Areas Private Wells from Generalized Well Information System (GWIS) Public Water Supply (PWS) Plants (Non-Federal) Public Water Supply (PWS) Wells (Non-Federal) Source Water Assessment and Protection Program (SWAPP) Ground Water Areas (Non Federal) Underground Injection Control (UIC) Class V ASR Wells Wastewater Facility Regulation (WAFR) - Wastewater Sites

\*\*\* END OF REPORT \*\*\*

Tab 2 Part II

## Part II

## A. General

## 1. Topographic Map

Figure 2.2-1, found at the end of Part I, is a USGS topographic map showing the facility location, per 40 CFR Part 270.14(b)(19). Due to the small size of the site, all of the information requested in FDEP's application form cannot be placed on one map. Therefore, additional maps are provided here to present the additional information requested in the application form. Specific information requested in the permit application is provided below.

## Contours Sufficient to Show Surface Water Flow

Figure 2.2-5, found at the end of Part I, shows surface elevations at the facility. The site is nearly flat, with surface elevations in unpaved areas ranging from 4.7 to 5.1 feet above mean sea level. Paved areas are at slightly higher elevations. Anticipated surface water flow directions are shown on Figure 2.2-5.

## 100-Year Floodplain Area

Based on information available (Figure 2.2-2), the facility does not lie within the 100year shallow flooding where depths are between one and three feet. Base flood elevations are shown, but no flood hazard factors are determined. No special flood management procedures are necessary.

## Access Control (fences, gates, etc.)

Figure 2.1-1, found at the end of Part I, shows access control features (e.g., fences, gates, doors, roll-up doors, etc.).

## **On-site and off-site Injection and Withdrawal Wells**

There are no injection or withdrawal wells on site. Results of an inventory of wells within one-quarter mile of the site are presented in Table 2.2-1.

Drinking Water Wells Listed In Public Records or Otherwise Known to the Applicant Within One-Quarter Mile of the Facility Property Boundary

Information from FDEP's GIS application Map Direct at http://ca.dep.state.fl.us/mapdirect/?focus=none is found on Table 2.2-1, is found at the end of Part I.

# Surface Water Bodies Within One-Quarter Mile of the Facility Property Boundary (e.g., Intermittent Streams and Springs)

Surface water bodies located within one-quarter mile of the facility property boundary include unnamed lakes to the northeast and southeast. These surface water bodies are depicted in Figure 2.2-1.

## **Buildings and Other Structures**

Figure 2.1-1, found at the end of Part I, shows on-site buildings and other structures.

## Loading and Unloading Areas

Figure 2.1-2, found at the end of Part I, shows loading and unloading areas in relation to the waste management areas.

#### Hazardous Waste Units

Figure 2.2-6, found at the end of Part I, shows hazardous waste management units. Figure Part II-Q, found at the end of Part II Q, shows the location of SWMUs.

## **Run-Off Control System**

Stormwater run-off controls are illustrated in Figure 2.2-5. Stormwater drainage from the paved portion of the facility is routed by sloped pavement to a series of six catch basins connected to separate French drain systems. As shown in Figure 2.2-5, French drain

piping exists at strategic locations within the facility pavement. Stormwater drainage from unpaved portions of the facility follow natural drainage patterns leading off site. Various other surface water management features are shown in Figure 2.2-5 as well.

#### 1.b Wind Rose

A wind rose for Miami, Florida is shown in Figure 2.2-7 found at the end of Part I.

#### 1.c Traffic Information

Site traffic patterns are illustrated in Figure 2.1-2, found at the end of Part I. The majority of the vehicular traffic and loading/unloading operation occurs at the loading areas (Areas A, B, D and E), which are paved with asphalt and concrete. Area D is used for the loading/unloading of clean parts washer solvent and hazardous waste parts washer solvent from tanker trucks, and also loading/unloading of used oil from bulk used oil collection trucks. Approximately once per week a tractor trailer removes containerized waste for transfer to a Safety-Kleen or Clean Harbors TSDF. This truck backs up to the concrete dock, located on the southeastern side of the facility in Area B, to load waste containers and unload product for the Safety-Kleen branch.

Currently, the Safety-Kleen branch actively operates with three (3) route box trucks, two (2) bulk used oil collection tanker trucks, one (1) vacuum services tanker truck and two (2) sales vans. Clean Harbors Technical Services operates with one (1) route box trucks.

Access to, and exit from, the facility is only provided by two gates that are both on the western side of the facility, as shown on Figure 2.1-2. There are no traffic control signals, designated traffic lanes, or stacking lanes within the site. The site road surface is asphalt as shown on Figure 2.1-2

U.S. 27, Okeechobee Road, is the major access road to the facility. This access road is designed in accordance with engineering criteria appropriate for sustaining the traffic volume and loading for the industrial activities in this area. The facility route trucks that travel the routes between the branch and customers use the two-lane road within the industrial park.

Traffic from this facility is not expected to have a major effect on local traffic conditions. The facility and adjacent facilities have been in operation since at least 1992. The roads have been able to sustain the loads being transported over them since operations began.

## Part II

### A. General

## 2. FINANCIAL RESPONSIBILITY INFORMATION

- A.2.a Per 40 CFR Part 264.142, the most recent closure cost estimates are provided at the end of this section. Financial assurance is provided through the use of a financial test specified in Subpart H of 40 CFR Part 264.143.
- *A.2.d* A copy of the document to demonstrate liability coverage, per 40 CFR Part 264.147, is provided at the end of this section.
- A.3 Flood Map

This information is provided in Part I, Figure 2.2-2.

## A.4 Facility Security Information

- *A.4a* In accordance with 40 CFR Part 264.14, access to the facility is controlled through the following methods:
  - 1. A chain link fence topped with barbed wire completely surrounds the active portion of the facility. Entry to the facility is provided by two (2) gates that are both on the western side of the site, and one (1) front door that leads into the office area. The gates are kept locked at all times unless there are authorized vehicles entering/leaving the facility. The front door leads to a small lobby, which contains a second door for entry into the office area.
  - Signs are posted at the entrance of the facility and along the fence line so that they are visible from any approach at 25 feet. Signs are marked "DANGER – UNAUTHORIZED PERSONNEL KEEP OUT".

3. The combination of signage and controlled access entrances prevents unknowing entry and minimizes the potential for unauthorized entry of persons, or livestock, into the facility. See Figure 2.1-1 at the end of Part I for detail.

|    | Activity                                                                                                                                                                                                                                                 | Category                                                                | Hourly Rate<br>or<br>Unit Charge | Hours or<br>Unit<br>Estimate | Subtotal<br>Cost               |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|------------------------------|--------------------------------|
| 1. | INVENTORY REMOVAL                                                                                                                                                                                                                                        | Catogory                                                                | <u> </u>                         |                              |                                |
|    | Assumptions                                                                                                                                                                                                                                              |                                                                         | Сар                              | acity (gallons)              | )                              |
|    | - Waste mineral spirits tank(s) is full<br>-Tank One<br>-Tank Two (IF APPLICABLE)                                                                                                                                                                        |                                                                         |                                  | 20000<br>0                   |                                |
|    |                                                                                                                                                                                                                                                          | Total Tank Capacity                                                     |                                  | 20000                        |                                |
|    | <ul> <li>Return/Fill station is full</li> <li>Maximum capacity of drum washers added to waste mineral spirits tank quantity</li> </ul>                                                                                                                   |                                                                         |                                  | 1008                         |                                |
|    | - Container storage area(s) full<br>-CSA 1                                                                                                                                                                                                               |                                                                         |                                  | 6912                         |                                |
|    | -CSA 2 (IF APPLICABLE)                                                                                                                                                                                                                                   | Total CSA Capacity                                                      |                                  | 0<br>6912                    |                                |
|    | Subcontractor Costs                                                                                                                                                                                                                                      |                                                                         |                                  |                              |                                |
|    | - Transfer tank contents to tankers<br>Tank Capacity (total gallons)<br>Work Rate to Unload Tank Capacity (hours per gallon)<br>Total Hours to Unload                                                                                                    |                                                                         |                                  | 21008<br>0.0003<br>6.3       |                                |
|    | Labor and equipment rate to unload (PPE Level D) and cost                                                                                                                                                                                                | Labor/equipment                                                         | \$175.95                         | 6.3                          | \$1,109                        |
|    | - Transport waste mineral spirits to a TSD for treatment/disposal<br>Number of tanker trailers required (6,000 gallons max each load)<br>Cost per mile =\$5.64/mile                                                                                      |                                                                         |                                  | 4                            |                                |
|    | Mileage = 500 miles (Number in second column is 500 miles x number trucks)<br>Disposal/treatment cost (per gallon - low cost based on suitability for fuel)                                                                                              | Transport = 500 miles each<br>TSD @\$0.45/gallon                        | \$5.64<br>\$0.450                | 2000<br>21008                | \$11,280<br>\$9,454            |
|    | - Transfer drums from CSA(s) to trucks<br>Labor/Equipment (PPE Level D)<br>(Number in second column is number of drums determined from total CSA capacity)                                                                                               | Labor/equipment per drum                                                | \$3.57                           | 126                          | \$450                          |
|    | - Transport drums to TSD for Treatment/Disposal<br>Total Number of Drums (Number is total of CSA drums and Flam Shed drums)<br>Total Number of Trucks Required to Transport Drums (84 per truck max)                                                     |                                                                         |                                  | 126<br>2                     |                                |
|    | Cost per mile =\$5.64/mile<br>Mileage = 500 miles (Number in second column is 500 miles x number of trucks)<br>Disposal/treatment cost (per drum - low cost based on suitability for fuel)<br>Disposal/treatment cost (per drum - not suitable for fuel) | Transport trailer(s) x 500 miles<br>TSD @ \$90/drum<br>TSD @ \$179/drum | \$5.64<br>\$90<br>\$179          | 1000<br>63<br>63             | \$5,640<br>\$5,670<br>\$11,277 |
|    | Activity 1. Sul                                                                                                                                                                                                                                          | btotal                                                                  |                                  |                              | \$44,879                       |

8/12/2022

|     | Activity                                                                                                    | Category                           | Hourly Rate<br>or<br>Unit Charge | Unit          | Subtotal<br>Cost |
|-----|-------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|---------------|------------------|
| S   | FORAGE TANK DECONTAMINATION                                                                                 |                                    |                                  |               |                  |
| As  | ssumptions:                                                                                                 |                                    |                                  |               |                  |
|     | The tanks, piping and appurtenant equipment are decontaminated and remain in place                          |                                    |                                  |               |                  |
|     | Rinsate sampling necessary because the tank will remain in place. Assumes 1 rinsate sample per tank.        |                                    |                                  |               |                  |
|     | ncludes decontamination of the containment area                                                             |                                    |                                  |               |                  |
| - A | Assumes containment area to remain in place following decontamination                                       |                                    |                                  |               |                  |
|     | Assumes 1 rinsate sample required to leave containment in place                                             |                                    |                                  |               |                  |
|     | Assumes 2 soil samples required from beneath containment area. Actual number of samples will be based on er | ngineer's inspection.              |                                  |               |                  |
|     | Fank Interior Square Footage (based on tank volume)                                                         |                                    | S                                | quare Footage |                  |
|     | - Tank 1                                                                                                    |                                    |                                  | 1206          |                  |
|     | - Tank 2 (IF APPLICABLE)                                                                                    |                                    |                                  | 0             |                  |
|     |                                                                                                             | Total Tank Interior Square Footage |                                  | 1206          |                  |
|     |                                                                                                             |                                    |                                  |               |                  |
| - 1 | Fank Farm Containment Square Footage (includes floor and walls)                                             |                                    |                                  | 2908          |                  |
|     | Prime Contractor Costs                                                                                      |                                    |                                  |               |                  |
|     | -Costs for oversight and engineers inspection included in Closure Certification Activity below              |                                    |                                  |               |                  |
|     | - Collect Rinsate Sample(s) (1 per tank and 1 per containment)                                              |                                    |                                  |               |                  |
|     | Work Rate for Sampling (hours per sample)                                                                   |                                    |                                  | 0.5000        |                  |
|     | Number of Samples                                                                                           |                                    |                                  | 1             |                  |
|     | Labor and equipment per work hour (PPE Level D)                                                             | Labor/equipment                    | \$91.88                          | 0.50          | \$46             |
|     | - Drilling for Soil Samples (2.5 in boring to 1 ft each)                                                    |                                    |                                  |               |                  |
|     | Work Rate for Drilling (hours per foot)                                                                     |                                    |                                  | 0.3050        |                  |
|     | Number of Feet (subslab sample depth = 1 foot each)                                                         |                                    |                                  | 2             |                  |
|     | Labor and equipment per work hour (PPE Level D)                                                             | Labor/equipment                    | \$146.29                         | 0.61          | \$89             |
|     | - Collect 2 Soil Samples                                                                                    |                                    |                                  |               |                  |
|     | Work Rate for Sampling (hours per sample)                                                                   |                                    |                                  | 0.5000        |                  |
|     | Number of Samples                                                                                           |                                    |                                  | 2             |                  |
|     | Labor and equipment per work hour (PPE Level D)                                                             | Labor/equipment                    | \$91.88                          | 1.00          | \$92             |
|     | Subcontractor Costs                                                                                         |                                    |                                  |               |                  |
|     | <ul> <li>Decontaminate waste AST, piping and appurtenant equipment</li> </ul>                               |                                    |                                  |               |                  |
|     | Work Rate to Pressure Wash (hours per square foot)                                                          |                                    |                                  | 0.0405        |                  |
|     | Area of Tanks to be decontaminated                                                                          |                                    |                                  | 1206          |                  |
|     | Labor and equipment for tank decon (PPE Level C)                                                            | Labor/equipment                    | \$97.23                          | 49            | \$4,749          |
|     | - Decontaminate Tank Containment Area                                                                       |                                    |                                  |               |                  |
|     | Work Rate to Pressure Wash 1 sq ft (hours per square foot)                                                  |                                    |                                  | 0.0405        |                  |
|     | Total Area of Containment (includes walls and floor)                                                        |                                    |                                  | 3591          |                  |
|     | Labor and equipment for CSA decon (PPE Level D)                                                             | Labor/equipment                    | \$65.77                          | 145           | \$9,565          |
|     | Laboratory Subcontractor Costs                                                                              |                                    |                                  |               |                  |
|     | - Analyze rinsate sample(s) from tank(s) and containment area for VOCs, SVOCs and RCRA metals               | VOCs @ \$189/sample                |                                  |               |                  |

8/12/2022

|                                                                                | SVOCs @ \$359/sample<br>8 RCRA Metals @ \$110/sample<br>Total per sample cost | \$658 | 1 | \$658    |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|---|----------|
| - Analyze soil sample(s) from containment area for VOCs, SVOCs and RCRA metals | VOCs @ \$189/sample<br>SVOCs @ \$359/sample<br>8 RCRA Metals @ \$110/sample   |       |   |          |
|                                                                                | Total per sample cost                                                         | \$658 | 4 | \$2,632  |
| Activity 2.                                                                    | Subtotal                                                                      |       | - | \$17,831 |

| Activity                                                                                                   | Category                     | Hourly Rate<br>or<br>Unit Charge | Hours or<br>Unit<br>Estimate | Subtotal<br>Cost |
|------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|------------------------------|------------------|
| 3. DECONTAMINATE THE RETURN/FILL STATION                                                                   |                              |                                  |                              |                  |
| Assumptions:                                                                                               |                              |                                  |                              |                  |
| - Decontamination shall consist of washing with detergent/water solution and rinsing with high-pressure sp | pray                         |                                  |                              |                  |
| - Return/Fill structure and dock area will remain in place following decontamination                       | -                            |                                  |                              |                  |
| <ul> <li>Drum washers to remain in place or sent offsite for reuse following decontamination</li> </ul>    |                              |                                  |                              |                  |
| - Rinsate sampling required from each drum washer to remain in place or sent offsite for reuse, and from   |                              |                                  |                              |                  |
| - Assumes 2 soil samples required from beneath containment area. Actual number of samples will be bas      | sed on engineer's inspection | Se                               | wara Eastaga                 |                  |
| - Square footage used for decontamination includes containment, dock and drum washer units                 |                              | 30                               | uare Footage<br>4400         |                  |
| Prime Contractor Costs                                                                                     |                              |                                  | 4400                         |                  |
| -Costs for oversight and engineers inspection included in Closure Certification Activity below             |                              |                                  |                              |                  |
|                                                                                                            |                              |                                  |                              |                  |
| <ul> <li>Collect Rinsate Samples (1 per drum washer plus containment)</li> </ul>                           |                              |                                  |                              |                  |
| Work Rate for Sampling (hours per sample)                                                                  |                              |                                  | 0.5000                       |                  |
| Number of Samples                                                                                          |                              | <b>#04.00</b>                    | 2                            | <b>*</b> ~~      |
| Labor and equipment per work hour (PPE Level D)                                                            | Labor/equipment              | \$91.88                          | 1.00                         | \$92             |
| - Drilling for Soil Samples (2.5 in boring to 1 ft each)                                                   |                              |                                  |                              |                  |
| Work Rate for Drilling ( hours per foot)                                                                   |                              |                                  | 0.3050                       |                  |
| Number of Feet (subslab sample depth = 1 foot each)                                                        |                              |                                  | 2                            |                  |
| Labor and equipment per work hour (PPE Level D)                                                            | Labor/equipment              | \$146.29                         | 0.61                         | \$89             |
| - Collect Soil Samples                                                                                     |                              |                                  |                              |                  |
| Work Rate for Sampling (per sample)                                                                        |                              |                                  | 0.5000                       |                  |
| Number of Samples                                                                                          |                              |                                  | 2                            |                  |
| Labor and equipment per work hour (PPE Level D)                                                            | Labor/equipment              | \$91.88                          | 1.00                         | \$92             |
| Subcontractor Costs                                                                                        |                              |                                  |                              |                  |
| <ul> <li>Decontaminate waste AST, piping and appurtenant equipment</li> </ul>                              |                              |                                  |                              |                  |
| Work Rate to Pressure Wash (hours per square foot)                                                         |                              |                                  | 0.0405                       |                  |
| Area of Returen/Fill to be decontaminated                                                                  | Leber/environment            | <b>¢07 00</b>                    | 4400                         | ¢47.000          |
| Labor and equipment for tank decon (PPE Level C)                                                           | Labor/equipment              | \$97.23                          | 178                          | \$17,326         |
| Laboratory Subcontractor Costs                                                                             |                              |                                  |                              |                  |
| - Analyze 1 rinsate sample per drum washer and containment for VOCs, SVOCs and RCRA me                     | etals VOCs @ \$189/sample    |                                  |                              |                  |
|                                                                                                            | SVOCs @ \$359/sample         |                                  |                              |                  |
|                                                                                                            | 8 RCRA Metals @ \$110/sample |                                  |                              |                  |
|                                                                                                            | Total per sample cost        | \$658                            | 2                            | \$1,316          |
| - Analyze soil sample(s) from containment area for VOCs, SVOCs and RCRA metals                             | VOCs @ \$189/sample          |                                  |                              |                  |
|                                                                                                            | SVOCs @ \$359/sample         |                                  |                              |                  |
|                                                                                                            | 8 RCRA Metals @ \$110/sample |                                  |                              |                  |
|                                                                                                            | Total per sample cost        | \$658                            | 2                            | \$1,316          |
|                                                                                                            |                              |                                  |                              |                  |
| Activity                                                                                                   | 3. Subtotal                  |                                  |                              | \$20,231         |

|    | Activity                                                                                                                                                                                                                                                                  | Category                                                                                             | Hourly Rate<br>or<br>Unit Charge | Hours or<br>Unit<br>Estimate | Subtotal<br>Cost |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|------------------|
| 4. | DECONTAMINATE CONTAINER STORAGE AREA(S)                                                                                                                                                                                                                                   | Cutoger,                                                                                             |                                  |                              |                  |
|    | Assumptions:                                                                                                                                                                                                                                                              |                                                                                                      |                                  |                              |                  |
|    | <ul> <li>Decontamination shall consist of washing with a detergent water solution and rinsing with a high-pressure spray</li> <li>CSA(s) to remain in-place following closure</li> <li>Decontamination of CSA includes floor, curbing and containment trenches</li> </ul> |                                                                                                      |                                  |                              |                  |
|    | <ul> <li>Assumes 1 rinsate and 2 soil samples required per CSA. Actual number of soil samples will be based on enginee</li> <li>CSA Containment Square Footage</li> </ul>                                                                                                 | er's inspection.                                                                                     | Sq                               | uare Footage                 |                  |
|    | - CSA 1                                                                                                                                                                                                                                                                   |                                                                                                      |                                  |                              |                  |
|    | - CSA 2 (IF APPLICABLE)                                                                                                                                                                                                                                                   | Total CSA Square Footage                                                                             |                                  | <u>3920</u><br>3920          |                  |
|    |                                                                                                                                                                                                                                                                           | Total Controquato Footago                                                                            |                                  | 0020                         |                  |
|    | Prime Contractor Costs                                                                                                                                                                                                                                                    |                                                                                                      |                                  |                              |                  |
|    | -Costs for oversight and engineers inspection included in Closure Certification Activity below                                                                                                                                                                            |                                                                                                      |                                  |                              |                  |
|    | - Collect Rinsate Samples (1 per CSA)                                                                                                                                                                                                                                     |                                                                                                      |                                  |                              |                  |
|    | Work Rate for Sampling (hours per sample)                                                                                                                                                                                                                                 |                                                                                                      |                                  | 0.5000                       |                  |
|    | Number of Samples                                                                                                                                                                                                                                                         |                                                                                                      |                                  | 1                            |                  |
|    | Labor and equipment per work hour (PPE Level D)                                                                                                                                                                                                                           | Labor/equipment                                                                                      | \$91.88                          | 0.50                         | \$46             |
|    | - Drilling for Soil Samples (2.5 in boring to 1 ft each)                                                                                                                                                                                                                  |                                                                                                      |                                  |                              |                  |
|    | Work Rate for Drilling (hours per foot)                                                                                                                                                                                                                                   |                                                                                                      |                                  | 0.3050                       |                  |
|    | Number of Feet (subslab sample depth = 1 foot each x number of samples)                                                                                                                                                                                                   |                                                                                                      |                                  | 2                            |                  |
|    | Labor and equipment per work hour (PPE Level D)                                                                                                                                                                                                                           | Labor/equipment                                                                                      | \$146.29                         | 0.61                         | \$89             |
|    | - Collect Soil Samples                                                                                                                                                                                                                                                    |                                                                                                      |                                  |                              |                  |
|    | Work Rate for Sampling (hours per sample)                                                                                                                                                                                                                                 |                                                                                                      |                                  | 0.5000                       |                  |
|    | Number of Samples                                                                                                                                                                                                                                                         |                                                                                                      |                                  | 2                            |                  |
|    | Labor and equipment per work hour (PPE Level D)                                                                                                                                                                                                                           | Labor/equipment                                                                                      | \$91.88                          | 1.00                         | \$92             |
|    | Subcontractor Costs                                                                                                                                                                                                                                                       |                                                                                                      |                                  |                              |                  |
|    | - Decontaminate CSA(s)                                                                                                                                                                                                                                                    |                                                                                                      |                                  |                              |                  |
|    | Work Rate to Pressure Wash (hours per sqaure foot)                                                                                                                                                                                                                        |                                                                                                      |                                  | 0.0405                       |                  |
|    | Total Area of Permitted CSA(s) to be decontaminated                                                                                                                                                                                                                       |                                                                                                      | •••                              | 3920                         |                  |
|    | Labor and equipment for CSA decon (PPE Level D)                                                                                                                                                                                                                           | Labor/equipment                                                                                      | \$65.77                          | 159                          | \$10,442         |
|    | Laboratory Subcontractor Costs                                                                                                                                                                                                                                            |                                                                                                      |                                  |                              |                  |
|    | - Analyze rinsate sample(s) from each CSA for VOCs, SVOCs and RCRA metals                                                                                                                                                                                                 | VOCs @ \$189/sample<br>SVOCs @ \$359/sample<br>8 RCRA Metals @ \$110/sample<br>Total per sample cost | \$658                            | 1                            | \$658            |
|    | - Analyze 2 soil sample(s) from each CSA for VOCs, SVOCs and RCRA metals                                                                                                                                                                                                  | VOCs @ \$189/sample<br>SVOCs @ \$359/sample<br>8 RCRA Metals @ \$110/sample                          |                                  |                              |                  |
|    |                                                                                                                                                                                                                                                                           | Total per sample cost                                                                                | \$658                            | 2                            | \$1,316          |
|    |                                                                                                                                                                                                                                                                           |                                                                                                      |                                  |                              |                  |

## 8/12/2022

| Activity 5. CONTAINERIZE, STAGE, TRANSPORT AND DISPOSE OF DECONTAMINATION WASTES                         | Category                                    | Hourly Rate<br>or<br>Unit Charge | Hours or<br>Unit<br>Estimate | Cost             |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|------------------------------|------------------|
| Assumptions:                                                                                             |                                             |                                  |                              |                  |
| - Amount of decon wash water generated derived from previous closure experience. Quantity based on appro | oximately 0.8 gal/ sq ft for tank systems a | nd 0.1 gal/sq ft                 | for contain                  | ment area floors |
| Unit Description                                                                                         | Square Footage                              | Number Gallo                     | ons                          | Number Drums     |
| STORAGE TANK DECONTAMINATION                                                                             | 1,206                                       | 965                              |                              | 18               |
| DECONTAMINATE TANK CONTAINMENT                                                                           | 2,908                                       | 291                              |                              | 6                |
| DECONTAMINATE THE RETURN/FILL STATION                                                                    | 4,400                                       | 3520                             |                              | 64               |
| DECONTAMINATE CONTAINER STORAGE AREA(S)                                                                  | 3,920                                       | 392                              |                              | 8                |
| PPE, CONSUMABLES, DEBRIS                                                                                 | NA                                          | NA                               |                              | 5                |
| - Purchase 55-gallon drums to containerize wash water                                                    | Drums @ \$83 each                           | \$83                             | 101                          | \$9,221          |
| Subcontractor Costs                                                                                      |                                             |                                  |                              |                  |
| - Transfer drums to trucks                                                                               |                                             |                                  |                              |                  |
| Labor/Equipment (PPE Level D)                                                                            | Labor/equipment per drum                    | \$3.57                           | 101                          | \$361            |
| - Transport drums to TSD for Treatment/Disposal                                                          |                                             |                                  |                              |                  |
| Total Number of Trucks Required to Transport Drums (84 per truck max)                                    |                                             |                                  | 2                            |                  |
| Cost per mile =\$5.64/mile                                                                               |                                             |                                  |                              |                  |
| Mileage = 500 miles (Number in second column is 500 miles x number trucks)                               | Transport trailer(s) x 500 miles            | \$5.64                           | 1000                         | \$5,640          |
| Disposal/treatment cost (per drum - low cost based on lack of hazardous constituents)                    | TSD @ \$90/drum                             | \$90                             | 96                           | \$8,640          |
| Disposal/treatment cost for PPE drums (assumed haz to landfill)                                          | TSD @\$250/drum                             | \$250                            | 5                            | \$1,250          |
| Activity 5. S                                                                                            | Subtotal                                    |                                  |                              | \$25,112         |

8/12/2022

|    | Activity                                                                                                                                                     | Category                 | Hourly Rate<br>or<br>Unit Charge | Unit | Subtotal<br>Cost |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|------|------------------|
| 6. | CLOSURE CERTIFICATION                                                                                                                                        |                          |                                  |      |                  |
|    | Assumptions:<br>- Cost Pro unit rate per unit to be closed is \$4,118<br>- Unit rate includes engineer inspection and decontamination oversight of each unit |                          |                                  |      |                  |
|    | Prime Contractor Costs                                                                                                                                       |                          | <b>A</b> 4440                    |      | <b>*</b> 40.054  |
|    | - Oversee and certify closure per unit times number of units                                                                                                 | Project Manager/Engineer | \$4,118                          | 3    | \$12,354         |
|    | A                                                                                                                                                            | ctivity 6. Subtotal      |                                  |      | \$12,354         |

8/12/2022

| Activity                                                                                                       | Category | Hourly Rate<br>or<br>Unit Charge | Hours or<br>Unit<br>Estimate | Subtotal<br>Cost     |
|----------------------------------------------------------------------------------------------------------------|----------|----------------------------------|------------------------------|----------------------|
| COST ESTIMATE ACTIVITIES SUMMARY                                                                               |          |                                  |                              |                      |
| 1. INVENTORY REMOVAL                                                                                           |          |                                  |                              | \$44,879             |
| 2. STORAGE TANK DECONTAMINATION                                                                                |          |                                  |                              | \$44,879<br>\$17,831 |
| 3. DECONTAMINATE THE RETURN/FILL STATION                                                                       |          |                                  |                              | \$20,231             |
| 4. DECONTAMINATE CONTAINER STORAGE AREA(S)                                                                     |          |                                  |                              | \$12,643             |
| 5. CONTAINERIZE, STAGE, TRANSPORT AND DISPOSE OF DECONTAMINATION WASTES                                        |          |                                  |                              | \$25,112             |
| 6. CLOSURE CERTIFICATION                                                                                       |          |                                  |                              | \$12,354             |
|                                                                                                                |          |                                  |                              | <u> </u>             |
| TOTAL CLOSURE COST ESTIMATE                                                                                    |          |                                  |                              | \$133,051            |
| Add Inflation factors from 2010 to most recent (updated for inflation from the latest version of CostPro (6.0) |          |                                  |                              | + ,                  |
| 2010                                                                                                           |          |                                  | 1.01                         | \$134,381            |
| 2011                                                                                                           |          |                                  | 1.01                         | \$135,725            |
| 2012                                                                                                           |          |                                  | 1.02                         | \$138,439            |
| 2013                                                                                                           |          |                                  | 1.017                        | \$140,793            |
| 2014                                                                                                           |          |                                  | 1.015                        | \$142,905            |
| 2015                                                                                                           |          |                                  | 1.014                        | \$144,905            |
| 2016                                                                                                           |          |                                  | 1.009                        | \$146,210            |
| 2017                                                                                                           |          |                                  | 1.013                        | \$148,110            |
| 2018                                                                                                           |          |                                  | 1.018                        | \$150,776            |
| 2019                                                                                                           |          |                                  | 1.022                        | \$154,093            |
| 2020                                                                                                           |          |                                  | 1.017                        | \$156,713            |
| 2021                                                                                                           |          |                                  | 1.012                        | \$158,594            |
| ###                                                                                                            |          |                                  | 1.041                        | \$165,096            |
| TOTAL CLOSURE COST ESTIMATE WITH INFLATION                                                                     |          |                                  |                              | \$165,096            |
| CONTINGENCY                                                                                                    |          |                                  |                              | 15%                  |
| TOTAL CLOSURE COST WITH CONTINGENCY                                                                            |          |                                  |                              | \$189,860            |

Notes:

- Estimate assumes that waste management units are at permitted capacity at time of closure, which is the most expensive in the facility's operating life.

- All unit rates obtained from Cost Pro version 6.0, which is designed to be representative of 3rd party costs and includes the following:

- Transportation @ \$5.64/mile and 300 mile trip

-Disposal for bulk liquids \$0.45/gallon based on suitability of waste mineral spirits as fuel

-Disposal for CSA liquids \$90/drum based on suitability of drummed waste streams as fuel

- Disposal of decon wash water \$90/drum based on lack of hazardous constituents in waste (soapy water)

-Subcontractor Decontamination Rate for tanks and return/fill based on PPE Level C

-Subcontractor decontamination rates for tank containment, CSAs and Flam Shed (if applicable) based on PPE Level D

-Prime Contractor Rates based on hourly rate for rinsate sampling, drilling and soil sample collection

-Lab subcontractor rates for analysis of rinsate and soil samples (Assumes VOCs, SVOCs and metals)

-Closure Certification Activity includes contractor oversight, PE integrity inspections and reporting/Certification

8/12/2022

DEP Form <u># 62-730.900(4)(k)</u> Form Title <u>HW Certificate of Liability Insurance</u> Effective Date <u>January 5, 1995</u> DEP Application No.\_\_\_\_\_

## STATE OF FLORIDA

## HAZARDOUS WASTE FACILITY CERTIFICATE OF LIABILITY INSURANCE

(Primary Policy)

| 1,                                                                                        | Great American Insurance Company                                                                                                                                                          | ,(the "Insurer'                                                    |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| £                                                                                         | Name of Insurer<br>301 E 4th St, Cincinnati, OH 45202                                                                                                                                     |                                                                    |
|                                                                                           | Address of Insurer                                                                                                                                                                        |                                                                    |
| ereby certifies that it has issued                                                        | liability insurance covering bodily injury an                                                                                                                                             | d property damage to                                               |
| -                                                                                         | Safety-Kleen Systems, Inc.                                                                                                                                                                |                                                                    |
|                                                                                           | Name of Insured                                                                                                                                                                           | , (the "Insured"), o                                               |
|                                                                                           | 42 Longwater Drive, Norwell, MA 02061                                                                                                                                                     |                                                                    |
|                                                                                           | Address of Insured                                                                                                                                                                        |                                                                    |
| 55.147, as adopted by reference                                                           | obligation to demonstrate financial responsi<br>in Section 62-730.180, Florida Administrative                                                                                             | bility under 40 CFR 264.147 or<br>a Code (F.A.C.). The coverage    |
| EPA/DEP I.D. No.                                                                          | Name                                                                                                                                                                                      | Address                                                            |
| SEE ATTACHED LIST                                                                         |                                                                                                                                                                                           |                                                                    |
|                                                                                           |                                                                                                                                                                                           | -                                                                  |
|                                                                                           |                                                                                                                                                                                           |                                                                    |
|                                                                                           |                                                                                                                                                                                           |                                                                    |
| No                                                                                        | -                                                                                                                                                                                         |                                                                    |
|                                                                                           |                                                                                                                                                                                           |                                                                    |
| the C. Dentingen and the                                                                  |                                                                                                                                                                                           |                                                                    |
| :                                                                                         | ······································                                                                                                                                                    |                                                                    |
| sudden accidental o                                                                       | courrences                                                                                                                                                                                |                                                                    |
|                                                                                           |                                                                                                                                                                                           |                                                                    |
| nonsudden accident                                                                        |                                                                                                                                                                                           |                                                                    |
|                                                                                           | den accidental occurrences                                                                                                                                                                |                                                                    |
| If coverage is for multiple facilities and th<br>accidental occurrences, which are insure | e coverage is different for different facilities, indicate which faci<br>d for nonsudden accidental occurrences, and which are insured                                                    | llity(ies) are insured for sudden<br>I for both:                   |
| e limits of liability are \$ 1,000,000                                                    | each occurrence and \$_2,000,                                                                                                                                                             | ,000.00 annual                                                     |
|                                                                                           | ise costs. The coverage is provided under p                                                                                                                                               |                                                                    |
| PRE E603235 01 , issued on                                                                |                                                                                                                                                                                           |                                                                    |
| , issued on                                                                               | The effective date of said p                                                                                                                                                              | Dolicy is                                                          |
|                                                                                           |                                                                                                                                                                                           |                                                                    |
| 2. The Insurer further certifies                                                          | the following with respect to the insurance                                                                                                                                               | described in Paragraph 1:                                          |
|                                                                                           |                                                                                                                                                                                           |                                                                    |
| (a) Bankruptcy or insolvene policy.                                                       | cy of the insured shall not relieve the Insure                                                                                                                                            | r of its obligations under the                                     |
| a right of reimbursemen<br>does not apply with resp                                       | the payment of amounts within any deductil<br>t by the insured for any such payment made<br>pect to that amount of any deductible for wh<br>147(f) or 265.147(f), as adopted by reference | e by the Insurer. This provision<br>ich coverage is demonstrated : |
| (c) Whenever requested by<br>(FDEP), the Insurer agre<br>all endorsements.                | the Secretary of the Florida Department of E<br>es to furnish to the Secretary a signed dupli                                                                                             | invironmental Protection<br>icate original of the policy and       |

- (d) Cancellation of the insurance, whether by the Insurer or the Insured, will be effective only upon written notice and only after the expiration of sixty (60) days after a copy of such written notice is received by the Secretary of the FDEP.
- (e) Any other termination of the insurance (e.g., expiration, non-renewal) will be effective only upon written notice and only after the expiration of thirty (30) days after a copy of such written notice is received by the Secretary of the FDEP.

I hereby certify that the wording of this instrument is substantially identical to the wording specified in 40 CFR 264.151(j), as adopted by reference in Section 62-730.180, F.A.C., as such regulation was constituted on the date first above written, and that the Insurer is licensed to transact the business of insurance, or eligible to provide insurance as an excess or surplus lines insurer, in one or more States including Florida.

Signature of Authorized Representative of Insurer

Heather Boyd

Type name

Assist Vice President, Enviornmental Division

Authorized Representative of

Great American Insurance Company

Name of Insurer

31 St. James Ave., Suite 830, Boston, MA 02116

Address of Representative

## SAFETY-KLEEN SYSTEMS, INC.

### STATE OF FLORIDA

505 Plumosa Drive Altamonte Springs, FL 32701 FLD097837983

5610 Alpha Drive Boynton Beach, FL 33426

Georgia Street Delray Beach, FL 33444

1855 S.W. 4<sup>th</sup> Avenue B-11 Delray Beach, FL 33444

8755 NW 95<sup>th</sup> Street Medley, FL 33178

161 Industrial Loop South Orange Park, FL 32073

79200 Peachland Blvd. Units 1-6 Port Charlotte, FL 33948-2166

23375 Janice Avenue Port Charlotte, FL 33948

600 Central Park Drive Sanford, FL 32771

4426 Entreport Boulevard Tallahassee, FL 32310

5309 24<sup>th</sup> Avenue South Tampa, FL 33619

Manhattan Avenue Tampa, FL 33614 FLD984167791

FLD000776757

FLD984171694

FLD980847214

FLD000776716

FLD000776716

FLD984171165

FLD982133159

FLD980847271

FLD049557408

359 Cypress Road Ocala, FL 34472

2930 63<sup>rd</sup> Avenue Bradenton, FL 34203 FLR000060301

FLR000120618

8985 Columbia Road Cape Canaveral, FL 32920

1400 NW 13<sup>th</sup> Avenue Pompano Beach, FL 33069 Part II A. General A.4.b-d Contingency Plan See Part II PPP-CP section.

A. General A.4.e Training – Introductory and Continuing

## PERSONNEL TRAINING

This section of the permit application describes Safety-Kleen's training program. All position descriptions referenced may not be present at this facility. Training plan outlines, job descriptions, training content, frequency and techniques are described as well as the implementation of the training program. The information presented in this section is a representative example of employee training at Safety-Kleen. Variations in individual training may occur.

The purpose of Safety-Kleen's training program is to familiarize employees with environmental, health & safety, and transportation regulations, records, and emergency procedures so they will perform their activities in the safest and most efficient manner possible.

## DESCRIPTION OF TRAINING PROGRAM

Each employee is trained to operate and maintain the branch service center safely, and to understand hazards unique to job assignments. Before starting work in their new positions at the Branch, each employee is required to complete initial regulatory training. Regulatory training for new employees may be given at the local branch where they will be assigned. This regulatory training is given via web-based classes (Webex instructor led & online learning modules). Introductory training will include an overview of the history of Clean Harbors/Safety-Kleen, products and services provided by the company, policies and benefits, HAZWOPER 24-hr., and USDOT Regulations Regarding the Safe and Legal Transport of Materials Designated as Hazardous. Branch Managers, Customer Service Managers, and

Account Managers will attend a Training class which provides an overview of RCRA regulations. Branch Managers, Customer Service Managers, Drivers (Sales and Service Representatives, Vacuum Sales and Service Representatives, Oil Sales and Service Representatives) will attend USDOT Federal Motor Carrier Safety Regulations Regarding Entry Level Driver Training. All new employees that may operate a company vehicle will attend a defensive driving training class. Upon completion of these introductory training classes, each employee will attend a RCRA Site Specific training class which covers RCRA regulations as they pertain to the Safety-Kleen Branch, overview of the hazardous waste operating permit, and contingency plan training review. New branch managers must complete a formal introductory training program before starting their job. This training involves working with an experienced Field Operations Manager at their respective branch, and possible travel to another Safety-Kleen branch to work with an experienced branch manager. New Sales and Service Representatives and all other hazardous waste employees must undergo a combination of classroom, online, and on-the-job training prior to working with hazardous waste. Material Handlers will undergo a combination of classroom, online, and on-the-job training prior to working with hazardous waste. Personnel involved in direct handling of hazardous waste do not work unsupervised until they have completed the entire initial hazardous waste training course. If and employee changes position, they will receive all training that pertains to that new position within 6 months before working unsupervised. All employees that handle and/or manage hazardous wastes will normally complete the introductory training program within the first month of employment. In addition, all employees will be trained to effectively respond to emergencies within 6 months after beginning employment, assignment to a facility, or to a new position, whichever is later, in accordance with 40 CFR Part 264.16(b).

## **Outline of Training Program**

An outline of the training program given initially to employees who manage or handle Hazardous Waste at the Branch is presented in Table 6.1-1, found at the end of this section.

#### Job Title/Job Description

Job descriptions for employees who would be expected to manage or handle hazardous wastes are provided in Tables 6.1-2 through 6.1-11, found at the end of this section.

## Training Content, Frequency, and Techniques

Employee training is accomplished using classroom, online, videotape, written, and on-the-job methods. All new employees whose responsibilities require 24-Hour Hazardous Waste Operations and Emergency Response (Hazwoper) training will receive this via web-based modules and will be required to review completion of these modules with their respective Health & Safety Manager. This training program provides a consistent and quality hazardous waste operations training program.

The training that a new operations employee will receive is divided into two parts.

- The first two weeks of employment will be spent attending web-based regulatory and company specific orientation training at the local branch they will be assigned to. The new employee will receive a company orientation, including a review of company benefits, and hazardous waste operations training (HAZWOPER 24-hr.), USDOT Regulations Regarding the Safe and Legal Transport of Materials Designated as Hazardous, Branch Technical Training (if applicable to position), Entry Level Driver Training (if applicable to position), and Defensive Driver Training (if operating a company vehicle).
- The second part of new employee training is site specific training. When the new employee completed their initial regulatory training and orientation, qualified individuals delegated by Branch management will complete facility specific training. This will include such things as permit requirements, emergency contingency plan training, location of emergency equipment, forklift training, operating manual pallet jacks/hand trucks for container movement, return/fill operations (if applicable to job position), etc. Sales and Service Representatives will receive additional online, and on-the-job training for servicing all types of parts washers, containerized waste service, manifest preparation, etc. Vacuum Sales and Service Representatives will receive additional online, and on-the-job training for vacuum service operations including truck operation while onloading materials and off-loading at the branch. Oil Sales and Service Representatives will receive additional online, and on-the-job training for collection of used oil, used antifreeze, truck operation while onloading materials and off-loading at the branch.

The job tasks a person performs will dictate the type of instruction required. The following presents the specific training requirements for new Safety-Kleen employees who will manage or handle hazardous waste.

<u>Training of New Branch General Managers:</u> New Branch Managers are trained for several weeks before they begin their new positions. This training is given on-the-job by Field Operations Managers, and experienced branch managers. During this training, the new manager reviews environmental records and learns the recordkeeping requirements. These records include: manifests, personnel records, training records, service center inspection records, and spill reports. At least eight hours of this initial training consists of an introduction to environmental regulations, and a review of the Part B, including the Waste Analysis Plan, Preparedness and Prevention Plan, Contingency Plan, Training Plan, and Closure Plan.

Training of New Customer Service Manager: The Customer Service Manager is responsible for administrative operations at the Branch and managing the Sales and Service Representatives. Training is on location in the form of periodic training topics. This training includes an introduction to environmental regulations (including the Resource Conservation and Recovery Act), health and safety issues, emergency response and inventory (including waste) reconciliation methods. Additional time is spent reviewing past environmental compliance at the facility. Also, while being trained at the Branch where they will be stationed, a new Customer Service Manager will review environmental records and learn the recordkeeping and inspection requirements. These records include: manifests, personnel records, training records, service center inspection records, and spill reports.

<u>Training of New Administrative Assistants (Secretaries)</u>: Secretaries are trained in the proper recordkeeping procedures as soon as they begin working for Safety-Kleen. While they are not usually responsible for preparing the documentation, they must check it for accuracy and completeness and then process or file it as required. Additional training is overseen by Branch Manager and is done within six months of starting. This training is often presented in periodic training topics on emergency response, shipping documents (including manifests), drum labels, and other safety and environmental compliance issues.

<u>Training of New Sales and Service Representatives (SSR), Account Managers (AM):</u> These personnel are trained on-the-job by an experienced employee for two weeks, or more if needed.

Sales and Service Representatives will ride along with experienced SSR's during which they are introduced to parts washer services, containerized waste services, proper container labeling, container inspections, container movement, manifests/bill of ladings, load securement, and overall driving ability. Account Managers will work with experienced AM's visiting current, and potential customers to sell Safety-Kleen products and services, account set up, waste profiling, etc. Additional training is in the form of periodic health & safety training topics, environmental regulations and a review of the Contingency Plan.

<u>Training of New Material Handlers:</u> Material Handlers (MH) are trained on-the-job to maintain the branch in compliance with hazardous waste operating permit conditions, environmental regulations, and assist the other Branch employees in their tasks. They will be the primary personnel for loading trucks with products for delivery to customers, off-loading containerized wastes from tucks arriving at the branch, and moving this material into the proper storage areas. MH's will also be the primary personnel for the Return/Fill operations, and normally will be a designee to perform Branch inspections and must be trained by the Branch Manager or Environmental Compliance Manager for this task.

<u>Continuing and Annual Training</u>: On a continuing basis, employees are trained using the programs prepared and updated Health & Safety, Environmental Compliance, Transportation Compliance, and Training Departments which contain the topics in Table 6.1-12, found at the end of this section. This training includes: Hazwoper 8 hr. annual refresher, RCRA annual refresher, updates on environmental regulations, review of the Contingency Plan and a review of RCRA inspection criteria. This review is in the form of classroom instruction, videotapes, and a review and discussion of the Branch hazardous waste operating permit conditions. Training on USDOT Regulations Regarding the Safe and Legal Transport of Materials Designated as Hazardous will be conducted virtually every 3 years for employees requiring this class. In addition, periodic sessions on changes in environmental regulations are issued by the Environmental Compliance and Health and Safety Departments and must be attended by all Branch personnel.

## Training Director

The training is directed by Clean Harbors/Safety-Kleen's Training Department. There are specific Environmental Compliance Managers, Health & Safety Managers, and Transportation

Compliance Managers responsible for compliance of the service centers in a given geographic area of the country. These compliance departments, in coordination with the facility, must:

- Provide a training program which addresses the requirements of all regulations and corporate policy.
- Notify the proper authorities, oversee remedial actions, and submit a written report to the state after an emergency situation has occurred;
- Assure that permits are submitted and updated as required;
- Manage any compliance issues which exceed the resources available at the service center level; and
- Participate in training new Branch employees and conducting annual refresher training.

Qualifications for individual staff members of the compliance departments who conduct training at the Branch are available upon request.

## **Relevance of Training to Job Position**

Each employee is trained to operate and maintain the service center safely and to understand hazards unique to their job assignment. Safety-Kleen's training programs are designed to give employees appropriate instruction regarding the hazardous waste management procedures they will encounter in performing their respective duties. Since the handling of hazardous materials is a large part of the operations of the service center, all employees are given training in health & safety, transportation regulations, environmental regulations, and the Preparedness and Prevention, and the Contingency plans.

## Training for Hazardous Waste Management

As described previously, all employees are trained in the aspects of hazardous waste management which are relevant to their position. This includes job-specific hazards, necessary precautions, emergency response, and proper recordkeeping. This training is given initially and updated annually.

## Training for Contingency Plan Implementation

All employees are trained in Contingency Plan implementation, through initial training, and at yearly RCRA refresher courses. Employees are trained on the contents of the Contingency Plan as well as criteria for implementation.

## Training for Hazardous Waste Operations and Emergency Response

All employees are trained in emergency response procedures through both initial Hazwoper 24hr. training and Hazwoper 8-hr. annual refresher courses. The emergency training involves spill and fire prevention as well as remedial action procedures. Employees are also trained to recognize when evacuation and outside assistance may be necessary.

## Training for Handling Mercury-Containing Lamps and Devices

As a registered transporter and storage facility for mercury-containing lamps and devices destined for recycling, the Branch has certified it has employee training procedure in place for the proper handling, emergency response, and containment/clean-up of its spent universal waste lamps, or devices. This training is given during the annual RCRA refresher.

## Personnel Training Records

All personnel training is documented, and the documentation is kept on file at the Branch until closure for active employees, and three years for employees that have terminated their employment with Safety-Kleen. Documentation includes the training received, employee name, and the date of training.

## **TABLE 6.1-1**

| TYPICAL OUTLINE OF INITIAL TRAINING TOPICS |
|--------------------------------------------|
|--------------------------------------------|

| Day       | Торіс                                       | SK Course Name                     |
|-----------|---------------------------------------------|------------------------------------|
| Monday    | Welcome / Introductions/Ground Rules        | Driver Training Essentials         |
|           | Driver Qualifications                       |                                    |
|           | Driver Wellness                             |                                    |
|           | Whistleblower Protection                    |                                    |
|           | Hours of Service Regulations                |                                    |
|           | Exempt Log Training                         |                                    |
|           | Pre & Post Trip Inspections                 |                                    |
|           | Load Securement                             |                                    |
|           | Vehicle Cone Program                        |                                    |
|           | 6                                           |                                    |
| Tuesday   | Welcome / Introductions/Ground Rules        | HAZWOPER                           |
|           | Regulatory Compliance                       |                                    |
|           | Hazard Recognition                          |                                    |
|           | Hazard Communication                        |                                    |
|           | Respiratory Protection                      |                                    |
|           |                                             |                                    |
| Wednesday | Walking & Working Surfaces                  | HAZWOPER                           |
|           | Patriot Act for Employees                   |                                    |
|           | Personal Protective Equipment               |                                    |
|           | Decontamination                             |                                    |
|           | Toxicology                                  |                                    |
|           | Medical Surveillance                        |                                    |
|           | Hearing Protection                          |                                    |
|           |                                             |                                    |
| Thursday  | Ergonomics                                  | HAZWOPER                           |
|           | Fire Prevention & Protection                |                                    |
|           | Lockout/Tagout Awareness                    |                                    |
|           | Electrical Safety                           |                                    |
|           | Confined Space Awareness                    |                                    |
|           | Container Handling                          |                                    |
|           |                                             |                                    |
| Friday    | Introduction                                | Hazardous Materials Transportation |
|           |                                             | Skills (HMTS)                      |
|           | Definitions                                 |                                    |
|           | D.O.T. Regulations<br>Hazard Classes        |                                    |
|           | Hazard Classes<br>Hazardous Materials Table |                                    |
|           |                                             |                                    |
|           | Shipping Papers                             |                                    |
|           | Marking                                     |                                    |
|           | Labeling                                    |                                    |
|           | Placarding                                  |                                    |
|           | Hazardous Materials Segregation             |                                    |
|           | Packaging                                   |                                    |
|           | Incidents                                   |                                    |

*Revision 0 – 09/20/2022* 

| Day             | Торіс                              | SK Course Name            |
|-----------------|------------------------------------|---------------------------|
| Friday (cont'd) | Load Securement                    | HMTS (cont'd)             |
|                 |                                    |                           |
| Saturday        | RCRA Regulations                   | Branch Technical Training |
|                 | Waste Material Profiling           |                           |
|                 | Sampling Hazardous Materials       |                           |
|                 | Shipping HazMat Samples via ground |                           |
|                 |                                    |                           |

### Job Description

| Job Title:     | Branch General Manager |
|----------------|------------------------|
| Department:    | Branch Sales & Service |
| Reports To:    | District Manager       |
| FLSA Status:   | Exempt                 |
| Approved By:   | SVP HR                 |
| Approved Date: | 01/29/07               |

**Summary:** The Branch General Manager is responsible for financial and operational management including: financial performance against quota or budget (P & L), EH&S compliance through the Environmental Management System (EMS), and operational management of the facilities and of the human resources.

Essential Duties and Responsibilities include but are not limited to the following.

- Manage the branch operations including hiring, training, and supervision of the staff.
- Manage sales and service staff in achieving customer retention, on-time service performance, and accounts receivable goals by: observing corporate operating guidelines, training and reinforcing critical service skills, and working to prevent and resolve customer service issues.
- Conduct inspections and ride-alongs with sales and service staff to ensure timely and effective servicing of customers' equipment.
- Profit or loss of the facility(ies) by focusing on building new business relationships and maintaining existing customer bases and satisfaction.
- Prepare branch sales/service forecast and budget.
- Knowledge of, and compliance with hazardous waste regulations, and RCRA permit conditions. Monitoring/supervising daily operations to assure performance is within regulatory guidelines. Health & Safety leadership to ensure compliance with OSHA regulations.
- Maintenance of branch fleet to company standards, assistance with branch incident alert and spill response systems, and control of branch inventory.
- Maximize collection of money at the time of service, collect on overdue accounts, and determine when to pull an account.
- Ensure that all branch customer service practices are conducted consistent with high ethical standards.

### Supervisory Responsibility:

The Branch General Manager recommends hiring, training, scheduling, performance appraisal, promoting, compensation, corrective action and termination.

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required. Reasonable accommodations may be made to enable individuals with disabilities to perform the essential functions.

**Education and/Or Experience:** Minimum of High School diploma or (GED). Bachelor's degree preferred. At least 5 years experience in a sales and service organization.

**Certificates, Licenses, Registrations:** Class B CDL, Haz Mat, Air Brakes and Tankers endorsement.

**Physical Demands:** While performing the duties of this job, the employee must frequently sit for long periods of time, use the computer, as well as occasionally lift up to 25 pounds. There will also be some occasional need for bending, kneeling, or reaching.

**Work Environment:** While performing the duties of this job, the employee has some exposure to warehouse as well as outside weather conditions. The employee is occasionally exposed to wet and/or humid conditions; extreme cold; extreme heat.

### Job Description

| Job Title:     | Customer Service Manager |
|----------------|--------------------------|
| Department:    | Branch Services          |
| Reports To:    | Branch General Manager   |
| FLSA Status:   | Exempt                   |
| Approved By:   | SVP HR                   |
| Approved Date: | 01/29/07                 |

**Summary:** The Customer Service Manager is responsible for ensuring optimum customer service leading to retention and expansion of the branch business. Key responsibilities include supervising customer service staff, ensuring services are completed in a timely manner, and managing customer relationships.

Essential Duties and Responsibilities include but are not limited to the following.

- Manage the branch customer service functions including hiring, training and supervision of the sales and service representatives (SSR).
- Manage sales and service staff in achieving customer retention, on-time service performance, and accounts receivable goals by: observing corporate operating guidelines, training and reinforcing critical service skills, and working to prevent and resolve customer service issues.
- Conduct inspections and ride-alongs with sales and service staff to ensure timely and effective servicing of customers' equipment.
- Direct branch service scheduling and logistics to ensure on-time performance for all customers by aligning territories, defining routes, and managing associated paperwork.
- Exhibit knowledge of hazardous waste regulations and RCRA permit conditions. Monitor daily operations with respect to drivers to assure performance is within regulatory guidelines.
- Work with Branch General Manager (BGM) to ensure effective operation of the branch including maintenance and operation of branch fleet to company standards, assistance with branch incident alert and spill response systems, and control of branch inventory.
- Administer branch accounts receivable program to maximize collection of money at the time
  of service, collect on overdue accounts, and determine when to pull an account.
- Ensure that all branch customer service practices are conducted consistent with high ethical standards.

### Supervisory Responsibility:

The Customer Service Manager recommends hiring, training, scheduling, performance appraisal, promoting, compensation, and termination.

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

**Education and/Or Experience:** High school diploma or (GED). 3-5 years experience and/or related training.

**Certificates, Licenses, Registrations:** Class B CDL, Haz Mat, Air Brakes and Tankers endorsement.

**Physical Demands:** While performing the duties of this job, the employee must frequently stand, walk, bend, use the computer, reach, squat, stoop and twist. The employee must frequently carry, lift, pull or push up to 50 pounds. The employee will occasionally drive a large truck.

**Work Environment:** While performing the duties of this job, the employee is frequently exposed to warehouse and outside weather conditions. The employee is occasionally exposed to wet and/or humid conditions; extreme cold; extreme heat.

Job Description

Job Title:Account ManagerDepartment:SalesReports To:District Sales ManagerFLSA Status:ExemptApproved By:SVP HRApproved Date:01/29/07

**Summary:** The MSS will continually manage an account base outside of the ordinary service schedule. This position will also grow business internally and externally. The MSS will act as the primary point of contact for customers with questions / concerns / new business. This should be a motivated person who possesses consultative selling abilities and who is skilled at building long-term business relationships within the assigned sales territory.

Essential Duties and Responsibilities include but are not limited to the following.

- Completion of necessary paperwork (waste profiling, quotations etc).
- Communication with service, office, and warehouse staff.
- Build relationships with key buyers in territory.
- Assess current/potential business in existing accounts and create strategy to grow business.
- Analyze customer needs and design sales, customer service and account management processes to acquire and retain accounts.
- Prepare and deliver customer quotes and identify new solutions for customers
- Provide technical and sales assistance to customers.
- Serve as interface between customers and company by ensuring that customer needs are met and by handling customer complaints.
- Prepare sales plans and future period forecasts.
- Monitor and track sales plan to ensure sales quota is met; prepare regular status reports.
- Keep abreast of products, market conditions and competitive activities.

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

**Education and/or Experience:** Two years of college or specialized training (business or environmental) is required plus 1-3 years experience. Bachelor's degree plus coursework and certification is preferred. Alternative combinations of education and experience may be accepted in lieu of degree.

**Competencies and Skills:** Analytical, prioritization, organization, computer and leadership skills. Must be proficient working with spreadsheets as well as CRM software tools.

Physical Demands: While performing the duties of this job, the employee must frequently drive a car.

### Job Description

| Job Title:     | Branch Administrator   |
|----------------|------------------------|
| Department:    | Branch Services        |
| Reports To:    | Branch General Manager |
| FLSA Status:   | Exempt                 |
| Approved By:   | SVP HR                 |
| Approved Date: | 03/26/07               |

**Summary:** The Branch Administrator is an administrative position responsible for maintaining detailed and accurate company, branch, and customer files.

Essential Duties and Responsibilities include but are not limited to the following.

- Assembles packages of documents for Sales Representatives.
- Check Sales or Hazardous Waste documents turned in by Sales Representatives.
- Ensure proper completion of paperwork including manifests, and alert manager of errors.
- Provide customer service functions by responding to customer inquiries and/or complaints, handling or routing service questions, and solving problem accounts.
- Prepare Manual Forms, Manifests and LDR forms, as required.
- Distribute copies of service documents and manifests to customers, various Safety-Kleen locations, and to governmental agencies, as required.
- Contact customers delinquent in payment and coordinates pick-up of payments.
- Log wastes, adjusts service scheduling, prepares reports, completes MMVR reports and checks manifests for assigned territories.
- Provide other clerical support duties as requested.
- Exhibit knowledge of hazardous waste regulations with regard to daily branch responsibilities

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

Education and/Or Experience: High school diploma and six months+ related experience, and/or training.

**Competencies and Skills:** Customer Service, Attention to Detail, Recognize the importance of Safety, Time Management, Product Knowledge, Sense of Direction, and Organization skills.

**Physical Demands:** While performing the duties of this job, the employee must frequently sit at a work station using the computer.

Job Description

| Job Title:     | Material Handler       |
|----------------|------------------------|
| Department:    | Branch Services        |
| Reports To:    | Branch General Manager |
| FLSA Status:   | Exempt                 |
| Approved By:   | SVP HR                 |
| Approved Date: | 03/26/07               |

**Summary:** The Material Handler works in the warehouse handling hazardous waste material using a forklift or other equipment.

Essential Duties and Responsibilities include but are not limited to the following.

- Loads finished product bulk shipments, and completes paperwork.
- Samples inbound bulk shipments and completes paperwork.
- Inventory and maintain loading and unloading areas.
- Prepares bulk wastes for shipment to other Safety-Kleen locations.
- Empties bulk into holding vessel.
- Washes "used parts washer" drums in drum washer and fills clean drums with solvent.
- Shrink wraps containerized wastes, arranging the waste on the pallet so all labels are showing, and prepares the shipment for transportation to other Safety-Kleen locations.
- Checks all trucks for proper strapping of drums and that cargo doors are closed.
- Disassembles returned parts washing machines and prepares them for shipment to the DC.
  Completes daily/weekly facility inspection required by Part B Permit or by Safety-Kleen, as
- Completes daily/weekly facility inspection required by Part B Permit or by Safety-Kleen, as assigned by the Branch Manager.
- Monitors waste quantity and storage limits and notifies the Branch Manager if limits will be exceeded within 24-48 hours so action can be taken.
- Oversees retained sample program.
- Ensure dock, warehouse and return & fill areas are cleaned and organized at all times.
- Exhibit knowledge of hazardous waste regulations with regard to warehouse operations and permit conditions.

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

**Education and/Or Experience:** High school diploma and six months+ related experience, and/or training. Familiar with H.S.E. and M.S.D.S. for all product used and stored at the facility. Certified forklift operator. Certified in hazardous waste operations and emergency response.

**Competencies and Skills:** Customer Service, Attention to Detail, Recognize the importance of Safety, Time Management, Product Knowledge, Sense of Direction, and Organization skills.

**Physical Demands:** Exert up to 50 pounds of force occasionally, and/or up to 20 pounds of force frequently, and/or up to 10 pounds of force constantly to move objects. Stands and/or walks more than 4 hours a day. Hand Tools & Small Power Tools; Hand Truck/Dolly; Large Power Tools & Equipment, Forklift, Truck, Wench; Personal Protective Equipment.

#### Job Description

| Job Title:     | Sales & Service Associate |
|----------------|---------------------------|
| Department:    | Branch Services           |
| Reports To:    | Branch General Manager    |
| FLSA Status:   | Exempt                    |
| Approved By:   | SVP HR                    |
| Approved Date: | 01/29/07                  |

**Summary:** The SSA is an entry level position responsible for learning how to service our parts cleaning machines and selling related products to customers on route.

Essential Duties and Responsibilities include but are not limited to the following.

- Receive manifests, labels, route schedule from office staff.
- Select, pull, and load needed inventory (empty drums, pig products, new machines, etc) for the day's customer visits as per route schedule.
- Perform daily truck check & complete truck check list form.
- Perform routine route.
- Properly label, scan, and document waste picked up from customer site.
- Present receipt to customer, as well as address any customer service issues or sales opportunities.
- Complete end of day paperwork.
- Perform equipment repair activities as needed.

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

**Education and/Or Experience:** High school diploma or (GED) and six months+ related experience, and/or training.

Certificates, Licenses, Registrations: Class C CDL and Haz Mat endorsement (or the ability to obtain)

**Competencies and Skills:** Mechanically Inclined, Customer Service, Attention to Detail, Recognize the importance of Safety, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

**Physical Demands:** While performing the duties of this job, the employee must frequently stand or walk and occasionally drive a large truck. The employee must frequently carry, lift, pull or push up to 50 pounds. The employee is occasionally required to reach, bend, kneel, squat, climb, stoop or twist; and talk or hear.

### Job Description

Job Title:Sales and Service RepresentativeDepartment:Branch ServicesReports To:Branch Service ManagerFLSA Status:ExemptApproved By:SVP HRApproved Date:01/29/07

**Summary:** Services SK machines at customer sites, sells new products to existing customers, removes waste from customer sites and provides on-site customer service.

Essential Duties and Responsibilities include but are not limited to the following.

- Receive manifests, labels, route schedule from office staff.
- Select, pull, and load needed inventory (empty drums, pig products, new machines, etc) per route schedule.
- Perform daily truck check & complete truck check list form.
- Perform routine route
- Properly label, scan, and document waste picked up from customer site.
- Present receipt to customer as well as address any customer service issues or sales opportunities.
- Complete end of day paperwork.

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

**Education and/Or Experience:** High school diploma or (GED) and six months+ related experience, and/or training.

Certificates, Licenses, Registrations: Class C CDL and hazmat certifications.

**Competencies and Skills:** Customer Service, Attention to Detail, Recognize the importance of Safety, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

**Physical Demands:** While performing the duties of this job, the employee must frequently sit, walk, stand, crawl or drive a truck. The employee must frequently carry, lift, pull or push 50 pounds or more. The employee is constantly required to reach, bend, kneel, squat, climb, stoop or twist; and talk or hear. The employee must constantly drive a large truck and/or move heavy equipment.

### Job Description

| Job Title:     | Oil Sales and Service Representative |
|----------------|--------------------------------------|
| Department:    | Branch Services                      |
| Reports To:    | Branch General Manager               |
| FLSA Status:   | Exempt/Non-Exempt                    |
| Approved By:   | SVP HR                               |
| Approved Date: | 01/29/07                             |

**Summary:** The OSSR is responsible for safely and efficiently removing, transporting and delivering waste oil from customer facilities to Safety-Kleen oil recycling and refining centers.

Essential Duties and Responsibilities include but are not limited to the following.

- Receive manifests, labels & route schedule from office staff
- Perform Pre & Post Trip Inspection Report
- Perform routine route.
- Properly label, scan and document waste oil removed from customer site into handheld. Present receipt to customer, obtain authorized signature, as well as address any customer service issues and sales opportunities.
- Complete end of day paperwork (any manifests, orders etc. that were not already in the handheld). Dock handheld for overnight upload.
- Ensure environmental compliance and operate vehicles in accordance with DOT, local, state and federal requirements

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

**Education and/Or Experience:** High school diploma or (GED) and six months+ related experience, and/or training.

Certificates, Licenses, Registrations: Class C CDL and Haz Mat endorsement and Tanker.

**Competencies and Skills:** Customer Service, Attention to Detail, Recognize the importance of, and adherence to, Safety regulations and policies, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

**Physical Demands:** While performing the duties of this job, the employee must frequently sit, walk, stand, crawl or drive a truck with reasonable accommodations. The employee must frequently carry, lift, pull or push 50 pounds or more. The employee is constantly required to reach, bend, kneel, squat, climb, stoop or twist; and talk or hear. The employee must constantly drive a large truck.

### Job Description

| Job Title:     | OIL/VAC Sales and Service Rep. |
|----------------|--------------------------------|
| Department:    | Branch Sales & Service         |
| Reports To:    | Branch General Manager         |
| FLSA Status:   | Exempt                         |
| Approved By:   | SVP HR                         |
| Approved Date: | 10/2/06                        |

**Summary:** This position combines the Oil & Vac routes and depending on the service will require the employee to remove waste fluid our customers (VSSR Route). This involves using vacuum equipment to pump waste materials and liquid from oil-water separator pits, as well as transporting & delivering the waste material to Safety-Kleen disposal sites. Or, it will require the employee to remove, transport and deliver waste oil from customer facilities to Safety-Kleen oil recycling and refining centers (Oil Route). Reports to CSM or BGM.

Essential Duties and Responsibilities include the following. Other duties may be assigned.

- Receive manifests, labels & route schedule from office staff
- Perform Pre & Post Trip Inspection Report
- Perform route: (drive to customer location, ensure each service meets the used oil or vac waste qualifications, take sample of each oil or vac service & place in retain sample storage area, pump waste oil or waste materials & liquid from oil-water separator pits from customer facilities to Safety-Kleen oil recycling & refining centers or Safety-Kleen disposal site).
- Properly label, scan and document waste oil (oil service) or waste materials & liquids (vac service) removed from customer site into handheld. Present receipt to customer, obtain authorized signature, as well as answer any customer service issues.
- Complete end of day paperwork (any manifests, orders etc. that were not already in the handheld). Dock handheld for overnight upload.
- Ensure environmental compliance and operate vehicles in accordance with DOT, local, state and federal requirements.

### Sales Responsibilities:

Focus is all customer types within a particular region or territory for new and existing accounts.

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required. Reasonable accommodations may be made to enable individuals with disabilities to perform the essential functions.

**Education and/Or Experience:** High school diploma or (GED). No experience necessary. **Certificates, Licenses, Registrations:** CDL and Haz Mat endorsement and Tanker. **Competencies and Skills:** Customer Service, Attention to Detail, Recognize the importance of, and adherence to, Safety regulations and policies, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

**Physical Demands:** While performing the duties of this job, the employee must frequently kneel and stoop and constantly bend, climb, reach and twist. The employee must constantly carry, lift and pull up to 50 pounds. The employee must constantly drive a large truck and occasionally move equipment. Job will use right and left hands for repetitive movement such as Simple Grasping and Pushing/Pulling. Job will use right hand for repetitive movement such as Fine Manipulation. Job will use feet for repetitive movement such as foot controls.

#### Job Description

| Job Title:     | Vacuum Sales and Service Representative |
|----------------|-----------------------------------------|
| Department:    | Branch Services                         |
| Reports To:    | Branch General Manager                  |
| FLSA Status:   | Exempt/Non-Exempt                       |
| Approved By:   | SVP HR                                  |
| Approved Date: | 01/29/07                                |

**Summary:** The VSSR provides waste fluid removal services to our customers. This involves using vacuum equipment to pump waste materials and liquid from oil-water separator pits, as well as transporting & delivering the waste material to Safety-Kleen disposal sites.

Essential Duties and Responsibilities include but are not limited to the following.

- Receive manifests, labels & route schedule from office staff
- Perform Pre & Post Trip Inspection Report
- Perform routine route and associated daily activities.
- Properly label, scan and document waste materials & liquids removed from customer site.
- Present receipt to customer, obtain authorized signature, as well as answer any customer service issues.
- Complete end of day paperwork.
- Ensure environmental compliance and operate vehicles in accordance with DOT, local, state and federal requirements.
- Ensure strict compliance to Branch SOP's.
- Exhibit knowledge of used oil regulations with respect to responsibilities

**Qualifications:** To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

**Education and/Or Experience:** High school diploma or (GED) and six months+ related experience, and/or training.

Certificates, Licenses, Registrations: Class C CDL and Haz Mat endorsement and Tanker.

**Competencies and Skills:** Customer Service, Attention to Detail, Recognize the importance of, and adherence to, Safety regulations and policies, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

**Physical Demands:** While performing the duties of this job, the employee must frequently sit, walk, stand, crawl or drive a truck with reasonable accommodations. The employee must frequently carry, lift, pull or push 50 pounds or more. The employee is constantly required to reach, bend, kneel, squat, climb, stoop or twist; and talk or hear. The employee must constantly drive a large truck.

# **TABLE 6.1-12**

# CONTINUING TRAINING TOPICS FOR BRANCH EMPLOYEES

- Hazard Communication Safety Training
- Hazard Communication regarding SDSs
- Preventing Injury and Illness
- Hazardous Materials Regulations
- Waste Analysis Plan
- Preparedness, Prevention, and Contingency Plan
- Respirator Fit Testing, and Training
- Generator Requirements
- Hazardous Waste Paperwork Manifests, BOL, Labeling, etc.
- Initial RCRA training & annual RCRA refresher training hazardous waste permit conditions, container and storage tank regulations, used oil training, universal waste training, manifest requirements, recordkeeping, and hazardous waste determination are included in the initial and annual RCRA training.

# Part II, A. General

# 5. WASTE CHARACTERISTICS

Waste analysis requirements mandate that before an owner or operator transfers, treats, stores, or disposes of any hazardous waste, he must obtain a detailed chemical and physical analysis of a representative sample of wastes. This analysis, at a minimum, must contain all of the information that must be known to treat, store, or dispose of the waste. The analysis may include data developed under 40 CFR 261 of the regulations and existing published or documented data on the hazardous waste or on hazardous waste generated from similar processes. The Waste Analysis Plan for the Safety-Kleen Medley Branch, found in Part II.WAP, has been developed to meet the requirements described above and as found in 40 CFR 270.14(b) and 264.13.

| Waste Type                                      | Process<br>Code(s) | Estimated Annual Amounts<br>(Tons) | Waste Codes                                                                    |
|-------------------------------------------------|--------------------|------------------------------------|--------------------------------------------------------------------------------|
| Spent Parts Washer Solvent                      | S01*<br>S02**      | 542                                | D001 and D-Codes Listed in<br>Note Below                                       |
| Branch Generated Liquids/Solids (Debris)        | S01*               | 6                                  | D001 and D-Codes Listed In<br>Note Below; F002, F003, F005                     |
| Dumpster Sediment                               | S01*               | Included Above                     | D001 and D-Codes Listed in<br>Note Below                                       |
| Tank Bottoms                                    | S01*               | Included Above                     | D001 and D-Codes Listed in<br>Note Below                                       |
| Used Immersion Cleaner (#699)                   | S01*               | 21                                 | D-Codes Listed in Note Below                                                   |
| Dry Cleaning Waste<br>(Perchloroethylene)       | S01*               | 234                                | F002 and D-Codes Listed in<br>Note Below                                       |
| Dry Cleaning Waste<br>(Naphtha-Based)           | S01*               | Included above                     | D001 and D-Codes Listed in<br>Note Below                                       |
| Paint Wastes                                    | S01*               | 46                                 | D001, F003, F005 and D-<br>Codes Listed in Note Below                          |
| Retain Samples From Used Oil<br>Operations      | S01*               | 3                                  | D008, D018, D039, D040                                                         |
| Spent Aerosol Cans                              | S01*               | < 1                                | D001, D035                                                                     |
| Fluid Recovery Service (FRS)<br>Transfer Wastes | S01***             | 167                                | Transfer wastes – waste codes<br>assigned by generator (includes<br>F001/F004) |
| Aqueous Brake Cleaner                           | S01***             | 14                                 | Transfer wastes – none, unless<br>assigned by generator                        |
| Mercury-Containing<br>Lamps/devices             | N/A***             | Less than 2.2                      | N/A – handled as non-<br>hazardous transfer wastes                             |

| Permitted/Site    | Generated | Waste Streams |
|-------------------|-----------|---------------|
| I CI IIII (CU/DIC | Utiltattu | vasic bu camb |

NOTES:

D-Codes: D004, D005, D006, D007, D008, D009, D010, D011, D018, D019, D021, D022, D023, D024, D025, D026, D027, D028, D029, D030, D032, D033, D034, D035, D036, D037, D038, D039, D040, D041, D042, D043

\* This waste will be stored in containers in the warehouse container storage area. The maximum capacity in the warehouse container storage area is 29,400 gallons, with 6,912 gallons being hazardous waste..

\*\* The RCRA-Permitted Hazardous Waste Tank (Used Solvent) has a capacity of 20,000 gallons and may be filled up to 19,000 gallons.

\*\* This waste will be held for transfer in containers in the transfer area(s). There is one transfer waste area Located inside the warehouse adjacent to the container storage area

# CHEMICAL AND PHYSICAL ANALYSIS

# 270.14(b)(2) 264.13(a)

Used materials generated by Safety-Kleen customers are the primary feedstock for the generation of Safety-Kleen recycled solvent products. As a result, quality control of the used materials is necessary to monitor product quality and regulatory consistency. The Medley facility collects used materials from numerous customers, many of whom are Very Small and Small Quantity Generators (VSQGs and SQGs).

Most of the materials collected at the Service Center are managed in a closed-loop system and are collected from companies with a single process (i.e., washing oily parts, dry-cleaning, or painting). The composition and quality of these materials are known, and Safety-Kleen's operating experiences have shown that the collected materials rarely deviate from company specifications.

Analysis of Safety-Kleen's core/permitted waste streams is undertaken each year through the Annual Recharacterization Program (AR). The AR program involves representative samples being taken from customer core waste streams, randomly selected after being returned to the branches, at approximately 30-35 Safety-Kleen branches across the country. Representative samples of common waste streams generated at Safety-Kleen branches are also taken and submitted for analysis as part of the AR program. Samples are sent to an independent laboratory for analysis (TCLP metals, volatiles, semi-volatiles, flash point, and pH). The results of the analyses are then tabulated for all participating Safety-Kleen Branches to provide a crosssectional view of the waste characteristics associated with the closed-loop or industry-specific waste streams. Then the results are subjected to a statistical review to determine applicable EPA hazardous waste codes for the upcoming year. A summary and explanation of the statistical analysis and methodology utilized to evaluate the analytical data obtained through the AR program each year is included in Part II WAP section. A summary of the analyses for the AR program is found in Appendix B.

### Descriptions of Permitted Waste Streams Wastes Resulting from Solvent-Based Parts Washer Service

Used parts washer solvent from parts washer services at Safety-Kleen customers is accumulated in a 20,000-gallon aboveground storage tank (RCRA-Permitted Hazardous Waste Tank (Used Solvent) via the wet dumpster in the Return and Fill Shelter (R/F). Containers of used solvent are poured into a drum washer unit (wet dumpster) at the R/F which in turn empties into the tank. The appropriate waste codes will be based on Safety-Kleen's Annual Recharacterization (AR) study. This waste handling method results in three types of parts washer solvent-based waste:

- <u>Used Parts Washer Solvent</u> which may include any of Safety-Kleen's petroleum-naphtha based products, is removed from the RCRA-Permitted Hazardous Waste Tank (Used Solvent) by a tanker approximately every 20 working days. For appropriate waste codes, see the Table above in this section. The Medley facility will ship used parts washer solvent to a permitted Safety-Kleen/Clean Harbors TSDF or other facility appropriately permitted to accept the waste for reclamation. The used parts washer solvent removed from the bulk tank is a homogeneous material as no other waste streams are placed in the bulk tank.
- 2. <u>Solvent Tank Bottoms</u> includes sediment and other heavy material that has accumulated at bottom of the RCRA-Permitted Hazardous Waste Tank (Used Solvent). Periodically it is necessary to remove this material when the accumulation impacts or may impact the ability to pump liquid solvent from the bottom outlet of the tank. The frequency of removal of the tank bottoms varies, dependent on the amount of suspended solids in the used solvent that settle during tank storage. Bottoms are typically removed by suction/vacuum truck and transported for offsite disposal. Typically, removal may be required every three-five years. For appropriate waste codes, see the Table above in this section.
- 3. <u>Branch Generated Liquids/Solids/Dumpster Sediment</u> In the course of day-to day operations, the Branch generates waste associated with sampling customers' waste and branch activities. Such wastes may include wipes, gloves, etc. In addition, liquid wastes may be generated as a result of decontaminating sampling equipment. The dumpster sediment chemical composition is analogous to that of the solvent tank bottoms. These containers are stored in the container storage area. The facility ultimately ships these materials to a permitted Safety-Kleen/Clean Harbors TSDF or other permitted facility for disposal. This waste stream is not sampled/analyzed, a "worst case scenario" is assumed. For appropriate waste codes, see the Table above in this section.

4. <u>System One Type Parts Washers (recycling units)</u> – These types of parts washers build up oil/sludge in the distillation unit of the machine while in use at the customer's location. This material is not sampled/analyzed as part of SK's annual re-characterization program and is managed according to the customer/generator waste determination. If a generator is a VSQG, SK recommends that they place this material in their used oil, if they are a generator of used oil.

Immersion Cleaner (IC) is another type of parts washer solvent. This product is a heavy aromatic naphtha, N-methyl-2-pyrrolidinone, dipropylene glycol methyl ether, monoethanolamine and oleic acid, and may contain a maximum of 1 percent chlorinated compounds. Containers of used IC are stored in the container storage area or transfer area. The Immersion Cleaner remains in the container in which it was originally delivered to the customer in until it is received at a permitted SK/Clean Harbors TSDF for reclamation/disposal. For appropriate waste codes, see the Table above in this section.

### Wastes Resulting From the Dry Cleaner Service

Safety-Kleen manages naphtha-based, and perchloroethylene-type of hazardous dry cleaner waste in the container storage area or transfer waste area. This waste can have three forms: bottoms, filters, and separator waters. These wastes are packaged on the customers' premises in containers meeting U.S. DOT specifications. When received at the facility, the perchloroethylene, and naphtha-based non-perchloroethylene dry cleaning containers are placed in the container storage area or transfer waste area. Dry cleaning wastes remain in the containers received from the customer until received at the designated, permitted Safety-Kleen/Clean Harbors TSDF, or other appropriately permitted facility.

The dry-cleaning process may produce three waste streams:

Filter Cartridges are generated as waste when they can no longer effectively filter the solvent in the chamber. In addition to the filter materials of construction consisting of steel, paper, clay, and carbon, the used cartridge retains solvent, oil and grease, lint, hair, and soil. Solvent retained in the filter cartridge generally amounts to less than 50 percent of the total cartridge weight. Dry cleaner filters are given the same waste codes as the associated dry cleaner bottoms because both streams are derived from the same source.

Designating the same codes for the filters as were used for the bottoms is a conservative approach. A representative filter sample is difficult to obtain because of the make-up of the filter (metal core) and obtaining the sample would involve dismantling of the filter and undue exposure to the dismantler.

2/3. <u>Still Bottom Residue and Separator Water</u> are generated after filtration and distillation at the generator to remove the dissolved materials from the used solvent. The dissolved materials (still bottom residues) are in liquid form and consist primarily of solvent, oil, grease, hair, dirt, and water. In some cases, the dry cleaner will separate the water condensate from the still residue. Water condensate, generated during the distillation process, may contain dry cleaning solvent, oil, grease, and dirt as well. The dry-cleaning separator water will be given the same waste codes as the associated bottoms with the omission of D007 because chromium is not expected to carry over into the separator water during the distillation process (i.e., the boiling point of chromium is much greater than the operating temperature of the distillation unit). For appropriate waste codes see the Table above in this section.

### Wastes Resulting From Paint and Thinner Services

Paint wastes consist Safety-Kleen lacquer thinner and paint residues resulting from cleaning of the paint guns by the generator. There are primarily three waste streams from this service: Paint Gun Cleaner, Clear Choice® Paint Gun Cleaner, and paint waste-other. Safety-Kleen thinners are used during the generation of the first two waste streams.

- 1. <u>Paint Gun Cleaner</u> is a paint gun cleaning lacquer thinner containing a blend of solvents such as acetone, alcohols, ketones, toluene, xylene, and acetate compounds. These have primary waste codes of D001, F003 and F005. These are contaminated with lower levels of waste paint, as the gun cleaning machine is removing it from the paint sprayer during the cleaning operation. Safety-Kleen's core paint waste is typically recycled and fuel blended. Reference the table above in this section for other applicable waste codes.
- 2. <u>Clear Choice Paint Gun Cleaner</u> is acetone, so the F005 waste code does not apply to this waste stream. Other applicable waste codes are D001 and F003. The two Paint Gun Cleaner streams share the same AR data because the waste streams are similar due to the identical process generating the wastes. Reference the table above in this section for

other applicable waste codes.

3. <u>Paint Waste Other</u> consists of the same material as the Paint Gun Cleaner, but has a higher level of paint solids, as this comes from the dumping of left-over paint from paint cups and guns when all the paint in a paint gun is not used. During the process creating this waste, typically smaller volumes of thinner are in the waste so these drums are fuel blended or incinerated rather than recycled for their solvent value. The primary waste codes are D001, F003 and F005. Reference the table above in this section for other applicable waste codes.

The paint wastes described above are collected in containers from the customer's location meeting U.S. DOT specifications. The wastes are containerized by the generator at their place of business. The paint wastes remain in these containers and are stored in the container storage area while at the SK Medley branch. Paint wastes are then shipped to a permitted Safety-Kleen/Clean Harbors TSDF, or other properly permitted facility for disposal.

### Branch Generated Retain Samples From Used Oil Operations

<u>Used Oil/Oily Water Retain Samples</u> are taken and maintained for every used oil/oily water service SK performs. This is to ensure that we can identify any customers who introduce contaminants (halogenated solvents or PCBs) into our used oil/oily water loads. At the time the retain sample is taken at the customer location, the driver is able to check the material for appearance (used oil mixed with fuels may cause the material to have a thinner/lighter appearance), unusual odors, and viscosity (used oil mixed with fuels would have a noticeably lower viscosity and flow more easily into the sample jar). These retain samples are kept for a minimum of 90 days at the branch in metal cabinets in the warehouse, and then disposed of as hazardous waste. The samples are typically 4-oz. plastic/glass jars. They are manually placed into 55-gallon containers, and properly labeled for disposal. These containers are stored in the container storage area until being sent to a permitted Safety-Kleen/Clean Harbors TSDF, or other properly permitted facility for disposal. Waste codes for this material are found in the table above in this section.

### Branch Generated Aerosol Cans

Spent Aerosol Cans: From time to time the facility generates spent aerosol cans during

operations. These cans are accumulated in a satellite accumulation container (30 or 55 gallon) at the facility. Once this container is full it is moved to the container storage area until being sent to a permitted Safety-Kleen/Clean Harbors TSDF, or other properly permitted facility for disposal. Waste codes (D001/D035) for this material are found in the table above in this section.

# Used Antifreeze

The spent antifreeze (ethylene glycol) is collected from automobile service stations. All antifreeze is collected by Safety-Kleen with the intent of it being recycled. At the customer's location, Safety-Kleen pumps waste ethylene glycol (antifreeze) into a Safety-Kleen used oil tanker truck. This truck transports the used antifreeze (glycol) to the Medley branch, for off-loading into dedicated storage tanks. The comingled material (used antifreeze/used oil) is sent to the SK East Chicago re-refinery where the ethylene glycol is separated by distillation. The glycol is then sent to a recycler for processing into a pure product which is then sold on the open market. This procedure is in accordance with FDEP's the Best Management Practices for Managing Used Antifreeze at Vehicle Repair Facilies, dated May 22, 2012. The Florida Department of Environmental Protection (FDEP) has determined this waste stream can be handled as nonhazardous as long as it is destined for recycling. If used antifreeze collected by the Safety-Kleen Medley facility is sent to a facility other than the East Chicago re-refinery it will be managed as follows. The material will be segregated and off-loaded into a separate storage container/tote, then sampled and analyzed for glycol percentage. If the glycol percentage is acceptable it is sent to a recycler. If the glycol percentage is not acceptable a representative sample will be taken and sent for TCLP analysis to determine if it is a hazardous waste. It will be managed properly according to the TCLP analysis result. In addition, Safety-Kleen sells its' own private label antifreeze in 55-gallon containers. Customers will then place used antifreeze in these containers to be shipped back to the branch. This material is then shipped to SK distribution centers, and then shipped to a recycler.

### Aqueous Brake Cleaner

The Aqueous Brake Cleaner (ABC) is an aqueous, alkaline concentrated cleaner diluted with water (4¾ gallons of water is mixed with ¼-gallon of concentrated aqueous cleaner). The ABC parts cleaner has a 5-gallon reservoir under the cleaning vat that provides the aqueous solution for

cleaning. The spent ABC is transported from the customers in 5-gallon suitcase type containers. Spent aqueous brake cleaner that is non-hazardous is sent to a waste-water treatment facility for processing. If a customer (generator) assigns any hazardous waste code to the spent ABC, the material is managed as a 10-day transfer waste and sent to an appropriate Safety-Kleen/Clean Harbors TSDF for processing.

### Fluid Recovery Services (FRS) 10-Day Transfer Wastes

Fluid Recovery Services (FRS) is a program managed by the Safety-Kleen Branch to collect and transfer various other hazardous wastes to the appropriate Safety-Kleen/Clean Harbors TSDF's for processing. Non-hazardous Containerized Waste Services (CWS) are also performed under this program. FRS wastes that are RCRA hazardous wastes are managed as 10-day transfer wastes. Examples of types of wastes that may be received under this program include:

- Spent hydrocarbon distillates, such as waste fuel, oil, petroleum-naphtha, etc.;
- Lubricating oils, hydraulic oils, synthetic oils, and machine oils, used antifreeze;
- Industrial halogenated solvents such as 1,1,1-trichloroethane, tetrachloroethylene, Freon, trichloroethylene, carbon tetrachloride, etc;
- Non-halogenated solvents such as cresols, nitrobenzene;
- Photographic and x-ray related wastes;
- Paint and lacquer thinners, acids/bases, various returned/damaged products from national retail chains;
- Other hazardous and non-hazardous halogenated and non-halogenated wastes.

### Mercury Containing Lamps and Devices & Batteries

Mercury-containing lamps and devices are another type of waste handled by the Branch. All mercury-containing lamps/devices are managed in accordance with the Standards for Universal Waste Management found in 40 CFR Part 273. As part of its protocol for handling mercury-containing lamps and devices, the Branch provides customers with four-foot and eight-foot boxes which hold up to 39 lamps. The boxes are picked up at customer locations and are stored at the Branch in the transfer waste storage areas. These containers are labeled in accordance with 62-737.400 (5)(b), Florida Administrative Code (FAC). The boxes are periodically shipped to a permitted mercury recovery or reclamation facility.

Safety-Kleen handles all types of batteries. All applicable batteries, per 40 CFR Part 273.2 & 273.9, are managed in accordance with the Standards For Universal Waste Management found in 40 CFR Part 273. Batteries not meeting those standards may be managed as 10-day transfer waste.

# 270.15(b)(1) Waste Compatibility with Containers 264.172

It is Safety-Kleen's standard operating procedure to use containers made of, or lined with, materials that will not react with, and are otherwise compatible with, the hazardous waste to be stored so that the ability of the container to contain the waste is not impaired.

Safety-Kleen manages a limited number of permitted waste streams, most are liquid, and most originate from new products that are supplied to its customers in the original DOT approved containers. Safety-Kleen has evaluated the chemical composition of these products and wastes and has determined that the wastes are compatible with the containers in which they are stored.

Note: None of the permitted waste streams carry the D002 waste code for corrosivity. In most cases where a container is not available from a Safety-Kleen-supplied product, Safety-Kleen supplies the customer with a DOT approved container for that waste type (e.g., when Safety-Kleen collects Dry Cleaning wastes).

# 270.16(a), 264.190(a) Waste Compatibility with Tank System 264.191(b)(2), 264.192(a)(2)

The only hazardous waste stored in the RCRA-Permitted Hazardous Waste Tank (Used Solvent) is used parts washer solvent. This material has been analyzed and found to be compatible with the steel tank in which it is stored.

### Waste in Piles, Waste on Drip Pads

Safety-Kleen's Medley facility does not have any of these processes on site. Therefore; these sections do not apply.

# Part II

### A. General

# 6. Waste Analysis Plan (WAP)

The waste analysis plan (WAP) for the Safety-Kleen Medley facility is found in the Part II WAP section.

# Part II

# A. General

# 7. 264.12 Required Notices, 264 Subpart E Manifest System, Recordkeeping, and Reporting Waste Manifests

Appropriate shipping papers/manifests are used, based on the monthly quantity of hazardous waste generated by the customer. Safety-Kleen services all three categories of generators in Florida – Very Small Quantity Generators (VSQGs), SQGs, and LQGs. VSQG's used parts washer solvent is removed via a service document/bill of lading and no manifest or Land Disposal Restrictions (LDR) form is required. Appropriate records are kept by the Branch as to the date of waste pick-up, quantity, and other data on the service document. A hazardous waste manifest and LDR form is completed for each SQG. LQGs' used parts washer solvent is always manifested (if hazardous) and an LDR form completed.

Used parts washer solvent (from each Safety-Kleen customer, regardless of generator status) is brought back to the Branch and dumped into the wet dumpster at return/fill shelter and pumped to the RCRA-Permitted Hazardous Waste Tank (Used Solvent). This tank contains the used parts washer solvent of many customers and is managed as hazardous waste. The contents are regularly sent via tanker truck to the recycle center in Lexington, SC. These loads are always manifested and accompanied by an LDR form. Shipments of parts washer solvent dumpster mud are also manifested accordingly. Required records are kept at the Branch and the recycle center in accordance with regulatory timeframes.

In accordance with 40 CFR 264.71 through 77, Safety-Kleen will ensure that:

- 1. Customers who are required to provide a manifest do so;
- 2. The manifests are prepared and signed properly; and
- 3. Copies are distributed and kept on file, as required.

In addition, discrepancies must be remediated in accordance with 40 CFR 264.72 and unmanifested wastes will be reported as described under 40 CFR 264.76.

# **Required** Notices

If Safety-Kleen arranges to receive hazardous waste from a foreign source, the Regional Administrator must be notified in writing at least four weeks in advance of the date the waste is expected to arrive at the facility. Notice of subsequent shipments of the same waste from the same foreign source is not required. Safety-Kleen informs its customers in writing (i.e., on each service document) that the facility has the appropriate permit(s) for, and, will accept the waste the generator is shipping. Safety-Kleen keeps a copy of this written notice as part of the operating record.

Before transferring ownership or operation of this facility during its operating life, Safety-Kleen will notify the new owner or operator in writing of the requirements of Part 264 and Part 270 of Chapter 40 in the Code of Federal Regulations.

Biennial reports required by Chapter 62-730.180(4) FAC, will be prepared and submitted by Safety-Kleen, and these records will also be available at the facility for review. The biennial report will be submitted to the Regional Administrator and/or FDEP by March 1 during each even year (1990 being the first year) on EPA form 8700-13B. The report will cover facility activities during the previous calendar years and will include:

- The EPA identification number, and address of the facility;
- The calendar years covered by the report;
- The method of treatment, storage, and disposal for each hazardous waste; and
- A certification signed by the owner or operator of the facility or the authorized representative.

### **Operating Record**

An operating record which contains the information required under 40 CFR 264.73 is maintained and all records and logs are available at the facility, in accordance with 40 CFR 264.74. An electronic copy of the operating record is retained at the facility to comply with 40 CFR 264.73(b).

The following information will be maintained in writing in the operation record for the facility:

- A description and quantity of each hazardous waste received;
- The date and storage method for such hazardous waste;
- The location of each hazardous waste stored within the facility;
- Records and results of waste analyses performed;
- Summary reports and details of all incidents that require implementation of the contingency plan;
- Monitoring, testing, or analytical data, and corrective action where required by Subpart F and other applicable sections of 40 CFR 264;
- All closure cost estimates under 40 CFR 264.142 and all contingent post-closure cost estimates under 40 CFR 264.144;
- Records of quantities and date of placement for each shipment of hazardous waste placed in land disposal units under an extension to the effective date of any land disposal restriction granted;
- For any restricted waste generated that can be land disposed without further treatment, and is sent to a land disposal facility, a notice and certification will be sent to the treatment, storage, or land disposal facility with the waste. The notice will state that the waste meets the applicable treatment standards set forth in Subpart D of 40 CFR 268 and applicable prohibitions set forth in 40 CFR 268.32 or RCRA section 3004(d). The notice will include the following information:
  - 1. EPA Hazardous Waste Number; and
  - 2. The corresponding treatment standards and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d).
- Training records, inspection reports, waste minimization certifications, closure plan, and Corrective Action Documents.

Further, the LDR certification will be signed by an authorized representative and will state the following:

I certify under penalty of law that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d). I believe that the information I submitted is true, accurate, and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine

### and imprisonment.

Section 264.74 requires that all records, including plans, must be furnished upon request to duly designated representative of the Regional Administrator, and this requirement will be honored. A copy of all records of waste disposal locations and quantities will be submitted to the Regional Administrator and/or FDEP upon closure of the facility, if applicable.

As a registered transporter and storage facility for mercury-containing lamps and devices destined for recycling, the Branch complies with the record keeping requirements of FAC 62-737.

# Land Ban Notification/Certification Forms

In accordance with 40 CFR 268.7, Safety-Kleen will provide notification/certification for wastes banned from landfills as follows:

- 1. Special forms for each regularly handled wastes types (e.g., parts washer solvent, immersion cleaner, and percholoroethylene); or
- 2. A general form that must be completed for unique or nonstandard waste streams.

The notice is required paperwork for the streams handled by Safety-Kleen. When a shipment with the notice is received, the notice is kept in the files of the receiving facility with the manifest or with the pre-print if a manifest is not used.

The facility will comply with the RCRA permitting conditions found in 40 CFR Part 270.30(I)(1) 270.30(I)(2), and 270.30(I)(6). The facility will comply with the recordkeeping requirements found in 40 CFR Part 264.1064 and 264.1089.

# Part II

# A. General

# 8. 40 CFR Part 270.3

The Federal laws found in 40 CFR Part 270.3 do apply to Safety-Kleen although they do not appear to be applicable at this time.

# Tab 3

# Part II

Preparedness, Prevention, Contingency Plan, and Emergency Procedures for Daily Business Operations

# SAFETY-KLEEN SYSTEMS, INC. MEDLEY FACILITY

# PREPAREDNESS, PREVENTION, CONTINGENCY PLAN, AND EMERGENCY PROCEDURES FOR DAILY BUSINESS OPERATIONS

# TABLE OF CONTENTS

| EMERGENCY CONTACT LIST                       | iii         |
|----------------------------------------------|-------------|
| QUICK REFERENCE GUIDE                        | QRG 1-QRG 8 |
| GENERAL INFORMATION                          | 3           |
| DESCRIPTION OF ACTIVITIES                    | 3-6         |
| INSPECTION PROCEDURES                        | 7-9         |
| EMERGENCY NOTIFICATION                       | 9           |
| ACTIONS OF THE EMERGENCY COORDINATOR         | 9-12        |
| POTENTIAL SPILL SOURCES (ACTIONS/PROCEDURES) | 13-19       |
| DECONTAMINATION                              | 19-20       |
| EMERGENCY RESPONSE EQUIPMENT/COMMUNICATION   | 20-21       |
| FIRE CONTROL PROCEDURES                      | 21-23       |
| EXTERNAL EMERGENCY FACTORS                   | 23-25       |
| EVACUATION PLAN                              | 25          |
| AVAILABILITY/REVISION OF THE PLAN            | 26          |
| ARRANGEMENT WITH LOCAL AUTHORITIES           | 26-27       |



Revision Date: 9/20/2022

# Safety-Kleen Medley, FL Emergency Coordinator Phone Numbers

Primary: Daniel Vilarchao 14356 SW 159<sup>th</sup> St. Miami, FL 33177 Office (305) 507-5499 Cell (305) 613-5230 Alternate: Bo Adams 2120 NW 30<sup>th</sup> Way Ft. Lauderdale, FL 33324 Office (305) 507-5499 Cell (786) 778-6375

Emergency Notification Numbers Safety-Kleen's 24 Hour Emergency Response Reporting System: (800) 468-1760

Florida DEP- Southeast District: (561) 681-6600 (Monday-Friday, 8:00 am to 5:00 pm except Holidays)

After Hours, please call FDEP Office of Emergency Response (561) 681-6767 or State Watch Office (800) 320-0519

If you are unable to contact the DEP at the above, please call: National Response Center 1-800-424-8802

Poison Control Center: (800) 222-1222 or (800) 833-3505

Emergency Teams to be Notified: Miami-Dade Fire Rescue 9300 NW 41<sup>st</sup> Street Doral, FL 33178 (786) 331-5000 or 911

Medley Police Department 7777 NW 72nd Avenue Medley, FL 33166 (305) 883-2047 or 911

Palmetto General Hospital 2001 West 68<sup>th</sup> Street Hialeah, FL 33016 (305) 823-5000

### **Contingency Plan Quick Reference Guide**

Safety-Kleen Systems, Inc. 8755 NW 95<sup>th</sup> Street Medley, FL 33178

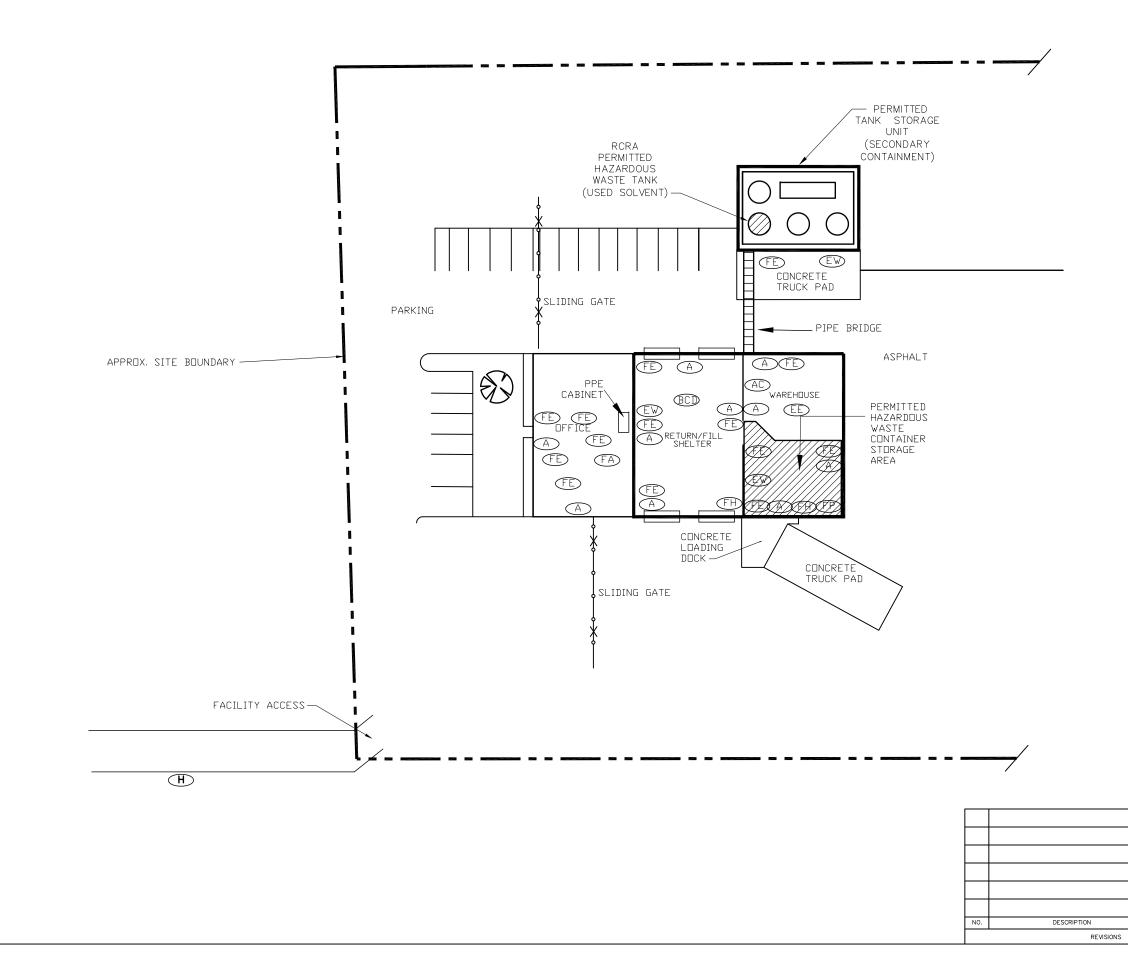
### **Facility Contacts:**

| Primary Emergency Coordinator:          | Daniel Vilarchao | Mobile Number (24/7): (305) 613-5230 |
|-----------------------------------------|------------------|--------------------------------------|
| Secondary Emergency Coordinator:        | Bo Adams         | Mobile Number (24/7): (786) 778-6375 |
| Safety-Kleen Emergency Response Number: |                  | (24/7): (800) 468-1760               |

**Note:** Safety-Kleen operates Monday-Friday 7:00 am – 6:00 pm. The Safety-Kleen Emergency Response Number is available 24/7 for response to emergency situations at all Safety-Kleen facilities.

### Hazardous Waste Information:

| Name of Waste       | Waste codes/hazards             | Location            | Maximum             | Response Notes            | Special Notes to   |
|---------------------|---------------------------------|---------------------|---------------------|---------------------------|--------------------|
|                     |                                 | Accumulated         | Amounts Present     |                           | Hospital/Treatment |
|                     |                                 |                     |                     |                           | Personnel          |
| Branch Contaminated | D001 (ignitability, flash point | North side of       | Four, 55-gallon     | If personnel come into    | None               |
| Debris              | <140 °F), D004 (toxicity),      | warehouse,          | drums (1,600 lbs.)  | direct contact with       |                    |
|                     | D005 (toxicity); F002, F003,    | container storage   |                     | material, decontamination |                    |
|                     | F005 (tetrachloroethylene,      | area                |                     | at the hospital may be    |                    |
|                     | trichloroethylene, acetone,     |                     |                     | required prior to         |                    |
|                     | methyl ethyl ketone, toxicity)  |                     |                     | treatment.                |                    |
| Branch Contaminated | D001 (ignitability, flash point | Two Satellite       | One, 55-gallon      | If personnel come into    | None               |
| Debris              | <140 °F), D004 (toxicity),      | accumulation        | drum at each        | direct contact with       |                    |
|                     | D005 (toxicity); F002, F003,    | areas as noted      | location (400 lbs.) | material, decontamination |                    |
|                     | F005 (tetrachloroethylene,      | with (BCD) facility |                     | at the hospital may be    |                    |
|                     | trichloroethylene, acetone,     | figure              |                     | required prior to         |                    |
|                     | methyl ethyl ketone, toxicity)  |                     |                     | treatment.                |                    |

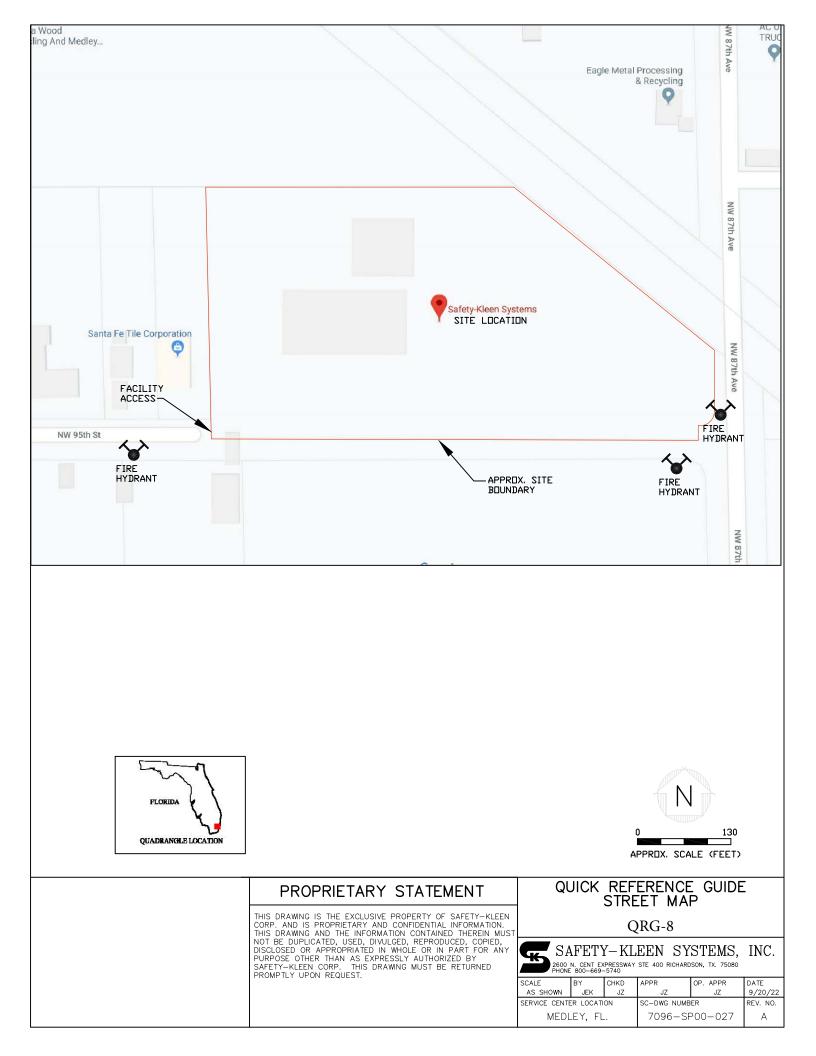

| Name of Waste      | Waste codes/hazards                                                    | Location                                                                           | Maximum Amounts                       | Response Notes                                                                                                                                                                                                                                          | Special Notes to                                                                                                                                                                                                                                                                  |
|--------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                        | Accumulated                                                                        | Present                               |                                                                                                                                                                                                                                                         | Hospital/Treatment personnel                                                                                                                                                                                                                                                      |
| Spent aerosol cans | D001 (ignitability, flash<br>point <140 °F), D035<br>(toxicity)        | North side of<br>warehouse,<br>container<br>storage area                           | One, 30-gallon drum<br>(100 lbs.)     | In the event of excessive<br>temperatures (fire) cans<br>may depressurize and<br>possibly explode in severe<br>cases.                                                                                                                                   | None                                                                                                                                                                                                                                                                              |
| Spent aerosol cans | D001 (ignitability, flash<br>point <140 °F), D035<br>(toxicity)        | One Satellite<br>Accumulation<br>Area<br>Warehouse –<br>noted by (AC)<br>on figure | One, 30-gallon drum<br>(100 lbs.)     | In the event of excessive<br>temperatures (fire) cans<br>may depressurize and<br>possibly explode in severe<br>cases.                                                                                                                                   | None                                                                                                                                                                                                                                                                              |
| Paint Gun Cleaner  | D001 (ignitability, flash<br>point <140 °F), D018,<br>D035; F003, F005 | Central<br>Warehouse –<br>Transfer waste<br>storage area                           | Fifteen, 5-gallon<br>drums (600 lbs.) | In case of fire use carbon<br>dioxide, regular foam,<br>regular dry chemical,<br>water spray and water fog<br>for extinction. Use PPE to<br>prevent contact with<br>skin/eyes/respiratory<br>system. Prevent sources<br>of ignition and open<br>flames. | If inhaled remove<br>person to fresh air, if<br>in eyes rinse<br>cautiously with water<br>for several minutes,<br>if on skin remove<br>immediately all<br>clothing and rinse<br>skin with water, if<br>swallowed<br>immediately call<br>poison center, do not<br>induce vomiting. |

| Name of Waste             | Waste codes/hazards          | Location       | Maximum Amounts      | Response Notes            | Special Notes to        |
|---------------------------|------------------------------|----------------|----------------------|---------------------------|-------------------------|
|                           |                              | Accumulated    | Present              |                           | Hospital/Treatment      |
|                           |                              |                |                      |                           | personnel               |
| Paint Related Wastes      | D001 (ignitability, flash    | Central        | Eight, 55-gallon     | If personnel come into    | None                    |
|                           | point <140 °F), D018         | Warehouse -    | drums (3,600 lbs.)   | direct contact with       |                         |
|                           | (toxicity), D035 (toxicity); | Transfer waste |                      | material, decontamination |                         |
|                           | F003, F005 (Benzene,         | storage area   |                      | at the hospital may be    |                         |
|                           | Methyl Ethyl Ketone,         |                |                      | required prior to         |                         |
|                           | Toluene, toxicity)           |                |                      | treatment.                |                         |
| Dry Cleaning Waste (Perc) | D007, D039, D040             | Central        | Four, 15-gallon      | If personnel come into    | Evaluate and support    |
| Bottoms                   | (toxicity); F002 (toxicity)  | warehouse -    | drums (640 lbs.)     | direct contact with       | the airways,            |
|                           |                              | Transfer waste |                      | material, decontamination | breathing and           |
|                           |                              | storage area   |                      | at the hospital may be    | circulation. Establish  |
|                           |                              |                |                      | required prior to         | intravenous access in   |
|                           |                              |                |                      | treatment. Use PPE to     | seriously ill patients. |
|                           |                              |                |                      | avoid absorption into the | Continuously            |
|                           |                              |                |                      | respiratory tract.        | monitor cardiac         |
|                           |                              |                |                      |                           | rhythm.                 |
| Dry Cleaning Waste (Perc) | D007, D039, D040             | Central        | Two, 30-gallon drums | If personnel come into    | Evaluate and support    |
| Filters                   | (toxicity); F002 (toxicity)  | warehouse -    | (178 lbs.)           | direct contact with       | the airways,            |
|                           |                              | Transfer waste |                      | material, decontamination | breathing and           |
|                           |                              | storage area   |                      | at the hospital may be    | circulation. Establish  |
|                           |                              |                |                      | required prior to         | intravenous access in   |
|                           |                              |                |                      | treatment. Use PPE to     | seriously ill patients. |
|                           |                              |                |                      | avoid absorption into the | Continuously            |
|                           |                              |                |                      | respiratory tract.        | monitor cardiac         |
|                           |                              |                |                      |                           | rhythm.                 |

| Name of Waste      | Waste codes/hazards       | Location Accumulated        | Maximum          | Response Notes                | Special Notes to      |
|--------------------|---------------------------|-----------------------------|------------------|-------------------------------|-----------------------|
|                    |                           |                             | Amounts Present  |                               | Hospital/Treatment    |
|                    |                           |                             |                  |                               | personnel             |
| Dry Cleaning Waste | D001 (ignitability, flash | Central warehouse -         | One, 16-gallon   | If personnel come into        | None                  |
| (Naptha) Bottoms   | point <140 °F), D007,     | Transfer waste storage      | drum (162 lbs.)  | direct contact with material, |                       |
|                    | D039, D040 (toxicity)     | area                        |                  | decontamination at the        |                       |
|                    |                           |                             |                  | hospital may be required      |                       |
|                    |                           |                             |                  | prior to treatment.           |                       |
| Dry Cleaning Waste | D001 (ignitability, flash | Central warehouse -         | One, 16-gallon   | If personnel come into        | None                  |
| (Naptha) Filters   | point <140 °F), D007,     | Transfer waste storage      | drum (120 lbs.)  | direct contact with material, |                       |
|                    | D039, D040 (toxicity)     | area                        |                  | decontamination at the        |                       |
|                    |                           |                             |                  | hospital may be required      |                       |
|                    |                           |                             |                  | prior to treatment.           |                       |
| Immersion Cleaner  | D027, D039, D040          | Central warehouse -         | Four, 16-gallon  | Fire response: use carbon     | None                  |
|                    | (toxicity)                | Transfer storage area       | drums (280 lbs.) | dioxide/dry                   |                       |
|                    |                           |                             |                  | chemical/alcohol resistant    |                       |
|                    |                           |                             |                  | foam/water spray or water     |                       |
|                    |                           |                             |                  | fog.                          |                       |
| Hydrochloric Acid  | D002 (corrosive)          | Central Warehouse,          | One, 55-gallon   | Suitable extinguishing        | Move exposed          |
|                    |                           | Transfer Trailer - Transfer | drums (400 lbs.) | agents: water, dry chemical,  | persons to fresh air, |
|                    |                           | waste storage areas         |                  | chemical foam, carbon         | wash affected areas   |
|                    |                           |                             |                  | dioxide or alcohol-resistant  | with soap/water,      |
|                    |                           |                             |                  | foam. Combustion products     | rinse affected areas  |
|                    |                           |                             |                  | may include carbon oxides     | with water for at     |
|                    |                           |                             |                  | or other toxic vapors. Use    | least 15 minutes.     |
|                    |                           |                             |                  | PPE to protect eyes, skin,    | Seek medical          |
|                    |                           |                             |                  | and respiratory tract.        | attention             |
|                    |                           |                             |                  |                               | immediately.          |

| Name of Waste  | Waste<br>codes/hazards                                                   | Location Accumulated                                                        | Maximum Amounts<br>Present         | Response Notes                                                                                                                                                                                                                                                         | Special Notes to<br>Hospital/Treatment<br>personnel                                                                                                                                             |
|----------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sulfuric Acid  | D002 (corrosive)                                                         | Central Warehouse,<br>Transfer Trailer -<br>Transfer waste<br>storage areas | One, 55-gallon drums<br>(400 lbs.) | Suitable extinguishing<br>agents: water, dry<br>chemical, chemical foam,<br>carbon dioxide or alcohol-<br>resistant foam. Thermal<br>decomposition can lead to<br>release of irritating gases<br>& vapors. Use PPE to<br>protect eyes, skin, and<br>respiratory tract. | Move exposed<br>persons to fresh air,<br>wash affected areas<br>with soap/water,<br>rinse affected areas<br>with water for at<br>least 15 minutes.<br>Seek medical<br>attention<br>immediately. |
| Waste Gasoline | D001 (ignitability,<br>flash point <140 °F),<br>D008, D018<br>(toxicity) | Central Warehouse,<br>Transfer Trailer -<br>Transfer waste<br>storage areas | Two, 55-gallon drums<br>(800 lbs.) | Use dry chemical, CO2,<br>water spray or fire-<br>fighting foam to<br>extinguish. In the event of<br>fire responders should use<br>approved pressure-<br>demand self-contained<br>breathing apparatus with<br>full-face piece and full<br>protective clothing.         | Do not induce<br>vomiting if<br>swallowed, rinse<br>mouth, remove any<br>contaminated<br>clothing, rinse<br>affected eye/skin<br>areas with water.<br>Seek immediate<br>medical attention.      |
| Waste Xylene   | D001 (ignitability,<br>flash point <140°F),<br>F003                      | Central Warehouse,<br>Transfer Trailer -<br>Transfer waste<br>storage areas | Two, 30-gallon drum<br>(230 lbs.)  | Use water spray, alcohol-<br>resistant foam, dry<br>chemical or carbon<br>dioxide. Cool closed<br>containers exposed to fire<br>with water spray.                                                                                                                      | Inhaled – remove to<br>fresh air, seek<br>medical attention.<br>Skin – remove<br>clothing, rinse with<br>water/shower.<br>Do not induce<br>vomiting if<br>swallowed – call<br>poison center.    |

| Name of Waste       | Waste codes/hazards          | Location Accumulated  | Maximum            | Response Notes              | Special Notes to   |
|---------------------|------------------------------|-----------------------|--------------------|-----------------------------|--------------------|
|                     |                              |                       | Amounts Present    |                             | Hospital/Treatment |
|                     |                              |                       |                    |                             | personnel          |
| Ethanol Solutions   | D001 (ignitability, flash    | Central Warehouse,    | Seven, 55-gallon   | Prevent sources of ignition | None               |
|                     | point <140 °F)               | Transfer Trailer -    | drums (2,800 lbs.) | and open flames.            |                    |
|                     |                              | Transfer waste        |                    |                             |                    |
|                     |                              | storage areas         |                    |                             |                    |
| Waste Acetone       | D001 (ignitability, flash    | Central Warehouse,    | Four, 55-gallon    | Use water spray, alcohol-   | Treat              |
|                     | point <140°F), F003          | Transfer Trailer -    | drums (1,600 lbs.) | resistant foam, dry         | symptomatically    |
|                     |                              | Transfer waste        |                    | chemical or carbon          |                    |
|                     |                              | storage areas         |                    | dioxide. Cool closed        |                    |
|                     |                              |                       |                    | containers exposed to fire  |                    |
|                     |                              |                       |                    | with water spray.           |                    |
| Paint Related Waste | D001 (ignitability, flash    | Central Warehouse,    | Twelve, 55-gallon  | If personnel come into      | None               |
|                     | point <140 °F), D018         | Transfer Trailer -    | drums (5,400 lbs.) | direct contact with         |                    |
|                     | (toxicity), D035 (toxicity); | Transfer waste        |                    | material, decontamination   |                    |
|                     | F003, F005 (Benzene,         | storage areas         |                    | at the hospital may be      |                    |
|                     | Methyl Ethyl Ketone,         |                       |                    | required prior to           |                    |
|                     | Toluene, toxicity)           |                       |                    | treatment.                  |                    |
| Used Parts Washer   | D001 (ignitability, flash    | North central side of | Fifteen thousand   | If personnel come into      | None               |
| Solvent             | point <140 °F), D018,        | the Facility – Tank   | gallons. (Note:    | direct contact with         |                    |
|                     | D039, D040 (toxicity)        | Storage Area (Used    | Normal operating   | material, decontamination   |                    |
|                     |                              | Parts Washer Solvent  | capacity is        | at the hospital may be      |                    |
|                     |                              | Tank 15,000-gallon    | approximately      | required prior to           |                    |
|                     |                              | capacity)             | 7,000 gallons)     | treatment.                  |                    |




| o<br>E           | 10' 40' 100'<br>5' 20' 80'                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r                | QRG-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | LEGEND<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | O EXISTING ABDVEGROUND<br>STORAGE TANK<br>EXISTING ABDVEGROUND<br>STORAGE TANK                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | <ul> <li>ED EMERGENCY EQUIPMENT AREA</li> <li>FD FIRE EXTINQUISHER</li> <li>FD FIRE PUMP</li> <li>FH FIRE HOSE</li> <li>H FIRE HYDRANT (500 GPM)</li> <li>A ALARM</li> <li>FA FIRST AID KIT</li> <li>EV EYEWASH/SHOWER</li> <li>PPP PERSONAL PROTECTIVE EQUIPMENT</li> <li>BRANCH CONTAMINATED DEBRIS<br/>SATELLITE ACCUMULATION</li> <li>AEROSOL CAN SATELLITE<br/>ACCUMULATION</li> </ul>                                                                                                     |
|                  | PROPRIETARY STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL<br>INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED<br>THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED,<br>REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE<br>OR IN PART FOR ANY PURPOSE OTHER THAT AS EXPRESSLY<br>AUTHORIZED BY SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING<br>MUST BE RETURNED PROMPTLY UPON REQUEST.<br>TITLE<br>QUICK REFERENCE GUICDE<br>SITE LAYOUT |
| BY CHK APPR DATE | SAFETY-KLEEN SYSTEMS, INC.<br>42 LONGWATER DRIVE, NORWELL, MA. 02061<br>PHONE: 781-792-5000<br>SCALE<br>1"=20'-0" JEK JZ OPR JZ JZ 9/20/22<br>SERVICE CENTER LOCATION SC-DWG NUMBER REV. NO.                                                                                                                                                                                                                                                                                                    |

7096-SP00-002

А

MEDLEY, FL.



#### PREPAREDNESS, PREVENTION, CONTINGENCY PLAN, AND EMERGENCY PROCEDURES FOR DAILY BUSINESS OPERATIONS

## **GENERAL INFORMATION**

#### Purpose

The preparedness, prevention, and contingency plan and emergency procedures are designed to comply with 40 CFR Part 264.30-56. In addition, the procedures in the plan ensure that Safety-Kleen reduces the possibility of emergency situations and, should they occur, respond in a manner to prevent or minimize hazards to human health or the environment from fire, explosion, or any unplanned sudden or non-sudden release of hazardous material constituents to the air, soil, surface water, or ground water at the facility.

The provisions of the plan are to be carried out immediately if there is a fire, explosion, or release of hazardous materials that could threaten human health or the environment. All responses must conform to the procedures contained in this plan.

#### General Description of Activities

The business activities conducted at the Medley Branch relate to the leasing and servicing of Safety-Kleen Parts Cleaning Equipment, including the provisions of a solvent leasing service for the customers. Clean solvents are distributed from, and the used solvents returned to, the Branch, where separate storage tanks are utilized for the storage of clean and used parts washer solvent. One 20,000-gallon fresh parts washer solvent storage tank currently is utilized at the facility. In addition, a 20,000-gallon tank is used to store hazardous waste parts washer solvent (RCRA-Permitted Hazardous Waste Tank (Used Solvent)), and one 15,000-gallon tank and one 20,000 gallon tank are used for storage of Used Oil. One 10,000 gallon tank is for oily water. Warehouse space is designated for the storage of containers of both clean and used immersion cleaner, parts washer solvent, paint waste, Fluid Recovery Services (FRS) wastes, and dry-cleaning wastes. Over-pack containers are used for the management of containers whose integrity has been compromised.

3

Parts washer solvents are transported in covered containers between the Branch and customers. Upon returning to the Branch, the used parts washer solvent is transferred from the containers into a wet dumpster (solvent return receptacle) at the Return/Fill Shelter. There is a screen at the bottom of the wet dumpster in which coarse solids in the parts washer solvents are retained. These solids are removed at the end of each day after all used parts washer solvent is dumped. Used parts washer solvent from the wet dumpster flows via 2-inch piping into the RCRA-Permitted Hazardous Waste Tank (Used Solvent). This piping runs east under the return/fill dock, turns north, and runs overhead to the tank farm building. The piping is connected by threaded connectors from the wet dumpsters to the end of the return/fill (inside secondary containment) and once leaving the return/fill it is connected by welded connectors until it reaches the permitted tank storage unit. Bulk hazardous waste parts washer solvent is picked up approximately every 20 days by a tanker truck from a Safety-Kleen TSDF, which at the same time delivers clean parts washer solvent. Solids/sludges removed from the wet dumpster are placed in a satellite accumulation container located next to the wet dumpster. When full, this container is stored as Branch generated waste in the container storage area for later shipment to a permitted Safety-Kleen or Clean Harbors TSDF for reclamation or disposal.

The immersion cleaner remains in a covered container at all times during transportation and storage. The solvent is not transferred to another container while being used by the customers or while in storage at the Branch. This waste will be stored in the permitted container storage or 10-day transfer area.

Dry cleaning wastes are picked up at commercial dry cleaning establishments in containers. Dry cleaning wastes handled by Safety-Kleen consist of spent filter cartridges, powder residue from diatomaceous or other powder filter systems, and still bottoms, all of which fall into the categories of either perchloroethylene-based waste or naphtha-based waste. The dry cleaning wastes are packaged on the customer's premises in containers. Dry cleaning wastes are located in the permitted container storage or 10-day transfer area.

Used antifreeze collected and managed by Safety-Kleen within Florida is done so with the intent of it being recycled. The trucks used to collect and transport waste ethylene glycol are the same trucks used for collection and transportation of used oil. At the customer's location, Safety-Kleen pumps used antifreeze and transports the material to the branch for off-loading into a dedicated tank for storage. The comingled material (used antifreeze/used oil) is sent to the SK East

4

Chicago re-refinery where the ethylene glycol is separated by distillation. The glycol is then sent to a recycler for processing into a pure product which is then sold on the open market. This procedure is in accordance with FDEP's *the Best Management Practices for Managing Used Antifreeze at Vehicle Repair Facilities*, dated May 22, 2012. The Florida Department of Environmental Protection (FDEP) has determined this waste stream can be handled as non-hazardous as long as it is destined for recycling. If used antifreeze collected by the Safety-Kleen Medley facility is sent to a facility other than the East Chicago re-refinery it will be managed as follows. The material will be segregated and off-loaded into a separate storage container/tote, then sampled and analyzed for glycol percentage. If the glycol percentage is acceptable it is sent to a recycler. If the glycol percentage is not acceptable a representative sample will be taken and sent for TCLP analysis to determine if it is a hazardous waste. It will be managed properly according to the TCLP analysis result. In addition, Safety-Kleen sells its' own private label antifreeze in 55-gallon containers. Customers will then place used antifreeze in these containers to be shipped back to the branch. This material is then shipped to SK distribution centers, and then shipped to a recycler.

Used antifreeze containers will be stored in the container storage area, or transfer area.

Safety-Kleen offers a used oil collection service commonly referred to as Safety-Kleen Oil Services (SKOS). Used oil is collected by straight tanker trucks and transported to the Medley branch for storage in the 15,000/20,000 gallon above ground storage tanks. The used oil is then typically transported to the SK Pompano Beach/Ocala facility where it is shipped via railcar to the Safety-Kleen East Chicago, IN re-refinery for processing. The branch is registered in Florida as a used oil transporter, and transfer facility.

Safety-Kleen also provides a paint waste reclamation service. Wastes containing various thinners and paints are collected in containers and are stored in the permitted container storage or 10-day transfer area.

The Fluid Recovery Service(FRS) is a program in which the facility manages containerized wastes as transfer wastes. These wastes are packaged in USDOT authorized packaging which are not opened until they reach a permitted Safety-Kleen/Clean Harbors TSDF. The FRS wastes are managed as transfer wastes. FRS hazardous wastes are managed as 10-day transfer wastes. While in storage at the branch, these wastes will be located in their respective transfer waste areas. The

FRS wastes may also undergo branch-to-branch or truck-to-truck transfer. This transfer will occur at the return/fill shelter inside secondary containment.

The waste products exhibit essentially the same biological, physical, and chemical properties as the fresh product. Used products are basically fresh products with impurities of dirt and metals. Safety Data Sheets (SDSs) for each hazardous material are available at the Branch and on the Safety-Kleen website.

The Branch is registered in Florida as a transporter and storage facility for mercury-containing lamps and devices destined for recycling. This registration includes a commitment to comply with the requirements of Florida Administrative Code (FAC) 62-737.400, including all training requirements. As a registered small quantity handler of universal waste lamps/mercury devices, the Branch can only store up to 2,000 kilograms of lamps or 100 kg of mercury-containing devices at any one time. Safety-Kleen provides customers with empty four-foot and eight-foot boxes which hold up to 39 lamps. Boxes containing lamps are picked up from customers and are handled at the Branch as non-hazardous transfer wastes. The boxes/lamps are stored at the Branch in a designated area within the transfer waste storage area and labeled according to FAC 62-737.400(5)(b). This storage area is partially isolated from other transfer wastes to avoid potential for accidental breakage. The boxes are periodically shipped to a permitted mercury recovery or reclamation facility. Prior to shipment out of the Branch, the boxes are placed on pallets and shrink-wrapped with plastic. Figures 2.1-1 and 2.1-2 show the basic site and floor plans and the locations of waste management facilities and facility storage. Part I D.3 provides information regarding permitted/transfer/site generated wastes handled at the facility.

Safety-Kleen handles all types of batteries. All applicable batteries, per 40 CFR Part 273.2 & 273.9, are managed in accordance with the Standards For Universal Waste Management found in 40 CFR Part 273. Batteries not meeting these standards may be managed as 10-day transfer hazardous waste.

Note: All waste containers are unloaded within 72 hrs. of arrival at the facility and all waste containers are shipped outbound within 72 hrs. of being loaded for shipment.

#### **INSPECTION PROCEDURES**

#### Inspection of Safety Equipment

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of emergency and spill control equipment to ensure proper operation, and to maintain compliance. Table 5.2 1 is an Inspection Schedule. Inspections of Safety/Security equipment are completed electronically (CO Safety Security Inspection), or on paper using this same form if the electronic system is not available. A copy of the inspection form is found at the end of this plan. The Branch Manager, or designee, is responsible for carrying out the inspection in accordance with the following procedure and schedule.

- A weekly inspection of fire extinguishers must be performed to ensure that the tag date has not expired and the units are properly charged and accessible.
- A weekly inspection of eyewash stands must be performed to assure accessibility, and proper operation of this equipment. Inventory of the first-aid kit must be checked on a weekly basis.
- A weekly check of the supply of spill control equipment (absorbent material) must be performed.
- A weekly check of the conditions and inventory of other emergency equipment will be made. This includes gloves, aprons, goggles, respirators, and other personal protective equipment.
- A weekly check of the condition and inventory of communication devices will be made. This includes telephones, intercom, and emergency alarms.

#### **Inspection of Security Equipment**

Security equipment inspections are completed weekly on the CO Safety Security Inspection form. Security features include: gates and locks –looking for any evidence of sticking, corrosion, or unusual activity. The facility perimeter fence will be checked weekly for deterioration, gaps, and broken wire ties. Facility signage will be inspected for clarity. The container storage area security alarm system will be checked for operational status.

#### Inspection of Waste Management Facilities

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation and maintain compliance. Table 5.2-1 provides an Inspection Schedule. The Branch Manager, or designee, is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule.

Daily inspections of aboveground tanks will include the following:

- Note volume in tank.
- Observe tank exterior for loose anchoring, wet spots, and leaks.
- Check the automatic high level alarm. In addition, check the gauge level for each of the tanks to confirm the proper functioning of the automatic alarm system and to determine unexpected deviations in tank measuring data, or a sudden drop in liquid level, which may indicate leakage.
- Inspect secondary containment walls and piping/piping supports from the return/fill to the tank farm.
- Inspect transfer pumps for leaking seals and overheated motors.
- Inspect the solvent dispensing hose, fittings, and valve for any leaks, damage, or wear that could cause a leak to develop.
- Inspect the valves for proper seal. Stem leaks from worn glands and warped valve bodies should be repaired. If the valve cannot be repaired, replace the unit.

Also, the tanks will be visually inspected and tested periodically. Daily inspection of the solvent return receptacles (wet dumpsters) will consist of an inspection for leaks and excess dumpster sludge/solid build-up.

Daily inspections of the container storage area include the following:

- Verify that total volume is within permitted limits.
- Physically examine the condition of containers to verify that leaks have not occurred since the last inspection.
- Verify that all container identification, dates, and hazardous waste labels are attached and current.
- Inspect container placement and stacking such as aisle space, height, and stability of stacks.
- Examine containment areas to detect signs of deterioration and failure of the containment system such as cracks, breakage, settlement, and spillage.

#### **Corrective** Action

Any discrepancies or deficiencies found during routine inspections will be recorded in the Corporate Work Ticket Workbench. At this time an evaluation of the seriousness of the problem will be conducted and a decision made if the situation requires immediate action or the problem can be handled as routine maintenance. If the problem poses a threat to human health or the environment, action will be taken immediately. The Branch Manager has the overall responsibility for resolving any discrepancies found during the routine inspection.

#### **EMERGENCY NOTIFICATION**

#### **Emergency** Coordinator

The Branch Manager or designee is the emergency coordinator. Page iii at the beginning of the plan includes the names, home addresses, and both office and home phone numbers of the primary emergency coordinator and alternate. At least one employee will be either present on the facility premises or on call with responsibility for coordinating all emergency response measures at all times. This primary emergency coordinator and alternate emergency coordinator are thoroughly familiar with all aspects of the facility's contingency plan, all operations and activities at the facility, the location and characteristics of materials handled, the location of all records within the facility, and the facility layout. In addition, these coordinators have the authority to commit the resources needed to carry out the contingency plan.

#### EMERGENCY RESPONSE AGENCIES AND TEAM MEMBERS

The agencies and response team members to be notified whenever an imminent or actual emergency occurs are presented on page iii, located at the beginning of this plan.

#### ACTIONS OF THE EMERGENCY COORDINATOR

Whenever there is an imminent or actual emergency situation, the emergency coordinator (or the designee when the emergency coordinator is on call) must immediately:

a. Notify all facility personnel present of the emergency. The relatively small size of this facility makes direct verbal communication the most expedient form of emergency

notification. The emergency coordinator may also elect to proceed to the front of the building and repeatedly sound a car horn with three (3) loud bursts to notify building occupants of an emergency. A head count will be performed by the emergency coordinator in the event of evacuation.

- b. Notify appropriate state or local agencies with designated response roles if their help is needed.
- c. Summon the primary emergency coordinator, if that person is absent.

Whenever a release, fire, or explosion occurs, the emergency coordinator must immediately identify the character, exact source, amount, and areal extent of any released materials. Because of the limited types of chemicals in storage, the identification processes can easily be performed visually.

# Procedure for Assessing Possible Hazard to the Environment and Human Health

- After identification of the character, source, amount, and extent of a release, fire, or explosion, the emergency coordinator must decide whether the situation can be contained or cleaned up by plant personnel and equipment.
- If a fire or explosion is determined uncontrollable by plant personnel or threatening neighboring establishments or population, assistance from a local emergency response agency shall be summoned immediately and an evacuation order issued.
- In case of a release outside of the containment area that is deemed immediately uncontainable or unrecoverable, Safety-Kleen's 24 hr. emergency response system (800) 468-1760) and/or local emergency response agency shall be called in.
- After termination of a fire or explosion or containment and preliminary cleanup of a spill, evaluate whether residues in the form of gas or liquid have become airborne, seeped into ground water, and/or flowed into surface water bodies.
- Expert assistance should be requested to determine whether the escaped materials are potentially harmful and whether the receiving medium ultimately will be a populated area, public water supply source, a private well, or an environmentally sensitive area.
- Additional steps shall then be taken to mitigate the potential impact on the environment and human health, in accordance with expert recommendations.

If the emergency coordinator determines that the facility has had a release, fire, or explosion or other emergency that could threaten human health, or the environment outside the facility, the coordinator must report those findings, as follows:

- If the assessment indicates that evacuation of local areas may be advisable, the coordinator must immediately notify appropriate authorities. The coordinator must be available to help appropriate officials decide whether local areas should be evacuated.
- The coordinator must immediately notify the State Warning Point at (800) 320-0519 (24 hours-7 days a week availability).
- The coordinator must immediately notify the Southeast District of the FDEP, (561) 681-6600 during regular business hours, and if a release equals or exceeds the Reportable Quantity (RQ) the National Response Center (800) 424-8802 must immediately (within 15 minutes) be contacted.

The report must include:

- (1) Name and telephone number of notifier;
- (2) Name and address of facility;
- (3) Time and type of incident (e.g., release, fire);
- (4) Name and quantity of material(s) involved, to the extent known;
- (5) The extent of injuries, if any; and
- (6) The possible hazards to human health, or the environment outside the facility.

The facility will comply with reporting requirements outlined within the permit conditions of the operating permit.

Immediate assistance in assessing and responding to an emergency is obtained by the emergency coordinator by calling the 24-hour Safety-Kleen emergency number ((800) 468-1760). The 24 hour emergency number is used by Safety-Kleen to respond to all reports of spills or chemical emergencies. All Safety-Kleen facilities in the state use this 24-hour emergency number. This allows Safety-Kleen to respond to any emergency with a maximum of effort, thereby reducing the threat to human health or the environment.

During an emergency, the emergency coordinator must take all reasonable measures necessary to ensure that fires, explosions, and releases do not occur, recur, or spread to other hazardous waste

at the facility. These measures must include, where applicable, stopping processes and operations, collecting and containing released waste, and removing or isolating containers. If the facility stops operations in response to a fire, explosion, or release, the emergency coordinator must monitor for leaks, pressure build-up, gas generation, or ruptures in valves, pipes, or other equipment, wherever this is appropriate. Immediately after an emergency, the emergency coordinator must provide for treating, storing, or disposing of recovered waste, contaminated soil or surface water, or any other material that results from a release, fire, or explosion at the facility.

The emergency coordinator must ensure that, in the affected area(s) of the facility:

- No waste that may be incompatible with the released material is treated or stored until cleanup procedures are completed; and
- All emergency equipment listed in the contingency plan is cleaned and fit for its intended use before operations are resumed.

The owner or operator must notify the appropriate state and local authorities that the facility is in compliance with the requirements of the preceding paragraph, before operations are resumed in the affected area(s) of the facility.

The owner or operator must note in the operating record the time, date, and details of any incident that requires implementing the contingency plan. Within 15 days after the incident, the owner must submit a written report on the incident to the Southeast District of the FDEP, at 3301 Gun Club Road, MSC 7210-1, West Palm Beach, FL 33406. The report must include:

- 1. Name, address, and telephone number of the owner or operator;
- 2. Name, address, and telephone number of the facility;
- 3. Date, time, and type of incident (e.g., fire, explosion);
- 4. Name and quantity of material(s) involved;
- 5. The extent of injuries, if any;
- 6. An assessment of actual or potential hazards to human health or the environment, where this is applicable; and
- 7. Estimated quantity and disposition of recovered material that resulted from the incident.

## POTENTIAL SPILL SOURCES

The following is a list of activities that have the potential for a spill equal to, or less than 55 gallons of waste:

1. Moving of containers.

Every time a container is moved, the possibility exists that it could tip over or be dropped. To minimize the possibility of spillage of solvent under those conditions, all container lids must be confirmed to be secure before movement.

- 2. Delivery truck container transfers.
  - a. Individual delivery containers hold from 5 to 55 gallons of waste, a quantity which can be contained by oil sorbent clay or pads, if accidentally spilled.
  - b. Each vehicle is equipped with a hoist and hand cart for ease of moving clean product containers off the truck and into the customer's facility and returning the waste containers to the truck.
  - c. Lids are secured on containers prior to movement to prevent a spill.
  - d. Each truck contains a complete spill kit, shovel, and a quantity of sorbent material to contain spills equal to, or less than 55-gallons.
  - e. The cargo must be secured in the route vehicle before transit.

## Spills Inside Buildings

In the event of a spill indoors, the doors and windows should be opened to improve the ventilation in the confined area. Following the instructions of the Safety Data Sheet (SDS), a worker would enter the area wearing appropriate protective equipment (PPE). Safety-Kleen spill response PPE requirements are: uniform (company issued), gloves (if chemical present use supported Neoprene as an outer glove), boots (steel toe with slip resistant soles), apron (if chemical present and SDS requirement). Dependent on the amount of the material spilled, clean-up will take place with absorbent material, or wet vacuum. Spills inside the building will be contained by the existing secondary containment structures, or by using available absorbent material and booms. Proper characterization, treatment, and disposal of the material and decontamination solution used to clean the affected area will be done on a case by case basis depending on the material released. All material will be disposed of per federal, state, and local

regulations. The cleanup is completed only when the workers have cleaned themselves and the emergency equipment with soap and water.

#### Spills on Concrete Pads

Concrete pads in loading and unloading areas are, in most cases, equipped with secondary containment. Under most spill conditions, product can be totally contained on the concrete surface and in the containment system. Upon containment, arrangements must be immediately undertaken to recover the material. Any soil that may be involved must be removed and handled in the same manner as the material spilled.

## Tank Spills or Leakage

Aboveground tanks within the Permitted Tank Storage Unit (Secondary Containment) are underlain by a concrete slab and surrounded by a concrete dike to contain any leaked, spilled or released material. The containment system has been sized in accordance with the applicable regulations, and the material will be totally contained under most leak, spill or release conditions. Should a leak, spill or release occur, arrangements must be immediately undertaken to recover the material. In the event of leak, spill, or release that involves a maintenance or integrity issue, tank repair or replacement will be initiated, whenever is deemed necessary. Any soil that may be involved must be removed and handled in the same manner as the material spilled.

40 CFR Part 264.196(d)(2) exempts notification/reports for leaks, spills, or releases equal to or less than one pound, and that are immediately contained and cleaned up.

## Spill Control Procedures

If a solid or hazardous waste, or hazardous material discharge occurs:

- Stop the discharge, if possible, by immediately transferring the liquid to a good container. If the discharge involves a tank, immediately close all valves to the tank.
- 2. Retain, contain, or slow the flow of the material, if possible, by diking with sorbent pad or dirt. Based on the seriousness of the incident, the emergency coordinator will select the level of personal protective equipment required to address the incident. Pump and mop up the liquid from the floor into a good container and return the container to storage for subsequent shipment to a Safety-Kleen/Clean Harbors recycle center for reclamation/disposal. The area and equipment that comes in contact with the spill must

be decontaminated with soap and water. All residues resulting from containment and decontamination will be collected for proper characterization.

- 3. If the material escapes the containment efforts, immediately call the 24-hour Safety-Kleen emergency number with response time less than two hours (page iii). Record the date, time, and name of person taking the message. The State Watch Office ((800) 320 -0519) is to be contacted as soon as possible, but no later than within one working day of discovery of the release. If a release equals or exceeds the Reportable Quantity (RQ) the National Response Center ((800) 424-8802) is to be contacted within 15 minutes.
- 4. Immediately recover spilled solvent to reduce property and environmental damage using the emergency and safety equipment stored onsite for such situations (Figure 5.6-1 and Table 5.6-1) or call in emergency response contractors (page iii). Start recovery operations immediately. After recovery of spilled solvent, wash all contaminated impervious surfaces and equipment with soap and water. The residue of spill- or firecontaminated soils and waste waters must be removed and disposed of at a Safety-Kleen/Clean Harbors recycle center. In addition, the recovered solvent will be sent to a Safety-Kleen/Clean Harbors recycle center for reclamation.
- 5. The person reporting a spill should be prepared to give their name, position, company name, address, and telephone number. The person reporting also should give the nature of the material spilled (e.g., immersion cleaner, etc.) and, if possible, some estimate of the amount, and whether it is near a stream or could enter a stream by flowing through ditches or storm sewers. If assistance is needed, the emergency coordinator should describe the containment status and specify any additional equipment needed. When reporting a spill, record the date and time of the call and the name of the person answering the call at the above number. Spill prevention plans are reviewed with facility personnel every year, and records of the training are kept by the facility.

#### Spill/Release Response to Solid (Physical State) Waste(s)

Response to a non-liquid waste (solid physical state) will require the use of a shovel to place the material into a new container. If the material is powder-like/particulate matter care should be taken so as not to create dust or cause the material to become airborne. After the bulk of the material is recovered a damp absorbent pad may be used to clean up residual material that cannot be captured with the shovel.

Information on every spill will be recorded through an internal database. A notification of each spill will be sent to the Corporate Environmental Compliance and Health and Safety Departments.

Reports of emergency incidents will be transmitted to the Secretary of the FDEP or designee within 15 days of occurrence. This report shall include:

- 1. Name, address, and telephone number of the owner of operator;
- 2. Name, address, and telephone number of the facility;
- 3. Date, time, and type of incident (e.g., fire, explosion);
- 4. Name and quantity of materials involved;
- 5. The extent of injuries, if any;
- 6. An assessment of actual or potential hazards to human health or the environment, where this is applicable; and
- 7. Estimated quantity and disposition of recovered material that resulted from the incident.

# The facility will complete all permit condition spill reporting as required, and follow the requirements of Chapter 62-150, F.A.C. Hazardous Substance Release Notification.

#### **Containment Systems**

#### Containerized Wastes

Hazardous waste container storage takes place inside the warehouse building and is depicted on Figure 8.1-1. The containment system is sealed with an impermeable coating and is free of cracks. Containers are stored on pallets whenever possible, and double stacked. The warehouse has concrete floors, and collection trenches to form spill containment systems within the area. The container storage area is approximately 49¼' x 80' ft. area with a total containment capacity of 2,996-gallons. The maximum storage capacity is 29,400-gallons with 6,912-gallons of hazardous waste container storage. Wastes stored in this area may include used oil filters, paint wastes, branch generated debris, dry cleaning waste, spent immersion cleaner, and any overflow transfer waste if necessary. The types and numbers of containers may vary, however, the storage capacities will not be exceeded.

In the container storage area, containers are handled with a fork-lift and/or a hand-truck free of sharp points and stacked by hand. Every time a container is moved, the possibility exists that it

will be tipped over, dropped, or punctured. To minimize the possibility of spillage, container lids are secured and containers are kept in an upright position. A small portable electric pump is available to quickly transfer the liquid from any leaking container into a safe container. Each route truck is equipped with a lift gate or an electric hoist. The appropriate device is used in the loading/unloading operation to minimize chances for spillage and/or employee injury. Containerized wastes at the Medley facility are loaded/unloaded in the vicinity of the contained concrete dock on the southeast side of the building (Figure 2.1-2) and return/fill dock. Because these areas are fully enclosed, spills originating in these areas should not come in to contact with stormwater.

#### FRS Wastes/10-Day Transfer Wastes

Transfer wastes will be located in the areas depicted in Figure 8.1-1. The containment system in the warehouse is coated, free of cracks, and is sufficiently impervious to prevent seepage into or through the concrete. FRS hazardous wastes are 10-day transfer only. They are not required to have containment, though they are stored in areas with containment. These areas are fully enclosed within the building. Spills in these areas should not come into contact with stormwater.

All containers are sealed during movement and are located within diked, concrete floored areas to contain any potential spill. Spills with quantities equal to, or less than 55-gallons at any time can be cleaned up immediately through the use of hand-held electric pumps, mops, wet/dry vacuums, or sorbent materials, should a spill occur. Any spilled waste is contained and packaged for offsite recycling/reclamation. All containerized waste movement is performed manually, by a pallet jack, or propane fueled forklift truck. Therefore, power outages are not expected to threaten employee safety.

#### **Return/Fill Shelter**

The return/fill shelter (Figure 9.3-1) is part of the enclosed building and sits between the Office Building and the Warehouse Container Storage Building. Sloping of the containment area is visually non-detectable. However, there is a slight slope toward the sumps (blind) built into the concrete floor surface in the center of the area. The entire width of the return/fill shelter has a 20foot wide elevated steel grate, which is positioned approximately 33 inches above the concrete floor. There is drive over curbing at the north and south sides so that trucks can be positioned within containment during loading/unloading. The approximate containment capacity of the return/fill shelter is 3,693 gallons, as shown in the calculations in Appendix C, found at the end of the application. Two wet dumpsters are positioned on the steel grated area that each hold approximately 504-gallons of used parts washer solvent (though they are not intended for storage). Any spill that may occur on the concrete floor is directed by gravity into the sump. Any residual material remaining can be cleaned up with mops, wet/dry vacuums, or sorbent material, should a spill occur. Spilled used or clean parts washer solvent will be collected and placed into the wet dumpsters.

Doors in this area include four overhead roll-up doors (two to the north side and two to the south side) and two personnel doorways (one at the north side and one at the south side of the return/fill shelter and one next to the roll-up door leading from the return/fill shelter to the warehouse for employees). The floors of the office building and warehouse building are flush with the steel grated dock of the return/fill shelter (which is approximately 33 inches above the floor of the shelter). Therefore, spills originating on the steel grated area will be contained by the concrete floor and drive over curbing in the return/fill bays. Based on the capacity of the return/fill shelter is covered by a fixed roof and areas directly outside the bays are asphalt covered, thus preventing direct contact with soils and ground water.

#### Tank Area

The permitted tank storage unit (secondary containment) (Figure 9.2-1) has a capacity for six above-ground storage tanks but currently houses five above-ground storage tanks (one-RCRA-permitted Hazardous Waste Tank (Used Solvent), one clean 150 premium solvent tank, two Used Oil tanks and one oily water tank) under a metal canopy. This unit is provided with 20,784 gallons of secondary containment, which is in excess of the single largest tank (20,000 gallons). The foundation slab is essentially flat but has a slight slope directed to a sump located in the center of the south side of the tank farm. Tank loading/unloading connections are located within the containment system on the south side of the tank farm. A drip pan is present under these connections. Any tank leaks or unloading spills will be controlled by the containment system, or the drip pan. This material may be readily removed by pumping from the containment system, sump, or drip pan by wet vacuum or sorbent material. The permitted tank storage unit has a metal canopy to prevent rainwater from entering the containment area. Should rain water enter the

18

containment area it will be verified visually that no iridescent sheen exists before discharging to the ground outside. Only the Branch Manager or someone operating under his/her direct orders may discharge to the ground surface. If a spill has occurred from the used oil tanks, this material will be collected and pumped back into a used oil tank if the volume of the spill warrants. If it is a minor spill, it may just be cleaned up with absorbent material and placed into a branch generated container for disposal. A spill originated from the RCRA-Permitted Hazardous Waste Tank (Used Solvent) will be collected and pumped back into the tank if the volume warrants. Minor spills of this material may be cleaned up with absorbent material and placed into a branch generated container for disposal. If any rainwater exhibits an iridescent sheen indicating a mixture with solvent, then the rainwater will be pumped in to the used parts washer solvent tank via the wet dumpster at the return/fill shelter. Any spills which occur on the loading/unloading area will be cleaned up and the area decontaminated. Decontamination methods are discussed later in this Plan. This decontamination will result in de minimis residue.

Employee training emphasizes the importance of inspection, maintenance, personal safety, and reporting of conditions with pollution incident potential. This training, coupled with the Safety-Kleen's containment system and immediate cleanup of any spills, eliminates or greatly minimizes the chance of contamination of ground water and/or surface water in the vicinity of the site. In addition, surface run-off at the site does not come in contact with stored products in the waste management area.

#### **DECONTAMINATION**

Once the spilled material has been cleaned up, the spill area and equipment used during the spill clean-up must be decontaminated and/or disposed, as described below.

#### Concrete Surfaces/Containment Area

- Concrete surfaces/containment areas will be cleaned with a detergent solution and then rinsed with hot water. The rinsate will be collected via wet vacuums and placed in containers. Visual inspection will be used to determine the success of the decontamination procedure.
  - The intent of the surface decontamination is to prevent current or future releases of materials to the environment. Vigorous cleaning with detergent is sufficient to prevent

releases to the environment during normal operations. Potential for hazards from residual materials to future occupants of the facility are addressed in the closure plans for the facility and the decontamination procedures incorporated therein.

#### Equipment

The equipment used to clean the area includes mops, pails, scrub brushes, and a wet/dry vacuum. Equipment which is considered reusable (i.e., pails, wet/dry vacuum, hoses) will be washed with detergent, and wash water and rinsate will be collected for proper disposal. All non-reusable equipment and/or equipment which is not capable of being decontaminated will be containerized and disposed of as hazardous waste. Equipment used in a response will be deemed fit for use after being used in any response.

#### Wash Water and Rinsate

If the rinsate or other wastes generated in the clean-up process is determined to be hazardous, it will be properly disposed of as a hazardous waste; otherwise, the material will be disposed of as an industrial waste. It should be noted that wash water and rinsate will not be allowed to drain to soil or surface waters.

#### EMERGENCY RESPONSE EQUIPMENT AND COMMUNICATION

Due to the small size of the facility, routine communication will be accomplished by voice communication. Emergency alarms are available at the return/fill shelter, permitted tank storage unit and the warehouse– these alarms can be activated manually and sound off in the office to indicate an emergency situation. High level alarms are available at the permitted tank storage unit. Telephones are used in case of a spill or fire emergency to summon assistance. Emergency numbers are posted by phones throughout the facility. Included with these phone numbers is the 24-hour Safety-Kleen spill response number. Figure 5.6-1 provides the locations of fire extinguishers, first-aid kits, emergency eyewashes, alarms, and spill equipment. Other emergency response equipment (Table 5.6-1) is kept in a small storage area inside the warehouse near the return/fill dock. This equipment includes mops and buckets, soap, shovels, and spill sorbent pads. Rubber gloves, boots, pumps, and a wet/dry vacuum cleaner are stored in an emergency supply area near the container storage area. Descriptions and uses of the equipment

are provided in Table 5.8-1. Adequate aisle space is provided in the container storage area for movement in an emergency situation. The City of Medley supplies water for domestic use, decontamination, and fire-fighting. The water pressure supplied by the City of Medley was inadequate for fire-fighting purposes, so a booster pump has been installed at the facility. The fire protection system was installed and certified by the installation contractor in accordance with applicable fire codes.

Pails, hoses, and detergents are the primary equipment that will be used for decontamination. The equipment available at the facility for emergency situations is adequate for most cases. Large or serious emergency situations will be remediated by local emergency response teams or special emergency response or cleanup contractors. The facility is constructed and operates in accordance with National Fire Protection Association (NFPA) standards and applicable local ordinances. Applicable health and safety standards are also observed at the facility.

All facility communications or alarm systems, fire protection equipment, spill control equipment, and decontamination equipment will be tested and maintained as necessary to assure its proper operation in time of emergency.

#### FIRE CONTROL PROCEDURES

In the event of a fire at the facility, the following activities will be executed.

Call the Fire Department (page iii). [Note: Center aisles are available in container storage areas to permit fire department personnel to pass with fire-fighting equipment.]

Act quickly with the fire extinguisher to put out the fire before it spreads.

Call the Police Department (page iii) to maintain traffic and on-lookers, and local hospital (page iii) to notify the type and extent of injuries, if any.

#### Ignitable Wastes

All wastes and products are kept away from ignition sources—Personnel must confine smoking and open flames to remote areas, separate from any solvent (e.g., outside front of facility). The parts washer solvent and paint waste handling areas are separated from the office area to minimize the potential for a fire to spread or injury to personnel to occur.

The permitted tank storage unit is more than 20 feet from the property line as required in 40 CFR Part 264.198(b). Likewise, the flammable storage area is 50 feet or more from the property line per 40 CFR Part 264.176. Both of these distances meet the NFPA code for storage of ignitable materials.

Ignitable wastes are handled so that they do not:

- Become subject to extreme heat or pressure, fire or explosion, or a violent reaction--The parts washer solvents and paint wastes are stored in a tank or in containers, none of which are near sources of extreme heat, fire, potential explosion sources or subject to violent reactions. The tanks are vented, and the containers kept at room temperature to minimize the potential for pressure build-up. The tanks are painted white to reflect sunlight and are vented to prevent pressure build-up.
- 2. Produce uncontrolled toxic mists, fumes, dusts, or gases in quantities sufficient to threaten human health--The vapor pressure of petroleum based parts washer solvent is low (2 mm-Hg) and it and the paint waste may react with strong oxidizers and reactive metals only. Toxic mists, fumes, and dusts do not form in quantities sufficient to threaten human health since strong oxidizers are not handled at this facility and the solvent vaporization is minimal under normal working conditions.

[Note: Dry-cleaning wastes are initially not flammable but may produce toxic gases and hydrochloric acid at elevated temperatures (about 1,200°F).]

- Produce uncontrolled fires or gases in quantities sufficient to pose a risk of fire or explosion--See "1" above and "4" below.
- 4. Damage the structural integrity of the Safety-Kleen facility--The parts washer solvent and paint wastes do not cause deterioration of the tank, drums, or other structural components of the facility.

## Incompatible Wastes

Incompatible wastes are segregated in an appropriate manner in accordance with industry standards. All waste or products are kept away from ignition sources. Employees must confine smoking or open flames to designated safe areas (ONLY out in front of the facility).

Materials are handled so they do not:

- a. Generate extreme heat or pressure, fire or explosion, or violent reaction.
- b. Produce uncontrolled toxic mists, fumes, dusts, or gases in sufficient quantities to threaten human health.
- c. Produce uncontrolled fires or gases in sufficient quantities to pose a risk of fire or explosion.
- d. Damage the structural integrity of the Safety-Kleen facility.

Adequate aisle space, at least 2 ft., is maintained to allow unobstructed movement of personnel, fire protection equipment, and decontamination equipment to any area of the facility operation in an emergency.

## External Emergency Factors

The design of the facility is such that a harmful spill is highly unlikely to occur from most external factors. The storage tanks are inaccessible to non-Safety-Kleen personnel. Also, the container storage areas are in buildings which are inaccessible to unauthorized personnel.

- 1. Vandalism Only extreme vandalism would result in a solvent spill or fire. Responses to spills and fires are described in a previous section of this Plan.
- 2. Employee Strikes A strike would not result in a solvent spill or fire.
- 3. Power Failure A power failure would not result in a spill or fire. Should a power failure occur, all activities requiring electricity will cease.
- 4. Flooding The waste management facility elevation is above the projected 100-year flood plain; therefore, a 100-year flood will not affect the facility.

- 5. Storms or Cold Weather The solvent return/fill shelter, tank storage, and the container storage areas are roofed to eliminate the possibility of rain entering the waste management areas. Neither snow, cold weather, nor stormwater is expected to affect the facility.
- 6. Hurricanes Safety-Kleen will adhere to the following procedures in the event of an approaching hurricane:

# Hurricane Watch

- Compile a list of employees with telephone numbers. Give each a call-in number for the branch (Branch Manager cell phone or branch number) in the event operations are interrupted.
- Prepare battery-operated radio (if the facility has one) and other equipment in the case of power outage.
- Complete cleanup of facility property all empty drums, containers, trash containers, chairs, spill kits, etc. should be brought inside the facility structure.
- Facility services should be restricted to local routes (no more than 30-45 minutes from the facility) in case weather conditions deteriorate.
- Ensure any areas which may be exposed to rainwater are clean and secure filling nozzles.
- Route trucks should be re-fueled prior to the storm, emptied of all wastes and product, secure lift gates and side compartments.
- Ensure all bulk collection trucks have off-loaded into the facility storage tank or Bulk Intermodal Distribution Services (BIDS) terminal.
- Move trucks inside building as possible and park the remaining trucks as close to the building as possible (preferably at the bay doors).
- Secure computers, monitors, etc. and wrap in plastic with tape.
- If possible schedule solvent tanker in a manner, which would allow the maximum volume of liquid to remain in the storage tanks as the structural integrity of a tank increases with content volume. Cam-lock all ends of hose fittings and turn off valves at the storage tanks.
- After all preparation has concluded, all employees should be sent home and the facility secured. Turn off main breaker.

#### Hurricane Warning

- All employees are excused from work if their county of residence is put under a hurricane warning. However, the branch manager or other key personnel may be available to perform some last minute activities if weather permits.
- Notification, via incident alert system or telephone, that a hurricane warning has been posted.
- Walk-around of facility to ensure all preparation work conducted under the hurricane watch has been completed.
- Completion of any remaining items that were not finished.

#### **Following Hurricane**

- Depending on the intensity of the storm, the following actions should be carried out as soon as conditions permit.
- Employees should phone-in, following local government employee guidelines, for returning to work.
- Branch manager and/or the emergency coordinator should be the first people to enter the facility. Perform a complete walk-around of the facility checking for security of premises, waste management areas, determine if there are any safety issues that pose risk for employees, inspect for any damage, looting, or theft and generate a list of items to report.

#### EVACUATION PLAN

In an uncontrolled emergency, all persons are to be evacuated from the area by means of a verbal cry, use of the public address system, or by sounding a car horn with 3 long bursts and are to assemble across the street from the entrance drive to the facility evacuation routes and the gathering point are noted on Figure 5.1-3 in this plan. A head count will be performed by the emergency coordinator at the gathering point to ensure all personnel, and any contractors or visitors are accounted for.

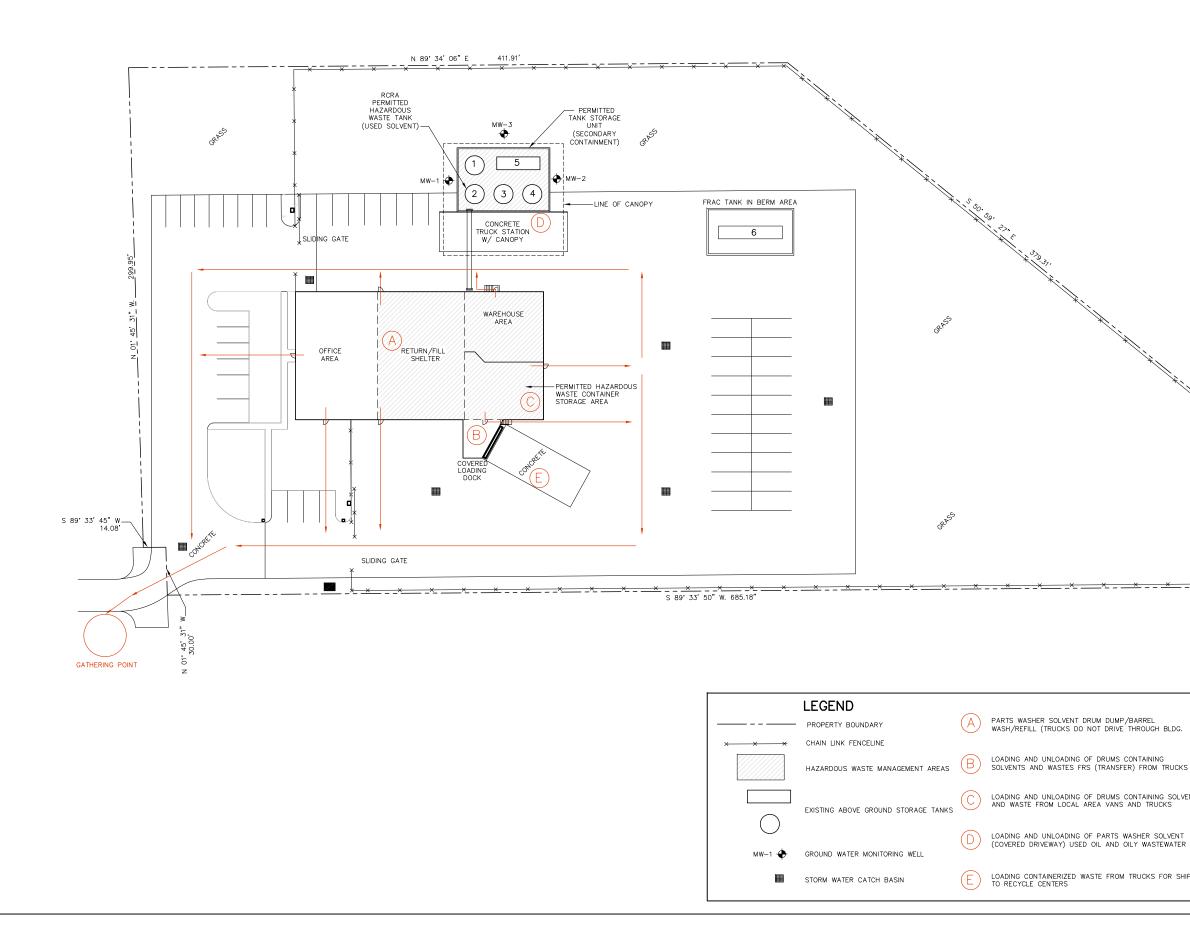
The Fire Department must be notified at the time of evacuation either from a safe onsite building or neighboring facilities. Clearly marked exits exist in warehouse and office area.

# AVAILABILITY AND REVISION OF THE PREPAREDNESS, PREVENTION, AND CONTINGENCY PLAN

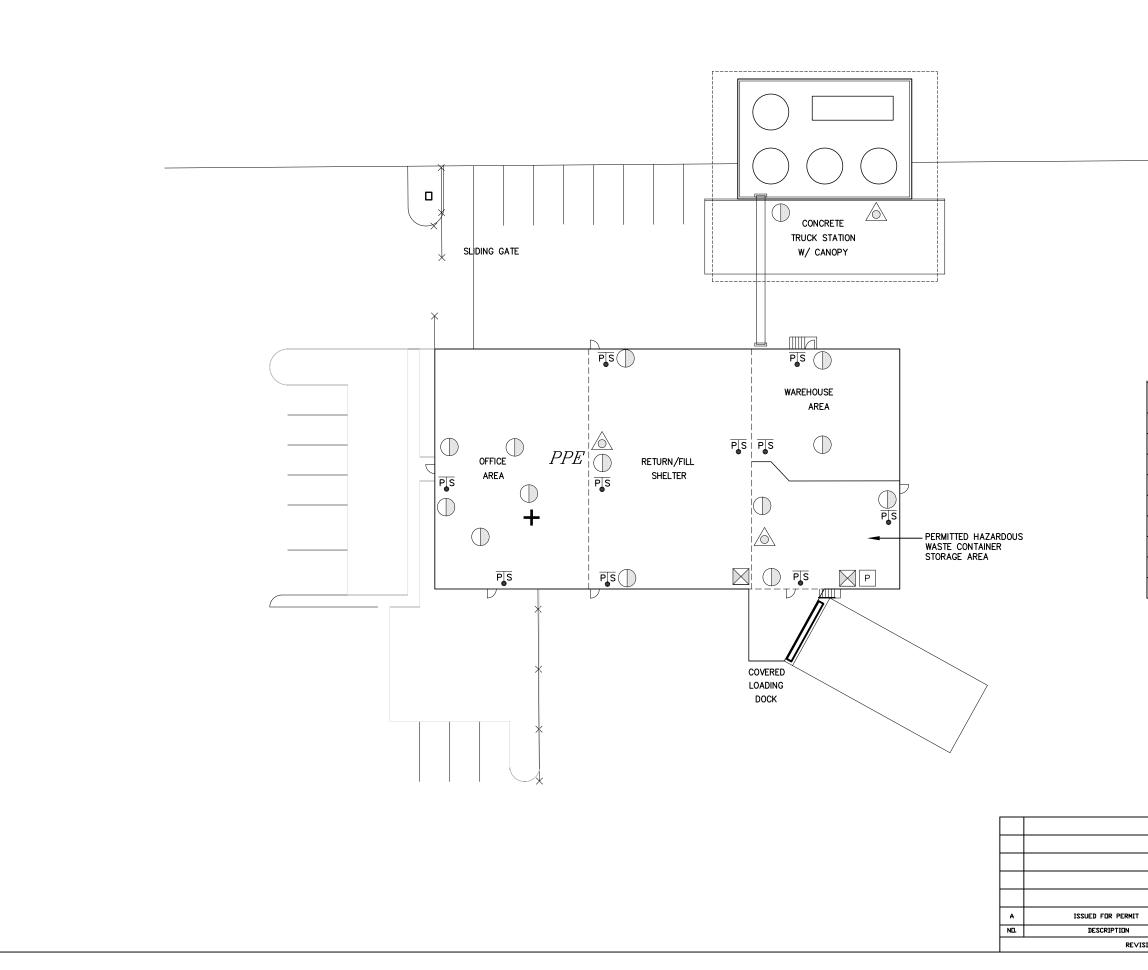
This Plan and all revisions to the Plan are kept at the facility and regularly updated throughout the operating life of the facility. Copies of this document are provided to local authorities and organizations listed under the Preparedness and Prevention Plan, which may be called upon to provide emergency services. This Plan and all revisions to the Plan are made readily available to employees working at the facility.

This Plan is reviewed and updated, if necessary, whenever:

- 1. The facility permit is modified to allow new process wastes to be stored or treated, or applicable regulations are revised;
- 2. The list or location of emergency equipment changes;
- 3. The facility changes in its design, construction, operation, maintenance, or other circumstances in a way that:
  - a. Materially increase the potential for fires, explosions, or releases of hazardous waste or hazardous waste constituents, or
  - b. Changes in response necessary in an emergency.
- 4. The names, addresses, or phone numbers of emergency coordinators change;
- 5. The employee assigned to each emergency task changes, or
- 6. The plan fails when implemented in an emergency.


#### **ARRANGEMENTS WITH LOCAL AUTHORITIES**

Arrangements have been made to familiarize the Police Department, Fire Department, and local emergency response teams with the layout of the facility, properties of hazardous materials handled (Safety Data Sheets) at the facility and associated hazards, places where facility personnel would normally be working, entrances to and roads inside the facility, and possible evacuation routes. The local fire department also conducts periodic fire inspections to ensure the Branch is in compliance, and this also gives the Department an opportunity to familiarize themselves with the layout of the facility in person.


Arrangements have been made to familiarize the local hospital with the properties of hazardous waste handled at the facility and the types of injuries or illnesses which would result from fires, explosions, or releases at the facility.

Copies of this plan are submitted to the local authorities above via certified mail. In addition, Safety-Kleen attempts to obtain e-mail addresses so that electronic copies may be delivered. These local authorities receive paper/electronic copies of any changes/revisions to this plan when there are made, including changes to facility emergency contacts. If no response is received from these local authorities, Safety-Kleen will follow up by contacting the specific authority by telephone.

Appendix A of this Plan (located at the end of this section) includes copies of example distribution letters for transmittal. Copies of updated transmittal letters are kept on file at the facility.



|            | N                                                                                                                                                                                                  |                                          |                                         |                                |                |        |                      |               |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------|----------------|--------|----------------------|---------------|
|            | 0'                                                                                                                                                                                                 | 15'<br>30'                               | 50'                                     | 75'                            |                |        | 12                   | 5'            |
|            | 5                                                                                                                                                                                                  | 30                                       |                                         | 75                             |                |        |                      |               |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    | (                                        | GENER                                   | AL N                           | IOTE           | S      |                      |               |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    |                                          | TANK                                    | LEG                            | END            | )      |                      |               |
|            | TANK<br>NO.                                                                                                                                                                                        | TANK<br>VOLUME                           | TANK<br>CONTENTS                        |                                | F              | REMARK | S                    |               |
|            | 1                                                                                                                                                                                                  | 20,000 USG                               | FRESH<br>SOLVENT                        |                                |                |        |                      |               |
|            | 2                                                                                                                                                                                                  | 20,000 USG                               | USED<br>SOLVENT                         |                                |                |        |                      |               |
| *          | 3                                                                                                                                                                                                  | 20,000 USG                               | USED<br>OIL                             |                                |                |        |                      |               |
| i k        | 4                                                                                                                                                                                                  | 15,000 USG                               | USED<br>OIL                             |                                |                |        |                      |               |
| 88.86'     | 5                                                                                                                                                                                                  | 10,000 USG                               | OILY WATER                              | ۲                              |                |        |                      |               |
| × <br>  ×  | 6                                                                                                                                                                                                  | 18,000 USG                               | OILY WATER                              | ۲                              |                |        |                      |               |
| 5, 31<br>1 |                                                                                                                                                                                                    |                                          |                                         | 15101                          |                |        |                      |               |
| S 01. 4    | NO.                                                                                                                                                                                                |                                          |                                         | 13101                          | NJ<br>BY       | СНК    | APPR                 | DATE          |
| ×**/ ``    | A                                                                                                                                                                                                  | ISSUE                                    | ED FOR PERMI                            | T                              | JEK            | JZ     | JZ                   | 092022        |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    |                                          |                                         |                                |                |        |                      |               |
|            |                                                                                                                                                                                                    | PROP                                     | RIETAF                                  | RY S                           | TAT            | EME    | I<br>INT             | <b>I</b>      |
|            | COR                                                                                                                                                                                                | DRAWING IS<br>P. AND IS PR<br>DRAWING AN | THE EXCLUS                              | IVE PROF                       | PERTY I        | OF SAF | ETY-k<br>DRMAT       | 10N.          |
|            | NOT<br>DISC<br>PUR                                                                                                                                                                                 | BE DUPLICAT<br>LOSED OR AF<br>POSE OTHER | ED, USED, D<br>PROPRIATED<br>THAN AS EX | IVULGED,<br>IN WHOU<br>PRESSLY | REPRO          | DUCED  | , COP<br>T FOR<br>BY | IED,<br>ANY   |
| (S         | PRO<br>TITLE                                                                                                                                                                                       | ETY-KLEEN CO<br>MPTLY UPON               | FIGUE                                   |                                |                |        | UNINEL               | ,             |
| VENTS      |                                                                                                                                                                                                    | EV                                       | ACUAT                                   |                                |                |        | 5                    |               |
| T<br>R     | Ģ                                                                                                                                                                                                  | 42 LONGW                                 | TY-KL                                   | EEN                            | SYS<br>ma. 020 | TEM    | [S,                  | INC.          |
| HIPMENT    | PHONE:         781-792-5000           SCALE         BY         CHKD         APPROVED         OPERATIONS         DATE           1"=30'         JEK         JZ         JZ         JZ         9/20/22 |                                          |                                         |                                |                |        |                      |               |
|            | SERVI                                                                                                                                                                                              | MEDLEY,                                  |                                         | sc-dwg i<br>7096               | NUMBER         | 00-00  |                      | REV. NO.<br>A |



|            | LEGEND                                                     |  |  |  |  |
|------------|------------------------------------------------------------|--|--|--|--|
| $\bigcirc$ | DRY CHEMICAL FIRE EXTINGUISHER - HAND HELD TYPE (10 # ABC) |  |  |  |  |
| +          | FIRST AID KIT                                              |  |  |  |  |
| $\bigcirc$ | EYEWASH/SHOWER                                             |  |  |  |  |
| EE         | EMERGENCY EQUIPMENT AREA                                   |  |  |  |  |
| PS         | PULL STATION (ALARM)                                       |  |  |  |  |
| $\square$  | FIRE HOSE                                                  |  |  |  |  |
| Р          | FIRE PUMP                                                  |  |  |  |  |
| PPE        | PERSONAL PROTECTIVE EQUIPMENT                              |  |  |  |  |
|            |                                                            |  |  |  |  |

|                  | PROPRIETARY STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                |                 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------|
|                  | THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION.<br>THIS DRAWING AND THE INFORMATION CONTIANED THEREIN MUST NOT<br>BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED, DISCLOSED OR<br>APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAT<br>AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN SYSTEMS, INC. THIS<br>DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST. |                 |                |                 |
|                  | FIGU                                                                                                                                                                                                                                                                                                                                                                                                                                       | RE 5.6          | -1             |                 |
|                  | LOCATIONS OF                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                |                 |
|                  | EMERGENC                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y EQU           | IPMENT         |                 |
|                  | SAFETY-KL<br>42 LONGWATER DRIVE,<br>PHONE: 781-792-5000                                                                                                                                                                                                                                                                                                                                                                                    | NORWELL, MA. O  |                | INC.            |
|                  | SCALE BY CHKD<br>1/16" = 1'-0" JEK JZ                                                                                                                                                                                                                                                                                                                                                                                                      | P.E. APPR<br>JZ | DP. APPR<br>JZ | DATE<br>9/20/22 |
| BY CHK APPR DATE | SERVICE CENTER LOCATION STD-DWG. NUMBER REV                                                                                                                                                                                                                                                                                                                                                                                                |                 |                | REV ND.         |
| SIENS            | MEDLEY, FL.                                                                                                                                                                                                                                                                                                                                                                                                                                | 7096-SP         | 200-024        | A               |

| <b>TABLE 5.2-1</b> |  |
|--------------------|--|
|--------------------|--|

# **INSPECTION SCHEDULE**

| Area/Equipment     | Specific Item       | Types of Problems                    | Frequency of |
|--------------------|---------------------|--------------------------------------|--------------|
|                    |                     |                                      | Inspection   |
| Safety Equipment   | Fire Extinguishers  | Overdue inspection                   | Weekly       |
|                    |                     | Inadequate charge                    |              |
|                    |                     | Inaccessible                         |              |
|                    | Eyewash             | Disconnected/malfunctioning          | Weekly       |
|                    |                     | valves                               |              |
|                    |                     | Pressure                             |              |
|                    |                     | Inaccessible                         |              |
|                    | First-Aid Kit       | Inadequate inventory                 | Weekly       |
|                    | Spill Cleanup Equip | Inadequate supply                    | Weekly       |
|                    | PPE                 | Inadequate supply                    | Weekly       |
|                    | Communication       | Equipment failures                   | Weekly       |
| ~ . ~ .            | Devices             |                                      |              |
| Security Equipment | Gates and Locks     | Sticking, corrosion, lack of         | Weekly       |
|                    |                     | warning signs                        | ····         |
| ~ ~ 1              | Fence               | Broken ties, corrosion, holes        | Weekly       |
| Storage Tanks      | Volume in Tank      | Never more than 95% full             | Daily        |
|                    | Tank Exterior       | Rusty, loose anchoring,              | Daily        |
|                    |                     | grounding, wet spots, leaks,         |              |
|                    | TT' 1 T 1 4 1       | discoloration                        |              |
|                    | High Level Alarms   | Malfunctioning siren/light           | Daily        |
|                    | Volume Gauges       | Disconnected/ sticking, condensation | Daily        |
| Secondary          | Bottom and Walls    | Cracks, debris, ponding, wet         | Daily        |
| Containment        | Dottoin and wans    | spots, stains, deterioration,        | Dally        |
| Contaminent        |                     | displacement, leaks                  |              |
|                    | Rigid Piping and    | Distortion, corrosion, paint         | Daily        |
|                    | Supports            | failures, leaks                      | Dully        |
| Transfer Pumps and | Pump Seals          | Leaks                                | Daily        |
| Hoses              | Motors              | Overheating                          | Daily        |
|                    | Fittings            | Leaks                                | Daily        |
|                    | Valves              | Leaks, sticking                      | Daily        |
|                    | Hose Connections    | Cracks, loose, leaks                 | Daily        |
|                    | and Fittings        | , , ,                                | 5            |
|                    | Hose Body           | Crushed, cracked, thin spots,        | Daily        |
|                    |                     | leaks                                | 5            |

| Area/Equipment           | Specific Item                     | Types of Problems                                                                                     | Frequency of |
|--------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|--------------|
|                          |                                   |                                                                                                       | Inspection   |
| Return/Fill<br>Shelter   | Wet Dumpster                      | Excess sediment build-up,<br>leaks, rust, split seams,<br>distortion, deterioration,<br>excess debris | Daily        |
| Container Storage        | Total Volume in Storage           | Exceeds permitted limit                                                                               | Daily        |
| Area                     | Condition of Drums                | Missing or loose lids, labels<br>missing, incomplete or<br>incorrect, rust, leaks, distortion         | Daily        |
|                          | Stacking/Placement/Aisle<br>Space | Containers not on pallets,<br>unstable stacks, inadequate<br>aisle space                              | Daily        |
| Secondary<br>Containment | Curbing, Floor and Sump           | Ponding/wet spots,<br>deterioration, displacement,<br>leaks, other                                    | Daily        |

# **TABLE 5.2-1**

# **INSPECTION SCHEDULE**

# **TABLE 5.6-1**

# EMERGENCY RESPONSE EQUIPMENT

| Description              | Type/Capacity             | Location               | Quantity   |
|--------------------------|---------------------------|------------------------|------------|
| Fire Extinguisher        | ABC (10 lb)               | Warehouse              | 4          |
|                          |                           | Return/Fill Area       | 4          |
|                          |                           | Office Area            | 5          |
|                          |                           | Tank Storage Area      | 1          |
| Eyewash                  | Fountain                  | Warehouse              | 1          |
|                          |                           | Return/Fill Area       | 1          |
|                          |                           | Drum Return/Fill Area  | 1          |
| First-Aid                | OSHA Compliant            | Office Area            | 1          |
| Telephones               | Standard                  | Managers Office        | 1          |
| Telephones               | Standard                  | Secretary's Desk       | 1          |
| Telephones               | Standard                  | Warehouse              | 1          |
| Intercom                 | Explosion Proof           | All Buildings          | N/A        |
| Gloves                   | Rubber                    | PPE Cabinet            | Min. 3     |
| Boots (Optional)         | Rubber                    | Emergency Equip Area   | Min. 3     |
| Protective Clothing      | Apron                     | PPE Cabinet            | Min. 3     |
| Eye Protection           | Goggles/Safety<br>Glasses | PPE Cabinet            | Min. 3     |
| Sorbent Material         | Oil Absorbing             | Emergency Equip Area   | Min. 1 bag |
| Shovel                   | Standard                  | Emergency Equip Area   | Min. 1     |
| Mop and Bucket           | Standard                  | Emergency Equip Area   | Min. 1     |
| Respirator               | Air Purifiers             | PPE Cabinet            | Min. 1     |
| Pump                     | Hand-held, Electric       | Emergency Equip Area   | Min. 1     |
| Wet/Dry Vacuum           | Portable, Electric        | Emergency Equip Area   | 1          |
| Empty Drums for Overpack | 30, 55, 85 gal.           | Container Storage Area | 9          |
| Fire Sprinkler System    | Foam                      | Container Storage Area | 1          |

# **TABLE 5.8-1**

# DESCRIPTION AND USES OF EMERGENCY EQUIPMENT

| Item              | Location                       | Use/Description                                                 |
|-------------------|--------------------------------|-----------------------------------------------------------------|
| Gloves            | PPE Cabinet                    | The rubber plastisol gloves sold by Safety-Kleen                |
|                   |                                | are to be used when handling the solvents.                      |
| Safety Glasses or | PPE Cabinet                    | To be worn when loading or unloading solvent.                   |
| Face Mask         |                                |                                                                 |
| Plastic Aprons    | PPE Cabinet                    | For situations where a solvent may get on the                   |
|                   |                                | workers clothing.                                               |
| Eyewash Stand     | Container storage area         | Employees should operate the stand and                          |
|                   | Return/Fill Area               | become familiar with its operation                              |
|                   | Tank Farm                      |                                                                 |
| Showers           | Office Area/Locker room        | These are used for emergency and routine                        |
|                   |                                | cleaning of employees                                           |
| Fire Extinguisher | See Figure 5.6-1 (locations of | An ABC extinguisher is a universal system used on paper,        |
|                   | emergency equipment)           | wood, and electrical, as well as solvent fires. The             |
|                   |                                | extinguishers must be full and carry an inspection tag.         |
| Absorbent         | Loading/Unloading              | An adequate supply will be on hand to handle small spills. A    |
| Material          | Area/Warehouse                 | 50 lb bag will also be kept in the warehouse to remediate and   |
|                   |                                | prevent spread of large spills                                  |
| Air Purifying     | Employee Lockers/Extra         | Worn by any person entering an area or performing work          |
| Respirator        | respirator is kept in the      | where potentially harmful fumes are present or suspected to     |
|                   | Emergency Equipment Area       | be present but not considered to be immediately dangerous to    |
|                   |                                | life and health                                                 |
| Portable Pumps    | Warehouse                      | For use in picking up liquid spills in the container            |
| Wet/Dry Vac       |                                | containment area, or other paved areas, and transfer materials  |
|                   |                                | associated with spills                                          |
| Recovery          | Warehouse                      | Emergency storage of spilled product, cleaning fluids, or       |
| Containers        |                                | other materials associated with spills                          |
| Plastic           | Warehouse                      | Used for containment of decontamination zones                   |
| Duct Tape         | Warehouse                      | Taping of protective clothing, plastic, and other uses          |
| First-aid         | Office Area                    | Minor first-aid needs and health problems                       |
| Shovels/Mops      | Warehouse                      | Used to collect spills and residue                              |
| Communication     | Facility Wide                  | Phones with intercom systems in office/warehouse for            |
| Equip             |                                | internal and external communications                            |
| Decon. Equip.     | Warehouse                      | 2 brushes, box of detergent, rags, available for decon of clean |
|                   |                                | up equip.                                                       |
| Fire Sprinkler    | Warehouse                      | An automatic sprinkler system that is activated in case of fire |
| System            |                                | in the building                                                 |



# CO Safety Security Inspection

| Form Code: 29                                                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Compliance Header                                                                                                                                                                          |  |
| Inspector Name                                                                                                                                                                             |  |
| Area of Inspection                                                                                                                                                                         |  |
| Inspection Date and Time                                                                                                                                                                   |  |
| CO Safety Security Inspection Instructions                                                                                                                                                 |  |
| Note condition of inspection items. If item does n<br>findings must be explained below. Include any re<br>required or performed.                                                           |  |
| CO Safety Security Inspection Items                                                                                                                                                        |  |
| Perimeter fences - check for evidence of failure<br>(e.g., broken ties, corrosion, holes, distortion,<br>other)                                                                            |  |
| Gates/External Warehouse Doors - Check for<br>evidence of failure (e.g., locking mechanism,<br>broken ties, corrosion, holes, distortion, direct<br>access doors working properly, other). |  |
| Warning signs - check for evidence of failure (e.g. missing, faded, other).                                                                                                                |  |
| Exit Signs - Check for evidence of failure (e.g.,<br>missing sign, illumination, lamp bulbs, battery<br>backup, other).                                                                    |  |
| Exits/Firelanes/Evacuation Routes - Check that all routes are clear or unobstucted.                                                                                                        |  |
| Lighting System - Check for evidence of failure (e.g. expired lamps, effectiveness, location, other).                                                                                      |  |
| Emergency Lighting System - Check for<br>evidence of failure (e.g., expired lamps, battery<br>backup, effectiveness, other).                                                               |  |
| Accessibility of Safety Equipment/Protective<br>Gear - Check for evidence of availability (e.g.,                                                                                           |  |

| hardhats, faceshields, goggles, safety glasses,<br>boots, gloves, aprons, uniforms, duct tape,<br>absorbents, other).                                                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Adequate Supply of Safety<br>Equipment/Protective Gear - Check for<br>evidence of availability (e.g., cleanliness,<br>inventory available is adequate, in the correct<br>location, correct type of equipment, other).                  |  |
| Condition of Safety Equipment - Check for<br>evidence of failure (e.g., review PPE for<br>damage or excessive wear, other).                                                                                                            |  |
| Breathing Apparatus Accessibility - Check for<br>evidence of availability (e.g. SCBA respirators,<br>equipment, other).                                                                                                                |  |
| Breathing Apparatus Adequate Supply/Full<br>Charge - Check for evidence of availability (e.g.,<br>SCBA tanks, charged, other).                                                                                                         |  |
| Breathing Apparatus Condition - Check for evidence of failure (e.g., SCBA damage, other).                                                                                                                                              |  |
| First Aid Kits - Check for evidence of availability (e.g., adequate inventory, correct location, other).                                                                                                                               |  |
| Bloodborne Pathogen Kits - Check for evidence<br>of availability (e.g., adequate inventory, correct<br>location, correct type, other).                                                                                                 |  |
| Emergency Eyewashes - Check for evidence of<br>failure (e.g., disconnected or malfunctioning<br>valves, inadequate pressure, inaccessible,<br>malfunctioning drain, leaking, correct location,<br>adequate type and inventory, other). |  |
| Emergency Showers - Check for evidence of<br>failure (e.g., disconnected or malfunctioning<br>valves, inadequate pressure, inaccessible,<br>leaking, correct location, adequate type,<br>adequate inventory, other).                   |  |
| Internal/External Communication - Check for<br>evidence of failure (e.g., inadequate supply of<br>phones or radios, malfunctioning intercom,                                                                                           |  |

| telephones not working properly, emergency<br>alarm does not work, phone moved from proper<br>location, other).                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fire Extinguishers - Check for evidence of<br>failure (e.g., overdue inspection, correct<br>location, correct type, not charged,<br>inaccessible, adequate inventory, other). |  |
| Absorbent Supply - Check for evidence of<br>availability (e.g., adequate inventory, correct<br>location, correct type, other).                                                |  |
| Recovery Drum Supply - Check for evidence of availability (e.g., adequate inventory, correct location, correct type, other).                                                  |  |
| Respirators and Cartridges - Check for<br>evidence of availability (e.g., adequate APR<br>inventory, correct location, correct type, other).                                  |  |
| Fire Suppression System Accessibility - Check<br>for evidence of failure (e.g., monitors, pull<br>stations, alarms, other).                                                   |  |
| Fire Suppression System Operable - Check for evidence of failure (e.g., test, other).                                                                                         |  |
| Water Lines/Hydrants - Check for evidence of failure (e.g., blocked, broken, other).                                                                                          |  |
| Alarm Systems - Check for evidence of failure (e.g., test, other).                                                                                                            |  |
| Fire Blankets - Check for evidence of availability (e.g., adequate inventory, correct location, other).                                                                       |  |
| Strainer on Fire Suppression System - Check<br>for evidence of failure (e.g., functioning as<br>intended, other).                                                             |  |
| Surveillance System/Guard Service - Check for<br>evidence of failure (e.g., equipment or service<br>provided and functioning properly, other).                                |  |
| Supplied Air Delivery System and Reserve -<br>Check for evidence of failure (e.g., system<br>operational, epuipment functioning, other).                                      |  |

|                                                                                                                                                                                                                              | 1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Decontamination Equipment/Spill Clean-up<br>Equipment - Check for evidence of availability<br>(e.g., adequate supply of shovels, mops,<br>cleaning solvents, available inventory, correct<br>location, correct type, other). |   |
| Portable Sump Pumps - Check for evidence of<br>availability (e.g., adequate inventory,<br>functioning properly, correct location, correct<br>type, other).                                                                   |   |
| Gasoline Pumps - Check for evidence of failure (e.g., broken parts, leaks, other).                                                                                                                                           |   |
| Loud Speakers - Check for evidence of failure (e.g., test, other).                                                                                                                                                           |   |
| Chocked Wheels on Parked Vehicles - Check<br>for evidence of failure (e.g., chocks not used,<br>missing, deteriorated, other).                                                                                               |   |
| Cylinders Secure - Check for evidence of failure (e.g., properly stored, secured, chained, other).                                                                                                                           |   |
| Ventilation Operable - Check for evidence of failure (e.g., system working as intended, other).                                                                                                                              |   |
| Fall Protection - Check for evidence of availability (e.g., adequate inventory, integrity of equipment, other).                                                                                                              |   |
| Electrical Boxes - Check for evidence of failure (e.g., closed, not blocked, marked properly, other).                                                                                                                        |   |
| Emergency Contact Info Posted - Check for<br>evidence of availability (e.g., up-to-date<br>postings, location requirement, other).                                                                                           |   |
| Hearing Protection Available - Check for<br>evidence of availability (e.g., type appropriate<br>per location, other).                                                                                                        |   |
| Housekeeping - Check for evidence of failure<br>(e.g., blocked egress, proper storage,<br>procedure followed, other).                                                                                                        |   |
| Portable Compressor - Check for evidence of availability (e.g., adequate inventory,                                                                                                                                          |   |

Appendix A

**Example Letters to Local Authorities** 

### **Certified Mail**

Metro Dade Fire Rescue 9300 NW 41<sup>st</sup> Street Miami, FL 33178

RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95th Street, Medley, FL 33178

Dear Sir/Madam:

Under terms of the Environmental Protection Agency (EPA) regulations 40 CFR 264, Subpart D, Safety-Kleen Systems, Inc. (SK) must provide local police, fire departments, hospitals, and state or local emergency response teams with a copy of the contingency plan for the above-referenced facility, and any revisions to the plan. A copy of the updated contingency plan is enclosed for your files. Please review this updated contingency plan. Also enclosed are Safety Data Sheets (SDSs) for materials handled at the facility.

EPA regulations 40 CFR 264, Subpart C, require that SK attempt to make arrangements for the provision of emergency assistance. Emergency assistance for this facility may be needed from the police and fire departments, state emergency response teams, and hospitals. The completion and return of the enclosed form will acknowledge receipt of this update to the contingency plan and provides your agreement to be available for emergency assistance.

Thank you for your cooperation in this matter. Should you have any questions or desire to visit our facility, please contact me at (305) 884-0123.

Sincerely,

Branch Manager Safety-Kleen - Medley

Enclosures

Miami-Dade Fire Rescue 9300 NW 41<sup>st</sup> Street Miami, FL 33178

Branch Manger Safety-Kleen Systems, Inc. 8755 NW 95<sup>th</sup> Street Medley, FL 33178

RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95th Street, Medley, FL 33178

Dear Branch Manager:

This is to acknowledge that the Miami-Dade Fire Rescue has been made aware of the potential need for emergency assistance associated with the operation of the Safety-Kleen Systems, Inc. (SK) facility at 8755 NW 95<sup>th</sup> Street, Medley, FL 33178. The Miami-Dade Fire Rescue understands that the emergency coordinator is available to provide additional information on the nature of assistance that may potentially be required, type of physical and chemical hazards that may potentially be encountered, and the type of injury or illness that may potentially occur.

This is to acknowledge receipt of the updated contingency plan information for the Medley, Florida facility.

The Miami-Dade Fire Rescue \_\_\_\_\_\_ (agrees/declines) to be available to provide emergency assistance for the Safety-Kleen Systems, Inc. facility at 8755 NW 95<sup>th</sup> Street, Medley, FL 33178.

Sincerely,

(Signature)

(Title)

### **Certified Mail**

Medley Police Department 7777 NW 72<sup>nd</sup> Ave Medley, FL 33166

RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95th Street, Medley, FL 33178

Dear Sir/Madam:

Under terms of Environmental Protection Agency (EPA) regulations 40 CFR 264, Subpart D, Safety-Kleen Systems, Inc. (SK) must provide local police, fire departments, hospitals, and state or local emergency response teams with a copy of the contingency plan for the above-referenced facility, and any revisions to the plan. A copy of the updated contingency plan is enclosed for your files. Please review this updated contingency plan. Also, enclosed are Safety Data Sheets (SDSs) for materials handled at the facility.

EPA regulations 40 CFR 264, Subpart C, require that SK attempt to make arrangements for the provision of emergency assistance. Emergency assistance for this facility may be needed from the police and fire departments, state emergency response teams, and hospitals. The completion and return of the enclosed form will acknowledge receipt of this update to the contingency plan and provides your agreement to be available for emergency assistance.

Thank you for your cooperation in this matter. Should you have any questions or desire to visit our facility, please contact me at (305) 884-0123.

Sincerely,

Branch Manager Safety-Kleen – Medley

Enclosures

Medley Police Department 7777 NW 72<sup>nd</sup> Ave Medley, FL 33166

Branch Manager Safety-Kleen Systems, Inc. 8755 NW 95<sup>th</sup> Street Medley, FL 33178

RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95th Street, Medley, FL 33178

Dear Branch Manager:

This is to acknowledge that the Medley Police Department has been made aware of the potential need for emergency assistance associated with the operation of the Safety-Kleen Systems, Inc. (SK) facility at 8755 NW 95<sup>th</sup> Street, Medley, FL 33178. The Medley Police Department understands that the emergency coordinator is available to provide additional information on the nature of assistance that may potentially be required, type of physical and chemical hazards that may potentially be encountered, and the type of injury or illness that may potentially occur.

This is to acknowledge receipt of the updated contingency plan information for the Medley, Florida facility.

The Medley Police Department \_\_\_\_\_\_ (agrees/declines) to be available to provide emergency assistance for the Safety-Kleen Systems, Inc. facility at 8755 NW 95<sup>th</sup> Street, Medley, FL 33178.

Sincerely,

(Signature)

(Title)

#### **Certified Mail**

Hospital Administrator Palmetto General Hospital 2001 W. 68<sup>th</sup> Street Hialeah, FL 33016

RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95th Street, Medley, FL 33178

Dear Sir/Madam:

Under terms of Environmental Protection Agency (EPA) regulations 40 CFR 264, Subpart D, Safety-Kleen Systems, Inc. (SK) must provide local police, fire departments, hospitals, and state or local emergency response teams with a copy of the contingency plan for the above-referenced facility, and any revisions to the plan. A copy of the updated contingency plan is enclosed for your files. Please review this updated contingency plan. Also enclosed are Safety Data Sheets (SDSs) for materials handled at the facility.

EPA regulations 40 CFR 264, subpart C, require that SK attempt to make arrangements for the provision of emergency assistance. Emergency assistance for this facility may be needed from the police, fire departments, state emergency response teams, and hospitals. The completion and return of the enclosed form will acknowledge receipt of this update to the contingency plan and provides your agreement to be available for emergency assistance.

Thank you for your cooperation in this matter. Should you have any questions or desire to visit our facility, please contact me at (305) 884-0123.

Sincerely,

Branch Manager Safety-Kleen – Medley

Enclosures

Hospital Administrator Palmetto General Hospital 2001 W. 68<sup>th</sup> Street Hialeah, FL 33016

Branch Manager Safety-Kleen Systems, Inc. 8755 NW 95<sup>th</sup> Street Medley, FL 33178

RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95th Street, Medley, FL 33178

Dear Branch Manager:

This is to acknowledge that the Hospital Administrator, Palmetto General Hospital, has been made aware of the potential need for emergency assistance associated with the operation of the Safety-Kleen Systems, Inc. (SK) facility at 8755 NW 95<sup>th</sup> Street, Medley, FL 33178. The Hospital Administrator, Palmetto General Hospital understands that the emergency coordinator is available to provide additional information on the nature of assistance that may potentially be required, type of physical and chemical hazards that may potentially be encountered, and the type of injury or illness that may potentially occur.

This is to acknowledge receipt of the updated contingency plan information for the Medley, Florida facility.

The Hospital Administrator, Palmetto General Hospital \_\_\_\_\_\_ (agrees/declines) to be available to provide emergency assistance for the Safety-Kleen Systems, Inc. facility at 8755 NW 95<sup>th</sup> Street, Medley, FL 33178.

Sincerely,

(Signature)

(Title)

Tab 4

Part II

Waste Analysis Plan

**Revision 0 - 09/20/22** 

### Part II

### Waste Analysis Plan (WAP)

### 270.14(b)(3), 264.13(b)-(c)

Waste analysis at the Safety-Kleen Medley Service Center is a three-step process that includes:

- Prescreening of customers
- Qualitative/visual analysis and
- Quantitative analysis (lab analysis)

### **Prescreening of Customers**

Safety-Kleen performs a customer prescreening for all parts washer and immersion cleaner service customers. The other permitted waste streams (dry cleaning wastes and paint wastes) are generated from facilities where there is typically one process generating hazardous waste and the possibility of cross-contamination from other chemicals or wastes is minimal. These wastes remain in the container they were originally packaged from the time they are collected at the customer location, while in storage at the SK Medley Branch, and until received at a permitted Safety-Kleen/Clean Harbors TSDF, or other properly permitted disposal facility. These waste containers remain closed from customer to final disposition.

Prior to leasing a SK parts cleaning machine or placing a Customer Owned Machine (COM) service, the customer's business is reviewed. Where the possibility exists for contamination of the parts cleaner solvent (e.g., pesticide, herbicide, or pharmaceutical operations), operations are reviewed to ensure that the solvent is protected from the sources of contamination. In reviewing a customer's business, the Safety-Kleen representative provides customers with written and verbal information on use of the equipment. When a new service is placed with a new, or existing customer, the customer must agree to certify that they "will not introduce any substance into the parts washer solvent or aqueous cleaning solution, including without limitation any hazardous waste or hazardous waste constituent, except to the extent such introduction is incidental to the normal use of the machine". The customer further agrees that they will not clean parts/paint guns that have been contaminated with or otherwise introduce PCBs, herbicides, pesticides, dioxins, or listed hazardous wastes into the parts washer solvent or aqueous cleaning solution or said waste would not be accepted by Safety-Kleen as a core waste. In addition, the Safety-Kleen machine label provides operating and safety information which includes a statement that the addition of any other chemical or cleaner to the parts washer solvent is prohibited.

1

Information supplies to the customer will contain at a minimum:

- Proper usage and management of the unit
- Information on the reasons to not add materials to the unit, and
- Examples of what not to add to the unit

### **Qualitative/Visual Analysis**

Safety-Kleen conducts qualitative/visual analysis as a part of all parts washer and immersion cleaner services. Qualitative/visual analysis is not conducted on the dry-cleaning and paint waste streams as these containers are not opened by the Safety-Kleen service representative and the likelihood of contamination is remote. Safety-Kleen representatives are instructed to visually examine the used solvent (parts washer and immersion cleaner) for each waste pickup when the machines are serviced, noting the quantity, odor, and appearance of the material recovered as follows:

- The quantity of used parts washer solvent in the drum. Safety-Kleen knows the volumes of solvent provided for each parts washer model and customer owned machines. These clean volumes are listed on all Safety-Kleen service documents. When the amount of parts cleaner solvent or immersion cleaner fluid is more than 10% greater than originally supplied, the container will not be immediately accepted by the service representative. Contingent on the customer's responses to Safety-Kleen's inquiry regarding the customer's operation and handling practices, the solvent is accepted or left with the customer until an analysis is completed to determine its acceptability.
- 2. The odor of the liquid in the container. Personnel must never make an effort to "sniff" the parts washer solvents. However, if in the normal course of servicing the parts washer machine, the odor of the fluid in the container is noticed to be different from that of parts washer solvent or immersion cleaner, the container will not be immediately accepted by the service representative. The SK representative will inquire with the customer regarding operation and handling practices of the parts washer machine and based on the response received from the customer the container will either be left at the site or accepted.
- 3. The appearance of the liquid in the drum. The used parts cleaner solvents have a normally brown or black appearance. Certain contaminants containing dyes and color pigments (such as transmission fluid, soy-based printers' ink, and water-based paints) may change the color of the used parts cleaner solvent to other colors. Used immersion cleaner should have a dark brown to almost black appearance. Unused immersion cleaner is amber in color. As the solvent is used, the darker it becomes. Therefore, if the spent immersion cleaner does not appear to be amber, brown, or black, the service representative will not accept the container. Safety-Kleen will

inquire with the customer regarding operation and handling practices of the material. Based on the response from the customer, Safety-Kleen will either accept the container, or reject until analysis has been completed.

If the material passes the three qualitative/visual analyses shown above the material is noted as having passed the field qualitative analysis in our service document (typically a handheld computer printout).

As indicated in each of the qualitative/visual analysis, if the answers provided by the customer as to why the test (quantity, odor and appearance) were not acceptable, the material is left behind for further testing. An Account Sales Manager will return to the site to sample the material should the generator request Safety-Kleen to assist in managing the material. The sample will be sent to a certified laboratory for testing. A Waste Material Profile Sheet will be completed and once approved the waste will be managed as containerized transfer waste for disposal if not acceptable as solvent.

At the Safety-Kleen Branch Service Center, the Safety-Kleen Representative or Material Handler is responsible for either accepting or rejecting the waste upon completing the following procedure:

- Review the manifest or shipping document for accuracy and completeness;
- Check the container label for completeness and consistency with the manifest or shipping document;
- Check the condition of each container and verify that it is USDOT approved;
- Verify that each container type is consistent with the information on the manifest or shipping document;
- Observe quantity, odor, and appearance prior to accepting used parts washer solvent and dumping into the wet dumpster. Dry-cleaning, paint waste, and immersion cleaner waste containers are not opened and inspected at the branch.

If a container with questionable contents is returned to the facility, a sample will be taken and analysis performed. The container will be held at the facility pending completion of analysis. If analysis indicates the waste to be different than what was manifested to the facility, it will be returned to the generator, or managed at the facility in accordance with the generator's direction. Records of all sampled and/or rejected wastes will be kept on file at the Medley branch.

In addition, receipt analysis is performed by the Safety-Kleen Recycle Centers on all inbound bulk solvent waste deliveries from the Branch Service Centers. Receipt analysis typically includes a screen for atypical flash point, Polychlorinated Biphenyls (PCBs), and halogenated organics.

3

Revision 0 - 09/20/22

#### Quantitative Analysis (Lab Analysis)

After 50 years of servicing over 250,000 parts washer customers each year, Safety-Kleen has determined that the wastes generated by its customers are relatively homogeneous. The homogeneity of these wastes is evaluated annually through the Safety-Kleen Annual Recharacterization (AR) program (Quantitative Analysis).

Analytical data from the Annual Re-characterization sampling is subjected to an EPA SW846 approved statistical model (Exhibit C-1, found at the end of the WAP). The waste samples analyzed come from a variety of Safety-Kleen facilities across the country and is representative of the facility.

Samples included in the AR process are selected from random customers serviced by Safety-Kleen facilities. Randomness is overseen by the Safety-Kleen Technical Center, which manages the AR program, selecting the month that the samples will be taken. A list of waste streams included in the AR is found below. The analytical results or the AR are communicated to customers to assist them in making a waste determination, while they also consider their specific generation process. In the case parts washer solvent, if a customer determines specific waste codes apply to their used parts washer solvent then these codes will be used when servicing the parts washers. Generator services are typically scheduled months in advance and those clients whose waste happens to be on hand on the month selected by the Technical Center will be the wastes that will be sampled.

The waste streams collected by Safety-Kleen are relatively uniform across business types and geographical locations. This is demonstrated by the minimal changes in the codes assigned to each stream through the AR statistical evaluation each year via the Non-parametric Upper Confidence Interval Approach. If waste code(s) are removed from any of the waste streams evaluated by the AR program, and SK has a current, or potential, customer generating this waste stream that they believe include the removed waste code(s), the customer may complete a separate waste profile based on process knowledge, or TCLP analytical data, and the waste may be managed as permitted or 10-day transfer waste.

When subjecting AR sample data to the Non-parametric Upper Confidence Interval Approach, the last 3 years of analytical data for a given waste stream is used from samples pulled from across the country (in most cases). For example, statistically based waste codes assigned to a particular core waste stream in 2022 are based on samples analyzed in 2019, 2020, and 2021. Ideally 50 data points are used but at least 30 data points are required. If 30 data points are not available from samples pulled in 2019/2020/2021, samples

4

from 2018 will also be incorporated into the population.

In reviewing with Dr. Gibbons how the number of data points was derived he wrote in an email ... "This is a nonparametric upper confidence limit (see Gibbons, Bhaumik and Aryal, 2010 section 18.7) which is defined by an order statistic (i.e. a rank) of the data. There is nothing magical about 30 or 50, but 50 is good because the median is the average of the 25<sup>th</sup> and 26<sup>th</sup> highest values and the UCL is the 31<sup>st</sup> largest value, which provides a reasonably tight confidence limit (i.e. not an extreme value)."

Homogeneity of the streams was further confirmed in 2004 when Safety-Kleen conducted an Annual Recharacterization using California-only customer data. Safety-Kleen conducted a statistical comparison of the 'California only' Annual Re-characterization result with the results from the National AR (Exhibit C-3, found at the end of the WAP). Note the conclusion that California customer wastes are no different than the streams generated by Safety-Kleen customers in the rest of the country.

The waste streams included in the Safety-Kleen AR process are by their nature consistent and predictable. The process includes streams generated by Safety-Kleen customers and terminated as permitted streams at Safety-Kleen facilities as well as streams generated by Safety-Kleen facilities.

Waste streams included in the Re-characterization process for 2021 (for 2022 waste codes) were:

CUSTOMER GENERATEDSAFETY-KLImmersion CleanerBulk SolventParts Washer SolventDumpster SludPaint Gun Cleaner/Paint WastesTank BottomsDry Cleaner (Perchloroethylene and Naphtha, filters,<br/>bottoms and separator water)Branch DebrisAqueous Brake CleanerAqueous Parts Washer Solvent

SAFETY-KLEEN GENERATED Bulk Solvent Dumpster Sludge Tank Bottoms Branch Debris

AR Sample Testing Protocol is located in Exhibit C-4, found at the end of the WAP. Procedures used for obtaining the samples is included in Exhibit C-5, found at the end of the WAP. Final AR (National) Waste Code Assignments are included in Appendix B. A copy of Safety-Kleen's current Annual Recharacterization Data is included in Appendix B. All AR Samples are analyzed by an independent NELAP accredited environmental laboratory

### Waste Determination for Subpart BB and CC Compliance

For purposes of waste determination, this facility utilizes knowledge of the wastes described in this section. The used parts washer solvent managed in the tank system is presumed to contain hazardous waste with an organic concentration of at least 10-percent by weight, so Subpart BB regulations apply. For those hazardous wastes that are managed on a transfer basis, the Subpart CC regulation does not apply. However, the owner/operator may use knowledge of the waste based on information included in manifests, shipping papers or waste certification notices to confirm waste determination for the generator or the ultimate receiving facility.

Based upon this knowledge, it has been determined that most waste solvents managed in tanks and containers at this facility may display an average volatile organic concentration of greater than 500 ppm at the point of waste origination. Therefore, no exemption allowed in 40 CFR 264.13(b)(8) from Subpart CC regulations is requested and hazardous wastes managed in tanks and containers at this facility shall be managed in accordance with applicable Subpart CC standards.

### 270.14(b)(3), 264.13(b)(1) Parameters and Rationale

Safety-Kleen's permitted waste streams which are all received in containers are broken into five types:

- Used parts washer solvent (petroleum naphtha/mineral spirits)
- Aqueous Parts Waste Solvent
- Solvent immersion cleaner
- Paint waste
- Dry Cleaner Perchloroethylene

The product provided, or in the case of dry cleaner solvents that are purchased by the generator, makes up the majority of the waste. As such the analytical testing includes the regulated constituents in these products and the regulated metals and volatile solvents that may come in contact with the products. This, combined with a known process that the waste streams are being derived from, form the basis for testing.

The purpose of the Re-characterization is to determine the waste codes applicable to core waste streams managed and generated by Safety-Kleen facilities. As such, a waste stream may be excluded from Re-characterization once it has consistently been designated as non-hazardous. A stream may also be excluded from Re-characterization when it has been determined that the codes assigned to the stream are stable and marginal changes in trace constituents will not affect the management of the stream. Lastly, a set of analytes may be omitted if they are not expected or are demonstrated to not be present in a waste stream. Pesticides and herbicides have never been included in the Re-characterization process as these constituents are not allowed in wastes picked up by Safety-Kleen. Analysis for semi-volatiles is in the process of being phased out as codes for semi-volatiles have never been assigned.

6

### 270.14(b)(3), 264.13(b)(2) Test Methods

Exhibit C-4, found at the end of the WAP, details the AR sample testing protocol.

### 270.14(b)(3), 264.13(b)(3) Sampling Methods

AR Sampling Method Requirements are outlined in Exhibit C-5, found at the end of the WAP.

### 270.14(b)(3), 264.13(b)(4) Frequency of Analysis

As described previously, a Qualitative/Visual analysis of the parts washer wastes managed at the Service Center is conducted for each waste pickup. Safety-Kleen's Re-characterization is conducted annually.

### 270.14(b)(3), 264.13(b)(5)(c) Additional Requirements for Wastes Generated Off-Site

Generators are informed of the results of the AR each year. No action is required by the generator if they agree to the waste code(s) for Safety-Kleen's core waste streams. However, if a generator chooses to use knowledge of its process to identify which waste codes are attached to the waste, approval by Safety-Kleen's Central Waste Profiling group is required. In most cases, laboratory analytical data will be required to remove codes determined by the AR process. If additional waste codes are identified by the generator, Safety-Kleen will set up a specific profile for that generators waste stream identifying those waste codes provided.

# 270.14(b)(3), 264.13(b)(6)(c), 264.17 Additional Requirements for Ignitable, Reactive or Incompatible Wastes

Waste received at the facility is analyzed according to the procedures described in the Waste Analysis Plan. All ignitable wastes terminated at the facility are compatible with each other and the containers in which they are stored. Therefore, additional analyses to evaluate compatibility are not necessary.

The permitted container storage area, located inside the warehouse, is where ignitable waste is stored are designed for this material. All electric components in the Return and Fill area are intrinsically safe. Hot work permits are required for any work that may involve excess heat, sparks or open flames in these storage areas and are conducted only when ignitable materials are not present. No Smoking signs are posted in all areas where ignitable waste is stored and smoking is not allowed within the office, warehouse or fenced areas of the facility.

The only permitted hazardous waste containers opened at the facility are the used parts washer solvent wastes, which are eventually consolidated into the RCRA-Permitted Hazardous Waste Tank (Used Solvent)

7

within the Permitted Tank Storage Unit. Used Parts Washer Solvent in this tank is considered ignitable. No other waste streams are added to the tank.

270.14(b)(3), 264.13, 268Waste Analysis Requirements Pertaining to Land Disposal RestrictionsAll of the permitted waste streams received and stored at the Medley facility are treated or recycled at anapproved Safety-Kleen/Clean Harbors TSDF, contract reclaimer, or other properly permitted facility.

The drum washer sediment generated at the facility is containerized and shipped offsite for reclamation. The Branch Service Center does not dispose of any hazardous wastes onsite and does not send any permitted wastes to land disposal facilities. Therefore, the Medley Service Center is not required to certify that hazardous wastes that are restricted from land disposal are below treatment standards. The following sections discuss how Safety-Kleen determines appropriate Land Disposal Restriction (LDR) classification and treatment standards and how LDR notification requirements are met.

### 270.14(a), 264.13(a)(1), 268.1, 268.7, 268.9, 268.32-37, 268.41-43 Waste Analysis

Due to the nature of its business, Safety-Kleen receives wastes that are untreated and that are assumed to exceed the LDR treatment standards. For the Safety-Kleen parts washer solvent, immersion cleaner, dry cleaner wastes and paint wastes, the hazardous constituents are known. The rationale for the selection of LDR treatment standards are provided below.

# 270.14(a), 264.13(a)(1), 268.2(d), 268.2(f), 268.7, 268.30, 268.31 Spent Solvent and Dioxin Containing Waste

Safety-Kleen will manage F-solvent wastes. The spent dry cleaning perchloroethylene is F-Solvent nonwastewater waste with the following treatment standard: tetrachloroethylene (6.0 mg/kg). The perchloroethylene treatment standard for wastewaters is 0.056 mg/l. None of the permitted wastes Safety-Kleen handles contain dioxins.

### 270.14(a), 264.13(a)(1), 268.7, 268.32, 268.42(a) California List Wastes

California list wastes are a distinct category of RCRA hazardous wastes that are restricted under the land disposal restrictions (LDRs). These restrictions only apply to liquid wastes, with the exception of Halogenated Organic Compounds (HOCs), which may be liquid or non-liquid. In Safety-Kleen's case, all of our permitted waste streams are liquid, with the possible exception of the Dry-Cleaning Filters, which can be dry although they may have low levels of free liquids at times. In either case the California List Waste rules apply as the Perc Filters contain HOCs. The Safety-Kleen permitted waste streams do not

contain PCBs over 50 ppm, free cyanides >1000 mg/l, nor do they have a pH of <2, so these categories do not apply.

Safety-Kleen permitted wastes are either recycled, fuel blended or incinerated. If any of the residues are landfilled, the prohibition levels for the California listed metals and HOC's will apply. Should liquid residues be landfilled they will have less than the metal prohibition limits prior to land disposal, and liquids and non-liquids will have less 1000 mg/kg of HOCs.

### 270.14(a), 264.13(a)(1), 268.7, 268.33-36, 268.41-43 Listed Wastes

Safety-Kleen does not handle non-solvent F-listed, K-listed, or P-listed waste in its' permitted areas. Any transfer waste having these codes will have the appropriate LDR paperwork accompany the manifest, so the designated facility can treat the material appropriately.

### 270.14(a), 264.13(a)(1), 268.7, 268.9, Part 268, Appendix I, IX Characteristic Wastes

Safety-Kleen may generate or store D001 wastes, including parts washer solvent. Since this waste contains high levels of organics, Safety-Kleen assumes that all D001 wastes will contain  $\geq$  10 percent total organic carbon (TOC). The technology-based standards for these non-wastewaters are "RORGS", (recovery of organics) or CMBST (high temperature organic destruction).

Safety-Kleen may also generate or store wastes that may be classified as D006, D007 (example: immersion cleaner, dry cleaner waste). The non-wastewater treatment standards for land disposal of these wastes are 0.11 mg/L TCLP, and 0.60 mg/L TCLP respectively. The wastewaters treatment standards for D006 (cadmium) and D007 (chromium) are 0.69 mg/l, and 2.77 mg/l respectively.

### 270.14(a), 268.3 Dilution and Aggregation of Wastes

Safety-Kleen's parts washer solvent is the only permitted waste consolidated at the site. All solvent is either recycled or destroyed via combustion; so, this section does not apply.

### 270.14(a), 264.13, 264.73, 268.7, 268.9(d) Notification, Certification, and Recordkeeping Requirement

For all waste streams terminated at this facility, in accordance with the regulations listed above Safety-Kleen will provide to the TSDFs, or authorized treatment/disposal facility, and require from its' regulated customers, notification/certification which provided the treatment standards for the wastes banned from landfills. These will be updated any time the waste should change, or the waste is delivered to a new final permitted site. A copy of this notification/certification shall be available (via electronic storage) at the Medley facility.

### 270.14(a), 264.13, 268.7(a) Notification, Certification, and Recordkeeping Requirement

The notice is required paperwork for all Safety-Kleen permitted waste types. The notices and certifications provided by regulated customers must be reviewed for correctness and be kept on file (electronically) at the Service Center for at least three years as part of the operating record.

270.14(a), 264.13, 268.7(b) Notification and Certification Requirements for Treatment Facilities

This Safety-Kleen Medley Branch is not a treatment facility; therefore, this section does not apply.

270.14(a), 264.13, 268.7(b)Notification and Certification for Land Disposal FacilitiesThe Safety-Kleen Medley Branch is not a Land Disposal facility; therefore, this section does not apply.

270.14(a), 264.13, 268.7(a)-(b)(6)Waste Shipped to Subtitle C FacilitiesAll of Safety-Kleen Medley Branch permitted wastes are shipped to a RCRA Subtitle C permitted facility.

### 270.14(a), 264.13, 268.7(d), 268.9(d) Waste Shipped to Subtitle D Facilities

None of Safety-Kleen Medley permitted wastes are shipped to a Subtitle D facility. Therefore, this section does not apply.

### 270.14(a), 264.13, 268.7(b)(6) Recyclable Materials

Safety-Kleen Medley permitted wastes are not shipped as recyclable materials used in a manner constituting disposal subject to the provisions of 40 CFR 266.20(b). Therefore, this section does not apply.

### 270.14(a), 264.13, 264.73, 268.7(a)(5)(6)(7)(d) Recordkeeping

Safety-Kleen Medley does no recycling onsite. Therefore, this section does not apply.

270.14(a), 264.73, 268.50Requirement Pertaining to Storage of Restricted Wastes270.14(a), 264.73, 268.50(a)(2)(i)Restricted Waste Stored in Containers270.14(a), 264.73, 268.50(a)(2)(ii)Restricted Waste Stored in Tanks

Safety-Kleen Medley stores restricted wastes in the RCRA-Permitted Hazardous Waste Tank (Used Solvent), and in containers solely for accumulation of such quantities of hazardous waste as necessary to

facilitate proper recovery, treatment, or disposal. Containers are marked with their contents and the accumulation start date. The hazardous waste tank is marked with its' contents and the waste movements are maintained in the operating record. The facility complies with the requirements in 40 CFR 262.34 and Part 264 as wastes are stored for no more than one year, typically much less.

### 270.14(a), 264.73, 268.50(f) Storage of Liquid PCB Wastes

Safety-Kleen Medley does not store liquid PCB waste on site. Therefore, this section does not apply.

### 270.14(b)(21), 268.6 Exemption from Prohibition

Safety-Kleen Medley does not seek an exemption to this prohibition. Therefore, this section does not apply.

### 270.14(a), 264.73, 268.7, 268.44 Variance from a Treatment Standard

Safety-Kleen Medley does not seek an exemption to a treatment standard. Therefore, this section does not apply.

| 270.14(a), 264.13(b)(7), 268.4, 268.14        | Requirements for Surface Impoundments Exempted  |  |
|-----------------------------------------------|-------------------------------------------------|--|
|                                               | from Land Disposal Restrictions                 |  |
| 270.14(a), 268.13, 268.14                     | Exemption for Newly Identified of Listed Wastes |  |
| 270.14(a), 264.13, 268.4(a)(1)(b)             | Treatment of Wastes                             |  |
| 270.14(a), 264.13(b)(6), 268.4(a)(2)(i)(iv)   | Sampling and Testing                            |  |
| 270.14(a), 264.13(b)(7)(iii), 268.4(a)(2)(ii) | Annual Removal of Wastes                        |  |
| 270.14(a), 264.13, 268.4(a)(3),(4)(b), 268.14 | Design Requirements                             |  |
|                                               |                                                 |  |

Safety-Kleen Medley does not have a surface impoundment. Therefore, these sections do not apply.

## Exhibit C-1

# Statistical Model (Dr. Gibbons)



#### DEPARTMENTS OF MEDICINE, PUBLIC SCIENCES, PSYCHIATRY, COMPARATIVE HUMAN DEVELOPMENT

5841 S. Maryland Ave., MC 2007 office W260, Chicago, IL 60637 Phone 773-834-8692; Fax 773-702-1979

Robert D. Gibbons, PhD

Blum-Riese Professor of Biostatistics Committee on Quantitative Methods in Social, Behavioral and Health Sciences Director, Center for Health Statistics rdg@uchicago.edu

August 7, 2018

### A Review of the Safety Kleen Statistical Waste Characterization Plan

In 1998, I prepared an annual statistical waste characterization plan for Safety Kleen based on a fully nonparametric approach to computing the 90% upper confidence limit for the 50<sup>th</sup> percentile of the distribution of analytic measurements. The motivation for the nonparametric approach was based on the non-normality of the distribution of analytic measurements observed at that time and even more importantly, the large proportion of measurements that did not detect the analyte in the sample; so called "non-detects." Motivation for this methodology was laid out in U.S. EPA SW846 (1986) and more recently in the U.S. EPA Unified Statistical Guidance Document (2009) see section 21.2. As noted in the Unified Guidance, "The advantage of a nonparametric interval around the median is its greater flexibility to define confidence intervals on non-normal data sets."

Recently, IL EPA has suggested that based on the OSWER 2002 Guidance, the nonparametric UCL that has been in use over the past 20 years should be replaced by the Chebyshev Inequality Method, which is a distribution free method. Using this method, the computed UCL for tetrachloroethylene (PCE) exceeded the regulatory standard whereas the nonparametric UCL did not. In the following, I try to shed light on this discrepancy.

To begin, nonparametric UCLs and distribution-free UCLs are in fact guite different. While neither method assumes a specific parametric form for the analyte distribution, the distribution free methods (e.g., Chebyshev Inequality Method) rely upon having a known population variance or standard deviation. Of course we never know the true standard deviation for the population, so practitioners typically substitute the observed standard deviation. As such, they are incorrect from the start. As noted in this guidance document, these distribution free methods break down when the detection frequency is low as is the case here. For PCE, only 8 of 31 measurements were detected (25.8%), and the largest measurement is an order of magnitude larger than the second largest measurement (51.72 vs. 5.8) suggesting the possibility that it is an outlier. As noted in the OSWER guidance, "If the proportion of non-detects is high (75%) or the number of samples is small (n<5), no method will work well." This is true for the parametric or distribution free methods described in the document, but this is not true for the nonparametric methods (with n>20) that have been used by Safety Kleen for the past 20 years. In fact, the nonparametric methods are based only on the rank ordering of the data and do not require either known or estimated values of the mean and variance as the distribution-free methods do and which break down in the presence of large numbers of non-detects and/or extreme skewness "As skewness increases further, the Chebyshev method is not recommended". The skewness of the PCE data produced by the large number of non-detects for which IEPA imputed DL/2 and the presence of a single extreme value is an example of extreme skewness. Non-detects and skewness have no effect on the nonparametric UCL used by Safety Kleen for the past 20 years and there are no distributional assumptions or summary statistics required to compute the UCL.

Sincerely yours,

NEM

Robert D. Gibbons Ph.D.

### **Statistical Analysis of Annual Waste Characterization Data**

Prepared by Robert D. Gibbons Ph.D.

for

Safety Kleen July 23, 1998

### **1** Introduction

Since 1990, Safety-Kleen has undertaken a major analytical study each year to document the contaminants in some of its most common waste streams to determine which TCLP waste codes should appear on the manifest for that waste. This Annual Waste Recharacterization Program is both expensive and extensive. Upon review, it appeared that regulatory agency instructions for how to interpret the data might not have been in line with current policy, as reflected in SW846. The general approach is based on development of an upper 90% confidence limit<sup>1</sup> for the true concentration of each constituent, which can in turn be directly compared to regulatory standards to determine if the waste code should or should not be added to a particular waste stream (e.g., Premium Gold Parts Washer Solvent 150). The regulatory basis for this type of comparison stems from U.S. EPA SW846 Chapter 9 (September 1986) guidance on determining if a waste stream is hazardous.<sup>2</sup> The primary complicating feature is the presence of large numbers of nondetects which raises serious question regarding the use of the parametric approach. In light of this concern, nonparametric methods are used throughout.<sup>3</sup> Specifically, following U.S. EPA SW846, we construct a nonparametric 90% upper confidence limit (UCL) for the 50<sup>th</sup> percentile of the distribution (i.e., median), which is equivalent to the 90% UCL for the mean in the case of a symmetric distribution such as the normal distribution.

<sup>&</sup>lt;sup>1</sup>"Consequently, the CI employed to evaluate solid wastes is, for all practical purposes, a 90% interval." U.S. EPA SW846 (1986) chapter 9 page 6.

<sup>&</sup>lt;sup>2</sup>"The upper limit of the CI for  $\mu$  is compared with the applicable regulatory threshold (RT) to determine if a solid waste contains the variable (chemical contaminant) of concern at a hazardous level. The contaminant of concern is not considered to be present in the waste at a hazardous level if the upper limit of the CI is less than the applicable RT. Otherwise the opposite conclusion is reached. "U.S. EPA SW846 (1986) chapter 9 page 3

<sup>&</sup>lt;sup>3</sup>"If the data do not adequately follow the normal distribution even after logarithm transformation, a nonparametric confidence interval can be constructed. This interval is for the median concentration (which equals the mean if the distribution is symmetric)." U.S. EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, April 1989, page 6-8

## 2 Method

Following Chapter 9 of SW846, the 90% UCL for the mean concentration obtained from a series of *n* representative samples is to be compared to the appropriate regulatory standard to determine if the waste stream is hazardous. If the UCL exceeds the standard, the waste stream is considered hazardous. The applicant must compute the UCL that is appropriate for the specific distributional form of the data. Given the large number of nondetects for many of the constituents, it is difficult if not impossible to clearly identify the underlying distributional form of the data. In this case, the U.S. EPA guidance indicates that a nonparametric alternative should be used.<sup>4</sup>

Nonparametric confidence limits are derived as follows. Given an unknown  $P \ge 100$ th percentile of interest (e.g. the 50th percentile or median),<sup>5</sup> where P is between 0 and 1, and n concentration measurements, the probability that any randomly selected concentration measurements being less than the  $P \ge 100$ th percentile is simply P and the probability of exceeding the  $P \ge 100$ th percentile is 1 - P. In light of this, the number of sample values falling below the  $P \ge 100$ th percentile out of a set of n measurements follows a Binomial distribution with parameters n and P.

The connection with the Binomial distribution can be used to determine an interval formed by a given pair of order statistics (i.e. ranked values) that will contain the percentile of interest, in this case the 50th percentile. Similarly, the Binomial distribution can also be used in constructing an upper limit (i.e. one-sided) for the percentile (e.g. a 90% upper confidence limit for the 50th percentile of the distribution). The computational formula for the cumulative binomial distribution B(x;n,p), representing the probability of getting *x* or fewer successes in *n* trials with success probability *p* is given by

$$Bin(x;n,p) \equiv \sum_{i=0}^{x} \binom{n}{i} p^{i} (1-p)^{n-i}$$

To draw inference regarding the P = 50th percentile, we set p = .5 in the previous equation. For a one-sided UCL we compute

$$1 - \alpha = 1 - Bin(U - 1; n, .5)$$

beginning from the sample median. We then increase *U* by one until in this case 1 -  $\alpha$  is equal to at least .90. The smallest value of *U* that provides 1 -  $\alpha \ge .9$  is then the order statistic (i.e., ranked value) that is the nonparametric 90% UCL for the 50th percentile of the distribution.

<sup>&</sup>lt;sup>4</sup> "If the data do not adequately follow the normal distribution even after logarithm transformation, a nonparametric confidence interval can be constructed." U.S. EPA, 1989

<sup>&</sup>lt;sup>5</sup> "This interval is for the median concentration (which equals the mean if the distribution is symmetric)." U.S. EPA (1989), page 6-8

### 3 Illustration

Consider the following most recent 50 data values for PCE (D039) obtained from Premium Gold Parts Washer Solvent-150.

| Premium Gold Parts Washer Solvent - 150<br>50 most recent samples in order of increasing concentration |         |         |         |          |  |  |
|--------------------------------------------------------------------------------------------------------|---------|---------|---------|----------|--|--|
|                                                                                                        | in ppm  |         |         |          |  |  |
|                                                                                                        |         |         |         |          |  |  |
| -50.000                                                                                                | (1.000  | -0.100  | -0.100  | -0.100   |  |  |
| <50.000                                                                                                | <1.000  | < 0.100 | < 0.100 | < 0.100  |  |  |
| < 0.100                                                                                                | < 0.100 | < 0.100 | < 0.100 | < 0.100  |  |  |
| < 0.100                                                                                                | 0.110   | 0.200   | 0.200   | 0.220    |  |  |
| 0.230                                                                                                  | 0.260   | 0.510   | 0.870   | 0.880    |  |  |
| 1.000                                                                                                  | 1.300   | 1.500   | 1.800   | 2.000    |  |  |
| 2.700                                                                                                  | 2.700   | 3.300   | 5.400   | 7.000    |  |  |
| 7.100                                                                                                  | 12.000  | 12.300  | 17.200  | 19.700   |  |  |
| 20.000                                                                                                 | 20.000  | 21.200  | 23.600  | 32.300   |  |  |
| 51.100                                                                                                 | 52.500  | 136.000 | 211.000 | 286.000  |  |  |
| 508.000                                                                                                | 635.000 | 771.000 | 940.000 | 2810.000 |  |  |

Table 1

For n =50, p =.5 and 1 -  $\alpha$  = .9, we find that U = 31 is the smallest order statistic that provides 90% confidence or more (1 -  $\alpha$  = .941). As such, we select the 31st largest value in Table 1 which is 7.1 ppm as our UCL. Since 7.1 ppm is larger than the standard of 0.7 ppm, then the D039 waste code is required for this waste stream.

### 4 Conclusion

The data in the following package have been interpreted using the methodology described. The waste codes for each stream were determined as those parameters for which the 90% UCL for the median concentration was above the regulatory limit, based on review of the last two years of samples or the most recent 50 samples, whichever yielded the larger number of samples to consider.

## Exhibit C-3

## California Annual Recharacterization Sampling Analysis

### Statistical Comparison of Annual Recharacterization Data from California to the Rest of the Nation

Prepared by Robert D. Gibbons Ph.D. for Safety Kleen

March 2004

### 1 Introduction

Since 1990, Safety-Kleen has undertaken a major analytical study each year to document the contaminants in some of its most common waste streams to determine which TCLP waste codes should appear on the manifest for that waste. This Annual Waste Recharacterization Program is both expensive and extensive. The general approach is based on development of an upper 90% confidence limit for the true concentration of each constituent, which can in turn be directly compared to regulatory standards to determine if the waste code should or should not be added to a particular waste stream (e.g., Premium Gold Parts Washer Solvent 150). The regulatory basis for this type of comparison stems from U.S. EPA SW846 Chapter 9 (September 1986) guidance on determining if a waste stream is hazardous. As stated by U.S. EPA, "The upper limit of the CI for  $\mu$  is compared with the applicable regulatory threshold (RT) to determine if a solid waste contains the variable (chemical contaminant) of concern at a hazardous level. The chemical contaminant of concern is not considered to be present in the waste at a hazardous level if the upper limit of the CI is less than the applicable RT. Otherwise the opposite conclusion is reached" (U.S. EPA SW846 (1986) chapter 9 page 3). The primary complicating feature is the presence of large numbers of nondetects which raises serious question regarding the use of the parametric approach. In light of this concern, nonparametric methods are used throughout this analysis. Again, as stated by U.S. EPA, "If the data do not adequately follow the normal distribution even after logarithm transformation, a nonparametric confidence interval can be constructed. This interval is for the median concentration (which equals the mean if the distribution is symmetric)" (U.S. EPA Statisti-

1

cal Analysis of Ground-Water Monitoring Data at RCRA Facilities, April 1989, page 6-8). Specifically, following U.S. EPA SW846, Safety Kleen constructs a nonparametric 90% upper confidence limit (UCL) for the 50th percentile of the distribution (*i.e.*, median), which is equivalent to the 90% UCL for the mean in the case of a symmetric distribution such as the normal distribution.

In review of this work, the State of California (DTSC/HML) has requested evidence that the data collected by Safety Kleen (SK) from California generators are representative of the data from the rest of the nation. Note that this involves a large number of statistical comparisons. There are as many as 11 waste streams and 33 constituents per waste stream (metals, volatile organics, semivolatile compounds, pH and flash point). In all, there are as many as 11\*33=363 comparisons to be made. Using 95% confidence, there will be as many as 363\*.05=18 comparisons that are significantly different by chance alone. In the following sections, a statistical methodology is described that will detect real differences when they are present (*i.e.*, have a low false negative rate) and not identify differences that are consistent with chance expectations (*i.e.*, have a low false positive rate).

## 2 Method

To compare the California data to the rest of the nation, data from all states except California will be used to construct a statistical prediction interval for the mean (or median in the nonparametric case) concentration obtained from the California generator samples. If the actual mean concentration for the California samples is within the prediction interval, then we can conclude with 95% confidence that the California concentrations are consistent with the concentrations observed across the nation. By contrast, if the California mean concentration is outside of the prediction interval, then we can conclude with 95% confidence that the California samples contain concentrations that are either higher or lower than those found in the rest of the country (for a particular waste stream and constituent). A two-sided interval will be used to determine if additional waste codes should be added or if some waste codes should be deleted from the California list.

In the following sections, statistical details of normal, lognormal, and nonparametric forms of these prediction intervals are provided.

## 2.1 Normal Prediction Intervals for the Mean of *m* Future Measurements

In certain cases, we may be interested in comparing an average concentration from a small group to a much larger control population. For example, we may wish to compare the mean concentration for generators in California, to the concentration distribution for the rest of the country. One approach to solving this problem is to compute a normal prediction interval for the mean of mnew samples, based on a background data set of n samples. For example, the m samples may be from all generators in California, and the n samples may be from a large number of generators across the nation (excluding California). The  $(1 - \alpha)100$  percent normal prediction interval for a single future mean of m samples is:

$$\bar{x} \pm t_{[n-1,1-\alpha/(2k)]} s \sqrt{1/m + 1/n}$$
, (1)

where t is an upper percentage point of Student's t-distribution on n-1 degrees of freedom, s is the standard deviation of the n background samples,  $\bar{x}$  is the mean of the n background samples, and k is the number of statistical comparisons being performed.

## 3 Lognormal Prediction Intervals for the Median of *m* Future Measurements

When the distribution of the *n* background measurements is shown to be lognormal, the  $(1 - \alpha)100\%$  lognormal prediction interval for the median of the next *m* measurements is:

$$exp\left(\bar{y} \pm t_{[n-1,1-\alpha/(2k)]}s_y\sqrt{1/m+1/n}\right)$$
 (2)

where  $\bar{y}$  and  $s_y$  are the mean and standard deviation of the natural log transformed data. While in the normal case, the analogous prediction interval is for the mean, in the lognormal case, the exponentiated limit is for the median value.

## 4 Lognormal Prediction Intervals for the Mean of *m* Future Measurements

When the data are lognormally distributed and the comparison of interest is in reference to a future mean, we can use Land's coefficients to obtain an approximate  $(1 - \alpha)100\%$  lognormal prediction interval for the mean of m future measurements. The lower prediction limit is

$$exp\left(\bar{y} + .5s_y^2 + H_{\alpha/(2k)}s_y\sqrt{\frac{1}{m} + \frac{1}{n}}\right) , \qquad (3)$$

and the upper prediction limit is

$$exp\left(\bar{y} + .5s_y^2 + H_{1-\alpha/(2k)}s_y\sqrt{\frac{1}{m} + \frac{1}{n}}\right) , \qquad (4)$$

where  $H_{\alpha}$  and  $H_{1-\alpha}$  are factors for deriving lognormal confidence intervals given by Land (1971, 1975).

## 5 Nonparametric Prediction Intervals for the Median of *m* Future Measurements

In the nonparametric case, we can also construct a prediction interval for the median of m measurements based on a background of n samples. The idea is to identify a pair of upper and lower order statistics of the n background measurements that will provide  $(1-\alpha)100\%$  confidence of including the median California measurement. Note that for nonparametric intervals, the mean is not defined, so we must construct an interval for a future median. Fligner and Wolfe (1979), Guilbaud (1983) and Hahn and Meeker (1991) illustrate how the inverse hypergeometric distribution (Guenther, 1975) can be used to identify the appropriate order statistic of the n background measurements that will provide the desired level of confidence  $1-\alpha$ , for given values of n and m. The inverse hypergeometric distribution is computed as the function

$$G(l, u, r, m, n) = \sum_{i=l}^{u} g(i, r+i, m, n)$$
(5)

where

$$g(i, r+i, m, n) = \frac{\binom{r-1}{i}\binom{n-r}{n-i}}{\binom{n}{m}}$$
(6)

and l is the lowest and u is the highest order statistic in the current interval, r is the median rank of the m new samples and n is the number of background measurements. To obtain a two-sided upper prediction limit (UPL), we iteratively solve for

$$G(l, u-1, r, m, n) \ge 1 - \alpha/(2k)$$
, (7)

for l and u.

## 6 Summary of Statistical Approach

In summary, depending on detection frequency, and distributional form, normal, lognormal, or nonparametric prediction intervals were computed to compare the mean(median) concentration in California for each waste stream, and for each monitored constituent to the national database (excluding California). For normal and lognormally distributed constituents, we constructed a prediction interval for a future mean. If distributional testing for the national database (excluding California) did not support normality or lognormality, or if the detection frequency was less than 50%, we computed a nonparametric prediction interval for a future median concentration. Given the large numbers of constituents, we adjusted the individual comparison false positive rate (for each waste stream) to provide an overall false positive rate of 5% (*i.e.*, 95% confidence) for each waste stream.

In those cases in which the actual mean(median) for the California data exceeded the UPL, a normal 90% upper confidence limit was computed for that waste, stream, and constituent, and that state-specific limit will be used to determine whether a specific waste-code should be associated with that waste stream in California.

## 7 Results

The previously described statistical methodology was applied to the following constituents:

Constituents used in the Analysis Constituent 1,1-dichloroethylene 1,2-dichloroethane 1,4-dichlorobenzene 2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4-dinitrotoluene 2-methylphenol Arsenic Barium Benzene Cadmium Carbon tetrachloride Chlorobenzene Chloroform Chromium Flash point Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Lead M+p-cresol Mercury Methyl ethyl ketone Nitrobenzene Pentachlorophenol  $\mathbf{pH}$ Pyridine Selenium Silver Tetrachloroethylene Trichloroethylene Vinyl chloride

in the following waste streams:

Waste Streams used in the Analysis

| Waste Stream                                   |  |  |
|------------------------------------------------|--|--|
| Antifreeze                                     |  |  |
| Auto Oil                                       |  |  |
| Dry Cleaner Bottoms (DCB)                      |  |  |
| Aqueous Parts Washer (APW)                     |  |  |
| Immersion Cleaner                              |  |  |
| Industrial Oil                                 |  |  |
| Paint Waste                                    |  |  |
| Parts Washer Solvent (PWS) 105+150             |  |  |
| Parts Washer Solvent 105R                      |  |  |
| Parts Washer Solvent 150                       |  |  |
| Parts Washer Solvent Sludge/Dumpster Mud (SDM) |  |  |
| Parts Washer Solvent Tank Bottoms (TB)         |  |  |

Overall, the majority of California data were consistent with the rest of the United States. 1,4DCB was less than the immersion cleaner LPL, whereas pH exceeded the UPL. For paint waste, TCE was less than the national LPL. For PWS 105+150, 1,4-DCB, 2-methylphenol, and benzene all exceeded the corresponding national UPLs. For PWS-SDM, pH exceeded the UPL. For PWS-TB, flash point was less than the national LPL.

For these waste streams and constituents, the California 90% normal UCLs (which can be used in place of the national values) were

| Constituents used in the Analysis |                |                |                   |                   |  |
|-----------------------------------|----------------|----------------|-------------------|-------------------|--|
| Waste Stream                      | Constituent    | CA UCL in mg/L | Nat'l UCL in mg/L | Reg Limit in mg/L |  |
| Antifreeze                        | PCE            | 272            | NA                | 0.7               |  |
| Auto Oil                          | PCE            | 696            | NA                | 0.7               |  |
| Auto Oil                          | Benzene        | 21             | NA                | 0.5               |  |
| Immersion Cleaner                 | 1,4-DCB        | 80             | 140               | 7.5               |  |
| Immersion Cleaner                 | pH             | 10.5           | 10                | 2-12.5            |  |
| Paint Waste                       | TCE            | 64             | 27.1              | 0.5               |  |
| Parts Washer Solvent 105+150      | 1,4-DCB        | .54            | <2.0              | 7.5               |  |
| Parts Washer Solvent 105+150      | 2-methylphenol | .44            | 1.8               | 200               |  |
| Parts Washer Solvent 105+150      | Benzene        | 8.7            | 2.2               | 0.5               |  |
| Parts Washer Solvent SDM          | pH             | 8.7            | 8.2               | 2-12.5            |  |
| Parts Washer Solvent TB           | Flash Point    | Too Few (n=2)  | . 145             | 140               |  |

These UCLs can be used in place of the national UCLs; however, I do not recommend use of the California UCLs for PCE in antifreeze and auto oil, because they are elevated due to a single outlying value. All analytical Tables are presented in the Appendices.

## References

- Fligner, M.A. and Wolfe, D.A. (1979). Nonparametric prediction limits for a future sample median. *Journal of the American Statistical Association*, 30, 78-85.
- [2] Guenther, W.C. (1975). The inverse hypergeometric a useful model. Statistica Neerlandica, 29, 129-144. Note: A statistical foundational paper useful in deriving nonparametric prediction intervals.
- [3] Guilbaud, O. (1983). Nonparametric prediction intervals for sample medians in the general case. Journal of the American Statistical Association, 78, 937-941.
- [4] Hahn, G.J. and Meeker, W.Q. (1991). Statistical Intervals : A Guide for Practitioners. Wiley, New York. Note: An excellent text on statistical prediction, tolerance, and confidence intervals.
- [5] Land, C.E. (1971), "Confidence intervals for linear functions of the normal mean and variance," Ann. Math. Stat., 42, 1187-1205.
- [6] Land, C.E. (1975) Tables of confidence limits for linear functions of the normal mean and variance. In, *Selected Tables in Mathematical Statistics*, Vol. III, American Mathematical Society, Providence R.I., pp 385-419.
- [7] Wilk, M.B., and Shapiro, S.S. (1968). The joint assessment of normality of several independent samples. *Technometrics*, 10, no 4. 825-839.

## Exhibit C-4

## Sample Testing Protocol

| Spent Material                                                                   | Test Parameters                                        | Test Methods                     |
|----------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------|
|                                                                                  |                                                        |                                  |
| Parts Washer Solvent                                                             | Flash Point by Pensky-Martens<br>Closed Cup Tester     | EPA SW846 1010                   |
|                                                                                  | рН                                                     | EPA SW846 9045                   |
|                                                                                  | Apparent Specific Gravity and<br>Bulk Density of Waste | ASTM D5057                       |
|                                                                                  | TCLP Metals                                            | EPA SW846 1311, 6010, 7470, 7471 |
|                                                                                  | TCLP Semi-Volatiles                                    | EPA SW846 1311, 8270             |
|                                                                                  | TCLP Volatiles                                         | EPA SW846 1311, 8260             |
| Bottom Sediment from the<br>Spent Parts Washer Solvent<br>Tank and Return & Fill | Same As Above                                          |                                  |
| Immersion Cleaner                                                                | Same As Above                                          |                                  |
| Paint and Paint Gun Cleaner<br>Waste                                             | Same As Above                                          |                                  |
| Aqueous Brake Cleaner                                                            | Same As Above                                          |                                  |
| Dry Cleaner Waste                                                                | Same As Above                                          |                                  |

### Annual Re-Characterization Sample Testing Protocol

Based on the process generating the waste streams outlined in the above table, 40 CFR 261.24 regulated herbicides and pesticides are not expected to be present; and are therefore, not included in the parameters tested under the Annual Re-Characterization Program.

Analysis is performed on a representative grab sample obtained from a single customer's waste container using a COLIWASA (Composite Liquid Waste Sampler) unless compositing is required by a facility-specific waste analysis plan.

## Exhibit C-5

# Sampling Procedures

## **Annual Re-characterization Sampling Instructions**

Good sampling practices are <u>critical</u> to the success of the Annual Re-characterization program. Please take your time when pulling samples, ensuring that all of the following requirements are fulfilled.

## **Training Requirements and Supporting Documentation**

## ✓ SAFETYFIRST!

- ✓ Personal Protective Equipment (PPE) Follow requirements in attached PPE Matrix
- ✓ Prior to shipping samples by FedEx Air, you must complete the following:
  - o IATA Dangerous Goods Regulations Training.
  - Sample shipping requirements are outlined in <u>BOG 0310-005</u> (US) and <u>OC310-005/OC310-005 FC</u> (Canada) and Clean Harbors <u>TC 8.0 Handling, Packaging, and Transporting Samples</u> policy

## Supply Checklist

**NOTE:** To minimize opportunity for contamination, all AR sampling supplies are to be stored in facility office building until needed for actual sampling.

- ✓ Disposable COLIWASA (SK P/N 8941)
- ✓ Disposable plastic scoop
- ✓ Disposable plastic bucket if composite required (e.g., 6 gallon SK P/N 706)
- ✓ Sample Kits
  - SK P/N 3419 Required for all dry cleaning related materials
    - SK P/N 82260 Required for all other samples
- ✓ Housekeeping Supplies
  - PIG® Universal Heavy-Weight Mat
  - PIG® Heavy-Duty Maintenance Wipes
  - Plastic garbage bags
- ✓ Non sparking tools
- Grounding and bonding equipment
- ✓ Paperwork and Packaging Supplies
  - Chain of Custody form
  - Pen and Sharpie Marker
  - Packaging Tape

## Pre-sampling Preparation

- ✓ Time allow 15 minutes per sample
- ✓ **IMPORTANT** Make arrangements with warehouse workers/material handlers to set aside containers from <u>different customers</u>. Each container sampled must be from a <u>different customer</u>.
- ✓ Place sample kit freezer packs in the freezer 24 hrs prior to sampling event.
- ✓ Purchase bags of ice to supplement the freezer packs if shipping samples in warmer weather
- ✓ Fill out Chain of Custody (COC) forms completely

## How to fill out the Chain of Custody (COC) Form

- 1. Complete all fields in the COLLECTION INFORMATION section
- 2. **IMPORTANT** Both the Customer Name(s) and Customer Number(s) associated with the container(s) being sampled must be documented on the COC.

In the event the analytical report shows atypical waste codes, we'll be able to track the sample back to the generator to discuss their specific process and possible source for contamination. Decision will need to be made regarding whether or not the generator's waste should remain as CORE, or is better handled through CWS.

- 3. A unique identification number must be assigned to each sample using the format *AR2017\_89DH ID\_sample description* (e.g., AR2017\_77WIB\_Premium Solvent, etc.).
- 4. The same number must be written on the associated sample jar custody label so that the lab can match-up paperwork with samples upon receipt.
- 5. The sample collector must sign the RELINQUISHED BY section and enter the date and time of shipment.
- 6. Enter the air bill number on the COC form and make a copy of the form for your records.

## <u>Sampling</u>

The majority of facilities' WAPs require "grab samples". A select few, however, require composite samples. See section below on how to obtain a composite sample.

The following table summarizes how samples are typically taken. Keep in mind, the waste streams required for sampling are permit specific (i.e., not every facility will be required to sample every stream outlined in the below table).

- Sampling Methods/Practices to be used
  - ASTM D5495 Standard Practice for Sampling with a Composite Liquid Waste Sampler (COLIWASA)
  - o ASTM D5633 Standard Practice for Sampling with a Scoop

| Sample Type                                    | Sampling<br>Location    | Sample Size/Kit                                  | Homogenization Technique                                                           | Sampling Device                                                                |
|------------------------------------------------|-------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Aqueous Brake<br>Cleaner                       | 5 gallon<br>poly carboy | 1 quart<br>TCLP kit                              | Grab sample using multiple<br>COLIWASA pulls or pour contents<br>into a new bucket | COLIWASA                                                                       |
|                                                |                         |                                                  | Stir/mix contents before sampling.                                                 |                                                                                |
| Dry Cleaner<br>Naphtha/PERC<br>Bottoms/Filters | Drum                    | 1 quart<br>DOT SP-9168<br>Exemption<br>Packaging | Grab sample<br>Stir/mix content of drum with<br>COLIWASA before sampling           | COLIWASA or<br>Scoop                                                           |
| Immersion Cleaner                              | Drum                    | 1 quart<br>TCLP kit                              | Grab sample<br>Stir/mix content of drum with<br>COLIWASA before sampling           | COLIWASA                                                                       |
| Paint Gun Cleaner<br>Paint Waste               | Drum                    | 1 quart<br>TCLP kit                              | Grab sample<br>Stir/mix content of drum with<br>COLIWASA before sampling           | COLIWASA                                                                       |
| Parts Washer Solvent<br>Bulk Tank              | Tank                    | 1 quart<br>TCLP kit                              | Grab sample                                                                        | Tank valve or<br>from tanker<br>using a<br>COLIWASA during<br>annual draw down |
| Dumpster Sludge<br>(APW and PWS)               | Return<br>and Fill      | 1 quart<br>TCLP kit                              | Grab sample<br>Stir/mix up Return and Fill bottoms<br>with scoop before sampling   | Scoop                                                                          |

Revised 3/1/2017 Rick Haskins

| Sample Type                   | Sampling<br>Location | Sample Size/Kit     | Homogenization Technique                                                                    | Sampling Device |
|-------------------------------|----------------------|---------------------|---------------------------------------------------------------------------------------------|-----------------|
| Tank Bottoms<br>(APW and PWS) | Tank                 | 1 quart<br>TCLP kit | Grab sample during tank clean out<br>Stir/mix up tank bottoms with scoop<br>before sampling | Scoop           |
| PWS 105                       | Drum                 | 1 quart<br>TCLP kit | Grab sample<br>Stir/mix content of drum with<br>COLIWASA before sampling                    | COLIWASA        |
| PWS Premium                   | Drum                 | 1 quart<br>TCLP kit | Grab sample<br>Stir/mix content of drum with<br>COLIWASA before sampling                    | COLIWASA        |
| APW                           | Drum                 | 1 quart<br>TCLP kit | Grab sample<br>Stir/mix content of drum with<br>COLIWASA before sampling                    | COLIWASA        |
| Antifreeze                    | Drum                 | 1 quart<br>TCLP kit | Grab sample<br>Stir/mix content of drum with<br>COLIWASA before sampling                    | COLIWASA        |
| Used Oil                      | Drum                 | 1 quart<br>TCLP kit | Grab sample<br>Stir/mix content of drum with<br>COLIWASA before sampling                    | COLIWASA        |

- 1. Bring all items in the *Equipment Checklist*, including frozen sample kit freezer packs/ice, with you to the sampling location.
- 2. Wear required PPE
- 3. Obtain a representative sample using a disposable plastic scoop or disposable COLIWASA

#### **IMPORTANT** – a new scoop or COLIWASA must be used for each sample pulled

- 4. Place all sampling debris in plastic garbage bag(s) and dispose of as Branch Generated Debris
- 5. Ensure the sample jar lid is tight. Seal the lid to the jar by wrapping with packaging tape.
- 6. Attach Custody Seal across the lid of the jar in such a way that the seal must be broken to open the jar. The Custody Seal must be signed by the sampler and contain the date, time the sample was pulled, and unique sample ID (ID must follow required format and match the ID written on the accompanying COC).
- 7. Place the sample jar(s) into a "Samples Only" refrigerator until ready to ship.
- 8. When ready to ship, place the quart sample jar into the TCLP kit with <u>frozen freezer packs</u>. Use additional bagged ice if shipping during warm temperatures. Close up the Styrofoam cooler and place the COC paperwork on top before sealing up the cardboard shipping box using shipping tape.

**IMPORTANT** - <u>Ship samples Monday thru Wednesday</u> via *FedEx Priority Overnight* to ensure they arrive Thursday or Friday when lab personnel are available to unpack and place in a refrigerator.

TestAmerica Laboratory Attention: Debra Bowen (412.963.2445) 301 Alpha Drive, RIDC Park Pittsburgh, PA 15238

# CRITICAL – SAMPLE(S) MUST ARRIVE COLD AND LAB MUST ANALYZE WITHIN 14 CALENDAR DAYS FROM THE DATE YOU PULLED THE SAMPLE(S). IF SAMPLES ARRIVE WARM OR EXCEED 14 DAYS, YOU WILL NEED TO RESAMPLE.

## Sampling using a COLIWASA

- Ensure the COLIWASA is functioning properly before use. Confirm that the stopper is securely attached to the plastic rod and provides a good seal when in the closed position.
- **OPEN** the COLIWASA and **SLOWLY** lower into the container until it touches the bottom. The COLIWASA must not be lowered with the stopper in the closed position. Opening the stopper after the tube is submerged will cause material to flow in from the bottom layer only, resulting in gross over-representation of that layer. If lowered too fast, a non-representative sample will result.
- When the COLIWASA touches the bottom of the container, pull up on the stopper mechanism to close the COLIWASA.
- Slowly withdraw the COLIWASA from the container while wiping the outside of the COLIWASA with a disposable wipe.
- Place the end of the COLIWASA into the 32-oz sample jar and discharge contents by slowly opening the stopper mechanism.

## Obtaining a Composite Sample (Only those branches that require a composite per permit)

- Use a <u>new</u> disposable plastic bucket
- Use a new COLIWASA for each customer container sampled
- For each customer container sampled, you'll actually need to pull the following two samples
  - Place one COLIWASA volume into the compositing bucket
  - Using the same COLIWASA, fill a <u>new</u> quart glass jar (SK P/N 8895). This sample jar needs to be labeled with the customer name and number associated with the container that is being sampled. This sample will serve as a retain in the event analytical on the composite shows atypical results and we need to analyze all associated customer samples. These retains need to be stored until analytical on the composite sample is reported.
- After sampling all customer containers, mix the contents of the bucket.
- Use a COLIWASA to pull a sample of the mixture from the bucket and submit this sample to TestAmerica following instructions above.

**Rick Haskins** VP Product Dev and Technical Support | Safety-Kleen | A Clean Harbors Company | Elgin, IL<u>rick.haskins@safety-kleen.com</u>

847.468.6766 (o) | 630.347.1093 (c) | 847.468.6770 (f) | safety-kleen.com

Safety-Kieen, PROTECTION-CHOICES-PEOPLE

## BRANCH PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

## WORKPLACE HAZARD ASSESSMENT SUMMARY 2015

| TASK                         | Ŷ                  |     | 1    | 5   |          | -3      |                     |                               |
|------------------------------|--------------------|-----|------|-----|----------|---------|---------------------|-------------------------------|
| AQUEOUS BLENDING<br>(MANUAL) | Yes (Np)           | Yes | Yes* |     | S.T w/M  | Goggles | Yes,<br>w/pneumatic |                               |
| AQUEOUS SERVICE -<br>COLD    | Yes (Np)           | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| AQUEOUS SERVICE -<br>HEATED  | Yes (Np)           | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| AQUEOUS TEST<br>ANALYSIS     | Yes (Nr or<br>Cp)  | Yes |      | Yes | S.T w/SR | Yes     |                     |                               |
| BRAKE CLEANING<br>(ABC)      | Yes (Np            | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| COOLANT SERVICE              | Yes (Np)           | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| CONTAINERIZED WASTE<br>(CWS) | Yes (Np)           | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| DRY CLEANER SERVICE          | Yes (Np)*          | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| GUN CLEANERS -<br>UNVENTED   | Yes (Np/<br>Cp)*   | Yes |      | Yes | S.T w/M  | Yes     |                     | APR=HF or<br>FF/Organic vapor |
| GUN CLEANERS -<br>VENTED     | Yes (Np/<br>Cp)*   | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| IMAGING SERVICE              | Yes (Np)           | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| IMMERSION CLEANER<br>SERVICE | Yes (Np)           | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| LIGHT BULB SERVICE           | Yes (Np)           | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| MATERIAL HANDLING            | Yes (Np)           | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| OIL SERVICE                  | Yes (PVC<br>or Np) | Yes |      | Yes | S.T w/SR | Yes     |                     |                               |
| PARTS WASHER<br>SERVICE      | Yes (Np)           | Yes |      | Yes | S.T w/M  | Yes     |                     |                               |
| RETURN/FILL<br>OPERATIONS    | Yes (Np)           | Yes | Yes* | Yes | S.T w/SR | Yes     | Yes,<br>w/pneumatic |                               |



Safety Starts with Me: Live It 3-6-5

## BRANCH PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

## WORKPLACE HAZARD ASSESSMENT SUMMARY 2015

| TASK                           | Ŵ                  |     | 1    |     |               | -31 |                   |                                         |
|--------------------------------|--------------------|-----|------|-----|---------------|-----|-------------------|-----------------------------------------|
| RETURN PRODUCT<br>SERVICE      | Yes (Np)           | Yes |      | Yes | S.T w/M       | Yes |                   |                                         |
| SAMPLING - FIELD               | Yes (Nc)           | Yes | Yes* | Yes | S.T w/SR      | Yes |                   | APR=FF/ ORG.<br>vapor/acid gas          |
| SPILL RESPONSE<br>(INCIDENTAL) | Yes (Np)           | Yes | Yes* | Yes | S.T w/SR      | Yes |                   | APR=HF or FF/<br>ORG.<br>vapor/acid gas |
| TANK TRUCK<br>LOAD/UNLOAD      | Yes (PVC<br>or Np) | Yes |      | Yes | S.T w/SR      | Yes |                   |                                         |
| TANK TRUCK TOP<br>SAMPLING     | Yes (PVC<br>or Np) | Yes |      | Yes | S.T w/SR      | Yes |                   |                                         |
| VAC SERVICE                    | Yes (PVC<br>or Np) | Yes |      | Yes | S.T w/SR      | Yes | Yes,<br>w/pump on |                                         |
| VISITOR IN OPS AREAS           |                    |     |      | Yes | Closed<br>toe | Yes |                   |                                         |
| WWF SERVICE                    | Yes (Nc)*          | Yes |      | Yes | S.T w/SR      | Yes |                   |                                         |

Service Reps - must have Safety Vest available

#### GLOVES

Cr = Cut Resistant glove (work glove) Cr\* = Cut Resistant glove (if chemical present – Supported Neoprene) Np = Supported Neoprene Glove (Outer Glove) Nr = Nitrile (8ml) glove Cp = Chloroprene (5ml) (Inner Glove) (Np)\* = discard if show signs of breakthrough (breakthrough = discoloration, swelling, stiffness, etc.) PVC = Poly Vinyl Chloride (Insulated option) PVC = Poly Vinyl Chloride (Insulated option) Nc = Nitrile Coated (work glove) (Nc/Cp)\* = discard if show signs of breakthrough (breakthrough = discoloration, swelling, stiffness, etc.) APRON FOOTWEAR **RESPIRATOR / CARTRIDGE TYPE** Tychem QC apron w/ sleeves\*= discard if S.T. w/M = Steel Toes with Metatarsal Guard APR = half face (HF) or full face (FF) air purifying respirator show signs of breakthrough (breakthrough S.T. w/SR=Steel Toes with Slip Resistant Soles (facial hair shall not come in contact with the face piece seal)

## = discoloration, loss of coating, stain on inside of apron, etc.)

#### Parts Number - Arbill

Gloves - Cr – Kevlar Shell Nitrile Palm A14240, Np-SK 612, CP-151433, PVC - A141360, Nc-14056, Nr -151943. Respirator/Cartridge Type – HF-A500603, FF - A505820, Organic Vapor/Acid Gas- A500710, Organic Vapor – A500730,

Apron – Tychem QC apron w/sleeves – Medium – QC275BYLMD002500, Large – QC275BYLLG002500, Ex. Large – QC275BYLXL002500. Hard Hat – 475360-BL27128 - BL6400. Safety Vest – A209283. Goggles – A303630. Hearing Protection – Muffs – A401800, Plugs – A403770.

#### Parts Number – Century Vallen

Gloves - Cr – Kevlar Shell Nitrile Palm EDM 11-500, Np-SK 612, Cp – GLONPG888-M, PVC-EDM 4-412, Nc-EDM 37-145, Nr-BST 8005PF-L Respirator/Cartridge Type – HF-3MS 6200, FF-3MS 6800, Organic Vapor/Acid Gas/HEPA-3MS 60923, Organic Vapor/HEPA-3MS 60921, HEPA - 3MS 2096, Dusk Mask - 3MS8511.

Apron – Tychem QC apron w/sleeves - LAK 527. Hard Hat – DSI HP542R -02 – SK Logo. Safety Vest – NORTV52B4/(SIZE). Goggles – UVXS700C. Hearing Protection – Muffs – PLT H10A. Plugs – EAR 312 – 1201.



Safety Starts with Me: Live It 3-6-5

A Clean Harbors Company

Tab 5 Part II.B

### Part II

## B. CONTAINERS

## CONTAINMENT SYSTEM

The container storage areas are shown in Figure 8.1-1 occupies the southern portion of the warehouse building area which has a sloped concrete floor, and collection trench to form a spill containment system. The system is maintained. Spills are removed by a hand-held portable electric pump (the coms pump), wet-dry vacuum cleaner, or sorbent materials. The capacity of the containment system is designed to be greater than 10 percent of the total liquid storage capacity in the drum storage area. Since the characteristics of the stored wastes are known, no analyses are performed for the materials collected from the containment area. All collected materials are sent to a permitted recycling or reclamation facility.

Only in the event that a spill was to exceed the containment capacity would spilled wastes be to extend beyond the containment area. Only six openings (doorways) exist in the container storage area. Four of these lead to other containment areas (i.e., the return/fill station and the enclosed concrete dock (Figure 8.1-1)). The other two doorways are located on the east side of the container storage area. Due to the volume of containment available and the configuration of the container storage area, it is highly unlikely that any spill would extend beyond this area.

The containment volume is composed of the warehouse sloped concrete floor and the collection trench. The total containment volume is 2,996 gallons. The types and number of each container may vary; however, total volume of product and waste stored will not exceed the maximum volume of 29,400 gallons. The estimated maximum storage volume of hazardous waste is 6,912 gallons. Containment calculations along with a container storage area integrity assessment are provided in Appendix C.

The containment areas have been coated with Sikaguard® 62 or equivalent. Other coatings may be used in the future and will be evaluated by Safety-Kleen to ensure, when properly applied, they are capable of withstanding the products handled by Safety-Kleen. Inspections of the sealant in the containment areas will be conducted as part of the facility inspection plan. If the sealant is found to be worn or deteriorated such that repairs are warranted, the sealant will be repaired in accordance with the manufacturer's specifications.

#### **Container Movement**

In the container storage area, containers are handled with a hand-truck or forklift that is free of sharp points. Every time a drum is moved, a chance exists that it will be tipped over, dropped, or punctured. To minimize the possibility of spillage, containers are tightly covered and kept in an upright position. A small portable electric pump is available to quickly transfer the liquid from any leaking container into another safe container. Each route truck is equipped with a lift-gate or an electric hoist. These devices are used in the loading/unloading operation to minimize chances for spillage and/or employee injury. Drummed waste containers are loaded for transport to a Safety-Kleen/Clean Harbors TSDF at the enclosed concrete dock at the southeast corner of the building. Incoming waste containers are unloaded on the dock at the return/fill station, and also at the bay door on the east side of the building. Parts washer solvent containers are unloaded at the return/fill station dock, and then dumped into the return/fill dumpsters within 24 hours of arrival at the facility.

All containers are transported, moved, and stored carefully in an upright position. Containers are palletized whenever possible to facilitate shipping and storage. Pallets may be stacked up to seven feet, or two high (whichever is higher), while in storage. This will prevent the containers from contacting any standing liquid while they are in storage. The containers will be arranged so that at least two-foot aisle space exists between all rows of pallets such that all containers can be readily visible for inspection and handling.

#### INCOMPATIBLE, IGNITABLE, AND REACTIVE WASTE MANAGEMENT

All materials are managed in accordance with the local fire protection code and fire department recommendations. All ignitable wastes are stored at least 50 feet from the property line. Per 40 CFR Part 264.177(a), incompatible wastes, or incompatible wastes and materials, must not be placed in the same container, unless 40 CFR Part 264.17(b) is complied with. The facility does not routinely manage unwashed containers that may previously have held materials that would be incompatible with wastes stored at the facility. Also, the used parts washer solvents and used aqueous parts washer solvents consist of materials that are compatible and suitable for bulking.

#### **Procedure for Managing Waste Types**

The solvents stored at this facility are typically compatible with each other and with other materials handled at this facility. In some isolated instances, special waste segregation

procedures may be necessary at this facility. The USDOT segregation table, found in 49 CFR Part 177.848 is used as a guideline for storage of hazardous materials at the facility. Wastes are stored primarily in polyethylene and steel containers. Immersion cleaner, dry cleaner, paint waste, and FRS (transfer) waste containers are never opened at the branch. Overpack containers are used for the management of containers whose integrity has been compromised. For ease of inventory control and product integrity, separation and grouping of both used and unused solvents is a standard practice at the branch. All containers are designed and constructed to be compatible with the stored material and to minimize the possibility of breakage and leaking, in accordance with USDOT shipping container specifications.

#### **Potential Fire Sources**

The following is a list of fire prevention and minimization measures:

- All wastes and products are kept away from ignitable sources Personnel must confine smoking and open flames to the Branch designated area which is located outside the front door of the office area. No other smoking areas are designated. The parts washer solvent handling area and the aboveground storage tanks are separate from the warehouse area to minimize the potential for a fire to spread or injury to personnel to occur.
- 2. Ignitable wastes are handled so that they do not:
  - Become subject to extreme heat or pressure, fire, explosion, or a violent reaction

     The parts washer solvent waste is stored in a tank or in containers, none of
     which are near sources of extreme heat, fire, potential explosion sources, or
     subject to violent reactions. The tanks are vented and the containers kept at room
     temperature to minimize the potential for pressure build-up.
  - Produce uncontrolled toxic mists, fumes, dusts or gases in quantities sufficient to threaten human health – The vapor pressure of petroleum-based parts washer solvent is low (2 mm-Hg) and it is reactive with strong oxidizers only. Toxic mists, fumes, dusts, or gases will not form in quantities sufficient to threaten human health since strong oxidizers are carefully segregated at this facility and the solvent vaporization will be minimal under normal working conditions.
  - Produce uncontrolled fire or gases in quantities sufficient to pose a risk of fire or explosion See above and below.
  - Damage the structural integrity of the Safety-Kleen facility The solvents stored at this facility will not cause deterioration of the tank, containers, or other structural components of the facility.

- 3. *Adequate aisle spacing is maintained* to allow the unobstructed movement of personnel, fire protection equipment, and decontamination equipment to any area of the facility operation in an emergency.
- 4. "NO SMOKING" signs are posted in areas where solvents are handled or stored.
- 5. *Fire extinguishers are inspected* weekly by Branch personnel.

### **External Factors**

The design of the facility is such that a harmful spill is highly unlikely to occur from most external factors. The storage tanks are inaccessible to non-Safety-Kleen personnel and the pump switches are located inside. Also, the container storage area is in a building which is inaccessible to unauthorized personnel.

- 1. *Vandalism* Only extreme vandalism would result in a solvent spill or fire. Responses to spills and fires are described in the Contingency Plan (Section 5)
- 2. Employee Strikes A strike would not result in a solvent spill or fire.
- 3. *Power Failure* A power failure would not result in a spill or fire. Should a power failure occur, all activities requiring electricity will cease.
- 4. Flooding The site elevation is above the projected 100-year floodplain.
- 5. *Storms or Cold Weather* The solvent return/fill station is covered to eliminate the possibility of rain or snow entering the dumpsters. No opportunity is foreseen to affect the facility with snow, cold weather, or storm weather.
- 6. Hurricanes Facility will follow the procedures within the contingency plan.

## CONTAINER MANAGEMENT

### **General Protocols**

Container management is of paramount importance to Safety-Kleen. All containers are routinely inspected to ensure that the containers are in good condition. If rusting or structural defects are visible, or if the container begins to leak, the contents of the container are immediately transferred to a new sound container. Overpack containers are commonly used for the management of containers whose integrity has been compromised.

Hazardous waste containers are always kept closed during storage except when adding or removing waste. Containers are not handled or stored in a manner that could potentially cause a rupture or leak.

#### Specific Waste Stream Containers

Parts washer solvent is collected in containers and generally emptied into the wet dumpster at the return/fill station (which is piped to the tank farm). The containers are designed and constructed to be compatible with the stored material and to minimize the possibility of breakage and leaking, in accordance with DOT shipping container specifications.

The immersion cleaner is always contained in partially filled covered containers before, during, and after its use. Until received at the recycle center, the immersion cleaner is never transferred to another container. The containers of used immersion cleaner are returned to the facility and stored in the designated container storage area before shipment to a permitted Safety-Kleen/Clean Harbors TSDF.

Dry cleaning waste is stored in steel or polyethylene containers and consists of perchloroethylene-based waste and naphtha-based waste. The contents of the dry-cleaning waste containers are not removed or processed at the Medley Branch. It is stored as permitted or transfer waste prior to shipment to a permitted Safety-Kleen/Clean Harbors TSDF.

Paint wastes consist of various lacquer thinner and paints. The waste is collected in containers at the customer's location and the containers are then stored in the container storage area or transfer area of the warehouse. The paint wastes are sent to a permitted Safety-Kleen/Clean Harbors TSDF.

FRS/Transfer wastes are stored in steel, polyethylene, and fiberboard containers that are compatible with the material in them. FRS wastes are managed as transfer wastes.

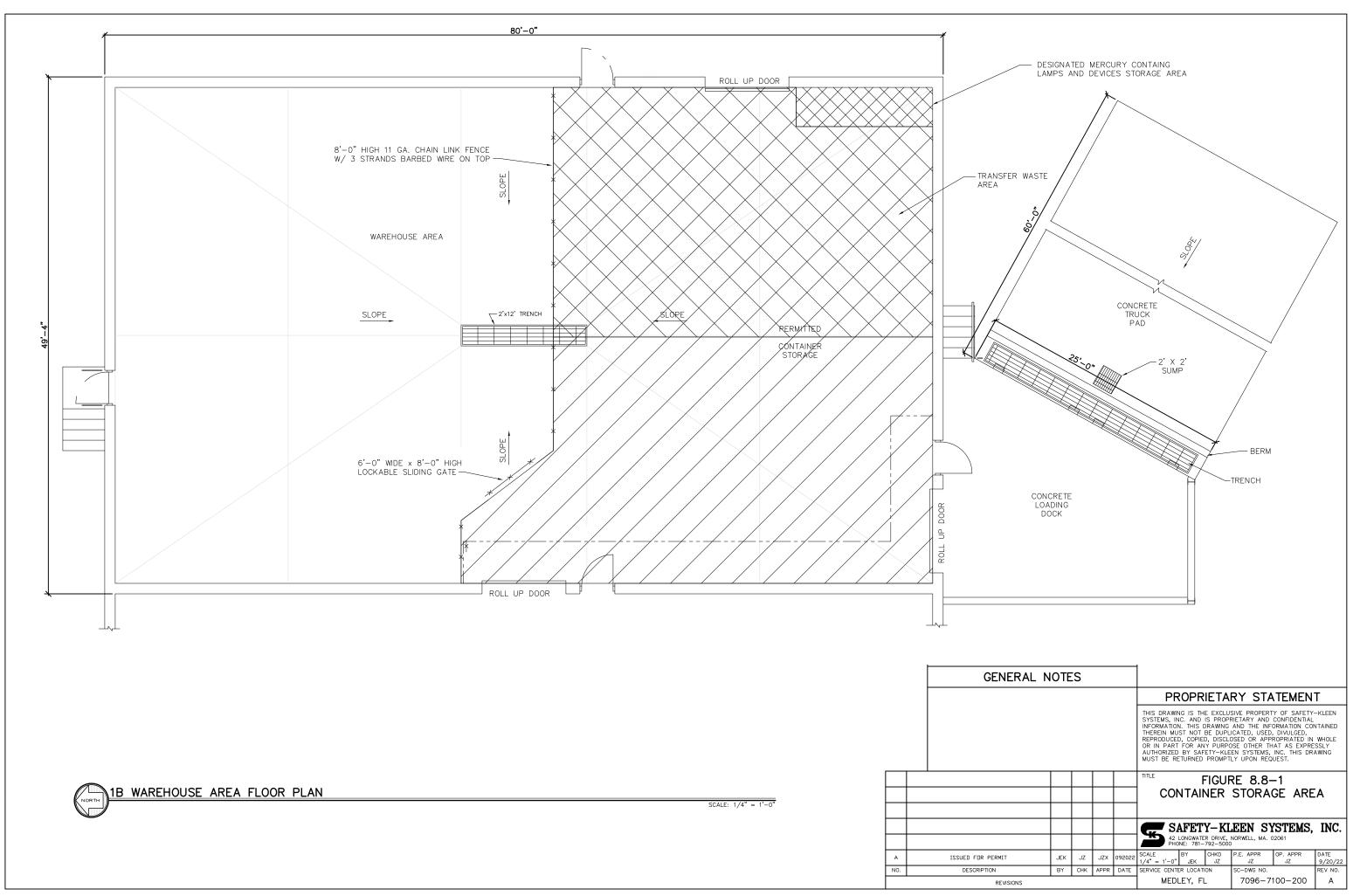
As part of its protocol for handling mercury-containing lamps and devices destined for recycling, the Branch provides customers with four-foot and eight-foot boxes which hold up to 39 lamps. Other DOT approved containers are used for mercury devices. Boxes are inspected prior to transport from the customer to the Branch. Boxes containing broken lamps are not accepted by Safety-Kleen. If the lamps are broken while in transit or the custody of Safety-Kleen, the entire contents of the box are sealed in plastic shrink wrap or transferred to another container and closed. The boxes are picked up at customer locations and are stored at the Branch in the transfer waste areas. The boxes used to store mercury-containing lamps and devices are labeled

in accordance with Florida Administrative Code (FAC) 62-737.400(5)(b). The boxes are periodically shipped to a permitted mercury recovery or reclamation facility.

## **CONTAINER INSPECTION**

The purpose of the container inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation, maintain compliance, and prevent the release of hazardous wastes to the environment. The Branch Manager or designee is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule.

Inspections are completed electronically (CO CSA Inspection). In the event the electronic inspection system is unavailable they may be completed on paper. Examples of the Inspection Logs for the container storage area, transfer areas, and associated loading/unloading areas are presented at the end of Part II.B. Daily container storage area inspections include the following:


- Verify that total volume is within the permitted limits;
- Physically examine the condition of containers to verify that leaks have not occurred since the last inspection;
- Verify that all container identification, dates, and hazardous waste labels are attached and current;
- Inspect container placement and stacking such as aisle space, height, and stability of stacks; and
- Examine containment areas to detect signs of deterioration and failure of the containment system such as cracks, breakage, settlement, and spillage.

As deficiencies are detected, the Branch Manager will ensure that they are remedied promptly. Any deficiencies which could create an environmental or human health hazard will be rectified immediately.

Other inspections at the facility include those performed on a weekly basis for the security systems. These inspections are described in the contingency plan.

## CONTAINER STORAGE AREA CLOSURE PLAN

The container storage area closure plan and closure cost estimates are provided as part of the overall closure plan for the facility in Part II K.



-91 8:00am 7005-0.D



## CO Branch Generated Hazardous Waste Container Inspection Log

| Form Code: 1423          |  |
|--------------------------|--|
| Compliance Header        |  |
| Inspector Name           |  |
| Area of Inspection       |  |
| Inspection Date and Time |  |
|                          |  |

CO Branch Generated Hazardous Waste Inspection Instruction

Note the condition of inspection items. Note the number and capacity of branch generated hazardous waste containers ony (10-day transfer containers collected from customers do not apply). All unsatisfactoryf findings must be explained below. Include any repairs, changes, or other remedial actions required or performed.

## CO Branch Generated Hazardous Waste Container Inspection Log Items

| Number of branch generated hazardous waste                                                         |  |
|----------------------------------------------------------------------------------------------------|--|
| containers in storage area:                                                                        |  |
| Capacity of branch generated hazardous waste containers in storage area (16, 30, 55, 85, etc.):    |  |
| Notation of observations made (acceptable/not acceptable condition, correct labels, leaking, etc.) |  |
| Compliance Footer                                                                                  |  |
| Inspector Signature                                                                                |  |
| Attach Photo                                                                                       |  |
| Inspection Overall Assessment                                                                      |  |



## CO CSA Inspection

Form Code: 28

| Compliance Header        |  |
|--------------------------|--|
| Inspector Name           |  |
| Area of Inspection       |  |
| Inspection Date and Time |  |
|                          |  |

## CO CSA Inspection Instructions

Note condition of inspection items. If item does not apply to an area, mark N/A. All unsatisfactory findings must be explained below. Include any repairs, changes or other remedial actions required or performed.

| CO CSA Inspection Items                                                                                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Container Placement and Stacking - Check for evidence of failure (e.g., containers on pallets, pallets too high, unstable, other).                                                                                           |  |
| Sealing of Containers - Check for evidence of failure (e.g., containers not closed or sealed, open).                                                                                                                         |  |
| Labeling of Containers - Check for evidence of failure (e.g., no label, improper label, content, other).                                                                                                                     |  |
| Container Integrity - Check for evidence of<br>failure (e.g., condition, bulging, leaks, rust,<br>corrosion, other). Containers do not have<br>waste/staining on the outside which would<br>require cleaning or overpacking. |  |
| Pallets - Check for evidence of failure (e.g., broken, loose, condition).                                                                                                                                                    |  |
| Doors - Check for evidence of failure (e.g., indoor area, broken or not working as intended).                                                                                                                                |  |
| Base/ Foundation/ Roof - Check for evidence of failure (e.g., cracked, gaps, other).                                                                                                                                         |  |
| Berms/ Racks - Check for evidence of failure (e.g., cracks, gaps, broken, other).                                                                                                                                            |  |

| Site Generated Waste - debris, used<br>absorbents, used PPE, aerosols, etc Check<br>for evidence of failure (e.g., waste not<br>containerized, proper storage location,<br>container type, container label, other).                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Exit Signs - Check for evidence of failure (e.g. missing, lamps, battery backup, other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Aisle Space - Check for evidence of failure (e.g., minimum 2 ft required, other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Containment Area - Check for evidence of failure (e.g., secondary containment, curbing, floor, cracks, deterioration, ponding or wet spots, other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Sumps - Check for evidence of failure (e.g.,<br>cracks, ponding or wet spots, pitting or<br>deterioration, other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Loading/ Unloading Areas - Check condition of<br>area (e.g., no free liquid, ponding or wet spots,<br>available spill equipment, spill equipment<br>location, spill kit supply and inventory is<br>adequate, containment deterioration, leaks, pad<br>condition, valve access box, housekeeping,<br>other).                                                                                                                                                                                                                                                                                                                                  |  |
| Communication and Alarm System - Check for evidence of failure (e.g., test function, siren, strobe, other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Storage Capacity - Check for acceptable limit (e.g., area or permit retrictions, type restriction, volume limit, other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Bonding and Grounding - Check for evidence of failure (e.g., loose, broken, corrosion or deterioration, other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Pumps - Check for evidence of failure (e.g., deterioration or broken, leaks, other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Inventory Age - Check for acceptable limit (e.g., within area limits, permit restrictions, other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Satellite Accumulation Containers - Check for evidence of failure (e.g., container open, >55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| other).<br>Communication and Alarm System - Check for<br>evidence of failure (e.g., test function, siren,<br>strobe, other).<br>Storage Capacity - Check for acceptable limit<br>(e.g., area or permit retrictions, type restriction,<br>volume limit, other).<br>Bonding and Grounding - Check for evidence of<br>failure (e.g., loose, broken, corrosion or<br>deterioration, other).<br>Pumps - Check for evidence of failure (e.g.,<br>deterioration or broken, leaks, other).<br>Inventory Age - Check for acceptable limit (e.g.,<br>within area limits, permit restrictions, other).<br>Satellite Accumulation Containers - Check for |  |

| gallons, label, other).                                                                    |  |
|--------------------------------------------------------------------------------------------|--|
| Spill Equipment - Check that spill equipment is                                            |  |
| available, clean, and ready for use. Spill                                                 |  |
| equipment is placed in the correct location. Spill equipment includes the correct types of |  |
| equipment in sufficient quantities.                                                        |  |
| Additional Comments or Notes                                                               |  |
| Comments                                                                                   |  |
| Compliance Footer                                                                          |  |
| Inspector Signature                                                                        |  |
| Attach Photo                                                                               |  |
| Inspection Overall Assessment                                                              |  |

Tab 6 Part II.C

## Part II

C. TANK SYSTEM

### ENGINEERING ASSESSMENT OF TANK SYSTEM

A formal tank integrity inspection of the 20,000-gallon RCRA Permitted Hazardous Waste Tank (Used Solvent) was performed on July 21, 2022. A copy of that inspection report is included at the end of Part II C.

## TANK SYSTEM SPECIFICATIONS

There are five aboveground steel tanks at the facility located inside the permitted tank storage unit (Figure 9.2-1). Four of these tanks are all vertical and the oily water tank is horizontal. Hazardous waste used parts washer solvent is returned from Safety-Kleen's customers in containers and the solvent is transferred via the wet dumpsters into the 20,000-gallon RCRA Permitted Hazardous Waste Tank (Used Solvent), prior to bulk shipment to permitted Safety-Kleen TSDF. The other four tanks; include one 20,000-gallon tank (Clean 150 Solvent), one 20,000 and one 15,000-gallon Used Oil tank, and one 10,000-gallon oily water tank. Of the five AST's located within the Permitted Tank Storage Unit, the only hazardous waste permitted tank is the RCRA Permitted Hazardous Waste Tank (Used Solvent). The other four AST's, while not RCRA regulated, are registered per Chapter 62-762, F.A.C. with the Facility ID No. 9300106 All of the tanks are grounded.

## Material Compatibility

Waste stored in the RCRA tank at this facility is used parts washer solvent. The parts washer solvent is compatible with the mild steel tank structure. As with all petroleum storage vessels, water will accumulate over time due to condensation and the water will accumulate in the bottom of the tank.

## Tank Operation Procedures and Design

Used parts washer solvent is returned from customers via containers and poured into the wet dumpsters which have barrel washers enclosed within them. The container is then placed on roller brushes within the barrel washer. As the machine is turned on, the container rotates on the brush and the outside of the container is cleaned. A nozzle in the barrel washer sprays a stream of solvent into the bottom of the container to flush the inside of the container. The machine is then turned off and the container is allowed to sit for a few seconds so residual solvent drops to the bottom of the wet dumpster, then removed. This process takes several seconds per container. The container is then refilled with clean solvent using a pump and nozzle assembly similar to a gasoline dispenser. The waste is transferred from the wet dumpster to the RCRA Permitted Hazardous Waste Tank (Used Solvent) via piping and a pump.

The used parts washer solvent is fed to a sump in the bottom of the wet dumpster and automatically pumped to the RCRA Permitted Hazardous Waste Tank (Used Solvent). A basket within the sump collects sludge from the cleaning operations. This sludge is removed daily at the end of the drum cleaning operations and placed into a satellite accumulation container next to the wet dumpsters. The wet dumpsters are located in the return/fill station, which is underlain by a secondary containment structure.

The RCRA Permitted Hazardous Waste Tank (Used Solvent) is designed and constructed to be compatible with the materials stored. The tank has an 8-inch Flanged Emergency Pressure Relief Vent and pressure/vacuum vent that were installed in accordance with National Fire Protection Association (NFPA) standards and is equipped with a high-level alarm. A 3" emergency gate valve is located at the base of the tank where the outgoing piping is threaded into the tank. The tank seams are lapped with full fillet welds. The weld was performed with an E70 electrode and can withstand a 4-psi air pressure test (which is performed by the manufacturer). The RCRA Permitted Hazardous Waste Tank (Used Solvent) was installed new in 1992. The tank is aboveground, supported by an 8-inch skid placed on the 8-inch concrete foundation slab. Therefore, no surface run-on will contact the wastes stored at the site and no run-off collection system is required. To minimize the amount of precipitation that may collect inside the containment area, a metal canopy has been installed over the Permitted Tank Storage Unit. If rainwater does accumulate in the containment area and it has been verified that no spill has occurred, the rainwater will be discharged to the ground surface. Only the Branch Manager or someone operating under his/her direct orders may discharge to the ground surface. If it is not possible to verify that a spill has occurred, the rainwater will be disposed of in the wet dumpsters.

#### **Controls and Spill Prevention**

The permitted tank storage unit and the return/fill station have been sealed with a chemical resistant coating. The RCRA Permitted Hazardous Waste Tank (Used Solvent) has been fitted with a Moormann Analog Automatic Tank Gauge (information on the gauge is provided at the

end of this section). Level gauges are used to measure liquid levels in tanks. Float switchactivated automatic high level alarms (which consist of a strobe light and siren) signal the tanks being 95% full. This alarm allows an operator more than two minutes to stop operations and avoid overfilling the tank. The gauges of the tank are read before filling the tank with additional material. Tank level readings are also taken prior to the filling of a tanker truck to prevent overfilling of the truck or tank. A tanker truck provided with a suction pump is used to withdraw used parts washer solvent from the tank. No other equipment or standby equipment is used in the operation of the above-ground tanks. The tank should be operated at a maximum volume of 19,000 gallons (95% of capacity). The secondary containment under the tanks and return/fill shelter is cleaned within 24 hours of a spill, or in as timely a manner as possible, to prevent harm to human health and the environment.

2" single-walled steel piping from the wet dumpsters in the return/fill shelter to the top of the RCRA Permitted Hazardous Waste Tank (Used Solvent) is connected by threaded connectors. This piping runs under the dock and leaves the Return/Fill shelter on the north side of the building. At that point, the piping system continues north towards the permitted tank storage unit and is outside secondary containment (this part of the system has welded connectors). Once it reaches permitted tank storage unit secondary containment the piping, with threaded connectors, runs vertical to the top of the tank.

The piping system leaving the tank is constructed of 3" single-walled steel and is inside secondary containment. Figure 9.1-1 found in at the end of this section details the system.

#### Leak Detection System

The Safety-Kleen Medley branch has installed an automatic leak detection system at the permitted tank storage unit for the RCRA Permitted Hazardous Waste Tank (Used Solvent). This system will enable detection of leaks, or releases, to the secondary containment 24-hours a day. The system consists of an Intellipoint sensor, which is placed on the wall of the permitted tank storage unit secondary containment just above the floor. The sensor detects the presence or absence of liquids. It will be monitored 24-hours a day, seven days a week, by a 3<sup>rd</sup> party (Protection One). If the sensor detects liquid it will immediately send a warning notice to Protection One, who will then immediately call the emergency coordinator for the Medley branch. This system will allow continuous leak detection monitoring when the facility is not occupied.

#### IGNITABLE OR REACTIVE WASTE REQUIREMENT (40 CFR PART 264.198(b))

The owner or operator of a facility where ignitable or reactive waste is stored or treated in a tank must comply with the requirements for the maintenance of protective distances between the waste management area and any public ways, streets, alleys, or an adjoining property line that can be built upon as required in Tables 2-1 through 2-6 of the National Fire Protection Association's "Flammable and Combustible Liquids Code," (1977 or 1981), (incorporated by reference, see Sec. 260.11) (264.198(b)).

#### TANK SYSTEM SECONDARY CONTAINMENT

#### Tank Containment

All tanks are aboveground, underlain by a 58' x 40' concrete slab, surrounded by a 36¼" to 38" concrete dike and are covered by a metal canopy. No surface run-on or precipitation will come into contact with the wastes stored in the permitted tank storage unit and no run-off collection and management system is deemed necessary. The layout of the permitted tank storage unit is shown in Figure 9.2-1, found at the end of this section. Permitted tank storage unit and Return/Fill Shelter containment calculations are shown in Appendix C. The containment system in the permitted tank storage unit has been coated with Sikaguard® 62 or its equivalent, and is free of cracks. It is sufficiently impervious to prevent seepage into and through the concrete. Concrete is fully compatible with the waste stored. Inspections of the sealant will be conducted as described in the Tank System Inspections. If the sealant if found to be worn or deteriorated such that repairs are warranted, the sealant will be repaired in accordance with the manufacturer's specifications.

#### **Return/Fill Containment**

The return/fill shelter (Figure 9.3-1) is located between the office and warehouse. The floor is sloped to a containment trench located in the center of the return/fill shelter. The entire floor is coated with a chemical resistant coating. Two wet dumpsters are located on a raised grating, which measures 54<sup>1</sup>/<sub>4</sub>' x 80'. These wet dumpsters handle the flow of used parts washer solvent to the RCRA Permitted Hazardous Waste Tank (Used Solvent). These dumpsters are not intended for storage but can hold a maximum of 504 gallons per dumpster.

The area is designed such that the route trucks can be backed into the return/fill shelter and up to the grated dock. The roof extends over the truck unloading area so that no precipitation can get into the return/fill shelter containment area. Return/Fill Shelter containment calculations are found in Appendix C. This area is mainly used to load/off-load containers, dump used solvent, clean parts washer drums and store clean parts washer solvent containers. Waste container storage does not take place at the Return/Fill Shelter. Any waste containers off-loaded in this area are moved to their proper storage location within 24 hours.

### TANK SYSTEMS INSPECTIONS

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation and maintain compliance. The Branch Manager or that person's designee is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule. Inspections are completed electronically (CO Tank Systems Inspection, CO Return and Fill Area). Examples of the Daily Inspection Logs are found at the end of Part II.C. Daily inspections of the tank and dumpsters will consist of the following:

- Check volume (liquid level) in tank.
- Observe tank exterior for loose anchoring, wet spots, leaks.
- Check the automatic high-level alarm. In addition, measure the depth of used solvent in the tanks to confirm the proper functioning of the automatic alarm system and to determine unexpected deviations in tank measuring data, or a sudden drop in liquid level, which may indicate leakage.
- Inspect secondary containment coating, walls, and piping (All piping is above ground).
- Inspect transfer pumps for leaking seals and overheated motors.
- Inspect the solvent dispensing hose, fittings, and valve for any leaks, damage, or wear that could cause a leak to develop.
- Inspect the valves for evidence of leaking. Stem leaks from worn glands and warped valve bodies should be repaired. If the valve cannot be repaired, replace the unit.

Also, the tanks will be visually inspected and tested periodically. The period of time between tank integrity inspections for the RCRA Permitted Hazardous Waste Tank (Used Solvent), including shell thickness testing, will not exceed ten years. This time frame for tank inspection is

adequate based on Safety-Kleen's experience at its other facilities in Florida. Daily inspection of the solvent return receptacle (wet dumpster) will consist of an inspection for leaks and excess dumpster mud build-up.

### TANK SYSTEM CLOSURE AND CONTINGENT POST-CLOSURE PLAN

The tank system closure plan is provided as part of the overall closure plan for the facility in Part II K. As discussed below, a contingent post-closure plan for the tank is not required.

## TANK SYSTEM CONTIGENT POST-CLOSURE PLAN

The tank system at the Medley facility meets the secondary containment requirements of 40 CFR 264.193, and is, therefore, not required to have a contingent post-closure plan under 40 CFR 264.197(c). In addition, Safety-Kleen intends to remove or decontaminate all tank system components, associated containment systems, and contaminated soils, if any, at the time of closure. However, should future conditions indicate that all contaminated soils and tank system components cannot practicably be decontaminated or removed, then a plan to perform post-closure care in accordance with the post-closure care requirements that apply to landfill (40 CFR 264.310) will be prepared for implementation upon FDEP approval.

## **RESPONSE TO LEAKS AND DISPOSITION OF UNFIT-FOR-USE TANK SYSTEMS**

In the event that a leak or spill were to occur from a tank system or secondary containment system, the actions identified herein will be undertaken.

### Immediate Response

All waste flow to the tank system in question will be ceased immediately. An inspection will be undertaken to identify the cause of the release. Waste flow to the tank system will not resume until the tank system has been inspected, repaired, and declared fit for use. In order to prevent further releases, or to allow inspection and a repair of the system, it may be necessary to remove the waste from the tank system. This waste removal will occur within 24 hours after detection of the leak, or at the earliest practicable time.

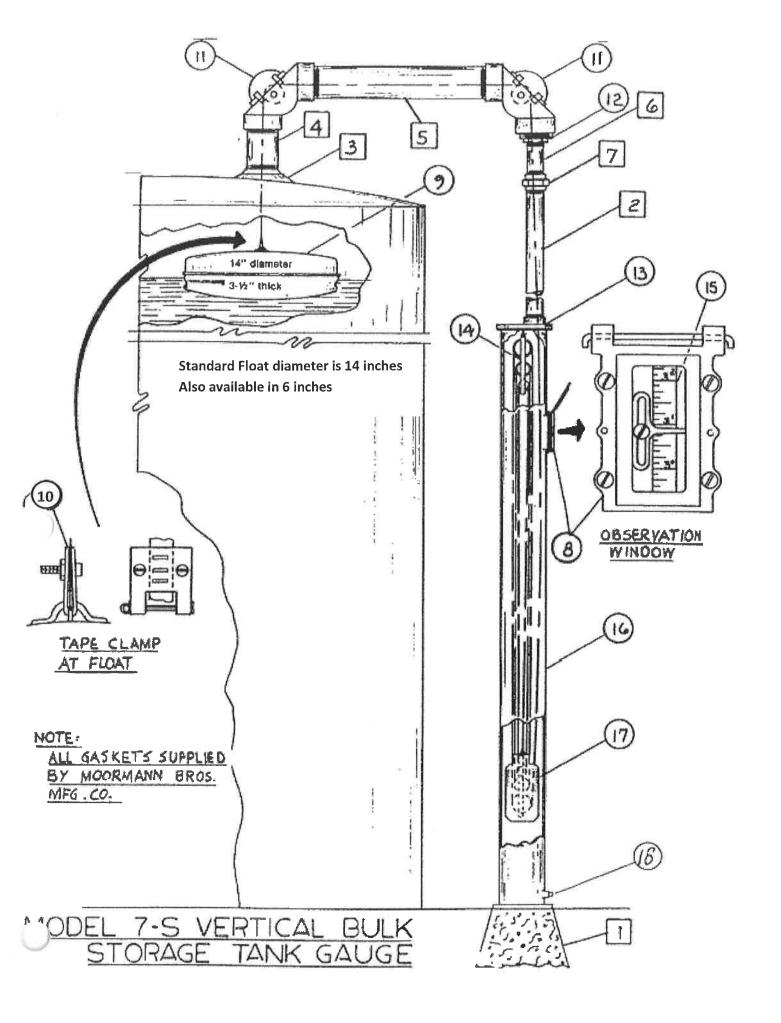
All material released to the secondary containment area will be removed within 24 hours, or in as timely a manner as possible, to prevent harm to human health and the environment. Every reasonable effort will be made to prevent migration of the release to soils or surface water. If

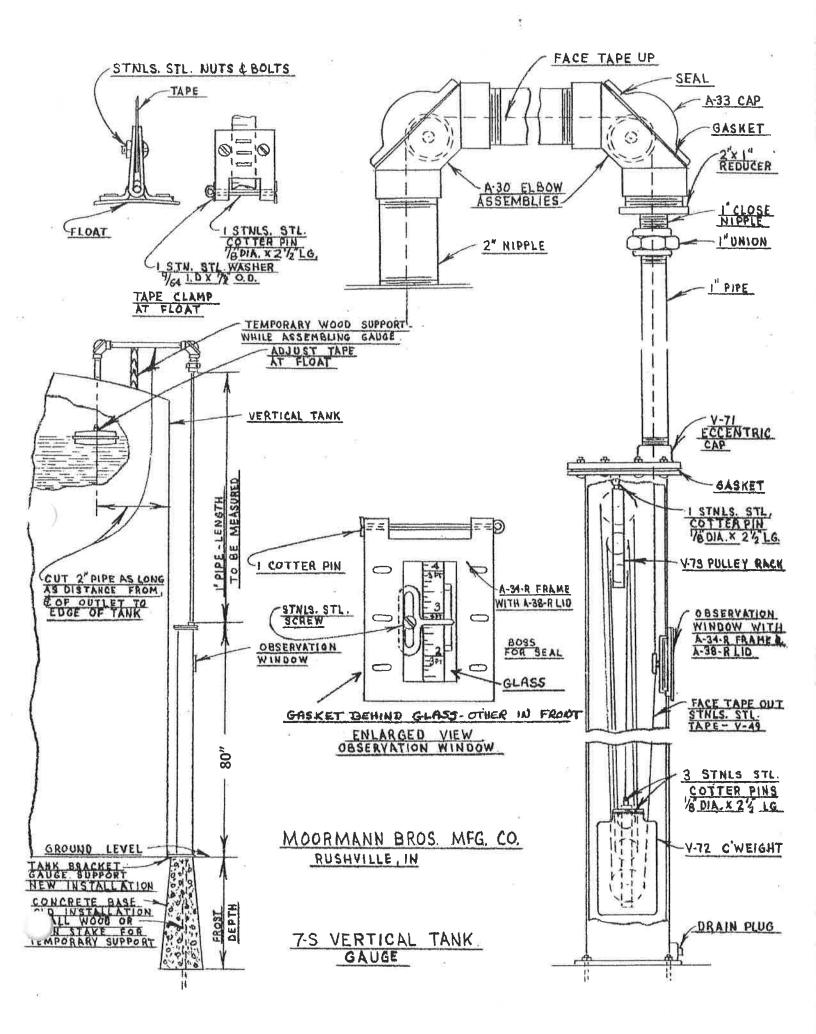
necessary, visible contamination of surface water and soil will be removed and properly disposed of.

## Notifications

Spills less than or equal to one pound and immediately contained and cleaned up are exempt from reporting requirements per 40 CFR Part 264.196(d)(2). All other releases require notification as described in the Contingency Plan.

## Subsequent Reporting


Subsequent reporting will be completed as referenced in the facility Contingency Plan.

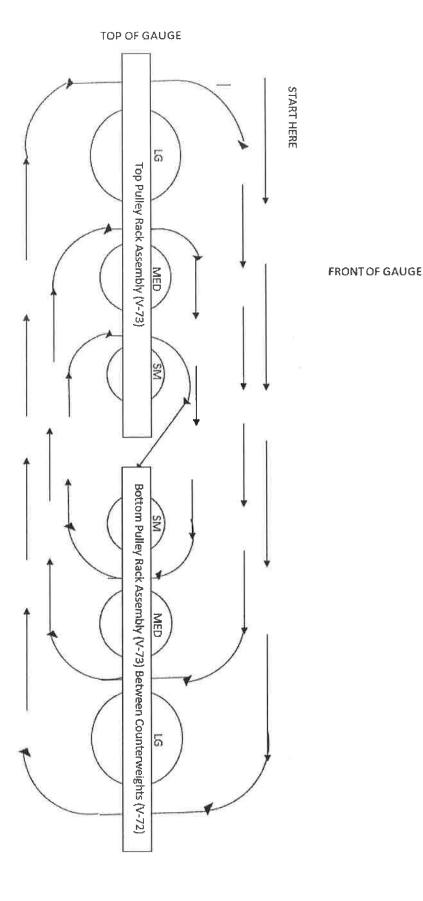

## **Repair or Closure**

If the integrity of the containment system has not been damaged, the system may be returned to service as soon as the released waste is removed and repairs, if necessary, are made. If the tank was the source of the release, the tank must be repaired prior to returning the tank system to service. If the release was from a tank system component which did not have secondary containment, then secondary containment must be provided for this component before the system can be returned to service. The exception to this is if the component can be visually inspected. In this instance, the component may be repaired and returned to service. If a component is replaced, the component must satisfy the requirements for new tank systems and components.

All major repairs must be certified by an independent, registered, professional engineer in accordance with 40 CFR 264.196(f). The engineer must certify, in accordance with 40 CFR 270.11(d), that the repaired system is capable of handling hazardous wastes without release for the intended life of the system. This certification must be placed in the operating record and maintained until closure of the facility.

If repairs that meet these requirements cannot be performed, the tank system must be closed in accordance with the closure plan.






TART TAPE, CLIP END FIRST WITH NUMBERS ON TAPE FACING FRONT OF GAUGE HOUSING, AROUND LARGE BOTTOM PULLEY, UP TO LARGE TOP PULLEY, DOWN TO MEDIUM BOTTOM PULLEY, UP TO MEDIUM TOP PULLEY, DOWN TO SMALL BOTTOM PULLEY, UP TO SMALL TOP PULLEY AND THEN SECURE CLIP END OF TAPE WITH A COTTER PIN TO THE TOP OF THE BOTTOM PULLEY RACK (V-73) ASSEMBLY.

INSTALL THE TAPE WITH THE NUMBERS FACING OUT TOWARDS YOU FROM THE WINDOW OF THE HOUSING.

\*\*\*BE CAREFUL NOT TO THREAD THE APE OVER THE BAR AT THE END OF THE PULLEY RACK. MUST PLACE THE TAPE ON THE PULLEY WHEEL.\*\*\*

ENLARGED DETAIL SHOWING HOW TAPE IS WOUND ON PULLEY RACK ASSEMBLIES OF MOORMANN MODEL #7-S.



P: 765-932-3590

www.moormannbros.com tankgauges@comcast.net F: 765-932-3594

## **MATERIAL LIST**

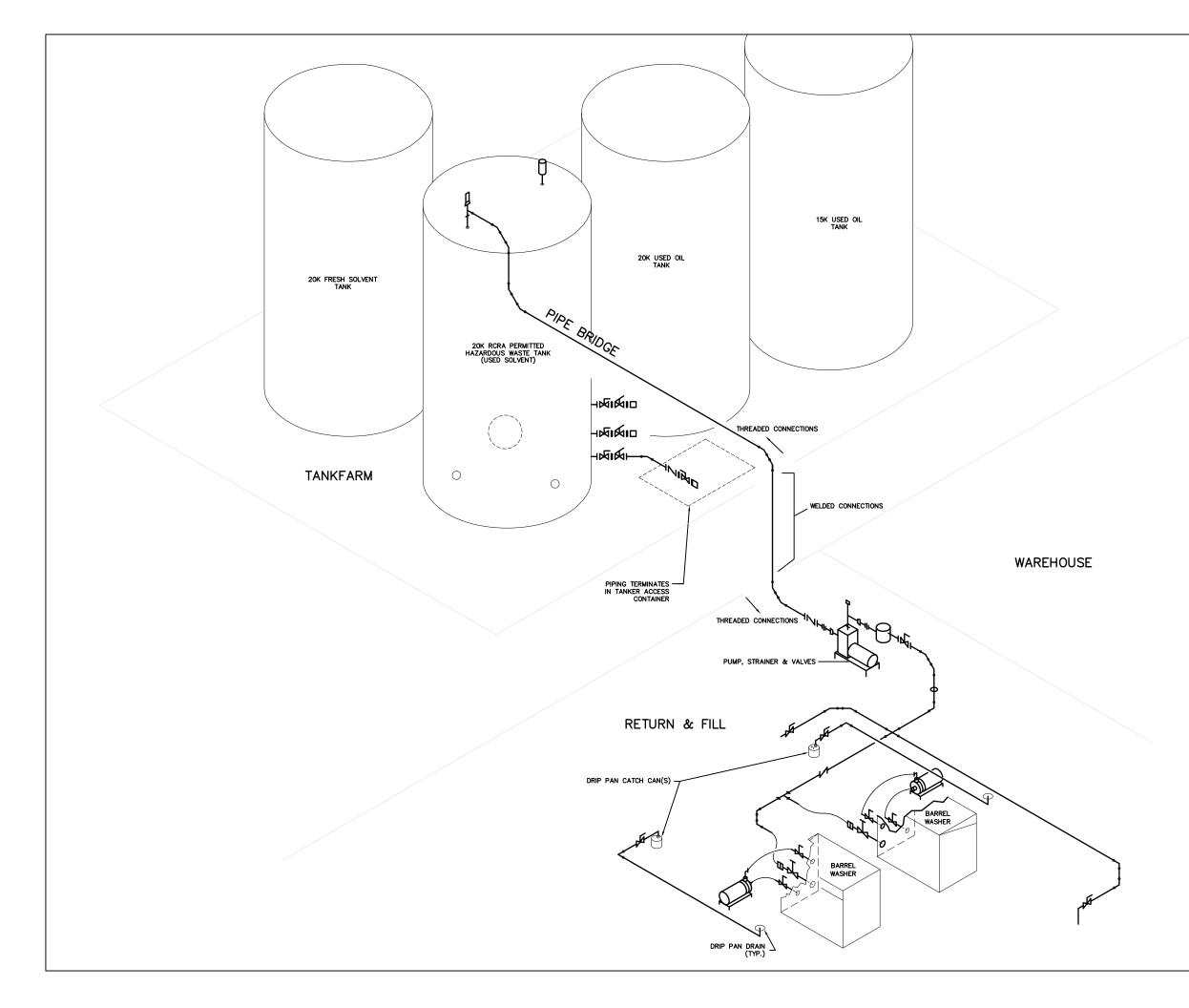
## **MODEL 7-S**

## For All Vertical Tanks Up to & Including 35'

Material Supplied by Customer (see diagram to match square with number)

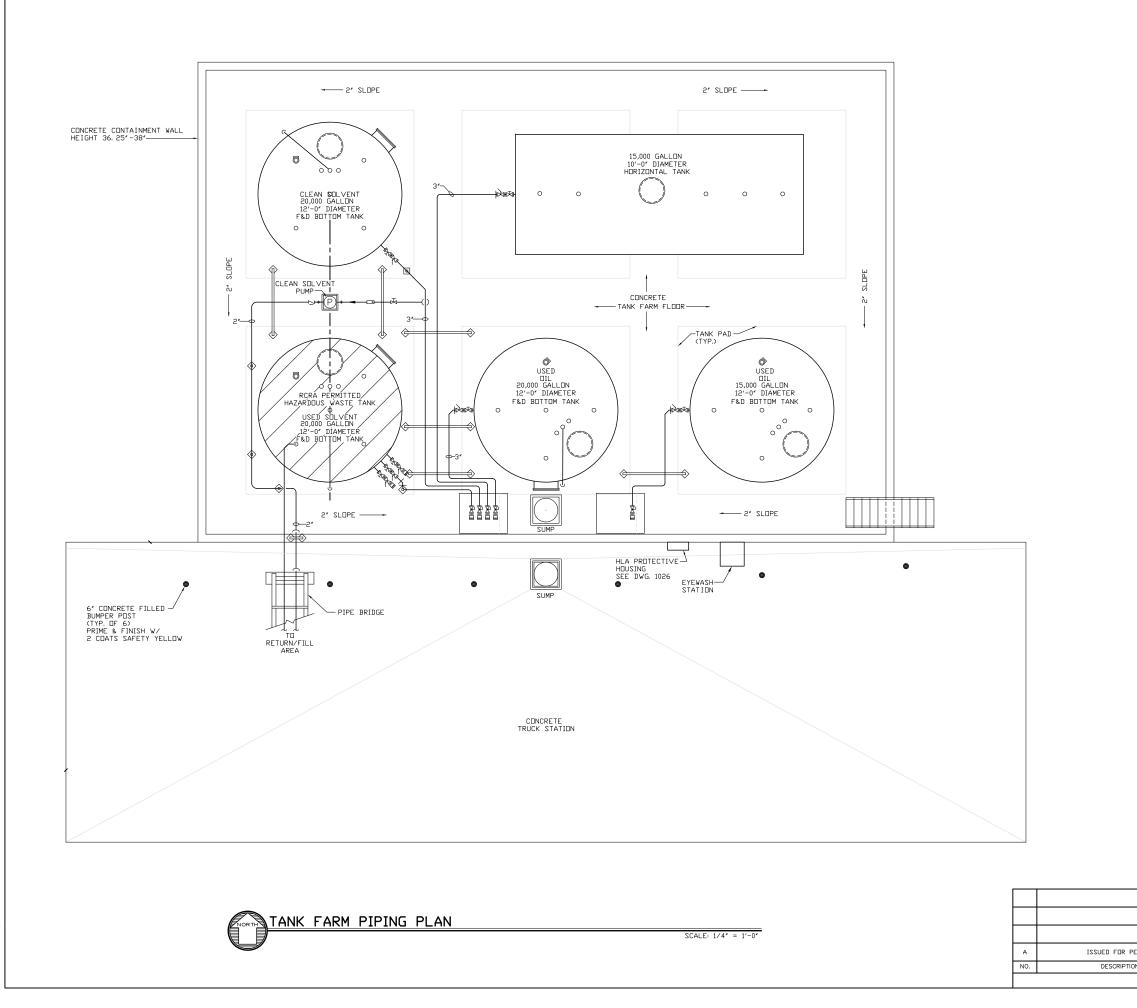
- 1. Gauge Housing Base Support
- 2. 1" Galvanized Pipe (cut to length)
- 3. Tank Roof Flange
- 4. 2" Tank Opening Pipe
- 5. 2" Galvanized Pipe (cut to length)
- 6. 1" Galvanized Nipple (any length)
- 7. 1" Galvanized Union

## ) Material Supplied by Moormann Bros.


(see diagram to match circle with number)

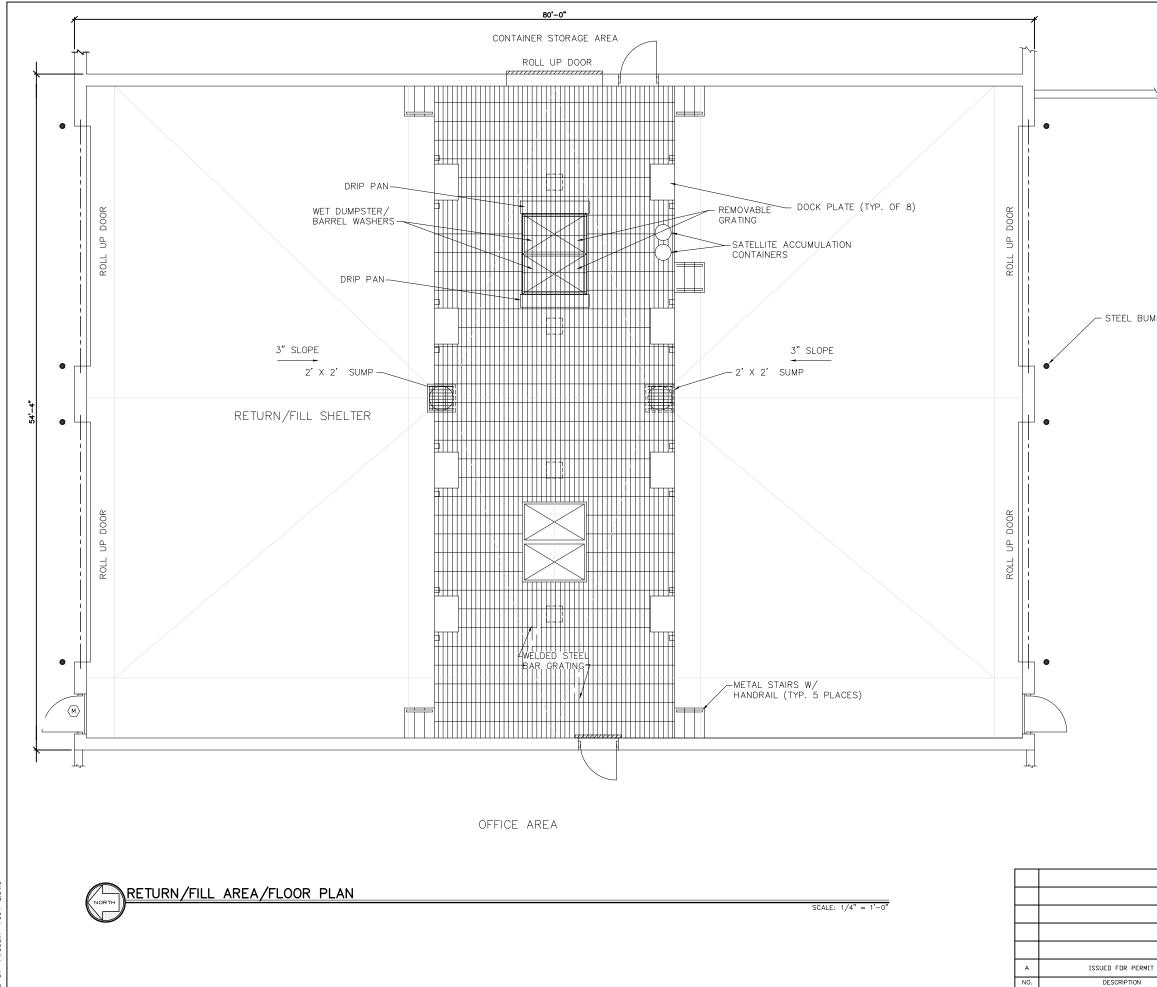
|     |                                                          |             | Quantity per |
|-----|----------------------------------------------------------|-------------|--------------|
|     | Part Name                                                | Part No.    | Unit         |
| 8.  | Observation Window Assembly (Frame & Lid)                | A-34 / A-38 | 1            |
| 9.  | Float – Aluminum or Stainless Steel                      | V-75        | 1            |
|     | 7-S comes with aluminum float (V-75)                     |             |              |
|     | 7-S-SS comes with stainless steel (V-75-S)               |             |              |
| 10. | Stainless Steel Tape Clamp & Screws                      | V-93        | 1            |
| 11. | Elbow Assembly Complete                                  | A-30, A-33  | 2            |
| 12. | 2" to 1" Reducing Bushing                                | B-15        | 1            |
| 13. | Eccentric Cap Complete with Nuts & Bolts                 | V-71        | 1            |
| 14. | Pulley Rack Assembly                                     | V-73        | 2            |
| 15. | Lufkin Stainless Steel High Visibility Tape              | V-49        | 1            |
| 16. | Painted Steel Gauge Housing                              | V-77        | 1            |
| 17. | Counterweight                                            | V-72        | 2            |
| 18. | Condensation Drain Plug                                  | D-16        | 1            |
| 19. | PE -7 Parts Envelope to include the following:           |             |              |
|     | (not shown on diagram)                                   |             |              |
|     | <ul> <li>Gaskets – Set for Observation Window</li> </ul> | V-81, V-82  | 1            |
|     | <ul> <li>Gasket – Elbow Cap</li> </ul>                   | V-83        | 2            |
|     | <ul> <li>Gasket – V-71 Eccentric Cap</li> </ul>          | V-84        | 1            |
|     | Glass – Window                                           | V-86        | 1            |
|     | <ul> <li>Stainless Steel Indicator Finger for</li> </ul> | V-94        | 1            |
|     | Observation Window                                       |             |              |
|     | Cotter Pin – Stainless Steel                             | V-96        | 4            |

F: 765-932-3594


#### INSTALLATION INSTRUCTIONS – MODEL 7-S

- 1. Locate gauge position on ground mark top edge of tank directly above ground location.
- 2. Measure, cut and thread 2" pipe (as marked on print).
- 3. Use pipe dope on all connections.
- 4. Assemble both A-30 elbows and 2" pipe as shown on print.
- 5. Screw (1) elbow A-30 onto 2" pipe with reducing bushing, close nipple and union as shown on print; other A-30 elbow into 2" nipple in tank then screw other end of 2" pipe into tank elbow, make straight with tank marking.
- 6. Level 2" pipe, use temporary wood brace, if necessary.
- 7. Set gauge housing with eccentric cap assembled on ground directly below overhanging elbow.
- 8. Measure for 1" pipe (reducing bushing in elbow to eccentric cap V-71 on gauge housing) allow for threads, cut and thread 1" pipe.
- 9. Screw 1" pipe into elbow, then remove V-71 eccentric cap from housing and put on 1" pipe. CAUTION – Be sure eccentric cap is straight and 1" outlet is farthest away from tank.
- 10. Fasten pulley rack with <u>large pulley up</u> to eccentric cap using stainless steel cotter pin.
- 11. Assemble other pulley rack in counterweights with large pulley down.
- 12. Place counterweight on ground directly beneath eccentric cap pulley rack.
- 13. Remove A-33 caps from both elbows.
- 14. Thread tape from tank elbow with <u>numbers up</u> and clip end first through 2" pipe and over elbow pulleys, down through 1"pipe and out eccentric cap, straight down and around bottom pulley in counterweight and up and over top pulley in eccentric cap, down to medium pulley, up and over medium pulley, down and around small pulley on counterweight and up and around small pulley on eccentric cap, down and fasten to lug on counterweight pulley rack – use stainless steel cotter pin. CAUTION –Do not thread tape over or under cross bars in pulley rack. Use caution – do not kink or bend tape. SEE DIAGRAM FOR TAPE ROUTING.
- 15. Fasten tape to float with tape clamp (as per print). CAUTION Do not fasten tape clamp too tight as this may damage tape.
- 16. Place eccentric cap gasket on housing top and insert counterweight assembly into housing. CAUTION – Do not allow counterweight to drop or jerk as this may cause damage to bearings, also be sure the tape is in groove of pulleys and not on the edge.
- 17. Fasten housing to eccentric cap with observation window directly below 1" pipe.
- 18. Place outside strand of tape over tape guide in observation window, CAUTION Do not bend or kink tape, and put only one strand of tape over tape guide.
- 19. If tank is empty, adjust tape reading at 1-3/8" (float draft), if it is partially full, set reading exactly with stick, make major tape reading adjustments with the float by slipping tape through tape clamp. Minor adjustments (within 1" make the observation finger). DO NOT CUT TAPE UNTIL FINAL CALIBRATION IS ACCURATE.
- 20. In setting the reading on the gauge,  $\frac{1}{2}$   $\frac{1}{4}$  or even 1/8" is not close enough, be particular, set gauge to the exact amount of liquid in tank.
- 21. CAUTION Let float down in tank easily. Do not let it drop.
- 22. Assemble observation frame and lid A-34/ A-38 place on housing, tighten for vapor-proofing.
- 23. Replace A-33 elbow caps with gaskets tighten for vapor-proofing.
- 24. Fix base for housing either, concrete, wood post, or steel plate welded to tank, CAUTION Do not weld gauge housing to tank.
- 25. In most climates, condensation forms inside the tank and gauge. A drain plug has been provided for draining at the bottom of housing. In most climates, this is necessary 2 times a year (spring & fall). However, in extreme cases, draining is required more often.




| PURPOSE C | THER TH                | AN AS E<br>P. THIS     |                     | DR IN PART FO<br>THORIZED BY<br>ST BE RETURN |                 |
|-----------|------------------------|------------------------|---------------------|----------------------------------------------|-----------------|
| TITLE     |                        |                        | RE 9.1              |                                              |                 |
| P         | PINO                   | s sy                   | SIEML               | DETAILS                                      | j               |
|           |                        | R DRIVE,               | EEN SY              | STEMS,                                       | INC.            |
|           | ONE: 781-              | 792-500                | 0                   |                                              |                 |
|           |                        | -792-500<br>CHKD<br>JZ | 0<br>APPROVED<br>JZ | OPERATIONS<br>JZ                             | DATE<br>9/20/22 |
| SCALE PH  | ONE: 781-<br>BY<br>JEK | CHKD                   | APPROVED            | JZ                                           |                 |

| A                                                                                                                                                                                                                                                                                                                                                                                                                             | ISSUED FOR PERMIT            | JEK | JZ | JZ | 092022 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----|----|----|--------|--|--|--|
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                           | DESCRIPTION BY CHK APPR DATE |     |    |    |        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | REVISIONS                    |     |    |    |        |  |  |  |
| PROPRIETARY STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                         |                              |     |    |    |        |  |  |  |
| THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION.<br>THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST<br>NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED,<br>DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY<br>PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY<br>SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED<br>PROMPTLY UPON REQUEST. |                              |     |    |    |        |  |  |  |
| <sup>™™</sup> FIGURE 9.1–1<br>PIPING SYSTEM DETAILS                                                                                                                                                                                                                                                                                                                                                                           |                              |     |    |    |        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |     |    |    |        |  |  |  |



ė

| WASTE TANK (USED SOLVENT)         WASTE TANK (USED SOLVENT)         GENERAL NOTES         OPPOPEITARY STATEMENT         THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>SYSTEMS, INC. AND IS PROPRIETARY MOL CONTAINED<br>THEREIN MUST NOT BE DUPLICATED, USED, DIVULCEN<br>SYSTEMS, INC. AND IS PROPRIETARY MOL CONTAINED<br>THEREIN MUST NOT BE DUPLICATED, USED, DIVULCED<br>OR IN PART FOR ANY PURPOSE OTHER THAT AS EXPRESSLY<br>AUTHORIZED OFFICE DISCOSED OR APPROPRIATED IN WHOLE<br>OR IN PART FOR ANY PURPOSE OTHER THAT AS EXPRESSLY<br>AUTHORIZED BY SAFETY-KLEEN SYSTEMS, INC.<br>FIGURE 9.2-1<br>TANK STORAGE AREA         SAFEETY- KLEEN SYSTEMS, INC.<br>PROVE 781-792-5000         SAFEETY- KLEEN SYSTEMS, INC.<br>PROVE 781-792-5000         SAFEETY- KLEEN SYSTEMS, INC.<br>PROVE 781-792-5000         SAFEETY - KLEEN SYSTEMS, INC.<br>PROVE 781-792-5000         SAFEETY - KLEEN SYSTEMS, INC.<br>PROVE 781-792-5000         SAFEETY - KLEEN SYSTEMS, INC.<br>PROVE 781-792-5000         SSUED FOR PERMIT         JZX 098020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |     |     |      |        | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|-----|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROPRIETARY STATEMENT         THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN         SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL         INFORMATION, THIS DRAWING AND THE INFORMATION CONTAINED         INFORMATION, THIS DRAWING AND THE INFORMATION CONTAINED         INFORMATION, THIS DRAWING AND THE INFORMATION CONTAINED         INFORMATION PARED PROPERTY - KLEEN         INFORMATION PROPERTY - K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |     |      |        | RCRA PERMITTED HAZARDPUS<br>WASTE TANK (USED SOLVENT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PROPRIETARY STATEMENT         THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN         SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL         INFORMATION, THIS DRAWING AND THE INFORMATION CONTAINED         INFORMATION, THIS DRAWING AND THE INFORMATION CONTAINED         INFORMATION, THIS DRAWING AND THE INFORMATION CONTAINED         INFORMATION PARED PROPERTY - KLEEN         INFORMATION PROPERTY - K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |     |      |        | GENERAL NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL<br>INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED<br>THEREIN MUST NOT BE DUPLICATED. USED, DIVUGED,<br>REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE<br>OR IN PART FOR ANY PURPOSE OTHER THAT AS EXPRESSIV<br>AUTHORIZED BY SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING<br>MUST BE RETURNED PROMPTLY UPON REQUEST.<br>TITLE<br>FIGURE 9.2-1<br>TANK STORAGE AREA<br>SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING<br>SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING<br>SSUED FOR PERMIT JEK JZ JZX 092022<br>SCALE<br>1/4" = 1'-0" JK JZ PROPERTY STEMS, JZ PROPERTY<br>SSUED FOR PERMIT JEK JZ JZX 092022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |     |     |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL<br>INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED<br>THEREIN MUST NOT BE DUPLICATED. USED, DIVUGED,<br>REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE<br>OR IN PART FOR ANY PURPOSE OTHER THAT AS EXPRESSIV<br>AUTHORIZED BY SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING<br>MUST BE RETURNED PROMPTLY UPON REQUEST.<br>TITLE<br>FIGURE 9.2-1<br>TANK STORAGE AREA<br>SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING<br>SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING<br>SSUED FOR PERMIT JEK JZ JZX 092022<br>SCALE<br>1/4" = 1'-0" JK JZ PROPERTY STEMS, JZ PROPERTY<br>SSUED FOR PERMIT JEK JZ JZX 092022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |     |     |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL<br>INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED<br>THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED,<br>REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE<br>OR IN PART FOR ANY PURPOSE OTHER THAT AS EXPRESSLY<br>AUTHORIZED BY SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING<br>MUST BE RETURNED PROMPTLY UPON REQUEST.<br>TITLE FIGURE 9.2-1<br>TANK STORAGE AREA<br>SAFETY-KLEEN SYSTEMS, INC.<br>42 LONGWATER DRIVE, NORMELL, MA. 02001<br>PHOME: 781-792-5000<br>SSUED FOR PERMIT JEK JZ JZX 092022<br>SCALE I'.4" = 1'-0" JK CHKD P.E. APPR JZ 9/20/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |     |      |        | PROPRIETARY STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SSUED FOR PERMIT JEK JZ JZX 092022 SCALE<br>SSUED FOR PERMIT JEK JZ JZX 092022 SCALE<br>SSUED FOR PERMIT JEK JZ JZX 092022 SCALE<br>1/4" = 1'-0" BY<br>JK JZ PERMIT JK PERMIT JK JK PERMIT JK PERM |                  |     |     |      |        | SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL<br>INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED<br>THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED,<br>REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE<br>OR IN PART FOR ANY PURPOSE OTHER THAT AS EXPRESSLY<br>AUTHORIZED BY SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING<br>MUST BE RETURNED PROMPTLY UPON REQUEST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SSUED FOR PERMIT         JEK         JZ         JZX         092022         SCALE         BY         CHKO         P.E.         APPR         JZ         9/20/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |     | 1   | 1    |        | FIGURE 9.2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SSUED FOR PERMIT         JEK         JZ         JZX         092022         SCALE         BY         CHKO         P.E.         APPR         JZ         9/20/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |     |     |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SSUED FOR PERMIT JEK JZ JZX 092022 SCALE BY CHKD P.E. APPR 0P. APPR DATE<br>1/4" = 1'-0" JEK JZ JZ JZ 9/20/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |     |     |      |        | 42 LONGWATER DRIVE, NORWELL, MA. 02061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SSUED FOR PERMIT | JEK | JZ  | JZX  | 092022 | SCALE BY CHKD P.E. APPR OP. APPR DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DESCRIPTION BT CHIL AFTY DATE SELVICE CENTER ECONTION SC-DWG, NUMBER REV. NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DESCRIPTION      | BY  | СНК | APPR | DATE   | I/4         I-0         JEK         JZ         JZ <thj< td=""></thj<> |
| REVISIONS MEDLEY, FL 7096-4100-200 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REVISIONS        |     |     |      |        | MEDLEY, FL 7096-4100-200 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



i-91 11:30am 7004-

 DESCRIPTION
 BY
 CHK
 APPR
 Date
 SERVICE CENTER
 LOCATION
 SC-DWG NO.

 REVISIONS
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K

- STEEL BUMPER POST (TYP. 8 PLACES)

### GENERAL NOTES

1. DUMPSTERS MEASURE APPRX. 3' X 5'.

2. SUMPS MEASURE 2' DIA X 2' DEEP, THE NORTH SUMP STICKS OUT APPRX. 6" FROM UNDER GRATING.

## PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAT AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

EV. NO

А

|     |    |     |        | F                     | •                    |            | RE 9.3-<br>FILL SH | •              |                 |
|-----|----|-----|--------|-----------------------|----------------------|------------|--------------------|----------------|-----------------|
|     |    |     |        | SA                    | FETY                 | (–KL       | EEN SY             | STEMS,         | INC.            |
|     |    |     |        |                       | Longwate<br>NE: 781- |            | NORWELL, MA. C     | 2061           |                 |
| JEK | JZ | JZX | 092022 | SCALE<br>1/4" = 1'-0" | BY<br>JEK            | CHKD<br>JZ | P.E. APPR<br>JZ    | OP. APPR<br>JZ | DATE<br>9/20/22 |



## CO Return and Fill Area

| Form Code: 36                                                                                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Compliance Header                                                                                                                               |  |
| Inspector Name                                                                                                                                  |  |
| Area of Inspection                                                                                                                              |  |
| Inspection Date and Time                                                                                                                        |  |
| CO Return and Fill Area Instructions                                                                                                            |  |
| Note condition of inspection items. If item does n findings must be explained. Include any repairs of                                           |  |
| CO Return and Fill Area Inspection Items                                                                                                        |  |
| Pump Seals - Check for evidence of failure (e.g., leaks, other).                                                                                |  |
| Pump Motors - Check for evidence of failure (e.g., overheating, other).                                                                         |  |
| Fittings - Check for evidence of failure (e.g., leaks, other).                                                                                  |  |
| Valves - Check for evidence of failure (e.g.,<br>leaks, sticking, other).                                                                       |  |
| Hose Connections and Fittings - Check for<br>evidence of failure (e.g., cracked, loose, leaks,<br>sticking, other).                             |  |
| Hose Body - Check for evidence of failure (e.g., crushed, cracked, thin spots, leaks, other).                                                   |  |
| Clam Shell Unit Type - Lid Fusible Link - Check<br>for evidence of failure (e.g., broken, spring<br>missing, other).                            |  |
| Clam Shell Unit Type - Lid Hinge Assembly -<br>Check for evidence of failure (e.g., broken pivot<br>arm, damaged lid arm, missing pins, other). |  |
| Sliding Lid Unit Type - Gaskets - Check for<br>evidence of failure (e.g., broken, cracked<br>distorted, other).                                 |  |
| Sliding Lid Unit Type - Lid/ Slide Assembly -                                                                                                   |  |

| Check for evidence of failure (e.g., damaged lid,<br>rollers, slide rail, temperature gauge, limit<br>switches, other).                                                                                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Roll-up Door Unit Type - Seals - Check for<br>evidence of failure (e.g., broken cracked,<br>distorted, other).                                                                                                    |  |
| Roll-up Door Unit Type - Door/ Roll-up<br>Assembly - Check for evidence of failure (e.g.,<br>damaged lid, rollers, slide rail, temperature<br>gauge, limit switch, other).                                        |  |
| Wet Dumpster/Drum Washer - Check for<br>evidence of failure (e.g., leaks, rust, split<br>seems, distortion, deterioration, excess debris,<br>sediment accumulation, other).                                       |  |
| Secondary Containment - Check for evidence of failure (e.g., excess sediment, leaks, distortion, deterioration, excess debris, other).                                                                            |  |
| Loading/Unloading Area - Check for evidence of failure (e.g., cracks, ponding or wet spots, deterioration, other).                                                                                                |  |
| Satellite Accumulation Containers - Check for evidence of failure (e.g., container open, > 55 gallons, label, other).                                                                                             |  |
| Ventilation Fan - Check for evidence of failure (e.g., inoperative, shutters jammed, other).                                                                                                                      |  |
| Site Generated Waste - debris, used absorbent,<br>used PPE, aerosols, etc Check for evidence<br>of failure. (e.g. waste not containerized, proper<br>storage location, container type, container label,<br>other) |  |
| Compliance Footer                                                                                                                                                                                                 |  |
| Inspector Signature                                                                                                                                                                                               |  |
| Attach Photo                                                                                                                                                                                                      |  |
| Inspection Overall Assessment                                                                                                                                                                                     |  |



# CO Tank Systems Inspection

| Form Code: 27                                                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Compliance Header                                                                                                                                                                                                                                 |  |
| Inspector Name                                                                                                                                                                                                                                    |  |
| Area of Inspection                                                                                                                                                                                                                                |  |
| Inspection Date and Time                                                                                                                                                                                                                          |  |
| CO Tank Systems Inspection Instructions                                                                                                                                                                                                           |  |
| Note condition of inspection items. If item does n findings must be explained below. Include any re required or performed.                                                                                                                        |  |
| CO Tank Systems Inspection Items                                                                                                                                                                                                                  |  |
| Tanks - Check for evidence of failure (e.g.,<br>leaks, rusty or loose anchoring, distortion,<br>cleanliness, paint failure, other). Insulation -<br>check for any damage or deterioration that may<br>allow moisture intrusion.                   |  |
| Pipes/Piping Supports - Check for evidence of failure (e.g., leaks, distortion, corrosion, paint failure, other).                                                                                                                                 |  |
| Valves - Check for evidence of failure (e.g., disconnected, corrosion, sticking, leaks, other).                                                                                                                                                   |  |
| Fittings/Hose Connections - Check for evidence<br>of failure (e.g., leaks, loose, disconnected,<br>corrosion, other).                                                                                                                             |  |
| Liquid Level - Check for acceptable level and<br>level guages working correctly. (e.g., high level<br>max, permitted volume, level guage legible,<br>other).                                                                                      |  |
| Secondary Containment - Check for interior and<br>exterior for evidence of failure (e.g., cracks,<br>ponding or wet spots, pitting or deterioration,<br>corrosion, erosion, other and excess liquid or<br>debris, fire hazards, or other issues). |  |
| Dike drain valves - Are valves closed and in                                                                                                                                                                                                      |  |

| good working condition?                                                                                                                                                                                                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| For double-wall tanks is interstitital monitoring<br>equipment in good working condition and is the<br>interstitial space free of liquid?                                                                                                     |  |
| Sumps - Check for evidence of failure (e.g.,<br>cracks, ponding or wet spots, pitting or<br>deterioration, other).                                                                                                                            |  |
| Bonding and Grounding - Check for evidence of failure (e.g., loose, broken, corrosion or deterioration, other).                                                                                                                               |  |
| Transfer Equipment/Pump and Pump Motors -<br>Check for availability and condition (e.g.,<br>pumps, filters, strainers, hoses, leaks,<br>overheating, other).                                                                                  |  |
| Communication and Alarm System - Check for<br>evidence of failure (e.g., test function, siren,<br>strobe, other).                                                                                                                             |  |
| Satellite Accumulation Containers - Check for<br>evidence of failure (e.g., container open, >55<br>gallons, label, other).                                                                                                                    |  |
| Manways, Hatches, Nipples, Other Openings,<br>Ladders - Check for evidence of failure (e.g.,<br>leaks, condition, corrosion, closure, other).                                                                                                 |  |
| Pressure Relief Valves (PRV)/ Flame Arrestors<br>- Check for evidence of failure (e.g., condition,<br>corrosion, other).                                                                                                                      |  |
| Tanks marked with the words "Hazardous Waste" - Check for appropriate markings.                                                                                                                                                               |  |
| Tanks not used marked as "Out of Service" -<br>Check for appropriate markings.                                                                                                                                                                |  |
| Tanks marked as to the contents - Check for appropriate markings ( e.g., "Used Oil", "Non-Haz Only").                                                                                                                                         |  |
| Monitoring Equipment/Level Indicators/Overfill<br>Prevention Equipment - Check that equipment<br>is in good working condition or for evidence of<br>failure (e.g., actuate equipment/alarms to<br>confirm operation, pressure and temperature |  |

| gauges, level indicators, sticking, condensation, disconnected, other).                                                                                                                                                                                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Loading/ Unloading Areas - Check condition of<br>area (e.g., no free liquid, ponding or wet spots,<br>available spill equipment, spill equipment<br>location, spill kit supply and inventory is<br>adequate, containment deterioration, leaks, pad<br>condition, valve access box, housekeeping,<br>other). |  |
| Tank System Safety - Is the system free of any conditions that need to be addressed for continued safe operation?                                                                                                                                                                                           |  |
| Connection Box/Drip Trays and Buckets - Are<br>the connection box and all drip trays and<br>buckets free of liquids or saturated absorbents,<br>and all material properly collected and<br>disposed?                                                                                                        |  |
| Site Generated Waste - debris, used<br>absorbents, used PPE, aerosols, etc Check<br>for evidence of failure (waste not containerized,<br>proper storage location, container type,<br>container label, other).                                                                                               |  |
| Spill Equipment - Check that spill equipment is<br>available, at the correct location, equipment<br>supply and inventory is adequate, equipment is<br>in good condition clean and ready for use.                                                                                                            |  |
| Ladders/platforms/walkways/egress pathways<br>on or within tank or containment - Check for<br>evidence of damage, corrosions, proper<br>opration, pathways clear, doors/gates operable.                                                                                                                     |  |
| Compliance Footer                                                                                                                                                                                                                                                                                           |  |
| Inspector Signature                                                                                                                                                                                                                                                                                         |  |
| Attach Photo                                                                                                                                                                                                                                                                                                |  |
| Inspection Overall Assessment                                                                                                                                                                                                                                                                               |  |



Safety-Kleen Systems

Medley, FL

# **STI SP001 Formal Internal Inspection**

**Dirty Solvent Tank** 

# Inspection Date: 7/21/2022



Copyright 2013-2019 by Clean Harbors, Inc. and its subsidiaries. This document is proprietary, and all rights are reserved. No part of this document may be reproduced in any form or by electronic or mechanical means, including information storage and retrieval systems, without written permission from Clean Harbors.

**Company Confidential** 



| Tank Data                   |                   |                                             |           |  |  |
|-----------------------------|-------------------|---------------------------------------------|-----------|--|--|
| Design Standard:            | UL                | Nominal Diameter:                           | 12'       |  |  |
| Build Date:                 | No Data Available | Nominal Height:                             | 26'       |  |  |
| Manufactured By:            | No Data Available | Material:                                   | Steel     |  |  |
| Orientation:                | Vertical          | Continuous Release Detection Method (CRDM): | RPB       |  |  |
| Release Prevention Barrier: | Concrete          | Spill Control:                              | Dike/Berm |  |  |

#### SUMMARY

#### **Conclusion:**

As determined by the condition found during the inspection of Dirty Solvent Tank, the tank appears to be in suitable condition at the time of this inspection.

#### **Recommendations:**

Facility personnel should perform periodic inspections in accordance with STI SP001.

Areas with coating failure should be cleaned, properly prepped and re-coated.

Monitor tank roof periodically.

Copyright 2013-2019 by Clean Harbors, Inc. and its subsidiaries. This document is proprietary, and all rights are reserved. No part of this document may be reproduced in any form or by electronic or mechanical means, including information storage and retrieval systems, without written permission from Clean Harbors.

**Company Confidential** 



| EXTERNAL VISUAL INSPECTION  |                                     |                          |     |             |                   |  |
|-----------------------------|-------------------------------------|--------------------------|-----|-------------|-------------------|--|
| Foundation                  | Foundation General Condition        |                          |     |             |                   |  |
| ltem                        | Acc                                 | Acc Fin N/I N/A Comments |     |             | Comments          |  |
| Coating condition           |                                     | $\boxtimes$              |     |             | Coating Failure   |  |
| Concrete condition          | $\boxtimes$                         |                          |     |             |                   |  |
| Containment / Dike walls    | $\boxtimes$                         |                          |     |             |                   |  |
| Elastomeric Liner           |                                     |                          |     | $\boxtimes$ |                   |  |
| Site Drainage               | $\boxtimes$                         |                          |     |             |                   |  |
| Equipment Support           |                                     |                          |     |             | General Condition |  |
| ltem                        | Acc                                 | Fin                      | N/I | N/A         | Comments          |  |
| Base Support Type           |                                     |                          |     |             | Skirt             |  |
| Coating                     | $\boxtimes$                         |                          |     |             |                   |  |
| Concrete Pad                | $\boxtimes$                         |                          |     |             |                   |  |
| Corrosion                   | $\boxtimes$                         |                          |     |             |                   |  |
| Fireproofing                | $\boxtimes$                         |                          |     |             |                   |  |
| Outer Shell                 |                                     |                          |     |             | General Condition |  |
| Item                        | Acc                                 | Fin                      | N/I | N/A         | Comments          |  |
| Attachments                 | $\boxtimes$                         |                          |     |             |                   |  |
| Bottom Projection Plate     |                                     |                          |     | $\boxtimes$ |                   |  |
| Coating Condition           |                                     | $\boxtimes$              |     |             | Coating Failure   |  |
| Corrosion                   | $\boxtimes$                         |                          |     |             |                   |  |
| Deformation                 | $\boxtimes$                         |                          |     |             |                   |  |
| Insulation                  |                                     |                          |     | $\boxtimes$ |                   |  |
| Insulation Support Bands    |                                     |                          |     | $\boxtimes$ |                   |  |
| Lifting Lugs                |                                     | $\boxtimes$              |     |             | Bent              |  |
| Atmospheric Venting         | $\boxtimes$                         |                          |     |             |                   |  |
| Overfill Protection         | $\boxtimes$                         |                          |     |             |                   |  |
| Attached Piping             | $\boxtimes$                         |                          |     |             |                   |  |
| Repair(s)                   |                                     |                          |     | $\boxtimes$ |                   |  |
| Vegetation                  |                                     |                          |     | $\boxtimes$ |                   |  |
| Weather Jacket              |                                     |                          |     | $\boxtimes$ |                   |  |
| Manways / Nozzles           | Manways / Nozzles General Condition |                          |     |             |                   |  |
| Item                        | Acc Fin N/I N/A Comments            |                          |     |             |                   |  |
| Bolting Condition           | $\boxtimes$                         |                          |     |             |                   |  |
| Coating Condition           | $\boxtimes$                         |                          |     |             |                   |  |
| Corrosion                   | $\boxtimes$                         |                          |     |             |                   |  |
| Flange Condition            | $\boxtimes$                         |                          |     |             |                   |  |
| Reinforcement Pad Condition | $\boxtimes$                         |                          |     |             |                   |  |



| EXTERNAL VISUAL INSPECTION CONTINUED |                          |             |     |             |                                                         |  |  |
|--------------------------------------|--------------------------|-------------|-----|-------------|---------------------------------------------------------|--|--|
| Roof                                 | General Condition        |             |     |             |                                                         |  |  |
| Items                                | Acc Fin N/I N/A Comments |             |     |             | Comments                                                |  |  |
| Coating Condition                    | $\boxtimes$              |             |     |             |                                                         |  |  |
| Corrosion                            | $\boxtimes$              |             |     |             |                                                         |  |  |
| Deformation                          |                          | $\boxtimes$ |     |             | Severe Dent                                             |  |  |
| Proper Drainage                      |                          | $\boxtimes$ |     |             | Tank roof is bent but the tank is under a metal canopy. |  |  |
| Weather Jacket                       |                          |             |     | $\boxtimes$ |                                                         |  |  |
| Roof Appurtenances                   | General Condition        |             |     |             | General Condition                                       |  |  |
| Items                                | Acc                      | Fin         | N/I | N/A         | Comments                                                |  |  |
| BoltingCondition                     | $\boxtimes$              |             |     |             |                                                         |  |  |
| Condition of Hatch(s), Manway(s)     | $\boxtimes$              |             |     |             |                                                         |  |  |
| Condition of Pressure/Vacuum Vent(s) | $\boxtimes$              |             |     |             |                                                         |  |  |
| Condition of Vent Screen(s)          | $\boxtimes$              |             |     |             |                                                         |  |  |
| Emergency Venting                    | $\boxtimes$              |             |     |             |                                                         |  |  |
| Mixer / Agitator                     |                          |             |     | $\boxtimes$ |                                                         |  |  |
| Normal Venting                       | $\boxtimes$              |             |     |             |                                                         |  |  |
| Appurtenances                        |                          |             |     |             | General Condition                                       |  |  |
| Items                                | Acc                      | Fin         | N/I | N/A         | Comments                                                |  |  |
| Anchors                              | $\boxtimes$              |             |     |             |                                                         |  |  |
| Gauges, Sight Glass (damage)         | $\boxtimes$              |             |     |             |                                                         |  |  |
| Grounding (tightness & corrosion)    | $\boxtimes$              |             |     |             |                                                         |  |  |
| Liquid Level Gauge                   | $\boxtimes$              |             |     |             |                                                         |  |  |
| Data Plate                           | □ 🛛 □ □ Not Attached     |             |     |             |                                                         |  |  |



| INTERNAL VISUAL INSPECTION        |                                   |     |             |             |                                                                 |  |  |
|-----------------------------------|-----------------------------------|-----|-------------|-------------|-----------------------------------------------------------------|--|--|
| Floor                             | Floor General Condition           |     |             |             |                                                                 |  |  |
| ltem                              | Acc                               | Fin | N/I         | N/A         | Comments                                                        |  |  |
| Annular Ring                      |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Cleanliness                       | $\boxtimes$                       |     |             |             |                                                                 |  |  |
| Corrosion/Pitting                 | $\boxtimes$                       |     |             |             | Scattered pitting measuring 1/6" in depth, 1 pit measured 1/8". |  |  |
| Liner                             |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Magnetic Flux Leakage Exam        |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Repair(s)                         |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Sump(s)                           |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Vacuum Box Bubble Exam            |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Void(s), Low Spots                |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Floor to Shell Weld (MP only)     |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Shell                             |                                   |     | •           |             | General Condition                                               |  |  |
| ltem                              | Acc                               | Fin | N/I         | N/A         | Comments                                                        |  |  |
| Cleanliness                       | $\boxtimes$                       |     |             |             |                                                                 |  |  |
| Corrosion / Pitting               | $\boxtimes$                       |     |             |             |                                                                 |  |  |
| Liner                             |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Roof                              |                                   |     |             |             | General Condition                                               |  |  |
| Item                              | Acc                               | Fin | N/I         | N/A         | Comments                                                        |  |  |
| Liner                             |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Corrosion / Pitting               |                                   |     | $\boxtimes$ |             | Visual from ground only.                                        |  |  |
| Nozzles, Man Ways and Attachments |                                   | 1   | -           | -           | General Condition                                               |  |  |
| Item                              | Acc                               | Fin | N/I         | N/A         | Comments                                                        |  |  |
| Baffles                           |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Corrosion/Pitting                 | $\boxtimes$                       |     |             |             |                                                                 |  |  |
| Down comer(s)                     | $\boxtimes$                       |     |             |             |                                                                 |  |  |
| Internal coils                    |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Mixers, agitators                 |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Thermowell(s)                     |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Roof Support(s)                   | Roof Support(s) General Condition |     |             |             |                                                                 |  |  |
| Item                              | Acc                               | Fin | N/I         | N/A         | Comments                                                        |  |  |
| Colum(s)                          |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Restraining clip(s)               |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Reinforcing pads                  |                                   |     |             | $\boxtimes$ |                                                                 |  |  |
| Rafters                           |                                   |     |             | $\boxtimes$ |                                                                 |  |  |



| Thickness Data:        |                    |                    |                    |         |
|------------------------|--------------------|--------------------|--------------------|---------|
|                        | 0°                 | 90°                | 180°               | 270°    |
| First Course           | 0.253''            | 0.254''            | 0.252''            | 0.252'' |
|                        | 0.255''            | 0.253''            | 0.253''            | 0.254'' |
|                        | 0.252''            | 0.252''            | 0.256''            | 0.255'' |
| Second Course          | 0.243''            | 0.245''            | 0.246''            | 0.245'' |
|                        | 0.245''            | 0.247''            | 0.247''            | 0.246'' |
|                        | 0.245''            | 0.246''            | 0.247''            | 0.246'' |
| Third Course           | 0.250''            | 0.252''            | 0.250''            | 0.250'' |
|                        | 0.248''            | 0.257''            | 0.251''            | 0.250'' |
|                        | 0.250''            | 0.250''            | 0.249''            | 0.249'' |
| <b>Fourth Course</b>   | 0.182''            | 0.185''            | 0.184''            | 0.185'' |
|                        | 0.176''            | 0.185''            | 0.185''            | 0.183'' |
|                        | 0.170''            | 0.186''            | 0.185''            | 0.183'' |
|                        |                    |                    |                    |         |
|                        | Course 1           |                    | Course 2           |         |
|                        | Minimum            | 0.252''            | Minimum            | 0.243'' |
|                        | Average            | 0.253''            | Average            | 0.246'' |
|                        | Maximum            | 0.256''            | Maximum            | 0.247'' |
|                        | Standard Deviation | 0.001''            | Standard Deviation | 0.001'' |
|                        |                    |                    |                    |         |
|                        | Course 3           |                    | Course 4           |         |
|                        | Minimum            | 0.248''            | Minimum            | 0.170'' |
|                        | Average            | 0.251''            | Average            | 0.182'' |
|                        | Maximum            | 0.257''            | Maximum            | 0.186'' |
|                        | Standard Deviation | 0.002''            | Standard Deviation | 0.005'' |
|                        | 0°                 | 90°                | 180°               | 270°    |
| Roof                   | 0.174''            | 0.167''            | 0.183''            | 0.187'' |
| Bottom                 | 0.250''            | 0.247''            | 0.246''            | 0.245'' |
|                        |                    |                    |                    |         |
|                        | 12 o' clock        | 6 o' clock         |                    |         |
| Manway                 | 0.225''            | 0.226''            |                    |         |
| 3" Nozzle              | 0.284''            | 0.264''            |                    |         |
| 3" Nozzle              | 0.277''            | 0.275''            |                    |         |
| 3" Nozzle<br>3" Nozzle | 0.270''<br>0.281'' | 0.286''<br>0.279'' |                    |         |
| 3 Nozzle<br>3" Nozzle  | 0.281              | 0.279<br>0.273''   |                    |         |
| JINUZZIE               | 0.201              | 0.213              |                    |         |



# Photographs





# Photographs





# Photographs





#### **Inspection Certification Certificate**

Tony Gutierrez under direct supervision of Taylor Sudol (Certified Inspector) has performed a STI SP001 Formal Internal Inspection of Dirty Solvent Tank. The tank is located at the Safety-Kleen facility in Medley, FL. As determined by the condition found during the inspection of Dirty Solvent Tank, the tank appears to be in suitable condition at the time of this inspection. Facility personnel should perform periodic inspections in accordance with STI SP001.

The services performed, documentation of inspection, identification of deterioration, and the generation of a report was performed within the generally accepted principles and practices of STI SP001 (current version), Clean Harbors' Written Practice and Inspection procedures.

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of the individuals immediately responsible for obtaining the information, I believe that the information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fines and imprisonment.

Taylor Sudal

Taylor Sudol STI SP001# AC44096



#### WARRANTY

Clean Harbors Inspection Services, USA. ("Company") has performed inspection services on equipment designated by Safety-Kleen Systems (owner/operator) and has evaluated its condition based on observations and measurements made by Company's inspectors. While our evaluation accurately describes the condition of the equipment at the time of inspection, the owner/operator must independently assess the inspection information/report provided by Company and any conclusions reached by owner/operator and any action taken or omitted to be taken are the sole responsibility of the owner/operator. With respect to inspection and testing, Company warrants only that the services have been performed in accordance with accepted industry practice. If any such services fail to meet the foregoing warranty, Company shall re-perform the service to the same extent and on the same conditions as the original service.

Company makes no warranty, express or implied, regarding goods or services provided by Company other than those warranties set forth herein. The preceding paragraph sets forth the exclusive remedy for claims based on failure or of defect in materials or services, whether such claim is made in contract or tort (including negligence) and however instituted, and, upon expiration of the warranty period, all such liability shall terminate. The foregoing warranty is exclusive and in lieu of all other warranties, whether written, oral, implied or statutory. NO IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE SHALL APPLY, nor shall Company be liable for any loss or damage whatsoever by reason of its failure to discover, report, repair or modify latent defects or defects inherent in the design of any equipment inspected. In no event, whether a result of breach of contract, warranty or tort (including n e gligence) shall Company be liable for any consequential or incidental damages including, but not limited to, loss of profit or revenues, loss of use of equipment tested or services by Company or any associated damage to facilities, down-time costs or claims of other damages.

# **CERTIFICATION**

Steel Tank Institute

# **Taylor Sudol**

STI Inspector No: AC 44096 Expires: September 1, 2025

The person whose name appears on this certificate has met all of the requirements to attain the STI SP001 Adjunct Certification for API 653 Inspectors. This certification is dependent on an active API 653 certification.

Joseph Mentzer, P.E. Steel Tank Institute



Issue Date: 09/01/2020

The official status of this certificate can be verified at www.steeltank.com.

Tab 7 Part II.I Miscellaneous Units

## Part II

## I. Miscellaneous Units

## 1. Description of Miscellaneous Unit

The wet dumpster/drum washer unit at the facility is managed under the Subpart X – Miscellaneous Units Standards of 40 CFR Part 264.600. The unit is located, designed, constructed, operated and maintained in a manner to protect human health and the environment. The unit is specifically located within the Return/Fill Shelter and sits on top of the raised steel grated dock, and area provided with secondary containment, as described in Part II.C, to prevent any potential releases from migrating to the surrounding subsurface or groundwater. Safety-Kleen has performed emissions monitoring of these units at other facilities and the data has shown that VOC emissions are below the 10,000 ppmw leak detection threshold.

- *1.a* The unit is constructed of steel and the dimensions are approximately: H 5, 7", L 5, 6", W 3'. Engineering drawings providing detailed information for the unit are found at the end of this section. It is basically a large rectangular steel box with a clam shell type lid that is manually opened upward when in use.
- 1.b The wet dumpster/drum washer unit is designed to allow employees to manually empty used parts washer solvent containers into the dumpster, then place the containers on roller brushes contained within the unit for rinsing. An internal spray system is turned on, and the containers rotate on the brushes where used parts washer solvent is recirculated for cleaning the inside and outside of the containers. This process takes approximately five (5) seconds per container. The containers sit in the unit for a short period of time so any residual solvent is allowed to drop back into the unit. During the dumping process the used parts washer solvent is transferred to the RCRA-Permitted Hazardous Waste Tank (Used Solvent) via an automatic float switch pump which is activated as the used parts washer solvent. As designed and utilized, this unit is simply a device used to effectively convey the contents of a used parts washer solvent container to the on-site RCRA-Permitted Hazardous Waste Tank (Used Solvent). The wet dumpster/drum washer unit is not designed or intended to contain an accumulation of hazardous waste. The unit operates at

ambient pressure and temperature. When not actively being used to received used parts washer solvent and wash containers, the unit will be maintained in a closed position. The internal sump at the bottom of the unit will be emptied at the end of each day's operating shift.

The unit will be inspected each operating day using Form CO Return and Fill Area, which is found in Part II.C of this permit application. Items for inspection are:

- Pump seals & pump motors
- Fittings, valves, hose connections, & hose body
- Clam Shell Unit Type check fusible link for failure (e.g., broken, spring missing, other), lid hinge assembly (e.g., broken pivot arm, damaged lid arm, missing pins, other).
- Wet Dumpster/Drum Washer check for evidence of failure (e.g., leaks, rust, split seams, distortion, deterioration, excess debris, sediment accumulation, etc.)
- Secondary Containment check for excess sediment, standing liquid that may indicate leak(s), distortion, deterioration, excess debris, damage, etc.).
- Loading/Unloading Area check for cracks, ponding or wet spots, deterioration, etc.)
- Satellite Accumulation Container check for container integrity, placement, proper labeling/marking, closed when not adding or removing waste material, etc.

If a leak is detected from the wet dumpster/drum washer unit, the defect causing the leak will be repaired no later than 45 days from the date of detection, unless the standards associated with delay of repair (40 CFR 264.1084(k)(2)) apply. First attempts to repair the unit will occur within five (5) days after leak detection.

Closure information for this unit and the Return/Fill Shelter is found in Part II.K of this permit application.

The physical properties and chemical characteristics of the used parts washer solvent transferred through this unit, and waste materials generated in the drum cleaning operation are found in Part II.A.5 of this permit application.

*1.c* The wet dumpster/drum washer unit is not a disposal unit, however; if future conditions show that contaminated soils cannot be completely removed or decontaminated during closure, the unit will meet the requirements of 264.601 during post-closure care. A plan to perform post-closure care in accordance with 264.118 will be prepared for implementation upon FDEP approval.

Revision 09/20/2022

#### 2. Environmental Performance Standards for Miscellaneous Units

The wet dumpster/drum washer unit operated by the Safety-Kleen Medley branch are not equipped with active emission control systems. As part of the company's overall emission inventory and assessment program, emission sources at the branch facilities, including the wet dumpster/drum washer units have been evaluated to determine whether the facilities should be considered sources requiring air permits. Based on this evaluation they should be considered minor sources and not require emission control permits. The reasons for the low emission levels are fourfold. First, the solvent managed at the facility, especially in those areas of maximum potential emission (i.e., wet dumpster/drum washer and bulk storage tanks, have a relatively low vapor pressure of 0.2mmHg at  $68^{\circ}$  F or 0.6mm Hg at  $100^{\circ}$  F). Secondly, the wet dumpster/drum washer unit is operated in such a manner as to minimize the potential for emissions to greatest extent practicable during unloading the used parts washer solvent into the unit. Third, the volume of the used parts washer solvent present in the wet dumpster/drum washer unit between unloading operations, approximately 2-3 gallons, is minimized and lids of the unit remains closed when used parts washer solvent is not being added or when empty drums are not being cleaned. Finally, containers are filled with clean solvent using a gasoline type dispenser that extends to the bottom of the container. This minimizes any splashing that may occur during the filling operation.

Safety-Kleen has conducted Industrial Hygiene Hazard Assessments of the emissions produced by the operation of the wet dumpster/drum washer and other sources located at a typical branch. These assessments were conducted for a number of reasons. The most important is to determine the presence of any unacceptable work place exposure regarding the protection of company employees who work directly over the process area as containers are being emptied, cleaned and refilled with clean solvent. Based on Industrial Hygiene studies performed at various Safety-Kleen branches/facilities, results do not indicate any unacceptable work place exposure. As would be expected, solvents and related compounds have been detected during sampling events, but in concentrations will below American Conference of Governmental Industrial Hygienist (ACGIH) threshold limit values (TLV) and the Occupational Safety and Health Administration's (OSHA) Permissible Exposure Limits (PEL) for the various chemical compounds encountered. A sample of the data collected by the company's Certified Industrial Hygienist is included at the end of this section.

Based on the above information there would not be any tangible environmental benefit to adding pollution controls to the wet dumpster/drum washer units. In addition, developing pollution controls would be very difficult since processing containers of used parts washer solvent requires that the lids to the unit remain open during active operation, and the unit is located over an open grated working surface provided with a concrete secondary containment system. It should also be noted that the wet dumpster/drum washer unit is drained and closed during those times of the operating day when no trucks are delivering used parts washer solvent to be processed. Also, at the end of each operating day, which typically consists of 2.5 - 4 hours of processing, the wet dumpster/drum washer unit is emptied, cleaned and closed to prepare for the next day's operation. These procedures provide an additional amount of risk reduction.

- 3. The potential pathways of exposure of humans to hazardous waste or hazardous waste constituents from the wet dumpster/drum washer would be through skin contact (absorption), or inhalation. Employees operating the unit are required to use the following Personal Protective Equipment (PPE) at all times to reduce and/or eliminate exposure:
  - Gloves cut resistant (outside), and supported neoprene (inside)
  - Hearing protection required when using pneumatic tools for drum closure or opening
  - Footwear steel toed boots with metatarsals and slip resistant soles
  - Tychem QC apron with sleeves
  - Hard Hat
  - Safety glasses with side shields
  - Safety-Kleen issued work uniform
  - In addition, all material handlers are issued respirators and fit tested annually. It is not a requirement to use respiratory protection during operation of the unit, but any employee may choose to do so.

The potential pathways of exposure of environmental receptors to hazardous waste or hazardous waste constituents would through emissions or release of material from the unit. Emissions from the unit have been discussed above. In addition, release protection has been discussed. The unit is located inside an enclosed building with sufficient secondary containment to mitigate a release of material. In addition, the capacity of the unit is minimal compared to the secondary containment capacity in the Return/Fill Shelter, the unit is inspected each operating day for leaks, deterioration, or damage, and employees are trained to respond to any spill or release from this unit immediately



To: Kevin Knippschild

From: Gavin Burdge - Bundy

Subject: Dec 6, 2000 Personal Air Sample Obtained at the Dolton, IL Return and Fill

Date: Jan 27, 2001

Executive Summary

Air sampling at the return and fill indicated negligible health risk (additive exposure index < 0.1) from the inhalation route of exposure. Skin contact from splashes was a more likely route of exposure.

#### Discussion

A personal air sample was obtained December 6, 2000 on Tony Alvarez who worked on the 3 pm to 11 pm shift at the return and fill. A full shift sample was obtained to determine the 8-hour timeweighted average solvent concentrations. The actual dumping of drums containing 105 and 150 solvent takes about 3 to 4-hours. The air sample was obtained following standard NIOSH methods and analyzed by the AIHA accredited Safety-Kleen Lambton Occupational Hygiene Lab.

The results showed trace concentrations of several airborne solvents. All concentrations were significantly below the occupational exposure limits. A trace concentration of 0.013 ppm of benzene was detected. The TLV for benzene is 0.5 ppm. The concentration of methylene chloride detected was 0.1 ppm. The methylene chloride OSHA "action level" is 12.5 ppm. Other substances detected in trace concentrations less than 1 ppm were hexane, isopropanol, 1,1,1-trichloroethane, trichloroethylene, perchloroethylene, ethyl benzene, toluene, xylene and 1,3,5-trimethyl benzene.

This air sample did not demonstrate the need for respirators. Toluene and benzene are absorbed through the skin and all skin contact must be avoided.

The additive exposure index = conca/TLVa + concb/TLV b + ... concn/TLVn = < 0.1 (negligible inhalation risk).

#### **Recommendations**

- Full-face respirators are worn for eye and face protection. Possible alternatives are wraparound-lens type safety glasses (e..g., Uvex "Genesis" or AO Safety "GoggleGear"), and face-shield without a respirator. Chemical resistant aprons with sleeves are also recommended because of the potential for chemical splashes when drum moving, tilting, opening and dumping the drum contents.
- Chemical resistant safety boots should be worn instead of leather shoes.
- Change out of work clothes after dumping drums.

1301 GERVAIS STREET, SUITE 300 COLUMBIA, SC 29201 803/933-4849

#### <u>Results</u>

.

| Tony Alvarez, dumping drums at the Return and fill, 450 minutes, December 6, 2000 |                  |                                               |  |  |  |
|-----------------------------------------------------------------------------------|------------------|-----------------------------------------------|--|--|--|
| Substance                                                                         | Concentration    | PEL/TLV                                       |  |  |  |
| /Isopropanol                                                                      | 0.1 ppm          | 400 ppm                                       |  |  |  |
| Methylene Chloride                                                                | 0.1 ppm          | 25 ppm PEL                                    |  |  |  |
| Hexane                                                                            | 0.3 ppm          | 50 ppm                                        |  |  |  |
| Benzene                                                                           | 0.013 ppm        | 0.5 ppm (Skin), Confirmed<br>Human Carcinogen |  |  |  |
| 1,1,1-Trichloroethane                                                             | 0.01 ppm         | 350 ppm                                       |  |  |  |
| Trichloroethylene                                                                 | 0.05 ppm         | 50 ppm                                        |  |  |  |
| Toluene                                                                           | 0.1 ppm          | 50 ppm (Skin)                                 |  |  |  |
| Ethyl Benzene                                                                     | 0.02 ppm 100 ppm |                                               |  |  |  |
| Perchloroethylene                                                                 | 0.1 ppm          | 25 ppm                                        |  |  |  |
| Xylene                                                                            | 0.2 ppm          | 100 ppm                                       |  |  |  |
| 1,3,5-Trimethylbenzene                                                            | 0.2 ppm          | 25 ppm                                        |  |  |  |

Benzene is listed by ACGIH as a confirmed human carcinogen. The "skin" notation indicates that the material is absorbed through the skin.

Cc: Dan Mansueto



| Safe                | ty-Kleen Lambton Lal     | ooratory Analytical R      | eport                                            |  |  |  |  |
|---------------------|--------------------------|----------------------------|--------------------------------------------------|--|--|--|--|
| Reference Numbers:  | C2072572<br>Safety-Kleen |                            | 97Nov 1433<br>Client (PO or Project #)           |  |  |  |  |
| Client:             |                          | Safety-Kleen, Columbia, SC |                                                  |  |  |  |  |
| Dates:              | December 7, 2000         | January 31, 2001           | January 31, 2001                                 |  |  |  |  |
|                     | Sampled                  | Submitted                  | Analyzed                                         |  |  |  |  |
| Sample Description: |                          | Air Monitoring             |                                                  |  |  |  |  |
|                     |                          | g:\lab\analysis\rep        | orts\contract\2001\ih\gavin\[c2072572.xls]header |  |  |  |  |

#### Industrial Hygiene Analysis Information

(Analytical Results Attached)

| Analysis De               | tails                                                                                                 | Type of Analysis   |                                    |                                                                                                          |  |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
|                           |                                                                                                       | Dust by Gravimetry | Metals                             | Solvent Extractable<br>Hydrocarbons*                                                                     |  |  |  |
| Sampling                  | Date:<br>Sampled By:<br>Date Submitted:                                                               |                    |                                    | December 7, 2000<br>Gavin Burdge<br>January 31, 2001                                                     |  |  |  |
| Medium<br>Analyzed        | Type:<br>Supplier:<br>Lot Number:                                                                     |                    |                                    | activated charcoal<br>SKC<br>2000                                                                        |  |  |  |
| Digestion /<br>Extraction | Method:<br>Date:<br>Analyst:                                                                          |                    |                                    | NIOSH 1500<br>January 31, 2001<br>Larry Core                                                             |  |  |  |
| Analysis                  | Instrument:<br>Date:<br>Instrumentation Analyst:<br>Blank Corrected Analytes:<br>Sample Discard Date: |                    | (digests consumed during analysis) | GC/MS<br>January 31, 2001<br>Larry Core<br>None<br>February 14, 2001<br>(expires 2 days after extraction |  |  |  |
| Report                    | Date Reported:                                                                                        |                    |                                    | February 7, 2001                                                                                         |  |  |  |

\*Results are not corrected for desorption efficiencies within NIOSH criteria for method accuracy. [NIOSH; "Development and Evaluation Methods", NMAM 4th ed. (DHHS/NIOSH Pub. No. 94-113) Sect. I, Part E, pp.40 (1996)]

NA = Not Applicable

ND = Not Detected

PQL = Practical Quantitation Limit

Sample submitted to laboratory violated NIOSH protocols for sample hold times.

Lab Approval:

Monique Durr,B/Sc.,C.Chem. Analytical Specialist



Filo. 7/01 Date

FAX 519/864-1437

Page 1 of 2



| <b>Reference Numbers:</b>                     |                                     |                             |            |                   | 72572             |                                                                                                                                         |                |                        |                                                                                                                 | 97Nov                                        | 1433                                                                                                                                                                                                                               |                        |                                  |
|-----------------------------------------------|-------------------------------------|-----------------------------|------------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|
|                                               |                                     |                             |            | Safet             | y-Kleen           |                                                                                                                                         |                |                        |                                                                                                                 | Client (PO o                                 | or Project #)                                                                                                                                                                                                                      |                        |                                  |
| Client:                                       |                                     |                             |            |                   |                   | Safety                                                                                                                                  | -Kleen,        | Colun                  | ıbia, SC                                                                                                        | Y                                            |                                                                                                                                                                                                                                    |                        |                                  |
| Dates:                                        |                                     |                             | Decembe    | ·····             | 00                | J                                                                                                                                       | anuary 3       |                        | '                                                                                                               | J                                            | anuary 3                                                                                                                                                                                                                           |                        |                                  |
| Same la Description                           |                                     | [                           | San        | npled             |                   | Submitted Analyzed                                                                                                                      |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Sample Description:                           |                                     | L                           |            |                   |                   |                                                                                                                                         | AIF MON        | ~                      | analysis\reno                                                                                                   | rts\contract\?                               | :001\ih\gavin                                                                                                                                                                                                                      | (c2072572 x            | slbeader                         |
| ••••••••••••••••••••••••••••••••••••••        |                                     |                             | Indu       | strial F          | Ivaien            | e Orga                                                                                                                                  | nics A         |                        |                                                                                                                 | ris contract (2                              |                                                                                                                                                                                                                                    | (C2072572.A            | is fileader                      |
| Parameters:                                   | a de la de                          |                             | 12072      |                   | <b>, ,</b>        |                                                                                                                                         | 91292/1006     |                        |                                                                                                                 | (A. A. A    | AS SECOND                                                                                                                                                                                                                          |                        |                                  |
| Air Volume (L)                                | a na nyan                           |                             | 4          |                   |                   |                                                                                                                                         |                |                        |                                                                                                                 | stadní sa alt                                |                                                                                                                                                                                                                                    |                        |                                  |
|                                               | PQL                                 | back                        | front      | per air           | per air           | back                                                                                                                                    | front          | per air                | per air                                                                                                         | back                                         | front                                                                                                                                                                                                                              | per air                | per ai                           |
| Units:                                        |                                     |                             | charcoal   |                   | volume            | charcoal                                                                                                                                |                |                        | 43.423.42 E                                                                                                     |                                              | charcoal                                                                                                                                                                                                                           |                        | volum                            |
| Blank Correction:                             | μg                                  | μg<br>none                  | μg<br>none | mg/m <sup>3</sup> | ppm*<br>corrected | μg<br>none                                                                                                                              | μg<br>none     | mg/m <sup>3</sup>      | ppm*<br>corrected                                                                                               | μg<br>none                                   | μg<br>none                                                                                                                                                                                                                         | mg/m <sup>3</sup>      | ppm*                             |
| Isopropanol                                   | 0.7                                 | ND                          | 8.5        | 0.202             | 0.082             |                                                                                                                                         | inorito :      |                        | Corrected                                                                                                       | none                                         | nono                                                                                                                                                                                                                               | nder der bilde         | concea                           |
| Acrylonitrile                                 | 0.5                                 | <0.7                        | <0.7       | <0.017            | <0.008            |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Dichloromethane                               | 0.3                                 | 1.1                         | 8.5        | 0.229             | 0.066             | n de la constante<br>La constante de la constante<br>La constante de la |                |                        | 8433669 908                                                                                                     | andra Nile and                               |                                                                                                                                                                                                                                    |                        |                                  |
| Methyl Ethyl Ketone                           | 0.5                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Hexane                                        | 0.2                                 | 9.9                         | 32         | 0.986             | 0.280             |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Ethyl Acetate                                 | 0.2                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Chloroform                                    | 0.2                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 | en se en |                                                                                                                                                                                                                                    |                        |                                  |
| 1,2-Dichloroethane                            | 0.3                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| 1,1,1-Trichloroethane                         | 0.3                                 | ND                          | 2.4        | 0.057             | 0.010             | a Constant Constant Constanting                                                                                                         |                |                        |                                                                                                                 | an an an Alban an Albana                     |                                                                                                                                                                                                                                    |                        |                                  |
| Benzene                                       | 0.5                                 | ND                          | 1.7        | 0.040             | 0.013             |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Carbon Tetrachloride                          | 0.5                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                | ****                   |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        | 940 V. (1920) - 1990 - 1990 - 19 |
| p-Dioxane                                     | 0.2                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Trichloroethylene                             | 0.2                                 | ND                          | 11         | 0.255             | 0.047             |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Methyl Isobutyl Ketone                        | 0.2                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| 1,1,2-Trichloroethane                         | 0.2                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Toluene                                       | 0.5                                 | ND                          | 18         | 0.429             | 0.114             |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| n-Butyl Acetate                               | 0.2                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Tetrachloroethylene                           | 0.2                                 | ND                          | 37         | 0.879             | 0.130             |                                                                                                                                         |                |                        | 것같뿐님                                                                                                            |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Chlorobenzene                                 | 0.2                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| Ethylbenzene                                  | 0.2                                 | ND                          | 2.7        | 0.064             | 0.015             |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| p- & m- Xylene                                | 0.2                                 | ND                          | 14         | 0.340             | 0.078             | an ang sang sang sang sang sang sang san                                                                                                |                |                        |                                                                                                                 | and the second                               |                                                                                                                                                                                                                                    |                        |                                  |
| Styrene                                       | 0.3                                 | ND                          | ND         | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| o-Xylene                                      | 0.3                                 | ND                          | 17         | 0.398             | 0.092             | a an                                                                                                |                |                        |                                                                                                                 | a<br>Alatan ar                               |                                                                                                                                                                                                                                    |                        |                                  |
| 1,1,2,2-Tetrachloroethane                     | 0.2                                 | ND                          | ND<br>07   | ND                | ND                |                                                                                                                                         |                |                        |                                                                                                                 |                                              |                                                                                                                                                                                                                                    |                        |                                  |
| 1,3,5-Trimethylbenzene                        | 0.3                                 | ND                          | 37<br>ND   | 0.888             | 0.181             | 2 (4 <b>5</b> 0) - 20 (44)                                                                                                              |                | مستعر<br>250 میشین ا   | All and a second                                                                                                | 化机械 化二十二                                     |                                                                                                                                                                                                                                    |                        |                                  |
| 1,3-Dichlorobenzene                           |                                     | ND                          | ND         | ND                | ND<br>ND          | REE VER                                                                                                                                 |                | مر المحاجة بم<br>سيسية | A PO                                                                                                            | N                                            |                                                                                                                                                                                                                                    |                        |                                  |
| 1,4-Dichlorobenzene                           |                                     | ND                          | ND<br>ND   | ND                | ND                | र अन्द्र हो है                                                                                                                          | 14             |                        | and the second secon | S.                                           |                                                                                                                                                                                                                                    |                        |                                  |
| 1,2-Dichlorobenzene<br>1,3,5-Trichlorobenzene | <ul> <li>CENTRAL AND ALL</li> </ul> | ND<br>ND                    | ND<br>ND   | ND<br>ND          | ND                | 1993년 (1993)<br>1993년 - 1993년 (1993)<br>1993년 - 1993년 (1993)                                                                            | $\int_{u}^{A}$ | /CHAP                  | TERED                                                                                                           |                                              | 1.5135541                                                                                                                                                                                                                          |                        |                                  |
| 1,2,4-Trichlorobenzene                        |                                     | ND                          | ND         | ND                | ND                | 1.000000                                                                                                                                | lõ             | Monique                | Durr, B.S                                                                                                       | k Z I                                        |                                                                                                                                                                                                                                    |                        |                                  |
| 1,2,3-Trichlorobenzene                        |                                     | ND                          | ND         | ND                | ND                |                                                                                                                                         | 12             | Wondao                 |                                                                                                                 | H H                                          |                                                                                                                                                                                                                                    |                        |                                  |
| Naphthalene                                   | 0.2                                 | ND                          | ND         | ND                | ND                | 고 한 신 공의                                                                                                                                | ATION OF       | ∖ сн                   | EMIST                                                                                                           | 13/                                          |                                                                                                                                                                                                                                    |                        |                                  |
| GC/FID Low Boiling Hydro                      |                                     | 1                           | ND         | ND                | ND                |                                                                                                                                         | $\sim$         | 00                     | e a casa da seguera da 🖉                                                                                        | */                                           | n an an an an Arrien an Arrien<br>Arrien a Arrien an Arr | an na Subang<br>Natara | en neer staar<br>Geboorte        |
| Medium boiling Hydroc                         | al water in the second              | A second on a second second | ND         | ND                | ND                | , na se debite                                                                                                                          |                | OSSY                   | OI                                                                                                              | Y                                            |                                                                                                                                                                                                                                    |                        |                                  |
| High Boiling Hydroc                           |                                     |                             | ND         | ND                | ND                |                                                                                                                                         |                |                        | a                                                                                                               |                                              |                                                                                                                                                                                                                                    |                        |                                  |

ppm\*- volume/volume, assuming compounds are an ideal gas at normal tempurature,25°C(298K), and pressure,760mm Hg (101.33kPa).(NTP)

Lab Approval: Monique Dur, B.Sc.,C.Chem. Analytical Specialist LAMBTON FACILITY 4090 TELFER RD. Lab Approval:

Date: Jule. 7/01

RR # 1 CORUNNA, ONTARIO NON 1G0

519/864-1021

Ð

d



| FIELD FOR                                      | (M AND CALIDRA                |                    |                            |                                                   |  |  |
|------------------------------------------------|-------------------------------|--------------------|----------------------------|---------------------------------------------------|--|--|
| Sample Number                                  | Facility #                    | Facility Location  |                            |                                                   |  |  |
| 12 6 2000 GB                                   |                               | Dolton, IL         |                            |                                                   |  |  |
| Month Day Yr Initials No.                      | EMPLOYEE INF                  | OPMATION           |                            |                                                   |  |  |
|                                                |                               | UNIMATION          |                            |                                                   |  |  |
| Employee Name<br>Last: Alvare                  | First: Tony                   |                    |                            |                                                   |  |  |
| Sample Obtained for: BZ                        | Location/Area                 |                    | SHIFT                      | Start time 2/500                                  |  |  |
| Job Title: Material Handler                    | Device '                      | Type: Badge or Pum | p 2ND                      | Stop time 2300                                    |  |  |
| Job Task: Dolton IL Kelm                       | n + Fill Dun                  | pin 105+157        | 1 Vineral                  | Spints                                            |  |  |
| @ Dotton Location R/C                          | - ( Part of De                | <u>c.5-7,2000</u>  | Dotton R                   | CIH                                               |  |  |
| Report Tube was not a                          | nitially Sent                 | TTO LAB            |                            |                                                   |  |  |
|                                                | $\overrightarrow{\mathbf{V}}$ |                    |                            |                                                   |  |  |
| · · · · ·                                      |                               |                    | 12/7/2000 I                | Flowrate: (), (), (), (), (), (), (), (), (), (), |  |  |
|                                                |                               | Pressure: Stal     |                            | limeters of Mercury)                              |  |  |
| Temperature. Coogree company State Time: 2.330 |                               |                    |                            |                                                   |  |  |
| Sample Duration. 400                           |                               |                    |                            |                                                   |  |  |
| <u> 00000. ] [ </u>                            |                               |                    |                            | Local Dilution                                    |  |  |
| Lab: LAMBION OG. Hypiene                       | Full Shift: YES               |                    | Remainder of Exp. Time: mi |                                                   |  |  |
| Total Shift Length: HED mins                   | Full Slint. (115              |                    |                            |                                                   |  |  |
| PERS                                           | ONAL PROTEC                   | TIVE EQUIPM        | ENT                        |                                                   |  |  |
| Respiratory: YES NO                            | TYPE code:                    |                    |                            |                                                   |  |  |
|                                                |                               | wtruks code:       | 0 1-                       |                                                   |  |  |
| BODY code Full - Fue top                       | /                             | Ty HAND co         | ode: Best                  | Necprene                                          |  |  |
| HEAD code: NA                                  | OTHER codes:                  |                    |                            | energian destructions bear assigned the           |  |  |
|                                                | COMM                          |                    | ~ A: A                     | 10 - Ala                                          |  |  |
| 450 Mins @ 95                                  |                               | Work the           | Man No Co                  | Clen Leastant                                     |  |  |
| Pra-program Part                               | m 1600, off                   | 2330 lo<br>Sho     |                            | Clem . Least and                                  |  |  |
| Rop Worr when Durping                          | Drums                         |                    |                            |                                                   |  |  |
|                                                |                               |                    |                            |                                                   |  |  |
| SAMPLING PERFORMED BY:                         | 5 Dudy                        | -                  |                            |                                                   |  |  |

# TELD FORM AND CALIBRATION DOCUMENTATION

| ŝ     |
|-------|
|       |
| aded  |
| ã     |
| a     |
| areas |
| SE    |
| đ     |
| •     |
| lab   |
| σ     |
| SC    |
| Ð     |
| q     |
| ہتے۔  |
| _     |

Distribution: White / LES Lab Yellow/Accounting Pink/TSR Gold/Client

|                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Autiliaized by Cilenteianentic mist                                                            |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                            |                                                                                                             | nate TW 31 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Authorized by XIL Y                                                                            |
|                                                                            |                                                                                                             | Time Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Received by:                                                                                   |
|                                                                            |                                                                                                             | Time Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Custody Relinquished by:                                                                       |
| AFTES ContactOther<br>of detection, fax results):                          | Send report to:  Client Client Contact DOth Special Instructions (method, limit of detection, fax results): | Time (3/U) Date JM 30 2001<br>Time Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chain Received by:                                                                             |
|                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
|                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
|                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
|                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
|                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                              |
|                                                                            |                                                                                                             | 1673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Restect MOV 16                                                                                 |
|                                                                            |                                                                                                             | -7 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Submitted De S                                                                                 |
|                                                                            |                                                                                                             | 24590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLACK SAME TO SK 26                                                                            |
|                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO BANK                                                                                        |
|                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
|                                                                            |                                                                                                             | Dec7, Love D.V SUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 12072000-1                                                                                   |
|                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
| attach information<br>ie. MSDS's                                           | <u>لم</u><br>( ل:                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Sample Identification and Description                                                        |
| Known Hazards                                                              | Ř                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | but is required for less than ten day turnaround.                                              |
|                                                                            | Sam                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emergency (28 hours, notify lab)                                                               |
|                                                                            | ple                                                                                                         | The second secon | Priority /5 business days or as arranged)                                                      |
|                                                                            |                                                                                                             | Lab lieo Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASAC<br>Turners Info                                                                           |
| C in the hox helow to indicate request (specify required detection limit). | Enter an 'X' in the hox helow to indi                                                                       | LES Contact(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |
|                                                                            | <b>Client Purchasing Identification</b>                                                                     | 1 In Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | et Identification bold                                                                         |
| Fax No.                                                                    |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Telephone Kostor Q                                                                             |
| Postal/Zip Code                                                            |                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | State L                                                                                        |
|                                                                            | ce To                                                                                                       | ELS ST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Street Address 1201                                                                            |
| . Dept.                                                                    | Company                                                                                                     | en CORP Dept.HITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VSAFety -                                                                                      |
| Title                                                                      | Contact SAM2                                                                                                | WRD GET TIME THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contact GANEN RURI                                                                             |
| Logged In: Time Date State State By: State State                           | 1433                                                                                                        | Сапнонсаю @ сезсотрасони                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (519) 864-1021 (519) 864-3816 (Laboratory)<br>1-800-265-7549 (519) 864-3914 (Customer Service) |
| Received: Time Date By:                                                    |                                                                                                             | Internet E-mail:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l                                                                                              |
|                                                                            |                                                                                                             | Client Beferen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NON 1GO                                                                                        |
| For Lab Use Only Page: of                                                  |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4090 Telfer Rd.<br>R.R. #1 Corunna, Ontario                                                    |
|                                                                            | Services                                                                                                    | Analytical Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENVIRON#ENTAL<br>SERVICE:                                                                      |
| Lambton<br>Laboratory                                                      | Laboratory                                                                                                  | Request For Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |



To: Corporate IH File

From: Chris Bachman

Date: 4/22/05

Re: Routine Branch IH sampling event

On January 11<sup>th</sup>, 13<sup>th</sup> and January 18<sup>th</sup>, 2005 Safety-Kleen was provided with professional IH monitoring services through AIG Insurance. The objective of the surveys was to monitor (1) CSRs for solvent exposure during parts washer services, unvented gun cleaners, dry cleaning services and (2) monitor Material Handlers for solvent and noise exposure during dump/fill operations.

All results were below 50% of the applicable OSHA and ACGIH values except for the Short Term (STEL) sample for Toluene (67% of OSHA Ceiling) during the unvented gun cleaner service and the ACGIH 80-db average for Noise (88.0 db). Results will not effect the current branch PPE hazard assessments (9/2004) for servicing unvented gun cleaners, parts washers and dump/fill operations (while using pneumatic gun).

| Location                                    | Sound Level<br>(dBA)* |
|---------------------------------------------|-----------------------|
| Moving drums with forklift onto rack        | 87.5                  |
| Drums banging on floor                      | 91.4 - 98.3           |
| Two drums banging together                  | 92.4                  |
| Metal lids thrown into drums                | 103.5                 |
| Unscrewing nut on drum with pneumatic drill | 103 - 105.8           |
| Using pneumatic drills                      | 95.3 - 102.2          |
| Drum rolling in washer without spray        | 82                    |
| Drum rolling in washer with solvent spray   | 95                    |
| Scraping labels off of drums                | 78 to 81              |

#### Sound Level Measurements for Dumping and Filling Operation January 18, 2005

Bolded results indicate sound level readings above the OSHA action level and/or PEL

## Noise Monitoring Results for Dumping and Filling Operation January 18, 2005

| Employee/<br>Location | Time<br>(hh:mm)<br>On/Off | Dose <sup>a</sup> , %<br>80-db<br>Threshold | Lavg <sup>b</sup> ,<br>dBA<br>80-db<br>Threshold | Dose <sup>a</sup> , %<br>90-db<br>Threshold | Lavg <sup>b</sup> ,<br>dBA<br>90-db<br>Threshold | ACGIH<br>Dose <sup>®</sup> , %<br>80-db<br>Threshold | ACGIH<br>Lavg <sup>b</sup> ,<br>dBA<br>80-db<br>Threshold |
|-----------------------|---------------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|
| Material<br>Handler   | 3:31<br>(9:46 –<br>1:18)  | 22.08                                       | 85.1                                             | 11.61                                       | 80.4                                             | 86.75                                                | 88.0                                                      |
|                       |                           |                                             | OSHA<br>AL=<br>85 dBA                            |                                             | OSHA<br>PEL= 90<br>dBA                           |                                                      | ACGIH<br>TLV <sup>®</sup> =<br>85 dBA                     |

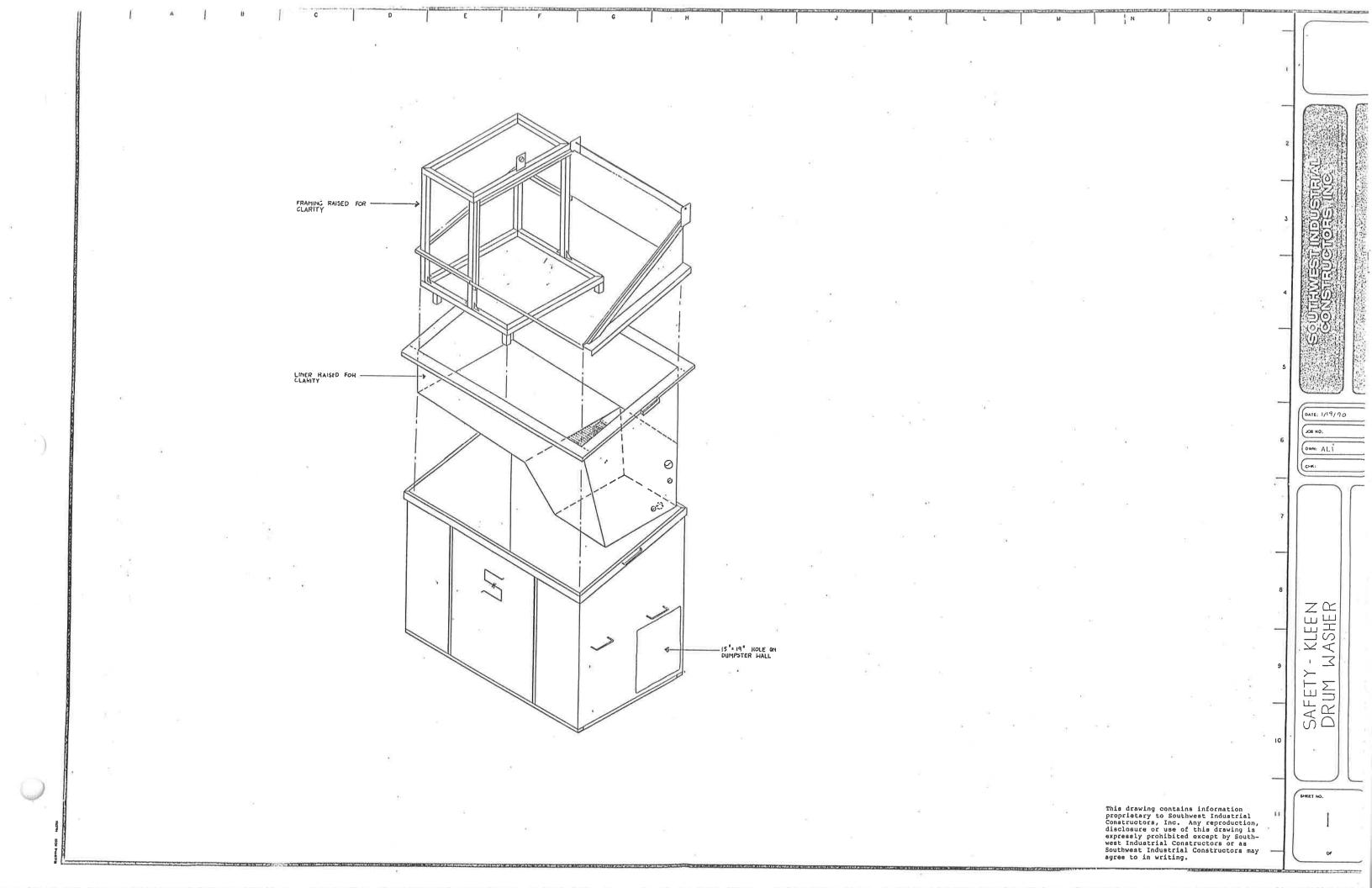
Bolded results indicate above the OSHA action level / ACGIH TLV

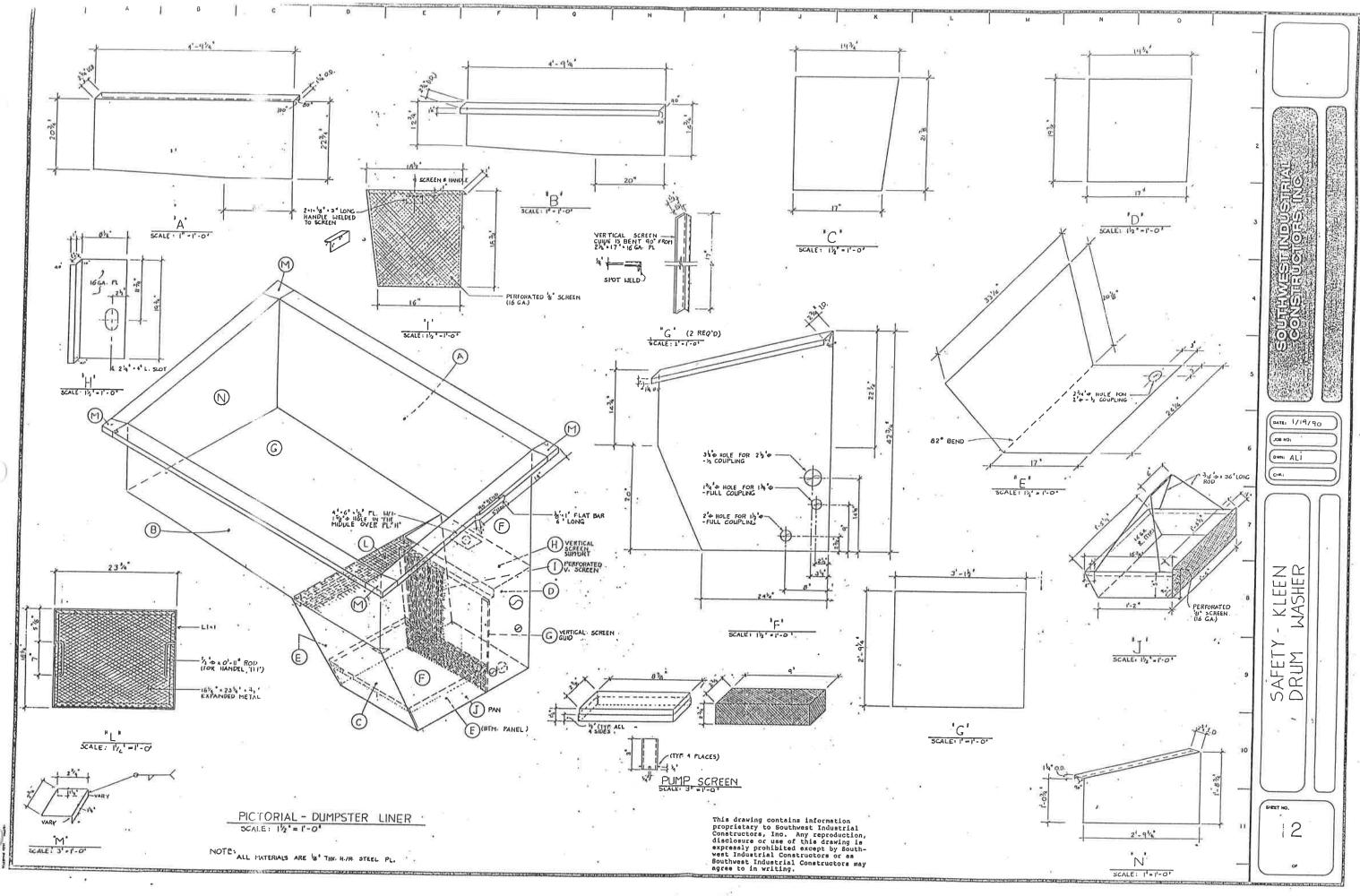
## Field Service Short-Term (STEL) Sampling Solvent Results (1/13/05)

| Employee                 | Time<br>(min)*<br>(Start/Stop) | Sample<br>No. | Analyte            | Result<br>(ppm)  | OSHA PEL<br>Ceiling/STEL<br>(ppm) | ACGIH TLV <sup>®</sup><br>Ceiling/STEL<br>(ppm) |
|--------------------------|--------------------------------|---------------|--------------------|------------------|-----------------------------------|-------------------------------------------------|
| CSR -<br>Servicing       | 10                             | 13-3T         | Acetone<br>Toluene | 46<br><b>200</b> | NE<br>300 C                       | 750<br>NE                                       |
| unvented gun<br>cleaner. | (9:24 –9:35)                   | 13-4M         | Methanol           | 21               | NE                                | 250                                             |

Bolded results indicate above the OSHA action level / Ceiling Limit

## Time-Weighted Average Sampling (1/11/05)


| Employee          | Sample<br>No. | Time<br>(min)*<br>(Start/Stop) | Analyte               | Result<br>(ppm) | OSHA<br>PEL<br>(ppm) | ACGIH<br>TLV <sup>®</sup><br>(ppm) |
|-------------------|---------------|--------------------------------|-----------------------|-----------------|----------------------|------------------------------------|
| CSR               | A-1           | 286                            | Total Hydrocarbons    | ≤2.4            | 500                  | 100                                |
| Servicing Parts   |               | (8:57                          | (as Stoddard          |                 |                      |                                    |
| Cleaner that uses |               | 3:41)                          | solvent) <sup>a</sup> | 0.13            | 100                  | 25                                 |
| 150 Gold          |               |                                | Tetrachloroethylene   | < 0.09          | 350                  | 350                                |
|                   |               |                                | 1,1,1-                |                 |                      |                                    |
|                   |               |                                | Trichloroethane       | -               | 1                    |                                    |


| Employee                                                                                                                  | Sample<br>No. |                          |                                                                                    | Result<br>(ppm) | OSHA PEL<br>Ceiling/STEL<br>(ppm) | ACGIH<br>TLV <sup>®</sup><br>Ceiling/STEL<br>(ppm) |  |
|---------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|------------------------------------------------------------------------------------|-----------------|-----------------------------------|----------------------------------------------------|--|
| CSR-<br>Servicing<br>Model 81<br>Agitating<br>Parts<br>Cleaner<br>that uses<br>150 Gold.                                  | S-1           | 32<br>(10:05 –<br>10:37) | Total Hydrocarbons<br>(as Stoddard<br>solvent) <sup>a</sup><br>Tetrachloroethylene | 2.4<br>< 0.1    | NE<br>200 C                       | NE<br>100                                          |  |
| CSR<br>Servicing<br>Parts<br>Cleaner<br>that uses<br>150 Gold.                                                            | S-2           | 23<br>(11:09 –<br>11:32) | Total Hydrocarbons<br>(as Stoddard<br>solvent) <sup>a</sup><br>Tetrachloroethylene | ≤2.4<br><0.2    | NE<br>200 C                       | NE<br>100                                          |  |
| CSR-<br>Removing<br>2 sealed<br>perc<br>containers<br>from dry<br>cleaning<br>store                                       | S-3           | 10<br>(1:43 –<br>1:53)   | Tetrachloroethylene<br>1,1,1-<br>Trichloroethane                                   | < 0.4           | 200 C<br>NE                       | 100<br>450                                         |  |
| CSR-<br>Removing<br>2 perc<br>containers<br>from dry<br>cleaning<br>store.<br>One<br>container<br>not sealed<br>properly. | S-4           | 13<br>(2:40 –<br>2:53)   | Tetrachloroethylene<br>1,1,1-<br>Trichloroethane                                   | 3.7 < 0.4       | 200 C<br>NE                       | 100<br>450                                         |  |

# Short-Term (STEL) Sampling Solvent Results (1/11/05)

| Employee                                                                                                                     | Time<br>(min)*<br>(Start/Stop) | Sample<br>No. | Analyte                                                     | Result<br>(ppm) | OSHA<br>PEL<br>(ppm) | ACGIH<br>TLV <sup>®</sup><br>(ppm) |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|-------------------------------------------------------------|-----------------|----------------------|------------------------------------|
| George Huggins<br>Dumped about<br>fifteen 30-gallon                                                                          | 175<br>(9:38 –<br>12:34)       | 18-1          | Total Hydrocarbons<br>(as Stoddard<br>solvent) <sup>a</sup> | 1.7             | 500                  | 100                                |
| drums of 150<br>solvent and nine<br>16-gallon drums of<br>105 solvent;<br>cleaned a filter and<br>worked with a<br>mechanic. |                                |               | Tetrachloroethylene                                         | 0.20            | 100                  | 25                                 |

 Table IV: Dumping and Filling Time-Weighted Average Sampling (1/18/05)





Tab 8 Part II.K Closure Plan

#### Part II

#### K. CLOSURE PLAN

Safety-Kleen constructed the Medley Branch with the intent that it will be a long-term facility for the distribution of Safety-Kleen products. No on-site disposal activity occurs at the facility and, hence no disposal capacity will be exhausted that will necessitate closure of the facility. Based on current business and facility conditions, the Medley facility will remain in operation for many years to come. In the event that some presently unforeseen circumstance(s) would result in the discontinuance of operations and permanent closure or sale of the facility, this closure plan identifies the steps necessary to close the facility at any point during its intended life. This plan should be applied to the tanks system, container storage areas, and equipment used by the facility for hazardous waste management to accomplish the closure performance standard of 40 CFR 264.111. It is intended that all closures will be complete and final with removal of waste and decontamination of the facility and associated equipment. This will eliminate the need for maintenance after closure and the possibility of escape of hazardous waste constituents into the environment. Because closure is not anticipated for some time Safety-Kleen agrees to notify the Department when this decision is made to work with FDEP to update the closure plan using the most current requirements and FDEP guidance documents.

#### FACILITY DATA

- 1. Waste Management Facility Descriptions
  - a. RCRA-Permitted Hazardous Waste Tank (Used Solvent): The tank is a 20,000-gallon steel tank. This tank is located within a containment system consisting of a 58' x 40' foundation slab with  $36^{1}/4$ " to 38" perimeter walls as the floor slopes toward the south.
  - b.
  - c. Solvent Return/Fill Shelter: The shelter is a 54<sup>1</sup>/<sub>2</sub>' x 80' structure, located between the office area and main warehouse. It contains two wet dumpsters. The two active dumpsters are used to receive returned solvent from containers and pump it to the used parts washer solvent tank. These dumpsters are not intended for storage but can hold a max. of 505 gals (each).
  - d. Container Storage Area: The container storage area is a 49¼' x 80' ft. area with a sloped floor and secondary containment collection sump. The maximum storage capacity is 29,4000 gallons with 6,912 gallons of hazardous

waste container storage. Containerized waste to be stored in this area will consist of used oil filters, paint wastes, branch generated debris, dry cleaning waste, spent immersion cleaner, and any overflow transfer waste if necessary.

- 2. Maximum Inventory of Wastes
  - a. Used Parts Washer Solvent: 20,000 gallons
  - b. Wet Dumpsters: 1,008 gallons
  - c. Containerized Waste: 6,912 gallons. (Note: This includes any combination of 5, 16, 30, 55, 85-gallon containers, and 330-gallon totes used for various management purposes).

All wastes will be disposed offsite in accordance with appropriate hazardous waste regulations.

#### **CLOSURE PROCEDURES**

#### **Container Storage Areas**

- At closure, all containers present at the facility will be sent to a Safety-Kleen or Clean Harbors TSDF or permitted third party facility where the contents in the containers will be reclaimed and the containers cleaned for reuse. The containers will be removed and transported with proper packaging, labeling, and manifesting.
- The concrete floor, spill containment area, and walls will be scrubbed with a detergent solution and rinsed with clean water to remove waste residuals from the surface. Final rinsate samples will be collected and analyzed to determine the effectiveness of decontamination. Unless otherwise designated in the formal closure plan, rinsate samples will be collected from the container storage area. The rinsate samples will be analyzed by EPA method 6010 for the eight RCRA metals and nickel, and for volatile and semi-volatile organics by EPA methods 8015, 8260, and 8270. The area will be decontaminated to meet FDEP's guidance at the time of closure. Decontamination of the mercury-containing lamps and devices storage area will be conducted at the time of closure as part of the overall decontamination of the container storage areas.

- Decontamination (i.e., detergent wash and clean rinse) fluids will be collected and contained for proper management. One representative sample of the contained fluids will be collected to determine whether the water is hazardous. This determination will be made by laboratory analysis of the sample for the metals and organics (excluding pesticides/herbicides) on the TCLP list. (Note: This wash water will be from all areas undergoing decontamination, not just from the container storage areas.)
- If the wash water or other wastes generated in the closure process are determined to be hazardous, they will be disposed of properly as a hazardous waste.
   Otherwise, the material will be disposed of as an industrial waste. Assumptions of wash water generation are based on Safety-Kleen's past experience from other facility closures. The generated wash water is expected to be non-hazardous based on Safety-Kleen's experience from other facility closures.
- Equipment to be used to clean this area includes mops, pails, scrub brushes, a wet/dry vacuum, and containers. The mops, pails, and scrub brushes will be containerized and disposed of as hazardous waste. The wet/dry vacuum and containers used will be washed with a detergent solution and rinsed to decontaminate them.

#### Solvent Return/Fill Station

- At closure, any sludge in the wet dumpsters ("dumpster mud") will be cleaned out and containerized, labeled, and manifested for proper disposal.
- The metal superstructure components of the station (i.e., the wet dumpsters and the dock grating) will be cleaned by appropriate means to remove visible contamination. Safety-Kleen intends to recycle these components as scrap metal in accordance with 40 CFR 261.6(a)(3)(ii), or to reuse them at another Safety-Kleen facility. Accordingly, decontamination of the components is required only to the extent necessary for safe demolition, storage, and transportation of the scrap.
- The concrete floor in the return/fill station will be scrubbed with a detergent solution and rinsed with clean water to remove waste residuals from the surface. A final rinsate sample will be collected and analyzed to determine the effectiveness of decontamination. Unless otherwise designated in the formal closure plan, the rinsate sample will be analyzed for the same constituents as the

3

container storage area rinsate sample. The area will be decontaminated to meet FDEP's guidance at the time of closure.

#### Aboveground Storage Tank System

# *Note:* The product solvent & used oil tanks will be closed in accordance with Chapter 62-762, F.A.C.

### Metal Components of the Tank Storage System

- At closure, the contents of the tank will be removed to a tanker truck using existing unloading equipment and subsequently transported to a Safety-Kleen recycle center, or 3<sup>rd</sup> party facility.
- Once the contents have been drained, the tank will be opened by removing the manways and vented by supplying fresh air to the interior space of the tank. Any residual wastes will be removed via vacuum for recycling with the previously drained wastes.
- The interior of the tank as well as all associated piping and appurtenant equipment will then be cleaned by appropriate means to remove visible contamination. Safety-Kleen intends to recycle the tank, piping, and appurtenant equipment as scrap metal in accordance with 40 CFR 261.6(a)(3)(ii), or to reuse them at another Safety-Kleen facility. Accordingly, decontamination of the metal components is required only to the extent necessary for the safe demolition, storage, and transportation of the scrap.

### Concrete Containment System

- Final disposition of the concrete containment system where the RCRA-Permitted Hazardous Waste Tank (Used Solvent) is located will depend in part upon the presence or absence of underlying soil contamination. To make that determination, the upper six inches of soil immediately below the concrete slab will be sampled at the following locations, as follows:
  - 1. Under the RCRA-Permitted Hazardous Waste Tank (Used Solvent), and at the containment system sumps;

- 2. Beneath the most prominent of any cracks observed in the slab, and under the tanker connections.
- 3. The rainwater discharge area in the stormwater retention area.
- Sampling locations, and the number of samples required will ultimately be determined after consultation with the Department
- These sample locations may be adjusted as actual field conditions warrant, but a minimum of two samples will be retrieved. These samples will be analyzed for petroleum constituents, and by EPA Method 6010 for the eight RCRA metals and nickel, and for volatile and semi-volatile organics by EPA Methods 8015, 8260, and 8270.
- The perimeter walls and foundation slab of the secondary containment area will be scrubbed with a detergent solution and rinsed with clean water to remove waste residuals from the surface. A final rinsate sample will be collected and analyzed to determine the effectiveness of decontamination. Unless otherwise designated in the formal closure plan, the rinsate sample will be analyzed for the same constituents as the container storage area rinsate sample. The area will be decontaminated to meet FDEP's guidance at the time of closure. Safety-Kleen anticipates that proper maintenance of the concrete containment system will allow the slab to remain in place at closure.
- If required, Safety-Kleen will proceed with demolition of the perimeter walls. If it is determined that soil contamination exists beneath the foundation slab, Safety-Kleen will demolish the entire concrete structure and complete a further delineation of the extent of soil contamination to be removed to complete closure. Any site assessment, interim measures, or corrective action that may be required will be conducted in accordance with Chapter 62-780, F.A.C. and permit requirements.
- Prior to demolition of the perimeter walls, one representative composite sample of the construction materials will be collected and submitted for analyses (by TCLP) of metals and organics (excluding pesticides and herbicides) unless an alternate analytical protocol is required by the selected disposal facility. The representative composite sample will include biased grab samples collected from areas of staining. If no stained areas are evident, the grab sample locations will be randomly selected. If the construction materials are classified as non-hazardous using TCLP, then they will be disposed of as construction debris in an

5

appropriately permitted disposal facility. In the event the construction materials are identified as hazardous using TCLP, the construction materials will be disposed of as a hazardous waste in accordance with RCRA regulations.

- If the foundation slab must be removed, it will be demolished and the construction materials tested using TCLP in the same manner as that described above for the walls of the secondary containment system.
- If soil removal becomes necessary, Safety-Kleen will backfill the excavated area with clean, compacted general fill material graded to match existing surfaces and to preclude ponding of water. To ensure backfill is clean (i.e., is not contaminated with constituents at concentrations above Florida soil cleanup goals or site background (whichever is higher)), one representative composite sample of the backfill sample will be analyzed by EPA Method 6010 for the eight RCRA metals and nickel, and by EPA Methods 8015, 8260, and 8270.

All sampling and analyses will be done in accordance with FDEP Standard Operating Procedures (SOPs).

### FACILITY CLOSURE SCHEDULE AND CERTIFICATION

- Safety-Kleen may amend the closure plan at any time during the active life of the facility. The active life of the facility is that period from initial receipt of hazardous waste to certification of final closure. Safety-Kleen will amend the plan any time changes in operating plans or facility design affect the closure plan or whenever a change occurs in the expected year of closure of the facility. The plan will be amended within 60 days of the changes.
- Safety-Kleen will notify the FDEP of its intent to close the facility in accordance with Chapter 62-730.240, F.A.C.
- Safety-Kleen will remove from the site all hazardous wastes in accordance with the approved closure plan. The Regional Administrator may approve a longer period if Safety-Kleen demonstrates that:

The activities required to comply with this paragraph will, of necessity, take longer than 90 days to complete; or

1. The following requirements are met:

- a) The facility has the capacity to receive additional wastes;
- b) There is a reasonable likelihood that a person other than Safety-Kleen will recommence operation of the site;
- c) Closure of the facility would be incompatible with continued operation of the site; and
- d) Safety-Kleen has taken and will continue to take all steps to prevent threats to human health and the environment.
- Safety-Kleen will complete closure activities in accordance with the approved closure plan within 180 days after receiving the final volume of wastes or 180 days after approval of the closure plan, whichever is later. When closure is completed, all facility equipment and structures shall have been properly disposed of or decontaminated by removing all hazardous waste and residues.
- Within 60 days of closure completion, Safety-Kleen will submit certification by an independent registered professional engineer that the facility has been closed in accordance with the specifications in the approved closure plan.

Figure 10.3-1 presents a typical closure schedule anticipated for the Medley facility.

#### CONTINGENT POST-CLOSURE PLAN

The tank system at the Medley facility meets the secondary containment requirements of 40 CFR 264.193, and is, therefore, not required to have a contingent post-closure plan under 40 CFR 264.197(c). In addition, Safety-Kleen intends to remove or decontaminate all tank system components, associated containment systems, and contaminated soils (if any) at the time of closure. However, should future conditions indicate that all contaminated soils and tank system components cannot practicably be decontaminated or removed, then a plan to perform post-closure care in accordance with the post-closure care requirements that apply to landfills (40 CFR 264.310) will be prepared for implementation upon FDEP approval.

## **CLOSURE COST ESTIMATE**

The cost for closure of the facility is estimated in the CCE worksheets and summarized as follows:

| • | Inventory Removal                                          | \$44,879  |
|---|------------------------------------------------------------|-----------|
| • | Storage Tank Decontamination                               | \$17,831  |
| • | Decontaminate the Return/Fill Station                      | \$20,231  |
| • | Decontaminate Container Storage Area                       | \$12,643  |
| • | Containerize, Stage, Transport and Dispose of Decon Wastes | \$25,112  |
| • | Closure Certification Report                               | \$12,354  |
|   |                                                            |           |
|   | Subtotal                                                   | \$133,051 |
|   | 2022 Total CCE with Inflation                              | \$165,096 |
|   | 15% contingency                                            | \$24,764  |
|   | 2022 Total CCR with Inflation and Contingency              | \$189,860 |

## Figure 10.3-1 Typical Closure Schedule Safety-Kleen Medley

| Closure Activity                                                                                                                            | 0 3 | 0 60 | 90 | 120 | ) 150 | 180 |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----|------|----|-----|-------|-----|
| End operation of Facility; Commence Closure                                                                                                 |     |      |    |     |       |     |
| Remove/Dispose of Final Waste Inventory                                                                                                     |     |      |    |     |       |     |
| Decontaminate Container Storage Area and<br>Return/Fill Station, and Dispose of Wash Water                                                  |     |      |    |     |       |     |
| Decontaminate Storage Tanks, Piping, Appurtenar<br>Equipment (Including Containment) and Dispose<br>of Wash Water and Contaminated Material |     |      |    |     |       |     |
| Remove Tanks, appurtenant Piping and Equipmen<br>and Contaminated Materials; Backfill Excavation<br>if Necessary                            |     |      |    |     |       |     |
| Dismantle, Decontaminate and Scrap or Sell Storag<br>Tanks, Appurtenant Equipment and Piping                                                | ge  |      |    |     |       |     |
| Compile Closure Certification and Notify Regulator<br>Agency of Closure Completion                                                          | ry  |      |    |     |       |     |

Tab 9 Part II.P

| Revision Num | iber 0 |
|--------------|--------|
| Date 09/20/2 | 022    |
| Page 1 of    | 2      |

# P. Information Regarding Potential Releases from Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs)

| Facility Name Sa  | ame Safety-Kleen Systems, Inc. |                  |  |  |  |  |
|-------------------|--------------------------------|------------------|--|--|--|--|
| EPA/DEP I.D. No.  | FLD 984 171 694                |                  |  |  |  |  |
| Facility location | Medley<br>City                 | Florida<br>State |  |  |  |  |

1. Are any of the following (SWMUs or AOCs), existing or closed at your facility?

A SWMU is a discernible unit at which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of solid or hazardous waste. Such units include all areas at a facility where solid wastes have been routinely and systematically released, as described in the July 27,1990 Federal Register (55 FR 30798). The SWMU list in this form does not include all types of SWMUs. These are examples of the more common types of units. If you have a different type of SWMU, mark "yes" under "other".

AOCs are indiscernible units at which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of solid or hazardous waste. Examples of AOCs include areas where loading and unloading of chemicals may have occurred or an area of contamination with no known source.

# Do not include hazardous waste units that are currently being permitted in your Part B Application.

| Landfill<br>Surface impoundment      | □ Yes      | ☑ No<br>☑ No |
|--------------------------------------|------------|--------------|
| Land farm                            | $\Box$ Yes | ⊻ No<br>⊻ No |
| Waste pile                           | □ Yes      | ☑ No         |
| Incinerator                          | □ Yes      | ☑ No         |
| Storage tank                         | 🗹 Yes      | $\Box$ No    |
| Container storage area               | ✔ Yes      | $\Box$ No    |
| Injection wells                      | □ Yes      | 🗹 No         |
| Wastewater treatment units           | $\Box$ Yes | 🗹 No         |
| Transfer station                     | ✓ Yes      | $\Box$ No    |
| Waste recycling operations           | ✓ Yes      | $\Box$ No    |
| Land treatment facility              | □ Yes      | 🗹 No         |
| Boiler/industrial furnace            | $\Box$ Yes | 🗹 No         |
| Satellite accumulation areas         | ✓ Yes      | $\Box$ No    |
| Less than 90-day storage units       | $\Box$ Yes | 🗹 No         |
| Stormwater retention ponds           | $\Box$ Yes | 🗹 No         |
| Septic tanks                         | $\Box$ Yes | 🗹 No         |
| Used oil/oil filter collection units | ✓ Yes      | $\Box$ No    |
| Aerosol can/drum crushers            | $\Box$ Yes | 🗹 No         |
| On-ground areas, pits, ditches       | □ Yes      | 🖌 No         |
| Other (units not listed above)       | V Yes      | $\Box$ No    |

Page 1 of 2

| Revision Number | 0 |
|-----------------|---|
| Date 09/20/2022 |   |
| Page 1 of 2     |   |

- 2. For each "yes" answer in one (1.) above, on separate sheet(s) of paper:
  - a. Describe the wastes that were stored, treated or disposed of in each unit, and whether the wastes would be considered hazardous wastes or hazardous constituents under RCRA. (Hazardous wastes are those identified in 40 CFR Part 261. Hazardous constituents are those listed in Appendix VIII of 40 CFR Part 261.) Include any available data on quantities or volumes of wastes disposed of and the dates of disposal.
  - b. Describe each unit, type of unit including construction details, capacity, dimensions (supply any available drawings), and location at the facility on the topographic map provided under 40 CFR 270.14(b)(19). Provide a site plan, if available, and the dates of operation of the unit [40 CFR 270.14(d)(1)]. If the information has previously been submitted formally to the Department, references to the documents and or summary tables may be submitted to meet this requirement.
  - c. Include a copy of federal, state and local permits or authorizations for SWMUs that may be permitted under other environmental programs.
- 3. For each unit described in two (2.) above, and for each hazardous waste unit in your Part B application [40 CFR 270.14(d)(2)], on separate sheet(s) of paper, provide available data on all prior or current releases of hazardous wastes or constituents to the environment that may have occurred in the past or may still be occurring. If the data has previously been submitted formally to the Department, references to the documents and or summary tables may be submitted to meet this requirement. Provide the following information for each SWMU/AOC:
  - a. Date of release
  - b. Estimated or known quantity or volume of waste released
  - c. Location of the release
  - d. Describe the nature of the release (i.e., spill, overflow, ruptured pipe or tank, etc.).
- 4. Provide, for each unit, all available analytical data that describes the nature and extent of the environmental contamination due to the releases described in three (3.) above, on separate sheet(s) of paper. Focus on the concentrations of hazardous wastes or constituents present in contaminated media (e.g., soil, sediment, surface water and groundwater) [40 CFR 270.14(d)(3)]. If the information has previously been submitted formally to the Department, references to the documents and or summary tables may be submitted to meet this requirement.

Part II

## P. #2 INFORMATION REQUIREMENTS REGARDING SOLID WASTE MANAGEMENT UNITS

SWMU-1(Container Storage Area Inside Service Center) is described within the permit application in section Part II B.

SWMU-2 (Above Ground Storage Tank Area) is described within the permit application in section Part II C.

SWMU-3 (Return/Fill Area) is described within the permit application in section Part II C.

SWMU-4 (Mercury Lamp Storage Area (Inside SWMU-1)) is designated for storage of mercury bulbs & devices. It is situated in the southeast corner of the container storage area. The area is approximately 4' x 19' 4". Mercury bulbs are stored in 4 ft. and 8ft. boxes and devices are stored in 5-gallon poly containers.

SWMU-5 (Used Antifreeze Tanker) was located in the parking lot of the facility in the southeastern corner of the lot. This SWMU consisted of a 8,000 gallon tanker trailer that had been used for the storage of Used Antifreeze. Sometime in 2009 this tanker trailer was removed from service and in July 2012 was removed from the site.

SWMU-6 (Used Oil Filter Storage Area (Inside SWMU-3)) is located within SWMU-3 and is used for storage or Used Oil Filters in 30, and 55-gallons steel or poly containers. Any overflow of Used Oil Filter containers will be stored in the container storage area. Prior to 2009 Used Oil Filters were stored in 350-gallon bins on the tank farm pad (south side of tank farm). In late 2010 the storage of filters changed to this current location.

SWMU-7 (Transfer Waste Storage Area (Inside SWMU-1)) is described within the permit application in section Part I D, page #3.

SWMU-8 (Municipal Dumpster) is a municipal dumpster located in the northeast portion of the parking lot. This dumpster was moved to the parking lot area to the left of the south entrance gate in September 2017.

SWMU-9 (Containerized Waste Loading/Unloading Dock) is the containerized waste loading/unloading dock and is located on the southeast corner of the facility building. In this area waste containers are loaded for shipment to permitted TSDF's for reclamation/disposal and product is unloaded into the branch for storage. In addition, this area may also be used for unloading of waste containers from branch route trucks.

SWMU-10 (Satellite Container Storage Area (Inside SWMU-3)) is for Satellite container used for branch debris (sludge from wet dumpsters, used PPE, sampling equipment, etc.). This is inside SWMU-3 and is located adjacent to the northern most wet dumpster. Satellite containers are mostly 55-gallon steel containers, but 30-gallons steel containers may be used if no 55 gallon containers are available.

SWMU-11(Tank Farm Discharge Area) is an area located immediately west of the above ground tank farm. This area receives sheen-less stormwater that is pumped out of the secondary containment of the tank farm and tank farm pad after rain events provided that no sheen exists. In June 2009, as part of SK Medley's Miami-Dade DERM Industrial Waste Operating Permit, samples were taken from monitoring well-1 (MW-1). Analysis from this event detected three volatile organic compounds (VOCs). A summary of the event can be found in Part II Q of this renewal application. In addition, a copy of the current Miami-Dade DERM Industrial Waste Operating Permit is included in this Section.

SWMU-12 (French Drain) is the French Drain System for the facility. This system provides stormwater drainage off the paved areas of the facility. There are six catch basins located on the property. Figure 2.2-5 Drainage Plan provides information on the system. These catch basins are identified on Figure Part II Q.

SWMU-13 (Oily Water Frac Tank) is a 18,000 gallon Frac tank located at the northeast corner of the facility parking lot. It is used for storage of non-hazardous Vacuum Services material collected from customer sites.

| Date     | Material             | Amt.<br>(gallons) | Explanation                                                                                                                                                                                |
|----------|----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5/15/06  | Oily<br>Water        | 60                | Pump seal broke – causing contained spill at tank farm pad                                                                                                                                 |
| 9/20/06  | Used Oil             | 60                | Hose failed – causing spill in tank farm secondary containment<br>and on tank farm pad                                                                                                     |
| 5/4/07   | Hydraulic<br>Oil     | 20                | Hose on Vac truck failed – causing contained spill on tank farm pad                                                                                                                        |
| 11/21/09 | Used Oil             | 50                | Tanker overflow – causing contained spill on tank farm pad                                                                                                                                 |
| 7/9/10   | Latex<br>Paint       | 1                 | 5-gallon paint container fell – causing spill on the back<br>loading/unloading dock                                                                                                        |
| 4/20/12  | Used Oil             | 10                | Hose came loose during off-load – caused contained spill on the tank farm pad                                                                                                              |
| 7/27/15  | Oily<br>Water        | 3                 | Hose came loose while off-loading oily water at tank farm pad.<br>Release onto tank farm pad in containment.                                                                               |
| 4/4/17   | Oily<br>Water        | 140               | Driver moved truck while still hooked up to oily water tank.<br>Hose disconnected from tank releasing approximately 140<br>gallons of oily water into tank farm secondary containment.     |
| 10/20/20 | Oily<br>Water        | 8                 | While removing waste from the frac tank, a third-party driver<br>was switching between tanks and the valve leaked 5-8 gallons of<br>oily water onto the asphalt surrounding the frac tank. |
| 6/30/21  | Used<br>Motor<br>Oil | 20                | The gasket on the access hatch of the Used Motor Oil tank<br>ruptured releasing approximately 20 gallons of used motor oil in<br>the tank farm secondary containment.                      |
|          |                      |                   |                                                                                                                                                                                            |
|          |                      |                   |                                                                                                                                                                                            |

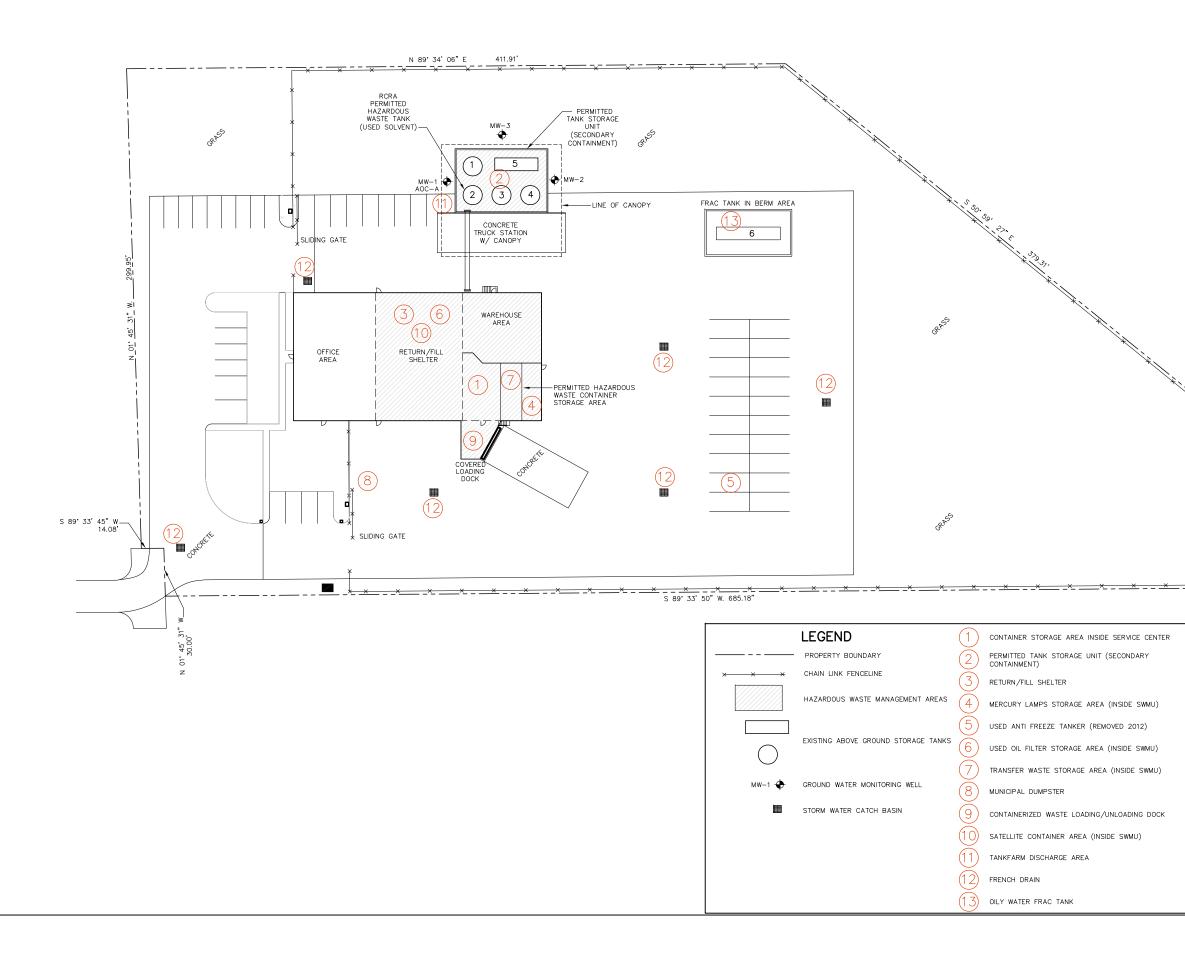
Part II P.3 Prior Releases at SK Medley Facility

Tab 10

Part II.Q Information Requirements for SWMUs

## Part II

## Q. INFORMATION REQUIREMENTS FOR SOLID WASTE MANAGEMENT UNITS


Part II.Q. of the Florida Department of Environmental Protection's (FDEP's) Application for a Hazardous Waste Permit outlines the information requirements for solid waste management units (SWMU's) at the facility. This section provides the required information.

On February 12, 1993, the facility was issued a HSWA permit from Region 4 of the United States Environmental Protection Agency (USEPA). The HSWA permit (Permit No. FLD 984171694) expired on February 12, 2003 and all HSWA corrective action conditions were incorporated into the state permit issued on June 24, 2002.

Thirteen (13) SWMU's have been identified at the facility along with one Area of Concern (AOC). The Thirteen SWMU's and one AOC are listed below:

| SWMU NUMBER | DESCRIPTION                                         |
|-------------|-----------------------------------------------------|
| 1           | Container Storage Area                              |
| 2           | Permitted Tank Storage Unit (Secondary              |
|             | Containment)                                        |
| 3           | Return/Fill Shelter                                 |
| 4           | Mercury Lamp Storage Area (Inside SWMU-1)           |
| 5           | Used Antifreeze Tanker (removed 2012)               |
| 6           | Used Oil Filter Storage Area (Inside SWMU-3)        |
| 7           | Transfer Waste Storage (Inside SWMU-1)              |
| 8           | Municipal Dumpster                                  |
| 9           | Containerized Waste Loading/Unloading Dock          |
| 10          | Satellite Container Area (Inside SWMU-3)            |
| 11          | Secondary Containment Stormwater Discharge          |
|             | Area                                                |
| 12          | French Drain System                                 |
| 13          | Oily Water Frac Tank                                |
| AOC-A       | Vicinity of monitoring well 1 (No further action at |
|             | this time according to 4/5/2013 SRCO)               |

Appendix A, at the end of this section, includes the annual groundwater reports required by the SK Medley facility as part of its' Miami-Dade County Industrial Waste Operating Permit (IW-000333).



|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0'                                                  | 15'<br>30'                                                                                           | 50'                                                                                                 | 75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                                                          | 125                                                                                                 |                           |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------|--|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | (                                                                                                    | GENER                                                                                               | AL N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OTE                                                 | S                                                        |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                                                                      |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                                                                      | TANK                                                                                                | LEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ENC                                                 | )                                                        |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TANK<br>NO.                                         | TANK<br>VOLUME                                                                                       | TANK<br>CONTENTS                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                   | EMARK                                                    | s                                                                                                   |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                   | 20,000 USG                                                                                           | FRESH<br>SOLVENT                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                   | 20,000 USG                                                                                           | USED<br>SOLVENT                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
| ~ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20,000 USG                                          | OIL                                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                   | 15,000 USG                                                                                           | USED<br>OIL                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   | 88.86'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                   | 10,000 USG                                                                                           | OILY WATER                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                   | 18,000 USG                                                                                           | OILY WATER                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   | ¥5' 31'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                      | REV/                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                  |                                                          |                                                                                                     |                           |  |
|   | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO.                                                 |                                                                                                      |                                                                                                     | 15101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BY                                                  | СНК                                                      | APPR                                                                                                | DATE                      |  |
|   | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A                                                   |                                                                                                      |                                                                                                     | г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JEK                                                 | JZ                                                       | JZ                                                                                                  | 092022                    |  |
| * |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                                                                      |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   | 5       30'       75'         GENERAL I         Image: Colspan="2">Image: Colspan="2"         Image: Colspan="2" <td <<="" colspan="2" th=""><th></th><th></th><th></th><th></th><th></th></td> | <th></th> <th></th> <th></th> <th></th> <th></th>   |                                                                                                      |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                                                                      |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                                                                      |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ┝                                                   |                                                                                                      |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>                                                |                                                          | <u> </u>                                                                                            |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | тые                                                 |                                                                                                      |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                          |                                                                                                     | FEN                       |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CORF<br>THIS<br>NOT<br>DISC<br>PURF<br>SAFE<br>PROF | P. AND IS PR<br>DRAWING AN<br>BE DUPLICAT<br>LOSED OR AF<br>POSE OTHER<br>CTY-KLEEN CO<br>MPTLY UPON | OPRIETARY A<br>ID THE INFOR<br>ED, USED, D<br>PPROPRIATED<br>THAN AS EXI<br>ORP. THIS D<br>REQUEST. | ND CONI<br>MATION<br>IVULGED,<br>IN WHOL<br>PRESSLY<br>PRAWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIDENTI<br>CONTAI<br>REPRO<br>E OR<br>AUTHO<br>MUST | AL INFO<br>NED TH<br>DUCED<br>IN PAR<br>ORIZED<br>BE RET | ORMATI<br>IEREIN<br>, COPIE<br>T FOR<br>BY                                                          | ON.<br>MUST<br>ED,<br>ANY |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | LOCAT                                                                                                | IONS C                                                                                              | F S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OLIC                                                | ) W/                                                     |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>G</b>                                            | 42 LONGWA<br>PHONE: 78                                                                               | ATER DRIVE, N<br>31-792-5000                                                                        | ORWELL, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MA. 020                                             | 61                                                       |                                                                                                     |                           |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1":                                                 | =30' JEM                                                                                             | < JZ                                                                                                | JZ<br>SC-DWG M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUMBER                                              | JZ                                                       | APPR DATE<br>JZ 09202<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI | /20/22                    |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | MEDLEY,                                                                                              | FL                                                                                                  | 75'         NERAL NOTES         ANK LEGEND         TANK NOTES         TANK LEGEND         TANK NOTES         REMARKS         REMARKS         RESH OLVENT         USED OLVENT         USED OIL         OIL         OIL         Y WATER         Y WATER         PERMIT         D CHK APPR D         OIL         Y WATER         PRIATER         Y WATER         PRIATER         Y WATER         PRIATER         PRIATER         PRIATER         PRIATER         PRIATER         PRIATER         PRIATE JE CHENT         PRIATED IN WHOLE ON IN PART FOR AN VAS EXPRESSLY AUTORIZED BY THIS DRAWING MUST BE RETURNED UST.         JRE PART II-Q         NAMENT UNITS (SWMU)         CHKEEN SYSTEMS, IN         DATE JZ OPERATION DATE TOR | A                                                   |                                                          |                                                                                                     |                           |  |

# PART II.Q Appendix A

# Annual Groundwater Monitoring Reports 2018-2022

## Industrial Waste Operating Report Form (IWORF)

| Permit #:         | IW-333              | Permit Year: | 2017 | Reports must be mailed to:<br>Department of Regulatory and Economic Resources<br>Environmental Resources Management |
|-------------------|---------------------|--------------|------|---------------------------------------------------------------------------------------------------------------------|
| Facility Name:    | SAFETY-KLEEN SYST   | EMS, INC.    |      | 701 NW 1st Ct, Suite #700<br>Miami, FL 33136-3912                                                                   |
| Facility Address: | 8755 NW 95 ST       |              |      |                                                                                                                     |
|                   | MEDLEY, FL 33178    |              |      |                                                                                                                     |
| Contact Name:     | Mr. Larry Rodriguez |              |      |                                                                                                                     |

Instructions: Indicate which report is being provided by checking off the applicable "Source Type" box(es) from the listing below. In addition, indicate the period being reported and attach the applicable information (e.g. waste manifests, analytical results, etc.) as required by each Source Type. Refer to the operating permit document for more information on reporting and sampling requirements, including analytical methodologies, applicable to the referenced facility.

| Reporting Requirements:                  |                                                                                                                                                           |                                                |                       |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|
| Source Type:RR-1                         | Reporting Frequency: Quarterly                                                                                                                            | Reporting Period:                              |                       |
| Description: Copies of manifests         | and/or receipts of all hazardous waste, industrial waste, industrial wastev<br>f hauler, volume and final destination. Records shall also be maintained o | vater, sludge and/or ash<br>n-site for review. | n disposed of.        |
| Sampling Requirements:                   |                                                                                                                                                           |                                                | 110-115               |
| Source Type: SMP-1                       | Reporting Frequency: Annually                                                                                                                             | Reporting Period:                              | 6/15/18               |
| Description: Groundwater from th         | e facility monitoring well(s).                                                                                                                            |                                                |                       |
| Parameters: Cadmium (Total), Ch          |                                                                                                                                                           |                                                |                       |
| Source Type: SMP-2                       | Reporting Frequency: Annually                                                                                                                             | Reporting Period:                              | 6112118               |
| -                                        | onitoring well nearest the containment area stormwater discharge point.                                                                                   |                                                |                       |
| Parameters: EPA Series 8260, El          | PA Series 8270, TRPH                                                                                                                                      |                                                |                       |
| Average Daily Waste Water Flo<br>Sewers: | w Discharge to Sanitary                                                                                                                                   |                                                | Gallons Per Day (GPD) |
| I hereby certify that, to the best of    | my knowledge, this document and all attachments are true, a                                                                                               | ccurate and comple                             | te.<br> 18 18         |

Authorized Representative or Corporate Officer

Report Completion Date



May 18, 2018 180212-1801

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** Environmental Resources Management 701 NW 1<sup>st</sup> Court, Suite #700 Miami, Florida 33136-3192

### Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2017/2018 (File # 10139) Annual Report of Groundwater Quality

Dear Mr. Montano:

On behalf of Safety-Kleen Systems, Inc. (S-K), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for S-K's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On April 13, 2018, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by U.S. EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FLPRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed Figure 2.1-1.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in <u>Attachment B</u>.

The laboratory report indicated that concentrations for three of the four metals (i.e., silver, cadmium, and lead) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.52I micrograms per liter ( $\mu$ g/L) at monitoring wells MW-1, 0.62I  $\mu$ g/L at MW-2R; and 0.68I  $\mu$ g/L at MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are far below the groundwater clean-up target level (GCTL) of 100  $\mu$ g/L for chromium as specified in the permit.

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

- 1. FLPRO concentrations were below the MDL; that is, none was detected.
- 2. No SVOC was detected (i.e., EPA Series 8270 parameters), with two exceptions. Specifically, naphthalene and 1-methylnaphthalene were detected at estimated

1408 N Westshore Blvd, Suite 115 Tampa, FL 33607

(813) 289-9338

FAX (813) 289-9388 Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** May 18, 2018 Page 2

concentrations of 0.078I  $\mu$ g/L and 0.0.53I  $\mu$ g/L. However, those concentrations were detected between the laboratory MDL and the laboratory PQL and are far below their GCTLs of 14  $\mu$ g/L for naphthalene and 28  $\mu$ g/L for 1-methylnaphthalene as specified in the permit.

3. No VOC was detected (i.e., EPA Series 8260 parameters).

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of S-K at (561) 523-4719. Thank you.

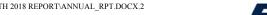
Sincerely,

ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.

There 7. Morrison

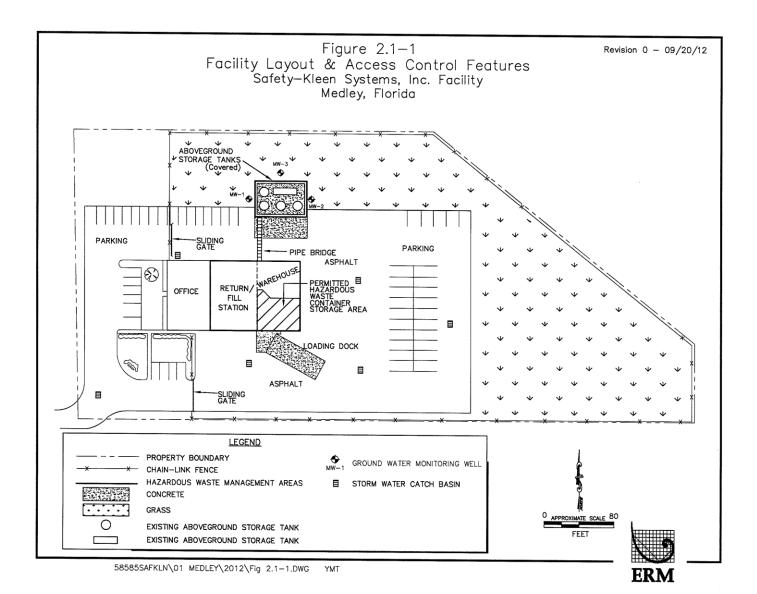
for B. F. -

Keith F. Morrison Project Manager


Gregory B. Page, P.E. Senior Engineer III

SAFETY-KLEEN SYSTEMS, INC.

Jeff Curtis EHS Manager, Florida Safety-Kleen Systems, Inc. 5610 Alpha Drive Boynton Beach, Florida 33426 jeff.curtis@safety-kleen.com


Enclosures: Figure 2.1-1 Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration Logs Attachment B - Laboratory Reports

cc: Robert Schoepke – S-K (electronic only) Greg Page – ECT (electronic only) Keith Morrison – ECT (electronic only) Facility 999 File #1760, % S-K Medley facility Branch General Manager





FIGURE



# ATTACHMENT A

# FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

| Location | A Grow bucker More<br>Solety-Kleen N<br>Client 180212 | hedley     | Date <u>4*</u> | 12-13+493-18    | Location _  |        | _ |      | Date  |     | _13<br> |
|----------|-------------------------------------------------------|------------|----------------|-----------------|-------------|--------|---|------|-------|-----|---------|
|          |                                                       |            | Pety-Kleu      | 2               | Project / C | Client |   |      |       |     |         |
|          | ET-Kaith M                                            | JUNSE      |                | }               |             |        |   |      |       |     | _       |
| 1100     | 1111 112 11                                           | ic pp .    | 0.             |                 |             |        |   | TT   | 11-   | 1 1 | 1       |
|          | used 7-13, 11                                         | 13 017 -12 | 15 Land        | rdin i          |             |        |   |      | -     |     | +       |
| 1530     | at though on F                                        | + Loocherd | ale / com      | plate 7245      |             |        |   |      |       |     |         |
| T        | 45                                                    |            |                | 1 Local 742     |             |        |   |      |       |     |         |
| 413-00   | calibration                                           | chack on   | moter          |                 |             |        |   |      |       |     |         |
| 708      | off for the,                                          | water +a   | toraidt        | Sfety-          |             |        |   |      |       |     | +       |
|          | Kleen Medle                                           | PL         |                |                 |             |        |   |      |       | 1   | t       |
| 835      | atsk-med                                              | lin - du   | J. a. A        | - DC            |             |        |   | ++   |       |     | -       |
|          | 1.00                                                  | 1 000      | er u           | n ic Pita       |             |        |   | -+   | +++   |     | -       |
|          | go over so                                            | E Specia   | 52 real        | Thratty         |             | -      |   |      |       |     |         |
|          | plan, weather                                         | - Sunny O  | ZF. N.         | wind.           |             |        |   |      | 12111 |     |         |
|          | opening we                                            | VIS        |                |                 |             |        |   |      |       |     |         |
| The      | WEITED Deptyte                                        | arden      | well hid       | I Cep contition |             |        | 1 |      |       |     | -       |
| \$53     | MW-1 3.51                                             | _          | 9000           |                 |             |        |   |      |       |     | -       |
| 857      | MW-28 3.95                                            | 3          |                | 1               |             | 1, 1   |   | -    |       | -   | -       |
|          | MW3 2,99                                              | 12         | gord           | T               | -           |        |   | -++- |       |     | -       |
|          |                                                       |            | 1              |                 |             |        |   |      |       |     |         |
| - QOL    | bridged W                                             | W-1 and    | tomore TO      | wwiter 1.       |             |        |   |      |       |     |         |
| x 925    | sampling mu                                           | 1 932      | pring the      | MW.3. 1         |             |        |   |      |       |     |         |
| +957     | Sampling MU-3<br>Sampling MU-3                        | - antamer  | the Investi    | yetion ferries  |             |        |   |      |       |     |         |
| Nal      | purgmymu.2R                                           |            |                |                 |             |        |   |      |       |     | -       |
| × 1033   | Semplins MW-2R                                        | - antainer | alt and        | purge we ferre  | 1           |        | 1 |      |       |     | -       |
|          | Lobel IDW Co                                          | stamers./  | Checkert       | ASPL Mechay     |             |        |   |      |       |     | -       |
| 1115     | GIT PA A                                              |            | 0              | pre-            |             |        |   |      |       |     | -       |
| <u></u>  | ELT offsite A<br>at ECT off<br>Checklan p             | VEL T      | mra o          | FFICE           |             |        |   |      |       |     |         |
| 1620     | A ECT off                                             | Chi un lua | d T-13         | Calibrotim f    |             |        |   | -    |       |     |         |
| 1145     | Checklan N                                            | utes/ca    | motote         | -               |             |        |   |      |       |     |         |
| 15 Scm   | n = 10                                                | Derson     |                |                 |             |        |   |      |       |     | -       |

Pace Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| ction         |                                                                                                          | Section B                       | ninet ini     | increation: |             |           |                |                           |                 | ion C<br>ice In  |                       | ation:   |          |         |                |           |            |                |                     |                           |                          |                             | 5    |           |      | Page           | a :                     | 1                 | Of            | 1                                           |     |
|---------------|----------------------------------------------------------------------------------------------------------|---------------------------------|---------------|-------------|-------------|-----------|----------------|---------------------------|-----------------|------------------|-----------------------|----------|----------|---------|----------------|-----------|------------|----------------|---------------------|---------------------------|--------------------------|-----------------------------|------|-----------|------|----------------|-------------------------|-------------------|---------------|---------------------------------------------|-----|
|               | Client Information:                                                                                      | Required P                      |               | TEDNICKY    | Ken         | Marn      | 5.0            | _                         | _               | ntion:           |                       |          | _        | -       | -              |           | _          |                | _                   |                           |                          |                             |      |           |      |                |                         |                   |               |                                             |     |
| mpan<br>dress | 7: ECT<br>1408 N. Westshore Blvd.                                                                        | Copy To                         | -Herefit c    | FEDITION    | -           |           |                |                           | Com             | pany l           | Name                  | 9:       | -        |         |                |           | _          | 1              |                     | _                         |                          |                             | _    | _         | _    | -              |                         |                   |               |                                             | 1.1 |
|               | 5, Tampa, FL 33607                                                                                       | 1                               |               | -           | 1           |           |                |                           | Addr            | ess:             |                       |          |          |         |                |           | _          |                | _                   |                           | _                        | _                           | 100  | 1         | -    | Re             | gutat                   | ory Agen          | sy .          |                                             | 4.0 |
| ail:          | Kmomsonecome.com                                                                                         | Purchase C                      | rder #:       | 18024       | 219         | 101       |                |                           | Pace            | e Quol           | te:                   | _        |          |         | _              |           |            |                | _                   |                           | _                        | -                           | -    | _         | -    |                | _                       | Street and        |               |                                             | 477 |
| me.           | (813) 289-9338 Fach 3-289-938                                                                            | Project Nan                     | e S           | afety Kleen | Facility in | Medley    |                | -                         | Pace            | e Proje          | ect Mi                | anage    | <b>r</b> | lori.p  | almen          | Space     | elabs      | .com,          |                     | -                         | -                        |                             | 100  | -         | -    |                |                         | Location          | 1.            |                                             | 11  |
|               | ed Due Dale:                                                                                             | Project #:                      | 160           | 212-1       | 801         |           |                |                           | Pace            | e Profi          | ile #:                | 93       | 21 lin   | e 1     | _              | -         | _          |                |                     |                           |                          |                             | _    |           | -    | -              | Inc                     | FL                |               |                                             | ł.  |
| -             |                                                                                                          |                                 |               |             |             |           | _              | -                         | _               | -                | _                     | _        | _        | _       |                | 100       | -          | R              | teque               | sted                      | Amet                     | yets F                      | Here | (YAN      | 1    | Contraction of | 100                     |                   |               |                                             | 81. |
|               | MATRIX                                                                                                   | CODE                            | odes to left) |             | COLL        | ECTED     |                | PC<br>Z                   |                 |                  | F                     | rese     | rvat     | ives    |                | NIX       |            |                |                     | 2                         | 4                        |                             |      |           | -    | -              |                         |                   |               |                                             |     |
|               | Diriking<br>Waster<br>Waster<br>Waster<br>Waster<br>Product<br>SolfSof<br>One Character per box.<br>Wise | WT<br>P<br>SL<br>OL<br>WP<br>AR | (see valid o  | ST.         | ART         | Ē         |                | SAMPLE TEMP AT COLLECTION | AINERS          | pe               |                       |          |          |         |                | rses Test |            | List           | ltst plus PAHs      | FL Pro Low Volume for Wat | Metals 200.8 Ag.Cd.Cr.Pb | 8270 Full list pius PAHE MS |      |           |      |                | Residuel Chlorine (Y/N) | As<br>Indu<br>Ann | stria<br>valo | ired by<br>Awas<br>persofi<br>numb<br>133-2 | the |
|               | (A-Z, 0-3 /, -) Ar<br>Sample Ids must be unique Tissue                                                   | CT<br>TS                        | MATRIX CODE   | DATE        | SAPPLE      | DATE      | TIME           | SAMPLE TE                 | # OF CONTAINERS | Unpreserved      | H2SO4                 | HCI HNO3 | NaOH     | Ne2S203 | Methanol       | Other     | Trip BLANK | 8260 Full List | 8270 Full list plus | FL Pro Lo                 | Metals 20                | 8270 Full list plus         |      |           |      |                | Residual                | Der<br>IW         | -000          | 133-7                                       | f   |
| 1             | Trip Blank                                                                                               |                                 | WT            | 4-1318      | -           | -         | -              | 1                         | 2               |                  | -                     | X        | -        |         |                | -         | ×          |                |                     |                           | -                        | -                           | +    | $\square$ | -    | -              | -                       | -                 | _             | _                                           | 1   |
| 2             | MW-2R -041318                                                                                            | _                               | WT            |             |             | 4-13-18   |                |                           |                 | X                | X                     | X        | 4        |         |                | -         | F          | ×              | x                   | x                         | ×                        | XY                          | -    | -         | +    | +              |                         |                   |               |                                             |     |
| 3             | MW-1 -041318                                                                                             |                                 | WT            |             |             | 413.19    |                |                           | L               | $\left  \right $ | )                     | XI-      | +        | -       | -              | +         | F          | +              | -                   | -                         | ×                        | +                           | +    | H         | -    | -              | 4 /                     | -                 |               |                                             |     |
| 4             | MW-3 -041318                                                                                             | -                               | WT            | 4131        | 951         | 4-1311    | 1000           | 24                        | 1               | $\square$        | -                     | A        | +        | -       |                | 4         | F          | +              | -                   |                           | x                        | +                           | +    | H         | +    | +              | 17                      | -                 |               |                                             | 1   |
| 5             | 0                                                                                                        |                                 | 11            |             | -           |           |                | +                         |                 | $\square$        | -                     | +        | -        |         |                | -         | H          | +              |                     | H                         | -                        | +                           | +    |           | +    | +              | 11                      | -                 |               | _                                           | Ł   |
| 6             |                                                                                                          | _                               | $\square$     | -           | -           | 1         | -              | -                         | -               |                  | -                     | -        | +        | +       | $\square$      | -         | F          | +              | -                   |                           | -                        | +                           | +    | H         | +    | +              | 17                      | -                 |               |                                             | 1   |
| 7             |                                                                                                          |                                 |               |             |             |           |                |                           |                 | $\square$        | +                     | -        | +        | -       | 1              | -         | H          | -              | -                   |                           | -                        | +                           | +    | -         | +    | +              | 1                       | -                 |               |                                             | 1   |
| 8             |                                                                                                          | _                               | 11            |             | -           | -         | -              | -                         |                 |                  | -                     | _        | +        |         |                | -         | H          | +              | -                   |                           | -                        | +                           | +    | -         |      | +              | 4                       | -                 |               |                                             | 4   |
| 9             |                                                                                                          | _                               |               |             |             | -         |                |                           |                 |                  |                       |          | -        |         |                | _         | F          | 1              |                     |                           | -                        | -                           | -    | -         | H    | +              | 1                       | -                 |               |                                             | -   |
| 10            |                                                                                                          |                                 |               |             |             |           | -              |                           |                 |                  |                       | -        | 1        |         | $\square$      | -         | 1          | +              | -                   |                           | _                        | +                           | -    | -         | -    | +              |                         | -                 |               |                                             | +   |
| 11            |                                                                                                          |                                 | 11            | -           | -           |           | -              | -                         |                 |                  | _                     | +        | +        | +       | $\square$      | -         | -          | +              | +                   |                           | -                        | -                           | +    | +         | H    | +              | -                       | -                 |               |                                             | +   |
| 12            |                                                                                                          | -1                              |               |             |             | 104       |                | UTE -                     |                 | TIME             |                       | 100      | 1        | ACC     | EPTER          | BY        | AFTER      | SATIO          | -                   |                           | 1                        | D                           | ATE  |           | TIME |                | 1                       | SAMPLE            | CONDITIO      | XHB                                         |     |
|               | ADDITIONAL COMMENTS                                                                                      |                                 | RELING        | UNHED BY    | O           |           | and the second | cly                       |                 | 083              | and the second second | -        |          | 1000    | and the second | 0.044     | pages      | COMPANY.       | E.                  | T                         | 1                        | 1                           | ble  | 1000      | لودي |                | -                       | 1                 | T             | T                                           | 1   |
|               | Empty Conta                                                                                              | iners 4                         | No            | Mor         | ml          | TOT       | di.            | 7-12                      |                 | 65               | r                     | K        | K        | da      | Re             | 25        | 0          | 44             | 20                  |                           | 1                        | -12                         | 18   | _         | 700  |                |                         |                   |               |                                             | 1   |
| -             |                                                                                                          |                                 | du            | 1           | fare        | L         | -13            | -18                       | 1               | 1                |                       | 1        | -        |         | 0              | _         |            |                |                     |                           | -                        | 1                           | -    | 1         |      | F              |                         | -                 | 1             | -                                           | -   |
| _             |                                                                                                          |                                 |               |             | SAMPI       | ER NAME   | AND S          | GNAT                      | URE             |                  |                       | -        |          | -3-     | ii.            | -         |            | -              |                     |                           |                          |                             | -    | 5         |      |                | -                       | 5                 | 1             | 1                                           | 1   |
|               |                                                                                                          |                                 |               |             | PF          | RINT Name | e of SAL       | APLER                     | 1:              | K                | ut                    | NF       | 2        | M       | UN             | 30        | w          | E              | ল                   |                           |                          |                             |      |           |      |                | AP in C                 | ceived o          | ed v          | Samples<br>Intact                           |     |
|               |                                                                                                          |                                 |               |             | SI          | GNATURE   | e of SAM       | APLER                     | 1               | -7               | TG.                   | ut       | 4        | 92      | N              | n         | -          | DA             | TE S                | igned                     | <sup>L</sup> Y           | -13                         | 3-1  | 9         |      |                | TEMP                    | Rec               |               | Na Sar                                      | Ē   |

# DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| SITE           |                   | 10-70                         |                                         |                                                  |                                |                           | SITE                      |                                                |                    |                                         |                                               |                                 |                            |                                |
|----------------|-------------------|-------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------|---------------------------|---------------------------|------------------------------------------------|--------------------|-----------------------------------------|-----------------------------------------------|---------------------------------|----------------------------|--------------------------------|
| NAME           | _                 |                               | Systems,                                | Inc.                                             |                                |                           |                           |                                                | 95 <sup>th</sup> 5 | Street, N                               | Aedley, FL                                    |                                 |                            |                                |
| WELL           | NO: N             | /W-2R                         |                                         |                                                  | SAMPLI                         |                           | -280413                   |                                                |                    |                                         | DATE: 4/13/1                                  | 18                              |                            |                                |
|                |                   |                               |                                         |                                                  |                                |                           | URGING                    |                                                |                    | ртн                                     | PUE                                           |                                 | э <u>е</u>                 |                                |
| WELI<br>  DIAM | ETCO /            | inches): 2                    |                                         | ED Rechards                                      |                                | PTH: 2 fee                | at to 12 feet             | то                                             | WATER              | (feet): 3                               | 95 OR                                         | BAILER:                         | PP                         |                                |
|                | 4145 . 14         | r                             | 1 WELL VOI                              |                                                  |                                |                           |                           |                                                |                    |                                         |                                               | 1.70                            |                            |                                |
|                |                   |                               |                                         | = (                                              | 11.4                           | feet -                    | 3,95                      | feet) X                                        | ( (<br>TUB         | D.16                                    | gallons/fo<br>GTH) + FLOW CE                  | ot = 1,19                       | ga                         | allons                         |
| (only          | fill out i        | f applicable)                 |                                         | JPMENT VOI                                       |                                | gallons + (               |                           | alions/foot X                                  |                    |                                         | feet) +                                       | gallons =                       | gall                       | ons                            |
| INITI<br>DEP   | AL PUN<br>TH IN W | IP OR TUBIN<br>/ELL (feet):   | °5.0                                    |                                                  | MP OR TUBIN<br>WELL (feet):    | <sup>IG</sup> 5,0         | PUR(<br>INITI/            | ATED AT:                                       | <u>) </u>          | PURGIN                                  | IG<br>AT: 1032                                | TOTAL VOLU<br>PURGED (ga        |                            | 7                              |
| TIN            | ME                | VOLUME<br>PURGED<br>(gallons) | CUMUL.<br>VOLUME<br>PURGED<br>(gallons) | PURGE<br>RATE<br>(gpm)                           | DEPTH<br>TO<br>WATER<br>(feet) | pH<br>(standard<br>units) | TEMP.<br>(°C)             | COND.<br>(circle units)<br>µmhos/m<br>or µS/cm | OX<br>(circ        | SOLVED<br>(YGEN<br>cle units)           | TURBIDITY<br>(NTUs)                           | COLOR<br>(describe)             | ODOR<br>(describe)         | ORP                            |
| 10:            | 26                | 1.2                           | 12                                      | 0.08                                             | 4,19                           |                           | 25.65                     |                                                | 0.                 | 50                                      | 6.04                                          | CRU                             | SIZND.                     | -272                           |
| 10             | 29                | 0,24                          | 1,44                                    |                                                  | 419                            |                           | 25.55                     |                                                | 6.                 | 07                                      | 5,22                                          | "                               | <u> </u>                   | -267                           |
| 10             | 32                | 0.24                          | 1.68                                    | L                                                | 419                            | 7.32                      | 25.51                     | 521                                            | 0                  | .67                                     | 4.56                                          | 11                              | 4                          | -263                           |
| 1              |                   | 1. ma                         |                                         |                                                  |                                |                           |                           |                                                |                    |                                         |                                               |                                 |                            |                                |
|                |                   |                               |                                         |                                                  |                                |                           |                           |                                                | 2                  | _                                       |                                               |                                 |                            |                                |
|                | $\rightarrow$     | 1 design                      |                                         |                                                  |                                |                           |                           | jun                                            | - 1.5<br>- ~       | 7                                       |                                               |                                 |                            |                                |
| WEI            |                   | ACITY (Gallo                  | ns Per Foot):<br>PACITY (Gal.           | <b>0.75</b> " = 0.02;<br>/Ft.): <b>1/8</b> " = ( | 1" = 0.04;<br>0.0006: 3/1      | 1.25" =<br>6" = 0.0014    | 0.06; 2" =<br>; 1/4" = 0. | 0.16; 3" =<br>0026; 5/1                        | 0.37;<br>6" = 0.0  | 4 <sup>n</sup> = 0.65<br>04; <u>3/8</u> | 5; 5" = 1.02;<br>1" = 0.006; 1/2              |                                 | 12" = 5.88<br>5/8" = 0.016 |                                |
|                |                   |                               |                                         | 3 = Bailer;                                      | BP = Bladde                    | r Pump;                   | ESP = Elec                | tric Submersi                                  |                    | (<br>1 <b>0; <u>PF</u></b>              | = Peristaltic Pun                             | np; 0 = Ot                      | her (Specify)              |                                |
|                |                   |                               |                                         |                                                  |                                |                           |                           | G DATA                                         |                    | SAMPLI                                  | NG 1 02                                       | SAMPLIN                         | G . ALLA                   |                                |
|                |                   |                               | AFFILIATION:                            | /ECT                                             |                                | Cert .                    | URE(6)                    | 6                                              | -                  |                                         | NG ATL 033                                    |                                 | G<br>T: 1040               | 1                              |
|                |                   | TUBING<br>WELL (feet):        | 5,0                                     |                                                  |                                | CODE: H                   | IDPE                      |                                                |                    |                                         | ED: Y N                                       |                                 | 1 SIZE:                    | _µm                            |
|                |                   | ONTAMINAT                     |                                         | MP Y                                             | N                              | TUBIN                     | IG Y                      | (replaced)                                     |                    | DUPLIC                                  | ATE: Y                                        | (N)                             |                            |                                |
|                |                   | MPLE CONTAIN                  |                                         | 1                                                | SA                             |                           | RVATION (incl             |                                                | FINAL              |                                         | IDED ANALYSIS<br>I/OR METHOD                  | SAMPLING<br>EQUIPMENT<br>CODE   | FLOV                       | .E PUMP<br>V RATE<br>r minute) |
| C              | IPLE ID<br>ODE    | CONTAINERS                    | MATERIAL<br>CODE<br>CG                  | 40 ml                                            | USED                           |                           | ADDED IN FIEL             | D (mL)                                         | рН<br><2           | 82                                      | 60-Volatile                                   | APP                             |                            | 100                            |
| v 2R-1         | 04131             | 3                             |                                         | 4011                                             |                                |                           |                           |                                                | -                  |                                         | ic Compounds<br>A Method 8260                 |                                 |                            |                                |
|                |                   | 2                             | AG                                      | 250 ml                                           | Ice                            |                           | NONE                      |                                                |                    | Organi                                  | Semi-Volatile<br>c Compounds<br>A Method 8270 | APP                             | At pu                      | rge rate                       |
|                |                   | 1                             | PE                                      | 250 ml                                           | HNO3 +                         | lce                       | NONE                      |                                                | <2                 | Cd, Cr,<br>Method                       | Pb, Ag by EPA<br>200.8                        | APP                             | At pu                      | rge rate                       |
|                | م                 | 2                             | AG                                      | 100 ml                                           | H2SO4 ·                        | + Ice                     | NONE                      |                                                | <2                 | TRPH                                    | Is by FL-PRO<br>Method                        | APP                             | At pu                      | rge rate                       |
| -              |                   |                               |                                         |                                                  |                                |                           | · <u>-</u> ,              |                                                |                    | ,                                       | **                                            |                                 |                            |                                |
| RE             | MARKS             | 6=0-                          | 13gol +                                 | GUSER                                            | =0.09                          | 9pm                       |                           |                                                |                    |                                         | Loh WA/<br>Eoursus pende                      |                                 |                            |                                |
| MA             | TERIA             | L CODES:                      | AG = Ambe<br>S = Silicone               | r Glass; CO                                      | G = Clear Glas                 |                           | E = High Den              | sity Polyethyle                                |                    |                                         | ow Density Polyer                             | ell offer s                     |                            | lene                           |
| l              |                   | G EQUIPMEN                    |                                         | RFPP = Rev                                       | (Through) Per<br>erse Flow Per | istaltic Pum              | p; SM = S                 | traw Method                                    | (Tubing            |                                         |                                               | c Submersible I<br>er (Specify) | Pump; /                    |                                |
| N              | OTES              | 1 The sh                      | ove do not                              | constitute a                                     | Il of the info                 | ormation                  | required by               | Chapter 6                                      | 2-160, i           | F.A.C.                                  |                                               |                                 |                            |                                |

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE\_READINGS (SEE FS 2212, SECTION 3)

15 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

## DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| SITE             |                                |                              |                                 |                               |                                  | SITE                    |                                 |                           | Dise of 1                    | المطاميا                     | <b></b>  |                               |                                    |                     |
|------------------|--------------------------------|------------------------------|---------------------------------|-------------------------------|----------------------------------|-------------------------|---------------------------------|---------------------------|------------------------------|------------------------------|----------|-------------------------------|------------------------------------|---------------------|
|                  | afety Kleen                    | Systems,                     | Inc.                            |                               |                                  | OCATION:                |                                 | W 95m                     | Street, I                    | DATE: 4                      |          | 2                             |                                    |                     |
| WELL NO:         | MW-1                           |                              |                                 | SAMPL                         | EID: MW-                         |                         |                                 |                           |                              | DATE: 4                      | /13/10   |                               |                                    |                     |
| 14151            |                                | 1                            |                                 | 4-0D W                        |                                  |                         |                                 |                           | PTH 7                        |                              | PURG     |                               | <br>PE                             |                     |
| WELL<br>DIAMETER | R (inches): 2                  |                              | 'ER (inches):                   | 1/8-ID DE                     | EPTH: 2 fee                      | t to 12 feet            | · ·                             | TO WATER                  | R (feet): 🗲                  |                              |          |                               | PP                                 |                     |
| WELL VOL         | LUME PURGE:                    | 1 WELL VOL                   | .UME = (TO                      | TAL WELL DE                   | PTH - ST                         | ATIC DEPTI              | TO WA                           | TEA) X                    | WELL CAI                     | PACITY                       |          |                               |                                    | _                   |
|                  | t if applicable)               |                              | = (                             |                               | 2 feet -                         | 3.51                    |                                 | X<br>X TU                 |                              | gall<br>GTH) + FLO           | ons/foot |                               | 3                                  | allons              |
|                  | t if applicable)               | UNGE: TEQU                   |                                 |                               | gallons + (                      |                         | allons/loo                      |                           |                              | feet) +                      |          | gallons =                     | gall                               | ons                 |
|                  | JMP OR TUBIN<br>WELL (feet):   | G 7.0                        |                                 | MP OR TUBIt<br>I WELL (feet): |                                  |                         | GING<br>ATED AT:                | 901                       | PURGI<br>ENDED               |                              | 5        | TOTAL VOL<br>PURGED (g        |                                    | ]                   |
|                  |                                |                              |                                 |                               |                                  | 1                       | CONE                            |                           | SOLVED                       |                              |          |                               |                                    |                     |
| TIME             | VOLUME                         | CUMUL.<br>VOLUME<br>PURGED   | PURGE<br>RATE                   | DEPTH<br>TO<br>WATER          | pH<br>(standard<br>units)        | TEMP.<br>(°C)           | (circle ur<br>µmhosi<br>or(µS/c | uits) O                   | CIE units)                   | TURBID<br>(NTUs              |          | COLOR<br>(describe)           | ODOR<br>(describe)                 | ORP                 |
|                  | (gallons)                      | (galions)                    | (gpm)                           | (feet)                        |                                  |                         |                                 |                           | saturation                   |                              |          |                               | Slight                             |                     |
| 918              | =1.4                           | <u>द्री.प</u>                | 0.08                            | 3.65                          | 7.29                             | 22,08                   | 4                               |                           | 10                           | 0.47                         |          | clear                         | Wgenic                             | - 246               |
| 921              | 0.25                           | ≂1.65                        | <u> </u>                        | 3.65                          | 7.29                             | 22,12                   | <u> </u>                        |                           | 09                           | 0.5)                         | _        | 11                            | 13                                 | -242                |
| 924              | ×0-25                          | ~1.9                         | +                               | 3.65                          | 7.28                             | 22.16                   | 53                              | 20                        | <u></u>                      | 0.50                         | )        | ц.                            |                                    | -244                |
|                  |                                |                              | <u> </u>                        |                               |                                  |                         |                                 |                           |                              |                              |          |                               |                                    |                     |
|                  |                                |                              |                                 |                               |                                  |                         |                                 |                           |                              |                              |          |                               |                                    |                     |
|                  |                                |                              |                                 |                               |                                  |                         | RFr                             |                           |                              |                              |          |                               |                                    |                     |
| WELL CA          | PACITY (Gallo<br>NSIDE DIA. CA | ns Per Foot):                | 0.75" = 0.02;<br>Ft.): 1/8" = 1 | 1'' = 0.04;<br>0.0006; $3/1$  | <b>1.25</b> " = 0<br>6" = 0.0014 | ).06; 2" =<br>1/4" = 0. |                                 | 3" = 0.37;<br>5/16" = 0.0 | 4" = 0.63<br>004; <u>3/6</u> | 5; 5" = 1.<br>3" = 0.006;    |          | 5" = 1.47;<br>= 0.010;        | 12" = 5.88<br>5/8 <u>" = 0.016</u> |                     |
|                  | EQUIPMENT                      |                              | l = Bailer;                     | BP = Bladde                   |                                  | ESP = Elec              |                                 |                           | np; Pl                       | = Peristalti                 | ic Pump  | ; 0 = 0                       | ther (Specify)                     |                     |
| SAMPLE           | BY (PRINT)                     |                              | 1-0                             | SAMPLER                       | S) SIGNATU                       | MPLIN                   |                                 | <b>A</b>                  | SAMPL                        |                              | 25       | SAMPLIN                       |                                    | }                   |
|                  |                                | Norrison                     | ECT                             | TUBING                        | 11 40                            | Non                     |                                 | FIE                       | LD-FILTEF                    | ED AT: 14<br>RED: Y (        | N)       | ENDED A                       | 1: 7 <u>~ (</u><br>1 SIZE:         |                     |
| DEPTH IN         | WELL (feet):                   | 7.0                          |                                 |                               | CODE: H                          |                         | L Dealans                       | Filtr                     |                              | oment Type:                  | Y        |                               |                                    |                     |
| FIELD DE         | CONTAMINAT                     | ION: PUI                     | <u>ир ү (</u>                   |                               | TUBIN                            |                         | replace                         |                           |                              |                              |          | <u> </u>                      |                                    | E PUMP              |
| SAMPLE ID        | AMPLE CONTAIN                  | IER SPECIFICAT               |                                 | PRESERV                       |                                  | TOTAL VO                | <u> </u>                        | FINAL                     |                              | IDED ANALYS                  |          | SAMPLING<br>EQUIPMENT<br>CODE | FLOV                               | V RATE<br>r minute) |
| CODE             | CONTAINERS                     | CODE<br>PE                   | 250 ml                          | USEC                          |                                  | DDED IN FIEL            |                                 | рн<br><2                  |                              | , Pb, Ag by I<br>athod 200.8 | EPA      | APP                           | At pu                              | rge rate            |
| W/1-04           |                                |                              |                                 |                               |                                  |                         |                                 |                           |                              | 5000 200.0                   |          |                               |                                    |                     |
|                  |                                |                              |                                 |                               |                                  |                         |                                 |                           |                              |                              |          |                               | ļ                                  |                     |
|                  |                                |                              |                                 |                               |                                  | -                       |                                 |                           |                              | _                            |          |                               |                                    |                     |
|                  |                                |                              | ļ                               | <b> </b>                      |                                  |                         | $\geq$                          |                           |                              |                              |          |                               |                                    |                     |
| <u> </u>         |                                |                              |                                 |                               |                                  |                         |                                 |                           |                              |                              | = 1      |                               |                                    |                     |
|                  |                                |                              |                                 |                               |                                  |                         |                                 |                           |                              |                              | -7       |                               | ~                                  | 01                  |
|                  |                                |                              |                                 |                               |                                  | 1292                    |                                 |                           |                              |                              | -        |                               | -                                  | (                   |
| REMARK           | .:s:<br>(J_=                   | 0.139                        |                                 | - 0.0                         | 19 5pm                           |                         | l                               | -                         |                              |                              |          |                               |                                    | <u> </u>            |
| MATERIA          | AL CODES:                      | AG = Ambe                    |                                 | G = Clear Glas                | ss; HDPE                         | = High Dens             | sity Polyel                     | hylene;                   | LDPE = L                     | ow Density                   | Polyethy | /lene; PP                     | = Polypropy                        | enë;                |
| SAMPLIN          | NG EQUIPMEN                    | T CODES:                     | T = Tellor<br>APP = After       | (Through) Per                 | er (Specify)<br>ristaltic Pump   | ); <b>B</b> = Bi        |                                 | BP = Blado                |                              |                              |          | Submersible                   | Pump;                              |                     |
|                  | S: 1. The ab                   |                              | RFPP = Rev                      | erse Flow Per                 | istaltic Pump                    | ; SM = S                |                                 | od (Tubing                | -                            | ain); 0 :                    | = Other  | (Specify)                     |                                    |                     |
| NOTES            | 5: 1. 1.0 80<br>2. STABILI     | OVE DO NOT O<br>ZATION CRITE | RIA FOR BA                      | NGE OF VARIA                  | ATION OF LAS                     | ST THREE CO             | DNSECUT                         | IVE READ                  | NGS (SEE                     | FS 2212, s                   | SECTIO   | <u>v 3)</u>                   |                                    |                     |

N pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Ĩ

## DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| SITE<br>NAME: Safety K                          | leen Sv         | stems. I                            | nc.                             |                                | S<br>L                    | ITE<br>DCATION: 8      | 8755 N                                | W 95               | 5 <sup>th</sup> Street, N                                        | ledley, F                        | L               |                                     |                                   |            |
|-------------------------------------------------|-----------------|-------------------------------------|---------------------------------|--------------------------------|---------------------------|------------------------|---------------------------------------|--------------------|------------------------------------------------------------------|----------------------------------|-----------------|-------------------------------------|-----------------------------------|------------|
| WELL NO: MW-3                                   |                 |                                     |                                 | SAMPL                          | EID: MW-                  | 3- 241:                | 318                                   |                    |                                                                  | DATE: 4/                         | 13/1            | 8                                   |                                   |            |
|                                                 |                 | <u> </u>                            |                                 |                                |                           | RGING                  |                                       | 4                  |                                                                  |                                  |                 |                                     |                                   |            |
| WELL<br>DIAMETER (Inches<br>WELL VOLUME PI      | JRGE: 1 V       | TUBING<br>DIAMET                    | ER (inches):1                   |                                | LL SCREEN<br>PTH: 2 feet  | INTERVAL<br>to 12 feet |                                       | STATIC<br>TO WA    | TER (feet): 2<br>X WELL CAP                                      | 99                               |                 | GE PUMP TYI<br>AILER:               | PP                                |            |
| (only fill out if applic                        |                 | E: 1 EQU                            | = (<br>PMENT VOL                | 11.6                           | leet – 🎾                  | 299<br>BING CAPA       | feet                                  | ) <u>x</u>         | 0.16<br>TUBING LENG                                              |                                  | ns/foo<br>V CEL |                                     | ) gi                              | allons     |
| (only fill out if applic                        | able)           |                                     |                                 |                                | galions + (               |                        | allons/foo                            | t X                |                                                                  | eet) +                           |                 | gallons =                           |                                   | ons        |
| INITIAL PUMP OR<br>DEPTH IN WELL (I             |                 | 7_0                                 | FINAL PU                        | VP OR TUBIN<br>WELL (feet):    | <sup>IG</sup> 7.0         |                        | GING<br>ATED AT:                      | 932                |                                                                  |                                  | 6               | TOTAL VOLU<br>PURGED (ga            |                                   | <u>-0</u>  |
| TIME VOLI<br>PURI<br>(gali                      | JME V<br>GED PI | UMUL.<br>OLUME<br>URGED<br>gallons) | PURGE<br>RATE<br>(gpm)          | DEPTH<br>TO<br>WATER<br>(feet) | pH<br>(standard<br>units) | TEMP.<br>(°C)          | CONI<br>(circle un<br>µmbea<br>or µS/ | nits)<br>Am        | DISSOLVED<br>OXYGEN<br>(circle units)<br>mg/L or<br>% saturation | TURBIDI1<br>(NTUs)               |                 | COLOR<br>(describe)                 | ODOR<br>(describe)                | ORP        |
| 950 1,4                                         |                 | ,44                                 | 0.08                            | 3,20                           | 7.27                      | 23.98                  | 510                                   | > (                | 0.06                                                             | יר.(                             | Y               | Clear                               | arganic                           | -249       |
| 953 0,2                                         | 41              | .68                                 |                                 | 3,20                           | 7,26                      | 23.94                  | 510                                   |                    | 0.05                                                             | 1.5                              | 4               | 11                                  | 11 -                              | 253        |
| 956 0.2                                         | 4 1             | ,92                                 | 1                               | 3.20                           | 7.27                      | 23.96                  | 510                                   |                    | 0,04                                                             | 1.4                              | /               | 12                                  | <u>νι</u> .                       | 255        |
|                                                 |                 | _                                   |                                 |                                |                           |                        |                                       |                    |                                                                  |                                  |                 |                                     |                                   |            |
|                                                 |                 |                                     |                                 |                                |                           | <u> </u>               | 1/00                                  |                    |                                                                  |                                  |                 |                                     |                                   |            |
| WELL CAPACITY                                   | Gallons P       | er Foot): 0                         | ).75" = 0.02;<br>E( ): 1/8" = ( | 1" = 0.04;                     | 1.25" = 0<br>6" = 0.0014; | , _                    |                                       | 3" = 0.3           |                                                                  | ; 5" = 1.0<br>" = 0.00 <u>6;</u> |                 |                                     | 12" = 5.88<br>5/8" <u>= 0.016</u> |            |
| PURGING EQUIP                                   |                 |                                     | = Bailer;                       | BP = Bladde                    | r Pump;                   | ESP = Elec             | tric Subr                             | nersible           |                                                                  | = Peristaltic                    | : Pum           | p; <b>0</b> = Ot                    | her (Specify)                     |            |
| ANNOLED BY (DI                                  |                 | LATION                              |                                 |                                |                           |                        | <u>G DA</u>                           | ГА                 | SAMPLI                                                           | NG C                             | 1               | SAMPLIN                             | Gia                               |            |
| SAMPLED BY (PF                                  | THE.            | Min                                 | SONECT                          | TUBING                         | S) SIGNATH                | mor                    | <u>n</u>                              | -                  | FIELD-FILTER                                                     | DAT: 43                          | $\frac{2}{N}$   |                                     | T: (0)                            |            |
| PUMP OR TUBIN<br>DEPTH IN WELL<br>FIELD DECONTA | (feet):         | 7.0<br>PUN                          |                                 |                                | CODE: HI                  |                        |                                       |                    | Filtration Equip                                                 | ment Type:                       | Y               |                                     |                                   |            |
|                                                 |                 | SPECIFICATI                         |                                 | SA                             | MPLE PRESER               | VATION (inclu          | uding wet l                           | <br>C8)            | INTEN                                                            | DED ANALYS                       | IS              | SAMPLING                            |                                   |            |
| SAMPLE ID                                       | *               | MATERIAL                            | VOLUME                          | PRESERV                        |                           | TOTAL VO               |                                       | FINA               | L AND                                                            | OR METHOD                        |                 | CODE                                |                                   | er minute) |
|                                                 | AINERS          | PE                                  | 250 ml                          | HNO3+                          |                           | NONE                   |                                       | <2                 | Cd, Cr,                                                          | Pb, Ag by E<br>thod 200.8        | PA              | APP                                 | At pu                             | rge rate   |
|                                                 | $ \rightarrow $ |                                     |                                 |                                |                           |                        |                                       |                    |                                                                  |                                  |                 |                                     |                                   |            |
| <b></b>                                         |                 |                                     |                                 |                                |                           |                        |                                       |                    |                                                                  |                                  |                 |                                     |                                   |            |
|                                                 |                 |                                     |                                 |                                |                           | $\geq$                 | $\leq$                                |                    |                                                                  | anna a                           |                 |                                     |                                   |            |
|                                                 |                 |                                     |                                 |                                | -                         |                        |                                       |                    |                                                                  |                                  |                 |                                     |                                   |            |
|                                                 |                 |                                     |                                 | ļ                              |                           | 12/22                  |                                       |                    |                                                                  |                                  |                 |                                     |                                   |            |
| REMARKS:                                        | Q=              | 0-1390                              |                                 | 0 see_<br>Imin                 |                           | pm                     |                                       |                    | Some Su.<br>Moto S                                               | spended                          | - or<br>bet     | Senz Per<br>Ale, Prom<br>Tylene; PP | the clete                         | s trans    |
| MATERIAL COD                                    |                 |                                     | Glass; CC<br>T = Teflor         | 3 = Clear Glas<br>n; 0 = Othe  | is; HDPE<br>er (Specify)  | = High Den:            | sity Polye                            | thylene;           | ; LDPE = L                                                       | ow Density F                     | Polyeth         | nylene; PP                          | = Polypropy                       | sampli     |
| SAMPLING EQU                                    | IPMENT C        | ODES:                               | APP = After<br>RFPP = Revo      | (Through) Per<br>erse Flow Per | istaltic Pump             | ; B = B<br>; SM = S    | ailer;<br>itraw Met                   | BP = B<br>hod (Tul | Bladder Pump;<br>bing Gravity Dra                                |                                  |                 | Submersible<br>r (Specify)          | Pump;                             |            |

PH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater)

| Safety Klein Medley<br>2019 Annual Groundw.       | ater Mon      | foring B4      | 4.T           |                 |               |               |               |                 |               |
|---------------------------------------------------|---------------|----------------|---------------|-----------------|---------------|---------------|---------------|-----------------|---------------|
|                                                   |               |                |               |                 |               |               |               |                 |               |
| Instrument Make: InSitu / YSI                     |               | Troll / 556 MP |               | Identification: | 0200          | 709 AA        |               | 1               |               |
| Sampler's Name / Signature:                       |               | Marrison       |               |                 |               | Date: (mm/dd  |               |                 |               |
| Procedure Type: ICV, CCV, Cal                     | icv, ccv, cal | icv, 🔅 , cal   | icv, ccv, cal | icv, ccv, cal   | icv, ccv, cal | icv, ccv, cal | icv, ccv, cal | icv, ccv, cal   | icv, ccv, cal |
| Standard Values Time                              | 645           | 1620           |               |                 |               |               |               |                 |               |
| pH 4.01 S.U                                       | 4.04          | 404            |               |                 |               |               |               |                 | L             |
| pH 7.00 S.U.                                      | 7.02          | 7.03           |               |                 |               |               |               |                 |               |
| pH 10.00 S.U.                                     | 9,90          | 9.95           |               |                 |               |               |               |                 |               |
| Within 0.2 S.U ?                                  | Pass / Fail   | Rass / Fail    | Pass / Fail   | Pass / Fail     | Pass / Fail   | Pass / Fail   | Pass / Fail   | Pass / Fail     | Pass / Fail   |
| Calibration Required?                             | Yes / Niò     | Yes /(Np       | Yes / No      | Yes / No        | Yes / No      | Yes / No      | Yes / No      | Yes / No        | _Yes / No     |
| Sampler's Initials                                | 10m           | Ken            |               |                 |               |               |               |                 |               |
| Conductivity Scm Cal                              | 502           | 503            |               |                 |               |               |               |                 |               |
| Conductivity <u>) ຢປຽ</u> µS/cm Ver               | 992           | 989            |               |                 |               |               |               |                 |               |
| Within 5% ?                                       | Fass / Fail   | Pass / Fail    | Pass / Fail   | Pass / Fail     | Pass / Fail   | Pass / Fail   | Pass / Fail   | Pass / Fail     | Pass / Fail   |
| Calibration Required?                             | Yes / No      | Yes / No       | Yes / No      | Yes / No        | Yes / No      | Yes / No      | Yes / No      | Yes / No        | Yes / No      |
| Sampler's Initials                                | 1250          | 125            |               |                 |               |               |               |                 |               |
| Temperature During D.O.                           | 22 °C         | 2-1 °C         | , °C          | °C              | °C            | °C            | °C            | °C              | °C            |
| D.O. mg/L @ Saturation $\left(\frac{q}{t}\right)$ | 87(49.8%      | 78,7(99,6%     | 0             |                 |               |               |               |                 |               |
| Within 0.3 mg/L ?                                 | Pass / Fail   | Pass / Fail    | Pass / Fail   | Pass / Fail     | Pass / Fail   | Pass / Fail   | Pass / Fail   | Pass / Fail     | Pass / Fail   |
| Calibration Required?                             | Yes No        | Yes / No       | Yes / No      | Yes / No        | Yes / No      | Yes / No      | Yes / No      | Yes / No        | Yes / No      |
| Sampler's Initials                                | 102           | kn             |               | 1.2             |               |               |               | ·               |               |
| Temperature During ORP                            | 22 °C         | 24 °C          | °C            | °C              | °C            | °C            | °C            | °C              | °C            |
| ORP in mV                                         | 235           | 233            |               |                 |               |               |               |                 |               |
| Within 10 mV ?                                    | Pass / Fail   | Pass / Fail    | Pass / Fail   | Pass / Fail     | Pass / Fail   | Pass / Fail   | Pass / Fail   | Pass / Fail     | Pass / Fail   |
| Calibration Required?                             | Yes / No      | Yes / 😡        | Yes / No      | Yes / No        | Yes / No      | Yes / No      | Yes / No      | Yes / No        | Yes / No      |
| Sampler's Initials                                | KA-           | Im             |               |                 |               |               |               |                 |               |
| Calibration Solutions                             |               | Manufacturer   |               |                 | Lot Number    |               | i             | Expiration Date | e             |
| pH 4.01 S.U.                                      | Exaxol        |                |               | 180214          | I Ar          |               | 02            | 12019           |               |
| pH 7.00 S.U.                                      | Exaxol        |                |               | 17080           |               |               |               | 12019           |               |
| pH 10.00 S.U.                                     | Exaxol        |                |               | 170             | 222B          |               |               | 12018           |               |
| Conductivity 500 µS/cm Cal                        | Exaxol        |                |               |                 | 140           |               |               | 12019           |               |
| Conductivity 1000 µS/cm Ver                       | Exaxol        |                |               | 190             | 214B          |               |               | 12019           |               |
| ORP: mV@°C per mfr. specs.                        |               |                |               |                 | 00270         |               |               | 24/2018         |               |
| Notes Cal - Calibration                           | •             |                |               |                 |               | monte of EDEI | ·             |                 |               |

Notes Cal = Calibration

This form meets or exceeds the requirements of FDEP Form FD 9000-8

ICV = Initial Calibration Verification

CCV = Continued Calibration Verification

. . ..... Concratineu resulty and Measurement

|                                                     | INSTRU               | For<br>MENT (۸             | <b>m FD 900</b><br>/AKE/MO | <b>0-8: Fie</b><br>Del#)                   | LD INSTRUM                           | <b>ENT CAL</b>                        | IBRATION                | RECORDS       | N MAG               |      |
|-----------------------------------------------------|----------------------|----------------------------|----------------------------|--------------------------------------------|--------------------------------------|---------------------------------------|-------------------------|---------------|---------------------|------|
|                                                     | PARAM                | ETER: /                    | check only                 | , , ,<br>/ onel                            | 1                                    |                                       | INSTRU                  | ۱ENT # ۱۹۲    | - 16 11 OCS         | 5546 |
|                                                     |                      | MPERATL                    |                            | -                                          |                                      | SALINITY                              | ( <b>T</b>              |               |                     |      |
|                                                     | μ<br>μ<br>τυ         | RBIDITY                    |                            | ] RESIDUA                                  |                                      | DO                                    |                         | orp []<br>Her | I                   |      |
|                                                     | STANDA               | RDS: (S                    | Specify the ty             | pe(s) of stu                               |                                      |                                       |                         |               |                     | -    |
| LH-Kle                                              | values, and<br>Stand | d the date :<br>dard A _ ) | the standard               | <b>a were prej</b><br>۱ <b>۵ were prej</b> | andards used for<br>pared or purchas | ed]                                   |                         | cont # 2650   | standard            |      |
| meder                                               | Stong                | lard B                     | 211 4713-1                 | 1.+ 4 0 63                                 | 18/2961801 St                        | Mert ()-                              | 800 100 1               | 41# HO35      | 5                   |      |
| 2018<br>Annualte<br>Grunducte<br>Mindorna<br>Execut | Stand                | dard C                     | au patus                   | WHA6                                       | 355 (cot or. 2)                      | 1901                                  |                         |               |                     |      |
| porvalie                                            | DATE:<br>(yy/mm/d8)  | TIME                       | (A, B, C)                  |                                            | RESPONSE                             |                                       |                         | TYPE:         | -                   | r    |
| Growthe                                             | 4/13/18              | 1650                       | (A, E, C)<br>A-            |                                            |                                      | · · · · · · · · · · · · · · · · · · · | CALIBRATED<br>(YES, NO) | (INIT, CONT)  | SAMPLER<br>INITIALS |      |
| Min form)                                           | 10 418               | 651                        | B                          |                                            | 10.2                                 | 10%                                   | Ner                     | INIT          | (Fm                 |      |
| Event                                               |                      | 652                        | C                          | 200 %                                      | 19.y<br>99.8                         | + 991                                 | 10                      | INIT          | 14Pm                |      |
| -                                                   |                      | 653                        | D                          | 120 h                                      |                                      | 56.5%                                 | Yos                     | INIT          | Vfm                 |      |
|                                                     |                      | 1621                       | 4                          | 800 11                                     | 892                                  | 15%                                   | No                      | TIVIT         | KAN                 |      |
| i                                                   |                      | 1622                       | B                          | 10 11                                      | 101 2                                | 210%                                  | - Yes                   | int           | 10m                 |      |
|                                                     |                      | 1623                       | <u> </u>                   |                                            | 19.9                                 | 78%                                   | fer                     | Lent          | 10m                 |      |
|                                                     | 4                    | 1624                       | $\mathcal{D}$              |                                            | 90-7                                 | 56.5%                                 | <u>- K92</u>            | Cont          | (Fan                | •    |
|                                                     |                      | 1021                       |                            | 901 ·                                      | 894                                  | 25%                                   | Yor                     | Cont          | Km                  |      |
|                                                     |                      |                            |                            |                                            |                                      | ┼──┤                                  |                         |               | 3                   |      |
|                                                     |                      |                            |                            |                                            |                                      | ╞───┤                                 |                         |               |                     |      |
|                                                     |                      |                            |                            |                                            |                                      | ┼╴╴┼                                  |                         |               |                     |      |
|                                                     |                      | }                          |                            |                                            |                                      |                                       |                         |               |                     |      |
|                                                     |                      |                            |                            |                                            |                                      | ╞──┼                                  |                         |               |                     |      |
|                                                     |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |
| ł                                                   |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |
| ŀ                                                   |                      |                            |                            |                                            |                                      | ┝───┟                                 |                         |               |                     |      |
| ŀ                                                   |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |
| ŀ                                                   |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |
| ŀ                                                   |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |
| -                                                   |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |
| F                                                   |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |
| -                                                   |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |
| L                                                   |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |
|                                                     |                      |                            |                            |                                            |                                      |                                       |                         |               |                     |      |

# ATTACHMENT B

# LABORATORY REPORTS



Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

May 10, 2018

Keith Morrison Environmental Consulting & Techlology 1408 North Westshore Bllvd Suite 115 Tampa, FL 33607

RE: Project: Safety Kleen Facility Pace Project No.: 35386065

Dear Keith Morrison:

Enclosed are the analytical results for sample(s) received by the laboratory on April 13, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

This report has been revised to include missing results for FL-PRO. This replaces the report submitted on 4/26/2018.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

IA Palmer

Lori Palmer lori.palmer@pacelabs.com (813)881-9401 Project Manager

Enclosures

cc: Pat Ines, Environmental Consulting & Technology



#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

#### CERTIFICATIONS

Project: Safety Kleen Facility Pace Project No.: 35386065

| Ormond Beach Certification IDs                  |                                                       |
|-------------------------------------------------|-------------------------------------------------------|
| 8 East Tower Circle, Ormond Beach, FL 32174     | Nebraska Certification: NE-OS-28-14                   |
| Alabama Certification #: 41320                  | Nevada Certification: FL NELAC Reciprocity            |
| Connecticut Certification #: PH-0216            | New Hampshire Certification #: 2958                   |
| Delaware Certification: FL NELAC Reciprocity    | New Jersey Certification #: FL022                     |
| Florida Certification #: E83079                 | New York Certification #: 11608                       |
| Georgia Certification #: 955                    | North Carolina Environmental Certificate #: 667       |
| Guam Certification: FL NELAC Reciprocity        | North Carolina Certification #: 12710                 |
| Hawaii Certification: FL NELAC Reciprocity      | Oklahoma Certification #: D9947                       |
| Illinois Certification #: 200068                | Pennsylvania Certification #: 68-00547                |
| Indiana Certification: FL NELAC Reciprocity     | Puerto Rico Certification #: FL01264                  |
| Kansas Certification #: E-10383                 | South Carolina Certification: #96042001               |
| Kentucky Certification #: 90050                 | Tennessee Certification #: TN02974                    |
| Louisiana Certification #: FL NELAC Reciprocity | Texas Certification: FL NELAC Reciprocity             |
| Louisiana Environmental Certificate #: 05007    | US Virgin Islands Certification: FL NELAC Reciprocity |
| Maryland Certification: #346                    | Virginia Environmental Certification #: 460165        |
| Michigan Certification #: 9911                  | Wyoming Certification: FL NELAC Reciprocity           |
| Mississippi Certification: FL NELAC Reciprocity | West Virginia Certification #: 9962C                  |
| Missouri Certification #: 236                   | Wisconsin Certification #: 399079670                  |
| Montana Certification #: Cert 0074              | Wyoming (EPA Region 8): FL NELAC Reciprocity          |

**REPORT OF LABORATORY ANALYSIS** 



#### SAMPLE SUMMARY

Project: Safety Kleen Facility

Pace Project No.: 35386065

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 35386065001 | MW-2R-041318 | Water  | 04/13/18 10:49 | 04/13/18 18:25 |
| 35386065002 | MW-1-041318  | Water  | 04/13/18 09:28 | 04/13/18 18:25 |
| 35386065003 | MW-3-041318  | Water  | 04/13/18 10:00 | 04/13/18 18:25 |
| 35386065004 | Trip Blank   | Water  | 04/13/18 09:28 | 04/13/18 18:25 |

**REPORT OF LABORATORY ANALYSIS** 



#### SAMPLE ANALYTE COUNT

Project:Safety Kleen FacilityPace Project No.:35386065

| Lab ID Sample ID Method Analysts Rep       | orted |
|--------------------------------------------|-------|
|                                            |       |
| 35386065001 MW-2R-041318 FL-PRO BP2        | 3     |
| EPA 200.8 CRT                              | 4     |
| EPA 8270 by SIM CB1                        | 20    |
| EPA 8260 SK1                               | 57    |
| 35386065002 MW-1-041318 EPA 200.8 CRT      | 4     |
| 35386065003 MW-3-041318 EPA 200.8 KPP      | 4     |
| <b>35386065004 Trip Blank</b> EPA 8260 SK1 | 57    |

**REPORT OF LABORATORY ANALYSIS** 



#### Project: Safety Kleen Facility

Pace Project No.: 35386065

| ParametersResultsUnitsPQLMDLDFPreparedAnalyzedFL-PRO Water, Low VolumeAnalytical Method: FL-PROPreparation Method: EPA 3510Petroleum Range Organics0.80 Umg/L1.00.80 104/18/18 22:4004/20/18 03:20 | CAS No.   | Qual         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
|                                                                                                                                                                                                    | 24 15 1   |              |
| Petroleum Range Organics 0.80 U mg/L 1.0 0.80 1 04/18/18 22:40 04/20/18 03:20                                                                                                                      | 04 15 1   |              |
| Surrogates                                                                                                                                                                                         | 0/ 15 1   |              |
| o-Terphenyl (S) 68 % 82-142 1 04/18/18 22:40 04/20/18 03:20 8                                                                                                                                      | 54-15-1   | J(S1),<br>P2 |
| N-Pentatriacontane (S) 85 % 42-159 1 04/18/18 22:40 04/20/18 03:20 6                                                                                                                               | 630-07-09 |              |
| 200.8 MET ICPMSAnalytical Method: EPA 200.8 Preparation Method: EPA 200.8                                                                                                                          |           |              |
| Cadmium 0.050 U ug/L 0.10 0.050 1 04/16/18 09:20 04/16/18 15:09 7                                                                                                                                  | 7440-43-9 |              |
| Chromium 0.62 I ug/L 1.0 0.50 1 04/16/18 09:20 04/16/18 15:09 7                                                                                                                                    | 7440-47-3 |              |
| Lead 0.50 U ug/L 1.0 0.50 1 04/16/18 09:20 04/16/18 15:09 7                                                                                                                                        | 7439-92-1 |              |
| Silver 0.050 U ug/L 0.10 0.050 1 04/16/18 09:20 04/16/18 15:09 7                                                                                                                                   | 7440-22-4 |              |
| 8270 MSSV PAHLV by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3510                                                                                                             |           |              |
| Acenaphthene 0.013 U ug/L 0.50 0.013 1 04/18/18 08:52 04/20/18 01:37 8                                                                                                                             | 83-32-9   |              |
| Acenaphthylene 0.012 U ug/L 0.50 0.012 1 04/18/18 08:52 04/20/18 01:37 2                                                                                                                           | 208-96-8  |              |
| Anthracene 0.012 U ug/L 0.50 0.012 1 04/18/18 08:52 04/20/18 01:37 1                                                                                                                               | 120-12-7  |              |
| Benzo(a)anthracene 0.055 U ug/L 0.10 0.055 1 04/18/18 08:52 04/20/18 01:37 5                                                                                                                       |           | J(L1)        |
| Benzo(a)pyrene 0.020 U ug/L 0.10 0.020 1 04/18/18 08:52 04/20/18 01:37 5                                                                                                                           |           | J(L1)        |
| Benzo(b)fluoranthene 0.027 U ug/L 0.10 0.027 1 04/18/18 08:52 04/20/18 01:37 2                                                                                                                     |           | - ( )        |
| Benzo(g,h,i)perylene 0.042 U ug/L 0.50 0.042 1 04/18/18 08:52 04/20/18 01:37 1                                                                                                                     |           |              |
| Benzo(k)fluoranthene 0.023 U ug/L 0.50 0.023 1 04/18/18 08:52 04/20/18 01:37 2                                                                                                                     | 207-08-9  | J(L1)        |
| Chrysene 0.026 U ug/L 0.50 0.026 1 04/18/18 08:52 04/20/18 01:37 2                                                                                                                                 |           | -(')         |
| Dibenz(a,h)anthracene 0.13 U ug/L 0.15 0.13 1 04/18/18 08:52 04/20/18 01:37 5                                                                                                                      |           |              |
| Fluoranthene 0.018 U ug/L 0.50 0.018 1 04/18/18 08:52 04/20/18 01:37 2                                                                                                                             |           |              |
| Fluorene 0.016 U ug/L 0.50 0.016 1 04/18/18 08:52 04/20/18 01:37 8                                                                                                                                 |           |              |
| Indeno(1,2,3-cd)pyrene 0.12 U ug/L 0.15 0.12 1 04/18/18 08:52 04/20/18 01:37 1                                                                                                                     |           |              |
| 1-Methylnaphthalene 0.053 l ug/L 2.0 0.032 1 04/18/18 08:52 04/20/18 01:37 9                                                                                                                       |           |              |
| 2-Methylnaphthalene 0.11 U ug/L 2.0 0.11 1 04/18/18 08:52 04/20/18 01:37 9                                                                                                                         |           |              |
| Naphthalene 0.078 l ug/L 2.0 0.048 1 04/18/18 08:52 04/20/18 01:37 9                                                                                                                               |           |              |
| Phenanthrene 0.018 U ug/L 0.50 0.018 1 04/18/18 08:52 04/20/18 01:37 8                                                                                                                             |           |              |
| Pyrene 0.019 U ug/L 0.50 0.019 1 04/18/18 08:52 04/20/18 01:37 1                                                                                                                                   |           |              |
| Surrogates                                                                                                                                                                                         |           |              |
| 2-Fluorobiphenyl (S) 61 % 33-101 1 04/18/18 08:52 04/20/18 01:37 3                                                                                                                                 |           |              |
| p-Terphenyl-d14 (S) 81 % 38-115 1 04/18/18 08:52 04/20/18 01:37 1                                                                                                                                  | 1718-51-0 |              |
| 8260 MSV Analytical Method: EPA 8260                                                                                                                                                               |           |              |
| Acetone <b>10.0 U</b> ug/L 20.0 10.0 1 04/18/18 02:04 6                                                                                                                                            | 67-64-1   |              |
| Acetonitrile 5.0 U ug/L 40.0 5.0 1 04/18/18 02:04 7                                                                                                                                                | 75-05-8   |              |
| Benzene 0.10 U ug/L 1.0 0.10 1 04/18/18 02:04 7                                                                                                                                                    | 71-43-2   |              |
| Bromochloromethane 0.50 U ug/L 1.0 0.50 1 04/18/18 02:04 7                                                                                                                                         | 74-97-5   |              |
| Bromodichloromethane 0.27 U ug/L 0.60 0.27 1 04/18/18 02:04 7                                                                                                                                      |           |              |
| Bromoform 0.50 U ug/L 1.0 0.50 1 04/18/18 02:04 7                                                                                                                                                  | 75-25-2   |              |
| Bromomethane 0.50 U ug/L 5.0 0.50 1 04/18/18 02:04 7                                                                                                                                               | 74-83-9   |              |
| 2-Butanone (MEK) 5.0 U ug/L 10.0 5.0 1 04/18/18 02:04 7                                                                                                                                            | 78-93-3   |              |
| Carbon disulfide <b>5.0 U</b> ug/L 10.0 5.0 1 04/18/18 02:04 7                                                                                                                                     | 75-15-0   |              |
| Carbon tetrachloride 0.50 U ug/L 3.0 0.50 1 04/18/18 02:04 5                                                                                                                                       | 56-23-5   |              |



#### Project: Safety Kleen Facility

Pace Project No.: 35386065

| Sample: MW-2R-041318        | Lab ID:          | 35386065001     | Collecte    | d: 04/13/18 | 3 10:49 | Received: 0 | 04/13/18 18:25 N | Matrix: Water |      |
|-----------------------------|------------------|-----------------|-------------|-------------|---------|-------------|------------------|---------------|------|
| Parameters                  | Results          | Units           | PQL         | MDL         | DF      | Prepared    | Analyzed         | CAS No.       | Qual |
| 8260 MSV                    | Analytica        | I Method: EPA 8 | 260         |             |         |             |                  |               |      |
| Chlorobenzene               | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    | 4 108-90-7    |      |
| Chloroethane                | 0.50 U           | ug/L            | 10.0        | 0.50        | 1       |             | 04/18/18 02:0    | 4 75-00-3     |      |
| Chloroform                  | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    | 4 67-66-3     |      |
| Chloromethane               | 0.62 U           | ug/L            | 1.0         | 0.62        | 1       |             | 04/18/18 02:0    | 4 74-87-3     |      |
| 1,2-Dibromo-3-chloropropane | 1.0 U            | ug/L            | 5.0         | 1.0         | 1       |             | 04/18/18 02:0    | 4 96-12-8     |      |
| Dibromochloromethane        | 0.26 U           | ug/L            | 2.0         | 0.26        | 1       |             | 04/18/18 02:0    | 4 124-48-1    |      |
| 1,2-Dibromoethane (EDB)     | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    | 4 106-93-4    |      |
| Dibromomethane              | 0.50 U           | ug/L            | 2.0         | 0.50        | 1       |             | 04/18/18 02:0    | 4 74-95-3     |      |
| 1,2-Dichlorobenzene         | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    | 4 95-50-1     |      |
| 1,4-Dichlorobenzene         | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    | 4 106-46-7    |      |
| trans-1,4-Dichloro-2-butene | 5.0 U            | ug/L            | 10.0        | 5.0         | 1       |             | 04/18/18 02:0    | 4 110-57-6    |      |
| 1,1-Dichloroethane          | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| 1,2-Dichloroethane          | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| 1,2-Dichloroethene (Total)  | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               | N2   |
| 1,1-Dichloroethene          | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| cis-1,2-Dichloroethene      | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| trans-1,2-Dichloroethene    | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| 1,2-Dichloropropane         | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| cis-1,3-Dichloropropene     | 0.25 U           | ug/L            | 0.50        | 0.25        | 1       |             |                  | 4 10061-01-5  |      |
| trans-1,3-Dichloropropene   | 0.25 U           | ug/L            | 0.50        | 0.25        | 1       |             |                  | 4 10061-02-6  |      |
| Ethylbenzene                | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| 2-Hexanone                  | 5.0 U            | ug/L            | 10.0        | 5.0         | 1       |             | 04/18/18 02:0    |               |      |
| lodomethane                 | 0.50 U           | ug/L            | 10.0        | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| Isopropylbenzene (Cumene)   | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
|                             | 2.5 U            | -               | 5.0         | 2.5         | 1       |             | 04/18/18 02:0    |               |      |
| Methylene Chloride          | 2.5 U<br>5.0 U   | ug/L            | 5.0<br>10.0 | 2.5<br>5.0  | 1       |             | 04/18/18 02:0    |               |      |
| 4-Methyl-2-pentanone (MIBK) | 0.50 U           | ug/L            |             | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| Methyl-tert-butyl ether     | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             |                  |               |      |
| Styrene                     | 0.50 U<br>0.50 U | ug/L            | 1.0         | 0.50        |         |             | 04/18/18 02:0    |               |      |
| 1,1,1,2-Tetrachloroethane   |                  | ug/L            | 1.0         |             | 1<br>1  |             | 04/18/18 02:0    |               |      |
| 1,1,2,2-Tetrachloroethane   | 0.12 U           | ug/L            | 0.50        | 0.12        |         |             | 04/18/18 02:0    |               |      |
| Tetrachloroethene           | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| Toluene                     | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| 1,1,1-Trichloroethane       | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| 1,1,2-Trichloroethane       | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| Trichloroethene             | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| Trichlorofluoromethane      | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| 1,2,3-Trichloropropane      | 0.59 U           | ug/L            | 2.0         | 0.59        | 1       |             | 04/18/18 02:0    |               |      |
| 1,2,4-Trimethylbenzene      | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| 1,3,5-Trimethylbenzene      | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    |               |      |
| Vinyl acetate               | 1.0 U            | ug/L            | 10.0        | 1.0         | 1       |             | 04/18/18 02:0    |               |      |
| Vinyl chloride              | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    | 4 75-01-4     |      |
| Xylene (Total)              | 1.5 U            | ug/L            | 3.0         | 1.5         | 1       |             | 04/18/18 02:0    | 4 1330-20-7   |      |
| m&p-Xylene                  | 1.0 U            | ug/L            | 2.0         | 1.0         | 1       |             | 04/18/18 02:0    | 4 179601-23-1 | 1    |
| o-Xylene                    | 0.50 U           | ug/L            | 1.0         | 0.50        | 1       |             | 04/18/18 02:0    | 4 95-47-6     |      |
| Surrogates                  |                  |                 |             |             |         |             |                  |               |      |
| 4-Bromofluorobenzene (S)    | 98               | %               | 89-111      |             | 1       |             | 04/18/18 02:0    | 4 460-00-4    |      |



Project: Safety Kleen Facility

Pace Project No.: 35386065

| Sample: MW-2R-041318                                             | mple: MW-2R-041318 Lab ID: 35386065001 |               |                  |     | 8 10:49 | Received: 04 | atrix: Water                     |         |      |
|------------------------------------------------------------------|----------------------------------------|---------------|------------------|-----|---------|--------------|----------------------------------|---------|------|
| Parameters                                                       | Results                                | Units         | PQL              | MDL | DF      | Prepared     | Analyzed                         | CAS No. | Qual |
| 8260 MSV                                                         | Analytical                             | Method: EPA 8 |                  |     |         |              |                                  |         |      |
| <i>Surrogates</i><br>1,2-Dichloroethane-d4 (S)<br>Toluene-d8 (S) | 107<br>99                              | %<br>%        | 75-135<br>89-112 |     | 1<br>1  |              | 04/18/18 02:04<br>04/18/18 02:04 |         |      |



Project: Safety Kleen Facility

Pace Project No.: 35386065

| Sample: MW-1-041318 | Lab ID:    | Collected     | Collected: 04/13/18 09:28 |             |        | Received: 04/13/18 18:25 Matri |                |           |      |  |
|---------------------|------------|---------------|---------------------------|-------------|--------|--------------------------------|----------------|-----------|------|--|
| Parameters          | Results    | Units         | PQL                       | MDL         | DF     | Prepared                       | Analyzed       | CAS No.   | Qual |  |
| 200.8 MET ICPMS     | Analytical | Method: EPA 2 | 00.8 Prepa                | ration Meth | od: EP | A 200.8                        |                |           |      |  |
| Cadmium             | 0.050 U    | ug/L          | 0.10                      | 0.050       | 1      | 04/16/18 09:20                 | 04/16/18 15:11 | 7440-43-9 |      |  |
| Chromium            | 0.52 I     | ug/L          | 1.0                       | 0.50        | 1      | 04/16/18 09:20                 | 04/16/18 15:11 | 7440-47-3 |      |  |
| Lead                | 0.50 U     | ug/L          | 1.0                       | 0.50        | 1      | 04/16/18 09:20                 | 04/16/18 15:11 | 7439-92-1 |      |  |
| Silver              | 0.050 U    | ug/L          | 0.10                      | 0.050       | 1      | 04/16/18 09:20                 | 04/16/18 15:11 | 7440-22-4 |      |  |



Project: Safety Kleen Facility

Pace Project No.: 35386065

| Sample: MW-3-041318 | Lab ID: 35386065003 |               |            | Collected: 04/13/18 10:00 |         |                | Received: 04/13/18 18:25 Matrix: Water |           |      |  |  |
|---------------------|---------------------|---------------|------------|---------------------------|---------|----------------|----------------------------------------|-----------|------|--|--|
| Parameters          | Results             | Units         | PQL        | MDL                       | DF      | Prepared       | Analyzed                               | CAS No.   | Qual |  |  |
| 200.8 MET ICPMS     | Analytical          | Method: EPA 2 | 00.8 Prepa | ration Meth               | od: EP/ | A 200.8        |                                        |           |      |  |  |
| Cadmium             | 0.050 U             | ug/L          | 0.10       | 0.050                     | 1       | 04/17/18 01:34 | 04/18/18 09:46                         | 7440-43-9 |      |  |  |
| Chromium            | 0.68 I              | ug/L          | 1.0        | 0.50                      | 1       | 04/17/18 01:34 | 04/18/18 09:46                         | 7440-47-3 |      |  |  |
| Lead                | 0.50 U              | ug/L          | 1.0        | 0.50                      | 1       | 04/17/18 01:34 | 04/18/18 09:46                         | 7439-92-1 |      |  |  |
| Silver              | 0.050 U             | ug/L          | 0.10       | 0.050                     | 1       | 04/17/18 01:34 | 04/18/18 09:46                         | 7440-22-4 |      |  |  |



#### Project: Safety Kleen Facility

Pace Project No.: 35386065

| Sample: Trip Blank          | Lab ID:   | 35386065004   | Collecte | d: 04/13/18 | 3 09:28 | Received: 04 | 4/13/18 18:25 I | Matrix: Water |      |
|-----------------------------|-----------|---------------|----------|-------------|---------|--------------|-----------------|---------------|------|
| Parameters                  | Results   | Units         | PQL      | MDL         | DF      | Prepared     | Analyzed        | CAS No.       | Qual |
| 8260 MSV                    | Analytica | Method: EPA 8 | 260      |             |         |              |                 |               |      |
| Acetone                     | 10.0 U    | ug/L          | 20.0     | 10.0        | 1       |              | 04/18/18 01:1   | 6 67-64-1     |      |
| Acetonitrile                | 5.0 U     | ug/L          | 40.0     | 5.0         | 1       |              | 04/18/18 01:1   | 6 75-05-8     |      |
| Benzene                     | 0.10 U    | ug/L          | 1.0      | 0.10        | 1       |              | 04/18/18 01:1   | 6 71-43-2     |      |
| Bromochloromethane          | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   | 6 74-97-5     |      |
| Bromodichloromethane        | 0.27 U    | ug/L          | 0.60     | 0.27        | 1       |              | 04/18/18 01:1   | 6 75-27-4     |      |
| Bromoform                   | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   | 6 75-25-2     |      |
| Bromomethane                | 0.50 U    | ug/L          | 5.0      | 0.50        | 1       |              | 04/18/18 01:1   | 6 74-83-9     |      |
| 2-Butanone (MEK)            | 5.0 U     | ug/L          | 10.0     | 5.0         | 1       |              | 04/18/18 01:1   | 6 78-93-3     |      |
| Carbon disulfide            | 5.0 U     | ug/L          | 10.0     | 5.0         | 1       |              | 04/18/18 01:1   | 6 75-15-0     |      |
| Carbon tetrachloride        | 0.50 U    | ug/L          | 3.0      | 0.50        | 1       |              | 04/18/18 01:1   | 6 56-23-5     |      |
| Chlorobenzene               | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| Chloroethane                | 0.50 U    | ug/L          | 10.0     | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| Chloroform                  | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| Chloromethane               | 0.62 U    | ug/L          | 1.0      | 0.62        | 1       |              | 04/18/18 01:1   |               |      |
| 1,2-Dibromo-3-chloropropane | 1.0 U     | ug/L          | 5.0      | 1.0         | 1       |              | 04/18/18 01:1   |               |      |
| Dibromochloromethane        | 0.26 U    | ug/L          | 2.0      | 0.26        | 1       |              | 04/18/18 01:1   |               |      |
| 1,2-Dibromoethane (EDB)     | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| Dibromomethane              | 0.50 U    | ug/L          | 2.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| 1,2-Dichlorobenzene         | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| 1,4-Dichlorobenzene         | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| trans-1,4-Dichloro-2-butene | 5.0 U     | ug/L          | 10.0     | 5.0         | 1       |              | 04/18/18 01:1   |               |      |
| 1,1-Dichloroethane          | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| 1,2-Dichloroethane          | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| 1,2-Dichloroethene (Total)  | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               | N2   |
| 1,1-Dichloroethene          | 0.50 U    | -             | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               | INZ. |
| -                           | 0.50 U    | ug/L          |          |             | 1       |              |                 |               |      |
| cis-1,2-Dichloroethene      |           | ug/L          | 1.0      | 0.50        |         |              | 04/18/18 01:1   |               |      |
| trans-1,2-Dichloroethene    | 0.50 U    | ug/L          | 1.0      | 0.50        | 1<br>1  |              | 04/18/18 01:1   |               |      |
| 1,2-Dichloropropane         | 0.50 U    | ug/L          | 1.0      | 0.50        |         |              | 04/18/18 01:1   |               |      |
| cis-1,3-Dichloropropene     | 0.25 U    | ug/L          | 0.50     | 0.25        | 1       |              |                 | 6 10061-01-5  |      |
| trans-1,3-Dichloropropene   | 0.25 U    | ug/L          | 0.50     | 0.25        | 1       |              |                 | 6 10061-02-6  |      |
| Ethylbenzene                | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| 2-Hexanone                  | 5.0 U     | ug/L          | 10.0     | 5.0         | 1       |              | 04/18/18 01:1   |               |      |
| lodomethane                 | 0.50 U    | ug/L          | 10.0     | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| Isopropylbenzene (Cumene)   | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| Methylene Chloride          | 2.5 U     | ug/L          | 5.0      | 2.5         | 1       |              | 04/18/18 01:1   |               |      |
| 4-Methyl-2-pentanone (MIBK) | 5.0 U     | ug/L          | 10.0     | 5.0         | 1       |              | 04/18/18 01:1   |               |      |
| Methyl-tert-butyl ether     | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| Styrene                     | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| 1,1,1,2-Tetrachloroethane   | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| 1,1,2,2-Tetrachloroethane   | 0.12 U    | ug/L          | 0.50     | 0.12        | 1       |              | 04/18/18 01:1   |               |      |
| Tetrachloroethene           | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| Toluene                     | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| 1,1,1-Trichloroethane       | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   |               |      |
| 1,1,2-Trichloroethane       | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   | 6 79-00-5     |      |
| Trichloroethene             | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   | 6 79-01-6     |      |
| Trichlorofluoromethane      | 0.50 U    | ug/L          | 1.0      | 0.50        | 1       |              | 04/18/18 01:1   | 6 75-69-4     |      |



#### Project: Safety Kleen Facility

Pace Project No.: 35386065

| Sample: Trip Blank        | Lab ID:    | Collected     | Collected: 04/13/18 09:28 |      |    | /13/18 18:25 Ma | Matrix: Water  |             |      |
|---------------------------|------------|---------------|---------------------------|------|----|-----------------|----------------|-------------|------|
| Parameters                | Results    | Units         | PQL                       | MDL  | DF | Prepared        | Analyzed       | CAS No.     | Qual |
| 8260 MSV                  | Analytical | Method: EPA 8 | 260                       |      |    |                 |                |             |      |
| 1,2,3-Trichloropropane    | 0.59 U     | ug/L          | 2.0                       | 0.59 | 1  |                 | 04/18/18 01:16 | 96-18-4     |      |
| 1,2,4-Trimethylbenzene    | 0.50 U     | ug/L          | 1.0                       | 0.50 | 1  |                 | 04/18/18 01:16 | 95-63-6     |      |
| 1,3,5-Trimethylbenzene    | 0.50 U     | ug/L          | 1.0                       | 0.50 | 1  |                 | 04/18/18 01:16 | 108-67-8    |      |
| Vinyl acetate             | 1.0 U      | ug/L          | 10.0                      | 1.0  | 1  |                 | 04/18/18 01:16 | 108-05-4    |      |
| Vinyl chloride            | 0.50 U     | ug/L          | 1.0                       | 0.50 | 1  |                 | 04/18/18 01:16 | 75-01-4     |      |
| Xylene (Total)            | 1.5 U      | ug/L          | 3.0                       | 1.5  | 1  |                 | 04/18/18 01:16 | 1330-20-7   |      |
| m&p-Xylene                | 1.0 U      | ug/L          | 2.0                       | 1.0  | 1  |                 | 04/18/18 01:16 | 179601-23-1 |      |
| o-Xylene                  | 0.50 U     | ug/L          | 1.0                       | 0.50 | 1  |                 | 04/18/18 01:16 | 95-47-6     |      |
| Surrogates                |            |               |                           |      |    |                 |                |             |      |
| 4-Bromofluorobenzene (S)  | 99         | %             | 89-111                    |      | 1  |                 | 04/18/18 01:16 | 460-00-4    |      |
| 1,2-Dichloroethane-d4 (S) | 104        | %             | 75-135                    |      | 1  |                 | 04/18/18 01:16 | 17060-07-0  |      |
| Toluene-d8 (S)            | 97         | %             | 89-112                    |      | 1  |                 | 04/18/18 01:16 | 2037-26-5   |      |



35386065 Pace Proiect No ·

| ce | Project No.: | 35386065 |
|----|--------------|----------|
|    |              |          |

| QC Batch: 440           | 341              |           | Analysi        | s Method    | : E       | EPA 200.8    |       |             |       |           |          |     |      |
|-------------------------|------------------|-----------|----------------|-------------|-----------|--------------|-------|-------------|-------|-----------|----------|-----|------|
| QC Batch Method: EPA    | 200.8            |           | Analysi        | s Descrip   | otion: 2  | 200.8 MET    |       |             |       |           |          |     |      |
| Associated Lab Samples: | 35386065001, 353 | 386065002 |                |             |           |              |       |             |       |           |          |     |      |
| METHOD BLANK: 23904     | 467              |           | M              | latrix: Wa  | ater      |              |       |             |       |           |          |     |      |
| Associated Lab Samples: | 35386065001, 353 | 386065002 |                |             |           |              |       |             |       |           |          |     |      |
|                         |                  |           | Blank          | F           | Reporting |              |       |             |       |           |          |     |      |
| Parameter               | ι                | Jnits     | Result         |             | Limit     | MDL          |       | Analy       | zed   | Qua       | alifiers |     |      |
| Cadmium                 |                  | ug/L      | 0.05           | 50 U 0      | 0.10      | ) (          | .050  | 04/16/18    | 14:14 |           |          |     |      |
| Chromium                |                  | ug/L      | 0.5            | 0 U         | 1.0       | )            | 0.50  | 04/16/18    | 14:14 | ŀ         |          |     |      |
| Lead                    | ι                | ug/L      | 0.5            | 50 U        | 1.(       | )            | 0.50  | 04/16/18    | 14:14 | ŀ         |          |     |      |
| Silver                  | ι                | ug/L      | 0.05           | 50 U        | 0.10      | ) (          | 0.050 | 04/16/18    | 14:14 | Ļ         |          |     |      |
|                         |                  |           |                |             |           |              |       |             |       |           |          |     |      |
| LABORATORY CONTROL      | SAMPLE: 239046   | 58        | Oritor         |             | 2         | 1.00         | 0/    | Dee         |       |           |          |     |      |
| Parameter               | ι                | Jnits     | Spike<br>Conc. | LCS<br>Resi |           | LCS<br>% Rec |       | Rec<br>mits | Qı    | ualifiers |          |     |      |
| Cadmium                 |                  | ug/L      | 5              |             | 5.1       | 103          |       | 85-115      |       |           | -        |     |      |
| Chromium                |                  | ug/L      | 50             |             | 53.9      | 108          |       | 85-115      |       |           |          |     |      |
| Lead                    |                  | ug/L      | 50             |             | 50.0      | 100          |       | 85-115      |       |           |          |     |      |
| Silver                  | ι                | ug/L      | 5              |             | 5.2       | 105          |       | 85-115      |       |           |          |     |      |
| MATRIX SPIKE & MATRIX   | SPIKE DUPLICATE  | : 239046  | 59             |             | 2390470   |              |       |             |       |           |          |     |      |
|                         |                  |           | MS             | MSD         |           |              |       |             |       |           |          |     |      |
|                         | 3538             | 84811001  | Spike          | Spike       | MS        | MSD          | MS    | M           | SD    | % Rec     |          | Max |      |
| Parameter               | Units            | Result    | Conc.          | Conc.       | Result    | Result       | % Re  | ec %l       | Rec   | Limits    | RPD      | RPD | Qual |
| Cadmium                 | ug/L             | 0.050 U   | 5              | 5           | 4.9       | 5.1          |       | 98          | 101   | 70-130    | 3        | 20  |      |
| Chromium                | ug/L             | 0.50 U    | 50             | 50          | 52.2      | 52.6         |       | 104         | 105   | 70-130    | 1        | 20  |      |

| MATRIX SPIKE & MATRIX S | SPIKE DUPLIC | ATE: 23904         | 71    |       | 2390472 |        |       |       |        |     |     |      |
|-------------------------|--------------|--------------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                         |              |                    | MS    | MSD   |         |        |       |       |        |     |     |      |
|                         | 3            | 35385374003        | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units        | Result             | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cadmium                 | ug/L         | 0.000050<br>U mg/L | 5     | 5     | 4.9     | 5.1    | 98    | 103   | 70-130 | 4   | 20  |      |
| Chromium                | ug/L         | 0.0032<br>mg/L     | 50    | 50    | 54.1    | 56.0   | 102   | 106   | 70-130 | 3   | 20  |      |
| Lead                    | ug/L         | 0.00050<br>U mg/L  | 50    | 50    | 48.3    | 50.3   | 96    | 100   | 70-130 | 4   | 20  |      |
| Silver                  | ug/L         | 0.050 U            | 5     | 5     | 5.0     | 5.2    | 101   | 104   | 70-130 | 3   | 20  |      |

50

5

49.2

5.0

49.3

5.1

98

101

98 70-130

103 70-130

0 20

2 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

Lead

Silver

ug/L

ug/L

0.50 U

0.050 U

50

5



Pace Project No.: 35386065

| QC Batch: 44059         | 4            |            | Analysi  | s Metho   | d: E      | EPA 200.8 |      |          |       |           |          |     |      |
|-------------------------|--------------|------------|----------|-----------|-----------|-----------|------|----------|-------|-----------|----------|-----|------|
| QC Batch Method: EPA 2  | 00.8         |            | Analysi  | s Descri  | ption: 2  | 200.8 MET |      |          |       |           |          |     |      |
| Associated Lab Samples: | 35386065003  |            |          |           |           |           |      |          |       |           |          |     |      |
| METHOD BLANK: 2391628   | 3            |            | Μ        | latrix: W | ater      |           |      |          |       |           |          |     |      |
| Associated Lab Samples: | 35386065003  |            |          |           |           |           |      |          |       |           |          |     |      |
|                         |              |            | Blank    |           | Reporting |           |      |          |       |           |          |     |      |
| Parameter               |              | Units      | Result   |           | Limit     | MDL       |      | Analyz   | ed    | Qua       | alifiers |     |      |
| Cadmium                 |              | ug/L       | 0.05     | 50 U 0    | 0.10      | 0 0       | .050 | 04/17/18 | 11:22 | 2         |          |     |      |
| Chromium                |              | ug/L       | 0.5      | 50 U      | 1.0       | )         | 0.50 | 04/17/18 | 11:22 | 2         |          |     |      |
| Lead                    |              | ug/L       | 0.5      | 50 U      | 1.(       | )         | 0.50 | 04/17/18 |       |           |          |     |      |
| Silver                  |              | ug/L       | 0.05     | 50 U      | 0.10      | 0 0       | .050 | 04/17/18 | 11:22 | 2         |          |     |      |
|                         |              |            |          |           |           |           |      |          |       |           |          |     |      |
| LABORATORY CONTROL S    | AMPLE: 239   | 1629       |          |           |           |           |      |          |       |           |          |     |      |
|                         |              |            | Spike    | LC        | -         | LCS       |      | Rec      |       |           |          |     |      |
| Parameter               |              | Units      | Conc.    | Res       | sult      | % Rec     | Li   | imits    | Qı    | ualifiers | _        |     |      |
| Cadmium                 |              | ug/L       | 5        |           | 4.9       | 98        |      | 85-115   |       |           |          |     |      |
| Chromium                |              | ug/L       | 50       |           | 49.0      | 98        |      | 85-115   |       |           |          |     |      |
| Lead                    |              | ug/L       | 50       |           | 49.5      | 99        |      | 85-115   |       |           |          |     |      |
| Silver                  |              | ug/L       | 5        |           | 4.8       | 95        |      | 85-115   |       |           |          |     |      |
| MATRIX SPIKE & MATRIX S |              | ATE: 23916 | 20       |           | 2391631   |           |      |          |       |           |          |     |      |
| MATRIX SPIKE & MATRIX S | PIKE DUPLICA | AIE: 23910 | 30<br>MS | MSD       | 2391631   |           |      |          |       |           |          |     |      |
|                         | 3            | 5385207001 | Spike    | Spike     | MS        | MSD       | MS   | MS       | D     | % Rec     |          | Max |      |
| Parameter               | Units        | Result     | Conc.    | Conc.     | Result    | Result    | % Re |          |       | Limits    | RPD      |     | Qual |
| Cadmium                 | ug/L         | 0.000050   | 5        | Ę         | 5 4.9     | 4.9       |      | 98       | 98    | 70-130    | 0        | 20  |      |

| Cadmidin | ug/L | U mg/L             | 5  | 5  | 4.9  | 4.9  | 90  | 90 | 70-130 | 0 | 20 |  |
|----------|------|--------------------|----|----|------|------|-----|----|--------|---|----|--|
| Chromium | ug/L | 0.00050<br>U mg/L  | 50 | 50 | 50.2 | 50.0 | 100 | 99 | 70-130 | 0 | 20 |  |
| Lead     | ug/L | 0.00050<br>U mg/L  | 50 | 50 | 49.0 | 48.4 | 98  | 97 | 70-130 | 1 | 20 |  |
| Silver   | ug/L | 0.000050<br>U mg/L | 5  | 5  | 4.7  | 4.7  | 94  | 94 | 70-130 | 0 | 20 |  |

| MATRIX SPIKE & MATRIX SP | IKE DUPLIC/ | ATE: 23916 | 32    |              | 2391633 |        |       |       |        |     |     |            |
|--------------------------|-------------|------------|-------|--------------|---------|--------|-------|-------|--------|-----|-----|------------|
|                          |             | 5385999002 | MS    | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |            |
|                          |             |            | Spike |              |         |        |       |       |        |     | Max | <b>•</b> • |
| Parameter                | Units       | Result     | Conc. | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual       |
| Cadmium                  | ug/L        | 0.050 U    | 5     | 5            | 5.0     | 5.0    | 99    | 99    | 70-130 | 0   | 20  |            |
| Chromium                 | ug/L        | 0.50 U     | 50    | 50           | 50.2    | 50.9   | 100   | 101   | 70-130 | 1   | 20  |            |
| Lead                     | ug/L        | 152        | 50    | 50           | 200     | 202    | 96    | 100   | 70-130 | 1   | 20  |            |
| Silver                   | ug/L        | 0.050 U    | 5     | 5            | 4.9     | 4.9    | 98    | 98    | 70-130 | 0   | 20  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



EPA 8260

8260 MSV

Project: Safety Kleen Facility

Pace Project No.: 35386065

| QC Batch:          | 440900                         | Analysis Method:      |
|--------------------|--------------------------------|-----------------------|
| QC Batch Method:   | EPA 8260                       | Analysis Description: |
| Associated Lab Sam | ples: 35386065001, 35386065004 |                       |
| METHOD BLANK:      | 2393177                        | Matrix: Water         |
| Associated Lab Com |                                |                       |

| Associated Lab Samples: 3538606 | 5001, 35386065004 | 1      |           |      |                |            |
|---------------------------------|-------------------|--------|-----------|------|----------------|------------|
|                                 |                   | Blank  | Reporting |      |                |            |
| Parameter                       | Units             | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| 1,1,1,2-Tetrachloroethane       | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,1,1-Trichloroethane           | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,1,2,2-Tetrachloroethane       | ug/L              | 0.12 U | 0.50      | 0.12 | 04/18/18 00:04 |            |
| 1,1,2-Trichloroethane           | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,1-Dichloroethane              | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,1-Dichloroethene              | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,2,3-Trichloropropane          | ug/L              | 0.59 U | 2.0       | 0.59 | 04/18/18 00:04 |            |
| 1,2,4-Trimethylbenzene          | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,2-Dibromo-3-chloropropane     | ug/L              | 1.0 U  | 5.0       | 1.0  | 04/18/18 00:04 |            |
| 1,2-Dibromoethane (EDB)         | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,2-Dichlorobenzene             | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,2-Dichloroethane              | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,2-Dichloroethene (Total)      | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 | N2         |
| 1,2-Dichloropropane             | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,3,5-Trimethylbenzene          | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 1,4-Dichlorobenzene             | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| 2-Butanone (MEK)                | ug/L              | 5.0 U  | 10.0      | 5.0  | 04/18/18 00:04 |            |
| 2-Hexanone                      | ug/L              | 5.0 U  | 10.0      | 5.0  | 04/18/18 00:04 |            |
| 4-Methyl-2-pentanone (MIBK)     | ug/L              | 5.0 U  | 10.0      | 5.0  | 04/18/18 00:04 |            |
| Acetone                         | ug/L              | 10.0 U | 20.0      | 10.0 | 04/18/18 00:04 |            |
| Acetonitrile                    | ug/L              | 5.0 U  | 40.0      | 5.0  | 04/18/18 00:04 |            |
| Benzene                         | ug/L              | 0.10 U | 1.0       | 0.10 | 04/18/18 00:04 |            |
| Bromochloromethane              | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Bromodichloromethane            | ug/L              | 0.27 U | 0.60      | 0.27 | 04/18/18 00:04 |            |
| Bromoform                       | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Bromomethane                    | ug/L              | 0.50 U | 5.0       | 0.50 | 04/18/18 00:04 |            |
| Carbon disulfide                | ug/L              | 5.0 U  | 10.0      | 5.0  | 04/18/18 00:04 |            |
| Carbon tetrachloride            | ug/L              | 0.50 U | 3.0       | 0.50 | 04/18/18 00:04 |            |
| Chlorobenzene                   | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Chloroethane                    | ug/L              | 0.50 U | 10.0      | 0.50 | 04/18/18 00:04 |            |
| Chloroform                      | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Chloromethane                   | ug/L              | 0.62 U | 1.0       | 0.62 | 04/18/18 00:04 |            |
| cis-1,2-Dichloroethene          | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| cis-1,3-Dichloropropene         | ug/L              | 0.25 U | 0.50      | 0.25 | 04/18/18 00:04 |            |
| Dibromochloromethane            | ug/L              | 0.26 U | 2.0       | 0.26 | 04/18/18 00:04 |            |
| Dibromomethane                  | ug/L              | 0.50 U | 2.0       | 0.50 | 04/18/18 00:04 |            |
| Ethylbenzene                    | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Iodomethane                     | ug/L              | 0.50 U | 10.0      | 0.50 | 04/18/18 00:04 |            |
| Isopropylbenzene (Cumene)       | ug/L              | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| m&p-Xylene                      | ug/L              | 1.0 U  | 2.0       | 1.0  | 04/18/18 00:04 |            |
|                                 |                   |        |           |      |                |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Matrix: Water

Project: Safety Kleen Facility Pace Project No.: 35386065

#### METHOD BLANK: 2393177

Associated Lab Samples: 35386065001, 35386065004

|                             |       | Blank  | Reporting |      |                |            |
|-----------------------------|-------|--------|-----------|------|----------------|------------|
| Parameter                   | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Methylene Chloride          | ug/L  | 2.5 U  | 5.0       | 2.5  | 04/18/18 00:04 |            |
| o-Xylene                    | ug/L  | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Styrene                     | ug/L  | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Tetrachloroethene           | ug/L  | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Toluene                     | ug/L  | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| trans-1,2-Dichloroethene    | ug/L  | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| trans-1,3-Dichloropropene   | ug/L  | 0.25 U | 0.50      | 0.25 | 04/18/18 00:04 |            |
| trans-1,4-Dichloro-2-butene | ug/L  | 5.0 U  | 10.0      | 5.0  | 04/18/18 00:04 |            |
| Trichloroethene             | ug/L  | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Trichlorofluoromethane      | ug/L  | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Vinyl acetate               | ug/L  | 1.0 U  | 10.0      | 1.0  | 04/18/18 00:04 |            |
| Vinyl chloride              | ug/L  | 0.50 U | 1.0       | 0.50 | 04/18/18 00:04 |            |
| Xylene (Total)              | ug/L  | 1.5 U  | 3.0       | 1.5  | 04/18/18 00:04 |            |
| 1,2-Dichloroethane-d4 (S)   | %     | 97     | 75-135    |      | 04/18/18 00:04 |            |
| 4-Bromofluorobenzene (S)    | %     | 96     | 89-111    |      | 04/18/18 00:04 |            |
| Toluene-d8 (S)              | %     | 99     | 89-112    |      | 04/18/18 00:04 |            |

#### LABORATORY CONTROL SAMPLE: 2393178

|                             | 2000110 | Spike | LCS    | LCS   | % Rec  |            |
|-----------------------------|---------|-------|--------|-------|--------|------------|
| Parameter                   | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane   | ug/L    | 20    | 19.9   | 99    | 70-130 |            |
| 1,1,1-Trichloroethane       | ug/L    | 20    | 20.6   | 103   | 70-130 |            |
| 1,1,2,2-Tetrachloroethane   | ug/L    | 20    | 19.6   | 98    | 70-130 |            |
| 1,1,2-Trichloroethane       | ug/L    | 20    | 20.3   | 101   | 70-130 |            |
| 1,1-Dichloroethane          | ug/L    | 20    | 21.7   | 108   | 70-130 |            |
| 1,1-Dichloroethene          | ug/L    | 20    | 22.6   | 113   | 65-134 |            |
| 1,2,3-Trichloropropane      | ug/L    | 20    | 18.5   | 93    | 65-135 |            |
| 1,2,4-Trimethylbenzene      | ug/L    | 20    | 19.5   | 98    | 70-130 |            |
| 1,2-Dibromo-3-chloropropane | ug/L    | 20    | 17.9   | 89    | 62-133 |            |
| 1,2-Dibromoethane (EDB)     | ug/L    | 20    | 21.2   | 106   | 70-130 |            |
| 1,2-Dichlorobenzene         | ug/L    | 20    | 21.1   | 106   | 70-130 |            |
| 1,2-Dichloroethane          | ug/L    | 20    | 18.6   | 93    | 70-130 |            |
| I,2-Dichloroethene (Total)  | ug/L    | 40    | 42.7   | 107   | 70-130 | N2         |
| ,2-Dichloropropane          | ug/L    | 20    | 21.5   | 107   | 70-130 |            |
| 1,3,5-Trimethylbenzene      | ug/L    | 20    | 19.8   | 99    | 70-130 |            |
| ,4-Dichlorobenzene          | ug/L    | 20    | 20.1   | 100   | 70-130 |            |
| 2-Butanone (MEK)            | ug/L    | 40    | 35.7   | 89    | 61-129 |            |
| 2-Hexanone                  | ug/L    | 40    | 39.6   | 99    | 68-131 |            |
| 4-Methyl-2-pentanone (MIBK) | ug/L    | 40    | 36.1   | 90    | 70-130 |            |
| Acetone                     | ug/L    | 40    | 41.6   | 104   | 44-155 |            |
| Acetonitrile                | ug/L    | 200   | 273    | 136   | 46-153 |            |
| Benzene                     | ug/L    | 20    | 22.2   | 111   | 70-130 |            |
| Bromochloromethane          | ug/L    | 20    | 20.6   | 103   | 70-130 |            |
| Bromodichloromethane        | ug/L    | 20    | 19.5   | 98    | 70-130 |            |
|                             |         |       |        |       |        |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



## Project: Safety Kleen Facility

Pace Project No.: 35386065

#### LABORATORY CONTROL SAMPLE: 2393178

| Parameter               | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-------------------------|-------|----------------|---------------|--------------|-----------------|------------|
|                         |       |                |               |              |                 | Quaimers   |
| romoform                | ug/L  | 20             | 17.2          | 86           | 62-129          |            |
| romomethane             | ug/L  | 20             | 16.9          | 84           | 10-179          |            |
| arbon disulfide         | ug/L  | 20             | 20.5          | 102          | 40-156          |            |
| arbon tetrachloride     | ug/L  | 20             | 18.7          | 94           | 66-127          |            |
| lorobenzene             | ug/L  | 20             | 20.7          | 103          | 70-130          |            |
| loroethane              | ug/L  | 20             | 23.2          | 116          | 57-142          |            |
| loroform                | ug/L  | 20             | 20.0          | 100          | 70-130          |            |
| oromethane              | ug/L  | 20             | 19.2          | 96           | 45-150          |            |
| -1,2-Dichloroethene     | ug/L  | 20             | 21.0          | 105          | 70-130          |            |
| -1,3-Dichloropropene    | ug/L  | 20             | 18.3          | 92           | 70-130          |            |
| romochloromethane       | ug/L  | 20             | 16.6          | 83           | 70-130          |            |
| romomethane             | ug/L  | 20             | 20.0          | 100          | 70-130          |            |
| ylbenzene               | ug/L  | 20             | 21.3          | 106          | 70-130          |            |
| methane                 | ug/L  | 40             | 59.9          | 150          | 21-150          |            |
| ropylbenzene (Cumene)   | ug/L  | 20             | 19.7          | 98           | 70-130          |            |
| o-Xylene                | ug/L  | 40             | 44.0          | 110          | 70-130          |            |
| nyl-tert-butyl ether    | ug/L  | 20             | 20.4          | 102          | 64-133          |            |
| nylene Chloride         | ug/L  | 20             | 22.0          | 110          | 65-127          |            |
| /lene                   | ug/L  | 20             | 19.2          | 96           | 70-130          |            |
| ene                     | ug/L  | 20             | 20.0          | 100          | 70-130          |            |
| achloroethene           | ug/L  | 20             | 21.4          | 107          | 48-155          |            |
| ene                     | ug/L  | 20             | 21.0          | 105          | 70-130          |            |
| s-1,2-Dichloroethene    | ug/L  | 20             | 21.7          | 109          | 68-126          |            |
| s-1,3-Dichloropropene   | ug/L  | 20             | 17.4          | 87           | 70-130          |            |
| s-1,4-Dichloro-2-butene | ug/L  | 20             | 14.9          | 75           | 46-138          |            |
| chloroethene            | ug/L  | 20             | 20.9          | 104          | 69-129          |            |
| hlorofluoromethane      | ug/L  | 20             | 18.6          | 93           | 60-144          |            |
| yl acetate              | ug/L  | 20             | 19.3          | 97           | 70-130          |            |
| /l chloride             | ug/L  | 20             | 20.7          | 104          | 67-136          |            |
| ene (Total)             | ug/L  | 60             | 63.3          | 105          | 70-130          |            |
| Dichloroethane-d4 (S)   | %     |                |               | 93           | 75-135          |            |
| romofluorobenzene (S)   | %     |                |               | 101          | 89-111          |            |
| uene-d8 (S)             | %     |                |               | 99           | 89-112          |            |

MATRIX SPIKE SAMPLE:

| LE: | 2393715 |
|-----|---------|
| LE: | 2393715 |

|                           |       | 35386361002 | Spike | MS     | MS    | % Rec  |            |
|---------------------------|-------|-------------|-------|--------|-------|--------|------------|
| Parameter                 | Units | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane | ug/L  | 0.50 U      | 20    | 19.9   | 99    | 70-130 |            |
| 1,1,1-Trichloroethane     | ug/L  | 0.50 U      | 20    | 22.2   | 111   | 70-130 |            |
| 1,1,2,2-Tetrachloroethane | ug/L  | 0.12 U      | 20    | 17.8   | 89    | 70-130 |            |
| 1,1,2-Trichloroethane     | ug/L  | 0.50 U      | 20    | 19.2   | 96    | 70-130 |            |
| 1,1-Dichloroethane        | ug/L  | 0.50 U      | 20    | 21.7   | 109   | 70-130 |            |
| 1,1-Dichloroethene        | ug/L  | 0.50 U      | 20    | 21.4   | 106   | 65-134 |            |
| 1,2,3-Trichloropropane    | ug/L  | 0.59 U      | 20    | 16.8   | 84    | 65-135 |            |
| 1,2,4-Trimethylbenzene    | ug/L  | 0.50 U      | 20    | 18.2   | 91    | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



### Project: Safety Kleen Facility

Pace Project No.: 35386065

| MATRIX SPIKE SAMPLE:                                | 2393715      | 25206264002           | Spike          | MS           | MS          | % Pag                    |
|-----------------------------------------------------|--------------|-----------------------|----------------|--------------|-------------|--------------------------|
| Parameter                                           | Units        | 35386361002<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits Qualifie |
| 1,2-Dibromo-3-chloropropane                         | ug/L         | 1.0 U                 | 20             | 16.2         | 81          | 62-133                   |
| 1,2-Dibromoethane (EDB)                             | ug/L         | 0.50 U                | 20             | 19.5         | 98          | 70-130                   |
| 1,2-Dichlorobenzene                                 | ug/L         | 0.50 U                | 20             | 19.6         | 98          | 70-130                   |
| 1,2-Dichloroethane                                  | ug/L         | 0.50 U                | 20             | 19.4         | 97          | 70-130                   |
| 1,2-Dichloroethene (Total)                          | ug/L         | 0.50 U                | 40             | 41.4         | 103         | 70-130 N2                |
| 1,2-Dichloropropane                                 | ug/L         | 0.50 U                | 20             | 19.4         | 97          | 70-130                   |
| 1,3,5-Trimethylbenzene                              | ug/L         | 0.50 U                | 20             | 18.8         | 94          | 70-130                   |
| 1,4-Dichlorobenzene                                 | ug/L         | 0.50 U                | 20             | 19.3         | 97          | 70-130                   |
| 2-Butanone (MEK)                                    | ug/L         | 5.0 U                 | 40             | 34.3         | 86          | 61-129                   |
| 2-Hexanone                                          | ug/L         | 5.0 U                 | 40             | 31.9         | 80          | 68-131                   |
| 4-Methyl-2-pentanone (MIBK)                         | ug/L         | 5.0 U                 | 40             | 31.7         | 79          | 70-130                   |
| Acetone                                             | ug/L         | 10.0 U                | 40             | 38.7         | 93          | 44-155                   |
| Acetonitrile                                        | ug/L         | 5.0 U                 | 200            | 205          | 102         | 46-153                   |
| Benzene                                             | ug/L         | 0.10 U                | 20             | 20.6         | 102         | 70-130                   |
| Bromochloromethane                                  | ug/L         | 0.50 U                | 20             | 20.7         | 103         | 70-130                   |
| Bromodichloromethane                                | ug/L         | 0.27 U                | 20             | 19.9         | 100         | 70-130                   |
| Bromoform                                           | ug/L         | 0.50 U                | 20             | 16.4         | 82          | 62-129                   |
| Bromomethane                                        | ug/L         | 0.50 U                | 20             | 17.1         | 85          | 10-179                   |
| Carbon disulfide                                    | ug/L         | 5.0 U                 | 20             | 21.5         | 106         | 40-156                   |
| Carbon tetrachloride                                | ug/L         | 0.50 U                | 20             | 21.0         | 107         | 66-127                   |
| Chlorobenzene                                       | ug/L         | 0.50 U                | 20             | 20.1         | 101         | 70-130                   |
| Chloroethane                                        | ug/L         | 0.50 U                | 20             | 21.3         | 107         | 57-142                   |
| Chloroform                                          | ug/L         | 0.50 U                | 20             | 20.5         | 107         | 70-130                   |
| Chloromethane                                       | ug/L         | 0.62 U                | 20             | 16.1         | 81          | 45-150                   |
| cis-1,2-Dichloroethene                              | ug/L         | 0.50 U                | 20             | 20.7         | 104         | 70-130                   |
| cis-1,3-Dichloropropene                             | ug/L         | 0.25 U                | 20             | 14.4         | 72          | 70-130                   |
| Dibromochloromethane                                | ug/L         | 0.26 U                | 20             | 15.9         | 72          | 70-130                   |
| Dibromomethane                                      | ug/L         | 0.50 U                | 20             | 19.4         | 97          | 70-130                   |
| Ethylbenzene                                        | ug/L         | 0.50 U                | 20             | 21.0         | 105         | 70-130                   |
| lodomethane                                         | ug/L         | 0.50 U                | 20<br>40       | 31.5         | 79          | 21-150                   |
| Isopropylbenzene (Cumene)                           | ug/L         | 0.50 U                | 20             | 18.9         | 94          | 70-130                   |
| m&p-Xylene                                          | ug/L         | 1.0 U                 | 40             | 42.7         | 107         | 70-130                   |
| Methyl-tert-butyl ether                             | ug/L         | 0.50 U                | 20             | 18.4         | 92          | 64-133                   |
| Methylene Chloride                                  | ug/L         | 2.5 U                 | 20             | 20.4         | 101         | 65-127                   |
| o-Xylene                                            | ug/L         | 0.50 U                | 20             | 18.2         | 91          | 70-130                   |
| Styrene                                             | ug/L         | 0.50 U                | 20             | 18.8         | 94          | 70-130                   |
| Tetrachloroethene                                   | ug/L         | 0.50 U                | 20             | 21.4         | 107         | 48-155                   |
| Toluene                                             | ug/L         | 0.50 U                | 20             | 21.4         | 107         | 70-130                   |
|                                                     |              | 0.50 U                |                |              |             | 68-126                   |
| rans-1,2-Dichloroethene<br>rans-1,3-Dichloropropene | ug/L<br>ug/L | 0.30 U                | 20<br>20       | 20.7<br>14.9 | 103<br>74   | 70-130                   |
| rans-1,4-Dichloro-2-butene                          | -            | 5.0 U                 | 20             | 14.9         | 74<br>66    | 46-138                   |
| Trichloroethene                                     | ug/L         | 0.50 U                | 20<br>20       | 21.1         | 106         | 69-129                   |
|                                                     | ug/L         | 0.50 U                |                |              |             |                          |
| Trichlorofluoromethane                              | ug/L         | 1.0 U                 | 20             | 20.6         | 103         | 60-144                   |
| Vinyl acetate                                       | ug/L         |                       | 20             | 15.7         | 79<br>05    | 70-130                   |
| Vinyl chloride                                      | ug/L         | 0.50 U                | 20             | 18.9         | 95<br>101   | 67-136                   |
| Xylene (Total)                                      | ug/L         | 1.5 U                 | 60             | 60.8         | 101         | 70-130                   |
| 1,2-Dichloroethane-d4 (S)                           | %            |                       |                |              | 103         | 75-135                   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



## Project: Safety Kleen Facility

Pace Project No.: 35386065

| MATRIX SPIKE SAMPLE:                  | 2393715 |                       |                |              |             |                 |           |
|---------------------------------------|---------|-----------------------|----------------|--------------|-------------|-----------------|-----------|
| Parameter                             | Units   | 35386361002<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits | Qualifier |
| 4-Bromofluorobenzene (S)              | %       |                       |                |              |             | 89-111          |           |
| Toluene-d8 (S)                        | %       |                       |                |              | 98          | 89-112          |           |
|                                       |         |                       |                |              |             |                 |           |
| SAMPLE DUPLICATE: 2393714             |         | 25296065001           | Due            |              | Max         |                 |           |
| Parameter                             | Units   | 35386065001<br>Result | Dup<br>Result  | RPD          | Max<br>RPD  | Qualifiers      |           |
| 1,1,1,2-Tetrachloroethane             | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 | -         |
| I,1,1-Trichloroethane                 | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,1,2,2-Tetrachloroethane              | ug/L    | 0.12 U                | 0.12 U         |              | 40          |                 |           |
| ,1,2-Trichloroethane                  | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,1-Dichloroethane                     | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,1-Dichloroethene                     | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,2,3-Trichloropropane                 | ug/L    | 0.59 U                | 0.59 U         |              | 40          |                 |           |
| ,2,4-Trimethylbenzene                 | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,2-Dibromo-3-chloropropane            | ug/L    | 1.0 U                 | 1.0 U          |              | 40          |                 |           |
| ,2-Dibromoethane (EDB)                | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,2-Dichlorobenzene                    | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,2-Dichloroethane                     | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,2-Dichloroethene (Total)             | ug/L    | 0.50 U                | 0.50 U         |              | 40          | N2              |           |
| ,2-Dichloropropane                    | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,3,5-Trimethylbenzene                 | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| ,4-Dichlorobenzene                    | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| P-Butanone (MEK)                      | ug/L    | 5.0 U                 | 5.0 U          |              | 40          |                 |           |
| 2-Hexanone                            | ug/L    | 5.0 U                 | 5.0 U          |              | 40          |                 |           |
| I-Methyl-2-pentanone (MIBK)           | ug/L    | 5.0 U                 | 5.0 U          |              | 40          |                 |           |
| Acetone                               | ug/L    | 10.0 U                | 10.0 U         |              | 40          |                 |           |
| Acetonitrile                          | ug/L    | 5.0 U                 | 5.0 U          |              | 40          |                 |           |
| Benzene                               | ug/L    | 0.10 U                | 0.10 U         |              | 40          |                 |           |
| Bromochloromethane                    | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| Bromodichloromethane                  | ug/L    | 0.27 U                | 0.27 U         |              | 40          |                 |           |
| Bromoform                             | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| Bromomethane                          | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| Carbon disulfide                      | ug/L    | 5.0 U                 | 5.0 U          |              | 40          |                 |           |
| Carbon tetrachloride                  | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| Chlorobenzene                         | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| Chloroethane                          | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| Chloroform                            | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| Chloromethane                         | ug/L    | 0.62 U                | 0.62 U         |              | 40          |                 |           |
| is-1,2-Dichloroethene                 | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| is-1,3-Dichloropropene                | ug/L    | 0.25 U                | 0.25 U         |              | 40          |                 |           |
| Dibromochloromethane                  | ug/L    | 0.26 U                | 0.26 U         |              | 40          |                 |           |
| Dibromomethane                        | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| Ethylbenzene                          | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| odomethane                            | ug/L    | 0.50 U                | 0.50 U         |              | 40          |                 |           |
| · · · · · · · · · · · · · · · · · · · |         | 0 50 11               |                |              | 40          |                 |           |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

0.50 U

0.50 U

ug/L

#### **REPORT OF LABORATORY ANALYSIS**

Isopropylbenzene (Cumene)

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

40



#### Project: Safety Kleen Facility 35386065

## Pace Project No.:

#### SAMPLE DUPLICATE: 2393714

|                             |       | 35386065001 | Dup    |     | Max |            |
|-----------------------------|-------|-------------|--------|-----|-----|------------|
| Parameter                   | Units | Result      | Result | RPD | RPD | Qualifiers |
| m&p-Xylene                  | ug/L  | 1.0 U       | 1.0 U  |     | 40  |            |
| Methyl-tert-butyl ether     | ug/L  | 0.50 U      | 0.50 U |     | 40  |            |
| Methylene Chloride          | ug/L  | 2.5 U       | 2.5 U  |     | 40  |            |
| o-Xylene                    | ug/L  | 0.50 U      | 0.50 U |     | 40  |            |
| Styrene                     | ug/L  | 0.50 U      | 0.50 U |     | 40  |            |
| Tetrachloroethene           | ug/L  | 0.50 U      | 0.50 U |     | 40  |            |
| Toluene                     | ug/L  | 0.50 U      | 0.50 U |     | 40  |            |
| trans-1,2-Dichloroethene    | ug/L  | 0.50 U      | 0.50 U |     | 40  |            |
| trans-1,3-Dichloropropene   | ug/L  | 0.25 U      | 0.25 U |     | 40  |            |
| trans-1,4-Dichloro-2-butene | ug/L  | 5.0 U       | 5.0 U  |     | 40  |            |
| Trichloroethene             | ug/L  | 0.50 U      | 0.50 U |     | 40  |            |
| Trichlorofluoromethane      | ug/L  | 0.50 U      | 0.50 U |     | 40  |            |
| Vinyl acetate               | ug/L  | 1.0 U       | 1.0 U  |     | 40  |            |
| Vinyl chloride              | ug/L  | 0.50 U      | 0.50 U |     | 40  |            |
| Xylene (Total)              | ug/L  | 1.5 U       | 1.5 U  |     | 40  |            |
| 1,2-Dichloroethane-d4 (S)   | %     | 107         | 107    | 0   | 40  |            |
| 4-Bromofluorobenzene (S)    | %     | 98          | 97     | 0   | 40  |            |
| Toluene-d8 (S)              | %     | 99          | 99     | 0   | 40  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Safety Kleen Facility

Pace Project No.: 35386065

QC Batch: 440828 Analysis Method: EPA 8270 by SIM QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAHLV by SIM MSSV Associated Lab Samples: 35386065001 METHOD BLANK: 2392589 Matrix: Water Associated Lab Samples: 35386065001 Blank Reporting Parameter Result Limit MDL Qualifiers Units Analyzed 1-Methylnaphthalene ug/L 0.032 U 2.0 0.032 04/19/18 16:52 04/19/18 16:52 0.11 U 2-Methylnaphthalene ug/L 2.0 0.11

| Acenaphthene           | ug/L | 0.013 U | 0.50   | 0.013 | 04/19/18 16:52 |  |
|------------------------|------|---------|--------|-------|----------------|--|
| Acenaphthylene         | ug/L | 0.012 U | 0.50   | 0.012 | 04/19/18 16:52 |  |
| Anthracene             | ug/L | 0.012 U | 0.50   | 0.012 | 04/19/18 16:52 |  |
| Benzo(a)anthracene     | ug/L | 0.055 U | 0.10   | 0.055 | 04/19/18 16:52 |  |
| Benzo(a)pyrene         | ug/L | 0.020 U | 0.10   | 0.020 | 04/19/18 16:52 |  |
| Benzo(b)fluoranthene   | ug/L | 0.027 U | 0.10   | 0.027 | 04/19/18 16:52 |  |
| Benzo(g,h,i)perylene   | ug/L | 0.042 U | 0.50   | 0.042 | 04/19/18 16:52 |  |
| Benzo(k)fluoranthene   | ug/L | 0.023 U | 0.50   | 0.023 | 04/19/18 16:52 |  |
| Chrysene               | ug/L | 0.026 U | 0.50   | 0.026 | 04/19/18 16:52 |  |
| Dibenz(a,h)anthracene  | ug/L | 0.13 U  | 0.15   | 0.13  | 04/19/18 16:52 |  |
| Fluoranthene           | ug/L | 0.018 U | 0.50   | 0.018 | 04/19/18 16:52 |  |
| Fluorene               | ug/L | 0.016 U | 0.50   | 0.016 | 04/19/18 16:52 |  |
| Indeno(1,2,3-cd)pyrene | ug/L | 0.12 U  | 0.15   | 0.12  | 04/19/18 16:52 |  |
| Naphthalene            | ug/L | 0.048 U | 2.0    | 0.048 | 04/19/18 16:52 |  |
| Phenanthrene           | ug/L | 0.018 U | 0.50   | 0.018 | 04/19/18 16:52 |  |
| Pyrene                 | ug/L | 0.019 U | 0.50   | 0.019 | 04/19/18 16:52 |  |
| 2-Fluorobiphenyl (S)   | %    | 84      | 33-101 |       | 04/19/18 16:52 |  |
| p-Terphenyl-d14 (S)    | %    | 95      | 38-115 |       | 04/19/18 16:52 |  |
|                        |      |         |        |       |                |  |

#### LABORATORY CONTROL SAMPLE: 2392590

|                       | L. 2002000 |       |        |       |        |            |
|-----------------------|------------|-------|--------|-------|--------|------------|
|                       |            | Spike | LCS    | LCS   | % Rec  |            |
| Parameter             | Units      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1-Methylnaphthalene   | ug/L       | 5     | 4.7    | 93    | 33-118 |            |
| 2-Methylnaphthalene   | ug/L       | 5     | 4.3    | 87    | 34-104 |            |
| Acenaphthene          | ug/L       | 5     | 5.0    | 99    | 38-109 |            |
| Acenaphthylene        | ug/L       | 5     | 4.5    | 90    | 31-115 |            |
| Anthracene            | ug/L       | 5     | 5.2    | 105   | 38-111 |            |
| Benzo(a)anthracene    | ug/L       | 5     | 6.0    | 120   | 36-110 | J(L1)      |
| Benzo(a)pyrene        | ug/L       | 5     | 5.5    | 110   | 27-107 | J(L1)      |
| Benzo(b)fluoranthene  | ug/L       | 5     | 5.6    | 112   | 32-119 |            |
| Benzo(g,h,i)perylene  | ug/L       | 5     | 4.9    | 99    | 10-109 |            |
| Benzo(k)fluoranthene  | ug/L       | 5     | 6.2    | 124   | 28-118 | J(L1)      |
| Chrysene              | ug/L       | 5     | 6.5    | 130   | 33-130 |            |
| Dibenz(a,h)anthracene | ug/L       | 5     | 5.2    | 104   | 10-104 |            |
| Fluoranthene          | ug/L       | 5     | 5.2    | 104   | 45-115 |            |
| Fluorene              | ug/L       | 5     | 5.0    | 101   | 41-114 |            |
| ndeno(1,2,3-cd)pyrene | ug/L       | 5     | 4.9    | 98    | 10-104 |            |
| Naphthalene           | ug/L       | 5     | 4.3    | 86    | 38-100 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### Project: Safety Kleen Facility Pace Project No.: 35386065

## 

| LABORATORY CONTROL SAMPLE: | 2392590 | Spike | LCS    | LCS   | % Rec  |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Phenanthrene               | ug/L    | 5     | 5.3    | 106   | 41-106 |            |
| Pyrene                     | ug/L    | 5     | 5.2    | 104   | 45-115 |            |
| 2-Fluorobiphenyl (S)       | %       |       |        | 81    | 33-101 |            |
| p-Terphenyl-d14 (S)        | %       |       |        | 91    | 38-115 |            |
|                            |         |       |        |       |        |            |

| MATRIX SPIKE SAMPLE:   | 2393609 |             |       |        |       |        |            |
|------------------------|---------|-------------|-------|--------|-------|--------|------------|
|                        |         | 35386029003 | Spike | MS     | MS    | % Rec  |            |
| Parameter              | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1-Methylnaphthalene    | ug/L    | 0.41        | 5     | 4.9    | 91    | 33-118 |            |
| 2-Methylnaphthalene    | ug/L    | 0.15 I      | 5     | 4.3    | 84    | 34-104 |            |
| Acenaphthene           | ug/L    | 0.038 I     | 5     | 4.8    | 94    | 38-109 |            |
| Acenaphthylene         | ug/L    | 0.012 U     | 5     | 4.3    | 87    | 31-115 |            |
| Anthracene             | ug/L    | 0.012 U     | 5     | 5.1    | 102   | 38-111 |            |
| Benzo(a)anthracene     | ug/L    | 0.055 U     | 5     | 5.9    | 117   | 36-110 | J(M0)      |
| Benzo(a)pyrene         | ug/L    | 0.020 U     | 5     | 5.3    | 106   | 27-107 |            |
| Benzo(b)fluoranthene   | ug/L    | 0.027 U     | 5     | 5.3    | 106   | 32-119 |            |
| Benzo(g,h,i)perylene   | ug/L    | 0.042 U     | 5     | 5.5    | 109   | 10-109 |            |
| Benzo(k)fluoranthene   | ug/L    | 0.023 U     | 5     | 5.6    | 111   | 28-118 |            |
| Chrysene               | ug/L    | 0.026 U     | 5     | 6.1    | 121   | 33-130 |            |
| Dibenz(a,h)anthracene  | ug/L    | 0.13 U      | 5     | 5.8    | 116   | 10-104 | J(M1)      |
| Fluoranthene           | ug/L    | 0.018 U     | 5     | 5.3    | 105   | 45-115 |            |
| Fluorene               | ug/L    | 0.016 U     | 5     | 4.9    | 98    | 41-114 |            |
| Indeno(1,2,3-cd)pyrene | ug/L    | 0.12 U      | 5     | 5.6    | 112   | 10-104 | J(M1)      |
| Naphthalene            | ug/L    | 0.45 I      | 5     | 4.5    | 80    | 38-100 |            |
| Phenanthrene           | ug/L    | 0.035 I     | 5     | 5.1    | 102   | 41-106 |            |
| Pyrene                 | ug/L    | 0.019 U     | 5     | 5.2    | 104   | 45-115 |            |
| 2-Fluorobiphenyl (S)   | %       |             |       |        | 78    | 33-101 |            |
| p-Terphenyl-d14 (S)    | %       |             |       |        | 92    | 38-115 |            |

#### SAMPLE DUPLICATE: 2393547

|                       |       | 35386029002 | Dup     |     | Max |            |
|-----------------------|-------|-------------|---------|-----|-----|------------|
| Parameter             | Units | Result      | Result  | RPD | RPD | Qualifiers |
| 1-Methylnaphthalene   | ug/L  | 0.032 U     | 0.032 U |     | 40  |            |
| 2-Methylnaphthalene   | ug/L  | 0.11 U      | 0.11 U  |     | 40  |            |
| Acenaphthene          | ug/L  | 0.013 U     | 0.013 U |     | 40  |            |
| Acenaphthylene        | ug/L  | 0.012 U     | 0.012 U |     | 40  |            |
| Anthracene            | ug/L  | 0.012 U     | 0.012 U |     | 40  |            |
| Benzo(a)anthracene    | ug/L  | 0.055 U     | 0.055 U |     | 40  |            |
| Benzo(a)pyrene        | ug/L  | 0.020 U     | 0.020 U |     | 40  |            |
| Benzo(b)fluoranthene  | ug/L  | 0.027 U     | 0.027 U |     | 40  |            |
| Benzo(g,h,i)perylene  | ug/L  | 0.042 U     | 0.042 U |     | 40  |            |
| Benzo(k)fluoranthene  | ug/L  | 0.023 U     | 0.023 U |     | 40  |            |
| Chrysene              | ug/L  | 0.026 U     | 0.026 U |     | 40  |            |
| Dibenz(a,h)anthracene | ug/L  | 0.13 U      | 0.13 U  |     | 40  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Safety Kleen Facility Pace Project No.: 35386065

#### SAMPLE DUPLICATE: 2393547

|                        |       | 35386029002 | Dup     |     | Max |            |
|------------------------|-------|-------------|---------|-----|-----|------------|
| Parameter              | Units | Result      | Result  | RPD | RPD | Qualifiers |
| Fluoranthene           | ug/L  | 0.018 U     | 0.018 U |     | 40  | )          |
| Fluorene               | ug/L  | 0.016 U     | 0.016 U |     | 40  | )          |
| Indeno(1,2,3-cd)pyrene | ug/L  | 0.12 U      | 0.12 U  |     | 40  | )          |
| Naphthalene            | ug/L  | 0.053 I     | 0.14 I  |     | 40  | )          |
| Phenanthrene           | ug/L  | 0.018 U     | 0.018 U |     | 40  | )          |
| Pyrene                 | ug/L  | 0.019 U     | 0.019 U |     | 40  | )          |
| 2-Fluorobiphenyl (S)   | %     | 74          | 68      | 9   |     |            |
| p-Terphenyl-d14 (S)    | %     | 84          | 79      | 5   |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project: Safety                                                       | Kleen Facility |                       |                   |             |         |           |           |                |                 |          |     |      |
|-----------------------------------------------------------------------|----------------|-----------------------|-------------------|-------------|---------|-----------|-----------|----------------|-----------------|----------|-----|------|
| Pace Project No.: 353860                                              | 065            |                       |                   |             |         |           |           |                |                 |          |     |      |
| QC Batch: 4411                                                        | 39             |                       | Analysis          | Method:     | FL      | -PRO      |           |                |                 |          |     |      |
| QC Batch Method: EPA                                                  | 3510           |                       | Analysis          | Descripti   | on: FL  | -PRO Wate | r Low Vol | ume            |                 |          |     |      |
| Associated Lab Samples:                                               | 3538606500     | 1                     |                   |             |         |           |           |                |                 |          |     |      |
| METHOD BLANK: 23940                                                   | 98             |                       | Ма                | atrix: Wate | er      |           |           |                |                 |          |     |      |
| Associated Lab Samples:                                               | 3538606500     | 1                     |                   |             |         |           |           |                |                 |          |     |      |
|                                                                       |                |                       | Blank             | Re          | porting |           |           |                |                 |          |     |      |
| Parameter                                                             |                | Units                 | Result            |             | Limit   | MDL       |           | Analyzed       | Qua             | alifiers |     |      |
| Petroleum Range Organics                                              |                | mg/L                  | 0.80              | ) U         | 1.0     |           | 0.80 04/  | 20/18 15:48    | P2              |          |     |      |
| N-Pentatriacontane (S)                                                |                | %                     |                   | 84          | 42-159  |           | 04/       | 20/18 15:48    |                 |          |     |      |
| o-Terphenyl (S)                                                       |                | %                     |                   | 62          | 82-142  |           | 04/       | 20/18 15:48    | J(S0)           |          |     |      |
| LABORATORY CONTROL                                                    | SAMPLE: 2      | 394099                |                   |             |         |           |           |                |                 |          |     |      |
|                                                                       | o, uni 22. 20  |                       | Spike             | LCS         |         | LCS       | % Re      | с              |                 |          |     |      |
| Parameter                                                             |                | Units                 | Conc.             | Resul       | t '     | % Rec     | Limits    | s Qu           | alifiers        |          |     |      |
|                                                                       |                |                       |                   |             |         |           |           |                |                 |          |     |      |
| Petroleum Range Organics                                              |                | mg/L                  | 5                 |             | 4.6     | 93        | 5         | 5-118          |                 | -        |     |      |
|                                                                       |                | mg/L<br>%             | 5                 |             | 4.6     | 93<br>113 | -         | 5-118<br>2-159 |                 | -        |     |      |
| Petroleum Range Organics<br>N-Pentatriacontane (S)<br>o-Terphenyl (S) |                | -                     | 5                 |             | 4.6     |           | 42        |                |                 | -        |     |      |
| N-Pentatriacontane (S)                                                |                | %<br>%                |                   |             | 4.6     | 113       | 42        | 2-159          |                 |          |     |      |
| N-Pentatriacontane (S)<br>o-Terphenyl (S)                             | SPIKE DUPLI    | %<br>%                |                   | MSD         | -       | 113       | 42        | 2-159          |                 |          |     |      |
| N-Pentatriacontane (S)<br>o-Terphenyl (S)                             | SPIKE DUPLIC   | %<br>%                | 72<br>MS          |             | -       | 113       | 42        | 2-159          | % Rec           |          | Max |      |
| N-Pentatriacontane (S)<br>o-Terphenyl (S)                             | SPIKE DUPLIC   | %<br>%<br>CATE: 23947 | 72<br>MS<br>Spike | MSD         | 2394773 | 113<br>92 | 41<br>82  | 2-159<br>2-142 | % Rec<br>Limits |          | Max | Qual |

86

67

95

79

42-159

82-142

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

N-Pentatriacontane (S)

o-Terphenyl (S)

%

%

J(S5)



#### QUALIFIERS

#### Project: Safety Kleen Facility

Pace Project No.: 35386065

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(L1) Estimated Value. Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- J(M0) Estimated Value. Matrix spike recovery was outside laboratory control limits.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J(S0) Estimated Value. Surrogate recovery outside laboratory control limits.
- J(S1) Estimated Value. Surrogate recovery outside laboratory control limits (confirmed by re-analysis).
- J(S5) Estimated Value. Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).
- N2 The lab does not hold NELAC/TNI accreditation for this parameter.
- P2 Re-extraction or re-analysis could not be performed due to insufficient sample amount.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Safety Kleen FacilityPace Project No.:35386065

| Lab ID                     | Sample ID                   | QC Batch Method        | QC Batch         | Analytical Method      | Analytical<br>Batch |
|----------------------------|-----------------------------|------------------------|------------------|------------------------|---------------------|
| 35386065001                | MW-2R-041318                | EPA 3510               | 441139           | FL-PRO                 | 441323              |
| 35386065001<br>35386065002 | MW-2R-041318<br>MW-1-041318 | EPA 200.8<br>EPA 200.8 | 440341<br>440341 | EPA 200.8<br>EPA 200.8 | 440468<br>440468    |
| 35386065003                | MW-3-041318                 | EPA 200.8              | 440594           | EPA 200.8              | 440604              |
| 35386065001                | MW-2R-041318                | EPA 3510               | 440828           | EPA 8270 by SIM        | 441381              |
| 35386065001<br>35386065004 | MW-2R-041318<br>Trip Blank  | EPA 8260<br>EPA 8260   | 440900<br>440900 |                        |                     |

|         | 1       | 0 |
|---------|---------|---|
|         | PaceA   | 2 |
| "incal" | nalytic |   |
| 3       | a       |   |

| The Chain-of-Custody is a LEC                          | CHAIN-OF-CUSTODY / Analytical R |
|--------------------------------------------------------|---------------------------------|
| stody is a LEGAL DOCUMENT. All relevant fields must be | )Y / Analytical Request Doc WO# |
|                                                        | W0#:35386065                    |

|        |              |                                |                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | сл                                                     | 4                                                      | ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                       | ITEM #                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|--------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |              | Empty Co                       | ADDITIONAL COMMENTS                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                      | MW-3 -041318                                           | MW-1 -041318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW-2R -041318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trip Blank                                              | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-9 /, -)<br>Sample Ids must be unique                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed Due Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phone: (813) 289-9338 Fax 3-2 29-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Email: KynornSon Cechwer Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E Tampa El 32607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Company: ECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _      | 4.           | ntainers /                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | Transming Water DW<br>Yandar DW<br>Yaoduct PWW<br>Soul/Solid SL<br>Soul/Solid SL<br>Soul/Solid SL<br>Support<br>Yuna OL<br>Uhar AR<br>Dhar TS | MATRIX CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Purchase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Copy To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Report To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - Char | 2 she        | 5                              | RELIN                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | WT                                                     | WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WT                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ame:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Order #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2      |              | ľ                              | DUISHEI                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 1                                                      | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C: 1                                                    |                                                                                                                                               | COMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>€TEB</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| +      | nur          | 2                              | DBYIA                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 13.10                                                  | 1318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 318                                                     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kleen F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NIGIAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11     | r/l          |                                | FFILIATI                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 957                                                    | 925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                       | RT                                                                                                                                            | COLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acility i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ちう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -      | 17           |                                | NO                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 4.13                                                   | 4-13-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-13-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                       | DAT                                                                                                                                           | ECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Medle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | 200-         | 2                              |                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                       | - Z                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 010    | 134          | 261                            | DATE                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       |                                                                                                                                               | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ~      |              |                                | -                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 10.1                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                       | # OF CONTAINERS                                                                                                                               | N C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Atte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 90     | EL.          | 533                            | TIME                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                       | Unpreserved                                                                                                                                   | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Prof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Proj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Quo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | npany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Attention:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -      | - 1          | -1                             |                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | N                                                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                               | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lie#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ect Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | te:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | H            | 2                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                      | 1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                       | нсі                                                                                                                                           | rese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2      | V.K          | 17                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       | NaOH                                                                                                                                          | rvati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| T      | 3'           | A                              | ACCE                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | Na2S2O3                                                                                                                                       | ves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lori.p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | AC.          | N                              | PTED                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | Methanol                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ł.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| at     | 20           | 23                             | BYI                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                      | _                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                               | VIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | @pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2      | e ro         | 3                              | AFFILI                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                       |                                                                                                                                               | T/IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | celab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1      |              | 16                             | ATIO                                                                                                                                                                                                                                | 1 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1111                                                    | 8260 Full List                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |              | G                              | -                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | 8270 Full list plus PAHs                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |              | 1                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | FL Pro Low Volume for Wate                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 2            |                                | -                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                      | ×                                                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5      | 20           | 126                            | DAT                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /sis F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35386065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5      | E FO         | 110                            | Ē                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | -                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iltere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | iim          | 2                              |                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d (Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |              | fee                            | TIME                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -      | 10           |                                | -                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                      | -                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C      | X            |                                |                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | -22                                                    | 8. TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | Posidual Chloring (V/N)                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Regu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -      | -            | -                              | SA                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                      | -                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 1. 1                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | te / Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | laton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -      | S            |                                | MPLE                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 2 Parts                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ocatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -      |              | -                              | CON                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | - O                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ancy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (      | ~            |                                | DITIO                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         | 100                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -      | 7            | $\square$                      | SN                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | nun nun                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| K      | ſ            |                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | the stand                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | Cil cro, sis | an for 4-13-18 155 the fore 1- | - 16 D 3/26/18 0835 Vall Marm / Ect \$26/19 1400<br>69 Marmy / Ect \$1/3-18 1655 the lace 11-1218 1700 523<br>64 Marmy / Ect \$1/3-18 150 The lace 11-1218 1700 523<br>64 Marmy / Ect \$1/3-18 150 The lace 11-1218 1700 523<br>1-3 | pty Containers Sill Norma / ECT 3/26/18 0835 Vatel Merina Date Time s<br>Accepted BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>Accepted BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>Accepted BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>Accepted BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>Accepted BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>Accepted BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>Accepted BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>Accepted BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME s<br>ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME S<br>ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME S<br>ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME S<br>ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIATION DATE TIME S<br>ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIATION DATE TIME S<br>ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIA | PPty Containers SIL MATRILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE<br>SIL MANNA / LCT 3/26/18 0835 JOILT MENNA / LCT 3/26/19 1400 FW3<br>GAM JOLP 4-13-18 1555 How JOLC 4-13-18 1700 FW3<br>JOLN JOLP 4-13-18 1555 How JOLC 4-13-18 1825 1-3 7 | PELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE<br>PDY Containers S/C/D S/C/W 0835 Variable Merm/ECT 3/26/10 1480<br>Gave Jack J. 12-18 1655 Hardel Merm/ECT 3/26/10 1480<br>Gave Jack Jack J. 13-18 1655 Hardel Merm/ECT 3/26/10 1480<br>Gave Jack Jack J. 13-18 1655 Hardel Merm/ECT 3/26/10 1480<br>Jack Jack Jack J. 13-18 1655 Hardel Merm/ECT 3/26/10 1480<br>Jack Jack Jack J. 13-18 1655 Hardel Merm/ECT 3/26/10 1480<br>Jack Jack Jack J. 13-18 1655 Hardel Merm/ECT 3/26/10 1480<br>Jack Jack Jack J. 13-18 1655 Hardel Jack Jack Jack Jack Jack Jack Jack Jack | PELNOUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE<br>TOTY Containers LC MC 3/LC/W 0835 LOCULA MENN / ECT 3/26/10 1/Ev<br>LCC 4/13-18 1655 LOCULA MENN / ECT 3/26/10 1/Ev<br>LCC 4/13/16 1/Ev<br>LCC 4/13-18 1/5 1/Ev<br>LCC 4/13/16 1/Ev<br>LCC 4/10 1/Ev<br>LCC 4/10 1/Ev<br>LCC 4/10 1/Ev<br>LCC 4/10 | PDY Containers Kell AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIATION AFFILIATION ACCEPTED BY AFFILIATION | IDTY Containers LCT 2/12/18 1655 How Jack 4-13-18 1655 How Jack 4- | Petronical and a second and a second a | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | -041318 wr 41329 957 41319 1000 2491 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 | -0 41318 wr 41318 925 41319 928 2071 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                       | AMPLE ID         Market and a subscription         Market and a subscription         Market and a subscription           Notineer in the own of the own own of the own of the own | AMPLE ID         COLLECTED         CL         Presentatives         VIX           Index ter under<br>(N2-661)-1 Str.<br>(N2-661)-1 Str.<br>(N2-661 | LEID         Object         (C-1/2, -1, 8 cl.)         Opposition         Oppositio | LEED         None of the set of th | Carbyne, Curryne, Brenner, Brenner, Barl, Sam, Carbon, Barl, | One-Bind.         Corp. File         Construction         Construction |

7/2018

| Pace Analytical -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Document Name:<br>Sample Condition Upon Receipt Form<br>Document No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Document Revised:<br>August 2, 2017<br>Issuing Authority:                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F-FL-C-007 rev. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pace Florida Quality Office                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Condition Upon Receipt Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | orm (SCUR)                                                                                                                                                                                                                                                                                                                                                            |
| Project #<br>Project Manager:<br>Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WO排:35386065<br>PM: LAP Due Date: 04/23/<br>CLIENT: 37-ECTTAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /18 Date and Initials of person:<br>Examining contents:<br>Label:<br>Deliver:                                                                                                                                                                                                                                                                                         |
| Thermometer Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 Date: 4113/18 Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne: 1825 Initials: MUL                                                                                                                                                                                                                                                                                                                                                |
| Cooler #4 Temp.°C(Visual<br>Cooler #5 Temp.°C(Visual<br>Cooler #6 Temp.°C(Visual<br>Courier: □ Fed Ex □ U                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )(Correction Factor)(Actu<br>)(Correction Factor)(Actu<br>)(Correction Factor)(Actu<br>)(Correction Factor)(Actu<br>)(Correction Factor)(Actu<br>PS □USPS □ Client □ Commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ual)       Samples on ice, cooling process has begun         ual)       Samples on ice, cooling process has begun |
| Tracking #<br>Custody Seal on Cooler/Box Present<br>Packing Material: □Bubble Wrap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                                                                             |
| Billing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t:  Yes No Seals intact:  Yes Bubble Bags  None  Other blete Shorted Date: Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                                                                             |
| Billing: CRecipient  Tracking #  Custody Seal on Cooler/Box Present  Packing Material: Bubble Wrap Samples shorted to lab (If Yes, comp  Chain of Custody Present                                                                                                                                                                                                                                                                                                                                                                                                              | t: _Yes _No Seals intact: _ Yes<br>Bubble Bags _None _Other<br>Shorted Date:<br>Comments:<br><br>Yes _ No _N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                                                                             |
| Billing: Cracking #<br>Custody Seal on Cooler/Box Present<br>Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, comp<br>Chain of Custody Present<br>Chain of Custody Filled Out                                                                                                                                                                                                                                                                                                                                                                                  | t:  Yes No Seals intact:  Yes Bubble Bags None  Other Shorted Date: Comments: Yes No N/A Yes No N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                                                                             |
| Billing: CRECipient  Tracking #  Custody Seal on Cooler/Box Present  Packing Material: Bubble Wrap  Samples shorted to lab (If Yes, comp  Chain of Custody Present  Chain of Custody Filled Out  Relinquished Signature & Sampler Nar                                                                                                                                                                                                                                                                                                                                          | t: _Yes _No Seals intact: _ Yes<br>Bubble Bags _None _Other<br>Shorted Date:<br>Comments:<br>Yes _No _N/A<br>Yes _No _N/A<br>Yes _No _N/A<br>Yes _No _N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                                                                             |
| Billing: CRecipient Tracking # Custody Seal on Cooler/Box Present Packing Material: Bubble Wrap Samples shorted to lab (If Yes, comp Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Nar Samples Arrived within Hold Time                                                                                                                                                                                                                                                                                                                | t: _Yes _No Seals intact: _ Yes<br>Bubble Bags _None _Other<br>blete Shorted Date:<br>Comments:<br>Yes _No _N/A<br>Yes _No _N/A<br>Yes _No _N/A<br>Yes _No _N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                                                                             |
| Billing: CRECipient  Tracking #  Custody Seal on Cooler/Box Present Packing Material: Bubble Wrap Samples shorted to Iab (If Yes, comp Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Nar Samples Arrived within Hold Time Rush TAT requested on COC                                                                                                                                                                                                                                                                                    | t: _Yes _No Seals intact: _ Yes<br>Bubble Bags _None _Other<br>Shorted Date:<br><u>Comments:</u><br><br><u>Yes _ No _N/A</u><br><br>me COCYes _ No _N/A<br><br>_Yes _ No _N/A<br><br>_Yes _ No _N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                                                                             |
| Billing: Recipient Tracking # Custody Seal on Cooler/Box Present Packing Material: Bubble Wrap Samples shorted to lab (If Yes, comp Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Nar Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume                                                                                                                                                                                                                                                                     | t: _Yes _No Seals intact: _ Yes<br>Bubble Bags _None _Other<br>Shorted Date:<br>Comments:<br><br>Yes _No _N/A<br><br>me COCYes _No _N/A<br><br>Yes _No _N/A<br><br>Yes _No _N/A<br><br>Yes _No _N/A<br><br>Yes _No _N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                                                                             |
| Billing: Recipient Tracking # Custody Seal on Cooler/Box Present Packing Material: Bubble Wrap Samples shorted to lab (If Yes, comp Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Nar Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used                                                                                                                                                                                                                                             | t: _Yes _No Seals intact: _ Yes<br>Bubble Bags _None _Other<br>blete Shorted Date:<br>Comments:<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                                                                             |
| Billing: Recipient Tracking # Custody Seal on Cooler/Box Present Packing Material: Bubble Wrap Samples shorted to lab (If Yes, comp Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Nar Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs & co                                                                                                                                                         | t: _Yes _No Seals intact: _ Yes<br>Bubble Bags _None _Other<br>Shorted Date:<br><u>Diete</u> Shorted Date:<br><u>Comments:</u><br><u>DYes</u> _ No _N/A<br><u>DYes</u> _ No _N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No Ice: Wet Blue Dry None Shorted Time: Qty:                                                                                                                                                                                                                                                                                                                          |
| Billing: Recipient Tracking # Custody Seal on Cooler/Box Present Packing Material: Bubble Wrap Samples shorted to Iab (If Yes, comp Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Nar Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs & collection) All containers needing acid/base preservatio checked. All Containers needing preservation are fou compliance with EPA recommendation:          | t: _Yes _No Seals intact: _ Yes<br>Bubble Bags _None _Other<br>Diete Shorted Date:<br>Shorted Date:<br><u>Comments:</u><br><u>DYes No N/A</u><br><u>MYes No N/A</u>                                                                                                                                                                                                                                              | No Ice: Wet Blue Dry None  Shorted Time: Qty:                                                                                                                                                                                                                                                                                                                         |
| Billing:       □ Recipient         Fracking #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t: Yes No Seals intact: Yes<br>Bubble Bags None Other<br>olete Shorted Date:<br>Comments:<br>Yes No N/A<br>Yes No N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No Ice: Wet Blue Dry None   Shorted Time: Qty:     Shorted Time:     Shorted Time:     Shorted Time:                                                                                                                                                                                                                                                                  |
| Billing: Recipient  Tracking #  Custody Seal on Cooler/Box Present Packing Material: Bubble Wrap Samples shorted to lab (If Yes, comp Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Nar Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs & coollection) WI containers needing acid/base preservation compliance with EPA recommendation: Exceptions: VOA, Collform Headspace in VOA Vials? ( >6mm): | t: _Yes _No Seals intact: _Yes<br>Bubble Bags _None _Other<br>Shorted Date:<br>Comments:<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | No Ice: Wet Blue Dry None   Shorted Time: Qty:     Shorted Time:     Shorted Time:     Shorted Time:                                                                                                                                                                                                                                                                  |
| Billing: Recipient Tracking # Custody Seal on Cooler/Box Present Packing Material: Bubble Wrap Samples shorted to Iab (If Yes, comp Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Nar Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs & c collection) All containers needing acid/base preservatio checked. All Containers needing preservation are fou compliance with EPA recommendation:        | t: _Yes _No Seals intact: _ Yes<br>Bubble Bags _None _Other<br>Diete Shorted Date:<br>Comments:<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>_             | No Ice: Wet Blue Dry None     Shorted Time: Qty:     Qty:                                                                                                                                                                                                                                                                                                             |



# ANALYTICAL REPORT April 26, 2018



## Pace Analytical - Ormond Beach, FL

Sample Delivery Group:

Samples Received:

Project Number: Description:

L986311 04/17/2018 35386065 Safety Kleen Facility

Report To:

Lori Palmer 8 E. Tower Circle Ormond Beach, FL 32174

Entire Report Reviewed By: Warray F. McLain

Nancy McLain Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 28 of 45

# TABLE OF CONTENTS

| 1 | Ср |
|---|----|
| 2 | Ta |

| Οp              |
|-----------------|
| <sup>2</sup> Tc |
| <sup>3</sup> Ss |
| <sup>4</sup> Cn |
| ⁵Sr             |
| <sup>6</sup> Qc |
| <sup>7</sup> Gl |
| <sup>8</sup> Al |
| ⁰Sc             |

| Cp: Cover Page                                          |
|---------------------------------------------------------|
| Tc: Table of Contents                                   |
| Ss: Sample Summary                                      |
| Cn: Case Narrative                                      |
| Sr: Sample Results                                      |
| MW-2R-041318 L986311-01                                 |
| Qc: Quality Control Summary                             |
| Semi Volatile Organic Compounds (GC/MS) by Method 8270C |
| GI: Glossary of Terms                                   |
| Al: Accreditations & Locations                          |
| Sc: Sample Chain of Custody                             |
|                                                         |

SDG: L986311

DATE/TIME: 04/26/18 15:45 Page 29 of 45

PAGE: 2 of 18

# SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

|                                                         |           |          | Collected by   | Collected date/time | Received date/time |   |
|---------------------------------------------------------|-----------|----------|----------------|---------------------|--------------------|---|
| MW-2R-041318 L986311-01 GW                              |           |          |                | 04/13/18 10:49      | 04/17/18 08:45     | 1 |
| Method                                                  | Batch     | Dilution | Preparation    | Analysis            | Analyst            |   |
|                                                         |           |          | date/time      | date/time           |                    | 2 |
| Semi Volatile Organic Compounds (GC/MS) by Method 8270C | WG1099358 | 1        | 04/18/18 23:35 | 04/20/18 00:31      | AO                 |   |
| Semi Volatile Organic Compounds (GC/MS) by Method 8270C | WG1099358 | 1        | 04/18/18 23:35 | 04/25/18 17:41      | AO                 | 3 |

| <sup>2</sup> Tc |
|-----------------|
| <sup>3</sup> Ss |
| <sup>4</sup> Cn |
| <sup>5</sup> Sr |
| <sup>6</sup> Qc |
| <sup>7</sup> Gl |
| <sup>8</sup> Al |
| <sup>9</sup> Sc |

\*

Ср

SDG: L986311 DATE/TIME: 04/26/18 15:45 Page 30 of 45 PAGE: 3 of 18

## CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Nanay F. McLain

Nancy McLain Technical Service Representative



ACCOUNT: Pace Analytical - Ormond Beach, FL PROJECT: 35386065

SDG: L986311 DATE/TIME: 04/26/18 15:45 Page 31 of 45 PAGE: 4 of 18

#### SAMPLE RESULTS - 01 L986311



## Semi Volatile Organic Compounds (GC/MS) by Method 8270C

| Analyte<br>Acenaphthene<br>Acenaphthylene<br>Aniline<br>Anthracene<br>Benzyl alcohol<br>Benzola)anthracene<br>Benzo(a)anthracene<br>Benzo(a)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane | ug/l<br>0.316<br>0.309<br>2.43<br>0.291<br>0.393<br>4.32<br>0.0970<br>0.141<br>0.355<br>0.161<br>0.340<br>0.329<br>1.62 |          | ug/l<br>0.316<br>0.309<br>2.43<br>0.291<br>0.393<br>4.32<br>0.0970<br>0.0890<br>0.355 | ug/l<br>1.00<br>1.00<br>10.0<br>10.0<br>10.0<br>10.0<br>1.00<br>1.00 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 04/20/2018 00:31<br>04/20/2018 00:31<br>04/20/2018 00:31<br>04/20/2018 00:31<br>04/20/2018 00:31 | WG1099358<br>WG1099358<br>WG1099358<br>WG1099358<br>WG1099358 |               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------|
| Acenaphthylene<br>Aniline<br>Anthracene<br>Benzyl alcohol<br>Benzo(a)anthracene<br>Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(a)pyrene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                  | 0.309<br>2.43<br>0.291<br>0.393<br>4.32<br>0.0970<br>0.141<br>0.355<br>0.161<br>0.340<br>0.329                          |          | 0.309<br>2.43<br>0.291<br>0.393<br>4.32<br>0.0970<br>0.0890<br>0.355                  | 1.00<br>10.0<br>10.0<br>10.0<br>10.0<br>1.00<br>1.00                 | 1<br>1<br>1<br>1                     | 04/20/2018 00:31<br>04/20/2018 00:31<br>04/20/2018 00:31<br>04/20/2018 00:31                     | WG1099358<br>WG1099358<br>WG1099358                           |               |
| Aniline<br>Anthracene<br>Benzyl alcohol<br>Benzoda)anthracene<br>Benzo(a)anthracene<br>Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                                                      | 0.291<br>0.393<br>4.32<br>0.0970<br>0.141<br>0.355<br>0.161<br>0.340<br>0.329                                           |          | 0.291<br>0.393<br>4.32<br>0.0970<br>0.0890<br>0.355                                   | 1.00<br>10.0<br>10.0<br>1.00<br>1.00                                 | 1<br>1<br>1                          | 04/20/2018 00:31<br>04/20/2018 00:31                                                             | WG1099358                                                     |               |
| Anthracene<br>Benzyl alcohol<br>Benzidine<br>Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                                                                          | 0.291<br>0.393<br>4.32<br>0.0970<br>0.141<br>0.355<br>0.161<br>0.340<br>0.329                                           |          | 0.291<br>0.393<br>4.32<br>0.0970<br>0.0890<br>0.355                                   | 1.00<br>10.0<br>10.0<br>1.00<br>1.00                                 | 1<br>1                               | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Benzyl alcohol<br>Benzidine<br>Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                                                                | 0.393<br>4.32<br>0.0970<br>0.141<br>0.355<br>0.161<br>0.340<br>0.329                                                    |          | 0.393<br>4.32<br>0.0970<br>0.0890<br>0.355                                            | 10.0<br>10.0<br>1.00<br>1.00                                         | 1<br>1                               | 04/20/2018 00:31                                                                                 |                                                               |               |
| Benzo(a)anthracene<br>Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                                                                         | 4.32<br>0.0970<br>0.141<br>0.355<br>0.161<br>0.340<br>0.329                                                             |          | 4.32<br>0.0970<br>0.0890<br>0.355                                                     | 10.0<br>1.00<br>1.00                                                 | 1                                    |                                                                                                  |                                                               | 1             |
| Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                                                                                               | 0.0970<br>0.141<br>0.355<br>0.161<br>0.340<br>0.329                                                                     |          | 0.0970<br>0.0890<br>0.355                                                             | 1.00<br>1.00                                                         |                                      | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                                                                                                                     | 0.141<br>0.355<br>0.161<br>0.340<br>0.329                                                                               |          | 0.0890<br>0.355                                                                       | 1.00                                                                 |                                      | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                                                                                                                                             | 0.355<br>0.161<br>0.340<br>0.329                                                                                        | U        | 0.355                                                                                 |                                                                      | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Benzo(g,h,i)perylene<br>Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                                                                                                                                                                     | 0.161<br>0.340<br>0.329                                                                                                 | U        |                                                                                       | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Benzo(a)pyrene<br>Bis(2-chlorethoxy)methane                                                                                                                                                                                                             | 0.340<br>0.329                                                                                                          |          | 0.161                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Bis(2-chlorethoxy)methane                                                                                                                                                                                                                               | 0.329                                                                                                                   |          | 0.340                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
|                                                                                                                                                                                                                                                         |                                                                                                                         |          |                                                                                       | 10.0                                                                 |                                      |                                                                                                  |                                                               |               |
| sis(2-chloroethyl)ether                                                                                                                                                                                                                                 |                                                                                                                         | U        | 0.329                                                                                 |                                                                      | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| N: (O III : IV II                                                                                                                                                                                                                                       |                                                                                                                         | U        | 1.62                                                                                  | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Bis(2-chloroisopropyl)ether                                                                                                                                                                                                                             | 0.445                                                                                                                   | U        | 0.445                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Bromophenyl-phenylether                                                                                                                                                                                                                                | 0.335                                                                                                                   | U        | 0.335                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Caprolactam                                                                                                                                                                                                                                             | 2.59                                                                                                                    | U        | 2.59                                                                                  | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Carbazole                                                                                                                                                                                                                                               | 0.260                                                                                                                   | U        | 0.260                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | <u>WG1099358</u>                                              | r             |
| Chrysene                                                                                                                                                                                                                                                | 0.332                                                                                                                   | U        | 0.332                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | <u>WG1099358</u>                                              |               |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                   | 0.279                                                                                                                   | U        | 0.279                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Chloroaniline                                                                                                                                                                                                                                          | 0.382                                                                                                                   | U        | 0.382                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Chloronaphthalene                                                                                                                                                                                                                                      | 0.330                                                                                                                   | U        | 0.330                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Chlorophenyl-phenylether                                                                                                                                                                                                                               | 0.303                                                                                                                   | U        | 0.303                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| ,3-Dichlorobenzidine                                                                                                                                                                                                                                    | 2.02                                                                                                                    | U        | 2.02                                                                                  | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| ,4-Dinitrotoluene                                                                                                                                                                                                                                       | 1.65                                                                                                                    | U        | 1.65                                                                                  | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| ,6-Dinitrotoluene                                                                                                                                                                                                                                       | 0.279                                                                                                                   | U        | 0.279                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Vibenzofuran                                                                                                                                                                                                                                            | 0.338                                                                                                                   | U        | 0.338                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Nitroaniline                                                                                                                                                                                                                                           | 1.90                                                                                                                    | U        | 1.90                                                                                  | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Nitroaniline                                                                                                                                                                                                                                           | 0.308                                                                                                                   | U        | 0.308                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Nitroaniline                                                                                                                                                                                                                                           | 0.349                                                                                                                   | U        | 0.349                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| luorene                                                                                                                                                                                                                                                 | 0.323                                                                                                                   | U        | 0.323                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| luoranthene                                                                                                                                                                                                                                             | 0.310                                                                                                                   | U        | 0.310                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| lexachloro-1,3-butadiene                                                                                                                                                                                                                                | 0.329                                                                                                                   | U        | 0.329                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| lexachlorobenzene                                                                                                                                                                                                                                       | 0.341                                                                                                                   | _        | 0.323                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| lexachlorocyclopentadiene                                                                                                                                                                                                                               | 2.33                                                                                                                    | U        | 2.33                                                                                  | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
|                                                                                                                                                                                                                                                         |                                                                                                                         | _        |                                                                                       |                                                                      | 1                                    |                                                                                                  |                                                               |               |
| lexachloroethane                                                                                                                                                                                                                                        | 0.365                                                                                                                   | U        | 0.365                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| ndeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                   | 0.279                                                                                                                   | U        | 0.279                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| sophorone                                                                                                                                                                                                                                               | 0.272                                                                                                                   | U        | 0.272                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Methylnaphthalene                                                                                                                                                                                                                                      | 0.332                                                                                                                   | U        | 0.332                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Methylnaphthalene                                                                                                                                                                                                                                      | 0.311                                                                                                                   | U        | 0.311                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| yridine                                                                                                                                                                                                                                                 | 1.37                                                                                                                    | U        | 1.37                                                                                  | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| henanthrene                                                                                                                                                                                                                                             | 0.366                                                                                                                   | <u>U</u> | 0.366                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | <u>WG1099358</u>                                              |               |
| yrene                                                                                                                                                                                                                                                   | 0.330                                                                                                                   | <u>U</u> | 0.330                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | <u>WG1099358</u>                                              |               |
| laphthalene                                                                                                                                                                                                                                             | 0.372                                                                                                                   | U        | 0.372                                                                                 | 1.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| litrobenzene                                                                                                                                                                                                                                            | 0.367                                                                                                                   | U        | 0.367                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| 2-Dichlorobenzene                                                                                                                                                                                                                                       | 3.29                                                                                                                    | U        | 3.29                                                                                  | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| 3-Dichlorobenzene                                                                                                                                                                                                                                       | 0.383                                                                                                                   | U        | 0.383                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| 4-Dichlorobenzene                                                                                                                                                                                                                                       | 0.401                                                                                                                   | U        | 0.401                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Nitrosodimethylamine                                                                                                                                                                                                                                   | 1.26                                                                                                                    | U        | 1.26                                                                                  | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Nitrosodiphenylamine                                                                                                                                                                                                                                   | 0.304                                                                                                                   | U        | 0.304                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| -Nitrosodi-n-propylamine                                                                                                                                                                                                                                | 0.403                                                                                                                   | U        | 0.403                                                                                 | 10.0                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| enzylbutyl phthalate                                                                                                                                                                                                                                    | 0.275                                                                                                                   | U        | 0.275                                                                                 | 3.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| lis(2-ethylhexyl)phthalate                                                                                                                                                                                                                              | 0.741                                                                                                                   |          | 0.709                                                                                 | 3.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| )i-n-butyl phthalate                                                                                                                                                                                                                                    | 0.790                                                                                                                   |          | 0.266                                                                                 | 3.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Diethyl phthalate                                                                                                                                                                                                                                       | 0.282                                                                                                                   | U        | 0.282                                                                                 | 3.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
| Dimethyl phthalate                                                                                                                                                                                                                                      | 0.282                                                                                                                   |          | 0.282                                                                                 | 3.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | WG1099358                                                     |               |
|                                                                                                                                                                                                                                                         |                                                                                                                         | U        |                                                                                       |                                                                      |                                      |                                                                                                  |                                                               |               |
| Di-n-octyl phthalate                                                                                                                                                                                                                                    | 0.278                                                                                                                   | U        | 0.278                                                                                 | 3.00                                                                 | 1                                    | 04/20/2018 00:31                                                                                 | <u>WG1099358</u>                                              | Page 32 of 45 |

Pace Analytical - Ormond Beach, FL

PROJ ECT: 35386065

L986311

04/26/18 15:45

5 of 18

#### MW-2R-041318 Collected date/time: 04/13/18 10:49

# SAMPLE RESULTS - 01



Semi Volatile Organic Compounds (GC/MS) by Method 8270C

|                            | Result | Qualifier | MDL   | RDL      | Dilution | Analysis         | Batch            |   |
|----------------------------|--------|-----------|-------|----------|----------|------------------|------------------|---|
| Analyte                    | ug/l   |           | ug/l  | ug/l     |          | date / time      |                  | L |
| 1,2,4-Trichlorobenzene     | 0.355  | U         | 0.355 | 10.0     | 1        | 04/20/2018 00:31 | WG1099358        | 2 |
| 4-Chloro-3-methylphenol    | 0.263  | U         | 0.263 | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> |   |
| 2-Chlorophenol             | 0.283  | U         | 0.283 | 10.0     | 1        | 04/20/2018 00:31 | WG1099358        | 3 |
| 2,4-Dichlorophenol         | 0.284  | U         | 0.284 | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> |   |
| 2,4-Dimethylphenol         | 0.624  | U         | 0.624 | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> |   |
| 4,6-Dinitro-2-methylphenol | 2.62   | U         | 2.62  | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> | 4 |
| 2,4-Dinitrophenol          | 3.25   | U         | 3.25  | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> |   |
| 2-Methylphenol             | 0.312  | U         | 0.312 | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> | 5 |
| 3&4-Methyl Phenol          | 0.266  | U         | 0.266 | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> | 5 |
| 1,2-Diphenylhydrazine      | 0.318  | U         | 0.318 | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> |   |
| 2-Nitrophenol              | 0.320  | U         | 0.320 | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> | e |
| 4-Nitrophenol              | 2.01   | U         | 2.01  | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> |   |
| Pentachlorophenol          | 0.313  | U         | 0.313 | 10.0     | 1        | 04/20/2018 00:31 | WG1099358        | 7 |
| Phenol                     | 0.334  | U         | 0.334 | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> |   |
| 2,3,4,6-Tetrachlorophenol  | 2.00   | U         | 2.00  | 10.0     | 1        | 04/20/2018 00:31 | WG1099358        | L |
| 2,4,5-Trichlorophenol      | 0.236  | U         | 0.236 | 10.0     | 1        | 04/20/2018 00:31 | <u>WG1099358</u> | 8 |
| 2,4,6-Trichlorophenol      | 0.297  | U         | 0.297 | 10.0     | 1        | 04/20/2018 00:31 | WG1099358        |   |
| 1,3-Dinitrobenzene         | 0.359  | U         | 0.359 | 10.0     | 1        | 04/25/2018 17:41 | <u>WG1099358</u> | g |
| (S) 2-Fluorophenol         | 47.2   |           |       | 10.0-120 |          | 04/20/2018 00:31 | WG1099358        |   |
| (S) Phenol-d5              | 37.9   |           |       | 10.0-120 |          | 04/20/2018 00:31 | <u>WG1099358</u> | L |
| (S) Nitrobenzene-d5        | 58.3   |           |       | 10.0-126 |          | 04/20/2018 00:31 | WG1099358        |   |
| (S) 2-Fluorobiphenyl       | 64.8   |           |       | 22.0-127 |          | 04/20/2018 00:31 | WG1099358        |   |
| (S) 2,4,6-Tribromophenol   | 86.3   |           |       | 10.0-153 |          | 04/20/2018 00:31 | WG1099358        |   |
| (S) p-Terphenyl-d14        | 82.6   |           |       | 29.0-141 |          | 04/20/2018 00:31 | WG1099358        |   |
|                            |        |           |       |          |          |                  |                  |   |

SDG: L986311 DATE/TIME: 04/26/18 15:45 Page 33 of 45 PAGE: 6 of 18 Semi Volatile Organic Compounds (GC/MS) by Method 8270C

# QUALITY CONTROL SUMMARY

L986311-01

7 of 18

#### Method Blank (MB)

| (MB) R3303265-3 04/19/      | 18 15:53  |              |        |              |      |            |               |
|-----------------------------|-----------|--------------|--------|--------------|------|------------|---------------|
|                             | MB Result | MB Qualifier | MB MDL | MB RDL       |      |            | I             |
| Analyte                     | ug/l      |              | ug/l   | ug/l         |      |            |               |
| Acenaphthene                | 0.316     | U            | 0.316  | 1.00         |      |            |               |
| Acenaphthylene              | 0.309     | <u>U</u>     | 0.309  | 1.00         |      |            |               |
| Aniline                     | 2.43      | U            | 2.43   | 10.0         |      |            |               |
| Anthracene                  | 0.291     | <u>U</u>     | 0.291  | 1.00         |      |            | ſ             |
| Benzidine                   | 4.32      | <u>U</u>     | 4.32   | 10.0         |      |            |               |
| Benzo(a)anthracene          | 0.0970    | <u>U</u>     | 0.0970 | 1.00         |      |            | l             |
| Benzo(b)fluoranthene        | 0.0890    | U            | 0.0890 | 1.00         |      |            |               |
| Benzo(k)fluoranthene        | 0.355     | <u>U</u>     | 0.355  | 1.00         |      |            |               |
| Benzo(g,h,i)perylene        | 0.161     | <u>U</u>     | 0.161  | 1.00         |      |            | 1             |
| Benzo(a)pyrene              | 0.340     | U            | 0.340  | 1.00         |      |            |               |
| Bis(2-chlorethoxy)methane   | 0.329     | <u>U</u>     | 0.329  | 10.0         |      |            |               |
| Bis(2-chloroethyl)ether     | 1.62      | U            | 1.62   | 10.0         |      |            |               |
| Bis(2-chloroisopropyl)ether | 0.445     | U            | 0.445  | 10.0         |      |            |               |
| 4-Bromophenyl-phenylether   | 0.335     | U            | 0.335  | 10.0         |      |            |               |
| 2-Chloronaphthalene         | 0.330     | U            | 0.330  | 1.00         |      |            |               |
| -Chlorophenyl-phenylether   | 0.303     | U            | 0.303  | 10.0         |      |            |               |
| Chrysene                    | 0.332     | U            | 0.332  | 1.00         |      |            |               |
| Dibenz(a,h)anthracene       | 0.279     | U            | 0.279  | 1.00         |      |            |               |
| Caprolactam                 | 2.59      | U            | 2.59   | 10.0         |      |            |               |
| Carbazole                   | 0.260     | U            | 0.260  | 10.0         |      |            |               |
| l-Chloroaniline             | 0.382     | U            | 0.382  | 10.0         |      |            |               |
| 3,3-Dichlorobenzidine       | 2.02      | U            | 2.02   | 10.0         |      |            |               |
| 2,4-Dinitrotoluene          | 1.65      | U            | 1.65   | 10.0         |      |            |               |
| 2,6-Dinitrotoluene          | 0.279     | U            | 0.279  | 10.0         |      |            |               |
| Fluoranthene                | 0.310     | U            | 0.310  | 1.00         |      |            |               |
| Dibenzofuran                | 0.338     | U            | 0.338  | 10.0         |      |            |               |
| Fluorene                    | 0.323     | U            | 0.323  | 1.00         |      |            |               |
| l,2-Dichlorobenzene         | 3.29      | U            | 3.29   | 10.0         |      |            |               |
| lexachlorobenzene           | 0.341     |              | 0.341  | 1.00         |      |            |               |
| ,3-Dichlorobenzene          | 0.383     | U            | 0.383  | 10.0         |      |            |               |
| Hexachloro-1,3-butadiene    | 0.329     |              | 0.329  | 10.0         |      |            |               |
| ,4-Dichlorobenzene          | 0.401     |              | 0.401  | 10.0         |      |            |               |
| Hexachlorocyclopentadiene   | 2.33      |              | 2.33   | 10.0         |      |            |               |
| lexachloroethane            | 0.365     | _            | 0.365  | 10.0         |      |            |               |
| ndeno(1,2,3-cd)pyrene       | 0.279     |              | 0.303  | 1.00         |      |            |               |
| sophorone                   | 0.273     | U            | 0.279  | 10.0         |      |            |               |
| Vaphthalene                 | 0.272     | U            | 0.272  | 1.00         |      |            |               |
|                             | 0.372     | U            |        |              |      |            |               |
| Nitrobenzene                | 1.26      | U            | 0.367  | 10.0<br>10.0 |      |            |               |
| n-Nitrosodimethylamine      |           | U            | 1.26   |              |      |            |               |
| n-Nitrosodiphenylamine      | 0.304     | <u>U</u>     | 0.304  | 10.0         |      |            | Page 34 of 45 |
| ,                           | ACCOUNT:  |              |        | PROJECT:     | SDG: | DATE/TIME: | PAGE:         |
| 7                           |           |              |        |              | 300. |            | I AOL.        |

Pace Analytical - Ormond Beach, FL

35386065

L986311

04/26/18 15:45

#### Semi Volatile Organic Compounds (GC/MS) by Method 8270C

# QUALITY CONTROL SUMMARY

L986311-01

#### Method Blank (MB)

| Method Blank (MB           |           |              |        |          |      |  |
|----------------------------|-----------|--------------|--------|----------|------|--|
| (MB) R3303265-3 04/19/     |           |              |        |          |      |  |
|                            | MB Result | MB Qualifier | MB MDL | MB RDL   |      |  |
| Analyte                    | ug/l      |              | ug/l   | ug/l     | <br> |  |
| n-Nitrosodi-n-propylamine  | 0.403     | U            | 0.403  | 10.0     |      |  |
| Phenanthrene               | 0.366     | U            | 0.366  | 1.00     |      |  |
| Benzylbutyl phthalate      | 0.275     | U            | 0.275  | 3.00     |      |  |
| Bis(2-ethylhexyl)phthalate | 0.709     | U            | 0.709  | 3.00     |      |  |
| Di-n-butyl phthalate       | 0.266     | U            | 0.266  | 3.00     |      |  |
| 1-Methylnaphthalene        | 0.332     | U            | 0.332  | 1.00     |      |  |
| Diethyl phthalate          | 0.282     | U            | 0.282  | 3.00     |      |  |
| 2-Methylnaphthalene        | 0.311     | U            | 0.311  | 1.00     |      |  |
| Dimethyl phthalate         | 0.283     | U            | 0.283  | 3.00     |      |  |
| Di-n-octyl phthalate       | 0.278     | <u>U</u>     | 0.278  | 3.00     |      |  |
| 2-Nitroaniline             | 1.90      | <u>U</u>     | 1.90   | 10.0     |      |  |
| Pyrene                     | 0.330     | U            | 0.330  | 1.00     |      |  |
| 1,2,4-Trichlorobenzene     | 0.355     | <u>U</u>     | 0.355  | 10.0     |      |  |
| 3-Nitroaniline             | 0.308     | U            | 0.308  | 10.0     |      |  |
| 4-Nitroaniline             | 0.349     | U            | 0.349  | 10.0     |      |  |
| 1,2-Diphenylhydrazine      | 0.318     | U            | 0.318  | 10.0     |      |  |
| 4-Chloro-3-methylphenol    | 0.263     | U            | 0.263  | 10.0     |      |  |
| 2-Chlorophenol             | 0.283     | U            | 0.283  | 10.0     |      |  |
| 2-Nitrophenol              | 0.320     | U            | 0.320  | 10.0     |      |  |
| 4-Nitrophenol              | 2.01      | U            | 2.01   | 10.0     |      |  |
| Pentachlorophenol          | 0.313     | U            | 0.313  | 10.0     |      |  |
| Phenol                     | 0.334     | U            | 0.334  | 10.0     |      |  |
| 2,4,6-Trichlorophenol      | 0.297     | U            | 0.297  | 10.0     |      |  |
| Pyridine                   | 1.37      | U            | 1.37   | 10.0     |      |  |
| Benzyl Alcohol             | 0.393     | U            | 0.393  | 10.0     |      |  |
| 2,4-Dichlorophenol         | 0.284     | U            | 0.284  | 10.0     |      |  |
| 2,4-Dimethylphenol         | 0.624     | U            | 0.624  | 10.0     |      |  |
| 2-Methylphenol             | 0.312     | U            | 0.312  | 10.0     |      |  |
| 3&4-Methyl Phenol          | 0.266     | U            | 0.266  | 10.0     |      |  |
| 4,6-Dinitro-2-methylphenol | 2.62      | U            | 2.62   | 10.0     |      |  |
| 2,4-Dinitrophenol          | 3.25      | U            | 3.25   | 10.0     |      |  |
| 2,3,4,6-Tetrachlorophenol  | 2.00      | U            | 2.00   | 10.0     |      |  |
| 2,4,5-Trichlorophenol      | 0.236     | U            | 0.236  | 10.0     |      |  |
| (S) Nitrobenzene-d5        | 61.4      | _            |        | 10.0-126 |      |  |
| (S) 2-Fluorobiphenyl       | 68.0      |              |        | 22.0-127 |      |  |
| (S) p-Terphenyl-d14        | 81.5      |              |        | 29.0-141 |      |  |
| (S) Phenol-d5              | 39.6      |              |        | 10.0-120 |      |  |
| (S) 2-Fluorophenol         | 53.7      |              |        | 10.0-120 |      |  |
| (S) 2,4,6-Tribromophenol   | 71.5      |              |        | 10.0-153 |      |  |

PROJECT: 35386065

SDG: L986311 DATE/TIME: 04/26/18 15:45 Page 35 of 45 PAGE:

8 of 18

## WG1099358

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

## Method Blank (MB)

| (MB) R3305001-1 04/25/18 16:50 |           |              |        |        |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  |  |  |
| 1,3-Dinitrobenzene             | 0.359     | U            | 0.359  | 10.0   |  |  |  |

## Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3303265-1 04/19/     | 18 15:04 • (LCSE | D) R3303265- | 2 04/19/18 15:2 | 8        |           |             |               |                |       |            |  |
|-----------------------------|------------------|--------------|-----------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|
|                             | Spike Amount     | LCS Result   | LCSD Result     | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |
| Analyte                     | ug/l             | ug/l         | ug/l            | %        | %         | %           |               |                | %     | %          |  |
| Acenaphthene                | 50.0             | 38.1         | 38.4            | 76.2     | 76.9      | 42.0-120    |               |                | 0.799 | 22         |  |
| Acenaphthylene              | 50.0             | 39.6         | 38.5            | 79.2     | 77.0      | 43.0-120    |               |                | 2.76  | 22         |  |
| Anthracene                  | 50.0             | 35.9         | 37.7            | 71.9     | 75.4      | 44.0-120    |               |                | 4.78  | 20         |  |
| Benzidine                   | 50.0             | 13.2         | 14.5            | 26.4     | 29.0      | 1.00-120    |               |                | 9.40  | 36         |  |
| Benzo(a)anthracene          | 50.0             | 40.0         | 42.0            | 79.9     | 83.9      | 44.0-120    |               |                | 4.85  | 20         |  |
| Benzo(b)fluoranthene        | 50.0             | 41.5         | 42.5            | 83.1     | 84.9      | 40.0-120    |               |                | 2.18  | 21         |  |
| Benzo(k)fluoranthene        | 50.0             | 39.0         | 39.7            | 77.9     | 79.4      | 41.0-120    |               |                | 1.81  | 22         |  |
| Benzo(g,h,i)perylene        | 50.0             | 42.4         | 42.7            | 84.8     | 85.4      | 45.0-121    |               |                | 0.720 | 20         |  |
| Benzo(a)pyrene              | 50.0             | 40.3         | 40.8            | 80.6     | 81.7      | 41.0-120    |               |                | 1.33  | 20         |  |
| Bis(2-chlorethoxy)methane   | 50.0             | 30.7         | 32.6            | 61.5     | 65.2      | 36.0-120    |               |                | 5.86  | 25         |  |
| Bis(2-chloroethyl)ether     | 50.0             | 32.6         | 35.6            | 65.3     | 71.1      | 24.0-120    |               |                | 8.56  | 29         |  |
| Bis(2-chloroisopropyl)ether | 50.0             | 30.2         | 33.7            | 60.4     | 67.5      | 32.0-120    |               |                | 11.0  | 29         |  |
| 4-Bromophenyl-phenylether   | 50.0             | 38.6         | 39.1            | 77.2     | 78.2      | 42.0-121    |               |                | 1.33  | 21         |  |
| 2-Chloronaphthalene         | 50.0             | 35.9         | 35.0            | 71.8     | 70.0      | 37.0-120    |               |                | 2.45  | 24         |  |
| 4-Chlorophenyl-phenylether  | 50.0             | 38.4         | 38.9            | 76.7     | 77.8      | 44.0-120    |               |                | 1.32  | 21         |  |
| Chrysene                    | 50.0             | 39.0         | 40.7            | 78.0     | 81.5      | 45.0-120    |               |                | 4.40  | 20         |  |
| Dibenz(a,h)anthracene       | 50.0             | 42.3         | 42.1            | 84.6     | 84.1      | 44.0-121    |               |                | 0.589 | 21         |  |
| 3,3-Dichlorobenzidine       | 50.0             | 36.2         | 38.6            | 72.4     | 77.3      | 29.0-153    |               |                | 6.55  | 23         |  |
| 2,4-Dinitrotoluene          | 50.0             | 41.8         | 41.7            | 83.6     | 83.3      | 47.0-127    |               |                | 0.293 | 21         |  |
| 2,6-Dinitrotoluene          | 50.0             | 38.1         | 39.3            | 76.1     | 78.5      | 42.0-120    |               |                | 3.10  | 22         |  |
| Fluoranthene                | 50.0             | 40.3         | 41.3            | 80.6     | 82.6      | 46.0-121    |               |                | 2.51  | 20         |  |
| Fluorene                    | 50.0             | 40.2         | 40.3            | 80.5     | 80.6      | 45.0-120    |               |                | 0.202 | 21         |  |
| Hexachlorobenzene           | 50.0             | 38.7         | 41.4            | 77.5     | 82.8      | 41.0-124    |               |                | 6.62  | 21         |  |
| Aniline                     | 50.0             | 23.2         | 24.4            | 46.4     | 48.7      | 10.0-120    |               |                | 4.86  | 25         |  |
| Hexachloro-1,3-butadiene    | 50.0             | 28.7         | 29.2            | 57.4     | 58.4      | 26.0-120    |               |                | 1.66  | 31         |  |
| Hexachlorocyclopentadiene   | 50.0             | 31.1         | 32.2            | 62.3     | 64.3      | 10.0-120    |               |                | 3.27  | 31         |  |
| Hexachloroethane            | 50.0             | 31.5         | 32.5            | 63.0     | 64.9      | 22.0-120    |               |                | 3.02  | 34         |  |
| Indeno(1,2,3-cd)pyrene      | 50.0             | 44.0         | 45.4            | 88.1     | 90.7      | 45.0-123    |               |                | 3.00  | 21         |  |
| Isophorone                  | 50.0             | 35.3         | 36.5            | 70.5     | 73.1      | 37.0-120    |               |                | 3.56  | 24         |  |
| Naphthalene                 | 50.0             | 28.7         | 29.5            | 57.4     | 59.0      | 33.0-120    |               |                | 2.81  | 28         |  |
| Nitrobenzene                | 50.0             | 31.8         | 32.1            | 63.6     | 64.2      | 31.0-120    |               |                | 0.863 | 28         |  |
| n-Nitrosodimethylamine      | 50.0             | 20.4         | 24.3            | 40.8     | 48.7      | 10.0-120    |               |                | 17.6  | 34         |  |
|                             |                  |              |                 |          |           |             |               |                |       |            |  |
|                             | CCOUNT           |              |                 | DE       |           |             | SDG:          |                |       | DATE/TIME: |  |
| А                           | CCOUNT:          |              |                 | PR       | OJECT:    |             | SDG:          |                |       | DATE/TIME: |  |

Â

Sc

Ср

Τс

Page 36 of 45

Pace Analytical - Ormond Beach, FL

PROJECT: 35386065

SDG: L986311 DATE/TIME: 04/26/18 15:45 PAGE: 9 of 18

# QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

## Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3303265-1 04/19/    | 18 15:04 • (LCSE | D) R3303265-2 | 2 04/19/18 15:2 | 8        |           |             |               |                |        |                |          |          |
|----------------------------|------------------|---------------|-----------------|----------|-----------|-------------|---------------|----------------|--------|----------------|----------|----------|
|                            | Spike Amount     | LCS Result    | LCSD Result     | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD    | RPD Limits     |          | 2        |
| Analyte                    | ug/l             | ug/l          | ug/l            | %        | %         | %           |               |                | %      | %              |          |          |
| n-Nitrosodiphenylamine     | 50.0             | 41.4          | 42.2            | 82.7     | 84.4      | 44.0-120    |               |                | 2.00   | 21             |          | — L      |
| n-Nitrosodi-n-propylamine  | 50.0             | 41.5          | 44.6            | 82.9     | 89.2      | 29.0-120    |               |                | 7.27   | 27             |          | 3        |
| Phenanthrene               | 50.0             | 37.2          | 39.1            | 74.4     | 78.2      | 42.0-120    |               |                | 4.96   | 20             |          |          |
| Benzylbutyl phthalate      | 50.0             | 40.3          | 43.4            | 80.5     | 86.9      | 36.0-123    |               |                | 7.56   | 22             |          | 4        |
| Bis(2-ethylhexyl)phthalate | 50.0             | 42.1          | 43.7            | 84.1     | 87.3      | 37.0-121    |               |                | 3.79   | 21             |          | — ['     |
| Di-n-butyl phthalate       | 50.0             | 41.3          | 42.5            | 82.6     | 85.1      | 43.0-122    |               |                | 2.92   | 21             |          |          |
| Diethyl phthalate          | 50.0             | 40.7          | 41.6            | 81.3     | 83.1      | 48.0-123    |               |                | 2.17   | 20             |          | 5        |
| Dimethyl phthalate         | 50.0             | 40.9          | 40.9            | 81.8     | 81.7      | 47.0-120    |               |                | 0.114  | 20             |          |          |
| Caprolactam                | 50.0             | 13.2          | 13.7            | 26.4     | 27.3      | 10.0-120    |               |                | 3.56   | 31             |          | 6        |
| Di-n-octyl phthalate       | 50.0             | 43.4          | 44.4            | 86.9     | 88.8      | 38.0-120    |               |                | 2.14   | 22             |          |          |
| Carbazole                  | 50.0             | 44.3          | 45.6            | 88.6     | 91.3      | 45.0-121    |               |                | 2.91   | 22             |          |          |
| Pyrene                     | 50.0             | 40.8          | 42.0            | 81.6     | 83.9      | 43.0-120    |               |                | 2.74   | 21             |          | 7        |
| 1,2,4-Trichlorobenzene     | 50.0             | 28.7          | 29.6            | 57.3     | 59.2      | 29.0-120    |               |                | 3.15   | 29             |          |          |
| 4-Chloroaniline            | 50.0             | 27.0          | 28.4            | 54.0     | 56.8      | 23.0-120    |               |                | 5.18   | 28             |          | 8        |
| 1,2-Diphenylhydrazine      | 50.0             | 45.0          | 45.5            | 90.0     | 90.9      | 37.0-125    |               |                | 0.979  | 20             |          | ĭ        |
| Dibenzofuran               | 50.0             | 38.7          | 38.7            | 77.3     | 77.3      | 42.0-120    |               |                | 0.0185 | 21             |          | <u> </u> |
| 1,2-Dichlorobenzene        | 50.0             | 31.2          | 32.9            | 62.4     | 65.9      | 27.0-120    |               |                | 5.41   | 30             |          | 9        |
| 4-Chloro-3-methylphenol    | 50.0             | 36.7          | 37.1            | 73.4     | 74.2      | 39.0-120    |               |                | 1.00   | 22             |          |          |
| 1,3-Dichlorobenzene        | 50.0             | 30.8          | 31.6            | 61.6     | 63.3      | 26.0-120    |               |                | 2.76   | 31             |          |          |
| 2-Chlorophenol             | 50.0             | 31.9          | 33.7            | 63.8     | 67.5      | 28.0-120    |               |                | 5.68   | 29             |          |          |
| 1,4-Dichlorobenzene        | 50.0             | 30.5          | 31.7            | 61.0     | 63.3      | 26.0-120    |               |                | 3.77   | 30             |          |          |
| 2,4-Dichlorophenol         | 50.0             | 32.9          | 33.5            | 65.9     | 67.0      | 37.0-120    |               |                | 1.72   | 26             |          |          |
| 2,4-Dimethylphenol         | 50.0             | 33.4          | 35.1            | 66.9     | 70.2      | 35.0-120    |               |                | 4.84   | 25             |          |          |
| 4,6-Dinitro-2-methylphenol | 50.0             | 43.9          | 47.7            | 87.8     | 95.5      | 34.0-125    |               |                | 8.42   | 27             |          |          |
| 2,4-Dinitrophenol          | 50.0             | 37.1          | 37.2            | 74.2     | 74.3      | 10.0-120    |               |                | 0.126  | 40             |          |          |
| 2-Nitrophenol              | 50.0             | 31.3          | 32.4            | 62.6     | 64.9      | 35.0-120    |               |                | 3.57   | 28             |          |          |
| 4-Nitrophenol              | 50.0             | 23.3          | 24.7            | 46.7     | 49.3      | 10.0-120    |               |                | 5.44   | 35             |          |          |
| 1-Methylnaphthalene        | 50.0             | 29.0          | 29.8            | 57.9     | 59.6      | 33.0-120    |               |                | 2.89   | 23             |          |          |
| Pentachlorophenol          | 50.0             | 39.1          | 41.0            | 78.2     | 81.9      | 20.0-126    |               |                | 4.67   | 32             |          |          |
| 2-Methylnaphthalene        | 50.0             | 28.3          | 29.7            | 56.7     | 59.3      | 35.0-120    |               |                | 4.59   | 25             |          |          |
| Phenol                     | 50.0             | 21.1          | 22.6            | 42.2     | 45.2      | 10.0-120    |               |                | 6.84   | 34             |          |          |
| 2,4,6-Trichlorophenol      | 50.0             | 39.8          | 39.0            | 79.6     | 78.1      | 40.0-122    |               |                | 2.02   | 24             |          |          |
| 2-Nitroaniline             | 50.0             | 39.4          | 39.3            | 78.9     | 78.5      | 43.0-120    |               |                | 0.438  | 23             |          |          |
| 3-Nitroaniline             | 50.0             | 33.5          | 35.6            | 66.9     | 71.2      | 35.0-123    |               |                | 6.22   | 25             |          |          |
| 4-Nitroaniline             | 50.0             | 43.2          | 45.3            | 86.3     | 90.6      | 23.0-160    |               |                | 4.78   | 26             |          |          |
| Pyridine                   | 50.0             | 13.4          | 13.8            | 26.8     | 27.5      | 10.0-120    |               |                | 2.58   | 39             |          |          |
| Benzyl Alcohol             | 50.0             | 29.9          | 31.4            | 59.8     | 62.7      | 20.0-120    |               |                | 4.68   | 22             |          |          |
| 2-Methylphenol             | 50.0             | 32.4          | 33.9            | 64.9     | 67.9      | 26.0-120    |               |                | 4.47   | 27             |          |          |
| 3&4-Methyl Phenol          | 50.0             | 36.3          | 38.7            | 72.6     | 77.4      | 27.0-120    |               |                | 6.32   | 28             |          |          |
| 2,4,5-Trichlorophenol      | 50.0             | 40.0          | 41.3            | 80.0     | 82.7      | 44.0-124    |               |                | 3.24   | 24             |          |          |
|                            |                  |               |                 |          |           |             |               |                |        |                | Page 37  | ' of 45  |
| A                          | ACCOUNT:         |               |                 | PR       | OJECT:    |             | SDG:          |                |        | DATE/TIME:     | PAGE:    |          |
| Pace Analytic              | al - Ormond Bead | ch, FL        |                 | 353      | 386065    |             | L9863         | 11             |        | 04/26/18 15:45 | 10 of 18 | )        |

Ср

Τс

Ss

Cn

Śr

<sup>´</sup>Qc

GI

AI

Sc

# QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

ONE LAB. NATIONWIDE.

## Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| _CS) R3303265-1 04/19/18 15:04 • (LCSD) R3303265-2 04/19/18 15:28 |              |            |             |          |           |             |               |                |      |            |
|-------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|------|------------|
|                                                                   | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |
| Analyte                                                           | ug/l         | ug/l       | ug/l        | %        | %         | %           |               |                | %    | %          |
| 2,3,4,6-Tetrachlorophenol                                         | 50.0         | 45.1       | 45.9        | 90.2     | 91.8      | 39.0-122    |               |                | 1.79 | 28         |
| (S) Nitrobenzene-d5                                               |              |            |             | 63.4     | 65.7      | 10.0-126    |               |                |      |            |
| (S) 2-Fluorobiphenyl                                              |              |            |             | 72.8     | 73.0      | 22.0-127    |               |                |      |            |
| (S) p-Terphenyl-d14                                               |              |            |             | 82.7     | 83.0      | 29.0-141    |               |                |      |            |
| (S) Phenol-d5                                                     |              |            |             | 41.8     | 42.9      | 10.0-120    |               |                |      |            |
| (S) 2-Fluorophenol                                                |              |            |             | 58.6     | 58.7      | 10.0-120    |               |                |      |            |
| (S) 2,4,6-Tribromophenol                                          |              |            |             | 77.5     | 84.1      | 10.0-153    |               |                |      |            |

| ⁵Sr             |
|-----------------|
| <sup>6</sup> Qc |
| <sup>7</sup> Gl |
| <sup>8</sup> Al |
| °Sc             |

Тс

Ss

Cn

| ACCOUNT:                           |
|------------------------------------|
| Pace Analytical - Ormond Beach, FL |

SDG: L986311 DATE/TIME: 04/26/18 15:45

F**IME:** 3 15:45 Page 38 of 45 PAGE:

11 of 18

## GLOSSARY OF TERMS

# \*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                                                                                             |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the resul<br>reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                             |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.                                                                                                                                                                                                                                                                                                                                                                                                       |

Indicates the compound was analyzed for but not detected above the method detection limit.

U

SDG: L986311 DATE/TIME: 04/26/18 15:45 Page 39 of 45 PAGE: 12 of 18

# **ACCREDITATIONS & LOCATIONS**

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. \* Not all certifications held by the laboratory are applicable to the results reported in the attached report. \* Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

#### State Accreditations

| Alabama                | 40660       | Nebraska                    |
|------------------------|-------------|-----------------------------|
| Alaska                 | 17-026      | Nevada                      |
| Arizona                | AZ0612      | New Hampshire               |
| Arkansas               | 88-0469     | New Jersey-NELAP            |
| California             | 2932        | New Mexico <sup>1</sup>     |
| Colorado               | TN00003     | New York                    |
| Connecticut            | PH-0197     | North Carolina              |
| Florida                | E87487      | North Carolina <sup>1</sup> |
| Georgia                | NELAP       | North Carolina <sup>3</sup> |
| Georgia <sup>1</sup>   | 923         | North Dakota                |
| Idaho                  | TN00003     | Ohio-VAP                    |
| Illinois               | 200008      | Oklahoma                    |
| Indiana                | C-TN-01     | Oregon                      |
| lowa                   | 364         | Pennsylvania                |
| Kansas                 | E-10277     | Rhode Island                |
| Kentucky <sup>16</sup> | 90010       | South Carolina              |
| Kentucky <sup>2</sup>  | 16          | South Dakota                |
| Louisiana              | AI30792     | Tennessee <sup>14</sup>     |
| Louisiana 1            | LA180010    | Texas                       |
| Maine                  | TN0002      | Texas <sup>5</sup>          |
| Maryland               | 324         | Utah                        |
| Massachusetts          | M-TN003     | Vermont                     |
| Michigan               | 9958        | Virginia                    |
| Minnesota              | 047-999-395 | Washington                  |
| Mississippi            | TN00003     | West Virginia               |
| Missouri               | 340         | Wisconsin                   |
| Montana                | CERT0086    | Wyoming                     |
|                        |             |                             |

| Nebraska                    | NE-OS-15-05       |
|-----------------------------|-------------------|
| Nevada                      | TN-03-2002-34     |
| New Hampshire               | 2975              |
| New Jersey-NELAP            | TN002             |
| New Mexico <sup>1</sup>     | n/a               |
| New York                    | 11742             |
| North Carolina              | Env375            |
| North Carolina <sup>1</sup> | DW21704           |
| North Carolina <sup>3</sup> | 41                |
| North Dakota                | R-140             |
| Ohio-VAP                    | CL0069            |
| Oklahoma                    | 9915              |
| Oregon                      | TN200002          |
| Pennsylvania                | 68-02979          |
| Rhode Island                | LAO00356          |
| South Carolina              | 84004             |
| South Dakota                | n/a               |
| Tennessee <sup>14</sup>     | 2006              |
| Texas                       | T 104704245-17-14 |
| Texas ⁵                     | LAB0152           |
| Utah                        | TN00003           |
| Vermont                     | VT2006            |
| Virginia                    | 460132            |
| Washington                  | C847              |
| West Virginia               | 233               |
| Wisconsin                   | 9980939910        |
| Wyoming                     | A2LA              |

#### Third Party Federal Accreditations

| A2LA – ISO 17025              | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|-------------------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 <sup>5</sup> | 1461.02 | DOD                | 1461.01       |
| Canada                        | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto                    | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Pace Analytical - Ormond Beach, FL

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.



35386065

L986311

PAGE: 13 of 18

04/26/18 15:45



| Chain of Custody                                                                                                                                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                            | C079                                | Pace Analytical                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Norkorder: 35386065                                                                                                                                                    | Workorder Name:      | Safety Kleen Facilit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | у                                        | Results                                    | Requested By: 4/3<br>Requested Anal | the second se |
| Leport // Invoice To<br>cori Palmer<br>Pace Analytical Tampa<br>10 South Bayview Blvd.<br>Didsmar , FL 34677<br>Phone (813)881-9401<br>Email: lori.palmer@pacelabs.com | ESC.                 | ntract To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P.O. <u>F15 - 99</u>                     | Full list                                  |                                     |                                                                                                                 |
| tate of Sample Origin: FL                                                                                                                                              | Collect<br>Date/Time | Lab ID Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pavasa                                   | \$270                                      |                                     | LAB USE ONLY                                                                                                    |
| em Sample ID<br>MW-2R-041318                                                                                                                                           | 4/13/2018 10:49      | 35386065001 Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                        | X                                          |                                     | -0                                                                                                              |
|                                                                                                                                                                        |                      | 1. 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                                            |                                     |                                                                                                                 |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                            |                                     |                                                                                                                 |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                  |                      | CHARGE STREET, |                                          |                                            |                                     | Comments                                                                                                        |
| Transfers Released By                                                                                                                                                  | zoud yight           | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2X<br>New 841                            | Date/Time<br>9/6/8 1600 5<br>9/17/18 0 845 | ie atta                             | iched test                                                                                                      |
| 3<br>Cooler Temperature on Rec                                                                                                                                         | eipt °C              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | eceived on Ice Y                           | or N                                | Samples Intact Y or N                                                                                           |
|                                                                                                                                                                        |                      | Tracking #.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7720044                                  | 12 8032                                    |                                     |                                                                                                                 |

3 tota

Page 1 of 1 Page 41 of 45 140

| Hand 110-57-8<br>79-004<br>109-06-4<br>109-06-4<br>109-06-4<br>109-06-4<br>109-06-4<br>109-06-4<br>109-06-4<br>91-20-3<br>91-20-3<br>91-57-6<br>90-12-0<br>206-96-2<br>109-96-3<br>216-01-9<br>56-55-3<br>216-01-9<br>56-55-3<br>191-24-2<br>108-95-2<br>108-95-2<br>108-95-2<br>108-95-3<br>78-59-1<br>96-75-5<br>105-67-9<br>120-93-2<br>105-67-9<br>120-93-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24dc 2,4-Dichlorophenol                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Zahanana         110-57-6         10           179-001         1           179-001         1           100-17-6         1           100-17-6         1           100-17-6         1           100-17-6         1           100-17-7         1           100-17-7         1           100-17-7         1           11330-20-37         3           91-20-3         3           91-20-3         3           91-20-3         3           91-20-3         3           91-20-3         3           91-20-3         3           91-20-3         3           91-20-12-7         0.5           120-12-7         0.5           91-20-3         0.5           91-20-3         0.5           91-20-12-7         0.5           91-20-12-7         0.5           91-21-2-7         0.5           91-24-2         0.5           91-24-2         0.5           91-24-2         0.5           91-24-5         0.5           91-24-5         0.5           91-24-5         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Jone-Z-Jamenia         110-57-6         10           Ise         79-05-4         10           Jone-Mathem         1108-05-4         10           Jone-Mathem         108-05-4         10           Jone-Mathem         110-07-6         10           Jone-Mathem         102-01-7         0.5           Jone-Mathem         102-01-8         0.5           Jone-Mathem         102-01-9         0.5           Jone-Mathem         102-01-9         0.5           Jone-Mathem         102-02-8         0.1           Jone-Mathem         102-03-3         0.1           Jone-Mathem         102-03-3         0.1           Jone-Mathem         102-03-3         0.1           Jone-Mathem         102-03-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| Jone-Z-Jamene         110-57-6         10           Insertion         79-01-7         10           Jone-Scient         11         108-05-4         10           Jone-Scient         11         108-05-4         10           Jone-Scient         11         108-05-4         10           Jone-Scient         11-57-6         10         10           Jone-Scient         11-57-6         10         10           Jone-Scient         11-57-6         10         10           Jone-Scient         11-57-6         10         10           Jone-Scient         11-57-6         20         20           Jone-Scient         11-57-6         20         20           Jone-Scient         11-57-6         10         2           Jone-Scient         120-12-0         10         10           Jone-Scient         100-51-5         10         10           Jone-Scient         101-52-5         10         10           Jone-Scient         105-52-7-8         10         10           Jone-Scient         106-46-7         10         10           Jone-Scient         100-55-5         10         10         10 <t< td=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| ro-2-Juneme         110-57-6         10           ration         ro-sea         1           ro-sea         10         10           ro-sea         91-20-3         2           sea         10         2           sea         10         2           sea         100-12-7         00           sea         101-14-1         10           sea         101-24-2         00           sea         100-13-3         10           sea         100-13-3         10           sea         100-13-3         10 <t< td=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| ro-2-Juneme         110-57-6         10           ration         rs-esi         1           rs-esi         1         105-6           rs-esi         1         105-7           rs-esi         1         105-7           rs-esi         1         105-7           rs-esi         1         105-7           rs-esi         10         10           rs-esi         10         10 <tr tr=""></tr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| ro-2-businer         110-57-6         10           radiance         radi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nitb Nitrobenzene                       |
| In-2-binance         110-57-6         10           Y9-0.1         108-05-4         10           Y9-0.1         108-05-4         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-2         10         10           108-05-3         10         10           108-05-3         0.5         0.5           108-06-1         105-39-5         0.5           108-07-8         0.5         0.5           108-08-7         0.5         0.5           108-08-7         0.5         0.5           108-08-7         0.5         0.5           108-08-7         0.5         0.5           108-08-7         0.5         0.5           108-08-7         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| In-2-billion         110-57-6         10           Indian         110-57-6         10           Indian         110-57-6         10           Indian         110-57-6         10           Indian         10-57-6         10           Indian         11-57-6         10           Indian         11-57-6         10           Indian         11-57-6         10           Indian         11-57-6         11           Indian         11-57-6         12           Indian         12-57-6         12           Indian         12-57-7         0.5           Indian         130-52-3         0.15           Indian         131-52-6         0.15           Indian         131-52-7         0.5           Indian         131-52-8         0.15           Indian         131-52-8         0.15           Indin         131-52-7         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| In-2-Juluarie         110-57-6         10           Indiana         110-57-6         10           Indiana         110-57-6         10           Indiana         110-57-6         10           Indiana         108-05-4         10           Indiana         108-05-4         10           Indiana         110-57-6         11           Indiana         11-57-6         11           Indiana         11-57-6         11           Indiana         11-57-6         11           Indiana         120-12-7         0.5           Indiana         120-53-3         0.1           Indiana         133-39-5         0.1           Indiana         108-95-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bis2 bis(2-Chlor                        |
| no-2-bitikene         110-57-6         10           739-01         1         1           739-05-4         1         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-5         11         20           108-01-9         0.5         0.5           108-01-9         0.5         0.5           108-01-9         0.5         0.5           108-01-9         0.5         0.5           108-01-9         0.5         0.5           108-01-9         0.5         0.5           108-01-9         0.5         0.5           108-05-2         0.5         0.15           108-05-2         0.5         0.15           108-05-2         0.5         15<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2mph 2-Methylph                         |
| In-Z-butwine         110-57-8         10           739-0.4         1         1           739-0.4         1         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-4         10         10           108-05-5         11         10           109/rene         120-12-7         0.5           120-12-7         0.5         0.5           120-02-12-7         0.5         0.5           120-01-9         0.5         0.5           120-01-9         0.5         0.5           100-19         0.5         0.5           101-19         0.5         0.5           101-19         0.5         0.15           101-10         0.5         0.5 <td>12db 1,2-DidNorobenzene</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12db 1,2-DidNorobenzene                 |
| In-Z-butterine         110-57-8         10           73-0-04         1         1           73-0-04         1         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           108-05-4         10         1           109-12-7         0         1           120-12-7         0.5         0.5           120-12-7         0.5         0.5           120-12-7         0.5         0.5           120-12-7         0.5         0.5           120-12-7         0.5         0.5           120-12-7         0.5         0.5           120-12-7         0.5         0.5           131-24-01-9         0.5         0.1           19/rene         0.15         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14db 1,4-Dichlorobenzene                |
| no-2-butwine 110-57-6 10<br>79-0.04 1<br>10-57-6 10<br>10-57-6 1<br>10-57-6 10 |                                         |
| Min         110-57-8         10           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         1           739-014         2           91-2003         2           91-2003         2           91-2003         2           91-2003         2           91-2003         2           91-2003         2           91-2003         2           91-2003         2           91-2003         2           91-2003         2           91-2014         2           91-2014         01           91-2014         01           91-2014         01           91-2014         01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2cph 2-Chlorophenol                     |
| Manne         110-57-6         10           79-03         1           70-03         1           70-03         1           70-03         1           70-03         1           70-03         1           70-03         1           70-03         1           70-03         1           70-03         1           70-03         1           91-20-3         2           91-20-3         2           91-20-3         3           91-20-3         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         0           120-12-7         0.5           90-32-8         0.5           90-33-9         0.5           90-33-9         0.5           90-33-9         0.1           193-33-5         0.15           91-24-2         0.3           90-24-2         0.5 <t< td=""><td>bal</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bal                                     |
| Mana         110-57-6         10           739-01         1           73-583         1           73-583         1           73-583         1           73-583         1           73-583         1           73-583         1           73-583         1           73-583         1           73-583         1           73-583         1           73-583         1           73-583         1           73-583         1           73-59         1           81-57-6         2           90-12-7         2           98-55-3         0.5           73-50-1-9         0.5           53-70-3         0.1           193-39-5         0.15           191-24-2         0.5           907-06-0         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8270 WSEP 8270 WSEP phot Phenol         |
| Mana         110-57-6         10           79.0.1         1           70-53.1         1           70-53.1         1           70-53.1         1           70-53.1         1           70-53.1         1           70-53.1         1           70-53.1         1           70-53.1         1           70-53.1         1           70-53.1         1           70-53.1         1           91-20.3         91-20.3           91-20.3         91-20.3           91-20.3         1           91-20.3         2           90-12.0         3           91-20.3         2           90-12.0         2           90-12.0         2           91-20-12.7         0.5           85.01.8         0.5           120-12.7         0.5           91-20.5         0.5           91-20.5         0.5           120-12.7         0.5           91-30.5         0.5           91-30.5         0.5           91-30.5         0.5           91-30.5         0.1           91-30.5 <td>And And And And And And And And And And</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | And |
| Mana         110-57-6         10           79.0.1         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         1           73.0.21         2           91.20.3         2           91.20.3         2           93.32.9         0.5           85.01.9         0.5           85.01.9         0.5           85.01.9         0.5           85.01.9         0.5           85.01.9         0.5           85.03         0.5           9.5         0.5           9.5         0.5           9.5         0.5           9.5         0.5           9.5         0.5           9.5         0.5           9.5         0.5           9.5         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date                                    |
| Mana         110-57-6         10           73-583         1           75-583         1           108-05-4         10           109-05-4         10           109-05-4         10           109-05-4         10           109-05-4         10           109-05-4         10           109-05-4         10           109-05-4         10           109-05-4         10           109-05-4         10           109-05-4         10           109-05-4         10           109-05-5         1           109-05-6         1           109-05-7         1           109-05-8         1           109-05-9         0.5           120-12-7         0.5           120-12-7         0.5           129-00-0         0.5           129-01-9         0.5           129-01-9         0.5           129-01-9         0.5           129-01-9         0.5           129-05-99-2         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [                                       |
| Mana         110-57-6         10           79-0.1         1           70-051         1           70-051         1           70-051         1           70-051         1           70-051         1           70-051         1           70-051         1           70-051         1           70-051         1           70-051         1           70-051         1           70-051         1           70-052         3           91-520         3           91-520         2           90-12.0         3           91-52.6         2           90-12.7         0           85-01.9         0.5           720544.0         0.5           720544.0         0.5           720544.0         0.5           720543.0         0.5           720544.0         0.5           7205.3         0.5           7205.3         0.5           7205.3         0.5           7205.3         0.5           7205.3         0.5           7205.3         0.5 <td>liezt Benzo(b)fluoranthene</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | liezt Benzo(b)fluoranthene              |
| Mana         110-57-6         10           79-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         0           83-32-9         0.5           85-01-9         0.5           85-01-9         0.5           95-55-3         0.5           129-00-0         0.5           56-55-3         0.5           129-01-9         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(a)pyrene                          |
| Mana         110-57-6         10           73-583         1           75-583         1           108-05-4         10           108-05-4         10           1300-12-0         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-20-3         1           91-57-6         2           92-12-7         1           93-55-3         0.5           93-55-3         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dhev emysene                            |
| Mana         110-57-6         10           79.0.1         1           70-58.1         1           108-05-4         10           108-05-4         10           108-05-4         10           108-05-4         10           108-05-4         10           108-05-4         10           108-05-4         10           108-05-4         10           108-05-4         10           108-05-4         10           108-05-4         10           108-05-4         10           108-05-5         10           1130-38-2         1           1130-38-2         1           1130-38-2         1           1130-38-3         2           112-012-0         2           112-012-7         0.5           112-012-7         0.5           112-010-0         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Den Bonzolejn                           |
| Mana         110-57-8         10           79-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         1           70-0.0         2           70-0.1         2           70-0.1         2           70-0.1         2           70-0.1         2           70-0.1         2           70-0.1         2           70-0.1         2           70-0.1         2           70-0.1         0.5           70-0.5         0.5           70-0.5         0.5           70-0.5         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pyre eyrene                             |
| Mana         110-57-6         10           73-08-1         1           73-08-1         1           73-08-1         1           73-08-1         1           73-08-4         10           73-08-4         10           73-08-4         10           73-08-4         10           73-08-4         10           73-08-4         10           73-08-4         10           73-08-5         1           73-08-5         1           91-20-3         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           91-20-3         2           90-12-0         2           91-30-3         2           91-30-3         2           91-30-3         2           91-30-3         2           91-30-3         2           91-30-3         3           91-30-3         3           91-30-3         3           91-30-3         3           91-30-3         3 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| Mana         110-57-6         10           79-0.01         1           75-03         1           70-05-4         10           70-05-4         10           70-05-4         10           70-05-4         10           70-05-4         10           70-05-4         10           70-05-4         10           70-05-4         10           70-05-4         10           91-20-3         2           91-52-6         1           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         2           90-12-0         10           91-12-0         10           91-12-0         10           91-12-0         10           91-12-0         10           91-12-0         10           91-12-0         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | anth Anthracene                         |
| Mana         110-57-6         10           73-03         1           75-03         1           75-03         1           75-03         1           75-03         1           75-03         1           75-03         1           75-03         1           75-03         1           75-03         2           95-17-5         1           1330-39-2         1           91-20-3         2           91-57-6         2           90-12-0         2           200-12-0         2           200-12-0         2           20-12-0         2           20-12-0         2           20-12-0         2           20-12-0         2           20-12-0         2           20-13-0         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fluore                                  |
| Mana         110-57-6         10           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.01         1           73-0.02         1           73-0.02         1           73-0.02         1           73-0.02         1           73-0.02         1           73-0.02         1           73-0.02         1           73-0.02         2           90-12-0         2           200-12-0         2           200-12-0         2           200-12-0         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acp1 Acenaphthene                       |
| dana 110-57-6 10<br>73-58-4 1<br>108-05-4 1<br>179601-25-1 1<br>179601-25-1 2<br>95-47-6 1<br>1330-20-7 2<br>91-20-3 2<br>90-12-0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aco2 Acenaptiv                          |
| utana 110-57-6 10<br>79-014 1<br>75-59 1<br>108-05-4 10<br>76-011 1<br>199001-26-1 1<br>1330-20-7 1<br>91-20-3 2<br>91-57-6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1mps I-Methodes                         |
| dana 110-57-6 10<br>79-01-4 1<br>75-69-4 1<br>108-05-4 10<br>179601-23-1 2<br>95-47-6 1<br>1330-20-2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zoyp 2. Methylpa                        |
| Mane 110-57-8 10<br>79.001 1<br>75.091 1<br>108-05-4 10<br>75.011 1<br>108-05-4 10<br>1799001-351 2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PANEY 8270 PANEY Daby Naphthalehe       |
| Mana 110-57-8 10<br>79-03-0<br>75-69-1 1<br>108-05-4 1<br>10<br>70-014 10<br>17/99-03-051 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 110-57-8 10<br>79-03-1 1<br>75-69-1 1<br>108-05-4 1<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mpxy m&p-Xylene                         |
| App 05-4 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | verd single and                         |
| 110-57-8 10<br>79-010 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing incritoronution                     |
| uterner 110-57-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trichlement                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t144 trans-1,4-Dichloro-2.a             |
| ropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                       |
| Norseithene 190-80-5 1 0.5 vgv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112d trans-1 2-Dicbio                   |
| No. POL M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | koode Cmp List Cmp Analyte              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Line Item 1 / www.page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37-ECTTAM Profile Number 9321           |
| / Pace Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PASI Ormond Beach Laboratory            |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Profile List                            |

Monday, April 16, 2018 10:33:30 AM

Page 2 of 4

**Profile List** 

PASI Ormond Beach Laboratory

Client 37-ECTTAM Profile Number 9321

8270 WSE

Line Item 1

Ace Analytical Page 43 of 45

| Induce $77.47.4$ 5 $1.28$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Di-n-butylphthalate<br/>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3,3'-Dichlorobenzidine</li> <li>Benzo(a)anthracene</li> <li>Chrysene</li> <li>bis(2-Etrylhexyl)phthalate</li> <li>bis(2-Etrylhexyl)phthalate</li> <li>Benzo(b)fluoranthene</li> <li>Benzo(b)fluoranthene</li> <li>Benzo(a)pyrene</li> <li>Indeno(1,2,3-cd)pyrene</li> <li>Di-benz(a,h)anthracene</li> <li>Benzo(g,h,i)perylene</li> <li>Caprolactam</li> </ul>                                                                               | pyre<br>bbzp<br>33db<br>beza<br>dhop<br>bezt<br>bezt<br>bezt<br>bezz<br>bezz<br>bezz<br>bezz<br>carz<br>carz |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|
| Induce $77-47.4$ 5 $1.28$ $upl.$ $86-96-2$ 2 $0.28$ $upl.$ $86-96-2$ 4 $0.28$ $upl.$ $86-96-2$ 5 $0.8$ $upl.$ $86-96-2$ 5 $0.8$ $upl.$ $86-96-2$ 2 $1.22$ $upl.$ $86-92-2$ 2 $1.22$ $upl.$ $86-92-2$ 2 $1.22$ $upl.$ $131-11.3$ 5 $0.8$ $upl.$ $132-64-2$ 2 $1.22$ $upl.$ $112-64-2$ 5 $0.8$ $upl.$ $122-64-2$ 5 $0.8$ $upl.$ $112-64-2$ 5 $0.8$ $upl.$ $100-62-7$ 5 $0.8$ $upl.$ $upl.$ $112-64-2$ 5 $0.8$ $upl.$ $upl.$ $100-62-7$ 5 $0.8$ $upl.$ $upl.$ $100-62-7$ 5 $0.8$ $upl.$ $upl.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Di-n-butylphthalate<br/>Fluoranthene<br/>Pyrene<br/>Butylbenzylphthalate<br/>3,3'-Dichlorobenzidine<br/>Benzo(a)anthracene<br/>bis(2-Etrylhexyl)phthalate<br/>bis(2-Etrylhexyl)phthalate<br/>Benzo(b)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene</li> </ul> | pyre<br>bbzp<br>33db<br>beza<br>dhop<br>bez/<br>bez/<br>bez/<br>bez/<br>bez/<br>bez/<br>bez/<br>carz         |         |
| Index $77-47.4$ 5 $1.28$ $ugl.$ $86.062$ 2 $0.69$ $ugl.$ $91-58.7$ 5 $0.8$ $ugl.$ $86.774.4$ 5 $0.8$ $ugl.$ $131-11.3$ 5 $0.8$ $ugl.$ $200-92.7$ 2 $1.22$ $ugl.$ $100-02.7$ 20 $1.29$ $ugl.$ $112-1.4.2$ 2 $1.22$ $ugl.$ $100-02.7$ 20 $1.57$ $ugl.$ $112-1.4.2$ 5 $0.81$ $ugl.$ $110-0.2.7$ 5 $0.81$ $ugl.$ $100-0.2.7$ 20 $1.57$ $ugl.$ $ugl.$ $110-0.2.7$ 5 $0.81$ $ugl.$ $ugl.$ $86-07.7$ 5 $0.81$ $ugl.$ $ugl.$ $91-94.7$ 1 $0.84$ $ugl.$ $ugl.$ $85-01-8$ 5 $0.81$ $ugl.$ $ugl.$ $91-94.7$ 5 $0.84$ <td><ul> <li>Di-n-butylphthalate<br/>Fluoranthene<br/>Pyrene<br/>Butylbenzylphthalate<br/>3,3'-Dichlorobenzidine<br/>Benzo(a)anthracene<br/>bis(2-Etrylhexyl)phthalate<br/>bis(2-Etrylhexyl)phthalate<br/>Bis(2-Etrylhexyl)phthalate<br/>Benzo(b)fluoranthene<br/>Benzo(b)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(a)pyrene<br/>Indeno(1,2,3-cd)pyrene<br/>Dibenz(a,h)anthracene<br/>Benzo(g,h,i)perylene</li> </ul></td> <td>pyre<br/>bbzp<br/>33db<br/>beza<br/>dhy<br/>bez/<br/>bez/<br/>bez/<br/>bez/<br/>bez/<br/>bez/<br/>bez/<br/>bez/</td> <td></td>                                                                                                                                                                                                                                                                                                                         | <ul> <li>Di-n-butylphthalate<br/>Fluoranthene<br/>Pyrene<br/>Butylbenzylphthalate<br/>3,3'-Dichlorobenzidine<br/>Benzo(a)anthracene<br/>bis(2-Etrylhexyl)phthalate<br/>bis(2-Etrylhexyl)phthalate<br/>Bis(2-Etrylhexyl)phthalate<br/>Benzo(b)fluoranthene<br/>Benzo(b)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(a)pyrene<br/>Indeno(1,2,3-cd)pyrene<br/>Dibenz(a,h)anthracene<br/>Benzo(g,h,i)perylene</li> </ul>                                                                                                  | pyre<br>bbzp<br>33db<br>beza<br>dhy<br>bez/<br>bez/<br>bez/<br>bez/<br>bez/<br>bez/<br>bez/<br>bez/          |         |
| Induce $77-47.4$ 5 $1.28$ ug/L $86-062$ 2 $0.69$ ug/L $95-95-4$ 4 $0.52$ ug/L $95-95-4$ 5 $0.8$ ug/L $86-74-4$ 5 $0.8$ ug/L $86-74-4$ 5 $0.8$ ug/L $131-17.3$ 5 $0.8$ ug/L $206-20-2$ 2 $1.22$ ug/L $86-74-4$ 5 $0.99$ ug/L $100-02-7$ 20 $1.57$ ug/L $100-02-7$ 20 $1.57$ ug/L $100-02-7$ 20 $0.51$ ug/L $1.67$ $110-74-7$ 20 $0.51$ ug/L $1.67$ $86-73-7$ 5 $0.67$ ug/L $1.67$ $100-61-6$ 5 $0.51$ ug/L $1.67$ $100-61-72-3$ 5 $0.51$ ug/L $1.67$ $100-61-72-3$ 5 $0.51$ ug/L $1.67$ $100-61-72-3$ 5 $0.51$ ug/L $1.67$ $86-74-2$ $20$ $0.51$ ug/L $1.67$ <td< td=""><td><ul> <li>Di-n-butylphthalate<br/>Fluoranthene<br/>Pyrene<br/>Butylbenzylphthalate<br/>3,3*-Dichlorobenzidine<br/>Benzo(a)anthracene<br/>bis(2-Ethylhexyl)phthalate<br/>Di-n-octylphthalate<br/>Benzo(b)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(a)pyrene<br/>Indeno(1,2,3-od)pyrene<br/>Dibenz(a,h)anthracene</li> </ul></td><td>pyre<br/>bbzp<br/>33db<br/>beza<br/>chry<br/>bis4<br/>dnop<br/>bez/<br/>bez/<br/>bezp<br/>inde</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Di-n-butylphthalate<br/>Fluoranthene<br/>Pyrene<br/>Butylbenzylphthalate<br/>3,3*-Dichlorobenzidine<br/>Benzo(a)anthracene<br/>bis(2-Ethylhexyl)phthalate<br/>Di-n-octylphthalate<br/>Benzo(b)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(k)fluoranthene<br/>Benzo(a)pyrene<br/>Indeno(1,2,3-od)pyrene<br/>Dibenz(a,h)anthracene</li> </ul>                                                                                                                                                                                          | pyre<br>bbzp<br>33db<br>beza<br>chry<br>bis4<br>dnop<br>bez/<br>bez/<br>bezp<br>inde                         |         |
| Indiane $77-47.4$ 5 $1.28$ $ugl.$ $88-662$ 2 $0.69$ $ugl.$ $88-74.4$ 6 $0.82$ $ugl.$ $88-74.4$ 5 $0.8$ $ugl.$ $88-74.4$ 5 $0.8$ $ugl.$ $88-74.4$ 5 $0.8$ $ugl.$ $88-72.9$ 2 $1.22$ $ugl.$ $88-72.7$ 20 $0.92$ $0.92$ $112-1.42.2$ 2 $0.83$ $ugl.$ $112-1.42.2$ 2 $0.83$ $ugl.$ $112-1.42.2$ 2 $0.51$ $ugl.$ $122-1.42.2$ $0.51$ $ugl.$ $0.63$ $112-1.42.2$ 5 $0.63$ $ugl.$ $0.61$ $112-1.42.2$ 5 $0.51$ $ugl.$ $0.61$ $110-0.61-6$ 4 $0.89$ $ugl.$ $0.61$ $ugl.$ $110-0.62-3$ 5 $0.51$ $ugl.$ $0.61$ $ugl.$ $0.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Di-n-butylphthalate<br/>Fluoranthene<br/>Pyrene<br/>Butylbenzylphthalate<br/>3,3*-Dichlorobenzidine<br/>Benzo(a)anthracene<br/>Benzo(a)anthracene<br/>Di-n-octylphthalate<br/>Di-n-octylphthalate<br/>Benzo(b)fluoranthene<br/>Benzo(b)fluoranthene<br/>Benzo(a)pyrene<br/>Indeno(1,2,3-od)pyrene</li> </ul>                                                                                                                                                                                                                             | pyre<br>bbzp<br>33db<br>beza<br>dnop<br>bez/<br>bez/<br>bez/<br>bez/<br>bezp<br>inde                         |         |
| nne $77-47.4$ 5 $1.28$ up/L $88-662$ 2         0.69         up/L $87-84.4$ 4         0.52         up/L $87-84.7$ 5         0.84         up/L $88-74.4$ 5         0.84         up/L $131-17.3$ 5         0.94         up/L $131-17.3$ 5         0.94         up/L $88-78-4$ 5         0.94         up/L $89-78-7$ 2         1.22         up/L $88-92-9$ 2         1.22         up/L $88-92-7$ 5         0.98         up/L $110-0-27.7$ 20         1.92         up/L $110-0-27.7$ 5         0.93         up/L $110-0-27.7$ 5         0.93         up/L         1 $120-12.7$ 5         0.93         up/L         1 $110-0-27.7$ 5         0.53         up/L         1 $110-0-27.7$ 5         0.53         up/L         1 $110-0-27.7$ 5         0.53 <t< td=""><td><ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3.3'-Dichlorobenzidine</li> <li>Benzo(a)anthracene</li> <li>Chrysene</li> <li>bis(2-Ethylhexyl)phthalate</li> <li>Di-n-octylphthalate</li> <li>Benzo(b)fluoranthene</li> <li>Benzo(X)fluoranthene</li> <li>Benzo(a)pyrene</li> </ul></td><td>pyre<br/>bbzp<br/>33db<br/>beza<br/>dhop<br/>bez/<br/>be/2<br/>be/2</td><td></td></t<>                                                                                                                                                                                                                  | <ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3.3'-Dichlorobenzidine</li> <li>Benzo(a)anthracene</li> <li>Chrysene</li> <li>bis(2-Ethylhexyl)phthalate</li> <li>Di-n-octylphthalate</li> <li>Benzo(b)fluoranthene</li> <li>Benzo(X)fluoranthene</li> <li>Benzo(a)pyrene</li> </ul>                                                                                                                                                                                                    | pyre<br>bbzp<br>33db<br>beza<br>dhop<br>bez/<br>be/2<br>be/2                                                 |         |
| nne         77-47.4         5         1.28 up/L           88-66-2         2         0.68 up/L           95-65-4         4         0.52 up/L           95-65-4         5         0.8 up/L           95-65-4         5         0.8 up/L           95-65-4         5         0.8 up/L           95-65-4         5         0.8 up/L           98-74-4         5         0.6 up/L           131-11-3         5         0.99 up/L           98-69-2         2         1.22 up/L           98-69-2         2         1.22 up/L           98-69-2         5         0.99 up/L           131-11-3         5         0.99 up/L           132-11-3         5         0.99 up/L           132-24-9         5         0.99 up/L           132-64-9         5         0.51 up/L           14         0.99 up/L         10           96-67-2         5         0.51 up/L           190-01-6         4         0.99 up/L           191-05-7         5         0.51 up/L           192-01-27         5         0.51 up/L           192-01-27         5         0.51 up/L           10                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3,3'-Dichlorobenzidine</li> <li>Benzo(a)anthracene</li> <li>Chrysene</li> <li>bis(2-Etrylhexyl)phthalate</li> <li>Di-n-octylphthalate</li> <li>Benzo(k)fluoranthene</li> <li>Benzo(k)fluoranthene</li> </ul>                                                                                                                                                                                                                            | pyra<br>bbzp<br>33db<br>beza<br>dhry<br>bis4<br>dhop<br>bezt<br>bezt                                         |         |
| nne         77.47.4         5         1.28         ug/t           88.06-2         2         0.69         ug/t           95.69-4         4         0.52         ug/t           95.69-4         5         0.8         ug/t           131-11.3         5         0.8         ug/t           100-02.7         2         1.22         ug/t           100-02.7         20         1.57         ug/t           100-02.7         20         1.57         ug/t           110-02.7         20         1.53         ug/t           112-1.4.2         2         1.57         ug/t           110-02.7         20         1.53         ug/t           121-1.4.2         2         0.53         ug/t           121-1.4.2         2         0.53         ug/t           121-1.4.2         2         0.53         ug/t         1           121-1.4.2         2         0.53         ug/t         1           10-0.57.3         5         0.55         ug/t         1           10-0.51         1.1         0.8         ug/t         1           10-1.55.3         5         0.54         ug/t                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Di-n-butylphthalate<br/>Fluoranthene<br/>Pyrene<br/>Butylbenzylphthalate<br/>3,3'-Dichlorobenzidine<br/>Benzo(a)anthracene<br/>Benzo(a)anthracene<br/>bis(2-Etrylhexyl)phthalate<br/>Di-n-octylphthalate<br/>Benzo(b)fluoranthene</li> </ul>                                                                                                                                                                                                                                                                                             | pyre<br>bbzp<br>33db<br>beza<br>dhry<br>bis4<br>dnop<br>bezf                                                 |         |
| nne         77.47.4         5         1.28         ug/t           98-06-2         2         0.69         ug/t           95-86-4         4         0.52         ug/t           95-86-7         5         0.8         ug/t           131-11-3         5         0.8         ug/t           208-96-8         5         0.8         ug/t           99-96-2         2         1.22         ug/t           100-02-7         20         1.57         ug/t           112-14-2         2         1.57         ug/t           121-14-2         2         0.53         ug/t           121-14-2         2         0.53         ug/t         1           140-01-6         5         0.51         ug/t         1           100-02-7         5         0.53         ug/t         1           110-01-6         5         0.51         ug/t         1         1           110-01-6         4         0.69         ug/t         1         1           101-55-3         5         0.51         ug/t         1         1           110-74-1         1         0.8         ug/t         1         1 </td <td><ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3,3'-Dichlorobenzidine</li> <li>Benzo(a)anthracene</li> <li>Chrysene</li> <li>bis(2-Ethylhexyl)phthalate</li> <li>Di-n-octylphthalate</li> </ul></td> <td>pyre<br/>bbzp<br/>33db<br/>beza<br/>chty<br/>bis4</td> <td>21</td> | <ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3,3'-Dichlorobenzidine</li> <li>Benzo(a)anthracene</li> <li>Chrysene</li> <li>bis(2-Ethylhexyl)phthalate</li> <li>Di-n-octylphthalate</li> </ul>                                                                                                                                                                                                                                                                                        | pyre<br>bbzp<br>33db<br>beza<br>chty<br>bis4                                                                 | 21      |
| nne         77.47.4         5         1.28         ug/t           98.06-2         2         0.69         ug/t           95.86.4         4         0.52         ug/t           91.48.7         5         0.8         ug/t           131.11.3         5         0.8         ug/t           139.68.7         5         0.8         ug/t           98.06.20         2         1.22         ug/t           139.11.3         5         0.84         ug/t           139.71.4         5         0.84         ug/t           98.06.20         2         1.22         ug/t           139.11.3         5         0.84         ug/t           139.7         5         0.84         ug/t           100.02.7         20         1.37         ug/t           110.60.7.7.3         5         0.65         ug/t           110.61.7.7         5         0.51         ug/t           110.61.7.6         20         1.32         ug/t         1           110.61.7         5         0.51         ug/t         1           111.67.41         1         0.89         ug/t         1                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3,3*Dichlorobenzidine</li> <li>Benzo(a)anthracene</li> <li>Chrysene</li> <li>bis(2-Etrylhexyl)phthalate</li> </ul>                                                                                                                                                                                                                                                                                                                      | pyre<br>bbzp<br>33db<br>beza<br>chty<br>bis4                                                                 | 2       |
| IB         77.47.4         5         1.28         ug/t           88-06-2         2         0.59         ug/t           95-65-4         4         0.52         ug/t           131-11-3         5         0.8         ug/t           204-98-8         5         0.8         ug/t           98-09-2         2         1.22         ug/t           98-09-2         2         1.22         ug/t           98-09-2         2         1.22         ug/t           132-11-3         5         0.84         ug/t           132-11-3         5         0.95         ug/t           132-26-2         2         1.22         ug/t           132-64-3         5         0.85         ug/t           121-14-2         2         0.53         ug/t           132-64-3         5         0.51         ug/t           1100-01-6         4         0.89         ug/t         1           120-12-7         5         0.53         ug/t         1           101-55.3         5         0.51         ug/t         1           116-74-1         1         0.8         ug/t         1         1                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3,3'-Dichlorobenzidine</li> <li>Benzo(a)anthracene</li> <li>Chrysene</li> </ul>                                                                                                                                                                                                                                                                                                                                                         | pyra<br>bbzp<br>33db<br>beza<br>chty                                                                         | 2       |
| Ine         77.47.4         5         1.28         up/L           88.06-2         2         0.69         up/L           89.06-2         2         0.69         up/L           89.06-2         2         0.69         up/L           89.06-2         2         0.69         up/L           89.06-2         2         0.8         up/L           88.07.4         5         0.8         up/L           88.06-20         2         1.22         up/L           89-09-2         2         1.22         up/L           89-09-2         2         1.22         up/L           89-09-2         2         1.22         up/L           100-02-7         20         1.09         up/L           112-14.2         20         1.09         up/L           112-14.2         20         1.09         up/L           112-14.2         20         0.53         up/L           112-14.2         20         1.09         up/L           110-0.01-6         4         0.69         up/L           100-15-5         0.5         up/L         1           100-15-5         20         0.5         <                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3,3*-Dichlorobenzidine</li> <li>Benzo(a)anthracene .</li> </ul>                                                                                                                                                                                                                                                                                                                                                                         | pyre<br>bbzp<br>33db<br>beza                                                                                 | 1       |
| Ine         77.47.4         5         1.28 ug/L           88.06-2         2         0.59 ug/L           95.85-4         4         0.52 ug/L           91.58-7         5         0.8 ug/L           131.11.3         5         0.8 ug/L           208-96-8         5         0.8 ug/L           131.11.3         5         0.8 ug/L           208-96-8         2         1.22 ug/L           99-09-2         2         1.22 ug/L           100-02-7         20         1.98 ug/L           112.11.4         5         0.98 ug/L           122.64-9         5         0.80 ug/L           132.64-9         5         0.81 ug/L           132.64-9         5         0.81 ug/L           134.66-2         2         0.53 ug/L           104.66-2         2         0.53 ug/L           104.66-2         5         0.51 ug/L           104.66-3         5         0.51 ug/L           104.65-3         5         0.52 ug/L           98-072-7         5         0.52 ug/L           98-072-7         5         0.52 ug/L           98-071-8         5         0.52 ug/L           98-071-8                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Butylbenzylphthalate</li> <li>3,3'-Dichlorobenzidine</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                       | byre<br>33db                                                                                                 | 1       |
| Ine         77.47.4         5         1.28 ug/L           88-06-2         2         0.69 ug/L           95-85-4         4         0.52 ug/L           91-58-7         5         0.8 ug/L           131-11.3         5         0.8 ug/L           100-02-7         20         1.57 ug/L           100-02-7         20         1.57 ug/L           112-14-2         2         0.53 ug/L           110-01-6         4         0.69 ug/L           110-55-3         5         0.51 ug/L           100-61-6         5         0.51 ug/L           110-55-3         5         0.52 ug/L           120-12-7         5         0.52 ug/L           120-12-7                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Di-n-buty/phthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> <li>Buty/benzy/phthalate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       | pyra                                                                                                         | 1       |
| IB         77.47.4         5         1.28         up/L           98-06-2         2         0.89         up/L           95-95-4         4         0.52         up/L           91-58-7         5         0.89         up/L           131-11-3         5         0.89         up/L           208-96-8         5         0.89         up/L           88-74-4         5         0.89         up/L           131-11-3         5         0.89         up/L           208-96-8         5         0.89         up/L           83-32-9         5         0.89         up/L           100-02-7         20         1.57         up/L           1121-14-2         2         0.53         up/L           1121-14-2         2         0.53         up/L           110-02-7         5         0.57         up/L           110-02-7         5         0.53         up/L           110-02-7         5         0.53         up/L           110-02-7         5         0.51         up/L           100-01-6         4         0.69         up/L         1           110-15-53         5         <                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Di-n-butylphthalate</li> <li>Fluoranthene</li> <li>Pyrene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pyra                                                                                                         |         |
| IB         77.47.4         5         1.28 up/L           88-06-2         2         0.59 up/L           95-95-4         4         0.52 up/L           91-58-7         5         0.8 up/L           131-11-3         5         0.8 up/L           208-96-8         5         0.8 up/L           91-58-7         5         0.8 up/L           131-11-3         5         0.8 up/L           208-96-8         5         0.89 up/L           91-09-2         2         1.22 up/L           91-09-2         5         0.89 up/L           100-02-7         20         1.98 up/L           1132-14-2         2         0.51 up/L           121-14-2         2         0.53 up/L           132-44-9         5         0.67 up/L           132-44-9         5         0.53 up/L           100-01-6         4         0.68 up/L           100-01-6         5         0.51 up/L           100-01-6         4         0.69 up/L           100-01-6         5         0.51 up/L           100-01-7         5         0.51 up/L           100-01-8         5         0.51 up/L           101-55-3 <td><ul> <li>Di-n-butyiphthalate</li> <li>Fluoranthene</li> </ul></td> <td></td> <td>1</td>                                                                                                                                                                                                                                                | <ul> <li>Di-n-butyiphthalate</li> <li>Fluoranthene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              | 1       |
| In         17.47.4         5         1.28         ug/L           88-06-2         2         0.69         ug/L           95-85-4         4         0.52         ug/L           91-58-7         5         0.8         ug/L           131-11.3         5         0.8         ug/L           208-96-8         5         0.8         ug/L           88-74-4         5         0.8         ug/L           131-11.3         5         0.8         ug/L           208-96-8         5         0.8         ug/L           88-72-7         2         1.22         ug/L           100-02-7         20         1.57         ug/L         1           132-64-9         5         0.67         ug/L         1           132-64-9         5         0.53         ug/L         1           132-64-9         5         0.53         ug/L         1           100-02-7         20         1.53         ug/L         1           121-14-2         2         0.53         ug/L         1           121-14-2         5         0.53         ug/L         1           100-01-6         4 <td< td=""><td>Di-n-butylphthalate</td><td>flut</td><td>1</td></td<>                                                                                                                                                                                                                                                                                          | Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | flut                                                                                                         | 1       |
| Ine         77-47-4         5         1.28         ug/L           88-06-2         2         0.69         ug/L           95-85-4         4         0.52         ug/L           91-58-7         5         0.8         ug/L           131-11.3         5         0.8         ug/L           208-96-8         5         0.8         ug/L           131-11.3         5         0.8         ug/L           208-96-8         5         0.8         ug/L           131-11.3         5         0.8         ug/L           208-96-8         5         0.92         ug/L           100-02.7         2         1.22         ug/L           132-64-9         5         0.89         ug/L           132-64-9         5         0.67         ug/L           100-01-6         20         1.98         ug/L           100-01-6         4         0.69         ug/L           100-01-6         5         0.55         ug/L           100-01-6         4         0.69         ug/L           100-01-6         5         0.55         ug/L           100-01-6         5         0.55                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | đnbp                                                                                                         | 1       |
| Ine         77.47.4         5         1.28         ug/L           88-06-2         2         0.89         ug/L           88-06-2         2         0.89         ug/L           88-06-2         2         0.89         ug/L           88-06-2         2         0.89         ug/L           88-74-4         4         0.52         ug/L           131-11-3         5         0.8         ug/L           208-39-8         5         0.84         ug/L           89-09-2         2         1.22         ug/L           89-09-2         2         1.22         ug/L           89-09-2         5         0.98         ug/L           100-02-7         20         1.98         ug/L           132-64-9         5         0.57         ug/L           132-64-9         5         0.51         ug/L           132-64-9         5         0.53         ug/L           132-64-9         5         0.53         ug/L           132-64-9         5         0.53         ug/L           100-01-6         4         0.69         ug/L         1           101-55-3         5         0.5                                                                                                                                                                                                                                                                                                                                                      | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | anth                                                                                                         | 28      |
| Ine         77.47.4         5         1.28         ug/L           88-06-2         2         0.89         ug/L           88-74-4         4         0.52         ug/L           131-11-3         5         0.84         ug/L           208-96-8         5         0.84         ug/L           606-20-2         2         1.22         ug/L           89-09-2         5         0.84         ug/L           89-09-2         5         0.84         ug/L           100-02-7         20         1.98         ug/L           132-64-9         5         0.67         ug/L           132-64-9         5         0.67         ug/L           132-64-9         5         0.63         ug/L           100-01-6         20         0.53         ug/L           100-01-6         4         0.69         ug/L           101-55-3         5         0.51 <t< td=""><td>Phenanthrene</td><td>phth</td><td>8</td></t<>                                                                                                                                                                                                                                                                                                 | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | phth                                                                                                         | 8       |
| IP         77.47.4         5         1.28         ug/L           88-06-2         2         0.89         ug/L           85-95.4         4         0.52         ug/L           91-58-7         5         0.8         ug/L           131-11-3         5         0.8         ug/L           208-96-8         5         0.84         ug/L           89-09-2         2         1.22         ug/L           99-09-2         5         0.84         ug/L           100-02-7         20         1.93         ug/L           132-64-9         5         0.93         ug/L           132-64-9         5         0.83         ug/L           132-64-9         5         0.67         ug/L           132-64-9         5         0.67         ug/L           100-02-7         20         1.98         ug/L           100-01-6         2         0.53         ug/L           100-01-6         4         0.69         ug/L           101-55-3         5         0.58         ug/L           101-55-3         5         0.59         ug/L           118-74-1         1         0.8 <td< td=""><td>Pentachlorophenol</td><td>ptd</td><td></td></td<>                                                                                                                                                                                                                                                                                             | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ptd                                                                                                          |         |
| Ine         77.47.4         5         1.28         ug/L           88-06-2         2         0.89         ug/L           85-85-4         4         0.52         ug/L           91-58-7         5         0.8         ug/L           131-11-3         5         0.8         ug/L           208-96-8         5         0.84         ug/L           88-74.4         5         0.8         ug/L           131-11-3         5         0.84         ug/L           208-96-8         5         0.84         ug/L           88-74.4         5         0.84         ug/L           131-11-3         5         0.84         ug/L           208-96-8         5         0.84         ug/L           88-32-9         5         0.84         ug/L           100-02-7         20         1.98         ug/L           132-64-9         5         0.87         ug/L           132-64-9         5         0.87         ug/L           132-64-9         5         0.83         ug/L           100-02-7         20         1.98         ug/L           100-01-6         20         0.55 <t< td=""><td>Hexachlorobenzene</td><td>hecb</td><td></td></t<>                                                                                                                                                                                                                                                                                             | Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hecb                                                                                                         |         |
| Ine         77.47.4         5         1.28         ug/L           88-06-2         2         0.89         ug/L           89-06-2         2         0.89         ug/L           91-58-7         5         0.8         ug/L           131-11-3         5         0.8         ug/L           200-96-8         5         0.84         ug/L           80-73-7         5         0.84         ug/L           83-32-9         5         0.86         ug/L           83-32-9         5         0.86         ug/L           100-02-7         20         1.57         ug/L         1           132-64-9         5         0.67         ug/L         1           132-64-9         5         0.51         ug/L         1           132-74-2         2         0.53         ug/L         1         1           132-64-9         5         0.51         ug/L         1         1           132-64-9         5         0.51         ug/L         1         1           100-01-72-3         5         0.51         ug/L         1         1           100-01-6         4         0.69         ug/                                                                                                                                                                                                                                                                                                                                               | 4-Bromophenylphenyl ather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4bpp                                                                                                         |         |
| Ine         77.47.4         5         1.28         ug/L           88-06-2         2         0.89         ug/L           88-06-2         2         0.89         ug/L           88-06-2         2         0.89         ug/L           88-06-2         2         0.89         ug/L           89-06-2         2         0.89         ug/L           89-08-7         5         0.8         ug/L           131-11-3         5         0.84         ug/L           208-96-8         5         0.84         ug/L           606-20-2         2         1.22         ug/L           89-09-2         2         1.22         ug/L           89-09-2         5         0.86         ug/L           83-32-9         5         0.86         ug/L           83-32-9         5         0.86         ug/L           100-02-7         20         1.57         ug/L           132-64-9         5         0.67         ug/L           132-64-9         5         0.63         ug/L           132-64-3         5         0.63         ug/L           120-14-2         2         0.53         ug                                                                                                                                                                                                                                                                                                                                                      | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nndp                                                                                                         |         |
| a     77-47-4     5     1.28     ug/L       88-06-2     2     0.89     ug/L       95-95-4     4     0.52     ug/L       91-58-7     5     0.8     ug/L       91-58-7     5     0.8     ug/L       131-11-3     5     0.8     ug/L       208-96-8     5     0.84     ug/L       131-11-3     5     0.84     ug/L       208-96-8     5     0.84     ug/L       606-20-2     2     1.22     ug/L       89-09-2     5     0.39     ug/L       100-02-7     20     1.57     ug/L       100-02-7     20     1.57     ug/L       132-64-9     5     0.67     ug/L       132-64-9     5     0.67     ug/L       132-64-9     5     0.67     ug/L       121-14-2     2     0.53     ug/L       121-14-2     2     0.53     ug/L       121-14-2     2     0.53     ug/L       186-73-7     5     0.68     ug/L       190-01-6     4     0.69     ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,6-Dinitro-2-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46dp                                                                                                         |         |
| a     77-47-4     5     1.28     ug/L       88-06-2     2     0.69     ug/L       95-85-4     4     0.52     ug/L       91-58-7     5     0.8     ug/L       131-11-3     5     0.8     ug/L       208-96-8     5     0.84     ug/L       131-11-3     5     0.84     ug/L       208-96-8     5     0.95     ug/L       88-73-7     5     0.95     ug/L       100-02-7     20     1.57     ug/L       100-02-7     20     1.57     ug/L       100-02-7     20     1.08     ug/L       112-14-2     2     0.53     ug/L       121-14-2     5     0.51     ug/L       121-14-2     5     0.51     ug/L       121-14-2     5     0.51     ug/L       132-64-9     5     0.51     ug/L       143-66-2     5     0.51     ug/L       154-66-2     5     0.51     ug/L       164-66-2     5     0.51     ug/L       17005-72-3     5     0.55     ug/L       186-73-7     5     0.56     ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4nin                                                                                                         |         |
| a     77-47-4     5     1.28     ug/L       88-06-2     2     0.69     ug/L       85-85-4     4     0.52     ug/L       91-58-7     5     0.8     ug/L       131-11-3     5     0.8     ug/L       208-96-8     5     0.94     ug/L       131-11-3     5     0.94     ug/L       208-96-8     5     0.95     ug/L       806-20-2     2     1.22     ug/L       806-20-2     2     1.22     ug/L       806-20-2     2     1.22     ug/L       806-20-2     5     0.98     ug/L       83-32-9     5     0.98     ug/L       651-28-5     20     1.57     ug/L       100-02-7     20     1.57     ug/L       132-64-9     5     0.67     ug/L       132-64-9     5     0.53     ug/L       121-14-2     2     0.53     ug/L       121-14-2     5     0.63     ug/L       121-14-2     5     0.53     ug/L       121-14-2     5     0.53     ug/L       121-14-2     5     0.53     ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fluo                                                                                                         |         |
| atlene         77.47.4         5         1.28         ug/L           88-06-2         2         0.69         ug/L           95-85-4         4         0.52         ug/L           91-58-7         5         0.8         ug/L           131-11-3         5         0.64         ug/L           208-96-8         5         0.64         ug/L           131-11-3         5         0.64         ug/L           208-96-8         5         0.54         ug/L           606-20-2         2         1.22         ug/L           83-32-9         5         0.96         ug/L           83-32-9         5         0.96         ug/L           83-32-9         5         0.96         ug/L           1100-02-7         20         1.57         ug/L         1           132-64-9         5         0.67         ug/L         1           121-14-2         2         0.51         ug/L         1           84-66-2         5         0.51         ug/L         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-Chlorophenylphenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4cph                                                                                                         |         |
| atlene         77.47.4         5         1.28         ug/L           98-06-2         2         0.69         ug/L           95-95-4         4         0.52         ug/L           91-58-7         5         0.8         ug/L           131-11-3         5         0.8         ug/L           208-96-8         5         0.84         ug/L           606-20-2         2         1.22         ug/L           89-09-2         5         0.36         ug/L           89-09-2         5         0.36         ug/L           99-09-2         5         0.36         ug/L           83-32-8         5         0.36         ug/L           83-32-8         5         0.36         ug/L           100-02-7         20         1.57         ug/L         1           132-64-9         5         0.67         ug/L         1           121-14-2         2         0.53         ug/L         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Disthylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dpht                                                                                                         |         |
| atiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>95-65-4 4 0.52 ug/L<br>91-58-7 5 0.8 ug/L<br>131-11-3 5 0.64 ug/L<br>206-96-8 5 0.95 ug/L<br>606-20-2 2 1.22 ug/L<br>99-09-2 5 0.98 ug/L<br>93-32-9 5 0.98 ug/L<br>1100-02-7 20 1.57 ug/L<br>132-64-9 5 0.67 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24dt                                                                                                         |         |
| adiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>86-65-4 4 0.52 ug/L<br>91-58-7 5 0.8 ug/L<br>131-11-3 5 0.64 ug/L<br>208-96-8 5 0.95 ug/L<br>606-20-2 2 1.22 ug/L<br>99-09-2 5 0.98 ug/L<br>83-32-8 5 0.98 ug/L<br>100-02-7 20 1.08 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dibz                                                                                                         |         |
| adiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>94-68-7 4 0.52 ug/L<br>94-58-7 5 0.8 ug/L<br>88-74-4 5 0.8 ug/L<br>131-11-3 5 0.64 ug/L<br>208-96-8 5 0.95 ug/L<br>606-20-2 2 1.22 ug/L<br>83-32-9 5 0.86 ug/L<br>51-28-5 20 1.57 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4nph                                                                                                         |         |
| atiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.89 ug/L<br>95-95-4 4 0.52 ug/L<br>91-58-7 5 0.8 ug/L<br>88-74-4 5 0.8 ug/L<br>131-11-3 5 0.84 ug/L<br>208-96-8 5 0.84 ug/L<br>606-20-2 2 1.22 ug/L<br>89-09-2 5 0.98 ug/L<br>83-32-8 5 0.86 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24dp                                                                                                         |         |
| atiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>95-95-4 4 0.52 ug/L<br>91-58-7 5 0.8 ug/L<br>88-74-4 5 0.6 ug/L<br>131-11-3 5 0.64 ug/L<br>208-96-8 5 0.95 ug/L<br>606-20-2 2 1.22 ug/L<br>99-09-2 5 0.99 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acp1                                                                                                         |         |
| adiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>96-95-4 4 0.52 ug/L<br>91-58-7 5 0.8 ug/L<br>88-74-4 5 0.6 ug/L<br>131-11-3 5 0.64 ug/L<br>208-96-8 5 0.95 ug/L<br>606-20-2 2 1.22 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3nin                                                                                                         |         |
| adiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>95-95-4 4 0.52 ug/L<br>91-58-7 5 0.8 ug/L<br>88-74-4 5 0.6 ug/L<br>131-11-3 5 0.64 ug/L<br>208-96-8 5 0.95 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26dt                                                                                                         |         |
| atiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>95-95-4 4 0.52 ug/L<br>91-58-7 5 0.8 ug/L<br>68-74-4 5 0.6 ug/L<br>131-11-3 5 0.64 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | acp2                                                                                                         |         |
| atiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>96-95-4 4 0.52 ug/L<br>91-58-7 5 0.8 ug/L<br>88-74-4 5 0.6 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dimethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dipt                                                                                                         |         |
| adiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>95-85-4 4 0.52 ug/L<br>91-58-7 5 0.8 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2nnl                                                                                                         |         |
| adiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L<br>95-95-4 4 0.52 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2cna                                                                                                         |         |
| adiene 77-47-4 5 1.28 ug/L<br>88-06-2 2 0.69 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2415                                                                                                         |         |
| 77-47-4 5 1.28 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2406                                                                                                         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hecc                                                                                                         |         |
| 91-57-8 5 0.99 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2myp                                                                                                         |         |
| 59-50-7 20 0.62 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4c3m                                                                                                         |         |
| 87-68-3 2 1.08 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hexachloro-1,3-butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t h13b                                                                                                       |         |
| ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8270 WSEP 4cha                                                                                               | EP 8270 |
| CAS No. POL MDL Units Figs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cmp List Cmp                                                                                                 |         |

Monday, April 16, 2018 10:33:33 AM

Page 3 of 4

# **Profile List**

PASI Ormond Beach Laboratory

Client 37-ECTTAM

- 1

Profile Number 9321

Line Item --

> ace Analytica Page 44 of 45 18,001

|            |                          |                |                    |                    |                           |                     |           |                        |                            |           |           |                       | Line      |
|------------|--------------------------|----------------|--------------------|--------------------|---------------------------|---------------------|-----------|------------------------|----------------------------|-----------|-----------|-----------------------|-----------|
| SUBOUT-OUT | FLPRO WLV                |                |                    |                    |                           |                     |           |                        |                            |           |           | 8270 WSEP             | tem Acode |
|            | FLPRO WLV                |                |                    |                    |                           |                     |           |                        |                            |           |           | 8270 WSEP             | Cmp List  |
|            | pro                      | beal           | 13dn               | 12dnb              | 2366                      | 1mpe                | руп       | nndm                   | bis0                       | bezd      | and       | 12dz                  | Cmp       |
|            | Petroleum Range Organics | Benzyl alcohol | 1,3-Dinitrobenzene | 1,2-Dinitrobenzene | 2,3,5,8-Tetrachlorophenol | 1-Methylnaphthalene | Pyridine  | N-Nitrosodimethylamine | bis(2-Chloroethoxy)methane | Benzidine | Aniline   | 1,2-Diphenylhydrazine | Analyte   |
|            |                          | 100-51-6       | 99-65-0            | 528-29-0           | 935-95-5                  | 90-12-0             | 110-86-1  | 62-75-8                | 111-91-1                   | 92-87-5   | 62-53-3   | 122-86-7              | CAS No.   |
|            |                          | 5              | 8                  | C3                 | Ċh.                       | 5                   | 5         | 2                      | 5                          | 25        | 5         | 5                     | PQL       |
|            | 0.8 mg/L                 | 0.63 ug/L      | 0.297 ug/L         | 0.327 ug/L         | 0.52 ug/L                 | 1 ug/L              | 1,49 ug/L | 0.97 ug/L              | 2.95 ug/L                  | 0.77 ug/L | 1.98 ug/L | 0.33 ug/L             | MDL Units |
|            | m                        | m              | m                  | m                  | m                         | m                   | m         | m                      | m                          |           | m         | m                     | Sig       |

\*The MDLs listed are not instrument specific.

\*Significant Figures: Numeric Value -The actual number of significant figures

E (EPA) - Numbers less than 10 have 2 significant figures and numbers greater than or equal to 10 have 3 significant figures

O (Organics) -M (Metals) - Numbers less than 100 have 2 significant figures and numbers greater than or equal to 100 have 3 significant figures Numbers less than 1 have 1 significant figures, numbers less than 100 but not less than 1 have 2 significant figures, and n greater than or equal to 100 have 3 significant figures.

| Form<br>SDG#                        | 1.00            |                       |
|-------------------------------------|-----------------|-----------------------|
| SDG#                                | 1.00            | and the second second |
|                                     | 1981            | 311                   |
| Temperature:                        | - ct            | I                     |
|                                     |                 | 1000                  |
| Sec. 1                              |                 | 1                     |
| NP                                  | Yes             | No                    |
| a se su an consegurar por           |                 | - C.                  |
| which is supported and the          | ~               | 12223                 |
|                                     | -               |                       |
| and the second second second second | -               | Ar South              |
|                                     | /               | 1.1.1.1               |
| A DECEMBER OF STREET                |                 |                       |
|                                     |                 | 1012000               |
|                                     | Contract Sector |                       |
|                                     | Temperature:    | NP Yes                |

#### Industrial Waste Operating Report Form (IWORF)

×

| Permit #:                                           | IW-333                                                          | Permit Year:                                                                     | 2018                                 | Reports must be mailed to:<br>Department of Regulatory and Economic Resources                                                                                  |
|-----------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Facility Name:                                      | SAFETY-KLEEN SYS                                                | TEMS, INC.                                                                       |                                      | Environmental Resources Management<br>701 NW 1st Ct, Suite #700                                                                                                |
| Facility Address:                                   | 8755 NW 95 ST                                                   |                                                                                  |                                      | Miami, FL 33136-3912                                                                                                                                           |
|                                                     | MEDLEY, FL 33178                                                |                                                                                  |                                      |                                                                                                                                                                |
| Contact Name:                                       | Mr. Larry Rodriguez                                             |                                                                                  |                                      |                                                                                                                                                                |
| being reported and atta<br>document for more info   | ich the applicable information<br>primation on reporting and sa | <ol> <li>(e.g. waste manifests, a</li> </ol>                                     | analytical results, etc.) as require | a) from the listing below. In addition, indicate the period<br>ad by each Source Type. Refer to the operating permit<br>applicable to the referenced facility. |
| Source Type:R<br>Description: Co<br>Information sha | R-1<br>pies of manifests and/or rec                             | Reporting Frequency:<br>eipts of all hazardous was<br>lume and final destination | •                                    | Reporting Period:<br>astewater, sludge and/or ash disposed of.<br>ned on-site for review.                                                                      |
| Sampling Requirer                                   | nents:                                                          |                                                                                  |                                      | ( )                                                                                                                                                            |
| Source Type: SM                                     | 1P-1                                                            | Reporting Frequency                                                              | : Annually                           | Reporting Period: 6/15/19                                                                                                                                      |
| Description: Grou                                   | undwater from the facility mo                                   | nitoring well(s).                                                                |                                      |                                                                                                                                                                |
| Parameters: Cad                                     | mium (Total), Chromium (To                                      | otal), Lead (Total), Silver (                                                    | (Total)                              |                                                                                                                                                                |
| Source Type: SN                                     | IP-2                                                            | Reporting Frequency:                                                             | : Annually                           | Reporting Period: 6/15/19                                                                                                                                      |
|                                                     | undwater from monitoring we<br>Series 8260, EPA Series 8        |                                                                                  | nt area stormwater discharge po      | int.                                                                                                                                                           |
| Average Daily Was                                   |                                                                 |                                                                                  |                                      |                                                                                                                                                                |
| Sewers:                                             | te Water Flow Discha                                            | rge to Sanitary                                                                  |                                      | Gallons Per Day (GPD)                                                                                                                                          |
| Sewers:                                             |                                                                 |                                                                                  | and all attachments are tru          |                                                                                                                                                                |

еро omp



June 5, 2019 180212-1901

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** Environmental Resources Management 701 NW 1<sup>st</sup> Court, Suite #700 Miami, Florida 33136-3192

#### Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2018/2019 (File # 10139) Annual Report of Groundwater Quality

Dear Mr. Montano:

On behalf of Safety-Kleen Systems, Inc. (S-K), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for S-K's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On May 2, 2019, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FLPRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed Figure 2.1-1.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in <u>Attachment B</u>.

The laboratory report indicated that concentrations for three of the four metals (i.e., silver, cadmium, and lead) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.62I micrograms per liter ( $\mu$ g/L) at monitoring well MW-2R and 0.79I  $\mu$ g/L at monitoring well MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are far below the groundwater cleanup target level (GCTL) of 100  $\mu$ g/L for chromium as specified in the permit. Chromium was also detected at a concentration of 1.4  $\mu$ g/L at monitoring well MW-1 but was well below its GCTL of 100  $\mu$ g/L for chromium as specified in the permit.

1408 N Westshore Blvd, Suite 115 Tampa, FL 33607

(813) 289-9338

FAX (813) 289-9388

P:\S1153\_SAFETY KLEEN\SK MEDLEY 180212\2019\2019 ANNUAL REPORT\ANNUAL\_RPT.DOCX.1

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** June 5, 2019 Page 2

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

- 1. FLPRO concentrations were below the MDL; that is, none was detected.
- 2. No SVOC was detected (i.e., EPA Series 8270 parameters).
- 3. No VOC was detected (i.e., EPA Series 8260 parameters) with one exception. Specifically, acetone was detected at an estimated concentration of 7.9I  $\mu$ g/L. However, that concentration was detected between the laboratory MDL and the laboratory PQL and is far below its GCTL of 6,300  $\mu$ g/L as specified in the permit. In addition, acetone is a recognized laboratory contaminant and was also detected at an estimated concentration of 5.8I  $\mu$ g/L in the trip blank provided by the laboratory.

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of S-K at (561) 523-4719. Thank you.

Sincerely,

#### ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.

There 7. Morrison

Keith F. Morrison Project Manager

Fry B. B. -

Gregory B. Page, P.E. Senior Engineer III

#### SAFETY-KLEEN SYSTEMS, INC.

Jeff Curtis EHS Manager, Florida Safety-Kleen Systems, Inc. 5610 Alpha Drive Boynton Beach, Florida 33426 jeff.curtis@safety-kleen.com

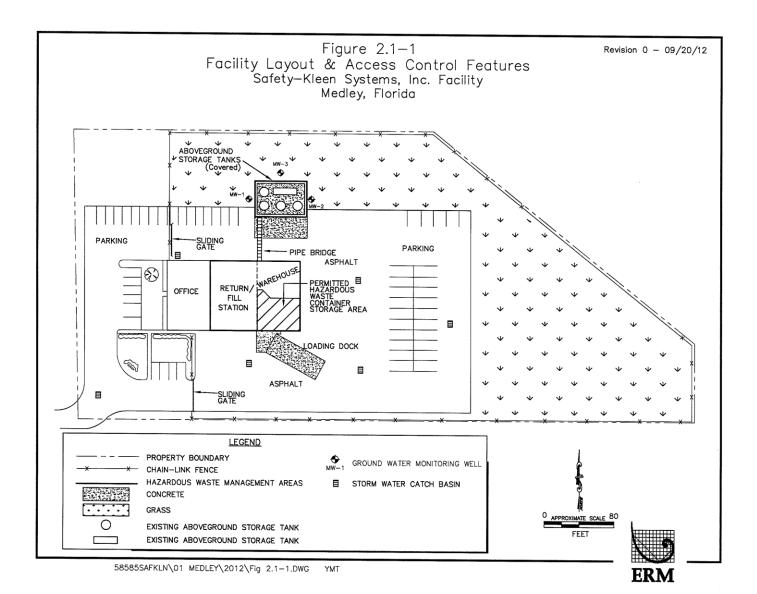

Enclosures:

Figure 2.1-1 Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration Logs Attachment B - Laboratory Report

cc: Robert Schoepke – S-K (electronic only) Greg Page – ECT (electronic only) Keith Morrison – ECT (electronic only) Facility 999 File #1760, % S-K Medley facility Branch General Manager



FIGURE



# ATTACHMENT A

# FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

Safety Kleen-Medlay/2019 Annual P.2 180212-0200 Ground water Montoning Event ECT-Rach Morrison 5-1-19 8 5-2-19 -10 5-) 41) fro mobilize 1200 0 TAMPA PL. 604 ad C FA 24 Ø m 5.2 Ca 630 off 5 p P 100 B C 825 Wells -2R+ Dr 1 Mu n JE 4 5 well Lidlcap condition 2 V A STANKING 840 33 mer 9000 836 60 MW-2R Sadd 839 MW Ø 9.0hd 845 ił. QALQE Scuples ×909 2 BZ TO + TRPHS ed fur GA বি 928 Cumple Ś MW 3 3/ punging X 1002 Sa MW 3 DIN ž Z-Sgallen Bucketsof ID Burge Mater generate Cheekout of office 2 C Samplin X 1035 MW 1 f-1 ECT-11 S Ba 1600 met conternat Unional 102: caller 133 compete = 10.0 mo ट्य Keith & Mrion

#### DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| Well No. MW-1         SAMPLE ID: MW-1-0_502(9         DATE: 5/2/19           PURCING DATA         PURCING DATA         PURCING CATA         PURCING CATA           Well Content removal<br>(overline)         2         TUBRING 1/02/0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SITE<br>NAME: Sa      | fety Kleen                    | Svstems.                              | Inc.                                    | denie a                  |                           | ITE<br>OCATION:                                                                                                 | 8755 NW                               | / 95 <sup>th</sup> \$ | Street, N                     | Vedley, Fl      |                          |                     |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|---------------------------------------|-----------------------------------------|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-------------------------------|-----------------|--------------------------|---------------------|---------|
| PURCING DATA           PURCING DATA           PURCING PURCING 2012         PURCING 2012         PURCING PURCING                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                               |                                       |                                         | SAMPL                    |                           |                                                                                                                 |                                       |                       |                               |                 |                          | -                   |         |
| WELL<br>DUMETER (Inches):         TUBING         NO-OD<br>Inches         WELL SCREEN INTERNAL<br>DUMETER (Inches):         TOTAL DEPTH<br>Inches         TOTAL DEPTH Inches         TOTAL DEPTH<br>Inches         TOTAL DEPTH<br>Inches         TOTAL DEPTH Inches         TOTAL DEPTH<br>Inches         TOTAL DEPTH Inches         TOTAL DEPTH<br>Inches         TOTAL DEPTH<br>Inches         TOTAL DEPTH Inches         TOTAL DEPTH Inches         TOTAL DEPTH Inches         TOTAL DEPTH<br>Inches         TOTAL DEPTH Inches         T                                                                                                                                                                                                                           |                       | - 130                         |                                       |                                         |                          |                           | the second se |                                       |                       |                               |                 |                          |                     | -       |
| (and if applicable)       = (1.2 test - 3.2.5 test) x 0.16 gallora/loc = 1.2.7 gallors         EGUARMENT VOLME PURKET VOLME - (UNING CARACITY X TUBING LENGTH) + FLOW CELL VOLUME       gallors + (gallora/loc x) fest) + gallors = gallors       gallors + (gallora/loc x) fest) + gallors = gallors       gallors = (gallora/loc x) fest) + gallora = gallors       gallors = (gallora/loc x) fest) + gallora = gallors       gallors = (gallora/loc x) fest) + gallora = gallors       gallors = (gallora/loc x) fest) + gallora = gallors       gallors = (gallora/loc x) fest) + gallora = gallors       gallors = (gallora/loc x) fest) + gallora = gallors       gallora = (gallora/loc x) fest) + gallora = gallors       gallora = (gallora/loc x) fest) + gallora = gallors       gallora = (gallora) fest) + gallora = (gallora) + gallora = (gallora) fest = (ga |                       |                               | DIAME                                 | ER (inches):1                           | /8-ID DE                 | ELL SCREEN<br>PTH: 2 feet | I INTERVAL<br>to 12 feet                                                                                        | . STA<br>TO                           | WATER                 | t (feet): 3                   | ,25             |                          |                     |         |
| (anty Biout J applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (only fill out        | if applicable)                |                                       | = (                                     | 11.2                     | 2 feet 💈                  | 3.25                                                                                                            | feet)                                 | x (                   | 0.16                          | gallon          |                          | 7g                  | allons  |
| NITAL PUMP OR TUBING         7.0         FINAL PUMP OR TUBING         7.0         PURGING         TOTAL PUMP OR TUBING         7.0         PURGING         TOTAL PUMP OR TUBING         7.0         PURGING         TOTAL VOLUME         PURGING         COULD         TOTAL VOLUME         PURGING         COULD         TOTAL VOLUME         PURGING         COULD         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                               |                                       |                                         |                          |                           |                                                                                                                 |                                       |                       |                               |                 |                          | = gal               | ons     |
| TIME         VOLUME<br>(pallons)         CUNUL<br>VOLUME<br>(pallons)         PURGE<br>RATE<br>(gallons)         DEPTH<br>TO<br>MATERN<br>(les)         H<br>(tes)         TEMP:<br>(c)         COND.<br>(creating)         DISSOLVED<br>(creating)         TURBDITY<br>(c)         COLOR<br>(describe)         ODOR<br>(describe)         ODOR<br>(descri                                                                                                                                                                                                                     |                       |                               | <sup>G</sup> 7.0                      |                                         |                          |                           | PURC<br>INITI/                                                                                                  |                                       | 011                   | PURGIN                        |                 |                          | UME<br>allons):     | 9       |
| 1021       0.24       1.60       3.41       7.05       26.31       5.40       0.30       0.49       1       2.00         1031       0.24       1.69       3.41       7.05       26.34       5.37       0.29       0.29       1       2.00         1034       0.24       1.69       3.41       7.05       26.34       5.37       0.29       0.90       1       2.00         WELL CAPACITY (Galons Per Foot):       0.75" = 0.02;       1" = 0.06;       2" = 0.16;       3" = 0.37;       4" = 0.65;       5" = 1.47;       12" = 5.88         WELL CAPACITY (Galons Per Foot):       0.75" = 0.02;       1" = 0.04;       1.25" = 0.06;       2" = 0.16;       3" = 0.37;       4" = 0.65;       5" = 1.47;       12" = 5.88         WELL CAPACITY (Galons Per Foot):       0.75" = 0.02;       1" = 0.04;       125" = 0.06;       2" = 0.16;       3" = 0.37;       4" = 0.65;       5" = 1.47;       12" = 5.88         UBING IDAL CAPACITY (Galons Per Foot):       0.75" = 0.02;       11" = 0.04;       125" = 0.06;       2" = 0.16;       3" = 0.37;       4" = 0.65;       5" = 1.47;       12" = 5.88         SAMPLE DE CONTAINER DAL CAPACITY (Galons Per Foot):       0.75" = 0.02;       If" = 0.04;       If" = 0.04;       If" = 0.06;       If" = 0.06;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TIME                  | PURGED                        | VOLUME<br>PURGED                      | RATE                                    | TO<br>WATER              | (standard                 |                                                                                                                 | (circle units)<br>µmh <u>os/m</u>     |                       | (YGEN<br>cle units)<br>g/L or |                 |                          | ODOR                | ORP     |
| No.34         0.24         1.84         3.91         7.06         26.34         5.37         0.2.9         0.80         1         2.0           WELL CAPACITY (Galons Per Fool):         0.75" = 0.02;         1" = 0.04;         1.25" = 0.06;         2" = 0.16;         3" = 0.03;         4" = 0.06;         5" = 1.02;         6" = 1.47;         12" = 5.88           WELL CAPACITY (Galons Per Fool):         0.75" = 0.02;         1" = 0.04;         1.25" = 0.06;         2" = 0.16;         3" = 0.03;         4" = 0.06;         12" = 0.04;         12" = 5.88           UBING INSIDE DIA. CAPACITY (Galons Per Fool):         0.75" = 0.02;         1" = 0.04;         1.25" = 0.06;         2" = 0.16;         3" = 0.03;         3" = 0.06;         12" = 5.88           UBING INSIDE DIA. CAPACITY (Galons Per Fool):         0.75" = 0.02;         1" = 0.04;         1.25" = 0.06;         2" = 0.16;         3" = 0.01;         3" = 0.01;         12" = 5.88           SAMPLING COUPMENT CODES:         B = Baider, Purp:         EP = Electric Submersible Purp:         P = Peristatic Purp:         P = Peristatic Purp:         0 = Other (Specify)           SAMPLING COUPMENT CODES:         TO         TUBING MATERIA         To BUNG MATERIA         To BUNG MATERIA         To BUNG MATERIA         ENDED ANALYSIS         SAMPLE PURP:           SAMPLE CONTAINER SPECIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1028                  | 1.36                          | 1,36                                  | 0.08                                    | 3.41                     | 7.04                      | 2631                                                                                                            | 544                                   | 0.'                   | 29                            | 1.29            | Chear_                   | None                | -20     |
| N 34         0.24         1.84         3.41         7.06         26.34         5.37         0.2.9         0.90         1         2.0           WELL CAPACITY (Galions Per Foot):         0.75" = 0.02:         1" = 0.04:         1.25" = 0.06:         2" = 0.16:         3" = 0.06:         3" = 0.06:         12" = 5.88           WELL CAPACITY (Galions Per Foot):         0.75" = 0.02:         1" = 0.04:         1.25" = 0.06:         2" = 0.16:         3" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         12" = 0.06:         10" = 0.06:         10" = 0.06:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1031                  | 0.24                          | 1.60                                  |                                         | 3.41                     | 7.05                      | 26.32                                                                                                           | 540                                   | 0.                    | 30                            | 0.98            |                          | 1                   | - 204   |
| TUBING INSIDE DIA: CAPACITY (Gal/FL): 116*=0.0006; 3/16*=0.0014; 1/4*=0.0026; 5/16*=0.004; 3/16*=0.006; 1/2*=0.016; 5/16*=0.0016; 1/2*=0.016; 5/16*=0.0016; 1/2*=0.010; 5/16*=0.016         PURGING EQUIPMENT CODES:       B = Bailer;       B = Bialer; BP = Biader Pump; ESP = Electric Submersible Pump; PP = Peristalic Pump; O = Other (Specify)         SAMPLED BY (PRINT) / AFFILIATION:       SAMPLED BY (PRINT) / AFFILIATION:       DAMPLEP(S) SIGNATURE(S):       MITIATED AT: 10.3.5       SAMPLING DATA         MATERIAL CODE:       TUBING       MATERIAL CODE:       HDPE       FIELD-FILTERED: Y (N)       FIELTEN SIZE:       µm         SAMPLE CONTAMINATION:       PUMP Y (N)       TUBING Y (N) explaced)       DUPLICATE: Y (N)       N       FILTEN SIZE:       µm         SAMPLE CONTAMINATION:       PUMP Y (N)       TUBING Y (N) explaced)       DUPLICATE: Y (N)       N       FILTEN SIZE:       µm         SAMPLE CONTAMINER SPECIFICATION       SAMPLE PRESERVATION (including wet ice)       INTENDED ANALYSIS       SAMPLE PUMP       FLOW FAIT         CODE       CONTAMERS       CODE       VOLUME       PRESERVATION (Including wet ice)       INTENDED ANALYSIS       SAMPLE PUMP         SAMPLE CONTAINER SPECIFICATION       SAMPLE PUMP       ADDED IN FIELD (mL)       FINAL       ADDED M FIELD (mL)       INTENDED ANALYSIS       SAMPLE PUMP         SODI 1       PE       250 mil       HNO3+ ICe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1034                  | 0.24                          | 1.84                                  | $\downarrow$                            | 3.41                     | 7.06                      | 26.34                                                                                                           | 537                                   | 0,                    | 29                            | 0.90            |                          |                     | - 208   |
| TUBING INSIDE DIA: CAPACITY (Gal/FL): 116*=0.0006; 3/16*=0.0014; 1/4*=0.0026; 5/16*=0.004; 3/16*=0.006; 1/2*=0.016; 5/16*=0.0016; 1/2*=0.016; 5/16*=0.0016; 1/2*=0.010; 5/16*=0.016         PURGING EQUIPMENT CODES:       B = Bailer;       B = Bialer; BP = Biader Pump; ESP = Electric Submersible Pump; PP = Peristalic Pump; O = Other (Specify)         SAMPLED BY (PRINT) / AFFILIATION:       SAMPLED BY (PRINT) / AFFILIATION:       DAMPLEP(S) SIGNATURE(S):       MITIATED AT: 10.3.5       SAMPLING DATA         MATERIAL CODE:       TUBING       MATERIAL CODE:       HDPE       FIELD-FILTERED: Y (N)       FIELTEN SIZE:       µm         SAMPLE CONTAMINATION:       PUMP Y (N)       TUBING Y (N) explaced)       DUPLICATE: Y (N)       N       FILTEN SIZE:       µm         SAMPLE CONTAMINATION:       PUMP Y (N)       TUBING Y (N) explaced)       DUPLICATE: Y (N)       N       FILTEN SIZE:       µm         SAMPLE CONTAMINER SPECIFICATION       SAMPLE PRESERVATION (including wet ice)       INTENDED ANALYSIS       SAMPLE PUMP       FLOW FAIT         CODE       CONTAMERS       CODE       VOLUME       PRESERVATION (Including wet ice)       INTENDED ANALYSIS       SAMPLE PUMP         SAMPLE CONTAINER SPECIFICATION       SAMPLE PUMP       ADDED IN FIELD (mL)       FINAL       ADDED M FIELD (mL)       INTENDED ANALYSIS       SAMPLE PUMP         SODI 1       PE       250 mil       HNO3+ ICe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                               |                                       |                                         |                          |                           |                                                                                                                 |                                       |                       |                               |                 |                          |                     |         |
| SAMPLED BY (PRINT) / AFFILIATION:         SAMPLED BY (PRINT) / AFFILIATION:         SAMPLED BY (PRINT) / AFFILIATION:       SAMPLER(S) SIGNATURE(S):       SAMPLEN(S) SAMPLING       SAMPLEN(S) SAMPLING (S):       SAMPLED AT:       ID 38         PUMP OR TUBING<br>DEPTH IN WELL (red):       TUBING<br>MATERIAL CODE:       HDPE       FileLD-FILTERED:       Y       N       FILED SIZE:       µm         SAMPLE ONTAMINATION:       PUMP Y       N       TUBING Y       Noreal       DUPLICATE:       Y       N         SAMPLE CONTAMINER SPECIFICATION       SAMPLE PRESERVATION (including wei ce)       Internation Equipment Type:       N         SAMPLE ONTAMINER SPECIFICATION       SAMPLE PRESERVATION (including wei ce)       Internation Equipment Type:       N         SAMPLE ONTAMINER SPECIFICATION       SAMPLE PRESERVATION (including wei ce)       Internation Equipment Type:       N         SAMPLE DAT       PE 250 ml       HN03+ Ice       NONE       <2       Cd. Cr. Pb. Ap by EPA       A PP       At purge rate         SAMPLES       Image: Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WELL CAP<br>TUBING IN | ACITY (Gallor<br>SIDE DIA. CA | is Per Foot):<br><b>PACITY</b> (Gal./ | 0.75" = 0.02;<br>Ft.): <u>1/8" = 0.</u> | 1" = 0.04;<br>0006; 3/10 |                           | 06; 2" =<br><u>1/4" = 0.0</u>                                                                                   | 0.16; <b>3"</b> =<br>0026; <b>5/1</b> |                       |                               |                 | 1/2" = 0.010;            | <b>5/8"</b> = 0.016 |         |
| SAMPLED BY (PRINT) / AFFILIATION:       SAMPLER(S) SIGNATURE(S):       SAMPLED AT: [0.35]       SAMPLING<br>INITIATED AT: [0.35]       SAMPLING<br>ENDED AT: [0.38]         PUMP OR TUBING<br>DEPTH IN WELL (led):       7.0       TUBING<br>MATERIAL CODE:       HDPE       FIELD-FILTERED:       Y       N         SAMPLE ONTAINER SPECIFICATION       SAMPLE PRESERVATION (including wet ice)       DUPLICATE:       Y       N         SAMPLE ONTAINERS       VOLUME       PRESERVATION (including wet ice)       INTENDED ANALYSIS       SAMPLE PUMP<br>ANDOR METHOD       SAMPLE PUMP<br>(including wet ice)       INTENDED ANALYSIS       SAMPLE PUMP<br>(including wet ice)         SAMPLE ONTAINERS       VOLUME       PRESERVATION (including wet ice)       INTENDED ANALYSIS       SAMPLE PUMP<br>(including wet ice)       SAMPLE PUMP<br>(including wet ice)       SAMPLE PUMP<br>(including wet ice)       INTENDED ANALYSIS       SAMPLED<br>ADDED IN FEID (mL)       SAMPLE PUMP<br>(including wet ice)       SAMPLED (mL)       FIAL<br>(including wet ice)       SAMPLED (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                            | PURGING               | EQUIPMENT                     | CODES: E                              | l = Bailer;                             | BP = Bladdei             |                           |                                                                                                                 |                                       |                       | ip; <b>PP</b>                 | = Peristaltic F | <sup>2</sup> ump; 0 = 0t | her (Specify)       |         |
| PUMPOR TUBING<br>DEPTH IN WELL (reet):       TUBING<br>MATERIAL CODE:       HDPE<br>MATERIAL CODE:       HDPE<br>MATERIAL CODE:       FIELD-FILTERED:       Y       FILTER SIZE:       µm         FIELD DECONTAMINATION:       PUMP       Y       N       TUBING       Y       N       FIELD-FILTERED:       Y       N       FILTER SIZE:       µm         SAMPLE CONTAMINATION:       PUMP       Y       N       TUBING       Y       N       OUPLICATE:       Y       N         SAMPLE CONTAMINER SPECIFICATION       SAMPLE PRESERVATIVE       TOTAL VOL       FINAL       NUTENDED ANALYSIS       SAMPLE PLOW RATE<br>(mL per minute)       SAMPLE PLOW RATE<br>(mL pe                                                                                                                                                                                                                                                                                                                                                              | SAMPLED               | BY (PRINT) / /                | AFFILIATION:                          | EG                                      | SAMPLER(S                | S) SIGNATUF               | RE(S):                                                                                                          |                                       | •                     | SAMPLI                        |                 | 5 SAMPLIN<br>ENDED A     | G 10 35             | 3       |
| SAMPLE CONTAINER SPECIFICATION       SAMPLE PRESERVATIVE inducting wet ice)       INTENDED ANALYSIS       SAMPLE PUMP<br>FLOW PATE         SAMPLE D       CONTAINERS       CODE       VOLUME       PRESERVATIVE<br>USED       TOTAL VOL<br>ADDED IN FIELD (mL)       FINAL<br>PH       INTENDED ANALYSIS       SAMPLE PUMP<br>EXMPLET       SAMPLE PUMP<br>FLOW PATE         SAMPLE D       CONTAINERS       CODE       VOLUME       PRESERVATIVE<br>USED       TOTAL VOL<br>ADDED IN FIELD (mL)       FINAL<br>PH       AND/OR METHOD       SAMPLE PUMP<br>CODE       APP       At purge rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PUMP OR               | TÜBING                        |                                       |                                         | TUBING                   |                           |                                                                                                                 |                                       |                       | D-FILTER                      | ED: Y (N        |                          |                     |         |
| SAMPLE 0       Contrainers       Material       Volume       PRESErvative       TOTAL Vol       Final       Material       Equipation       FLOW Rate<br>(mL per minute)         05011       1       PE       250 ml       HIN03+ Ice       NONE       <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FIELD DEC             | ONTAMINATI                    | ON: PUN                               |                                         |                          | TUBING                    | Y C                                                                                                             | ()replaced)                           |                       | DUPLIC                        | ATE: Y          |                          |                     |         |
| CODE     CONTANERS     CODE     Octom     USED     ADDED IN FIELD (mL)     pH     APP     APP     At purge rate       -05011     PE     250 ml     HN03+ Ice     NONE     <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                     |                               |                                       | · · · · · · · · · · · · · · · · · · ·   | PRESERVA                 | TIVE                      | TOTAL VO                                                                                                        | L F                                   | FINAL                 |                               |                 | [ EQUIPMENT              | FLOY                | RATE    |
| REMARKS:       0.13.9h x       60.5e x         MATERIAL CODES:       AG = Amber Glass;       CG = Clear Glass;       HDPE = High Density Polyethylene;       LDPE = Low Density Polyethylene;       PP = Polypropylene;         SAMPLING EQUIPMENT CODES:       APP = After (Through) Peristaltic Pump;       B = Bailer;       BP = Bladder Pump;       ESP = Electric Submersible Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CODE                  |                               | CODE                                  |                                         |                          |                           |                                                                                                                 | D (mL)                                |                       |                               |                 |                          | At pu               | ge rate |
| MATERIAL CODES:       AG = Amber Glass;       CG = Clear Glass;       HDPE = High Density Polyethylene;       LDPE = Low Density Polyethylene;       PP = Polypropylene;         SAMPLING EQUIPMENT CODES:       APP = After (Through) Peristaltic Pump;       B = Bailer;       BP = Bladder Pump;       ESP = Electric Submersible Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A-07-                 |                               |                                       |                                         |                          |                           |                                                                                                                 |                                       |                       |                               |                 |                          | 0.00                |         |
| MATERIAL CODES:       AG = Amber Glass;       CG = Clear Glass;       HDPE = High Density Polyethylene;       LDPE = Low Density Polyethylene;       PP = Polypropylene;         SAMPLING EQUIPMENT CODES:       APP = After (Through) Peristaltic Pump;       B = Bailer;       BP = Bladder Pump;       ESP = Electric Submersible Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                               |                                       |                                         |                          |                           |                                                                                                                 |                                       |                       |                               |                 |                          |                     |         |
| MATERIAL CODES:       AG = Amber Glass;       CG = Clear Glass;       HDPE = High Density Polyethylene;       LDPE = Low Density Polyethylene;       PP = Polypropylene;         SAMPLING EQUIPMENT CODES:       APP = After (Through) Peristaltic Pump;       B = Bailer;       BP = Bladder Pump;       ESP = Electric Submersible Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                               |                                       |                                         |                          |                           |                                                                                                                 |                                       | -                     |                               |                 |                          |                     |         |
| MATERIAL CODES:       AG = Amber Glass;       CG = Clear Glass;       HDPE = High Density Polyethylene;       LDPE = Low Density Polyethylene;       PP = Polypropylene;         SAMPLING EQUIPMENT CODES:       APP = After (Through) Peristaltic Pump;       B = Bailer;       BP = Bladder Pump;       ESP = Electric Submersible Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                               |                                       |                                         |                          |                           |                                                                                                                 |                                       |                       |                               |                 | _                        |                     |         |
| MATERIAL CODES:       AG = Amber Glass;       CG = Clear Glass;       HDPE = High Density Polyethylene;       LDPE = Low Density Polyethylene;       PP = Polypropylene;         S = Silicone;       T = Teflon;       O = Other (Specify)       O = Other (Specify)       B = Bailer;       BP = Bladder Pump;       ESP = Electric Submersible Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | REMARKS               | Q= -                          |                                       |                                         | = 0.0 {                  | Bgpm                      |                                                                                                                 |                                       |                       | I                             |                 |                          | l                   |         |
| SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MATERIAL              | CODES:                        | AG = Amber                            | Glass; CG                               | Clear Glass              | ; HDPE =                  |                                                                                                                 | ity Polyethyle                        | ene; l                | LDPE = Lo                     | w Density Pol   | yethylene; PP            | Polypropyl          | ene;    |
| RFPP = Reverse Flow Peristaltic Pump;         SM = Straw Method (Tubing Gravity Drain);         O = Other (Specify)           NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.         O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                               | 1                                     | RFPP = Reven                            | se Flow Peris            | staltic Pump;             | SM = St                                                                                                         | raw Method (                          | (Tubing C             | Gravity Dra                   |                 |                          | oump:               | E.      |

In pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

64.

#### DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| SITE<br>NAME: Safety Kleen Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stems. Inc                         |                                      |                             | SITE                       | 8755                 | <br>NW 95 <sup>th</sup>                                                                                         | Street, N                  | Medley, F     |                                       |                    |          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------|----------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|---------------|---------------------------------------|--------------------|----------|--|
| WELL NO: MW-2R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                      | AMPLE ID: M                 |                            |                      |                                                                                                                 |                            |               |                                       |                    |          |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                      |                             | -                          |                      |                                                                                                                 |                            |               |                                       | 3                  |          |  |
| IDATION: B755 NW 95° Street, Medley, FL           WELL 00.000 WELL SCREEN NUM -2 0 502.14         DATE: 5/2/19           PURGEND MARK - 0 DWELL SCREEN NUM - 2 0 502.14         DATE: 5/2/19           PURGEND MARK - 0 DWELL SCREEN NUM - 2 0 502.14         DATE: 5/2/19           PURGEND DATA           PURGEND DATA           PURGE OWN - 100 WELL SCREEN NUM - 100 WELL CAPACITY           OWNELL OLIME FUNCE         PURGE DUMP TYPE           OWNELL OLIME FUNCE         PURGEND WELL OLIME FUNCE         PURGEND WELL OLIME FUNCE           OWNEL OLIME FUNCE         PURGEND WELL OLIME FUNCE         PURGEND WELL OLIME         PURGEN WELL OLIME           OWNEL OLIME FUNCE         PURGEN WELL OLIME         PURGEN WELL OLIME         PURGEN WELL OLIME           OWNEL OLIME FUNCE         PURGEN WELL OLIME         PURGEN WELL OLIME           OWNEL OLIME FUNCE         PURGEN WELL OLIME         PURGEN WELL OLIME           OWNEL WELL OLIME FUNCE         PURGEN WELL OLIME         PURGEN WELL OLIME           OWNEL WELL OLIME FUNCE          PURGEN WELL OLIME |                                    |                                      |                             |                            |                      |                                                                                                                 |                            |               |                                       |                    |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VELL VOLÜMI                        |                                      |                             |                            | TH TO W              | ATER) X                                                                                                         | WELL CAP                   |               |                                       | _                  |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | = (                                  | 11.4 feet-                  | 3.69                       |                      |                                                                                                                 |                            |               |                                       | <u>3</u>           | allons   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E: 1 EQUIPM                        |                                      |                             |                            |                      |                                                                                                                 |                            | •             |                                       | = gal              | lons     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 n FI                             |                                      |                             |                            |                      | . 94                                                                                                            |                            | GAT 90        | TOTAL VOI                             |                    | .9       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                      |                             |                            |                      |                                                                                                                 |                            |               |                                       |                    |          |  |
| TIME VOLUME VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JRGED R                            | JRGE TO<br>ATE WAT                   | ER (standa                  | and joch                   | (circle<br>µmhg      | units) C<br>s/m (c                                                                                              | XYGEN                      |               |                                       |                    | ORP      |  |
| 902 51.4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4 0                              | .08 3.8                              | 35 7,0                      | 5 25.76                    | 5                    | 56 C                                                                                                            | ).59                       | 2.9           | 2 Clear                               | None               | -138     |  |
| 905 0.24 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.64                               | 3.8                                  | 5 7.03                      | 3 25.70                    | 1 5-                 | 16 0                                                                                                            | 1.56                       | 2,2           | 7                                     |                    | -142     |  |
| 908 0.24 =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .88                                | 1 3.8                                | 5 7.01                      | 4 25,81                    | 59                   | 00                                                                                                              | -54                        | 1.91          |                                       | 4                  | -147     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                      |                             |                            |                      |                                                                                                                 |                            |               |                                       |                    |          |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                                      |                             |                            | 1                    | •                                                                                                               |                            |               |                                       |                    |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                      |                             |                            |                      |                                                                                                                 | 41 0.00                    | <b></b>       | 0. 01. 4.47                           | 107 5 99           |          |  |
| WELL CAPACITY (Gallons Pe<br>TUBING INSIDE DIA. CAPAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er Foot): 0.75'<br>HTY (Gal./Ft.): | "=0.02; 1"=<br><u>1/8"</u> =0.0006;  | 0.04; 1.25"<br>3/16" = 0.00 | = 0.06; 2"<br>14; 1/4" = 0 |                      |                                                                                                                 |                            |               |                                       |                    |          |  |
| PURGING EQUIPMENT COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>ES: B</b> = Ba                  | ailer; 9P = B                        |                             |                            |                      |                                                                                                                 | mp; PP                     | = Peristaltic | Pump; 0 = C                           | ther (Specify      | )        |  |
| SAMPLED BY (PRINT) / AFFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | SAMP                                 |                             |                            |                      |                                                                                                                 |                            | NG QI         | CY SAMPLIN                            | IG 97              | 2        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | TUBIN                                | G                           |                            |                      |                                                                                                                 | LD-FILTER                  | ED: Y         | -                                     |                    |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · ·                              |                                      |                             |                            | Nireolad             |                                                                                                                 |                            |               | Y (N)                                 |                    |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | - <u> </u>                           |                             | ~                          | <u> </u>             |                                                                                                                 |                            |               |                                       | SAMP               |          |  |
| SAMPLE ID # M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IATERIAL VC                        |                                      | ERVATIVE                    | TOTAL V                    | OL                   | FINAL                                                                                                           |                            |               | EQUIPMENT                             | FLO                | N RATE   |  |
| -24 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | _                                    |                             |                            |                      | the second se | Organi                     | c Compour     | nds                                   |                    |          |  |
| 0502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AG 2                               | 50 ml                                | lce                         | NONE                       |                      |                                                                                                                 | 8270-S                     | emi-Volatil   | APP                                   |                    |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                      |                             | Nov                        | <b>N</b>             | _                                                                                                               |                            |               | ds                                    | 303                | \$       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | ,                                    |                             | NONE                       |                      | <2                                                                                                              |                            |               | A APP                                 |                    | rge rate |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AG 1                               | 00 ml H2S                            | O4 + Ice                    | NON                        | E                    | <2                                                                                                              |                            |               | O APP                                 | At pu              | rge rate |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                      |                             |                            |                      |                                                                                                                 |                            |               | t                                     |                    | L.a      |  |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1390                             |                                      | = 0.0                       | g gpm                      |                      |                                                                                                                 |                            |               |                                       | collecter<br>RPHS/ |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = Amber Glas                       | ss; CG = Clear                       |                             | PE = High Der              | isity Polye          |                                                                                                                 |                            |               |                                       | = Polypropy        | lene;    |  |
| SAMPLING EQUIPMENT CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DES: APP                           | = After (Through<br>P = Reverse Flow | ) Peristaltic Pu            | mp; <b>B</b> = E           | Bailer;<br>Straw Met | BP = Blade<br>hod (Tubing                                                                                       | der Pump;<br>) Gravity Dra |               | ectric Submersible<br>Other (Specify) | Pump;              |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                      |                             |                            |                      |                                                                                                                 | F.A.C.                     |               |                                       |                    |          |  |

In the second description of the second

Revision Date: March 1, 2014

4

#### DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| SITE              | fety Kleen                         | Svetome                                 |                               |                                |                           |               | 8755 NW                                        | / 95th 9    | Street M                                               | Medley, Fl                              |                        |                                |                     |
|-------------------|------------------------------------|-----------------------------------------|-------------------------------|--------------------------------|---------------------------|---------------|------------------------------------------------|-------------|--------------------------------------------------------|-----------------------------------------|------------------------|--------------------------------|---------------------|
| WELL NO:          |                                    | Cystems,                                |                               | SAMPL                          | E ID: MW-                 |               |                                                |             | Jan Bold I                                             | DATE: 5/2                               |                        |                                |                     |
| WELL NO.          |                                    |                                         |                               |                                |                           | JRGING        |                                                |             |                                                        |                                         |                        | 2,11                           |                     |
| WELL              | 10                                 | TUBING                                  | 1/4                           | -OD W                          | ELL SCREEN                |               | ST                                             | ATIC DE     | PTH                                                    | 1                                       | PURGE PUMP TY          | PE                             |                     |
| DIAMETER          |                                    | DIAMET                                  | ER (inches):1                 | /8-ID DE                       | PTH: 2 feel               |               |                                                |             | l (feel): 2                                            |                                         | OR BAILER:             | <u> </u>                       |                     |
|                   | UME PURGE:<br>if applicable)       | 1 WELL VOL                              | UME = (TOT                    | AL WELL DE                     |                           |               | H TO WATE                                      | R) X '      | WELL CAF                                               | PACITY                                  |                        |                                |                     |
|                   |                                    |                                         | = (                           |                                | feet -                    | 2.69          | feet)                                          |             | 0.16                                                   | U                                       | s/foot = ,L            | <u>3 9</u>                     | allons              |
|                   | IT VOLUME PI                       | JRGE: 1 EQU                             | IPMENT VOL                    | = PUMP VC                      | )LUME + (TU               |               |                                                |             | BING LENC                                              | 3TH) + FLOW                             | CELL VOLUME            |                                |                     |
|                   |                                    |                                         |                               |                                | gallons + (               |               | allons/foot X                                  |             |                                                        | feet) +                                 | gallons :              |                                | ons                 |
|                   | MP OR TUBIN<br>WELL (feet):        | <sup>G</sup> 7.0                        | FINAL PUN                     | IP OR TUBIN<br>WELL (leel):    | <sup>G</sup> 7.0          |               | SING AT: 9                                     | 36          | PURGIN<br>ENDED                                        |                                         | TOTAL VOL<br>PURGED (g | allons): 2                     | _0_                 |
| TIME              | VOLUME<br>PURGED<br>(gallons)      | CUMUL.<br>VOLUME<br>PURGED<br>(gallons) | PURGE<br>RATE<br>(gpm)        | DEPTH<br>TO<br>WATER<br>(feet) | pH<br>(standard<br>units) | TEMP.<br>(°C) | COND.<br>(circle units)<br>µmboorm<br>or uS/cm |             | SOLVED<br>(YGEN<br>cle units)<br>19/1 or<br>alturation | TURBIDIT<br>(NTUs)                      | Y COLOR<br>(describe)  | ODOR<br>(describe)             | ORP                 |
| 955               | 152                                | 1.52                                    | 80.0                          | 2.99                           | 7.0h                      | 25,68         | 518                                            | 0.1         | 37                                                     | 1.52                                    | Clear                  | None                           | -139                |
|                   | 0.24                               | 1.76                                    |                               | 2.88                           | 7.01                      | 25.70         |                                                |             | 35                                                     | 1.36                                    | 1                      | 1                              | -144                |
| 1001              | 0.24                               | 2.0                                     |                               | 2,88                           | 7.01                      | 25.72         | 517                                            | 0.          | 36                                                     | 1.29                                    |                        | J.                             | 148                 |
|                   |                                    |                                         |                               |                                |                           |               |                                                |             |                                                        |                                         |                        |                                |                     |
|                   |                                    |                                         |                               |                                |                           |               |                                                |             |                                                        |                                         |                        |                                | <u> </u>            |
| L                 |                                    |                                         |                               |                                |                           |               |                                                | _           |                                                        |                                         |                        |                                |                     |
|                   | ACITY (Gallor                      |                                         |                               |                                |                           |               |                                                |             | 4" = 0.65                                              |                                         |                        | <b>12"</b> = 5.88              |                     |
|                   | ISIDE DIA. CA<br>EQUIPMENT (       |                                         |                               | .0006; 3/10<br>BP = Bladder    | 5" = 0.0014;<br>Rumo:     |               | 0026; 5/1<br>tric Submersi                     | 6" = 0.0    |                                                        | <pre>= 0.006;<br/>= Peristaltic F</pre> |                        | 5/8" = 0.016<br>ther (Specify) |                     |
| Ponalina          | ENDIFICIAL                         | ,00E3. 0                                | - Daliari                     |                                |                           |               | G DATA                                         |             | 11 II                                                  |                                         | unp, e-o               |                                |                     |
| SAMPLED           | BY (PRINT)                         | FFILIATION:                             | INELS                         | SAMPLER                        | ) SIGNATU                 | RE(S):        |                                                |             | SAMPLI                                                 | NG<br>ED AT: 100'                       | 2 SAMPLIN              | G<br>T: 100                    | 1                   |
| PUMP'OR           |                                    |                                         |                               |                                | · · · ·                   |               |                                                | FIEL        | D-FILTER                                               | ED: Y N<br>ment Type:                   | FILTER                 | A SIZE:                        | _µm¥*               |
|                   |                                    |                                         |                               |                                | TUBING                    |               | (replaced)                                     | 1 1 100     | DUPLIC                                                 |                                         | N                      |                                |                     |
| SA                | MPLE CONTAIN                       | R SPECIFICATI                           | ON                            | SAN                            | IPLE PRESER               | VATION (inclu | ding wet ice)                                  |             | INTEN                                                  | DED ANALYSIS                            | SAMPLING               |                                |                     |
| SAMPLE ID<br>CODE | CONTAINERS                         | MATERIAL<br>CODE                        | VOLUME                        | PRESERVA                       |                           | TOTAL VOI     |                                                | FINAL<br>pH |                                                        | OR METHOD                               | EQUIPMENT              |                                | / RATE<br>r minule} |
| -3-05021          |                                    | PE                                      | 250 ml                        | HNO3+                          |                           | NONE          |                                                | <2          |                                                        | Pb, Ag by EP.<br>thod 200.8             | A APP                  | At pur                         | ge rate             |
|                   |                                    |                                         |                               |                                |                           |               |                                                |             |                                                        |                                         |                        |                                |                     |
|                   |                                    |                                         |                               |                                |                           |               |                                                |             |                                                        |                                         |                        |                                |                     |
|                   |                                    |                                         |                               |                                |                           |               |                                                |             |                                                        |                                         |                        |                                |                     |
|                   |                                    |                                         |                               |                                |                           |               |                                                |             |                                                        |                                         |                        |                                |                     |
|                   |                                    |                                         |                               |                                |                           |               |                                                |             |                                                        |                                         |                        |                                |                     |
|                   |                                    |                                         |                               |                                |                           |               |                                                |             |                                                        |                                         |                        |                                |                     |
|                   |                                    |                                         |                               |                                |                           |               |                                                |             | <u> </u>                                               |                                         |                        |                                |                     |
| REMARKS           | <u>ا</u>                           | = <u>0.13</u>                           | at 260                        | Sec :                          | 0.08                      | 190n          | 1                                              |             |                                                        |                                         |                        | L                              |                     |
| MATERIA           |                                    | AG = Amber                              |                               | = Clear Glass                  | ; HDPE :                  |               | ity Polyethyle                                 | ene; l      | LOPE = Lo                                              | w Density Pol                           | yethylene; PP          | = Polypropyl                   | ene;                |
| SAMPLIN           |                                    | CODES:                                  | T = Teflon;<br>APP = After (T | hrough) Peri                   | staltic Pump;             | <b>8</b> = 8a |                                                | = Bladde    |                                                        |                                         | tric Submersible f     | <sup>o</sup> ump;              |                     |
| 1                 |                                    | F                                       | IFPP = Rever                  | se Flow Peris                  | staltic Pump;             | SM = St       | raw Method (                                   | (Tubing C   | Gravity Dra                                            |                                         | ther (Specify)         |                                |                     |
| NOTES             | : 1. The abo<br>2. <u>STABILIZ</u> | ATION CRITER                            | IA FOR RANG                   | SE OF VARIAT                   | ION OF LAS                | T THREE CO    | NSECUTIVE                                      | READIN      | GS (SEE F                                              | -S 2212, SEC                            | CTION 3)               |                                |                     |

**pH:**  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

-

# Soledy-Kleen Medly 2019 Annual Grandwater monsturg

## Instrument Calibration and Field Verification Log

|                               |               | ument ve      | Inpration   | anu rien        | u veinica   | uon Loy      |                 |                 |              |  |  |  |
|-------------------------------|---------------|---------------|-------------|-----------------|-------------|--------------|-----------------|-----------------|--------------|--|--|--|
| Instrument Make: InSitu / YSI | - T (2)       | Troll (556 MP | B           | Identification: | #2 5N#1     | 260709       | AA              |                 |              |  |  |  |
| Sampler's Name / Signature:   | KethEI        | Nomon         | 1 Kenty     | 2 Manny         | ~           | Date: (mm/do | 1/yy) 5/2/      | 119             |              |  |  |  |
| Procedure Type: ICV, CCV, Cal | icv, ccv, cal | icv, ccv, cal |             |                 |             |              |                 | icv, ccv, cal   | icv, ccv, ca |  |  |  |
| Standard Values Time          | 630           | 16/0          |             |                 |             |              |                 |                 |              |  |  |  |
| pH 4.01 S.U.                  | 4.07          | 4.06          |             |                 |             |              |                 |                 |              |  |  |  |
| pH 7.00 S.U.                  | 7.06          | 7.05          |             |                 |             |              | ~               |                 |              |  |  |  |
| pH 10.00 S.U.                 | 9,94          | 9.95          |             |                 |             |              |                 |                 |              |  |  |  |
| Within 0.2 S.U ?              | Pass / Fail   | Pass / Fail   | Pass / Fail | Pass / Fail     | Pass / Fail | Pass / Fail  | Pass / Fail     | Pass / Fail     | Pass / Fail  |  |  |  |
| Calibration Required?         | Yes /Nø       | Yes /(No      | Yes / No    | Yes / No        | Yes / No    | Yes / No     | Yes / No        | Yes / No        | Yes / No     |  |  |  |
| Sampler's Initials            | Km            | 10m           | /           |                 |             |              |                 |                 |              |  |  |  |
| Conductivity 500 µS/cm Cal    | 502           | 503           |             |                 |             |              |                 |                 |              |  |  |  |
| Conductivity 1000 µS/cm Ver   | 995           | 994           |             |                 |             |              |                 |                 |              |  |  |  |
| Within 5% ?                   | Rass / Fail   | Pass / Fail   | Pass / Fail | Pass / Fail     | Pass / Fail | Pass / Fail  | Pass / Fail     | Pass / Fail     | Pass / Fail  |  |  |  |
| Calibration Required?         | Yes /(No)     | Yes No        | Yes / No    | Yes / No        | Yes / No    | Yes / No     | Yes / No        | Yes / No        | Yes / No     |  |  |  |
| Sampler's Initials            | KA            | Khin          |             |                 |             |              |                 |                 |              |  |  |  |
| Temperature During D.O.       | 24 °C         | 25 °C         | °C          | °C              | °C          | °C           | °C              | °C              | °C           |  |  |  |
| D.O. mg/L @ Saturation (1/2)  | 8-5/10214     | 9,3 (49,2%    |             |                 |             |              |                 |                 |              |  |  |  |
| Within 0.3 mg/L ?             | Pass / Fail   | Pass / Fail   | Pass / Fail | Pass / Fail     | Pass / Fail | Pass / Fail  | Pass / Fail     | Pass / Fail     | Pass / Fail  |  |  |  |
| Calibration Required?         | Yes No        | Yes / No      | Yes / No    | Yes / No        | Yes / No    | Yes / No     | Yes / No        | Yes / No        | Yes / No     |  |  |  |
| Sampler's Initials            | Kan           | 15m           |             |                 |             |              |                 |                 |              |  |  |  |
| Temperature During ORP        | 24 °C         | 25 °C         | °C          | °C              | °C          | °C           | °C              | °C              | °C           |  |  |  |
| ORP in mV                     | 232           | 231           |             |                 |             |              |                 |                 |              |  |  |  |
| Within 10 mV ?                | Rase / Fail   | Rass / Fail   | Pass / Fail | Pass / Fail     | Pass / Fail | Pass / Fail  | Pass / Fail     | Pass / Fail     | Pass / Fail  |  |  |  |
| Calibration Required?         | Yes / No      | Yes / No      | Yes / No    | Yes / No        | Yes / No    | Yes / No     | Yes / No        | Yes / No        | Yes / No     |  |  |  |
| Sampler's Initials            | KA            | NEN           |             |                 |             |              |                 |                 |              |  |  |  |
| Calibration Solutions         |               | Manufacturer  |             |                 | Lot Number  |              | E               | Expiration Date | 3            |  |  |  |
| pH 4.01 S.U.                  | Exaxol        |               |             | 1922            | -70.        |              | 09              | 12020           |              |  |  |  |
| pH 7.00 S.U.                  | Exaxol        | •             |             | 1805            |             |              |                 | 12019           |              |  |  |  |
| pH 10.00 S.U.                 | Exaxol        |               |             |                 | 204A        |              | 06/2020         |                 |              |  |  |  |
| ConductivityµS/cm Cal         | Exaxol        |               |             |                 | 221A        |              | 1012019 03/2020 |                 |              |  |  |  |
| ConductivityµS/cm Ver         | Exaxol        |               |             | 1810            | 163         |              | 10 12019        |                 |              |  |  |  |
| ORP: mV@*C per mfr. specs.    |               |               |             |                 | 204B        |              |                 | 12019           |              |  |  |  |
|                               |               |               |             |                 |             |              |                 |                 |              |  |  |  |

Notes Cal = Calibration

This form meets or exceeds the requirements of FDEP Form FD 9000-8

ICV = Initial Calibration Verification

CCV = Continued Calibration Verification

# FT 1000 General Field Testing and Measurement

| teen<br>t<br>sutro<br>fing | STANDA<br>values, and | For<br>MENT (M<br>ETER: [(<br>MPERATU<br>RBIDITY<br>RBIDITY<br>ARDS: [S<br>d the date i<br>dard A | m FD 900<br>MAKE/MO<br>Check only<br>IRE E<br>Specify the ty<br>the standard | CONDUC<br>CONDUC<br>RESIDUA<br>(pe(s) of state<br>were prep |            | <b>SALINITY<br/>DO<br/>callbration,</b><br>adj | □ pH<br>□ OT<br>the origin of th | ORF<br>HER<br>e standards, the | )                |
|----------------------------|-----------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|------------|------------------------------------------------|----------------------------------|--------------------------------|------------------|
|                            | Otenio                |                                                                                                   | -0 /- 10>                                                                    |                                                             |            | יקאאינ                                         | h <u>RD D</u> . 900              | V IV J                         | 3                |
|                            | DATEL<br>(yv/mm/dd)   | fard C <u>1</u><br>TIME                                                                           | A. E. C)                                                                     | STD.                                                        | INSTRUMENT | % DEV                                          |                                  | (INIT, CONT)                   | BAMPLER          |
| 2,2                        | 219                   | 631                                                                                               | A                                                                            | 10 ATUS                                                     | 9,05       | 210%                                           | Yer                              |                                | INITIALS<br>JLPM |
|                            |                       | 632                                                                                               | B                                                                            | 20 0                                                        | . 19.8     | IB%                                            | For                              | JNR<br>INIT                    | KPM              |
|                            |                       | 633                                                                                               | C,                                                                           | 100 11                                                      | 98.1       | ±6.5%                                          | Yon                              |                                |                  |
|                            |                       | 634                                                                                               | 12                                                                           | 800 11                                                      | 787        | 25%                                            | The                              | INT                            | KAM              |
|                            |                       | 1615                                                                                              | A                                                                            | 10 11                                                       | 9.87       | 10%                                            | Vo S                             | INIT                           | VAM              |
|                            |                       | 1616                                                                                              | B                                                                            | 20 11                                                       | 19,7       | ±3%                                            | 1.0.                             | Cont                           | 15mg             |
| [                          |                       | 1617                                                                                              | Ċ                                                                            | 100                                                         | 98,6       | 16.5%                                          | YES                              | Contr                          | Kam              |
|                            |                       | 1618                                                                                              | D                                                                            | 900 *                                                       | 788        | IS%                                            |                                  | Gut                            | Kfor             |
| [                          |                       |                                                                                                   |                                                                              | 100                                                         | 100        | 23/1                                           | Y <u>es</u>                      | Cont                           | RAD              |
| ſ                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| Γ                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| ſ                          |                       |                                                                                                   |                                                                              | +                                                           |            |                                                |                                  |                                | 414              |
| ſ                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| T                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| T                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| ŀ                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| ŀ                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
|                            |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| H                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| +                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| F                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  | <u>+</u>                       |                  |
| L                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  | <u>+</u> -                     |                  |
| L                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
| Γ                          |                       |                                                                                                   |                                                                              |                                                             |            |                                                |                                  |                                |                  |
|                            |                       | 100                                                                                               | 20 - 22 - 22                                                                 |                                                             |            |                                                | L                                |                                |                  |

Prace Analytical

# CHAIN-OF-CUST Y / Analytical Request Document The Chain-of-Custody is a LFCAL DOCUMENT. All relevant fields must be completed accurately.

| Section<br>Require | A<br>d Client Information                                                           | Section B<br>Required Pr | piect ini                                       | formation     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |                 | tion (      | C<br>Interm   | ation |           |           |          |                         |                  |                          |         |                          |                                    |                |                  |       |      | Г       | Page    |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Of                          |         | 1        |
|--------------------|-------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|-----------------|-------------|---------------|-------|-----------|-----------|----------|-------------------------|------------------|--------------------------|---------|--------------------------|------------------------------------|----------------|------------------|-------|------|---------|---------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|----------|
| Compar             |                                                                                     | Report To                | _                                               | Aomson        |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | -                         | _               | Intion      | _             |       |           | -         | -        | -                       | -                | -                        | -       | -                        | -                                  | -              | -                | 1     |      |         | , age   | <u> </u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         | <u> </u> |
| Address            |                                                                                     | Copy To                  |                                                 |               |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             | -                         | Con             | npan        | y Name        | 90    |           | -         | -        | -                       | -                | -                        | -       | -                        | -                                  | -              | -                |       |      |         |         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |          |
|                    | FL 33607                                                                            | 12.2                     |                                                 |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1                         |                 | lress;      |               |       |           |           |          |                         |                  | -                        | -       | -                        | -                                  | -              |                  | 311   | in a | 254     | Heg     | ulato                   | NAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cy.                         | Sec. 1  | 100      |
| Email              | kmomson@ectinc.com                                                                  | Purchase On              | _                                               |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -                         | Pac             | e Qu        | ole           |       |           |           |          |                         | -                |                          |         |                          |                                    |                |                  |       |      |         |         |                         | And a state of the | and the second second       |         | 1        |
| Phone:             | 813-493-0383 Fax                                                                    | Project Nami             | -                                               | afety Kleer   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             | 1                         | <u> </u>        | _           | ojact Mi      | anag  | er        | lori.p    | alme     | r@pa                    | celat            | os.coi                   | n       |                          |                                    |                |                  | 36.7  | 6.1  |         | ŝt      | 51m)                    | historio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | 6.4.4   | -        |
| Request            | ed Due Date                                                                         | Project #                | -                                               | Baz           | 120                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _             |                           | Pac             | e Pro       | ofile #       | 93    | 321 lir   | le 1      |          | _                       | -                |                          | _       |                          |                                    | _              |                  | 1.1   | _    |         |         | F                       | ٤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |         | -        |
|                    | MATRIX<br>Ditriking W<br>Water<br>Water                                             | WT                       | valid codes to left)<br>GRAB C=COMP1            |               | COLL                | ECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2             | ECTION R                  |                 |             | F             | Pres  | ervat     | ives      | Т        | A NATION OF A NATION OF | NI               |                          |         |                          | ed Ani                             |                | Eithe            | ned ( | (IN) | Ŧ       |         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         | 語語が      |
| ITEM #             | SAMPLE ID<br>One Character per box.<br>{A-Z, 0-9 /, -}<br>Sample Ids must be unique | P<br>SL<br>OL            | MATRIX CODE (see valid o<br>SAMPLE TYPE (G=GRAB |               | Samp<br>TIME        | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND            | SAMPLE TEMP AT COLLECTION | # OF CONTAINERS | Unpreserved | H2SO4<br>HND3 | DH    | NaOH      | Na2S203   | Methanol | , i                     | E IAnalyses rest | 8270 Full list plus PAHs | - He    | Metals 200 8 Ag.Cd,Cr,Pb | 8270 Full list plus PAHs<br>MS/MSD | FL. PRO MS/MSD | Trip BLANK       |       |      |         |         | Residual Chlorine (Y/N) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |          |
| 14                 | MW-2R -050219                                                                       |                          | WT                                              | 5219          | 909                 | 5-219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99            | 5,                        | 14              | X           | XX            |       | T         | -         | T        | Т                       | ٦,               | e 🗙                      |         | ×                        | ×                                  | ×              |                  |       | T    | T       | П       | T                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |          |
| 2                  | MW-1-050219                                                                         |                          | WT                                              | 5-2-19        | 1035                | 5.7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in30          | k.                        | 11              | ŕ           | 1             | t     | t         | Ħ         | 1        |                         | ŕ                | Ť                        | T       | C                        | -                                  | 1              |                  | 1     | t    | t       | H       | 1E                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           | -       |          |
| 3                  | MW-3 - 050219                                                                       |                          | WT                                              | 61.0          | 1002                | E A VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Innu          | 2                         | H               | -           | 1             |       | +         | +         | +        |                         | F                | +                        | t       | C                        |                                    | +              |                  | +     | t    | +       | H       | F                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | _       | -        |
| A                  | Trip Blank                                                                          |                          | -                                               | 227           | INCA                | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1007          | -                         |                 |             | f             | +     | +         | H         | +        | -Ľ                      | ŀ                | 1                        | +       | ×                        | -                                  | +              | H                | 1     | +    | +       | Н       | ÷                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | -       | -        |
| 5                  |                                                                                     |                          | WT                                              | +             |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             | -                         |                 | H           | -             | +     | +         | H         | +        | -                       | H                | +                        | +       | +                        | -                                  | +              | X                | +     | -    | +       | Н       | ŀ                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         | _        |
| 5                  |                                                                                     |                          | ++                                              | -             | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             | -                         |                 |             |               | +     | +         | $\square$ | -        | -                       | H                | +                        | -       | -                        |                                    | +              |                  | 4     | +    | +       | 4       | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         | _        |
| 6                  |                                                                                     | _                        | $\square$                                       | -             | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111           | L                         |                 |             |               | +     | 1         | 4         | 4        | 4                       | L                |                          |         |                          |                                    | 1              |                  | 4     | -    | -       | Ц       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |          |
| 四7年                |                                                                                     | -                        |                                                 | 1             |                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00          |                           |                 |             |               |       |           |           |          |                         | L                | 1                        |         | 1                        |                                    |                |                  |       |      |         |         | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         | 2.5      |
| 8                  |                                                                                     |                          |                                                 | 1             |                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | 1.                        |                 |             |               |       | F         |           |          |                         |                  |                          |         |                          |                                    |                |                  |       |      |         |         | LE.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |          |
| 9                  |                                                                                     |                          | 1.1                                             | 6-1           | 1.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000          | - 3                       |                 |             |               | T     |           | Π         |          |                         | E                |                          |         |                          | . 1                                |                |                  |       | T    |         | Π       | F                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |          |
| 10                 |                                                                                     |                          |                                                 |               | 1121                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.1          |                           |                 |             |               | t     | t         | Ħ         | t        | 1                       | E                | T                        | 1       |                          | 111                                |                |                  | 1     | 1    | t       | H       | It                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |         |          |
| 11                 |                                                                                     |                          |                                                 |               | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |                 |             |               | t     | t         | H         | +        |                         | F                | t                        | t       |                          | -                                  | 1              | H                | +     | +    | +       | Н       | H                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         | -        |
| 12                 |                                                                                     | -                        |                                                 | -             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |                 | -           | -             | +     | 1         | +         | +        | -                       | F                | +                        | +       |                          | -                                  | -              | $\left  \right $ | +     | -    | -       | H       | F                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         | -        |
| 100                | ADDITIONAL COMMENTS                                                                 | in asia                  | ELINAL                                          | SHED'BYD,     | AFFICIATIO          | ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DATE          | 加加                        | 4.5             | 764         | 100           |       | 120       | Abr       | EFTE     | DBY                     | CAFF             | CATH                     | 1       | 1                        | 2.002                              | 129            | DATE             | 63    | - 10 | 1.91-10 | 1000    | 1                       | ANDIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONDITIC                    | and the | 153      |
|                    | Empty Containe                                                                      | Contraction of the       | Cue p                                           | P.P.YAROAD P. | COLUMN OF THE OWNER | Contraction of the local division of the loc | CBMC W10      | 64.24                     | 100             | and in      | 999 (S)       | N     | Willing . | mand by P | 1000     | 00000                   | 0000             | Calify                   | 12.5-40 | 291                      |                                    | t tille        | ar-ye-           |       | -    | 1. 10   | - all   | - Canada                | 2/33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                           |         | 212      |
|                    | Empty containe                                                                      | Kes                      | H7                                              | Mars          | en la               | TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/25<br>5 2-1 | (1)<br>a                  | 11-             | 121         | 0             |       | A         | 2         |          | (P                      |                  |                          | EC      | Т                        |                                    |                | -19              |       | 14   | _       | -       | +                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                           | +       |          |
|                    |                                                                                     |                          |                                                 |               | - tota              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 4                         | SE.             |             |               | 5     | V         | r.        | 1        | JR                      | -                | _                        | -       | -                        | 2                                  | 10             | 11               | 1     | 22   | Q       |         | t                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | -       |          |
|                    |                                                                                     |                          | 6                                               | -             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           | -               |             |               | 1     |           |           |          |                         |                  |                          |         | -                        |                                    |                |                  |       |      |         |         | T                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |          |
| 11                 | · 200 ,                                                                             |                          | 1                                               |               | 2 (SPR) 24          | NHARY APPEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AND SIGN      | 1.274.00                  | 0.97.74         | 22          | Hay I         |       |           |           | Des      |                         | 1                |                          | -       | ψ.Ť                      |                                    | E              | in the           |       |      | 1       | ų       | 5                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 10      | -        |
|                    |                                                                                     |                          |                                                 |               | SIG                 | NATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E AMPL        | 1                         | F               |             | th            | 1.    | N         | 101       | 160      | m.                      | T                | D/                       | TE S    | Signe                    | 5                                  | -2.            | -19              | -     | -    | -       | TEMP In | Received on             | YN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Custody<br>Sealed<br>Cooler | Sample: | (N)      |

 $|||^{1} \rightarrow ||$ 

### Pace Container Order #491290

| Order        | By :                                                                        |                                 | Ship 1                    | Го :                                                                      |           |      | Return           | n To:                                                              |  |  |
|--------------|-----------------------------------------------------------------------------|---------------------------------|---------------------------|---------------------------------------------------------------------------|-----------|------|------------------|--------------------------------------------------------------------|--|--|
| Company      | Environme                                                                   | Intal Consulling &              | Company                   | Environmental Con                                                         | sulting & | L    | Company          | Pace Analytical Oldsmar                                            |  |  |
| Contact      | Morrison, I                                                                 | Keith                           | Contact                   | Morrison, Keith                                                           |           |      | Contact          | Palmer, Lori                                                       |  |  |
| Email        | kmorrison                                                                   | @eclinc.com                     | Email                     | kmorrison@ectinc.                                                         | com       |      |                  | lori.palmer@pacelabs.com                                           |  |  |
| Address      | 1408 North                                                                  | Westshore Bllvd                 | Address                   | 1408 North Westsh                                                         | ore Blivd | 1    |                  | 110 South Bayview Blvd.                                            |  |  |
| Address 2    | Suite 115                                                                   | 2.5                             | Address 2 Suite 115       |                                                                           |           |      | Address 2        |                                                                    |  |  |
| City         | Tampa                                                                       |                                 | City                      | City Tampa C                                                              |           |      |                  | Oldsmar                                                            |  |  |
| State        | FL                                                                          | Zip 33607                       | State                     | FL Zip 336                                                                | 07        |      | State            |                                                                    |  |  |
| Phone        | 813-493-03                                                                  | 383                             | Phone                     | 813-493-0383                                                              |           |      |                  | (813)881-9401                                                      |  |  |
|              |                                                                             |                                 |                           |                                                                           |           |      |                  |                                                                    |  |  |
|              | Name <u>Saf</u><br>roject <u>Pal</u>                                        | ely Kleen Facility<br>mer, Lori | Due Date<br>Return        | 04/26/2019                                                                |           |      | ine 1<br>Courier | Quote                                                              |  |  |
| X In         | clude Trip E                                                                | Blanks                          |                           | Blank<br>Pre-Printed<br>X Pre-Printed                                     |           |      |                  | Boxed Cases<br>Individually Wrapped<br>Grouped By Sample           |  |  |
|              | Shipper<br>Shipper<br>ith Shipper<br>Options -<br>Imber of Bla<br>e-Printed |                                 |                           | Misc<br>Sampling Ins<br>Custody Sea<br>Temp. Blank<br>Coolers<br>Syringes | l         | 3    |                  | Extra Bubble Wrap Short Hold/Rush DI Liter(s) USDA Regulated Soils |  |  |
| # of Samples | s Matrix                                                                    | Test                            | Container                 |                                                                           | Total     | # of | Lot #            | Notes                                                              |  |  |
| 1            | WT                                                                          | 8260 Full List                  | 3-40mi, vial              |                                                                           | 3         | 0    |                  |                                                                    |  |  |
| 1            | WT                                                                          | 8270 Full list plus PAHs        | 1L Amber G<br>mL AG unpr  | lass Unpreserved + 250<br>es                                              | 2         | 0    |                  |                                                                    |  |  |
| 1            | WT                                                                          | FL Pro Low Volume for Waters    | 2-100 ml gla              | ss amber H2SO4                                                            | 2         | 0    |                  |                                                                    |  |  |
| 3            | WT                                                                          | Metals 200.8 Ag,Cd,Cr,Pb        | 250mL plast               |                                                                           | 3         | 0    |                  | ····· ···                                                          |  |  |
| 1 🕤          | WT                                                                          | 8270 Full list plus PAHs MS/MSD | 2-1L Amber<br>250 mL AG ( | Glass Unpreserved +<br>unpres                                             | 4         | 4    |                  |                                                                    |  |  |
| 1            | WT                                                                          | FL PRO MS/MSD                   | 100ml glass               | amber H2SO4                                                               | 2         | 2    |                  | <u> </u>                                                           |  |  |
| 1            | WT                                                                          | Trip BLANK                      | 2-40mL HCL                |                                                                           | 2         | 2    |                  | ······                                                             |  |  |

#### Hazard Shipping Placard In Place : NO

\*Sample receiving hours are Mon-Fri 8:00am-6:00pm unless special arrangements are made with your project manager.

\*Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you.

\*Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage and disposal.

\*Payment term are net 30 days.

\*Please include the proposal number on the chain of custody to insure proper billing.

#### Sample

F-ALL-C-009-rev.00, 19Dec2016

Ship Date : Prepared Verified By:

| 04/26/20 | 19 | j |
|----------|----|---|
| BB       |    | 1 |
| BB       |    |   |

# ATTACHMENT B

# LABORATORY REPORT



Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

May 10, 2019

Keith Morrison Environmental Consulting & Techlology 1408 North Westshore Bllvd Suite 115 Tampa, FL 33607

RE: Project: Safety Kleen Facility Pace Project No.: 35465452

Dear Keith Morrison:

Enclosed are the analytical results for sample(s) received by the laboratory on May 02, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

IA Palmer

Lori Palmer lori.palmer@pacelabs.com (813)881-9401 Project Manager

Enclosures

cc: A/P, Environmental Consulting & Technology



ace Analytical<sup>®</sup>

Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

#### CERTIFICATIONS

Project: Safety Kleen Facility Pace Project No.: 35465452

#### **Ormond Beach Certification IDs** 8 East Tower Circle, Ormond Beach, FL 32174 Missouri Certification #: 236 Alaska DEC- CS/UST/LUST Montana Certification #: Cert 0074 Alabama Certification #: 41320 Nebraska Certification: NE-OS-28-14 Arizona Certification# AZ0819 New Hampshire Certification #: 2958 Colorado Certification: FL NELAC Reciprocity New Jersey Certification #: FL022 Connecticut Certification #: PH-0216 New York Certification #: 11608 Delaware Certification: FL NELAC Reciprocity North Carolina Environmental Certificate #: 667 Florida Certification #: E83079 North Carolina Certification #: 12710 Georgia Certification #: 955 North Dakota Certification #: R-216 Guam Certification: FL NELAC Reciprocity Oklahoma Certification #: D9947 Hawaii Certification: FL NELAC Reciprocity Pennsylvania Certification #: 68-00547 Illinois Certification #: 200068 Puerto Rico Certification #: FL01264 Indiana Certification: FL NELAC Reciprocity South Carolina Certification: #96042001 Kansas Certification #: E-10383 Tennessee Certification #: TN02974 Texas Certification: FL NELAC Reciprocity Kentucky Certification #: 90050 US Virgin Islands Certification: FL NELAC Reciprocity Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007 Virginia Environmental Certification #: 460165 West Virginia Certification #: 9962C Maryland Certification: #346 Michigan Certification #: 9911 Wisconsin Certification #: 399079670 Mississippi Certification: FL NELAC Reciprocity Wyoming (EPA Region 8): FL NELAC Reciprocity



#### SAMPLE SUMMARY

Project: Safety Kleen Facility Pace Project No.: 35465452

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 35465452001 | MW-2R-050219 | Water  | 05/02/19 09:28 | 05/02/19 17:00 |
| 35465452002 | MW-1-050219  | Water  | 05/02/19 10:38 | 05/02/19 17:00 |
| 35465452003 | MW-3-050219  | Water  | 05/02/19 10:04 | 05/02/19 17:00 |
| 35465452004 | Trip Blank   | Water  | 05/02/19 09:28 | 05/02/19 17:00 |



#### SAMPLE ANALYTE COUNT

Project:Safety Kleen FacilityPace Project No.:35465452

| Lab ID      | Sample ID    | Method          | Analysts | Analytes<br>Reported |
|-------------|--------------|-----------------|----------|----------------------|
| 35465452001 | MW-2R-050219 | FL-PRO          |          | 3                    |
|             |              | EPA 200.8       | FDV      | 4                    |
|             |              | EPA 8270 by SIM | CB1      | 20                   |
|             |              | EPA 8270        | TWB      | 64                   |
|             |              | EPA 8260        | BTN      | 57                   |
| 35465452002 | MW-1-050219  | EPA 200.8       | FDV      | 4                    |
| 35465452003 | MW-3-050219  | EPA 200.8       | FDV      | 4                    |
| 35465452004 | Trip Blank   | EPA 8260        | BTN      | 57                   |



#### Project: Safety Kleen Facility

Pace Project No.: 35465452

| Sample: MW-2R-050219                   | Lab ID:    | 35465452001   | Collected  | d: 05/02/19  | 09:28    | Received: 05/  | 02/19 17:00 Ma | atrix: Water |       |
|----------------------------------------|------------|---------------|------------|--------------|----------|----------------|----------------|--------------|-------|
| Parameters                             | Results    | Units         | PQL        | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual  |
| FL-PRO Water, Low Volume               | Analytical | Method: FL-PR | O Prepara  | tion Method  | I: EPA 3 | 510            |                |              |       |
| Petroleum Range Organics<br>Surrogates | 0.77 U     | mg/L          | 0.96       | 0.77         | 1        | 05/07/19 10:55 | 05/07/19 20:48 |              |       |
| o-Terphenyl (S)                        | 90         | %             | 66-139     |              | 1        | 05/07/19 10:55 | 05/07/19 20:48 | 84-15-1      |       |
| N-Pentatriacontane (S)                 | 100        | %             | 42-159     |              | 1        | 05/07/19 10:55 | 05/07/19 20:48 | 630-07-09    |       |
| 200.8 MET ICPMS                        | Analytical | Method: EPA 2 | 00.8 Prepa | ration Meth  | od: EPA  | 200.8          |                |              |       |
| Cadmium                                | 0.050 U    | ug/L          | 0.10       | 0.050        | 1        | 05/03/19 09:28 | 05/04/19 11:43 | 7440-43-9    |       |
| Chromium                               | 0.62 I     | ug/L          | 1.0        | 0.50         | 1        | 05/03/19 09:28 | 05/04/19 11:43 | 7440-47-3    |       |
| Lead                                   | 0.50 U     | ug/L          | 1.0        | 0.50         | 1        | 05/03/19 09:28 | 05/04/19 11:43 | 7439-92-1    |       |
| Silver                                 | 0.050 U    | ug/L          | 0.10       | 0.050        | 1        | 05/03/19 09:28 | 05/04/19 11:43 | 7440-22-4    |       |
| 8270 MSSV PAHLV by SIM                 | Analytical | Method: EPA 8 | 270 by SIM | Preparatio   | on Metho | od: EPA 3510   |                |              |       |
| Acenaphthene                           | 0.040 U    | ug/L          | 0.50       | 0.040        | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 83-32-9      |       |
| Acenaphthylene                         | 0.030 U    | ug/L          | 0.50       | 0.030        | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 208-96-8     |       |
| Anthracene                             | 0.043 U    | ug/L          | 0.50       | 0.043        | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 120-12-7     |       |
| Benzo(a)anthracene                     | 0.055 U    | ug/L          | 0.10       | 0.055        | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 56-55-3      |       |
| Benzo(a)pyrene                         | 0.12 U     | ug/L          | 0.20       | 0.12         | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 50-32-8      |       |
| Benzo(b)fluoranthene                   | 0.027 U    | ug/L          | 0.10       | 0.027        | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 205-99-2     |       |
| Benzo(g,h,i)perylene                   | 0.15 U     | ug/L          | 0.50       | 0.15         | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 191-24-2     |       |
| Benzo(k)fluoranthene                   | 0.16 U     | ug/L          | 0.50       | 0.16         | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 207-08-9     |       |
| Chrysene                               | 0.026 U    | ug/L          | 0.50       | 0.026        | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 218-01-9     |       |
| Dibenz(a,h)anthracene                  | 0.13 U     | ug/L          | 0.15       | 0.13         | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 53-70-3      |       |
| Fluoranthene                           | 0.018 U    | ug/L          | 0.50       | 0.018        | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 206-44-0     |       |
| Fluorene                               | 0.088 U    | ug/L          | 0.50       | 0.088        | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 86-73-7      |       |
| Indeno(1,2,3-cd)pyrene                 | 0.12 U     | ug/L          | 0.15       | 0.12         | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 193-39-5     |       |
| 1-Methylnaphthalene                    | 0.19 U     | ug/L          | 2.0        | 0.19         | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 90-12-0      |       |
| 2-Methylnaphthalene                    | 0.68 U     | ug/L          | 2.0        | 0.68         | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 91-57-6      |       |
| Naphthalene                            | 0.29 U     | ug/L          | 2.0        | 0.29         | 1        | 05/06/19 13:19 | 05/07/19 14:51 |              |       |
| Phenanthrene                           | 0.16 U     | ug/L          | 0.50       | 0.16         | 1        | 05/06/19 13:19 | 05/07/19 14:51 |              |       |
| Pyrene                                 | 0.032 U    | ug/L          | 0.50       | 0.032        | 1        | 05/06/19 13:19 | 05/07/19 14:51 |              |       |
| Surrogates                             |            | 3             |            |              | -        |                |                |              |       |
| 2-Fluorobiphenyl (S)                   | 64         | %             | 33-82      |              | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 321-60-8     |       |
| p-Terphenyl-d14 (S)                    | 77         | %             | 49-104     |              | 1        | 05/06/19 13:19 | 05/07/19 14:51 | 1718-51-0    |       |
| 8270 MSSV Semivolatile Organic         | Analytical | Method: EPA 8 | 270 Prepa  | ration Methe | od: EPA  | 3510           |                |              |       |
| Aniline                                | 0.90 U     | ug/L          | 4.8        | 0.90         | 1        | 05/09/19 08:43 | 05/10/19 12:54 | 62-53-3      |       |
| Benzidine                              | 0.84 U     | ug/L          | 24.0       | 0.84         | 1        | 05/09/19 08:43 | 05/10/19 12:54 | 92-87-5      |       |
| Benzyl alcohol                         | 1.2 U      | ug/L          | 4.8        | 1.2          | 1        | 05/09/19 08:43 | 05/10/19 12:54 | 100-51-6     | J(M1) |
| 4-Bromophenylphenyl ether              | 1.6 U      | ug/L          | 4.8        | 1.6          | 1        | 05/09/19 08:43 | 05/10/19 12:54 | 101-55-3     |       |
| Butylbenzylphthalate                   | 1.1 U      | ug/L          | 4.8        | 1.1          | 1        | 05/09/19 08:43 | 05/10/19 12:54 | 85-68-7      |       |
| Caprolactam                            | 0.38 U     | ug/L          | 4.8        | 0.38         | 1        | 05/09/19 08:43 | 05/10/19 12:54 |              | N2    |
| Carbazole                              | 1.1 U      | ug/L          | 4.8        | 1.1          | 1        | 05/09/19 08:43 |                |              | J(L2) |
| 4-Chloro-3-methylphenol                | 5.2 U      | ug/L          | 19.2       | 5.2          | 1        | 05/09/19 08:43 |                |              | J(M1) |
| 4-Chloroaniline                        | 1.4 U      | ug/L          | 4.8        | 1.4          | 1        | 05/09/19 08:43 | 05/10/19 12:54 |              | J(M1) |
| bis(2-Chloroethoxy)methane             | 1.6 U      | ug/L          | 4.8        | 1.6          | 1        | 05/09/19 08:43 | 05/10/19 12:54 |              | J(M1) |
|                                        |            |               |            |              |          |                |                |              |       |



#### Project: Safety Kleen Facility

Pace Project No.: 35465452

| Sample: MW-2R-050219           | Lab ID:    | 35465452001   | Collected   | : 05/02/19  | 9 09:28 | Received: 05/  | 02/19 17:00 Ma | atrix: Water |                 |
|--------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|-----------------|
| Parameters                     | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual            |
| 8270 MSSV Semivolatile Organic | Analytical | Method: EPA 8 | 270 Prepara | ation Methe | od: EPA | 3510           |                |              |                 |
| bis(2-Chloroisopropyl) ether   | 1.7 U      | ug/L          | 5.8         | 1.7         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 108-60-1     |                 |
| 2-Chloronaphthalene            | 0.33 U     | ug/L          | 4.8         | 0.33        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 91-58-7      | J(M1)           |
| 2-Chlorophenol                 | 1.3 U      | ug/L          | 4.8         | 1.3         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 95-57-8      | J(M1)           |
| 4-Chlorophenylphenyl ether     | 1.4 U      | ug/L          | 4.8         | 1.4         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 7005-72-3    | J(M1)           |
| Dibenzofuran                   | 1.4 U      | ug/L          | 4.8         | 1.4         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 132-64-9     | J(M1)           |
| 1,2-Dichlorobenzene            | 1.5 U      | ug/L          | 4.8         | 1.5         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 95-50-1      | J(M1)           |
| 1,3-Dichlorobenzene            | 1.5 U      | ug/L          | 4.8         | 1.5         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 541-73-1     | J(M1)           |
| 1,4-Dichlorobenzene            | 1.5 U      | ug/L          | 4.8         | 1.5         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 106-46-7     | · · /           |
| 3,3'-Dichlorobenzidine         | 1.0 U      | ug/L          | 9.6         | 1.0         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 91-94-1      | J(L2),<br>J(M0) |
| 2,4-Dichlorophenol             | 0.33 U     | ug/L          | 1.9         | 0.33        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 120-83-2     | J(M1)           |
| Diethylphthalate               | 1.4 U      | ug/L          | 4.8         | 1.4         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 84-66-2      | J(M1)           |
| 2,4-Dimethylphenol             | 0.99 U     | ug/L          | 4.8         | 0.99        | 1       | 05/09/19 08:43 | 05/10/19 12:54 |              | J(M1)           |
| Dimethylphthalate              | 1.4 U      | ug/L          | 4.8         | 1.4         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 131-11-3     | J(M1)           |
| Di-n-butylphthalate            | 1.0 U      | ug/L          | 4.8         | 1.0         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 84-74-2      | J(L2)           |
| 4,6-Dinitro-2-methylphenol     | 4.4 U      | ug/L          | 19.2        | 4.4         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 534-52-1     | J(v1)           |
| 1,2-Dinitrobenzene             | 1.8 U      | ug/L          | 5.8         | 1.8         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 528-29-0     |                 |
| 1,3-Dinitrobenzene             | 1.1 U      | ug/L          | 7.7         | 1.1         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 99-65-0      | J(v1)           |
| 2,4-Dinitrophenol              | 2.5 U      | ug/L          | 19.2        | 2.5         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 51-28-5      | J(v1)           |
| 2,4-Dinitrotoluene             | 0.26 U     | ug/L          | 3.8         | 0.26        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 121-14-2     | J(v1)           |
| 2,6-Dinitrotoluene             | 0.27 U     | ug/L          | 1.9         | 0.27        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 606-20-2     |                 |
| Di-n-octylphthalate            | 0.88 U     | ug/L          | 4.8         | 0.88        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 117-84-0     |                 |
| 1,2-Diphenylhydrazine          | 1.3 U      | ug/L          | 4.8         | 1.3         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 122-66-7     | J(M1)           |
| bis(2-Ethylhexyl)phthalate     | 1.1 U      | ug/L          | 4.8         | 1.1         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 117-81-7     |                 |
| Hexachloro-1,3-butadiene       | 0.34 U     | ug/L          | 1.9         | 0.34        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 87-68-3      |                 |
| Hexachlorobenzene              | 0.28 U     | ug/L          | 0.96        | 0.28        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 118-74-1     |                 |
| Hexachlorocyclopentadiene      | 3.3 U      | ug/L          | 10.6        | 3.3         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 77-47-4      |                 |
| Hexachloroethane               | 1.3 U      | ug/L          | 4.8         | 1.3         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 67-72-1      |                 |
| Isophorone                     | 1.6 U      | ug/L          | 4.8         | 1.6         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 78-59-1      | J(M1)           |
| 2-Methylphenol(o-Cresol)       | 0.29 U     | ug/L          | 4.8         | 0.29        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 95-48-7      | J(M1)           |
| 3&4-Methylphenol(m&p Cresol)   | 0.21 U     | ug/L          | 9.6         | 0.21        | 1       | 05/09/19 08:43 | 05/10/19 12:54 |              | J(M1)           |
| 2-Nitroaniline                 | 1.2 U      | ug/L          | 4.8         | 1.2         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 88-74-4      | J(v1)           |
| 3-Nitroaniline                 | 1.2 U      | ug/L          | 4.8         | 1.2         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 99-09-2      | . ,             |
| 4-Nitroaniline                 | 0.18 U     | ug/L          | 3.8         | 0.18        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 100-01-6     |                 |
| Nitrobenzene                   | 0.36 U     | ug/L          | 3.8         | 0.36        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 98-95-3      | J(M1)           |
| 2-Nitrophenol                  | 1.3 U      | ug/L          | 4.8         | 1.3         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 88-75-5      | J(M1),<br>J(v1) |
| 4-Nitrophenol                  | 1.9 U      | ug/L          | 19.2        | 1.9         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 100-02-7     |                 |
| N-Nitrosodimethylamine         | 0.19 U     | ug/L          | 1.9         | 0.19        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 62-75-9      |                 |
| N-Nitroso-di-n-propylamine     | 0.32 U     | ug/L          | 3.8         | 0.32        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 621-64-7     | J(M1)           |
| N-Nitrosodiphenylamine         | 1.2 U      | ug/L          | 4.8         | 1.2         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 86-30-6      | J(M1)           |
| Pentachlorophenol              | 1.6 U      | ug/L          | 19.2        | 1.6         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 87-86-5      |                 |
| Phenol                         | 0.60 U     | ug/L          | 4.8         | 0.60        | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 108-95-2     |                 |
| Pyridine                       | 1.1 U      | ug/L          | 4.8         | 1.1         | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 110-86-1     |                 |
| 2,3,4,6-Tetrachlorophenol      | 1.0 U      | ug/L          | 4.8         | 1.0         | 1       | 05/09/19 08:43 |                |              | J(M1)           |
| 2,3,5,6-Tetrachlorophenol      | 1.8 U      | ug/L          | 8.6         | 1.8         | 1       | 05/09/19 08:43 |                |              | N2              |
| 1,2,4-Trichlorobenzene         | 1.4 U      | ug/L          | 4.8         | 1.4         | 1       | 05/09/19 08:43 |                |              | J(M1)           |



#### Project: Safety Kleen Facility

Pace Project No.: 35465452

| Sample: MW-2R-050219           | Lab ID:          | 35465452001     | Collected:  | 05/02/19   | 9 09:28 | Received: 05/  | 02/19 17:00 Ma | atrix: Water |        |
|--------------------------------|------------------|-----------------|-------------|------------|---------|----------------|----------------|--------------|--------|
| Parameters                     | Results          | Units           | PQL         | MDL        | DF      | Prepared       | Analyzed       | CAS No.      | Qual   |
| 8270 MSSV Semivolatile Organic | Analytica        | I Method: EPA 8 | 270 Prepara | ation Meth | od: EPA | 3510           |                |              |        |
| 2,4,5-Trichlorophenol          | 0.22 U           | ug/L            | 3.8         | 0.22       | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 95-95-4      |        |
| 2,4,6-Trichlorophenol          | 0.35 U           | ug/L            | 1.9         | 0.35       | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 88-06-2      | J(M1)  |
| Surrogates                     |                  |                 |             |            |         |                |                |              |        |
| Nitrobenzene-d5 (S)            | 27               | %               | 10-94       |            | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 4165-60-0    |        |
| 2-Fluorobiphenyl (S)           | 28               | %               | 10-96       |            | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 321-60-8     |        |
| p-Terphenyl-d14 (S)            | 63               | %               | 24-129      |            | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 1718-51-0    |        |
| Phenol-d5 (S)                  | 10               | %               | 10-35       |            | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 4165-62-2    |        |
| 2-Fluorophenol (S)             | 13               | %               | 10-55       |            | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 367-12-4     |        |
| 2,4,6-Tribromophenol (S)       | 48               | %               | 10-126      |            | 1       | 05/09/19 08:43 | 05/10/19 12:54 | 118-79-6     |        |
| 8260 MSV                       | Analytica        | Method: EPA 8   | 260         |            |         |                |                |              |        |
| Acetone                        | 7.9 I            | ug/L            | 20.0        | 5.3        | 1       |                | 05/03/19 18:56 | 67-64-1      |        |
| Acetonitrile                   | 24.5 U           | ug/L            | 40.0        | 24.5       | 1       |                | 05/03/19 18:56 | 75-05-8      |        |
| Benzene                        | 0.30 U           | ug/L            | 1.0         | 0.30       | 1       |                | 05/03/19 18:56 | 71-43-2      |        |
| Bromochloromethane             | 0.37 U           | ug/L            | 1.0         | 0.37       | 1       |                | 05/03/19 18:56 | 74-97-5      |        |
| Bromodichloromethane           | 0.19 U           | ug/L            | 0.60        | 0.19       | 1       |                | 05/03/19 18:56 | 75-27-4      |        |
| Bromoform                      | 2.6 U            | ug/L            | 3.0         | 2.6        | 1       |                | 05/03/19 18:56 | 75-25-2      |        |
| Bromomethane                   | 4.0 U            | ug/L            | 5.0         | 4.0        | 1       |                | 05/03/19 18:56 | 74-83-9      | J(v2)  |
| 2-Butanone (MEK)               | 7.5 U            | ug/L            | 10.0        | 7.5        | 1       |                | 05/03/19 18:56 | 78-93-3      | - ( )  |
| Carbon disulfide               | 0.45 U           | ug/L            | 10.0        | 0.45       | 1       |                | 05/03/19 18:56 |              |        |
| Carbon tetrachloride           | 1.1 U            | ug/L            | 3.0         | 1.1        | 1       |                | 05/03/19 18:56 |              | J(v2)  |
| Chlorobenzene                  | 0.35 U           | ug/L            | 1.0         | 0.35       | 1       |                | 05/03/19 18:56 |              | -()    |
| Chloroethane                   | 3.7 U            | ug/L            | 10.0        | 3.7        | 1       |                | 05/03/19 18:56 |              | J(L1), |
| Chloroform                     | 0.32 U           | ug/L            | 1.0         | 0.32       | 1       |                | 05/03/19 18:56 | 67-66-3      | J(v1)  |
| Chloromethane                  | 0.97 U           | ug/L            | 1.0         | 0.97       | 1       |                | 05/03/19 18:56 |              |        |
| 1,2-Dibromo-3-chloropropane    | 1.9 U            | ug/L            | 5.0         | 1.9        | 1       |                | 05/03/19 18:56 |              |        |
| Dibromochloromethane           | 0.45 U           | ug/L            | 2.0         | 0.45       | 1       |                | 05/03/19 18:56 |              |        |
|                                | 0.43 U           |                 | 1.0         | 0.43       | 1       |                | 05/03/19 18:56 |              |        |
| 1,2-Dibromoethane (EDB)        | 0.31 U<br>0.68 U | ug/L            |             | 0.51       | 1       |                |                |              |        |
| Dibromomethane                 |                  | ug/L            | 2.0         |            |         |                | 05/03/19 18:56 |              |        |
| 1,2-Dichlorobenzene            | 0.29 U           | ug/L            | 1.0         | 0.29       | 1       |                | 05/03/19 18:56 |              |        |
| 1,4-Dichlorobenzene            | 0.28 U           | ug/L            | 1.0         | 0.28       | 1       |                | 05/03/19 18:56 |              | 1(     |
| trans-1,4-Dichloro-2-butene    | 2.5 U            | ug/L            | 10.0        | 2.5        | 1       |                | 05/03/19 18:56 |              | J(v2)  |
| 1,1-Dichloroethane             | 0.34 U           | ug/L            | 1.0         | 0.34       | 1       |                | 05/03/19 18:56 |              |        |
| 1,2-Dichloroethane             | 0.27 U           | ug/L            | 1.0         | 0.27       | 1       |                | 05/03/19 18:56 |              |        |
| 1,2-Dichloroethene (Total)     | 0.27 U           | ug/L            | 1.0         | 0.27       | 1       |                | 05/03/19 18:56 |              | N2     |
| 1,1-Dichloroethene             | 0.27 U           | ug/L            | 1.0         | 0.27       | 1       |                | 05/03/19 18:56 |              |        |
| cis-1,2-Dichloroethene         | 0.27 U           | ug/L            | 1.0         | 0.27       | 1       |                | 05/03/19 18:56 |              |        |
| trans-1,2-Dichloroethene       | 0.23 U           | ug/L            | 1.0         | 0.23       | 1       |                | 05/03/19 18:56 |              |        |
| 1,2-Dichloropropane            | 0.23 U           | ug/L            | 1.0         | 0.23       | 1       |                | 05/03/19 18:56 |              |        |
| cis-1,3-Dichloropropene        | 0.17 U           | ug/L            | 0.50        | 0.17       | 1       |                | 05/03/19 18:56 |              | J(v2)  |
| trans-1,3-Dichloropropene      | 0.17 U           | ug/L            | 0.50        | 0.17       | 1       |                | 05/03/19 18:56 |              | J(v2)  |
| Ethylbenzene                   | 0.30 U           | ug/L            | 1.0         | 0.30       | 1       |                | 05/03/19 18:56 | 100-41-4     |        |
| 2-Hexanone                     | 0.85 U           | ug/L            | 10.0        | 0.85       | 1       |                | 05/03/19 18:56 | 591-78-6     |        |
| Iodomethane                    | 9.3 U            | ug/L            | 10.0        | 9.3        | 1       |                | 05/03/19 18:56 | 74-88-4      | J(v2)  |
| Isopropylbenzene (Cumene)      | 0.30 U           | ug/L            | 1.0         | 0.30       | 1       |                | 05/03/19 18:56 | 98-82-8      |        |



#### Project: Safety Kleen Facility

Pace Project No.: 35465452

| Sample: MW-2R-050219        | Lab ID:    | 35465452001   | Collecte | d: 05/02/19 | 9 09:28 | Received: 05 | 5/02/19 17:00 Ma | atrix: Water |       |
|-----------------------------|------------|---------------|----------|-------------|---------|--------------|------------------|--------------|-------|
| Parameters                  | Results    | Units         | PQL      | MDL         | DF      | Prepared     | Analyzed         | CAS No.      | Qual  |
| 8260 MSV                    | Analytical | Method: EPA 8 | 260      |             |         |              |                  |              |       |
| Methylene Chloride          | 2.0 U      | ug/L          | 5.0      | 2.0         | 1       |              | 05/03/19 18:56   | 75-09-2      |       |
| 4-Methyl-2-pentanone (MIBK) | 0.32 U     | ug/L          | 10.0     | 0.32        | 1       |              | 05/03/19 18:56   | 108-10-1     | J(v2) |
| Methyl-tert-butyl ether     | 0.51 U     | ug/L          | 2.0      | 0.51        | 1       |              | 05/03/19 18:56   | 1634-04-4    |       |
| Styrene                     | 0.26 U     | ug/L          | 1.0      | 0.26        | 1       |              | 05/03/19 18:56   | 100-42-5     |       |
| 1,1,1,2-Tetrachloroethane   | 0.32 U     | ug/L          | 1.0      | 0.32        | 1       |              | 05/03/19 18:56   | 630-20-6     |       |
| 1,1,2,2-Tetrachloroethane   | 0.20 U     | ug/L          | 0.50     | 0.20        | 1       |              | 05/03/19 18:56   | 79-34-5      |       |
| Tetrachloroethene           | 0.38 U     | ug/L          | 1.0      | 0.38        | 1       |              | 05/03/19 18:56   | 127-18-4     |       |
| Toluene                     | 0.33 U     | ug/L          | 1.0      | 0.33        | 1       |              | 05/03/19 18:56   | 108-88-3     |       |
| 1,1,1-Trichloroethane       | 0.30 U     | ug/L          | 1.0      | 0.30        | 1       |              | 05/03/19 18:56   | 71-55-6      |       |
| 1,1,2-Trichloroethane       | 0.30 U     | ug/L          | 1.0      | 0.30        | 1       |              | 05/03/19 18:56   | 79-00-5      |       |
| Trichloroethene             | 0.36 U     | ug/L          | 1.0      | 0.36        | 1       |              | 05/03/19 18:56   | 79-01-6      |       |
| Trichlorofluoromethane      | 0.35 U     | ug/L          | 1.0      | 0.35        | 1       |              | 05/03/19 18:56   | 75-69-4      |       |
| 1,2,3-Trichloropropane      | 1.1 U      | ug/L          | 2.0      | 1.1         | 1       |              | 05/03/19 18:56   | 96-18-4      |       |
| 1,2,4-Trimethylbenzene      | 0.24 U     | ug/L          | 1.0      | 0.24        | 1       |              | 05/03/19 18:56   | 95-63-6      |       |
| 1,3,5-Trimethylbenzene      | 0.24 U     | ug/L          | 1.0      | 0.24        | 1       |              | 05/03/19 18:56   | 108-67-8     |       |
| Vinyl acetate               | 0.19 U     | ug/L          | 10.0     | 0.19        | 1       |              | 05/03/19 18:56   | 108-05-4     |       |
| Vinyl chloride              | 0.39 U     | ug/L          | 1.0      | 0.39        | 1       |              | 05/03/19 18:56   | 75-01-4      |       |
| Xylene (Total)              | 2.1 U      | ug/L          | 5.0      | 2.1         | 1       |              | 05/03/19 18:56   | 1330-20-7    |       |
| m&p-Xylene                  | 2.1 U      | ug/L          | 4.0      | 2.1         | 1       |              | 05/03/19 18:56   | 179601-23-1  |       |
| o-Xylene                    | 0.27 U     | ug/L          | 1.0      | 0.27        | 1       |              | 05/03/19 18:56   | 95-47-6      |       |
| Surrogates                  |            | 0             |          |             |         |              |                  |              |       |
| 4-Bromofluorobenzene (S)    | 99         | %             | 70-130   |             | 1       |              | 05/03/19 18:56   | 460-00-4     |       |
| 1,2-Dichloroethane-d4 (S)   | 99         | %             | 70-130   |             | 1       |              | 05/03/19 18:56   | 17060-07-0   |       |
| Toluene-d8 (S)              | 100        | %             | 70-130   |             | 1       |              | 05/03/19 18:56   | 2037-26-5    |       |



Project: Safety Kleen Facility

Pace Project No.: 35465452

| Sample: MW-1-050219 | Lab ID:    | 35465452002   | Collected  | d: 05/02/19 | 9 10:38  | Received: 05/  | 02/19 17:00 Ma | atrix: Water |      |
|---------------------|------------|---------------|------------|-------------|----------|----------------|----------------|--------------|------|
| Parameters          | Results    | Units         | PQL        | MDL         | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.8 MET ICPMS     | Analytical | Method: EPA 2 | 00.8 Prepa | ration Meth | iod: EP/ | A 200.8        |                |              |      |
| Cadmium             | 0.050 U    | ug/L          | 0.10       | 0.050       | 1        | 05/03/19 09:28 | 05/04/19 11:50 | 7440-43-9    |      |
| Chromium            | 1.4        | ug/L          | 1.0        | 0.50        | 1        | 05/03/19 09:28 | 05/04/19 11:50 | 7440-47-3    |      |
| Lead                | 0.50 U     | ug/L          | 1.0        | 0.50        | 1        | 05/03/19 09:28 | 05/04/19 11:50 | 7439-92-1    |      |
| Silver              | 0.050 U    | ug/L          | 0.10       | 0.050       | 1        | 05/03/19 09:28 | 05/04/19 11:50 | 7440-22-4    |      |



Project: Safety Kleen Facility

Pace Project No.: 35465452

| Sample: MW-3-050219 | Lab ID:    | 35465452003   | Collected  | d: 05/02/19 | 9 10:04  | Received: 05/  | 02/19 17:00 Ma | atrix: Water |      |
|---------------------|------------|---------------|------------|-------------|----------|----------------|----------------|--------------|------|
| Parameters          | Results    | Units         | PQL        | MDL         | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.8 MET ICPMS     | Analytical | Method: EPA 2 | 00.8 Prepa | ration Meth | iod: EP/ | A 200.8        |                |              |      |
| Cadmium             | 0.050 U    | ug/L          | 0.10       | 0.050       | 1        | 05/03/19 09:28 | 05/04/19 11:52 | 7440-43-9    |      |
| Chromium            | 0.79 I     | ug/L          | 1.0        | 0.50        | 1        | 05/03/19 09:28 | 05/04/19 11:52 | 7440-47-3    |      |
| Lead                | 0.50 U     | ug/L          | 1.0        | 0.50        | 1        | 05/03/19 09:28 | 05/04/19 11:52 | 7439-92-1    |      |
| Silver              | 0.050 U    | ug/L          | 0.10       | 0.050       | 1        | 05/03/19 09:28 | 05/04/19 11:52 | 7440-22-4    |      |



#### Project: Safety Kleen Facility

Pace Project No.: 35465452

| Sample: Trip Blank          | Lab ID:          | 35465452004     | Collecte | d: 05/02/19 | 9 09:28 | Received: 0 | 5/02/19 17:00 M | atrix: Water |                 |
|-----------------------------|------------------|-----------------|----------|-------------|---------|-------------|-----------------|--------------|-----------------|
| Parameters                  | Results          | Units           | PQL      | MDL         | DF      | Prepared    | Analyzed        | CAS No.      | Qual            |
| 8260 MSV                    | Analytica        | I Method: EPA 8 | 260      |             |         |             |                 |              |                 |
| Acetone                     | 5.8 I            | ug/L            | 20.0     | 5.3         | 1       |             | 05/03/19 12:50  | 67-64-1      |                 |
| Acetonitrile                | 24.5 U           | ug/L            | 40.0     | 24.5        | 1       |             | 05/03/19 12:50  | 75-05-8      |                 |
| Benzene                     | 0.30 U           | ug/L            | 1.0      | 0.30        | 1       |             | 05/03/19 12:50  | 71-43-2      |                 |
| Bromochloromethane          | 0.37 U           | ug/L            | 1.0      | 0.37        | 1       |             | 05/03/19 12:50  | 74-97-5      |                 |
| Bromodichloromethane        | 0.19 U           | ug/L            | 0.60     | 0.19        | 1       |             | 05/03/19 12:50  | 75-27-4      |                 |
| Bromoform                   | 2.6 U            | ug/L            | 3.0      | 2.6         | 1       |             | 05/03/19 12:50  | 75-25-2      |                 |
| Bromomethane                | 4.0 U            | ug/L            | 5.0      | 4.0         | 1       |             | 05/03/19 12:50  | 74-83-9      | J(v2)           |
| 2-Butanone (MEK)            | 7.5 U            | ug/L            | 10.0     | 7.5         | 1       |             | 05/03/19 12:50  | 78-93-3      | ( )             |
| Carbon disulfide            | 0.45 U           | ug/L            | 10.0     | 0.45        | 1       |             | 05/03/19 12:50  | 75-15-0      |                 |
| Carbon tetrachloride        | 1.1 U            | ug/L            | 3.0      | 1.1         | 1       |             | 05/03/19 12:50  |              | J(v2)           |
| Chlorobenzene               | 0.35 U           | ug/L            | 1.0      | 0.35        | 1       |             | 05/03/19 12:50  |              | •()             |
| Chloroethane                | 3.7 U            | ug/L            | 10.0     | 3.7         | 1       |             | 05/03/19 12:50  |              | J(L1),<br>J(v1) |
| Chloroform                  | 0.32 U           | ug/L            | 1.0      | 0.32        | 1       |             | 05/03/19 12:50  | 67-66-3      | . ,             |
| Chloromethane               | 0.97 U           | ug/L            | 1.0      | 0.97        | 1       |             | 05/03/19 12:50  | 74-87-3      |                 |
| 1,2-Dibromo-3-chloropropane | 1.9 U            | ug/L            | 5.0      | 1.9         | 1       |             | 05/03/19 12:50  | 96-12-8      |                 |
| Dibromochloromethane        | 0.45 U           | ug/L            | 2.0      | 0.45        | 1       |             | 05/03/19 12:50  | 124-48-1     |                 |
| 1,2-Dibromoethane (EDB)     | 0.31 U           | ug/L            | 1.0      | 0.31        | 1       |             | 05/03/19 12:50  | 106-93-4     |                 |
| Dibromomethane              | 0.68 U           | ug/L            | 2.0      | 0.68        | 1       |             | 05/03/19 12:50  | 74-95-3      |                 |
| 1,2-Dichlorobenzene         | 0.29 U           | ug/L            | 1.0      | 0.29        | 1       |             | 05/03/19 12:50  | 95-50-1      |                 |
| 1,4-Dichlorobenzene         | 0.28 U           | ug/L            | 1.0      | 0.28        | 1       |             | 05/03/19 12:50  |              |                 |
| trans-1,4-Dichloro-2-butene | 2.5 U            | ug/L            | 10.0     | 2.5         | 1       |             | 05/03/19 12:50  |              | J(v2)           |
| 1,1-Dichloroethane          | 0.34 U           | ug/L            | 1.0      | 0.34        | 1       |             | 05/03/19 12:50  |              | •()             |
| 1,2-Dichloroethane          | 0.27 U           | ug/L            | 1.0      | 0.27        | 1       |             | 05/03/19 12:50  |              |                 |
| 1,2-Dichloroethene (Total)  | 0.27 U           | ug/L            | 1.0      | 0.27        | 1       |             | 05/03/19 12:50  |              | N2              |
| 1,1-Dichloroethene          | 0.27 U           | ug/L            | 1.0      | 0.27        | 1       |             | 05/03/19 12:50  |              | 112             |
| cis-1,2-Dichloroethene      | 0.27 U           | ug/L            | 1.0      | 0.27        | 1       |             | 05/03/19 12:50  |              |                 |
| trans-1,2-Dichloroethene    | 0.27 U           | ug/L            | 1.0      | 0.27        | 1       |             | 05/03/19 12:50  |              |                 |
| 1,2-Dichloropropane         | 0.23 U           | ug/L            | 1.0      | 0.23        | 1       |             | 05/03/19 12:50  |              |                 |
|                             | 0.23 U<br>0.17 U | -               | 0.50     | 0.23        | 1       |             | 05/03/19 12:50  |              | 1(1/2)          |
| cis-1,3-Dichloropropene     | 0.17 U           | ug/L            | 0.50     | 0.17        | 1       |             | 05/03/19 12:50  |              | J(v2)           |
| trans-1,3-Dichloropropene   |                  | ug/L            |          | 0.17        | 1       |             | 05/03/19 12:50  |              | J(v2)           |
| Ethylbenzene                | 0.30 U           | ug/L            | 1.0      |             |         |             |                 |              |                 |
| 2-Hexanone                  | 0.85 U           | ug/L            | 10.0     | 0.85        | 1       |             | 05/03/19 12:50  |              | 1(0)            |
| lodomethane                 | 9.3 U            | ug/L            | 10.0     | 9.3         | 1       |             | 05/03/19 12:50  |              | J(v2)           |
| Isopropylbenzene (Cumene)   | 0.30 U           | ug/L            | 1.0      | 0.30        | 1       |             | 05/03/19 12:50  |              |                 |
| Methylene Chloride          | 2.0 U            | ug/L            | 5.0      | 2.0         | 1       |             | 05/03/19 12:50  |              |                 |
| 4-Methyl-2-pentanone (MIBK) | 0.32 U           | ug/L            | 10.0     | 0.32        | 1       |             | 05/03/19 12:50  |              | J(v2)           |
| Methyl-tert-butyl ether     | 0.51 U           | ug/L            | 2.0      | 0.51        | 1       |             | 05/03/19 12:50  |              |                 |
| Styrene                     | 0.26 U           | ug/L            | 1.0      | 0.26        | 1       |             | 05/03/19 12:50  |              |                 |
| 1,1,1,2-Tetrachloroethane   | 0.32 U           | ug/L            | 1.0      | 0.32        | 1       |             | 05/03/19 12:50  |              |                 |
| 1,1,2,2-Tetrachloroethane   | 0.20 U           | ug/L            | 0.50     | 0.20        | 1       |             | 05/03/19 12:50  |              |                 |
| Tetrachloroethene           | 0.38 U           | ug/L            | 1.0      | 0.38        | 1       |             | 05/03/19 12:50  |              |                 |
| Toluene                     | 0.33 U           | ug/L            | 1.0      | 0.33        | 1       |             | 05/03/19 12:50  | 108-88-3     |                 |
| 1,1,1-Trichloroethane       | 0.30 U           | ug/L            | 1.0      | 0.30        | 1       |             | 05/03/19 12:50  | 71-55-6      |                 |
| 1,1,2-Trichloroethane       | 0.30 U           | ug/L            | 1.0      | 0.30        | 1       |             | 05/03/19 12:50  | 79-00-5      |                 |
| Trichloroethene             | 0.36 U           | ug/L            | 1.0      | 0.36        | 1       |             | 05/03/19 12:50  | 79-01-6      |                 |



#### Project: Safety Kleen Facility

Pace Project No.: 35465452

| Sample: Trip Blank        | Lab ID:    | 35465452004   | Collected | d: 05/02/19 | 09:28 | Received: 05 | 5/02/19 17:00 Ma | atrix: Water |      |
|---------------------------|------------|---------------|-----------|-------------|-------|--------------|------------------|--------------|------|
| Parameters                | Results    | Units         | PQL       | MDL         | DF    | Prepared     | Analyzed         | CAS No.      | Qual |
| 8260 MSV                  | Analytical | Method: EPA 8 | 260       |             |       |              |                  |              |      |
| Trichlorofluoromethane    | 0.35 U     | ug/L          | 1.0       | 0.35        | 1     |              | 05/03/19 12:50   | 75-69-4      |      |
| 1,2,3-Trichloropropane    | 1.1 U      | ug/L          | 2.0       | 1.1         | 1     |              | 05/03/19 12:50   | 96-18-4      |      |
| 1,2,4-Trimethylbenzene    | 0.24 U     | ug/L          | 1.0       | 0.24        | 1     |              | 05/03/19 12:50   | 95-63-6      |      |
| 1,3,5-Trimethylbenzene    | 0.24 U     | ug/L          | 1.0       | 0.24        | 1     |              | 05/03/19 12:50   | 108-67-8     |      |
| Vinyl acetate             | 0.19 U     | ug/L          | 10.0      | 0.19        | 1     |              | 05/03/19 12:50   | 108-05-4     |      |
| Vinyl chloride            | 0.39 U     | ug/L          | 1.0       | 0.39        | 1     |              | 05/03/19 12:50   | 75-01-4      |      |
| Xylene (Total)            | 2.1 U      | ug/L          | 5.0       | 2.1         | 1     |              | 05/03/19 12:50   | 1330-20-7    |      |
| m&p-Xylene                | 2.1 U      | ug/L          | 4.0       | 2.1         | 1     |              | 05/03/19 12:50   | 179601-23-1  |      |
| o-Xylene                  | 0.27 U     | ug/L          | 1.0       | 0.27        | 1     |              | 05/03/19 12:50   | 95-47-6      |      |
| Surrogates                |            |               |           |             |       |              |                  |              |      |
| 4-Bromofluorobenzene (S)  | 98         | %             | 70-130    |             | 1     |              | 05/03/19 12:50   | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 97         | %             | 70-130    |             | 1     |              | 05/03/19 12:50   | 17060-07-0   |      |
| Toluene-d8 (S)            | 97         | %             | 70-130    |             | 1     |              | 05/03/19 12:50   | 2037-26-5    |      |



#### **QUALITY CONTROL DATA**

Pace Project No.: 35465452

| 5                                                             |                                   |                       |           |  |  |  |  |  |  |
|---------------------------------------------------------------|-----------------------------------|-----------------------|-----------|--|--|--|--|--|--|
| QC Batch:                                                     | 535904                            | Analysis Method:      | EPA 200.8 |  |  |  |  |  |  |
| QC Batch Method:                                              | EPA 200.8                         | Analysis Description: | 200.8 MET |  |  |  |  |  |  |
| Associated Lab Samples: 35465452001, 35465452002, 35465452003 |                                   |                       |           |  |  |  |  |  |  |
| METHOD BLANK:                                                 | 2903212                           | Matrix: Water         |           |  |  |  |  |  |  |
| Associated Lab Sam                                            | ples: 35465452001, 35465452002, 3 | 35465452003           |           |  |  |  |  |  |  |

|           | 00+00+02001, 00+00+02002, 0 | 0400402000 |           |       |                |            |
|-----------|-----------------------------|------------|-----------|-------|----------------|------------|
|           |                             | Blank      | Reporting |       |                |            |
| Parameter | Units                       | Result     | Limit     | MDL   | Analyzed       | Qualifiers |
| Cadmium   | ug/L                        | 0.050 U    | 0.10      | 0.050 | 05/04/19 11:22 |            |
| Chromium  | ug/L                        | 0.50 U     | 1.0       | 0.50  | 05/04/19 11:22 |            |
| Lead      | ug/L                        | 0.50 U     | 1.0       | 0.50  | 05/04/19 11:22 |            |
| Silver    | ug/L                        | 0.050 U    | 0.10      | 0.050 | 05/04/19 11:22 |            |

#### LABORATORY CONTROL SAMPLE: 2903213

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Cadmium   | ug/L  | 5              | 5.3           | 105          | 85-115          |            |
| Chromium  | ug/L  | 50             | 50.3          | 101          | 85-115          |            |
| Lead      | ug/L  | 50             | 51.6          | 103          | 85-115          |            |
| Silver    | ug/L  | 5              | 5.3           | 106          | 85-115          |            |

| MATRIX SPIKE & MATRIX S | PIKE DUPL | ICATE: 2903           | 214                  |                       | 2903215      |               |             |              |                 |     |            |      |
|-------------------------|-----------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter               | Units     | 35465511001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Cadmium                 | ug/L      | 0.050 U               | 5                    | 5                     | 5.2          | 5.1           | 104         | 102          | 70-130          | 1   | 20         |      |
| Chromium                | ug/L      | 0.50 U                | 50                   | 50                    | 50.8         | 50.3          | 101         | 100          | 70-130          | 1   | 20         |      |
| Lead                    | ug/L      | 0.50 U                | 50                   | 50                    | 50.0         | 49.7          | 100         | 99           | 70-130          | 1   | 20         |      |
| Silver                  | ug/L      | 0.050 U               | 5                    | 5                     | 5.2          | 5.2           | 104         | 103          | 70-130          | 1   | 20         |      |

| MATRIX SPIKE & MATRIX S | SPIKE DUPLIC | CATE: 2903           | 216                  |                       | 2903217      |               |             |              |                 |     |            |      |
|-------------------------|--------------|----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter               | 3<br>Units   | 5465267002<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
|                         |              |                      |                      |                       |              |               |             |              |                 |     |            | Quui |
| Cadmium                 | ug/L         | 0.11                 | 5                    | 5                     | 5.4          | 5.4           | 106         | 105          | 70-130          | 0   | 20         |      |
| Chromium                | ug/L         | 0.95 I               | 50                   | 50                    | 52.7         | 52.2          | 104         | 103          | 70-130          | 1   | 20         |      |
| Lead                    | ug/L         | 1.4                  | 50                   | 50                    | 51.8         | 51.8          | 101         | 101          | 70-130          | 0   | 20         |      |
| Silver                  | ug/L         | 0.071 I              | 5                    | 5                     | 5.4          | 5.5           | 107         | 108          | 70-130          | 1   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Qualifiers

N2

J(v2)

J(v2)

J(v2)

J(v1)

J(v2)

J(v2)

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

05/03/19 11:12

#### **QUALITY CONTROL DATA**

Safety Kleen Facility Project:

| Project.               | Salety Rieen Fac | iiity             |                  |           |        |          |                |  |
|------------------------|------------------|-------------------|------------------|-----------|--------|----------|----------------|--|
| Pace Project No.:      | 35465452         |                   |                  |           |        |          |                |  |
| QC Batch:              | 535969           |                   | Analysis Method: |           |        | EPA 8260 |                |  |
| QC Batch Method:       | Analysis D       | escription        | n: 8260          | ) MSV     |        |          |                |  |
| Associated Lab Samp    | oles: 3546545    | 2001, 35465452004 |                  |           |        |          |                |  |
| METHOD BLANK: 2        | 2903460          |                   | Matr             | ix: Water |        |          |                |  |
| Associated Lab Samp    | oles: 35465452   | 2001, 35465452004 |                  |           |        |          |                |  |
|                        |                  |                   | Blank            | Repo      | orting |          |                |  |
| Parame                 | eter             | Units             | Result           | Li        | mit    | MDL      | Analyzed       |  |
| 1,1,1,2-Tetrachloroeth | nane             | ug/L              | 0.32             | U         | 1.0    | 0.32     | 05/03/19 11:12 |  |
| 1,1,1-Trichloroethane  |                  | ug/L              | 0.30             | U         | 1.0    | 0.30     | 05/03/19 11:12 |  |
| 1,1,2,2-Tetrachloroeth | nane             | ug/L              | 0.20             | U         | 0.50   | 0.20     | 05/03/19 11:12 |  |
| 1,1,2-Trichloroethane  |                  | ug/L              | 0.30             | U         | 1.0    | 0.30     | 05/03/19 11:12 |  |
| 1,1-Dichloroethane     |                  | ug/L              | 0.34             | U         | 1.0    | 0.34     | 05/03/19 11:12 |  |
| 1,1-Dichloroethene     |                  | ug/L              | 0.27             | U         | 1.0    | 0.27     | 05/03/19 11:12 |  |
| 1,2,3-Trichloropropan  | е                | ug/L              | 1.1              | U         | 2.0    | 1.1      | 05/03/19 11:12 |  |
| 1,2,4-Trimethylbenze   | ne               | ug/L              | 0.24             | U         | 1.0    | 0.24     | 05/03/19 11:12 |  |
| 1,2-Dibromo-3-chloro   | propane          | ug/L              | 1.9              | U         | 5.0    | 1.9      | 05/03/19 11:12 |  |
| 1,2-Dibromoethane (E   | EDB)             | ug/L              | 0.31             | U         | 1.0    | 0.31     | 05/03/19 11:12 |  |
| 1,2-Dichlorobenzene    |                  | ug/L              | 0.29             | U         | 1.0    | 0.29     | 05/03/19 11:12 |  |
| 1,2-Dichloroethane     |                  | ug/L              | 0.27             | U         | 1.0    | 0.27     | 05/03/19 11:12 |  |
| 1,2-Dichloroethene (1  | ōtal)            | ug/L              | 0.27             | U         | 1.0    | 0.27     | 05/03/19 11:12 |  |
| 1,2-Dichloropropane    |                  | ug/L              | 0.23             | U         | 1.0    | 0.23     | 05/03/19 11:12 |  |
| 1,3,5-Trimethylbenze   | ne               | ug/L              | 0.24             | U         | 1.0    | 0.24     | 05/03/19 11:12 |  |
| 1,4-Dichlorobenzene    |                  | ug/L              | 0.28             | U         | 1.0    | 0.28     | 05/03/19 11:12 |  |

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

7.5 U

0.85 U

0.32 U

5.3 U

24.5 U

0.30 U

0.37 U

0.19 U

2.6 U

4.0 U

1.1 U

0.45 U

0.35 U

3.7 U

0.32 U

0.97 U

0.27 U

0.17 U

0.45 U

0.68 U

0.30 U

9.3 U

0.30 U

2.1 U

0.51 U

10.0

10.0

10.0

20.0

40.0

1.0

1.0

0.60

3.0

5.0

10.0

3.0

1.0

10.0

1.0

1.0

1.0

0.50

20

2.0

1.0

10.0

1.0

4.0

2.0

7.5

0.85

0.32

5.3

24.5

0.30

0.37

0.19

26

4.0

1.1

3.7

0.45

0.35

0.32

0.97

0.27

0 17

0.45

0.68

0.30

9.3

0.30

0.51

2.1

#### **REPORT OF LABORATORY ANALYSIS**

2-Butanone (MEK)

Bromochloromethane

Bromodichloromethane

4-Methyl-2-pentanone (MIBK)

2-Hexanone

Acetone

Benzene

Acetonitrile

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

Dibromomethane

Ethylbenzene

Iodomethane

m&p-Xylene

Chloroethane

Chloroform

Carbon tetrachloride

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Isopropylbenzene (Cumene)

Methyl-tert-butyl ether

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



#### **QUALITY CONTROL DATA**

Project: Safety Kleen Facility Pace Project No.: 35465452

| METHOD BLANK: 290346        | 0                        | Matrix: | Water     |      |                |            |
|-----------------------------|--------------------------|---------|-----------|------|----------------|------------|
| Associated Lab Samples:     | 35465452001, 35465452004 |         |           |      |                |            |
|                             |                          | Blank   | Reporting |      |                |            |
| Parameter                   | Units                    | Result  | Limit     | MDL  | Analyzed       | Qualifiers |
| Methylene Chloride          | ug/L                     | 2.0 U   | 5.0       | 2.0  | 05/03/19 11:12 |            |
| o-Xylene                    | ug/L                     | 0.27 U  | 1.0       | 0.27 | 05/03/19 11:12 |            |
| Styrene                     | ug/L                     | 0.26 U  | 1.0       | 0.26 | 05/03/19 11:12 |            |
| Tetrachloroethene           | ug/L                     | 0.38 U  | 1.0       | 0.38 | 05/03/19 11:12 |            |
| Toluene                     | ug/L                     | 0.33 U  | 1.0       | 0.33 | 05/03/19 11:12 |            |
| trans-1,2-Dichloroethene    | ug/L                     | 0.23 U  | 1.0       | 0.23 | 05/03/19 11:12 |            |
| trans-1,3-Dichloropropene   | ug/L                     | 0.17 U  | 0.50      | 0.17 | 05/03/19 11:12 | J(v2)      |
| trans-1,4-Dichloro-2-butene | ug/L                     | 2.5 U   | 10.0      | 2.5  | 05/03/19 11:12 | J(v2)      |
| Trichloroethene             | ug/L                     | 0.36 U  | 1.0       | 0.36 | 05/03/19 11:12 |            |
| Trichlorofluoromethane      | ug/L                     | 0.35 U  | 1.0       | 0.35 | 05/03/19 11:12 |            |
| Vinyl acetate               | ug/L                     | 0.19 U  | 10.0      | 0.19 | 05/03/19 11:12 |            |
| Vinyl chloride              | ug/L                     | 0.39 U  | 1.0       | 0.39 | 05/03/19 11:12 |            |
| Xylene (Total)              | ug/L                     | 2.1 U   | 5.0       | 2.1  | 05/03/19 11:12 |            |
| 1,2-Dichloroethane-d4 (S)   | %                        | 100     | 70-130    |      | 05/03/19 11:12 |            |
| 4-Bromofluorobenzene (S)    | %                        | 98      | 70-130    |      | 05/03/19 11:12 |            |
| Toluene-d8 (S)              | %                        | 100     | 70-130    |      | 05/03/19 11:12 |            |

#### LABORATORY CONTROL SAMPLE: 2903461

| LADONATORT CONTROL SAMI EL. | 2903401 |                |               |              |                 |            |
|-----------------------------|---------|----------------|---------------|--------------|-----------------|------------|
| Parameter                   | Units   | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|                             |         |                |               |              |                 | Qualifiero |
| 1,1,1,2-Tetrachloroethane   | ug/L    | 20             | 20.0          | 100          | 70-130          |            |
| 1,1,1-Trichloroethane       | ug/L    | 20             | 18.7          | 93           | 70-130          |            |
| 1,1,2,2-Tetrachloroethane   | ug/L    | 20             | 18.3          | 92           | 68-125          |            |
| 1,1,2-Trichloroethane       | ug/L    | 20             | 18.6          | 93           | 70-130          |            |
| 1,1-Dichloroethane          | ug/L    | 20             | 18.5          | 92           | 70-130          |            |
| 1,1-Dichloroethene          | ug/L    | 20             | 19.1          | 95           | 66-133          |            |
| 1,2,3-Trichloropropane      | ug/L    | 20             | 18.1          | 91           | 62-127          |            |
| 1,2,4-Trimethylbenzene      | ug/L    | 20             | 19.1          | 96           | 70-130          |            |
| 1,2-Dibromo-3-chloropropane | ug/L    | 20             | 16.2          | 81           | 45-137          |            |
| 1,2-Dibromoethane (EDB)     | ug/L    | 20             | 18.8          | 94           | 70-130          |            |
| 1,2-Dichlorobenzene         | ug/L    | 20             | 17.4          | 87           | 70-130          |            |
| 1,2-Dichloroethane          | ug/L    | 20             | 16.9          | 84           | 70-130          |            |
| 1,2-Dichloroethene (Total)  | ug/L    | 40             | 35.8          | 90           | 70-130          | N2         |
| 1,2-Dichloropropane         | ug/L    | 20             | 18.2          | 91           | 70-130          |            |
| 1,3,5-Trimethylbenzene      | ug/L    | 20             | 18.5          | 92           | 70-130          |            |
| I,4-Dichlorobenzene         | ug/L    | 20             | 17.9          | 90           | 70-130          |            |
| 2-Butanone (MEK)            | ug/L    | 40             | 33.8          | 85           | 47-143          |            |
| 2-Hexanone                  | ug/L    | 40             | 32.7          | 82           | 48-145          |            |
| 4-Methyl-2-pentanone (MIBK) | ug/L    | 40             | 32.0          | 80           | 57-132          | J(v3)      |
| Acetone                     | ug/L    | 40             | 37.1          | 93           | 46-148          | . ,        |
| Acetonitrile                | ug/L    | 200            | 193           | 97           | 33-175          |            |
| Benzene                     | ug/L    | 20             | 18.3          | 92           | 70-130          |            |
| Bromochloromethane          | ug/L    | 20             | 17.0          | 85           | 70-130          |            |
| Bromodichloromethane        | ug/L    | 20             | 19.6          | 98           | 70-130          |            |
|                             | - 5     |                |               |              |                 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



#### **QUALITY CONTROL DATA**

#### Project: Safety Kleen Facility

35465452 Pace Project No.:

#### LABORATORY CONTROL SAMPLE: 2903461

| Parameter              | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers   |
|------------------------|-------|----------------|---------------|--------------|-----------------|--------------|
| omoform                | ug/L  |                | 16.4          | 82           | 49-126          |              |
| omomethane             | ug/L  | 20             | 14.0          | 70           | 10-165          |              |
| bon disulfide          | ug/L  | 20             | 20.1          | 100          | 60-141          | 0(10)        |
| rbon tetrachloride     | ug/L  | 20             | 16.2          | 81           | 63-126          | J(v3)        |
| probenzene             | ug/L  | 20             | 17.8          | 89           | 70-130          | · · /        |
| roethane               | ug/L  | 20             | 39.7          | 199          |                 | J(L1), J(v1) |
| roform                 | ug/L  | 20             | 18.4          | 92           | 70-130          |              |
| romethane              | ug/L  | 20             | 24.0          | 120          | 40-140          |              |
| ,2-Dichloroethene      | ug/L  | 20             | 17.5          | 88           | 70-130          |              |
| ,3-Dichloropropene     | ug/L  | 20             | 15.3          | 76           | 70-130          |              |
| omochloromethane       | ug/L  | 20             | 16.8          | 84           | 62-118          | ( )          |
| romomethane            | ug/L  | 20             | 18.4          | 92           | 70-130          |              |
| Ibenzene               | ug/L  | 20             | 18.8          | 94           | 70-130          |              |
| methane                | ug/L  | 40             | 10.3          | 26           | 10-164          | J(v3)        |
| ropylbenzene (Cumene)  | ug/L  | 20             | 18.9          | 95           | 70-130          | · ,          |
| -Xylene                | ug/L  | 40             | 38.7          | 97           | 70-130          |              |
| yl-tert-butyl ether    | ug/L  | 20             | 18.8          | 94           | 64-124          |              |
| ylene Chloride         | ug/L  | 20             | 18.5          | 92           | 65-136          |              |
| lene                   | ug/L  | 20             | 18.5          | 93           | 70-130          |              |
| ene                    | ug/L  | 20             | 18.7          | 94           | 70-130          |              |
| achloroethene          | ug/L  | 20             | 18.1          | 91           | 64-134          |              |
| ene                    | ug/L  | 20             | 18.5          | 93           | 70-130          |              |
| -1,2-Dichloroethene    | ug/L  | 20             | 18.3          | 91           | 68-127          |              |
| s-1,3-Dichloropropene  | ug/L  | 20             | 15.5          | 77           | 65-121          | J(v3)        |
| -1,4-Dichloro-2-butene | ug/L  | 20             | 15.3          | 76           | 42-129          | J(v3)        |
| nloroethene            | ug/L  | 20             | 17.6          | 88           | 70-130          |              |
| nlorofluoromethane     | ug/L  | 20             | 22.1          | 110          | 65-135          |              |
| /l acetate             | ug/L  | 20             | 16.0          | 80           | 60-144          |              |
| chloride               | ug/L  | 20             | 22.3          | 111          | 68-131          |              |
| ne (Total)             | ug/L  | 60             | 57.2          | 95           | 70-130          |              |
| ichloroethane-d4 (S)   | %     |                |               | 101          | 70-130          |              |
| omofluorobenzene (S)   | %     |                |               | 101          | 70-130          |              |
| ene-d8 (S)             | %     |                |               | 99           | 70-130          |              |

| TRIX SPIKE SAMPLE: 2903555 |
|----------------------------|
| TRIX SPIKE SAMPLE: 2903555 |

| MATRIX SPIKE SAMPLE:      | 2903555 |             |       |        |       |        |            |
|---------------------------|---------|-------------|-------|--------|-------|--------|------------|
|                           |         | 35465449002 | Spike | MS     | MS    | % Rec  |            |
| Parameter                 | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane | ug/L    | 0.32 U      | 20    | 20.6   | 103   | 70-130 |            |
| 1,1,1-Trichloroethane     | ug/L    | 0.30 U      | 20    | 20.5   | 103   | 70-130 |            |
| 1,1,2,2-Tetrachloroethane | ug/L    | 0.20 U      | 20    | 18.5   | 93    | 68-125 |            |
| 1,1,2-Trichloroethane     | ug/L    | 0.30 U      | 20    | 19.2   | 96    | 70-130 |            |
| 1,1-Dichloroethane        | ug/L    | 0.34 U      | 20    | 20.0   | 100   | 70-130 |            |
| 1,1-Dichloroethene        | ug/L    | 0.27 U      | 20    | 21.1   | 106   | 66-133 |            |
| 1,2,3-Trichloropropane    | ug/L    | 1.1 U       | 20    | 15.9   | 79    | 62-127 |            |
| 1,2,4-Trimethylbenzene    | ug/L    | 0.24 U      | 20    | 20.9   | 104   | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



## Project: Safety Kleen Facility

Pace Project No.: 35465452

| MATRIX SPIKE SAMPLE:                                     | 2903555 | 35465449002      | Spike    | MS           | MS        | % Rec                  |
|----------------------------------------------------------|---------|------------------|----------|--------------|-----------|------------------------|
| Parameter                                                | Units   | Result           | Conc.    | Result       | % Rec     | Limits Qualifiers      |
| 1,2-Dibromo-3-chloropropane                              | ug/L    | 1.9 U            | 20       | 16.3         | 81        | 45-137                 |
| 1,2-Dibromoethane (EDB)                                  | ug/L    | 0.31 U           | 20       | 18.9         | 95        | 70-130                 |
| 1,2-Dichlorobenzene                                      | ug/L    | 0.29 U           | 20       | 18.3         | 92        | 70-130                 |
| 1,2-Dichloroethane                                       | ug/L    | 0.27 U           | 20       | 17.9         | 89        | 70-130                 |
| 1,2-Dichloroethene (Total)                               | ug/L    | 0.27 U           | 40       | 39.4         | 99        | 70-130 N2              |
| 1,2-Dichloropropane                                      | ug/L    | 0.23 U           | 20       | 19.5         | 98        | 70-130                 |
| 1,3,5-Trimethylbenzene                                   | ug/L    | 0.24 U           | 20       | 20.5         | 102       | 70-130                 |
| 1,4-Dichlorobenzene                                      | ug/L    | 0.28 U           | 20       | 18.6         | 93        | 70-130                 |
| 2-Butanone (MEK)                                         | ug/L    | 7.5 U            | 40       | 35.5         | 89        | 47-143                 |
| 2-Hexanone                                               | ug/L    | 0.85 U           | 40       | 32.4         | 81        | 48-145                 |
| 4-Methyl-2-pentanone (MIBK)                              | ug/L    | 0.32 U           | 40       | 32.1         | 80        | 57-132 J(v3)           |
| Acetone                                                  | ug/L    | 35.5             | 40       | 50.5         | 38        | 46-148 J(M1)           |
| Acetonitrile                                             | ug/L    | 24.5 U           | 200      | 192          | 96        | 33-175                 |
| Benzene                                                  | ug/L    | 0.30 U           | 20       | 19.9         | 100       | 70-130                 |
| Bromochloromethane                                       | ug/L    | 0.37 U           | 20       | 18.9         | 95        | 70-130                 |
| Bromodichloromethane                                     | ug/L    | 0.19 U           | 20       | 20.3         | 102       | 70-130                 |
| Bromoform                                                | ug/L    | 2.6 U            | 20       | 16.2         | 81        | 49-126                 |
| Bromomethane                                             | ug/L    | 4.0 U            | 20       | 10.2         | 51        | 10-165 J(v3)           |
| Carbon disulfide                                         | ug/L    | 0.45 U           | 20       | 23.0         | 114       | 60-141                 |
| Carbon tetrachloride                                     | ug/L    | 1.1 U            | 20       | 17.7         | 89        | 63-126 J(v3)           |
| Chlorobenzene                                            | ug/L    | 0.35 U           | 20       | 18.9         | 94        | 70-130                 |
| Chloroethane                                             | ug/L    | 3.7 U            | 20       | 41.3         | 206       | 71-142 J(M0),J(v1)     |
| Chloroform                                               | ug/L    | 0.32 U           | 20       | 19.5         | 98        | 70-130                 |
| Chloromethane                                            | ug/L    | 0.97 U           | 20       | 25.2         | 126       | 40-140                 |
| cis-1,2-Dichloroethene                                   | ug/L    | 0.27 U           | 20       | 19.4         | 97        | 70-130                 |
| cis-1,3-Dichloropropene                                  | ug/L    | 0.17 U           | 20       | 15.3         | 57<br>77  | 70-130 J(v3)           |
| Dibromochloromethane                                     | ug/L    | 0.45 U           | 20       | 16.8         | 84        | 62-118                 |
| Dibromomethane                                           | ug/L    | 0.43 U           | 20       | 18.1         | 90        | 70-130                 |
| Ethylbenzene                                             | ug/L    | 0.30 U           | 20       | 20.1         | 90<br>101 | 70-130                 |
| Iodomethane                                              | -       | 9.3 U            | 20<br>40 | 13.9         | 35        | 10-164 J(v3)           |
| Isopropylbenzene (Cumene)                                | ug/L    | 0.30 U           | 40<br>20 | 21.1         | 106       | 70-130                 |
| m&p-Xylene                                               | ug/L    | 2.1 U            | 20<br>40 | 41.1         | 100       | 70-130                 |
|                                                          | ug/L    | 0.51 U           | 40<br>20 | 18.6         | 93        | 64-124                 |
| Methyl-tert-butyl ether<br>Methylene Chloride            | ug/L    | 2.0 U            | 20       | 18.7         | 93<br>94  | 65-136                 |
| 5                                                        | ug/L    | 0.27 U           | 20       | 20.0         | 94<br>100 | 70-130                 |
| o-Xylene<br>Styrene                                      | ug/L    | 0.27 U           | 20       | 19.4         | 97        | 70-130                 |
| ,                                                        | ug/L    | 0.38 U           |          | 19.4         | 97<br>93  | 64-134                 |
| Tetrachloroethene                                        | ug/L    | 0.38 U           | 20       |              |           |                        |
| Toluene                                                  | ug/L    | 0.33 U<br>0.23 U | 20       | 19.7         | 98<br>100 | 70-130                 |
| trans-1,2-Dichloroethene                                 | ug/L    | 0.23 U<br>0.17 U | 20       | 20.0<br>15.8 | 100       | 68-127<br>65-121 (\u2) |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene | ug/L    | 2.5 U            | 20<br>20 | 15.8<br>14.5 | 79<br>72  | 65-121 J(v3)           |
| ,                                                        | ug/L    | 2.5 U<br>0.36 U  | 20       | 14.5         | 72        | 42-129 J(v3)           |
| Trichloroethene                                          | ug/L    | 0.36 U<br>0.35 U | 20       | 19.4         | 97<br>119 | 70-130                 |
| Trichlorofluoromethane                                   | ug/L    |                  | 20       | 23.7         | 118       | 65-135                 |
| Vinyl acetate                                            | ug/L    | 0.19 U           | 20       | 15.3         | 76        | 60-144                 |
| Vinyl chloride                                           | ug/L    | 0.39 U           | 20       | 23.9         | 120       | 68-131<br>70.120       |
| Xylene (Total)                                           | ug/L    | 2.1 U            | 60       | 61.1         | 102       | 70-130                 |
| 1,2-Dichloroethane-d4 (S)                                | %       |                  |          |              | 99        | 70-130                 |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



## Project: Safety Kleen Facility

Pace Project No.: 35465452

| MATRIX SPIKE SAMPLE:                       | 2903555 | 35465449002           | Spike         | MS     | MS         | % Rec            |            |
|--------------------------------------------|---------|-----------------------|---------------|--------|------------|------------------|------------|
| Parameter                                  | Units   | Result                | Conc.         | Result | % Rec      | Limits           | Qualifiers |
| 4-Bromofluorobenzene (S)<br>Toluene-d8 (S) | %       |                       | 101<br>99     |        |            | 70-130<br>70-130 |            |
| SAMPLE DUPLICATE: 2903554                  |         |                       |               |        |            |                  |            |
| Parameter                                  | Units   | 35465449001<br>Result | Dup<br>Result | RPD    | Max<br>RPD | Qualifiers       |            |
| 1,1,1,2-Tetrachloroethane                  | ug/L    | 0.32 U                | 0.32 U        |        | 40         |                  | -          |
| 1,1,1-Trichloroethane                      | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |
| 1,1,2,2-Tetrachloroethane                  | ug/L    | 0.20 U                | 0.20 U        |        | 40         |                  |            |
| 1,1,2-Trichloroethane                      | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |
| 1,1-Dichloroethane                         | ug/L    | 0.34 U                | 0.34 U        |        | 40         |                  |            |
| 1,1-Dichloroethene                         | ug/L    | 0.27 U                | 0.27 U        |        | 40         |                  |            |
| 1,2,3-Trichloropropane                     | ug/L    | 1.1 U                 | 1.1 U         |        | 40         |                  |            |
| 1,2,4-Trimethylbenzene                     | ug/L    | 0.24 U                | 0.24 U        |        | 40         |                  |            |
| 1,2-Dibromo-3-chloropropane                | ug/L    | 1.9 U                 | 1.9 U         |        | 40         |                  |            |
| 1,2-Dibromoethane (EDB)                    | ug/L    | 0.31 U                | 0.31 U        |        | 40         |                  |            |
| 1,2-Dichlorobenzene                        | ug/L    | 0.29 U                | 0.29 U        |        | 40         |                  |            |
| 1,2-Dichloroethane                         | ug/L    | 0.27 U                | 0.27 U        |        | 40         |                  |            |
| 1,2-Dichloroethene (Total)                 | ug/L    | 0.27 U                | 0.27 U        |        | 40         | N2               |            |
| 1,2-Dichloropropane                        | ug/L    | 0.23 U                | 0.23 U        |        | 40         |                  |            |
| 1,3,5-Trimethylbenzene                     | ug/L    | 0.24 U                | 0.24 U        |        | 40         |                  |            |
| 1,4-Dichlorobenzene                        | ug/L    | 0.28 U                | 0.28 U        |        | 40         |                  |            |
| 2-Butanone (MEK)                           | ug/L    | 7.5 U                 | 7.5 U         |        | 40         |                  |            |
| 2-Hexanone                                 | ug/L    | 0.85 U                | 0.85 U        |        | 40         |                  |            |
| 4-Methyl-2-pentanone (MIBK)                | ug/L    | 0.32 U                | 0.32 U        |        | 40         | J(v2)            |            |
| Acetone                                    | ug/L    | 9.6 I                 | 12.4 I        |        | 40         |                  |            |
| Acetonitrile                               | ug/L    | 24.5 U                | 24.5 U        |        | 40         |                  |            |
| Benzene                                    | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |
| Bromochloromethane                         | ug/L    | 0.37 U                | 0.37 U        |        | 40         |                  |            |
| Bromodichloromethane                       | ug/L    | 0.19 U                | 0.19 U        |        | 40         |                  |            |
| Bromoform                                  | ug/L    | 2.6 U                 | 2.6 U         |        | 40         |                  |            |
| Bromomethane                               | ug/L    | 4.0 U                 | 4.0 U         |        | 40         | J(v2)            |            |
| Carbon disulfide                           | ug/L    | 0.45 U                | 0.45 U        |        | 40         |                  |            |
| Carbon tetrachloride                       | ug/L    | 1.1 U                 | 1.1 U         |        | 40         | J(v2)            |            |
| Chlorobenzene                              | ug/L    | 0.35 U                | 0.35 U        |        | 40         |                  |            |
| Chloroethane                               | ug/L    | 3.7 U                 | 3.7 U         |        | 40         | J(v1)            |            |
| Chloroform                                 | ug/L    | 0.32 U                | 0.32 U        |        | 40         |                  |            |
| Chloromethane                              | ug/L    | 0.97 U                | 0.97 U        |        | 40         |                  |            |
| cis-1,2-Dichloroethene                     | ug/L    | 0.27 U                | 0.27 U        |        | 40         |                  |            |
| cis-1,3-Dichloropropene                    | ug/L    | 0.17 U                | 0.17 U        |        | 40         | J(v2)            |            |
| Dibromochloromethane                       | ug/L    | 0.45 U                | 0.45 U        |        | 40         |                  |            |
| Dibromomethane                             | ug/L    | 0.68 U                | 0.68 U        |        | 40         |                  |            |
| Ethylbenzene                               | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |
| Iodomethane                                | ug/L    | 9.3 U                 | 9.3 U         |        | 40         | J(v2)            |            |
| Isopropylbenzene (Cumene)                  | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### Project: Safety Kleen Facility Pace Project No.: 35465452

## SAMPLE DUPLICATE: 2903554

| m&p-Xylene         ug/L         2.1 U         2.1 U         40           Methyl-tert-butyl ether         ug/L         0.51 U         0.51 U         40           Methylene Chloride         ug/L         2.0 U         2.0 U         40           o-Xylene         ug/L         0.27 U         0.27 U         40 | Qualifiers |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| m&p-Xylene         ug/L         2.1 U         2.1 U         40           Methyl-tert-butyl ether         ug/L         0.51 U         0.51 U         40           Methylene Chloride         ug/L         2.0 U         2.0 U         40           o-Xylene         ug/L         0.27 U         0.27 U         40 |            |
| Methyl-tert-butyl ether         ug/L         0.51 U         0.51 U         40           Methylene Chloride         ug/L         2.0 U         2.0 U         40           o-Xylene         ug/L         0.27 U         0.27 U         40                                                                          |            |
| Methylene Chloride         ug/L         2.0 U         2.0 U         40           o-Xylene         ug/L         0.27 U         0.27 U         40                                                                                                                                                                  |            |
| o-Xylene ug/L 0.27 U 0.27 U 40                                                                                                                                                                                                                                                                                   |            |
|                                                                                                                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                                                                                                                  |            |
| Styrene ug/L 0.26 U 0.26 U 40                                                                                                                                                                                                                                                                                    |            |
| Tetrachloroethene         ug/L         0.38 U         0.38 U         40                                                                                                                                                                                                                                          |            |
| Toluene ug/L 0.33 U 0.33 U 40                                                                                                                                                                                                                                                                                    |            |
| trans-1,2-Dichloroethene ug/L 0.23 U 0.23 U 40                                                                                                                                                                                                                                                                   |            |
| trans-1,3-Dichloropropene ug/L 0.17 U 0.17 U 40 J(v/                                                                                                                                                                                                                                                             | 2)         |
| trans-1,4-Dichloro-2-butene ug/L 2.5 U 2.5 U 40 J(vi                                                                                                                                                                                                                                                             | 2)         |
| Trichloroethene ug/L 0.36 U 0.36 U 40                                                                                                                                                                                                                                                                            |            |
| Trichlorofluoromethane ug/L 0.35 U 0.35 U 40                                                                                                                                                                                                                                                                     |            |
| Vinyl acetate ug/L 0.19 U 0.19 U 40                                                                                                                                                                                                                                                                              |            |
| Vinyl chloride ug/L 0.39 U 0.39 U 40                                                                                                                                                                                                                                                                             |            |
| Xylene (Total) ug/L 2.1 U 2.1 U 40                                                                                                                                                                                                                                                                               |            |
| 1,2-Dichloroethane-d4 (S) % 98 97 40                                                                                                                                                                                                                                                                             |            |
| 4-Bromofluorobenzene (S) % 101 99 40                                                                                                                                                                                                                                                                             |            |
| Toluene-d8 (S) % 103 103 40                                                                                                                                                                                                                                                                                      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Safety Kleen Facility

Pace Project No.:

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

Dibenz(a,h)anthracene

Indeno(1,2,3-cd)pyrene

2-Fluorobiphenyl (S)

p-Terphenyl-d14 (S)

35465452

| QC Batch: 536089                |       | Analysis Meth                                      | nod: EF   | A 8270 by SIM |                |            |
|---------------------------------|-------|----------------------------------------------------|-----------|---------------|----------------|------------|
| QC Batch Method: EPA 3510       |       | Analysis Description: 8270 Water PAHLV by SIM MSSV |           |               |                |            |
| Associated Lab Samples: 3546545 | 2001  |                                                    |           |               |                |            |
| METHOD BLANK: 2904132           |       | Matrix:                                            | Water     |               |                |            |
| Associated Lab Samples: 3546545 | 2001  |                                                    |           |               |                |            |
|                                 |       | Blank                                              | Reporting |               |                |            |
| Parameter                       | Units | Result                                             | Limit     | MDL           | Analyzed       | Qualifiers |
| 1-Methylnaphthalene             | ug/L  | 0.19 U                                             | 2.0       | 0.19          | 05/07/19 08:51 |            |
| 2-Methylnaphthalene             | ug/L  | 0.68 U                                             | 2.0       | 0.68          | 05/07/19 08:51 |            |
| Acenaphthene                    | ug/L  | 0.040 U                                            | 0.50      | 0.040         | 05/07/19 08:51 |            |
| Acenaphthylene                  | ug/L  | 0.030 U                                            | 0.50      | 0.030         | 05/07/19 08:51 |            |
| Anthracene                      | ug/L  | 0.043 U                                            | 0.50      | 0.043         | 05/07/19 08:51 |            |
| Benzo(a)anthracene              | ug/L  | 0.055 U                                            | 0.10      | 0.055         | 05/07/19 08:51 |            |
| Benzo(a)pyrene                  | ug/L  | 0.12 U                                             | 0.20      | 0.12          | 05/07/19 08:51 |            |
| Benzo(b)fluoranthene            | ug/L  | 0.027 U                                            | 0.10      | 0.027         | 05/07/19 08:51 |            |
| Benzo(g,h,i)perylene            | ug/L  | 0.15 U                                             | 0.50      | 0.15          | 05/07/19 08:51 |            |
| Benzo(k)fluoranthene            | ug/L  | 0.16 U                                             | 0.50      | 0.16          | 05/07/19 08:51 |            |

0.50

0.15

0.50

0.50

0.15

2.0

0.50

0.50

33-82

49-104

0.026

0.13

05/07/19 08:51

05/07/19 08:51

05/07/19 08:51

05/07/19 08:51

0.018 05/07/19 08:51

0.088 05/07/19 08:51

0.12 05/07/19 08:51

0.29 05/07/19 08:51

0.16 05/07/19 08:51

0.032 05/07/19 08:51

0.026 U

0.13 U

0.018 U

0.088 U

0.12 U

0.29 U

0.16 U

0.032 U

69

82

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

%

%

#### LABORATORY CONTROL SAMPLE 2904133

| LABORATORT CONTROL SAMFLE. | 2904133 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1-Methylnaphthalene        | ug/L    | 5     | 3.3    | 65    | 40-96  |            |
| 2-Methylnaphthalene        | ug/L    | 5     | 3.4    | 67    | 40-94  |            |
| Acenaphthene               | ug/L    | 5     | 3.6    | 71    | 42-96  |            |
| Acenaphthylene             | ug/L    | 5     | 3.4    | 67    | 39-90  |            |
| Anthracene                 | ug/L    | 5     | 3.6    | 71    | 46-109 |            |
| Benzo(a)anthracene         | ug/L    | 5     | 4.2    | 84    | 50-116 |            |
| Benzo(a)pyrene             | ug/L    | 5     | 3.7    | 75    | 48-117 |            |
| Benzo(b)fluoranthene       | ug/L    | 5     | 3.9    | 77    | 51-124 |            |
| Benzo(g,h,i)perylene       | ug/L    | 5     | 3.7    | 75    | 47-121 |            |
| Benzo(k)fluoranthene       | ug/L    | 5     | 4.1    | 81    | 50-125 |            |
| Chrysene                   | ug/L    | 5     | 4.3    | 87    | 53-122 |            |
| Dibenz(a,h)anthracene      | ug/L    | 5     | 3.8    | 75    | 45-123 |            |
| Fluoranthene               | ug/L    | 5     | 3.9    | 79    | 52-119 |            |
| Fluorene                   | ug/L    | 5     | 3.6    | 71    | 44-100 |            |
| Indeno(1,2,3-cd)pyrene     | ug/L    | 5     | 3.8    | 76    | 46-121 |            |
| Naphthalene                | ug/L    | 5     | 3.4    | 68    | 40-91  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### Project: Safety Kleen Facility Pace Project No.: 35465452

#### LABORATORY CONTROL SAMPLE: 2904133

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

| Parameter            | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|----------------------|-------|----------------|---------------|--------------|-----------------|------------|
| Phenanthrene         | ug/L  | 5              | 3.7           | 73           | 47-111          |            |
| Pyrene               | ug/L  | 5              | 3.9           | 77           | 51-120          |            |
| 2-Fluorobiphenyl (S) | %     |                |               | 71           | 33-82           |            |
| p-Terphenyl-d14 (S)  | %     |                |               | 83           | 49-104          |            |

2905483

75

75

49-104

2905482

#### MS MSD 35465504003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 42.1 1-Methylnaphthalene ug/L 39.9 5 5 42.0 45 42 40-96 0 40 2-Methylnaphthalene ug/L 64.2 5 5 66.1 64.9 38 14 40-94 2 40 J(M1) Acenaphthene ug/L 0.67 5 5 4.0 4.0 67 66 42-96 1 40 Acenaphthylene ug/L 0.030 U 5 5 3.5 3.5 70 70 39-90 0 40 0.099 | 5 5 3.5 3.5 68 67 46-109 40 Anthracene ug/L 1 Benzo(a)anthracene ug/L 0.055 U 5 5 4.0 3.9 80 77 50-116 3 40 0.12 U 5 5 3.6 3.5 71 70 48-117 2 40 Benzo(a)pyrene ug/L ug/L 0.027 U 5 5 3.5 3.5 70 69 51-124 2 40 Benzo(b)fluoranthene 5 5 63 2 0.15 U 3.2 3.1 62 47-121 40 Benzo(g,h,i)perylene ug/L 5 5 3.9 77 76 2 Benzo(k)fluoranthene 0.16 U 3.8 50-125 40 ug/L 5 5 81 78 4 Chrysene ug/L 0.026 U 4.1 3.9 53-122 40 Dibenz(a,h)anthracene ug/L 0.13 U 5 5 3.3 3.2 66 64 45-123 2 40 5 73 2 Fluoranthene ug/L 0.018 U 5 3.7 3.6 74 52-119 40 Fluorene 0.96 5 5 4.3 4.3 67 67 44-100 1 40 ug/L Indeno(1,2,3-cd)pyrene 0.12 U 5 5 3.3 3.3 66 65 46-121 2 40 ug/L 18.8 5 5 21.8 22.9 59 5 40 Naphthalene ug/L 82 40-91 5 5 4.0 69 47-111 40 Phenanthrene ug/L 0.58 4.0 68 1 Pyrene ug/L 0.075 I 5 5 3.7 3.7 73 72 51-120 2 40 2-Fluorobiphenyl (S) % 64 64 33-82

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

p-Terphenyl-d14 (S)

%



Project: Safety Kleen Facility

35465452 Pace Project No.:

| QC Batch Method: EPA 3510           |               | •                         |           |      |      |                |            |
|-------------------------------------|---------------|---------------------------|-----------|------|------|----------------|------------|
|                                     | Analysis Dese | 8270 Water Full List MSSV |           |      |      |                |            |
| Associated Lab Samples: 35465452001 |               | ,                         | •         |      |      |                |            |
|                                     |               |                           |           |      |      |                |            |
| METHOD BLANK: 2909706               |               | Matrix:                   | Water     |      |      |                |            |
| Associated Lab Samples: 35465452001 |               |                           |           |      |      |                |            |
|                                     |               | Blank                     | Reporting | g    |      |                |            |
| Parameter                           | Units         | Result                    | Limit     |      | MDL  | Analyzed       | Qualifiers |
| 1,2,4-Trichlorobenzene              | ug/L          | <br>1.4 U                 |           | 5.0  | 1.4  | 05/10/19 10:00 |            |
| 1,2-Dichlorobenzene                 | ug/L          | 1.5 U                     |           | 5.0  | 1.5  | 05/10/19 10:00 |            |
| 1,2-Dinitrobenzene                  | ug/L          | 1.9 U                     |           | 6.0  | 1.9  | 05/10/19 10:00 |            |
| 1,2-Diphenylhydrazine               | ug/L          | 1.4 U                     |           | 5.0  | 1.4  | 05/10/19 10:00 |            |
| 1,3-Dichlorobenzene                 | ug/L          | 1.5 U                     |           | 5.0  | 1.5  | 05/10/19 10:00 |            |
| 1,3-Dinitrobenzene                  | ug/L          | 1.2 U                     |           | 8.0  | 1.2  | 05/10/19 10:00 |            |
| 1,4-Dichlorobenzene                 | ug/L          | 1.5 U                     |           | 5.0  | 1.5  | 05/10/19 10:00 |            |
| 2,3,4,6-Tetrachlorophenol           | ug/L          | 1.0 U                     |           | 5.0  | 1.0  | 05/10/19 10:00 |            |
| 2,3,5,6-Tetrachlorophenol           | ug/L          | 1.9 U                     |           | 9.0  | 1.9  | 05/10/19 10:00 | N2         |
| 2,4,5-Trichlorophenol               | ug/L          | 0.23 U                    |           | 4.0  | 0.23 | 05/10/19 10:00 |            |
| 2,4,6-Trichlorophenol               | ug/L          | 0.36 U                    |           | 2.0  | 0.36 | 05/10/19 10:00 |            |
| 2,4-Dichlorophenol                  | ug/L          | 0.34 U                    |           | 2.0  | 0.34 | 05/10/19 10:00 |            |
| 2,4-Dimethylphenol                  | ug/L          | 1.0 U                     |           | 5.0  | 1.0  | 05/10/19 10:00 |            |
| 2,4-Dinitrophenol                   | ug/L          | 2.6 U                     |           | 20.0 | 2.6  | 05/10/19 10:00 |            |
| 2,4-Dinitrotoluene                  | ug/L          | 0.27 U                    |           | 4.0  | 0.27 | 05/10/19 10:00 |            |
| 2,6-Dinitrotoluene                  | ug/L          | 0.28 U                    |           | 2.0  | 0.28 | 05/10/19 10:00 |            |
| 2-Chloronaphthalene                 | ug/L          | 0.34 U                    |           | 5.0  | 0.34 | 05/10/19 10:00 |            |
| 2-Chlorophenol                      | ug/L          | 1.4 U                     |           | 5.0  | 1.4  | 05/10/19 10:00 |            |
| 2-Methylphenol(o-Cresol)            | ug/L          | 0.30 U                    |           | 5.0  | 0.30 | 05/10/19 10:00 |            |
| 2-Nitroaniline                      | ug/L          | 1.3 U                     |           | 5.0  | 1.3  | 05/10/19 10:00 |            |
| 2-Nitrophenol                       | ug/L          | 1.4 U                     |           | 5.0  | 1.4  | 05/10/19 10:00 |            |
| 3&4-Methylphenol(m&p Cresol)        | ug/L          | 0.22 U                    |           | 0.0  | 0.22 | 05/10/19 10:00 |            |
| 3,3'-Dichlorobenzidine              | ug/L          | 1.0 U                     | 1         | 0.0  | 1.0  | 05/10/19 10:00 |            |
| 3-Nitroaniline                      | ug/L          | 1.3 U                     |           | 5.0  | 1.3  | 05/10/19 10:00 |            |
| 4,6-Dinitro-2-methylphenol          | ug/L          | 4.6 U                     |           | 20.0 | 4.6  | 05/10/19 10:00 |            |
| 4-Bromophenylphenyl ether           | ug/L          | 1.7 U                     |           | 5.0  | 1.7  | 05/10/19 10:00 |            |
| 4-Chloro-3-methylphenol             | ug/L          | 5.4 U                     |           | 20.0 | 5.4  | 05/10/19 10:00 |            |
| 4-Chloroaniline                     | ug/L          | 1.4 U                     |           | 5.0  | 1.4  | 05/10/19 10:00 |            |
| 4-Chlorophenylphenyl ether          | ug/L          | 1.4 U                     |           | 5.0  | 1.4  | 05/10/19 10:00 |            |
| 4-Nitroaniline                      | ug/L          | 0.19 U                    |           | 4.0  | 0.19 | 05/10/19 10:00 |            |
| 4-Nitrophenol                       | ug/L          | 2.0 U                     |           | 20.0 | 2.0  | 05/10/19 10:00 |            |
| Aniline                             | ug/L          | 0.94 U                    |           | 5.0  | 0.94 | 05/10/19 10:00 |            |
| Benzidine                           | ug/L          | 0.87 U                    |           | 25.0 | 0.87 | 05/10/19 10:00 |            |
| Benzyl alcohol                      | ug/L          | 1.3 U                     |           | 5.0  | 1.3  | 05/10/19 10:00 |            |
| bis(2-Chloroethoxy)methane          | ug/L          | 1.6 U                     |           | 5.0  | 1.6  | 05/10/19 10:00 |            |
| bis(2-Chloroethyl) ether            | ug/L          | 0.34 U                    |           | 4.0  | 0.34 | 05/10/19 10:00 |            |
| bis(2-Chloroisopropyl) ether        | ug/L          | 1.8 U                     |           | 6.0  | 1.8  | 05/10/19 10:00 |            |
| bis(2-Ethylhexyl)phthalate          | ug/L          | 1.1 U                     |           | 5.0  | 1.1  | 05/10/19 10:00 |            |
| Butylbenzylphthalate                | ug/L          | 1.1 U                     |           | 5.0  | 1.1  | 05/10/19 10:00 |            |
| Caprolactam                         | ug/L          | 0.40 U                    |           | 5.0  | 0.40 | 05/10/19 10:00 | N2         |
|                                     |               | 0.10 0                    |           | 2.2  | 0.10 | 20.10.10.10.00 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Matrix: Water

| Project:           | Safety Kleen Facility |
|--------------------|-----------------------|
| Pace Project No .: | 35465452              |

## METHOD BLANK: 2909706

Associated Lab Samples: 35465452001

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers 1.1 U Di-n-butylphthalate ug/L 5.0 1.1 05/10/19 10:00 0.92 Di-n-octylphthalate 0.92 U 5.0 05/10/19 10:00 ug/L Dibenzofuran 1.5 U 5.0 05/10/19 10:00 ug/L 1.5 1.4 U Diethylphthalate 5.0 1.4 05/10/19 10:00 ug/L Dimethylphthalate 1.4 U 5.0 ug/L 1.4 05/10/19 10:00 Hexachloro-1,3-butadiene ug/L 0.35 U 2.0 0.35 05/10/19 10:00 Hexachlorobenzene ug/L 0.29 U 1.0 0.29 05/10/19 10:00 Hexachlorocyclopentadiene ug/L 3.4 U 11.0 3.4 05/10/19 10:00 Hexachloroethane ug/L 1.4 U 5.0 1.4 05/10/19 10:00 1.7 U 5.0 05/10/19 10:00 Isophorone ug/L 1.7 N-Nitroso-di-n-propylamine ug/L 0.33 U 4.0 0.33 05/10/19 10:00 0.20 U N-Nitrosodimethylamine ug/L 2.0 0.20 05/10/19 10:00 N-Nitrosodiphenylamine 1.2 U 5.0 1.2 05/10/19 10:00 ug/L 0.37 U Nitrobenzene 4.0 0.37 05/10/19 10:00 ug/L 1.6 U 20.0 Pentachlorophenol ug/L 1.6 05/10/19 10:00 0.63 U 5.0 0.63 Phenol ug/L 05/10/19 10:00 Pyridine ug/L 1.1 U 5.0 1.1 05/10/19 10:00 2,4,6-Tribromophenol (S) 10-126 % 43 05/10/19 10:00 2-Fluorobiphenyl (S) % 34 10-96 05/10/19 10:00 2-Fluorophenol (S) % 19 10-55 05/10/19 10:00 % 34 10-94 Nitrobenzene-d5 (S) 05/10/19 10:00 % 68 24-129 p-Terphenyl-d14 (S) 05/10/19 10:00 Phenol-d5 (S) % 16 10-35 05/10/19 10:00

#### LABORATORY CONTROL SAMPLE: 2909707

|                           |       | Spike | LCS    | LCS   | % Rec    |            |
|---------------------------|-------|-------|--------|-------|----------|------------|
| Parameter                 | Units | Conc. | Result | % Rec | Limits   | Qualifiers |
| 1,2,4-Trichlorobenzene    | ug/L  | 50    | 24.0   | 48    | 33-89    |            |
| 1,2-Dichlorobenzene       | ug/L  | 50    | 23.2   | 46    | 30-85    |            |
| 1,2-Dinitrobenzene        | ug/L  | 50    | 33.4   | 67    | 55-111   |            |
| 1,2-Diphenylhydrazine     | ug/L  | 50    | 26.0   | 52    | 49-106   |            |
| 1,3-Dichlorobenzene       | ug/L  | 50    | 22.6   | 45    | 28-83    |            |
| 1,3-Dinitrobenzene        | ug/L  | 50    | 33.8   | 68    | 55-114   |            |
| 1,4-Dichlorobenzene       | ug/L  | 50    | 23.0   | 46    | 26-87    |            |
| 2,3,4,6-Tetrachlorophenol | ug/L  | 50    | 28.4   | 57    | 56-108   |            |
| 2,3,5,6-Tetrachlorophenol | ug/L  | 50    | 30.0   | 60    | 57-108 N | 12         |
| 2,4,5-Trichlorophenol     | ug/L  | 50    | 28.6   | 57    | 46-111   |            |
| 2,4,6-Trichlorophenol     | ug/L  | 50    | 28.0   | 56    | 45-108   |            |
| 2,4-Dichlorophenol        | ug/L  | 50    | 26.2   | 52    | 46-94    |            |
| 2,4-Dimethylphenol        | ug/L  | 50    | 24.9   | 50    | 44-92    |            |
| 2,4-Dinitrophenol         | ug/L  | 50    | 36.8   | 74    | 49-123   |            |
| 2,4-Dinitrotoluene        | ug/L  | 50    | 33.7   | 67    | 47-120   |            |
| 2,6-Dinitrotoluene        | ug/L  | 50    | 31.9   | 64    | 57-107   |            |
| 2-Chloronaphthalene       | ug/L  | 50    | 24.9   | 50    | 39-98    |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



## Project: Safety Kleen Facility

Pace Project No.: 35465452

#### LABORATORY CONTROL SAMPLE: 2909707 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 2-Chlorophenol ug/L 50 22.8 46 35-83 2-Methylphenol(o-Cresol) ug/L 50 23.3 47 29-84 2-Nitroaniline 50 31.8 64 56-107 ug/L 50 29.9 60 43-96 2-Nitrophenol ug/L 50 22.7 45 26-82 3&4-Methylphenol(m&p Cresol) ug/L 3,3'-Dichlorobenzidine 50 29.0 58 61-113 J(L2) ug/L 3-Nitroaniline 50 28.4 57 56-104 ug/L 4,6-Dinitro-2-methylphenol 50 39.2 78 51-131 ug/L 4-Bromophenylphenyl ether 50 28.9 58 51-105 ug/L 4-Chloro-3-methylphenol ug/L 50 26.8 54 51-98 4-Chloroaniline ug/L 50 26.1 52 50-92 4-Chlorophenylphenyl ether ug/L 50 26.8 54 48-103 4-Nitroaniline 50 31.9 64 61-108 ug/L 4-Nitrophenol 50 23 10-61 ug/L 11.6 I Aniline 50 48 33-88 ug/L 24.0 28 Benzidine ug/L 50 14.0 I 10-110 Benzyl alcohol 50 22.2 44 35-78 ug/L bis(2-Chloroethoxy)methane 50 25.4 51 43-94 ug/L bis(2-Chloroethyl) ether 50 23.9 48 34-90 ug/L bis(2-Chloroisopropyl) ether 50 46 26-96 ug/L 22.9 23.4 47 bis(2-Ethylhexyl)phthalate 50 28-125 ug/L Butylbenzylphthalate ug/L 50 28.3 57 54-116 Caprolactam ug/L 50 8.6 17 10-36 N2 Carbazole 50 28.4 57 58-109 J(L2) ug/L Di-n-butylphthalate 50 28.1 56 57-113 J(L2) ug/L Di-n-octylphthalate ug/L 50 23.9 48 28-124 47-101 Dibenzofuran ug/L 50 27.0 54 Diethylphthalate 50 28.3 57 57-107 ug/L Dimethylphthalate 50 27.9 56 56-104 ug/L 50 23.4 47 25-95 Hexachloro-1,3-butadiene ug/L 26.6 53 Hexachlorobenzene 50 44-111 ug/L 21.6 Hexachlorocyclopentadiene 50 43 10-126 ug/L 50 22.2 44 Hexachloroethane ug/L 21-87 Isophorone ug/L 50 25.6 51 46-95 N-Nitroso-di-n-propylamine ug/L 50 25.3 51 44-92 N-Nitrosodimethylamine ug/L 50 16.4 33 18-64 N-Nitrosodiphenylamine ug/L 50 27.3 55 53-105 Nitrobenzene ug/L 50 25.3 51 36-95 Pentachlorophenol 50 30.9 62 45-127 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

50

50

ug/L

ug/L

%

%

%

%

%

%

#### REPORT OF LABORATORY ANALYSIS

11.6

12.5

23

25

64

53

26

51

56

22

10-44

10-57

10-126

10-96

10-55

10-94

10-35

24-129

2,4,6-Tribromophenol (S)

2-Fluorobiphenyl (S)

2-Fluorophenol (S)

Nitrobenzene-d5 (S)

p-Terphenyl-d14 (S)

Phenol-d5 (S)

Phenol

Pyridine



Project: Safety Kleen Facility

Pace Project No.: 35465452

| MATRIX SPIKE & MATRIX SP        | IKE DUPL | ICATE: 2909 | 708   |       | 2909709 |        |       |       |        |     |     |       |
|---------------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|-------|
|                                 |          |             | MS    | MSD   |         |        |       |       |        |     |     |       |
|                                 |          | 35465452001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |       |
| Parameter                       | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual  |
| 1,2,4-Trichlorobenzene          | ug/L     | 1.4 U       | 48.1  | 47.9  | 12.9    | 14.6   | 27    | 30    | 33-89  | 13  | 40  | J(M1) |
| 1,2-Dichlorobenzene             | ug/L     | 1.5 U       | 48.1  | 47.9  | 12.8    | 13.8   | 27    | 29    | 30-85  | 8   | 40  | J(M1) |
| 1,2-Dinitrobenzene              | ug/L     | 1.8 U       | 48.1  | 47.9  | 30.5    | 35.1   | 63    | 73    | 55-111 | 14  |     |       |
| 1,2-Diphenylhydrazine           | ug/L     | 1.3 U       | 48.1  | 47.9  | 22.2    | 25.3   | 46    | 53    | 49-106 | 13  | 40  | J(M1) |
| 1,3-Dichlorobenzene             | ug/L     | 1.5 U       | 48.1  | 47.9  | 12.4    | 13.2   | 26    | 28    | 28-83  | 7   | 40  | J(M1) |
| 1,3-Dinitrobenzene              | ug/L     | 1.1 U       | 48.1  | 47.9  | 31.1    | 35.2   | 65    | 73    | 55-114 | 12  | 40  |       |
| 1,4-Dichlorobenzene             | ug/L     | 1.5 U       | 48.1  | 47.9  | 12.5    | 13.5   | 26    | 28    | 26-87  | 8   | 40  |       |
| 2,3,4,6-Tetrachlorophenol       | ug/L     | 1.0 U       | 48.1  | 47.9  | 26.3    | 30.7   | 55    | 64    | 56-108 | 16  | 40  | J(M1) |
| 2,3,5,6-Tetrachlorophenol       | ug/L     | 1.8 U       | 48.1  | 47.9  | 28.7    | 31.8   | 60    | 66    | 57-108 | 10  | 40  | N2    |
| 2,4,5-Trichlorophenol           | ug/L     | 0.22 U      | 48.1  | 47.9  | 23.6    | 27.3   | 49    | 57    | 46-111 | 15  | 40  |       |
| 2,4,6-Trichlorophenol           | ug/L     | 0.35 U      | 48.1  | 47.9  | 20.8    | 24.5   | 43    | 51    | 45-108 | 16  | 40  | J(M1) |
| 2,4-Dichlorophenol              | ug/L     | 0.33 U      | 48.1  | 47.9  | 15.9    | 18.7   | 33    | 39    | 46-94  | 16  | 40  | J(M1) |
| 2,4-Dimethylphenol              | ug/L     | 0.99 U      | 48.1  | 47.9  | 15.9    | 18.9   | 33    | 39    | 44-92  | 17  | 40  | J(M1) |
| 2,4-Dinitrophenol               | ug/L     | 2.5 U       | 48.1  | 47.9  | 36.3    | 39.4   | 76    | 82    | 49-123 | 8   | 40  |       |
| 2,4-Dinitrotoluene              | ug/L     | 0.26 U      | 48.1  | 47.9  | 32.1    | 35.4   | 67    | 74    | 47-120 | 10  | 40  |       |
| 2,6-Dinitrotoluene              | ug/L     | 0.27 U      | 48.1  | 47.9  | 28.0    | 31.8   | 58    | 66    | 57-107 | 13  | 40  |       |
| 2-Chloronaphthalene             | ug/L     | 0.33 U      | 48.1  | 47.9  | 15.8    | 19.1   | 33    | 40    | 39-98  | 19  | 40  | J(M1) |
| 2-Chlorophenol                  | ug/L     | 1.3 U       | 48.1  | 47.9  | 12.2    | 13.6   | 25    | 28    | 35-83  | 11  | 40  | J(M1) |
| 2-Methylphenol(o-Cresol)        | ug/L     | 0.29 U      | 48.1  | 47.9  | 12.5    | 15.3   | 26    | 32    | 29-84  | 20  | 40  | J(M1) |
| 2-Nitroaniline                  | ug/L     | 1.2 U       | 48.1  | 47.9  | 27.0    | 31.9   | 56    | 67    | 56-107 | 16  | 40  |       |
| 2-Nitrophenol                   | ug/L     | 1.3 U       | 48.1  | 47.9  | 16.4    | 19.0   | 34    | 40    | 43-96  | 15  | 40  | J(M1) |
| 3&4-Methylphenol(m&p<br>Cresol) | ug/L     | 0.21 U      | 48.1  | 47.9  | 11.7    | 15.0   | 24    | 31    | 26-82  | 24  | 40  | J(M1) |
| 3,3'-Dichlorobenzidine          | ug/L     | 1.0 U       | 48.1  | 47.9  | 27.8    | 29.1   | 58    | 61    | 61-113 | 5   | 40  | J(M0) |
| 3-Nitroaniline                  | ug/L     | 1.2 U       | 48.1  | 47.9  | 27.2    | 29.8   | 57    | 62    | 56-104 | 9   | 40  |       |
| 4,6-Dinitro-2-methylphenol      | ug/L     | 4.4 U       | 48.1  | 47.9  | 39.1    | 42.2   | 81    | 88    | 51-131 | 8   | 40  |       |
| 4-Bromophenylphenyl ether       | ug/L     | 1.6 U       | 48.1  | 47.9  | 25.4    | 29.2   | 53    | 61    | 51-105 | 14  | 40  |       |
| 4-Chloro-3-methylphenol         | ug/L     | 5.2 U       | 48.1  | 47.9  | 20.3    | 24.2   | 42    | 51    | 51-98  | 18  | 40  | J(M1) |
| 4-Chloroaniline                 | ug/L     | 1.4 U       | 48.1  | 47.9  | 19.4    | 21.8   | 40    | 45    | 50-92  | 12  | 40  | J(M1) |
| 4-Chlorophenylphenyl ether      | ug/L     | 1.4 U       | 48.1  | 47.9  | 21.9    | 26.0   | 46    | 54    | 48-103 | 17  | 40  | J(M1) |
| 4-Nitroaniline                  | ug/L     | 0.18 U      | 48.1  | 47.9  | 31.8    | 34.4   | 66    | 72    | 61-108 | 8   | 40  |       |
| 4-Nitrophenol                   | ug/L     | 1.9 U       | 48.1  | 47.9  | 11.3 I  | 12.0 I | 24    | 25    | 10-61  |     | 40  |       |
| Aniline                         | ug/L     | 0.90 U      | 48.1  | 47.9  | 17.5    | 17.4   | 36    | 36    | 33-88  | 0   | 40  |       |
| Benzidine                       | ug/L     | 0.84 U      | 48.1  | 47.9  | 12.6 I  | 11.2 I | 26    | 23    | 10-110 |     | 40  |       |
| Benzyl alcohol                  | ug/L     | 1.2 U       | 48.1  | 47.9  | 13.0    | 14.7   | 27    | 31    | 35-78  | 12  | 40  | J(M1) |
| bis(2-                          | ug/L     | 1.6 U       | 48.1  | 47.9  | 14.0    | 17.2   | 29    | 36    | 43-94  | 21  | 40  | J(M1) |
| Chloroethoxy)methane            |          |             |       |       |         |        |       |       |        |     |     |       |
| bis(2-Chloroethyl) ether        | ug/L     | 0.33 U      | 48.1  | 47.9  | 12.8    | 13.8   | 27    | 29    | 34-90  | 8   |     | J(M1) |
| bis(2-Chloroisopropyl) ether    | ug/L     | 1.7 U       | 48.1  | 47.9  | 12.4    | 13.3   | 26    | 28    | 26-96  | 7   |     |       |
| bis(2-Ethylhexyl)phthalate      | ug/L     | 1.1 U       | 48.1  | 47.9  | 24.5    | 26.2   | 51    | 55    | 28-125 | 7   |     |       |
| Butylbenzylphthalate            | ug/L     | 1.1 U       | 48.1  | 47.9  | 29.0    | 31.2   | 60    | 65    | 54-116 | 7   |     |       |
| Caprolactam                     | ug/L     | 0.38 U      | 48.1  | 47.9  | 6.9     | 7.8    | 14    | 16    | 10-36  | 12  |     | N2    |
| Carbazole                       | ug/L     | 1.1 U       | 48.1  | 47.9  | 29.0    | 30.5   | 60    | 64    | 58-109 | 5   |     |       |
| Di-n-butylphthalate             | ug/L     | 1.0 U       | 48.1  | 47.9  | 28.6    | 30.6   | 60    | 64    | 57-113 | 7   |     |       |
| Di-n-octylphthalate             | ug/L     | 0.88 U      | 48.1  | 47.9  | 25.2    | 26.6   | 52    | 56    | 28-124 | 5   |     |       |
| Dibenzofuran                    | ug/L     | 1.4 U       | 48.1  | 47.9  | 20.7    | 24.6   | 43    | 51    | 47-101 | 17  | 40  | J(M1) |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility Pace Project No.: 35465452

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2909708 2909709 MS MSD 35465452001 Spike Spike MS MSD MS MSD % Rec Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Diethylphthalate ug/L 1.4 U 48.1 47.9 26.2 29.4 55 61 57-107 11 40 J(M1) Dimethylphthalate 1.4 U 48.1 47.9 23.8 27.4 50 57 56-104 14 40 J(M1) ug/L 0.34 U 48.1 47.9 12.7 27 29 25-95 10 Hexachloro-1,3-butadiene ug/L 14.0 40 0.28 U 48.1 47.9 24.8 52 59 44-111 40 Hexachlorobenzene ug/L 28.1 13 Hexachlorocyclopentadiene ug/L 3.3 U 48.1 47.9 11.9 13.5 25 28 10-126 12 40 ug/L Hexachloroethane 1.3 U 48.1 47.9 11.8 13 1 25 27 21-87 10 40 1.6 U 48.1 47.9 14.7 17.1 31 36 46-95 15 40 J(M1) Isophorone ug/L N-Nitroso-di-n-propylamine 0.32 U 48.1 47.9 14.3 30 33 44-92 40 J(M1) ug/L 16.0 11 N-Nitrosodimethylamine ug/L 0.19 U 48.1 47.9 9.7 10.2 20 21 18-64 5 40 N-Nitrosodiphenylamine ug/L 1.2 U 48.1 47.9 25.2 284 52 59 53-105 12 40 J(M1) Nitrobenzene ug/L 0.36 U 48.1 47.9 14.0 15.7 29 33 36-95 12 40 J(M1) Pentachlorophenol ug/L 1.6 U 48.1 47.9 32.9 35.2 69 73 45-127 7 40 Phenol 0.60 U 48.1 47.9 5.3 11 13 10-44 19 40 ug/L 6.4 Pyridine 1.1 U 48.1 47.9 9.6 20 18 10-57 11 40 ug/L 8.7 62 69 2,4,6-Tribromophenol (S) % 10-126 2-Fluorobiphenyl (S) % 34 41 10-96 2-Fluorophenol (S) % 13 14 10-55 % Nitrobenzene-d5 (S) 28 32 10-94 p-Terphenyl-d14 (S) % 61 66 24-129 % 10-35 Phenol-d5 (S) 10 13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project: Safety Kleen Faci<br>Pace Project No.: 35465452 | lity      |                 |                    |                                   |                                  |            |            |
|----------------------------------------------------------|-----------|-----------------|--------------------|-----------------------------------|----------------------------------|------------|------------|
|                                                          |           |                 |                    |                                   |                                  |            |            |
| QC Batch: 536525                                         |           | Analysis Metho  |                    | FL-PRO<br>FL-PRO Water Low Volume |                                  |            |            |
| QC Batch Method: EPA 3510                                |           | Analysis Descr  | iption: F          | L-PRO Water Lo                    | ow Volume                        |            |            |
| Associated Lab Samples: 35465452                         | 2001      |                 |                    |                                   |                                  |            |            |
| METHOD BLANK: 2906351                                    |           | Matrix: W       | /ater              |                                   |                                  |            |            |
| Associated Lab Samples: 35465452                         | 2001      |                 |                    |                                   |                                  |            |            |
| Parameter                                                | Units     | Blank<br>Result | Reporting<br>Limit | MDL                               | Applyzod                         | Qualifier  | _          |
|                                                          |           |                 | -                  |                                   | Analyzed                         |            | <u> </u>   |
| Petroleum Range Organics<br>N-Pentatriacontane (S)       | mg/L<br>% | 0.80 U<br>102   | 1.0<br>42-159      |                                   | 0 05/07/19 17:4<br>05/07/19 17:4 |            |            |
| o-Terphenyl (S)                                          | %         | 93              | 66-139             |                                   | 05/07/19 17:                     |            |            |
|                                                          |           |                 |                    |                                   |                                  |            |            |
| LABORATORY CONTROL SAMPLE:                               | 2906352   |                 |                    |                                   |                                  |            |            |
|                                                          |           | Spike L0        | CS                 | LCS                               | % Rec                            |            |            |
| Parameter                                                | Units     | Conc. Re        | sult               | % Rec                             | Limits (                         | Qualifiers |            |
| Petroleum Range Organics                                 | mg/L      | 5               | 3.9                | 77                                | 66-119                           |            |            |
| N-Pentatriacontane (S)                                   | %         |                 |                    | 92                                | 42-159                           |            |            |
| o-Terphenyl (S)                                          | %         |                 |                    | 89                                | 66-139                           |            |            |
| MATRIX SPIKE SAMPLE:                                     | 2906359   |                 |                    |                                   |                                  |            |            |
|                                                          |           | 35465839001     | Spike              | MS                                | MS                               | % Rec      |            |
| Parameter                                                | Units     | Result          | Conc.              | Result                            | % Rec                            | Limits     | Qualifiers |
| Petroleum Range Organics                                 | mg/L      | 0.75 U          | 4.6                | 3.4                               | 70                               | 65-123     |            |
| N-Pentatriacontane (S)                                   | %         |                 |                    |                                   | 91                               | 42-159     |            |
| o-Terphenyl (S)                                          | %         |                 |                    |                                   | 86                               | 66-139     |            |
| SAMPLE DUPLICATE: 2906360                                |           |                 |                    |                                   |                                  |            |            |
|                                                          |           | 35465839002     | Dup                |                                   | Max                              |            |            |
| Parameter                                                | Units     | Result          | Result             | RPD                               | RPD                              | Qualifiers |            |
| Petroleum Range Organics                                 | mg/L      | 0.75 U          | 0.73 U             |                                   | 20                               | )          | •          |
| N-Pentatriacontane (S)                                   | %         | 93              | 90                 |                                   |                                  |            |            |
| o-Terphenyl (S)                                          | %         | 88              | 86                 |                                   |                                  |            |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### QUALIFIERS

#### Project: Safety Kleen Facility

Pace Project No.: 35465452

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(L1) Estimated Value. Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- J(L2) Estimated Value. Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- J(M0) Estimated Value. Matrix spike recovery was outside laboratory control limits.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J(v1) The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Safety Kleen FacilityPace Project No.:35465452

| Lab ID                     | Sample ID                  | QC Batch Method      | QC Batch         | Analytical Method | Analytical<br>Batch |
|----------------------------|----------------------------|----------------------|------------------|-------------------|---------------------|
| 35465452001                | MW-2R-050219               | EPA 3510             | 536525           | FL-PRO            | 536749              |
| 35465452001                | MW-2R-050219               | EPA 200.8            | 535904           | EPA 200.8         | 536000              |
| 35465452002                | MW-1-050219                | EPA 200.8            | 535904           | EPA 200.8         | 536000              |
| 35465452003                | MW-3-050219                | EPA 200.8            | 535904           | EPA 200.8         | 536000              |
| 35465452001                | MW-2R-050219               | EPA 3510             | 536089           | EPA 8270 by SIM   | 536630              |
| 35465452001                | MW-2R-050219               | EPA 3510             | 537070           | EPA 8270          | 537559              |
| 35465452001<br>35465452004 | MW-2R-050219<br>Trip Blank | EPA 8260<br>EPA 8260 | 535969<br>535969 |                   |                     |

Pace Analytical



| ectio       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section B                 |                                                                       |                |                                          |                                          |      |                           | Sectio          | on C                 |         |             | 354     | 5545     |                   |         |                          |                   |           |       |            |         |        | _                       |            |           |   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------|----------------|------------------------------------------|------------------------------------------|------|---------------------------|-----------------|----------------------|---------|-------------|---------|----------|-------------------|---------|--------------------------|-------------------|-----------|-------|------------|---------|--------|-------------------------|------------|-----------|---|
| quir        | ed Client Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Required P                | -                                                                     |                | <u></u>                                  | _                                        |      |                           | -               |                      | ormatic | n: '        | 3340    | 3040     | 26                |         |                          |                   |           |       | _          |         |        | age :                   | 1          | Of        |   |
| dres        | a realition of the state of the | Report To:<br>Copy To:    | Keith N                                                               | Morrison       |                                          |                                          |      |                           | Attent          | ion:<br>any N        | 3000    | _           | -       |          | _                 |         |                          |                   | _         |       | -          |         | 2.5    |                         |            |           |   |
| npa         | , FL 33607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                       |                |                                          |                                          |      |                           | Addre           | -                    | ame     |             | _       | -        |                   |         |                          |                   |           |       | 1          |         | -      | Pogu                    | atory Age  | DOW       | - |
| nail:       | kmorrison@ectinc.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Purchase Or               |                                                                       | -              |                                          |                                          |      |                           | Pace            | Quote                |         |             |         |          |                   |         |                          |                   |           |       |            |         |        | Regu                    | atory Age  | ncy       |   |
| one:<br>aue | 813-493-0383 Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Nam<br>Project #: |                                                                       | afety Kleer    |                                          |                                          | _    |                           |                 |                      | t Mana  | -           |         | palmer   | @pace             | elabs.c | om,                      |                   |           |       | 10         |         |        | Stat                    | e / Locati | on        |   |
| 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pioject #.                | 120                                                                   | 2212           | -04(                                     | 10                                       | -    | -                         | Pace            | Profile              | #       | 9321 li     | ne 1    |          | -                 |         |                          |                   |           | -     | Filtere    | 1.0.000 | _      | -                       | FL         |           |   |
| # W         | MATRIX<br>Drinking Wu<br>Water<br>Water<br>Wate Wate<br>Product<br>Soli/Solid<br>One Character per box.<br>(A-Z, 0-9 /, -)<br>Sample Ids must be unique<br>Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WT                        | MATRIX CODE (see valid codes to left)<br>SAMPLE TYPE (G=GRAB, G=COMP) | ST             | COLL<br>ART                              |                                          | ND   | SAMPLE TEMP AT COLLECTION | # OF CONTAINERS | Unpreserved<br>H2SO4 |         | serva       | 03      | lou      | Analyses Test Y/N |         | 8270 Full list plus PAHs | 200.8 Ag.Cd,Cr,Pb | olus PAHs |       |            |         |        | Residual Chlorine (Y/N) |            |           |   |
| 1 ITEM      | MW-2R -050219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                                                       | DATE<br>5.2.19 | TIME                                     | DATE                                     | TIME | -                         | _               |                      | K HNO3  | HCI<br>NaOH | Na2S203 | Methanol | An                |         |                          | -                 | 1.1       | FL PR | Trip BLANK |         |        | Residu                  |            |           |   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                         | WT                                                                    |                |                                          | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |      | SB                        | 142             | 11                   | 2       | -           | -       |          | -                 | X       | XX                       | CX                | X         | X     |            | ++      | _      | _                       |            |           |   |
| 2           | MW-1-050219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | WT                                                                    | 5-2-19         | 1035                                     | 5-2-19                                   | 1038 | 123                       | 1               |                      | X       |             |         |          | -                 |         |                          | ×                 |           |       |            |         |        |                         |            |           |   |
| 3           | MVV-3 - 050219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | WT                                                                    | 52-19          | 1002                                     | 5-2-19                                   | 1004 | 25                        | 2L              | 12                   | X       |             |         |          |                   |         |                          | ×                 |           |       |            |         |        |                         |            |           |   |
| 4           | Trip Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | WT                                                                    |                |                                          |                                          |      |                           |                 |                      |         |             |         |          |                   |         |                          |                   | 1         |       | x          |         |        |                         | -          |           |   |
| 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                       |                |                                          | 0                                        |      |                           |                 |                      |         |             |         |          |                   |         |                          |                   |           |       |            |         |        |                         |            |           |   |
| 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                       | (1 - 1)        | 1                                        |                                          |      |                           |                 |                      |         |             |         |          |                   |         |                          |                   |           |       | -          |         |        |                         |            |           |   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                       |                |                                          | 1                                        | 1    |                           |                 | 1                    |         |             | -       |          | -                 |         | 1                        | -                 | 1         |       |            |         | +      |                         | -          |           |   |
| 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                       |                |                                          |                                          |      |                           |                 |                      |         | -           |         |          |                   |         |                          |                   |           |       |            |         |        | -                       | -          |           |   |
| ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                       |                |                                          |                                          |      |                           |                 |                      | Ħ       | -           |         |          | 1                 | 1       |                          |                   |           |       |            |         |        |                         |            |           |   |
| 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                       |                |                                          |                                          |      |                           | 10              |                      |         |             |         |          |                   |         |                          | 1                 |           |       |            |         |        |                         |            |           | - |
| 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                       |                |                                          |                                          |      |                           |                 |                      |         |             |         |          |                   |         |                          |                   |           |       |            |         | $\top$ |                         |            |           | - |
| 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                       |                |                                          |                                          |      |                           |                 |                      |         |             |         |          |                   |         |                          |                   |           |       |            |         |        |                         |            |           |   |
|             | ADDITIONAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-11 P                    |                                                                       | ISHED BY /     | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                                          | DAT  | 124                       | TIN             |                      |         |             |         | EPTE     | -                 | 1.20    |                          |                   |           | I     | DATE       | TI      | ME     |                         | SAMPLE     | CONDITION | s |
| _           | Empty Containe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | here of                                                               |                |                                          | Pace                                     | 1/23 | 119                       | 07              | 30                   | K       | eit         | 27      | n        | em                | m       | IE                       | CT                | -         | 4.    | 26-1       | 114     | 08     |                         |            |           |   |
| _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The                       | HZ                                                                    | Mers           |                                          | ELT                                      | 5-2- | 2                         | 16              |                      |         | A           | 2       |          | æ                 |         |                          |                   | 5.        | 2-    | -19        | 163     | 0      | The                     |            |           |   |
| _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                         | 4                                                                     |                | ali                                      |                                          | 1-21 | 14                        | ix              |                      |         | K           | m       | ~ 1      | ga                |         |                          |                   |           | 57.   | 2/19       | 17      | 100    | 3.0                     | Y          | N         | 4 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ile.                                                                  | 1              |                                          |                                          |      |                           | 1               |                      |         |             |         |          | ÷                 |         |                          |                   |           |       |            |         |        | COLL.                   |            | 1         | 1 |

-

-34

1.

| / Photos Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Condition Upon Receip<br>Document No.:<br>F-FL-C-007 rev. 13                                                                                                                                                                                                                                                                                             | bt Form                                                                                                        | Document Revised:<br>May 30, 2018<br>Issuing Authority:                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Condition Upor                                                                                                                                                                                                                                                                                                                                           | n Bacaint Form (S(                                                                                             | Pace Florida Quality Office                                                                                                                                                                                                                                                                            |
| Project #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WO#: 354654                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | Date and Initials of person:                                                                                                                                                                                                                                                                           |
| Project Manager:<br>Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PM: LAP Due D<br>CLIENT: 37-ECTTAM                                                                                                                                                                                                                                                                                                                              | ate: 05/09/19                                                                                                  | Examining contents: <u>MVL</u><br>Label: <u>512/19</u><br>Deliver:<br>pH:                                                                                                                                                                                                                              |
| Thermometer Used: T-203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date: 5/2/19                                                                                                                                                                                                                                                                                                                                                    | Time: <u>17</u>                                                                                                | 00 Initials: MVL                                                                                                                                                                                                                                                                                       |
| Shipping Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 (Correction Factor)                                                                                                                                                                                                                                                                                                                                         | (Actual)<br>(Actual)<br>(Actual)<br>(Actual)<br>(Actual)<br>(Actual)<br>Commercial Pace<br>rd Overnight Ground | ed to ≤6 °C Samples on ice, cooling process has begu Other International Priority Unknown |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bubble Bags None C                                                                                                                                                                                                                                                                                                                                              | intact: ☐ Yes ☐ No<br>Dther<br>Shorte                                                                          | Ice: Wet Blue Dry None                                                                                                                                                                                                                                                                                 |
| Custody Seal on Cooler/Box Present:<br>Packing Material: DBubble Wrap B<br>Samples shorted to lab (If Yes, comple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bubble Bags None C<br>te) Shorted Date:                                                                                                                                                                                                                                                                                                                         | Other                                                                                                          |                                                                                                                                                                                                                                                                                                        |
| Custody Seal on Cooler/Box Present:<br>Packing Material: Bubble Wrap [<br>Gamples shorted to lab (If Yes, comple<br>Chain of Custody Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A                                                                                                                                                                                                                                                                                                           | Other<br>Shorte                                                                                                |                                                                                                                                                                                                                                                                                                        |
| Custody Seal on Cooler/Box Present:<br>Packing Material: Bubble Wrap<br>Camples shorted to lab (If Yes, comple<br>Chain of Custody Present<br>Chain of Custody Filled Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A                                                                                                                                                                                                                                                                                             | Other<br>Shorte                                                                                                |                                                                                                                                                                                                                                                                                                        |
| ustody Seal on Cooler/Box Present:<br>acking Material: Bubble Wrap [<br>amples shorted to lab (If Yes, comple<br>hain of Custody Present<br>hain of Custody Filled Out<br>elinquished Signature & Sampler Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A<br>Yes No N/A<br>COC Yes No N/A                                                                                                                                                                                                                                                             | Other<br>Shorte                                                                                                |                                                                                                                                                                                                                                                                                                        |
| ustody Seal on Cooler/Box Present:<br>acking Material: Bubble Wrap amples shorted to lab (If Yes, comple<br>hain of Custody Present<br>hain of Custody Filled Out<br>elinquished Signature & Sampler Name<br>amples Arrived within Hold Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A<br>COC Nes No N/A<br>Yes No N/A                                                                                                                                                                                                                                                             | Other<br>Shorte                                                                                                |                                                                                                                                                                                                                                                                                                        |
| ustody Seal on Cooler/Box Present:<br>acking Material: Bubble Wrap<br>amples shorted to lab (If Yes, comple<br>hain of Custody Present<br>hain of Custody Filled Out<br>elinquished Signature & Sampler Name<br>amples Arrived within Hold Time<br>ush TAT requested on COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A<br>COC Nes No N/A<br>Yes No N/A<br>Yes No N/A                                                                                                                                                                                                                                               | Other<br>Shorte                                                                                                |                                                                                                                                                                                                                                                                                                        |
| Sustody Seal on Cooler/Box Present:<br>acking Material: Bubble Wrap<br>amples shorted to lab (If Yes, comple<br>hain of Custody Present<br>hain of Custody Filled Out<br>elinquished Signature & Sampler Name<br>amples Arrived within Hold Time<br>ush TAT requested on COC<br>ufficient Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A<br>COC Nes No N/A<br>Yes No N/A<br>Yes No N/A<br>Yes No N/A                                                                                                                                                                                                                                 | Other<br>Shorte                                                                                                |                                                                                                                                                                                                                                                                                                        |
| Eustody Seal on Cooler/Box Present:<br>acking Material: Bubble Wrap<br>amples shorted to lab (If Yes, comple<br>chain of Custody Present<br>chain of Custody Filled Out<br>chain of Custody Filled Out<br>celinquished Signature & Sampler Name<br>amples Arrived within Hold Time<br>cush TAT requested on COC<br>ufficient Volume<br>orrect Containers Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A<br>COC Nes No N/A<br>Yes No N/A<br>Yes No N/A<br>Yes No N/A<br>Yes No N/A<br>Yes No N/A                                                                                                                                                                                                     | Other<br>Shorte                                                                                                |                                                                                                                                                                                                                                                                                                        |
| Custody Seal on Cooler/Box Present:<br>Packing Material: Bubble Wrap Camples shorted to lab (If Yes, complexitient) of Custody Present<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Chain of Custody Filled Out<br>C   | Bubble Bags         None         C           te)         Shorted Date:                                                                                                                                                                                                                                                                                          | Other Shorte                                                                                                   | d Time: Qty:                                                                                                                                                                                                                                                                                           |
| Custody Seal on Cooler/Box Present:<br>Packing Material: Bubble Wrap E<br>samples shorted to lab (If Yes, comple<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Chain of Custody Filled O | Bubble Bags         None         C           te)         Shorted Date:                                                                                                                                                                                                                                                                                          | Comments:                                                                                                      | d Time: Qty:                                                                                                                                                                                                                                                                                           |
| Sustody Seal on Cooler/Box Present:<br>acking Material: Bubble Wrap<br>amples shorted to lab (If Yes, comple<br>whain of Custody Present<br>whain of Custody Filed Out<br>relinquished Signature & Sampler Name<br>amples Arrived within Hold Time<br>ush TAT requested on COC<br>ufficient Volume<br>correct Containers Used<br>containers Intact<br>ample Labels match COC (sample IDs & date<br>officiention)<br>It containers needing acid/base preservation<br>necked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A<br>Yes No N/A<br>COC Yes No N/A<br>Yes No N/A                                                                                     | Dther Shorte                                                                                                   | d Time: Qty:                                                                                                                                                                                                                                                                                           |
| Sustody Seal on Cooler/Box Present:<br>acking Material: Bubble Wrap<br>amples shorted to lab (If Yes, comple<br>hain of Custody Present<br>hain of Custody Filled Out<br>elinquished Signature & Sampler Name<br>amples Arrived within Hold Time<br>ush TAT requested on COC<br>ufficient Volume<br>orrect Containers Used<br>ontainers Intact<br>ample Labels match COC (sample IDs & date<br>blection)<br>I containers needing acid/base preservation<br>necked.<br>I Containers needing preservation are found<br>ompliance with EPA recommendation:<br>Exceptions: VOA, Coliform, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A<br>Yes No N/A<br>COC Yes No N/A<br>Yes No N/A | Dther Shorte                                                                                                   | Dempil is Start Time                                                                                                                                                                                                                                                                                   |
| Sustody Seal on Cooler/Box Present:<br>acking Material: Bubble Wrap<br>amples shorted to lab (If Yes, comple<br>chain of Custody Present<br>chain of Custody Present<br>chain of Custody Filled Out<br>relinquished Signature & Sampler Name<br>amples Arrived within Hold Time<br>ush TAT requested on COC<br>ufficient Volume<br>correct Containers Used<br>containers Intact<br>ample Labels match COC (sample IDs & date<br>ollection)<br>II containers needing acid/base preservation<br>necked.<br>II Containers needing preservation are found<br>compliance with EPA recommendation:<br>Exceptions: VOA, Coliform, T<br>eadspace in VOA Vials? ( >6mm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A<br>Yes No N/A<br>COC Yes No N/A<br>Yes No N/A                                                                                     | Dther Shorte                                                                                                   | Dempil is Start Time                                                                                                                                                                                                                                                                                   |
| Custody Seal on Cooler/Box Present: Packing Material: □Bubble Wrap [ Gamples shorted to lab (If Yes, comple Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Containers Intact Containers needing acid/base preservation hecked. II Containers needing preservation are found ompliance with EPA recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bubble Bags None C<br>te) Shorted Date:<br>Yes No N/A<br>Yes No N/A                   | Dther Shorte                                                                                                   | Dempil is Start Time                                                                                                                                                                                                                                                                                   |

Page 31 of 31

#### Industrial Waste Operating Report Form (IWORF)

| Permit #:         | IW-333            | Permit Year:  | 2019 | Reports must be mailed to:<br>Department of Regulatory and Economic Resources |
|-------------------|-------------------|---------------|------|-------------------------------------------------------------------------------|
| Facility Name:    | SAFETY-KLEEN S    | SYSTEMS, INC. |      | Environmental Resources Management<br>701 NW 1st Ct, Suite #700               |
| Facility Address: | 8755 NW 95 ST     |               |      | Miami, FL 33136-3912                                                          |
|                   | MEDLEY, FL 331    | 78            |      |                                                                               |
| Contact Name:     | Mr. Larry Rodrigu | lez           |      |                                                                               |

Instructions: Indicate which report is being provided by checking off the applicable "Source Type" box(es) from the listing below. In addition, indicate the period being reported and attach the applicable information (e.g. waste manifests, analytical results, etc.) as required by each Source Type. Refer to the operating permit document for more information on reporting and sampling requirements, including analytical methodologies, applicable to the referenced facility.

| Avera<br>Sewei | age Daily Waste Water Flow Di<br>rs:   | scharge to Sanitary                                 |                        |                       |
|----------------|----------------------------------------|-----------------------------------------------------|------------------------|-----------------------|
|                |                                        |                                                     |                        | Gallons Per Day (GPD) |
|                | Parameters: EPA Series 8260, EPA Se    |                                                     |                        |                       |
|                | Description: Groundwater from monitor  | ing well nearest the containment area stormwater of | discharge point.       |                       |
| $\times$       | Source Type: SMP-2                     | Reporting Frequency: Annually                       | Reporting Period       | od: 6/15/2            |
| )              | Parameters: Cadmium (Total), Chromi    | um (Total), Lead (Total), Silver (Total)            |                        |                       |
|                | Description: Groundwater from the faci | ility monitoring well(s).                           |                        |                       |
| $\mathbf{X}$   | Source Type: SMP-1                     | Reporting Frequency: Annually                       | * is _ Reporting Perio | od: 6/15/2            |
| Samp           | bling Requirements:                    |                                                     |                        | 2                     |

Authorized Representative or Corporate Officer

1

Report Completion Date



April 21, 2020 200228-0100

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** Environmental Resources Management 701 NW 1<sup>st</sup> Court, Suite #700 Miami, Florida 33136-3912

#### Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2019/2020 (File # 10139) Annual Report of Groundwater Quality

Dear Mr. Montano:

On behalf of Safety-Kleen Systems, Inc. (S-K), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for S-K's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On March 19, 2020, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FLPRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed Figure 1.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in <u>Attachment B</u>.

The laboratory report indicated that concentrations for two of the four metals (i.e., silver and cadmium) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.68I micrograms per liter ( $\mu$ g/L) at monitoring well MW-1, 0.62I  $\mu$ g/L at monitoring well MW-2R, and 0.91I  $\mu$ g/L at monitoring well MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are well below the groundwater cleanup target level (GCTL) of 100  $\mu$ g/L for chromium as specified in the permit. Lead was also detected at a concentration of 1.3  $\mu$ g/L at monitoring well MW-3 but was well below its GCTL of 15  $\mu$ g/L for lead as specified in the permit.

1408 N Westshore Blvd, Suite 115 Tampa, FL 33607

(813) 289-9338

FAX (813) 289-9388

P:\S1153\_SAFETY KLEEN\SK MEDLEY 180212\2020 GW MONITORING\2020 ANNUAL REPORT\ANNUAL\_RPT.DOCX.1

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** April 21, 2020 Page 2

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

- 1. FLPRO concentrations were below the MDL; that is, none was detected.
- 2. No SVOC was detected (i.e., EPA Series 8270 parameters).
- 3. No VOC was detected (i.e., EPA Series 8260 parameters).

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of S-K at (561) 523-4719. Thank you.

Sincerely,

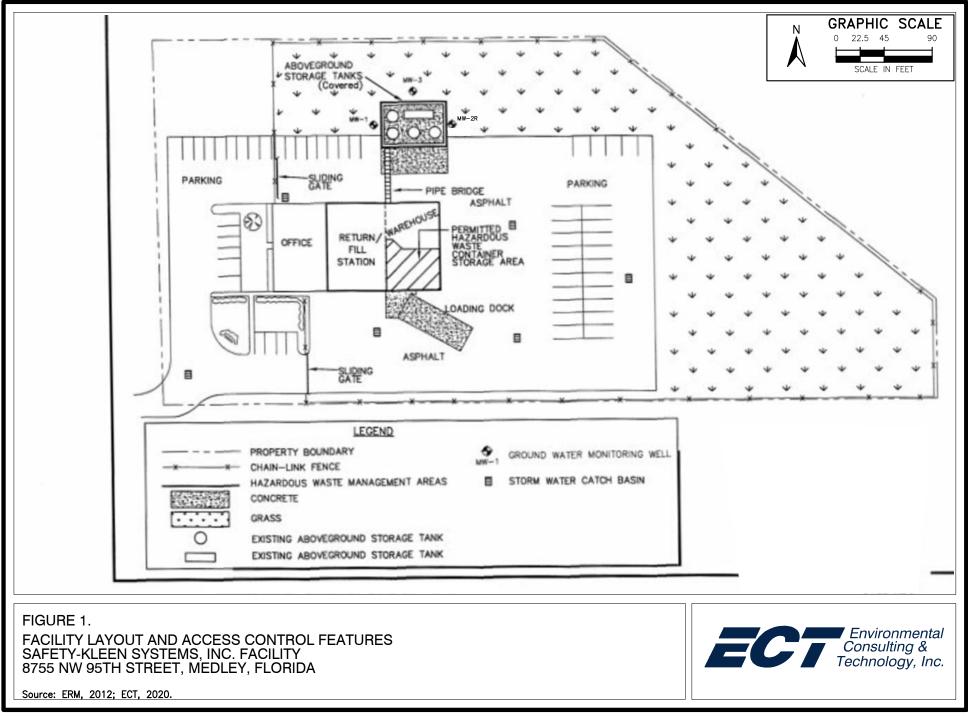
#### **ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.**

There 7. Morrison

from B. B. -

Keith F. Morrison Project Manager Gregory B. Page, P.E. Senior Engineer III

#### SAFETY-KLEEN SYSTEMS, INC.


Jeff Curtis EHS Manager, Florida Safety-Kleen Systems, Inc. 5610 Alpha Drive Boynton Beach, Florida 33426 jeff.curtis@safety-kleen.com

Enclosures: Figure 1 Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration Logs Attachment B - Laboratory Report

cc: Robert Schoepke – S-K (electronic only) Greg Page – ECT (electronic only) Keith Morrison – ECT (electronic only) Facility 999 File #1760, % S-K Medley facility Branch General Manager



FIGURE



T:\PROJECTS\2020\SK Medley\200228\0100\Layout.dwg

## ATTACHMENT A

# FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

Safety-Kleen- Annual Ground water Location Medler, FL Data S-IN-Project / Client 200229-0100 / Schedy Klong 2020 3 13/2020 1155 at Ect affra 13 200 1220 055 derde au 1640 dele at Complete =475 no Keng gu 3-19-202 - celification 345 at Condo check un meters Load 915061 to Saler Medle 2-Kleign 1000 on site SIZ-MD cf 12. 90 Hoth 60 10 n Plan - weather 76° sh Ewind mourtony wells nw-1, mu-2R 1912 Open time 1021 punging MW-1 porging mw-3 with second penstattic 035 Avinp 21044 Sompling NW-1 1056 purging MW. 2R the Second DUND \* sediment sus went into scarple bottle apple - ms/msD bottle sug sampling \* Sedimont ×1100 MW/3 x1119 Sampling Mu-2 Collected. Pot purgeneter in 5-gallon curtainers - 2. + greetu Salety Kla clean TAMPA 1210 allechest at office 10ff Ø Kel X = scmpletime

Annul IW Permit Groundwater Sampling Event Location Medley, FL/Schedy-Illen Date 3-19-2020 146 Project / Client 20228-0100/ Safety-Kleen Et- Keith Momsin 1630 al PACE Labo in oldenar 1635 at ECT TAMPA Office. Unload T-13 calibration check comprete = 8,5 ms. 1715

## DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| SITE<br>NAME: Sa  | afety Kleer                   | n Systems                               | , Inc.                       |                                          |                             | ITE<br>OCATION:    | 8755 N                                       | W 95 <sup>th</sup>        | Street,                                              | Medley, FL                     |                               |                     |                  |
|-------------------|-------------------------------|-----------------------------------------|------------------------------|------------------------------------------|-----------------------------|--------------------|----------------------------------------------|---------------------------|------------------------------------------------------|--------------------------------|-------------------------------|---------------------|------------------|
| WELL NO:          |                               |                                         |                              | SAMPL                                    | e id: MW-                   |                    |                                              |                           |                                                      |                                | 19/20                         | 20                  |                  |
|                   |                               |                                         |                              |                                          |                             | IRGIN              | DATA                                         |                           |                                                      |                                | . /                           |                     |                  |
| WELL              | (inches): 2                   |                                         | G<br>TER (inches)            |                                          | ELL SCREEN<br>PTH: 2 feet   |                    | L S                                          | STATIC DE                 | EPTH<br>R (feet): 3                                  | 32 OR                          | RGE PUMP T                    | YPE<br>PP           | )                |
| WELL VOL          | UME PURGE                     |                                         | LUME = (TC                   | DTAL WELL DE                             | PTH – ST                    | ATIC DEPT          |                                              |                           |                                                      |                                |                               |                     |                  |
| (only till out    | if applicable)                |                                         | = (                          | 11.2                                     | feet - 3                    | 32                 | feet)                                        | х                         | 0.16                                                 | gallons/f<br>GTH) + FŁOW CI    | oot = 1,2                     | 6 9                 | allons           |
|                   | IT VOLUME P<br>if applicable) | URGE: 1 EQ                              | UIPMENT VC                   |                                          | )LUME + (TU<br>gallons + (  |                    | ACITY<br>allons/foot                         |                           |                                                      | GTH) + FLOW CI<br>feet) +      | ELL VOLUME                    |                     | lons             |
| INITIAL PU        | MP OR TUBIN<br>WELL (feet):   | G 7 2                                   |                              | JMP OR TUBIN                             |                             |                    |                                              |                           | PURGIN                                               | IG                             | TOTAL VOL                     | UME                 | 1000             |
| DEPTH IN          | WELL (feet):                  | 4.2                                     | DEPTH I                      | N WELL (feet):                           | ° 7.3                       | INITI.             | ATED AT:                                     | 1021                      | ENDED                                                | AT: 1043                       | PURGED (g                     | jallons):           | 1.8              |
| TIME              | VOLUME<br>PURGED<br>(gallons) | CUMUL.<br>VOLUME<br>PURGED<br>(gallons) | PURGE<br>RATE<br>(gpm)       | DEPTH<br>TO<br>WATER<br>(feet)           | pH<br>(standard<br>units)   | TEMP.<br>(°C)      | COND.<br>(circle unit<br>µmhos/m<br>or µS/cn | ts) O)<br>a (cin          | SOLVED<br>(YGEN<br>cle units)<br>g/L or<br>aturation | TURBIDITY<br>(NTUs)            | COLOR<br>(describe)           | ODOR<br>(describe)  | ORP              |
| 037               | 1.28                          | 128                                     | 8,08                         | 3.60                                     | 6.92                        | 23.71              | 47                                           | 30                        | .10                                                  | 0.79                           | Clear                         | Nine                | -138             |
| 1040              | 0.29                          | 1.52                                    | 1                            | 3.60                                     | 6.94                        |                    |                                              | 0-                        | 10                                                   | 0.93                           | 1                             | + Stight<br>Organiz | -147             |
| 1043              | 0,24                          | 1.76                                    |                              | 3,60                                     | 6.93                        | 237                | 147                                          | 0 J.                      | 09                                                   | 0,92                           | L                             | Z                   | -149             |
|                   | 1                             |                                         |                              |                                          |                             |                    |                                              |                           |                                                      |                                |                               |                     |                  |
|                   |                               |                                         |                              |                                          |                             |                    |                                              |                           |                                                      | 1                              |                               |                     |                  |
| WELL CAR          | ACITY (Gallo                  | ns Per Foot):                           | 0.75" = 0.02                 | 1" = 0.04:                               | 1.25" = 0.0                 | 06: <b>2"</b> =    | 0.16: 3"                                     | ' = 0.37:                 | <b>4</b> " = 0.65                                    | ; 5" = 1.02;                   | <b>6</b> " = 1.47:            | <b>12" =</b> 5.88   |                  |
| TUBING IN         | SIDE DIA. CA                  | PACITY (Gal.                            | /Ft.): 1/8" =                | 0.0006; 3/16                             | <b>6"</b> = 0.0014;         | 1/4" = 0.          | 0026; 5                                      | <b>/16"</b> = 0.0         | 04; <b>3/8</b> '                                     | " = 0.006; 1/2                 | 2" = 0.010;                   | <b>5/8"</b> = 0.016 |                  |
| PURGING           | EQUIPMENT                     | CODES: E                                | B = Bailer;                  | BP = Bladder                             |                             | ESP = Elec         |                                              |                           | p; PP                                                | = Peristaltic Pun              | np; $\mathbf{O} = \mathbf{O}$ | ther (Specify)      |                  |
| SAMPLED           | BY (PRINT) /                  | AFFILIATION                             | FOT                          | SAMPLER                                  |                             |                    | No                                           | ~                         | SAMPLI                                               |                                | SAMPLIN<br>ENDED A            | G LO                | 47               |
| PUMP OR           |                               | 7 2                                     |                              |                                          |                             |                    |                                              |                           | D-FILTER                                             |                                |                               | R SIZE:             | μm               |
|                   | ONTAMINAT                     | ION: PU                                 | MP Y                         |                                          | TUBING                      |                    | eplaced                                      |                           | DUPLIC                                               |                                | N                             |                     |                  |
| SAI               | MPLE CONTAIN                  | ER SPECIFICAT                           | ION                          | SAM                                      | PLE PRESERV                 | ATION (inclu       | iding wet ice)                               | 1                         | INTEN                                                | DED ANALYSIS                   | SAMPLING                      |                     | E PUMP<br>V RATE |
| SAMPLE ID<br>CODE | #<br>CONTAINERS               | MATERIAL<br>CODE                        | VOLUME                       | PRESERVAT<br>USED                        | ADI                         | TOTAL VO           | D (mL)                                       | FINAL<br>pH               |                                                      | OR METHOD                      | CODE                          | (mL pe              | r minute)        |
| CODE<br>1-031922  | 0 1                           | PE                                      | 250 ml                       | HNO3+ I                                  | ce                          | NONE               |                                              | <2                        |                                                      | Pb, Ag by EPA<br>hod 200.8     | APP                           | 0 303               | ge rate          |
|                   |                               |                                         |                              |                                          |                             |                    |                                              |                           |                                                      |                                |                               |                     |                  |
|                   |                               |                                         |                              |                                          |                             |                    |                                              |                           |                                                      |                                |                               |                     |                  |
|                   |                               |                                         |                              |                                          |                             |                    |                                              |                           |                                                      |                                |                               |                     |                  |
|                   |                               |                                         |                              |                                          |                             |                    |                                              |                           |                                                      |                                |                               |                     |                  |
|                   |                               |                                         |                              |                                          | 5                           |                    |                                              |                           |                                                      |                                |                               |                     |                  |
|                   |                               |                                         |                              |                                          |                             |                    |                                              |                           |                                                      |                                |                               |                     |                  |
| REMARKS           | 0-                            | 0.1390                                  | - x 60 5                     | in A                                     | 10-0                        |                    | l                                            |                           |                                                      |                                |                               |                     |                  |
| MATERIAL          |                               | 9 1200                                  | 144                          |                                          | 08 9pi                      |                    |                                              | lene:                     |                                                      | v Density Polyet               | hylene: DD                    | = Polypropyle       | ene:             |
| MATERIAL          |                               |                                         | -                            | i = Clear Glass;<br>; <b>0</b> = Other ( |                             | High Densi         | ty Folyetfly                                 | iche, L                   |                                                      |                                | iyiciic, PF                   |                     |                  |
| SAMPLING          | EQUIPMENT                     | CODES:                                  | APP = After (<br>RFPP = Reve | Through) Perist<br>rse Flow Perist       | taltic Pump;<br>altic Pump; | B = Ba<br>SM = Str | iler; BF<br>aw Method                        | P = Bladde<br>I (Tubing G |                                                      | ESP = Electric<br>n); 0 = Othe | Submersible F<br>r (Specify)  | <sup>p</sup> ump;   |                  |
| NOTES:            |                               |                                         |                              | I of the infor                           |                             |                    |                                              |                           |                                                      | S 2212, SECTIO                 | 2)                            |                     |                  |

PH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

 $\mathcal{R}$ 

m

#### **DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG**

|                                                                                                               |                                                                                                                                                                               | Systems,                                                                                                                | inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                  |                                                                                                         |                                                                                                                  |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Street,                                                                                                                                                                                                                                                                                                   | Medley, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WELL NO:                                                                                                      | MW-2R                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPL                                                                                                                                            |                                                                                                         | -2R-031                                                                                                          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           | DATE: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ZD                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                               |                                                                                                                                                                               |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                         | URGING                                                                                                           |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| WELL                                                                                                          |                                                                                                                                                                               | TUBING                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                         | EN INTERVAL<br>et to 12 feet                                                                                     |                                                                     | STATIC D<br>TO WATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PURGE PUMI<br>OR BAILER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         | PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | R (inches): 2                                                                                                                                                                 |                                                                                                                         | TER (Inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                  |                                                                                                         |                                                                                                                  |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OR DAILER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                               | t if applicable)                                                                                                                                                              |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                         |                                                                                                                  |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FOUNDMEN                                                                                                      |                                                                                                                                                                               |                                                                                                                         | = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                         | 3.75                                                                                                             |                                                                     | I) X<br>X TU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16<br>BING LEN                                                                                                                                                                                                                                                                                          | gallo<br>GTH) + FLOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns/foot = )<br>/ CELL VOLUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , <u>2</u> Z                                                                                                            | gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                               | t if applicable)                                                                                                                                                              | UKGE: TEW                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  | •                                                                                                       |                                                                                                                  |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DING LEN                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         | gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                               |                                                                                                                                                                               | 0.1.1                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 9<br>MP OR TUBIN                                                                                                                               | gallons + (                                                                                             | 9<br>PURC                                                                                                        | allons/foc                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PURGI                                                                                                                                                                                                                                                                                                     | feet) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gallo<br>TOTAL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OLUME                                                                                                                   | yanons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                               | JMP OR TUBIN<br>WELL (feet):                                                                                                                                                  | 4.5                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WELL (feet):                                                                                                                                     |                                                                                                         |                                                                                                                  | ATED AT                                                             | 1056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ENDED                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PURGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D (gallons):                                                                                                            | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                               | VOLUME                                                                                                                                                                        | CUMUL.<br>VOLUME                                                                                                        | PURGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DEPTH<br>TO                                                                                                                                      | pH                                                                                                      | TEMP.                                                                                                            | CONI<br>(circle u                                                   | nits) O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOLVED                                                                                                                                                                                                                                                                                                    | TURBIDIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y COLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TIME                                                                                                          | PURGED<br>(gallons)                                                                                                                                                           | PURGED<br>(gallons)                                                                                                     | RATE<br>(gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER<br>(feet)                                                                                                                                  | (standard<br>units)                                                                                     | (°C)                                                                                                             | umhos<br>or uS/                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rcle units)<br>ng/L_or<br>saturation                                                                                                                                                                                                                                                                      | (NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (describ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e) (descril                                                                                                             | be) ORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 112                                                                                                           | 1.28                                                                                                                                                                          | 1.29                                                                                                                    | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.91                                                                                                                                             | 6.97                                                                                                    | 23.76                                                                                                            | 53:                                                                 | 2 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 9                                                                                                                                                                                                                                                                                                       | 6.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Non                                                                                                                     | -33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1115                                                                                                          | 0.24                                                                                                                                                                          | 1.52                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.91                                                                                                                                             | 6.96                                                                                                    | 3.77                                                                                                             | 529                                                                 | 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .07                                                                                                                                                                                                                                                                                                       | 627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                       | -24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1118                                                                                                          | 0.24                                                                                                                                                                          | 1,76                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,91                                                                                                                                             |                                                                                                         | 123.80                                                                                                           |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06                                                                                                                                                                                                                                                                                                        | 5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                       | -251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 113                                                                                                           | 0.6.                                                                                                                                                                          | 1110                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -111                                                                                                                                             | 6.1                                                                                                     |                                                                                                                  |                                                                     | 2 0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | matels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 117                                                                                                           |                                                                                                                                                                               |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                         |                                                                                                                  |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | paray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TUBING I                                                                                                      | PACITY (Gallor<br>NSIDE DIA. CA                                                                                                                                               | PACITY (Gal.)                                                                                                           | /Ft.): 1/8" = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0006; 3/1                                                                                                                                      | 6" = 0.0014                                                                                             | l; 1/4" = 0.                                                                                                     | 0026;                                                               | 3" = 0.37;<br>5/16" = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 004; 3/                                                                                                                                                                                                                                                                                                   | <b>B"</b> = 0.006;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2" = 0.010;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/8" = 0.0                                                                                                              | 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TUBING II                                                                                                     | BX (PR )/                                                                                                                                                                     | PACITY (Gal.)<br>CODES: E                                                                                               | /Ft.): 1/8" = (<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0006; 3/10<br>BP = Bladder<br>SAMPLER(\$                                                                                                       | 6" = 0.0014<br>r Pump;<br>S                                                                             | ESP = Elec<br>AMPLIN                                                                                             | 0026;<br>tric Subr                                                  | 5/16" = 0.<br>hersible Put                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 004; 3/1<br>np; Pl<br>SAMPL<br>INITIAT                                                                                                                                                                                                                                                                    | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2" = 0.010;<br>Pump; 0<br>9 SAMF<br>ENDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/8" = 0.1<br>= Other (Spe<br>2LING<br>2D AT: ]]                                                                        | 016<br>clfy)<br>Y D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SAMPLED<br>PURGING                                                                                            | BX (PR )/<br>TUBING<br>WELL (feet):                                                                                                                                           |                                                                                                                         | /Ft.): 1/8"=(<br>3=Bailer;<br>en/Ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006; 3/16<br>BP = Bladder<br>SAMPLER(S<br>TUBING<br>MATERIAL                                                                                  | 6" = 0.0014<br>r Pump;<br>S) SIGNAT<br>S) SIGNAT<br>CODE: H                                             | I; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>RES<br>IDPE                                                              | 0026;<br>tric Subrr<br>G DA                                         | 5/16" = 0.<br>hersible Pur<br>TA<br>FIE<br>FIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPL<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equi                                                                                                                                                                                                                                                     | B <sup>#</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT:<br>ED AT:<br>Y<br>pment Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2" = 0.010;<br>Pump; 0<br>9 SAMF<br>ENDE<br>N FIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/8" = 0.1<br>= Other (Spe                                                                                              | 016<br>clfy)<br>Y D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SAMPLED<br>PURGING                                                                                            |                                                                                                                                                                               |                                                                                                                         | /Ft.): 1/8"=(<br>3=Bailer;<br>en/Ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BP = Bladder<br>SAMPLER(<br>TUBING                                                                                                               | 6" = 0.0014<br>r Pump;<br>S) SIGNAT                                                                     | I; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>RES<br>IDPE                                                              | 0026;<br>tric Subr                                                  | 5/16" = 0.<br>hersible Pur<br>TA<br>FIE<br>FIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 004; 3/1<br>np; Pl<br>SAMPL<br>INITIAT<br>LD-FILTEF                                                                                                                                                                                                                                                       | B <sup>#</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT:<br>ED AT:<br>Y<br>pment Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2" = 0.010;<br>Pump; 0<br>9 SAMF<br>ENDE<br>N FIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/8" = 0.1<br>= Other (Spe<br>2LING<br>(D AT: ) )                                                                       | 018<br>cify)<br>μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TUBING II<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DE                                            | REALIZED DIAL CA                                                                                                                                                              | PACITY (Gal.,<br>CODES: E<br>AFFILIATION:<br>CON: PUI<br>ER SPECIFICAT                                                  | $\frac{(Ft.): 1/8" = (}{3 = Bailer;}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D.0006; 3/16<br>BP = Bladder<br>SAMPLER(S<br>TUBING<br>MATERIAL (<br>N<br>SAM                                                                    | 6" = 0.0014<br>r Pump;<br>S) SIGNATI<br>CODE: H<br>TUBIN                                                | I; 1/4" = 0.1<br>ESP = Elec<br>AMPLIN<br>IRES<br>IDPE<br>IG Y (1)<br>RVATION (Indu                               | 0026;<br>tric Subrr<br>G DA<br>V) replace                           | 5/16" = 0.<br>nersible Pur<br>TA<br>FIE<br>Filt<br>ed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 004; 3//<br>np; Pl<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equil<br>DUPLIC                                                                                                                                                                                                                             | B* = 0.006;<br>P = Peristaltic<br>ING<br>IED AT: )    <br>RED: Y<br>prment Type:<br>CATE: Y<br>NDED ANALYSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2" = 0.010;<br>Pump; 0<br>9 SAMF<br>N FII<br>r N<br>S SAMPLII<br>COUPME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5/8" = 0.1<br>= Other (Spe<br>PLING<br>D AT: ) 1<br>.TER SIZE:<br>                                                      | LOW RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TUBING II<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DE<br>SAMPLE ID                               | BX (PR ) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI                                                                                                                         | PACITY (Gal.<br>CODES: E<br>AFFILIATION:<br>MON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE                               | /Ft.):     1/8" = (       3 = Bailer;       UN       VIP       Y       TION       VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D.0006; 3/16<br>BP = Bladder<br>TUBING<br>MATERIAL (<br>N<br>PRESERVA<br>USED                                                                    | 6" = 0.0014<br>r Pump;<br>S) SIGNAT<br>S) SIGNAT<br>CODE: H<br>TUBIN<br>MPLE PRESE                      | I; 1/4" = 0.1<br>ESP = Elec<br>AMPLING<br>IPPE<br>IG Y<br>ICVATION (Indu<br>TOTAL VO<br>ADDED IN FIEL            | 0026;<br>tric Subr<br>G DA<br>V replace<br>uding wet for            | 5/16" = 0.<br>hersible Pur<br>TA<br>FIE<br>Filt<br>ad)<br>ce)<br>FINAL<br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 004: 3/1<br>np: Pl<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equil<br>DUPLIC<br>INTER                                                                                                                                                                                                                    | B* = 0.006;         P = Peristaltic         ING         IED AT:         Y         IPment Type:         CATE:         Y         VDED ANALYSI:         X/OR METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2" = 0.010;<br>Pump; 0<br>9 SAMF<br>N FII<br>C N<br>S SAMFLII<br>CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/8" = 0.1<br>= Other (Spe<br>2LING<br>D AT: 121<br>.TER SIZE:                                                          | L per minute)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TUBING II<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DE<br>SAMPLE ID                               | BX (PR ) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI                                                                                                                         | PACITY (Gal.,<br>CODES: E<br>AFFILIATION:<br>MON: PUI<br>ER SPECIFICAT<br>MATERIAL                                      | /Ft.): 1/8"=(<br>3 = Bailer;<br>ир ү С<br>пом                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D.0006; 3/16<br>BP = Bladder<br>SAMPLER(S<br>TUBING<br>MATERIAL (<br>N<br>SAM<br>PRESERVA                                                        | 6" = 0.0014<br>r Pump;<br>S) SIGNAT<br>S) SIGNAT<br>CODE: H<br>TUBIN<br>MPLE PRESE                      | I; 1/4" = 0.<br>ESP = Elec<br>AMPLING<br>IDPE<br>G Y N<br>RVATION (Inclu<br>TOTAL VO                             | 0026;<br>tric Subr<br>G DA<br>V replace<br>uding wet for            | 5/16" = 0.<br>hersible Pur<br>TA<br>File<br>File<br>ed)<br>ce)<br>FINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 004: 3//<br>mp; Pl<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equi<br>DUPLIC<br>INTER<br>ANIC<br>ANIC<br>82<br>Organ                                                                                                                                                                                      | B* = 0.006;<br>P = Peristaltic<br>ING<br>IED AT: )    <br>RED: Y<br>prment Type:<br>CATE: Y<br>NDED ANALYSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2" = 0.010;<br>Pump; O<br>G SAMF<br>N FIL<br>CODE<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>CODE<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAMPLI<br>SAM | 5/8" = 0.1<br>= Other (Spe<br>2LING<br>D AT: ) )<br>.TER SIZE: .<br>                                                    | AMPLE PUMP<br>LOW RATE<br>LOW RATE<br>L per minute)<br><100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TUBING II<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DE<br>SAMPLE ID                               | BX (PR ) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI                                                                                                                         | PACITY (Gal.<br>CODES: E<br>AFFILIATION:<br>MON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE                               | /Ft.):     1/8" = (       3 = Bailer;       UN       VIP       Y       TION       VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D.0006; 3/16<br>BP = Bladder<br>TUBING<br>MATERIAL (<br>N<br>PRESERVA<br>USED                                                                    | 6" = 0.0014<br>r Pump;<br>S) SIGNAT<br>S) SIGNAT<br>CODE: H<br>TUBIN<br>MPLE PRESE                      | I; 1/4" = 0.1<br>ESP = Elec<br>AMPLING<br>IPPE<br>IG Y<br>ICVATION (Indu<br>TOTAL VO<br>ADDED IN FIEL            | 0026;<br>tric Subr<br>G DA<br>V replace<br>uding wet for            | 5/16" = 0.<br>hersible Pur<br>TA<br>FIE<br>Filt<br>ad)<br>ce)<br>FINAL<br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 004: 3//<br>mp; Pl<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equil<br>DUPLIC<br>INTER<br>AND<br>82<br>Organ<br>by EP,<br>8270-5                                                                                                                                                                          | 8" = 0.006;<br>P = Peristaltic<br>ING<br>ED AT:<br>PED AT:<br>Poment Type:<br>CATE:<br>VOR METHOD<br>60-Volatile<br>ic Compoun<br>A Method 82<br>Semi-Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2" = 0.010;       Pump;     O       9     SAMF       N     FII       r     N       S     SAMPLI       CODE     APP       ds     60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 578" = 0.1<br>= Other (Spe<br>D AT: ) ? 1<br>.TER SIZE:<br>                                                             | AMPLE PUMP<br>LOW RATE<br>L per minute)<br><100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TUBING II<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DE<br>SAMPLE ID                               | EQUIPMENT (<br>EQUIPMENT (<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAMINATI                                                                            | PACITY (Gal.<br>CODES: E<br>AFFILIATION:<br>CON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG                         | /Ft.):     1/8" = (       3 = Bailer;       //E       MP     Y       TION       VOLUME       40 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D.0006; 3/16<br>BP = Bladder<br>TUBING<br>MATERIAL (<br>N<br>PRESERVA<br>USED<br>HCI+ IC                                                         | 6" = 0.0014<br>r Pump;<br>S) SIGNAT<br>S) SIGNAT<br>CODE: H<br>TUBIN<br>MPLE PRESE<br>TIVE              | I; 1/4" = 0.<br>ESP = Elec<br>AMPLING<br>IRES:<br>IDPE<br>IG Y<br>ICOLO<br>INOLE                                 | 0026;<br>tric Subrr<br>G DA<br>V) replace<br>uding wet lo           | 5/16" = 0.<br>hersible Pur<br>TA<br>FIE<br>Filt<br>ad)<br>ce)<br>FINAL<br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 004: 3//<br>mp; Pl<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equil<br>DUPLIC<br>INTER<br>AND<br>BY EP/<br>8270-S<br>Organi<br>by EP/                                                                                                                                                                     | 8" = 0.006;<br>P = Peristaltic<br>ING<br>ED AT:<br>ED AT:<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristaltic<br>Peristal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2" = 0.010;       Pump;     O       9     SAMF       N     FII       r     N       s     SAMPLI       cobe     APP       ds     APF       ds     APF       fs     APF       70     J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578" = 0.1<br>= Other (Spe<br>2LING<br>D AT: ) )<br>TER SIZE:<br>NT S/<br>(n<br>A1<br>(n<br>A1<br>(n<br>A1<br>(n<br>(n) | D16<br>ccify)<br>4<br>4<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TUBING II<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DE<br>SAMPLE ID                               | EQUIPMENT (<br>EQUIPMENT (<br>EQUIPMENT (<br>EQUIPMENT (<br>EQUIPMENT (<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAMINERS<br>2<br>2 | PACITY (Gal.<br>CODES: E<br>AFFILIATION:<br>CON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG                         | /Ft.):     1/8" = (       3 = Bailer;       UN       VP       YOLUME       40 ml       250 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D.0006; 3/16<br>BP = Bladder<br>SAMPLER(S<br>TUBING<br>MATERIAL (<br>N<br>SAM<br>PRESERVA<br>USED<br>HCI+ Ic                                     | 6" = 0.0014<br>r Pump;<br>S) SIGNAT<br>S) SIGNAT<br>CODE: H<br>TUBIN<br>MPLE PRESE<br>TIVE              | I; 1/4" = 0.<br>ESP = Elec<br>AMPLING<br>IPE<br>G Y<br>IOPE<br>IG Y<br>IOTAL VO<br>ADDED IN FIEL<br>NONE<br>NONE | 0026;<br>tric Subrr<br>G DA<br>V) replace<br>uding wet lo           | 5/16" = 0.<br>hersible Pur<br>TA<br>FIE<br>Filt<br>ad)<br>ce)<br>FINAL<br>pH<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 004: 3//<br>mp; Pl<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equil<br>DUPLIC<br>INTER<br>AND<br>BY EP/<br>8270-S<br>Organi<br>by EP/                                                                                                                                                                     | a* = 0.006;         P = Peristaltic         ING         ED AT:         IED AT:         Y         pment Type:         OR METHOD         GO-Volatile         ic Compound         A Method 82         Peb, Ag by EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2" = 0.010;       Pump;     O       9     SAMF       N     FII       r     N       s     SAMPLI       cobe     APP       ds     APF       ds     APF       fs     APF       70     J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578" = 0.1<br>= Other (Spe<br>2LING<br>D AT: )<br>TER SIZE:<br>NT S/<br>(n<br>Al<br>(n<br>Al                            | AMPLE PUMP<br>LOW RATE<br>LOW RATE<br>L per minute)<br><100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TUBING II<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DE<br>SAMPLE ID<br>CODE                       | EQUIPMENT (<br>EQUIPMENT (<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAMINATI<br>CONTAINERS<br>3                                                         | PACITY (Gal.<br>CODES: E<br>AFFILIATION:<br>MOLANSI<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG  | /Ft.):       1/8" = (         3 = Bailer;         //E         //P       Y         MP       Y         TION         VOLUME         40 ml         250 ml         //L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D.0006; 3/16<br>BP = Bladder<br>SAMPLER(\$<br>TUBING<br>MATERIAL (<br>N<br>PRESERVA<br>USED<br>HCI+ IC<br>ICC<br>¥ (                             | 6" = 0.0014<br>r Pump;<br>S) SIGNAT<br>S) SIGNAT<br>CODE: H<br>TUBIN<br>MPLE PRESE<br>TIVE              | I; 1/4" = 0.<br>ESP = Elec<br>AMPLING<br>IPE<br>G Y<br>TOTAL VO<br>ADDED IN FIEL<br>NONE<br>NONE                 | 0026;<br>tric Subrr<br>G DA<br>V replace<br>uding wet lo            | 5/16" = 0.<br>hersible Pur<br>TA<br>FIE<br>Filt<br>ad)<br>ce)<br>FINAL<br>pH<br><2<br><br>( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 004: 3//<br>mp; Pl<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equil<br>DUPLIC<br>INTER<br>AND<br>BUPLIC<br>INTER<br>AND<br>BUPLIC<br>Organ<br>by EP.<br>8270-S<br>Organ<br>by EP.<br>Cd, Cr,<br>Method                                                                                                    | a* = 0.006;         P = Peristaltic         ING         ED AT:         IED AT:         Y         pment Type:         OR METHOD         GO-Volatile         ic Compound         A Method 82         Peb, Ag by EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2" = 0.010;       Pump;     O       9     SAMF       9     SAMF       1     FII       1     FII       1     Sampling       1     Sampling   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 578" = 0.1<br>= Other (Spe<br>D AT: ))<br>TER SIZE:<br>NT (n<br>Al<br>Al                                                | Leffy)<br>μμπ<br>ΔMPLE PUMP<br>LOW RATE<br>L per minute)<br><100<br>c purge rate<br>δ D-3<br>t purge rate<br>δ 3<br>t purge rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TUBING II<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DE<br>SAMPLE ID<br>CODE                       | EQUIPMENT (<br>EQUIPMENT (<br>UPK)<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MIPLE CONTAIN<br>CONTAMINATI<br>3<br>2<br>1<br>2<br>1<br>2<br>1<br>2                           | PACITY (Gal.<br>CODES: E<br>AFFILIATION:<br>MATERIAL<br>CODE<br>CODE<br>CODE<br>CG<br>AG<br>PE                          | /Ft.):       1/8" = (         3 = Bailer;         //E         //P       Y         ION         VOLUME         40 ml         250 ml         /L         250 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D.0006; 3/16<br>BP = Bladder<br>SAMPLER(\$<br>TUBING<br>MATERIAL (<br>N<br>SAM<br>PRESERVA<br>USED<br>HCI+ IC<br>ICC<br>Į (<br>HNO3 +<br>H2SO4 + | 6" = 0.0014<br>r Pump;<br>S) SIGNAT<br>S) SIGNAT<br>CODE: H<br>TUBIN<br>MPLE PRESE<br>TIVE              | IL TOTAL VO<br>ADDED IN FIEL<br>NONE<br>NONE<br>NONE                                                             | 0026;<br>tric Subrr<br>G DA<br>V) replace<br>ading wet lt<br>D (mL) | 5/16" = 0.<br>hersible Pur<br>TA<br>FIE<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>Filt<br>F | 004: 3//<br>mp; PI<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equil<br>DUPLIC<br>INTER<br>AND<br>BUPLIC<br>INTER<br>AND<br>BUPLIC<br>INTER<br>AND<br>BUPLIC<br>Organi<br>by EPJ<br>Cd, Cr,<br>Method                                                                                                      | 8" = 0.006;<br>P = Peristaltic<br>ING<br>ED AT:<br>ED AT:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CA | 1/2" = 0.010;       Pump;     O       9     SAMF       9     SAMF       1     FII       1     FII       1     FII       1     FII       1     FII       1     FII       1     SAMFLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 578" = 0.1<br>= Other (Spe<br>2LING<br>DAT: ))  <br>.TER SIZE:<br>                                                      | 016       cify)       μm       MPLE PUMP       -LOW RATE       NL per minute)       <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TUBING II<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DE<br>SAMPLE ID<br>CODE<br>22-3519<br>REMARKS | EQUIPMENT (<br>EQUIPMENT (<br>UPK)<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MIPLE CONTAIN<br>CONTAMINATI<br>3<br>2<br>1<br>2<br>1<br>2<br>1<br>2                           | PACITY (Gal.<br>CODES: E<br>AFFILIATION:<br>NON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AC<br>PE<br>AG | $\frac{FL}{FL} = \frac{1}{8} = $ | D.0006; 3/16<br>BP = Bladder<br>SAMPLER(S<br>MATERIAL ON<br>N<br>SAM<br>PRESERVA<br>USED<br>HCI+ Ic<br>Ice<br>I t<br>HNO3 +<br>H2SO4 +           | 6" = 0.0014<br>r Pump;<br>S) SIGNAT<br>S) SIGNAT<br>CODE: H<br>TUBIN<br>MPLE PRESE<br>TIVE<br>Se<br>ICE | IL TOTAL VO<br>ADDED IN FIEL<br>NONE<br>NONE<br>NONE                                                             | 0026;<br>tric Subrr<br>G DA<br>V) replace<br>uding wet lo<br>D (mL) | 5/16" = 0.<br>hersible Pur<br>TA<br>FIE<br>Filt<br>ad)<br>ce)<br>FINAL<br>PH<br><2<br><br>( 1<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 004: 3//<br>mp; Pl<br>SAMPL<br>INITIAT<br>LD-FILTEF<br>ration Equil<br>DUPLIC<br>INTER<br>AND<br>BUPLIC<br>INTER<br>AND<br>BUPLIC<br>INTER<br>AND<br>BUPLIC<br>INTER<br>AND<br>BUPLIC<br>Organ<br>by EP,<br>8270-S<br>Organ<br>by EP,<br>8270-S<br>Organ<br>by EP,<br>8270-S<br>Organ<br>by EP,<br>8270-S | 8" = 0.006;<br>P = Peristaltic<br>ING<br>ED AT:<br>ED AT:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CATE:<br>CA | 1/2" = 0.010;           Pump;         O           9         SAMF           9         SAMF           9         SAMF           10         FII           10         FII           11         EQUIPMI           11         CODE           11         SAMF           11         EQUIPMI           12         SAMPLI           13         EQUIPMI           14         APF           0         APF           0         APF           0         APF           0         APF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 578" = 0.1<br>= Other (Spe<br>2LING<br>DAT: ))  <br>.TER SIZE:<br>                                                      | D16<br>cify)<br>$4$ $\mu$<br>$\mu$<br>$\mu$<br>$\Delta$ MPLE PUMP<br>-LOW RATE<br>$\Delta$ DVR ATE<br>$\Delta$ DVR AT |

Ъ

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

62-160.800 F.A.C.

٩.

Revision Date: March 1, 2014

## DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| SITE                           | etv Kleen                     | Systems,                                | Inc                                       |                                |                                           |                           | 8755 N                                    | W 95 <sup>th</sup>                | Street.                                                 | Medley, F                   | L                             |                                            |                      |
|--------------------------------|-------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------|-------------------------------------------|---------------------------|-------------------------------------------|-----------------------------------|---------------------------------------------------------|-----------------------------|-------------------------------|--------------------------------------------|----------------------|
| WELL NO: N                     |                               | Cyclomo,                                |                                           | SAMPL                          | E ID: MW-                                 |                           |                                           |                                   |                                                         |                             | 1. 1                          | 20                                         |                      |
|                                |                               |                                         |                                           |                                |                                           | IRGING                    |                                           |                                   |                                                         |                             | 1. 11.00                      |                                            |                      |
| WELL<br>DIAMETER (i            |                               |                                         | ER (inches):                              | 1/8-ID DI                      | ELL SCREEN<br>EPTH: 2 feet                | to 12 feet                |                                           | STATIC DE                         | R (feet): 2                                             | -80                         | PURGE PUMP T<br>OR BAILER:    | YPE<br>PF                                  | 0                    |
| (only fill out if              | applicable)                   | 1 WELL VOL                              | = (                                       | 11 6                           | a feet - a                                | . Qn                      | feet                                      | ) X                               | 0.16                                                    | gallor                      | is/foot = <b>).</b> 9         |                                            | galions              |
| EQUIPMENT<br>(only fill out if | VOLUME Pl<br>applicable)      | URGE: 1 EQU                             | IPMENT VO                                 | L. = PUMP VO                   | DLUME + (TU<br>gallons + (                | BING CAPA                 | CITY<br>allons/foo                        |                                   |                                                         | GTH) + FLOW<br>feet) +      | CELL VOLUME                   |                                            | llons                |
| INITIAL PUM                    |                               | G-1 m                                   |                                           | MP OR TUBI                     | NG O                                      |                           |                                           | 1035                              | DUDON                                                   |                             | TOTAL VO                      |                                            | <i>.</i> O           |
| DEPTH IN W                     | ELL (feet):                   | 7.2                                     | DEPTHIN                                   | WELL (feet):                   | 1.2                                       |                           | ATED AT:                                  | 1037                              | ENDED                                                   |                             | ( PORGED (                    |                                            | .0                   |
| TIME                           | VOLUME<br>PURGED<br>(gallons) | CUMUL.<br>VOLUME<br>PURGED<br>(gallons) | PURGE<br>RATE<br>(gpm)                    | DEPTH<br>TO<br>WATER<br>(feet) | pH<br>(standard<br>units)                 | TEMP.<br>(°C)             | CONE<br>(circle ur<br>µmbee<br>or<br>µS/c | nits) O                           | SOLVED<br>XYGEN<br>rele units)<br>ng/L or<br>saturation | TURBIDIT<br>(NTUs)          | Y COLOR<br>(describe)         | ODOR<br>(describe)                         | ORP                  |
| 1053                           | 1.44                          | 1,44                                    | 0.08                                      | 2.95                           | 6.83                                      | 22.72                     | : 47                                      | 80                                | .10                                                     | 2.42                        | Clear                         | NUNE                                       | -188                 |
| 1056                           | 0,24                          | 1.60                                    | 1                                         | 2,95                           |                                           | 22.68                     |                                           |                                   | .09                                                     | 2.30                        |                               | 1                                          | -193                 |
| 1059                           | 0.21                          | 1.92                                    | L                                         | 2,95                           | 6.89                                      | 22,6                      | 47                                        | 17 0.                             | 08                                                      | 2,23                        | d                             | 4                                          | -197                 |
|                                |                               |                                         |                                           |                                |                                           |                           |                                           |                                   |                                                         |                             |                               |                                            |                      |
|                                |                               |                                         |                                           |                                |                                           |                           |                                           |                                   |                                                         |                             |                               |                                            |                      |
| WELL CAPA                      | CITY (Gallor                  | s Per Foot): (                          | <b>0.75</b> " = 0.02;                     | 1" = 0.04;                     | <b>1.25</b> " = 0.                        |                           |                                           | 3" = 0.37;                        |                                                         |                             | ; 6" = 1.47;<br>1/2" = 0.010; | <b>12</b> " = 5.88<br><b>5/8</b> " = 0.016 |                      |
| TUBING INS                     |                               | PACITY (Gal./I<br>CODES: B              | -t.): <b>1/8" =</b> (<br>= Bailer;        | BP = Bladde                    |                                           | 1/4" = 0.0<br>ESP = Elect |                                           | <b>5/16" =</b> 0.0<br>ersible Рил |                                                         | = 0.008;<br>= Peristaltic I |                               | Other (Specify                             |                      |
|                                |                               |                                         |                                           |                                | S) SIGNATU                                | MPLING                    | G DAT                                     | Α                                 | SAMDU                                                   |                             | SAMPLIN                       |                                            |                      |
| SAMPLEUB                       | thEN                          | FFILIATION:                             | EUT                                       | TUBING                         |                                           | Mor                       | M                                         |                                   |                                                         | NG<br>ED AT: 110            |                               |                                            |                      |
| PUMP OR TU<br>DEPTH IN W       |                               | 7.2<br>ON: PUM                          | PYC                                       |                                | CODE: HE                                  |                           | replace                                   | Filtra                            |                                                         | ment Type:                  |                               |                                            | µ=                   |
|                                |                               |                                         |                                           |                                |                                           |                           |                                           | ,                                 | DUPLIC                                                  |                             |                               | CAMP                                       | LE PUMP              |
| SAMPLE ID                      | #                             | ATERIAL                                 | VOLUME                                    | PRESERVA                       |                                           | TOTAL VOL                 |                                           | FINAL                             |                                                         | DED ANALYSIS<br>OR METHOD   | SAMPLING<br>EQUIPMENT<br>CODE | FLO                                        | N RATE<br>er minute) |
| CODE<br>3-0319 12              | CONTAINERS                    | PE                                      | 250 ml                                    | USED<br>HNO3+                  |                                           |                           | ) (mL)                                    | рн<br><2                          |                                                         | Pb, Ag by EP<br>thod 200.8  | A APP                         | At pu                                      | rge rate             |
| /                              |                               |                                         |                                           |                                |                                           |                           |                                           |                                   |                                                         |                             |                               |                                            | ,                    |
|                                |                               |                                         |                                           |                                |                                           |                           |                                           |                                   |                                                         |                             |                               |                                            |                      |
|                                |                               |                                         |                                           |                                |                                           |                           |                                           |                                   |                                                         |                             |                               |                                            |                      |
|                                |                               |                                         |                                           |                                |                                           |                           |                                           |                                   |                                                         |                             |                               |                                            |                      |
|                                |                               |                                         |                                           |                                |                                           |                           |                                           |                                   |                                                         |                             |                               |                                            |                      |
|                                |                               |                                         |                                           |                                |                                           |                           |                                           |                                   |                                                         |                             |                               |                                            |                      |
|                                |                               |                                         |                                           |                                |                                           |                           | - 4 A                                     | M ()                              | Gad W                                                   | AQAT +                      | and a soft                    | a anich o                                  | thing                |
| REMARKS:                       | Q= 0                          | 13gal                                   | \$ 6050                                   | E = 0.0                        | 18 gpr                                    | ~                         | רין ד                                     | aut                               | nt                                                      | Semmo                       | hettle                        | י וונטטיי                                  | 100119               |
| REMARKS:                       |                               |                                         | Glass; CG                                 | = Clear Glass                  |                                           | - High Densi              |                                           |                                   |                                                         | Semple<br>w Density Pol     | bottle<br>yethylene; PF       | P = Polypropyl                             |                      |
| MATERIAL                       |                               | AG = Amber<br>S = Silicone;<br>CODES:   | Glass; CG<br>T = Teflon:<br>APP = After ( | = Clear Glass                  | s; HDPE =<br>r (Specify)<br>staltic Pump; | = High Densi<br>B = Bai   | ty Polyeti                                |                                   | LDPE = Lor                                              | w Density Pol               |                               | Polypropyl                                 |                      |

10 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

## 2019-2020 - Industrial Weste

GROUNDWATER SAMLING EVENT

#### Identification: #4 SN# 04D8623 AP Model: SmarTroll / 656 MPS Instrument Make: InSitu / YSI Sampler's Name / Signature: EET-Kerth F. Morrson Keith 7. Mour Date: (mm/dd/w) 03 19 2020 Procedure Type: ICV, CCV, Cal 945 1655 Standard Values Time 4.04 pH 4.01 S.U. 4.06 7.04 pH 7.00 S.U. 7.05 10.03 pH 10.00 S.U. 10.02 Within 0.2 S.U? Pass / Fail **Calibration Required?** Yes / No LAN April Sampler's Initials Conductivity <u>SOU</u> µS/cm Cal 501 502 Conductivity 1000 µS/cm Ver 994 992 Pass / Fail Within 5%? Pass / Fail Yes /(No Yes / No Calibration Required? Yes / No Ker Hun Sampler's Initials Temperature During D.O. 21 23 °C °C °C °C °C °C °C °C °C 8,9 (100 2/5) 8,6 99,8% D.O. mg/L @ Saturation 10/1 Pase / Fail Within 0.3 mg/L? Pass / Fail Yes / No Yes /No **Calibration Required?** Yes / No KAN Ker Sampler's Initials Temperature During ORP 21 °C 23 °C °C °C °C °C °C °C °C 234 232 ORP in mV Pass / Fail Rass / Fail Within 10 mV? Pass / Fail Yes No Yes /No **Calibration Required?** Yes / No Km Kfm Sampler's Initials **Calibration Solutions** Manufacturer Lot Number **Expiration Date** pH 4.01 S.U. 190227C Exaxol 09 12020 pH 7.00 S.U. 190715A Exaxol 0112021 pH 10.00 S.U. Exaxol 181204A 0612020 Conductivity 500 µS/cm Cal Exaxol 190715B 0712020 Conductivity 1000 µS/cm Ver Exaxol (03/31/2024) 190227B 0412020 ORP: mV@°C per mfr. specs. 23102502 190715E 07/2020

Instrument Calibration and Field Verification Log

Notes Cal = Calibration

This form meets or exceeds the requirements of FDEP Form FD 9000-8

ICV = Initial Calibration Verification

CCV = Continued Calibration Verification

P:\A&RDEPT\QA\YSI calibration.xls

| SAFETY-K<br>2020 ANNI<br>SAMPLING E | LEEN<br>UALGR     | MEDLE            | Y<br>TER FT      | 1000 Gen                     | DEP-SOF<br>eral Field Te           | -001/01<br>sting and   | Measureme               | nt                   |            |           |
|-------------------------------------|-------------------|------------------|------------------|------------------------------|------------------------------------|------------------------|-------------------------|----------------------|------------|-----------|
| SAMPLING E                          | INSTRU            | IMENT (N         | AKE/MOI          | DEL#) H                      | DINSTRUM                           | IENT CAL<br>以          | IBRATION I              |                      | SN+1 161   | 10C053546 |
|                                     | FARM              |                  | спеск опіу       | onej                         |                                    |                        |                         |                      |            | 10        |
|                                     |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |
|                                     |                   | JRBIDITY         |                  | RESIDUA                      |                                    | ] DO                   |                         | HER                  |            | -         |
|                                     | values, ar        | nd the date i    | he standard      | rpe(s) of sta<br>s were prep | ndards used for<br>ared or purchas | r calibration,<br>sed] | the origin of the       | e standards, the     | ə standard |           |
|                                     | Star              | dard A           | 10 NTUS          | Lot#                         | A18219                             |                        |                         |                      |            |           |
|                                     |                   |                  |                  |                              | A9222                              |                        |                         |                      |            |           |
|                                     |                   |                  | DO NTVS          | Lot #                        | A8226                              |                        |                         |                      |            |           |
|                                     | DATE<br>(yy/mm/do | I) (hr:min)      | STD<br>(A, B, C) | STD                          | INSTRUMENT                         | % DEV                  | CALIBRATED<br>(YES, NO) | TYPE<br>(INIT, CONT) | SAMPLER    | 1         |
| March 10                            | 1,2020            | 845              | A                | IUNTUS                       | 9.89                               | ±10%                   | Vis                     | INIT                 | Kfin       | 1         |
|                                     |                   | 847              | B                | 20-11                        | 19.9                               | 18%                    | Yes                     | INT-                 | Kom        | 1         |
|                                     |                   | 849              | C.               | 100 11                       | 10)                                | 765%                   | Vas                     | INT                  | Hon        |           |
|                                     |                   | 1657             | A                | 10 11                        | 9.91                               | ±10%                   | YOD                     | Cont                 | KFM        | 1         |
|                                     |                   | 1659             | B                | 20 11                        | 19.6                               | ± 8%                   | Ves                     | Cont                 | IUm        | 1         |
|                                     | Ý                 | 1202             | C                | 100 "                        | 102                                | I 6.5%                 | yen                     | Cent                 | An         |           |
|                                     |                   |                  |                  |                              |                                    |                        | ν                       |                      | ;          |           |
|                                     |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |
|                                     |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |
|                                     |                   |                  |                  |                              |                                    |                        |                         |                      |            | *         |
|                                     |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |
|                                     |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |
|                                     |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |
| -                                   |                   | +                |                  |                              |                                    |                        |                         |                      |            |           |
| -                                   |                   | $\left  \right $ |                  |                              |                                    |                        |                         |                      |            |           |
| -                                   |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |
| -                                   |                   | ┟──┼             |                  |                              |                                    |                        |                         |                      |            |           |
| H                                   |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |
| ŀ                                   |                   | <u>├</u> ──┤     |                  |                              |                                    |                        |                         |                      |            |           |
| ŀ                                   |                   | <b>├</b> ──┤     |                  |                              |                                    |                        |                         |                      |            |           |
| -                                   |                   | -                |                  |                              |                                    |                        |                         |                      |            | ю.        |
| -                                   |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |
| L                                   |                   |                  |                  |                              |                                    |                        |                         |                      |            |           |

Face Analytical\* WWW.PACELABS.COM

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

10 10 0

en la Riv 12 Ca Riv

1. 1. 1. 1. 144 L. F.M.

| ection A<br>equired<br>company:                                                                                                                                                                                                                                                                                                                      | Client Information:                                                                                                                                                                      | Section B<br>Required P                                              | _                        |                     | :                     |                       | $1 - \infty$    |                           | -               | ce Infe              | ormati |       | -                  | 30                         |       |               | 0                                          |                            |                          |                                    |               |            |                    | Р                                                                                                               | age :                   | 1                     | Of                         | 1          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|---------------------|-----------------------|-----------------------|-----------------|---------------------------|-----------------|----------------------|--------|-------|--------------------|----------------------------|-------|---------------|--------------------------------------------|----------------------------|--------------------------|------------------------------------|---------------|------------|--------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|----------------------------|------------|
| ddress:                                                                                                                                                                                                                                                                                                                                              | Environmental Consulting & Technology-Tampa<br>1408 North Westshore Blivd                                                                                                                | Report To:<br>Copy To:                                               |                          | Morrison            |                       |                       | _               |                           | Atten           |                      | law :  | 14    | eth                | No                         | ND :  | Sim           |                                            |                            |                          |                                    |               |            |                    | -                                                                                                               |                         |                       |                            |            |
| ampa, Fl                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          | Cupy 10.                                                             | v                        | ۸                   |                       |                       |                 | _                         | Addre           | pany N               | lame:  | 1.    |                    | EĽ                         |       |               |                                            | -                          |                          |                                    |               |            | -                  |                                                                                                                 |                         |                       |                            |            |
|                                                                                                                                                                                                                                                                                                                                                      | morrison@ectinc.com                                                                                                                                                                      | Purchase C                                                           | rder #:                  |                     |                       |                       | 1.1             |                           |                 | Quote                |        |       | -                  | 12                         | 00    | 2             | we                                         | AS                         | her                      | é C                                | shok 1        | 211        | State -            |                                                                                                                 | Regula                  | itory Age             | ncy                        | A STATE    |
| hone:                                                                                                                                                                                                                                                                                                                                                | 813-493-0383 Fax: 813, 189, 4388                                                                                                                                                         | Project Nar                                                          | ne: s                    | Safety Klee         | n Facility            |                       |                 | -                         |                 |                      | ct Man | ader  | -                  |                            |       |               |                                            | -                          | _                        |                                    |               | lister     | Contraction of     | CONTRACTOR OF |                         | COLUMN STREET, ST. N. |                            |            |
| Requested                                                                                                                                                                                                                                                                                                                                            | d Due Date:                                                                                                                                                                              | Project #:                                                           | 20                       | 0229                | -0100                 | )                     |                 | -                         |                 | Profile              | _      |       | 1 line             |                            | mency | bacela        | bs.con                                     | n,                         |                          |                                    | _             |            |                    |                                                                                                                 | State                   | /Locati               | on year and h              |            |
|                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                          |                                                                      | ia                       |                     |                       |                       |                 |                           |                 |                      |        |       | 1.010              | -                          |       | 1             |                                            | Rem                        | leste                    | diāna                              | Neie F        | litered    | EVINA.             | 学校(2.7)月日                                                                                                       | State 1                 | FL                    | A SHOWER (SHOW             |            |
|                                                                                                                                                                                                                                                                                                                                                      | MAŤRIX<br>Drinking Wi<br>Vister                                                                                                                                                          | CODE<br>ter DW<br>WT                                                 | i codes to left)         | (G=GRAB C=COMP)     | COLL                  | ECTED                 |                 | TION                      |                 | -1                   | Pre    | eser  | vative             | s                          | 1     | NIA           |                                            |                            |                          |                                    | yalo I        |            |                    |                                                                                                                 |                         |                       |                            | n<br>Alter |
| ITEM #                                                                                                                                                                                                                                                                                                                                               | SAMPLE ID       Waste Wash         Product       Soli/Solid         One Character per box.       Wippe         (A-Z, 0-9 / , -)       Afr         Sample Ids must be unique       Tissue |                                                                      | MATRIX CODE (see valid o |                     | TART.                 |                       | ND<br>TIME      | SAMPLE TEMP AT COLLECTION | # OF CONTAINERS | Unpreserved<br>H2SO4 | HNO3   | HCI   | NaOH -             | Nazszos<br>Methanol        | Other | Analyses Test | 8260 Full List<br>8270 Full list plus PAHs | FL Pro Low Volume for Wate | Metals 200.8 Ag,Cd,Cr,Pb | 8270 Fuli list plus PAHs<br>MS/MSD | FL PRO MS/MSD |            |                    |                                                                                                                 | Residual Chlorine (Y/N) |                       | э<br>ж                     |            |
| 1                                                                                                                                                                                                                                                                                                                                                    | MW-2R                                                                                                                                                                                    |                                                                      | WT                       | 3/4)20              |                       | 3/19/20               |                 |                           | 35.1            | 21                   | 1      | 3     |                    |                            |       |               | x x                                        |                            | ×                        | ® ⊵                                | ×             | -          |                    | -                                                                                                               | <u></u>                 |                       |                            | ;          |
| 2                                                                                                                                                                                                                                                                                                                                                    | MW-1                                                                                                                                                                                     |                                                                      | WT                       | 3/19/2              | 0 1049                | 3/19/2                | 1647            | )                         | 1               | 1                    | 1      |       |                    |                            |       |               |                                            |                            | x                        |                                    | 1             | 1          |                    |                                                                                                                 |                         |                       |                            |            |
| 3                                                                                                                                                                                                                                                                                                                                                    | MW-3                                                                                                                                                                                     |                                                                      | wт                       | 3/19/               | 20 110                | 3/19/2                | 1103            | 1                         | 1               |                      | 1      |       |                    |                            |       |               |                                            |                            | x                        |                                    |               |            |                    |                                                                                                                 |                         | 1                     |                            |            |
| 4                                                                                                                                                                                                                                                                                                                                                    | Trip Blank                                                                                                                                                                               |                                                                      | WT                       | \$) <del>**</del>   | 2                     | 370                   |                 |                           | 2               |                      |        |       |                    |                            |       |               | 1                                          |                            |                          |                                    | ,             |            |                    |                                                                                                                 |                         |                       |                            |            |
| 5                                                                                                                                                                                                                                                                                                                                                    | OALOC - MW-2RC                                                                                                                                                                           |                                                                      | $\left  \right $         | 3192                | 01119                 | \$ 19.2               | 0 2140          | J                         | 61              | -12                  |        |       |                    |                            |       |               | 1                                          |                            |                          | x                                  | x             |            |                    |                                                                                                                 |                         | 2                     |                            |            |
| 6 cm                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                        |                                                                      | $\mathbb{H}$             | +                   | -                     |                       | -               |                           | -               | -                    |        |       |                    | +                          | -     |               | -                                          |                            | H                        | _                                  | -             | +          |                    |                                                                                                                 |                         | -                     |                            |            |
| 8                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                    |                                                                      |                          |                     | 1                     |                       |                 | -                         | +               | +                    | +      |       |                    | +                          | -     | -             | +                                          |                            |                          | _                                  | +             | +          |                    | +                                                                                                               | _                       |                       |                            |            |
| 9                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                      |                          | 1                   |                       |                       |                 |                           | +               | +                    | 11     |       | $\left  + \right $ | 1                          |       |               | +                                          |                            |                          | -                                  | -             | +          |                    |                                                                                                                 | -17                     | Ť                     |                            | <i>u</i>   |
| 10                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                      | Ħ                        | 1                   |                       |                       |                 |                           | 1               |                      | 1      |       |                    | +                          |       |               | 1                                          |                            | $\mathbb{H}$             |                                    |               | +          |                    |                                                                                                                 | -                       |                       |                            |            |
| 11                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                        |                                                                      |                          |                     |                       |                       |                 |                           |                 |                      |        |       |                    | 1                          |       |               | 1                                          |                            |                          |                                    |               | $\uparrow$ |                    |                                                                                                                 | -                       |                       |                            |            |
| 12                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                      | Transfer Ru              | 102 200 0 200       |                       | 2011/02/201           |                 | Sector 1                  |                 |                      |        |       |                    |                            |       |               | Y                                          |                            |                          |                                    |               |            |                    |                                                                                                                 |                         |                       | r.                         |            |
|                                                                                                                                                                                                                                                                                                                                                      | ADDITIONAL COMMENTS                                                                                                                                                                      |                                                                      | RELINCI                  | UISHED BY           | and the second second | and the second second | DATE            | 詳測                        | EQUIPERION      | ME                   |        |       |                    | 臺湖語                        | 初始的问题 | 算。但如若         | ILIATIO                                    | 6.15                       |                          |                                    | DA            | те 🕴       | TIN                | AE .                                                                                                            |                         | SAMPLE                | E ÇONDITIOI                | NS .       |
|                                                                                                                                                                                                                                                                                                                                                      | Dottie r                                                                                                                                                                                 | 74                                                                   | det.                     | ZMe                 | AMA                   | Pace                  | 3.112           | 20                        | 14              | 13                   |        | Ke    | m                  | 61                         | nu    | on .          | m                                          | IE                         | <b>ZT</b>                |                                    | 3-11<br>3/19  | -201       | s 16               | 2                                                                                                               | 72                      |                       | 1.                         |            |
|                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                          | 1                                                                    |                          | 9.114               |                       | /                     |                 |                           | - 1             | 0.                   | 1      |       |                    | 11                         | V     |               |                                            |                            |                          |                                    | רש וכ         |            |                    | 10                                                                                                              | 11, 12                  | Y                     | N                          | 17         |
| 8                                                                                                                                                                                                                                                                                                                                                    | 52<br>                                                                                                                                                                                   |                                                                      |                          |                     | CHARGE COLORS         | The second            | - North Control | ]                         | Actor           | In Taking            |        |       |                    |                            |       |               |                                            |                            |                          |                                    |               |            |                    |                                                                                                                 | 54                      |                       | 1                          | 6          |
|                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                          |                                                                      |                          | , i                 | PRI                   | NT Name               | AND SIGN        | ÆR:                       | 197 - Gill      | A                    | ۸F     | 12052 | Mo                 | $D_{1} \in \mathbb{R}^{2}$ | Su    | L)            | 57                                         | +                          | 1                        |                                    |               |            | She der<br>Tringen |                                                                                                                 | n<br>O                  | ved on                | -A-                        | SS .       |
| and and a second se<br>Second second second<br>Second second | n negati na                                                                                                                                          | د وی اور در میکنونی<br>این اور در میکنونی<br>- کو در بیکنونی میکنونی |                          | Tomais (- Légiãoroa | SIG                   | NATURE                | of SAMPL        | ER:                       | K               | ed                   | t      | 7)    | No                 | Am                         | 4     |               | DA                                         | TE SI                      | gned;                    | 3                                  | -19           | -2         | 0-21               | 2                                                                                                               | TEMP In                 | Recei                 | Custod<br>Sealed<br>Cooler | Sampl      |

# Pace Container Order #628482

| Order                                 | dresses =<br>Bv :                                                               | -                               | Ship T                                         | o :                                                                    |         |           | Retur        | n To:                                                                                      |
|---------------------------------------|---------------------------------------------------------------------------------|---------------------------------|------------------------------------------------|------------------------------------------------------------------------|---------|-----------|--------------|--------------------------------------------------------------------------------------------|
|                                       | -                                                                               | ntal Consulting &               | •                                              | Environmental Consult                                                  | ing &   |           | Company      | Pace Analytical Oldsmar                                                                    |
|                                       | Morrison, K                                                                     |                                 | Contact                                        | Morrison, Keith                                                        |         |           | Contact      | Palmer, Lori                                                                               |
|                                       |                                                                                 | Dectinc.com                     | Email                                          | kmorrison@ectinc.c                                                     | om      |           | Email        | lori.palmer@pacelabs.com                                                                   |
|                                       |                                                                                 | Westshore Bllvd                 |                                                | 1408 North Westsho                                                     |         |           | -<br>Address | 110 South Bayview Blvd.                                                                    |
| Address 2                             |                                                                                 |                                 | Address 2                                      | Suite 115                                                              |         |           | Address 2    | 1997 A.S. 1997                                                                             |
|                                       | Tampa                                                                           |                                 |                                                | Tampa                                                                  |         |           | City         | Oldsmar                                                                                    |
| State                                 |                                                                                 | Zip 33607                       | State                                          |                                                                        | 07      |           | - State      | FL Zip 34677                                                                               |
|                                       | 813-493-03                                                                      |                                 |                                                | 813-493-0383                                                           |         |           |              | 813-855-1844                                                                               |
| Info                                  | 0                                                                               |                                 |                                                |                                                                        | 0.21    |           |              |                                                                                            |
|                                       |                                                                                 | afety Kleen Facility            | Due Date                                       | 03/17/2020                                                             | Profil  | e 9321    | ine 1        | Quote                                                                                      |
|                                       | Manager                                                                         |                                 | eturn Date                                     |                                                                        | Carrie  | er Pace ( | Courier      | Location FL                                                                                |
| · · ·                                 | lanks —                                                                         | lanks                           |                                                | Bottle Labels Blank Pre-Printed N X Pre-Printed V                      | lo Samp | le IDs    |              | ttles<br>Boxed Cases<br>Individually Wrapped<br>Grouped By Sample ID/Matrix                |
|                                       | n Shippin<br>o Shipper<br>ith Shipper<br>Options -<br>umber of Bla<br>e-Printed |                                 |                                                | Misc Sampling Ins<br>Custody Sea<br>Temp. Blank<br>Coolers<br>Syringes | I       |           |              | Extra Bubble Wrap<br>Short Hold/Rush Stickers<br>DI Water Liter(s)<br>USDA Regulated Soils |
| of Samples                            | s Matrix                                                                        | Test                            | Container                                      |                                                                        | Total   | # of      | Lot #        | Notes                                                                                      |
|                                       | WT                                                                              | 8260 Full List                  | 3-40mL via                                     |                                                                        | 3       | 0         |              |                                                                                            |
|                                       | WΤ                                                                              | 8270 Full list plus PAHs        | 1L Amber G<br>mL AG unp                        | lass Unpreserved + 25<br>es                                            | 2       | 0         |              |                                                                                            |
|                                       | WT                                                                              | FL Pro Low Volume for Waters    | 2-100 ml gla                                   | iss amber H2SO4                                                        | 2       | 0         |              |                                                                                            |
|                                       | WT                                                                              | Metals 200.8 Ag,Cd,Cr,Pb        | 250mL plas                                     |                                                                        | 3       | 0         |              |                                                                                            |
|                                       | WT                                                                              | 8270 Full list plus PAHs MS/MSI | 2-1L Amber<br>250 mL AG                        |                                                                        | 4       | 4         |              |                                                                                            |
|                                       | WT                                                                              | FL PRO MS/MSD                   | 100ml glass                                    | amber H2SO4                                                            | 2       | 2         |              |                                                                                            |
|                                       | WT                                                                              | Trip BLANK                      | 2-40mL HC                                      |                                                                        | 2       | 2         |              |                                                                                            |
| mple receiv<br>nager.<br>ce Analytic: | ving hours a<br>al reserves<br>al reserves<br>a are net 30                      |                                 | less special<br>oxic, or radi<br>bottles, as v | arrangements are m<br>pactive samples to y<br>rell as cost associate   | ou.     |           | ect          | USE:<br>Ship Date : 03/17/2020<br>Prepared By: BB<br>Verified By:                          |
| /ment term                            |                                                                                 | sal number on the chain of cus  | tody to insu                                   | e proper billing.                                                      |         |           |              |                                                                                            |
| ment term                             | e the propos                                                                    |                                 |                                                |                                                                        |         |           |              |                                                                                            |
| yment term<br>ase include             | e the propos                                                                    |                                 |                                                |                                                                        |         |           | CLIENT       | USE (Optional):<br>Date Rec'd:<br>Received By:<br>Verified By:                             |

\$3:

# ATTACHMENT B

## LABORATORY REPORT



Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

March 25, 2020

Keith Morrison Environmental Consulting & Techlology 1408 North Westshore Bllvd Suite 115 Tampa, FL 33607

RE: Project: Safety Kleen Facility Pace Project No.: 35538498

Dear Keith Morrison:

Enclosed are the analytical results for sample(s) received by the laboratory on March 19, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

IA Palmer

Lori Palmer lori.palmer@pacelabs.com 813-855-1844 Project Manager

Enclosures

cc: A/P, Environmental Consulting & Technology





Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

#### CERTIFICATIONS

Project: Safety Kleen Facility Pace Project No.: 35538498

#### Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174 Alaska DEC- CS/UST/LUST Alabama Certification #: 41320 Arizona Certification# AZ0819 Colorado Certification: FL NELAC Reciprocity Connecticut Certification #: PH-0216 Delaware Certification: FL NELAC Reciprocity Florida Certification #: E83079 Georgia Certification #: 955 Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity Illinois Certification #: 200068 Indiana Certification: FL NELAC Reciprocity Kansas Certification #: E-10383 Kentucky Certification #: 90050 Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007 Maryland Certification: #346 Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236 Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608 North Carolina Environmental Certificate #: 667 North Carolina Certification #: 12710 North Dakota Certification #: R-216 Oklahoma Certification #: D9947 Pennsylvania Certification #: 68-00547 Puerto Rico Certification #: FL01264 South Carolina Certification: #96042001 Tennessee Certification #: TN02974 Texas Certification: FL NELAC Reciprocity US Virgin Islands Certification: FL NELAC Reciprocity Virginia Environmental Certification #: 460165 West Virginia Certification #: 9962C Wisconsin Certification #: 399079670 Wyoming (EPA Region 8): FL NELAC Reciprocity



#### SAMPLE SUMMARY

Project: Safety Kleen Facility Pace Project No.: 35538498

Lab ID Sample ID Matrix **Date Collected Date Received** 35538498001 MW-2R 03/19/20 11:40 03/19/20 16:30 Water 35538498002 **MW-1** Water 03/19/20 10:47 03/19/20 16:30 35538498003 MW-3 Water 03/19/20 11:03 03/19/20 16:30 35538498004 Trip Blank Water 03/19/20 00:01 03/19/20 16:30



#### SAMPLE ANALYTE COUNT

Project:Safety Kleen FacilityPace Project No.:35538498

| Lab ID      | Sample ID  | Method          | Analysts | Analytes<br>Reported |
|-------------|------------|-----------------|----------|----------------------|
| 35538498001 | <br>MW-2R  | FL-PRO          | RJR      | 3                    |
|             |            | EPA 200.8       | SLG      | 4                    |
|             |            | EPA 8270 by SIM | CB1      | 20                   |
|             |            | EPA 8270        | TWB      | 82                   |
|             |            | EPA 8260        | MKG      | 57                   |
| 35538498002 | MW-1       | EPA 200.8       | SLG      | 4                    |
| 35538498003 | MW-3       | EPA 200.8       | SLG      | 4                    |
| 35538498004 | Trip Blank | EPA 8260        | MKG      | 57                   |



#### ANALYTICAL RESULTS

#### Project: Safety Kleen Facility

Pace Project No.: 35538498

| Parameters         Results         Units         PQL         MDL         DF         Prepared         Analyzed         CAS No.         Qual           FL-PRO Water, Low Volume         Analytical Method: FL-PRO Preparation Method: EPA 3510         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:19         03/25/20 01:13         03/25/20 01:13         03/25/20 01:13         03/20/20 01:13         74/04-39           One MET ICPMS         Analytical Method: EPA 200.8         1         03/20/20 01:14         03/20/20 11:13         74/04-39         03/20/20 11:13         74/04-73         03/20/20 11:13         74/04-73         03/20/20 01:13         74/04-73         03/20/20 01:13         74/04-73         03/20/20 01:13         74/04-73         04/20 01:13         74/04-23         04/20 01:13         74/04-23         04/20 01:13         74/04-23         04/20 01:13         74/04-23         04/20 01:13         74/04-23         04/20 01:13         74/04-23         04/20 01:13         74/04/20 01:13         74/04/20 01:13         74/04/20 01:13         74/02/20 01:13         74/02/20 01:13         74/02/20 01:13         74/02/20 01:13         74/20/20 01:13         74/02                                                                           | Sample: MW-2R                  | Lab ID:    | 35538498001   | Collected  | d: 03/19/20 | ) 11:40  | Received: 03/  | 19/20 16:30 Ma | atrix: Water |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|---------------|------------|-------------|----------|----------------|----------------|--------------|------|
| Percoleum Range Organics<br>Surrogates<br>o Terphenyl (5)         0.78         U         mg/L         0.97         0.78         1         03/24/20 16.53         03/25/20 01:19           0. Terphenyl (5)         100         %         42:159         1         0.3/24/20 16.53         0.3/25/20 01:19         64:15.1           N-Pentatriacontane (5)         100         %         42:159         1         0.3/24/20 16.53         0.3/25/20 01:19         63:0-7:09           ZOLS         Analytical Method: EPA 200.8         EPA 200.8         EPA 200.8         0.3/20/20 02:14         0.3/20/20 11:13         7440-43-9           Chromium         0.62 1         ug/L         1.0         0.650         1         0.3/20/20 02:14         0.3/20/20 11:13         7440-47-3           Silver         0.650 U         ug/L         0.10         0.550         1         0.3/20/20 02:14         0.3/20/20 11:13         7440-47-3           Acenaphthyne         0.040 U         ug/L         0.50         0.040         1         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14         0.3/24/20 08:14 <th>Parameters</th> <th>Results</th> <th>Units</th> <th>PQL</th> <th>MDL</th> <th>DF</th> <th>Prepared</th> <th>Analyzed</th> <th>CAS No.</th> <th>Qual</th> | Parameters                     | Results    | Units         | PQL        | MDL         | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| Surrogatos         1         0/24/20 16.53         0 3/24/20 16.53         0 3/25/20 01.19         8 - 15 - 1           N-Pentatriacontane (S)         100         %         42 - 159         1         0/324/20 16.53         0/325/20 01.19         630-07-09           200.8 MET ICPMS         Analytical Method: EPA 200.8 Preparation Method:         EPA 200.4         0/320/20 02.11         0/320/20 01.113         7440-47-3           Cadmium         0.650         U         ugl         1.0         0.50         1         0/320/20 02.14         0/320/20 02.1113         7440-47-3           Lead         0.50         U         ugl         1.0         0.50         1         0/320/20 02.14         0/320/20 02.1113         7440-47-3           Lead         0.50         U         ugl         0.10         0.50         1         0/320/20 02.14         0/320/20 02.1113         7440-47-3           Store         0.030         U         ugl         0.10         0.15         0/320/20 02.114         0/320/20 02.1113         7440-47-3           Acenaphthene         0.040         U         0/320/20 02.114         0/320/20 02.114         0/320/20 02.1114         7440-47-3           Acenaphthylene         0.055         U         ugl         0.50         0.0                                                                                                                                                                                                                              | FL-PRO Water, Low Volume       | Analytical | Method: FL-PR | RO Prepara | tion Method | d: EPA 3 | 3510           |                |              |      |
| o.Terpfinvl (S)       85       %       66-139       1       032/4/20 16:50       032/2/20 11:19       84-15-1         NP-Bratinizooniane (S)       100       %       42-159       1       032/4/20 16:50       032/2/20 11:13       7440-47-3         20.8 MET ICPMS       Analytical Method: EPA 20.8 Preservation Method: EPA 20.8 Preservation Method: EPA 20.8       7440-47-3         Chromium       0.62       1       0.10       0.50       1       0320/20 02:14       03/20/20 11:13       7440-47-3         Lead       0.50       U       ug/L       1.0       0.50       1       03/20/20 02:14       03/20/20 11:13       7440-47-3         Stiver       0.650       U       ug/L       1.0       0.50       1       03/20/20 02:14       03/20/20 11:13       7440-47-3         Acenaphthene       0.650       U       ug/L       0.50       0.040       1       03/24/20 8:14       03/24/20 20:46       83-3-9         Acenaphthene       0.630       U       ug/L       0.50       0.043       1       03/24/20 8:14       03/24/20 20:46       56-5-5         Benzo(phluoranthene       0.12       U       ug/L       0.50       0.616       1       03/24/20 8:14       03/24/20 20:46       51-32-8 </td <td></td> <td>0.78 U</td> <td>mg/L</td> <td>0.97</td> <td>0.78</td> <td>1</td> <td>03/24/20 16:53</td> <td>03/25/20 01:19</td> <td></td> <td></td>                                                                                                                                                |                                | 0.78 U     | mg/L          | 0.97       | 0.78        | 1        | 03/24/20 16:53 | 03/25/20 01:19 |              |      |
| N-Pentatriacontane (s)10942-15019/24/20 16:509/202 01:136/30.70.90200. MET ICPMSAnalytical Metric IEP-200. 8 Preparation (S)0000000/202 01:137/40-73Choronium0.65Uug/L1.000.50I0/2020 02:140/2020 11:137/40-73Lead0.50Uug/L0.00U0.50U0/2020 02:140/2020 11:137/40-73Silver0.50Uug/L0.50U0.2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020 02:140/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                              | 85         | %             | 66-139     |             | 1        | 03/24/20 16:53 | 03/25/20 01:19 | 84-15-1      |      |
| Cadmium         0.050         U         ug/L         0.10         0.050         1         03/20/20         03/20/20         03/20/20         011113         7440-43-9           Chromium         0.650         U         ug/L         1.0         0.50         1         03/20/20         03/20/20         03/20/20         01113         7440-47-3           Silver         0.050         U         ug/L         0.10         0.50         1         03/20/20         03/20/20         03/20/20         03/20/20         03/20/20         1113         7440-42-4           8270         MSSV PAHLV by SIM         Analytical Method: EPA 8270 by SIM         Preparation Method: EPA 3510         03/20/20         03/21/20         03/21/20         03/21/20         04         03/21/20         04         03/21/20         04         03/21/20         03/21/20         04         03/21/20         04         03/21/20         04         03/21/20         03/21/20         04         03/21/20         04         03/21/20         04         03/21/20         04         03/21/20         04         03/21/20         04         03/21/20         04         03/21/20         04         05         01         03/21/20         04         03/21/20         04         01                                                                                                                                                                                                                                              |                                | 100        | %             | 42-159     |             | 1        | 03/24/20 16:53 | 03/25/20 01:19 | 630-07-09    |      |
| Chromium       0.62       ug/L       1.0       0.50       1       03/20/20 02:14       03/20/20 11:13       74/40-73         Lead       0.50       ug/L       0.10       0.050       1       03/20/20 02:14       03/20/20 11:13       74/40-23         Silver       0.500       ug/L       0.10       0.505       1       03/20/20 02:14       03/20/20 11:13       74/40-23         Silver       Analytical Method:       EPA 8570 by SIM       Preparation Method:       EPA 3510         Accanaphthylene       0.030       U       Ug/L       0.50       0.043       1       03/24/20 08:14       03/24/20 20:46       83-39-         Actinacene       0.031       U       Ug/L       0.50       0.043       1       03/24/20 08:14       03/24/20 20:46       120-17         Benzo(a)phthracene       0.052       U       Ug/L       0.10       0.057       1       03/24/20 08:14       03/24/20 20:46       120-12         Benzo(a)funcanthene       0.15       U       Ug/L       0.50       0.16       1       03/24/20 08:14       03/24/20 20:46       20-59-2         Benzo(a)funcanthene       0.15       U       Ug/L       0.50       0.16       1       03/24/20 08:14       03/24/20 2                                                                                                                                                                                                                                                                                                                       | 200.8 MET ICPMS                | Analytical | Method: EPA 2 | 00.8 Prepa | ration Meth | od: EPA  | A 200.8        |                |              |      |
| Lead         0.50         U         ug/L         1.0         0.50         1         03/20/20 02:14         03/20/20 11:13         7439-92:1           Silver         Analytical Method: EPA 8270 by SIM         Preparation         EFA 3510         Silver         Sil                                                                                                                                                                                                          | Cadmium                        | 0.050 U    | ug/L          | 0.10       | 0.050       | 1        | 03/20/20 02:14 | 03/20/20 11:13 | 7440-43-9    |      |
| Silver       0.050       U       ug/L       0.10       0.050       1       0/20/20 0:1:1       7440-22-4         8270 MSSV PAHLV by SIM       Analytical Wetrod: EPA 8270 by SIM       Preparator       EPA 310         Accenaphthene       0.040       U       ug/L       0.50       0.040       1       0/24/20 08:14       0/24/20 02:48       0/24/20 08:14       0/24/20 02:48       0/24/20 08:14       0/24/20 02:48       0/24/20 08:14       0/24/20 02:48       0/24/20 08:14       0/24/20 02:48       0/24/20 08:14       0/24/20 02:48       0/24/20 08:14       0/24/20 02:48       0/24/20 08:14       0/24/20 02:48       0/23/20         Benzo(a)phrene       0.12       U       ug/L       0.10       0.027       1       0/24/20 08:14       0/24/20 02:48       0/23/20       0/23/20       0/23/20       0/23/20       0/23/20       0/23/20       0/24/20 08:14       0/24/20 02:48       0/23/20       0/23/20       0/23/20       0/23/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20       0/24/20                                                                                                                                                                                                                                         | Chromium                       | 0.62 I     | ug/L          | 1.0        | 0.50        | 1        | 03/20/20 02:14 | 03/20/20 11:13 | 7440-47-3    |      |
| Barzo MSSV PAHLV by SIM         Analytical Method: EPA 8270 by SIM         Preparation Method: EPA 3510           Acenaphthene         0.040         U         ug/L         0.50         0.040         1         03/24/20 08:14         03/24/20 20:46         83-32-9           Acenaphthylene         0.030         U         ug/L         0.50         0.043         1         03/24/20 08:14         03/24/20 20:46         80-89-8           Anthracene         0.055         U         ug/L         0.10         0.055         1         03/24/20 08:14         03/24/20 20:46         60-53-3           Benzo(g)anthracene         0.027         U         ug/L         0.10         0.027         1         03/24/20 08:14         03/24/20 20:46         60-53-8           Benzo(g)(noranthene         0.15         U         ug/L         0.50         0.15         1         03/24/20 08:14         03/24/20 20:46         18-12-2           Chrysene         0.026         U         ug/L         0.50         0.026         1         03/24/20 08:14         03/24/20 20:46         67-37           Fluoranthene         0.16         U         ug/L         0.50         0.088         1         03/24/20 08:14         03/24/20 20:46         67-37           I                                                                                                                                                                                                                                                | Lead                           | 0.50 U     | ug/L          | 1.0        | 0.50        | 1        | 03/20/20 02:14 | 03/20/20 11:13 | 7439-92-1    |      |
| Acenaphthene         0.040         U         ug/L         0.50         0.040         1         03/24/20         03/24/20         03/24/20         03/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         03/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20         02/24/20                                                                                                                                                                | Silver                         | 0.050 U    | ug/L          | 0.10       | 0.050       | 1        | 03/20/20 02:14 | 03/20/20 11:13 | 7440-22-4    |      |
| Acenaphthylene       0.030       U       ug/L       0.50       0.030       1       03/24/20       08:14       03/24/20       0.20:46       208-96-8         Anthracene       0.065       U       ug/L       0.10       0.055       1       03/24/20       08:14       03/24/20       02:46       120-12-7         Benzo(a)pyrene       0.12       U       ug/L       0.10       0.027       1       03/24/20       08:14       03/24/20       02:46       65-55         Benzo(a)pyrene       0.15       U       ug/L       0.10       0.027       1       03/24/20       08:14       03/24/20       08:14       03/24/20       03/24/20       04:4       019       01-24       20:44       01:6       01       03/24/20       08:14       03/24/20       03/24/20       04:4       01:9       01       01/24/20       01:6       10       03/24/20       01:4       03/24/20       01:6       10       03/24/20       01:4       03/24/20       03:4       03/24/20       03:4       03/24/20       01:4       03/24/20       01:4       03/24/20       01:4       03/24/20       01:4       03/24/20       01:4       03/24/20       01:4       03/24/20       01:4       03/24/20 <td< td=""><td>8270 MSSV PAHLV by SIM</td><td>Analytical</td><td>Method: EPA 8</td><td>270 by SIM</td><td>Preparatio</td><td>on Meth</td><td>od: EPA 3510</td><td></td><td></td><td></td></td<>                                                                                                                                           | 8270 MSSV PAHLV by SIM         | Analytical | Method: EPA 8 | 270 by SIM | Preparatio  | on Meth  | od: EPA 3510   |                |              |      |
| Anthracene       0.043       U       ug/L       0.50       0.043       1       03/24/20       08:14       03/24/20       20:46       12-17         Benzo(a)privene       0.12       U       ug/L       0.10       0.055       U       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20       08:14       03/24/20 <t< td=""><td>Acenaphthene</td><td>0.040 U</td><td>ug/L</td><td>0.50</td><td>0.040</td><td>1</td><td>03/24/20 08:14</td><td>03/24/20 20:46</td><td>83-32-9</td><td></td></t<>                                                                                                                 | Acenaphthene                   | 0.040 U    | ug/L          | 0.50       | 0.040       | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 83-32-9      |      |
| Benzo(a)anthracene         0.055         U         ug/L         0.10         0.055         1         03/24/20 08:14         03/24/20 20:46         56-5-3           Benzo(b)(noranthene         0.12         U         ug/L         0.10         0.027         I         03/24/20 08:14         03/24/20 20:46         50-32-8           Benzo(b)(noranthene         0.15         U         ug/L         0.50         0.15         I         03/24/20 08:14         03/24/20 20:46         191-24-2           Benzo(b)(noranthene         0.16         U         ug/L         0.50         0.16         I         03/24/20 08:14         03/24/20 20:46         63-70-3           Chrysene         0.026         U         ug/L         0.50         0.018         I         03/24/20 08:14         03/24/20 20:46         63-70-3           Fluoranthene         0.018         U         ug/L         0.50         0.018         I         03/24/20 08:14         03/24/20 20:46         63-73-7           Indeno(1,2,3-cd)pyrene         0.12         U         ug/L         0.15         0.12         I         03/24/20 08:14         03/24/20 20:46         63-73-7           I-denthylnaphthalene         0.19         U         ug/L         0.0         1                                                                                                                                                                                                                                                             | Acenaphthylene                 |            | ug/L          | 0.50       | 0.030       | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 208-96-8     |      |
| Benzo(a)pyrene         0.12         U         ug/L         0.20         0.12         1         03/24/20         03/24/20         20.4         50-32-8           Benzo(b)fluoranthene         0.027         U         ug/L         0.10         0.027         1         03/24/20         08.14         03/24/20         20.46         205-99-2           Benzo(b,fluoranthene         0.16         U         ug/L         0.50         0.16         1         03/24/20         08.14         03/24/20         20.46         207-08-9           Chrysene         0.026         U         ug/L         0.50         0.026         1         03/24/20         08.14         03/24/20         20.46         53-70-3           Fluoranthene         0.018         U         ug/L         0.50         0.018         1         03/24/20         0.86         66-37-7           Indeno(1,2,3-cd)pyrene         0.12         U         ug/L         2.0         0.68         1         03/24/20         0.86         67-37           Indeno(1,2,3-cd)pyrene         0.12         U         ug/L         2.0         0.68         1         03/24/20         0.86         91-57-6           Naphthalene         0.29         U         ug/                                                                                                                                                                                                                                                                                              | Anthracene                     |            | ug/L          | 0.50       |             | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 120-12-7     |      |
| Benzolp/fluoranthene         0.027         U         ug/L         0.10         0.027         1         03/24/20         0.16         205-99-2           Benzolp/fluoranthene         0.16         U         ug/L         0.50         0.15         1         03/24/20         03/24/20         20:46         207-08-9           Chrysene         0.026         U         ug/L         0.50         0.13         1         03/24/20         08:14         03/24/20         20:46         218-01-9           Dibenz(a,h)anthracene         0.13         U         ug/L         0.50         0.018         1         03/24/20         08:14         03/24/20         20:46         20:644-0           Fluoranthene         0.018         U         ug/L         0.50         0.018         1         03/24/20         08:14         03/24/20         20:46         20:644-0           Fluoranthene         0.18         U         ug/L         0.0         0.18         1         03/24/20         08:41         03/24/20         20:46         16:7-7           Indeno(1,2,3-cd)pyrene         0.12         U         ug/L         2.0         0.29         1         03/24/20         08:41         03/24/20         20:46         15:7-6                                                                                                                                                                                                                                                                                      | Benzo(a)anthracene             |            | ug/L          | 0.10       |             | 1        | 03/24/20 08:14 |                |              |      |
| Benzo(g,h,i)perylene         0.15         U         ug/L         0.50         0.15         1         03/24/20         03/24/20         20:4         20:7-08-9           Benzo(g)(h)uoranthene         0.026         U         ug/L         0.50         0.026         1         03/24/20         08:14         03/24/20         20:46         207-08-9           Chrysene         0.026         U         ug/L         0.50         0.026         1         03/24/20         08:14         03/24/20         20:46         23:70-3           Fluoranthene         0.018         U         ug/L         0.50         0.018         1         03/24/20         08:14         03/24/20         20:46         20:64-0           Fluoranthene         0.018         U         ug/L         0.50         0.088         1         03/24/20         08:14         03/24/20         20:46         19:3-39-5           1-Methylnaphthalene         0.19         U         ug/L         2.0         0.68         1         03/24/20         08:14         03/24/20         04:9         1-2:0           2-Methylnaphthalene         0.29         U         ug/L         2.0         0.29         1         03/24/20         08:1-2:0-12:0         1-2:0                                                                                                                                                                                                                                                                                   | Benzo(a)pyrene                 | 0.12 U     | ug/L          | 0.20       | 0.12        | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 50-32-8      |      |
| Benzol(k)fluoranthene         0.16         U         ug/L         0.50         0.16         1         03/24/20         08:14         03/24/20         20:4         20:0           Chrysene         0.026         U         ug/L         0.50         0.026         1         03/24/20         08:14         03/24/20         20:44         20:7-08-9           Dibenz(a,h)anthracene         0.13         U         ug/L         0.50         0.018         1         03/24/20         08:14         03/24/20         20:46         26:4-0           Fluoranthene         0.018         U         ug/L         0.50         0.088         1         03/24/20         08:14         03/24/20         02:46         90:3-27           Indeno(1,2,3-cd)pyrene         0.12         U         ug/L         0.10         0.12         0.3/24/20         08:14         03/24/20         02:46         90:12-0           2-Methylnaphthalene         0.68         U         ug/L         2.0         0.68         1         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20                                                                                                                                                                                                                                                                        | Benzo(b)fluoranthene           | 0.027 U    | ug/L          | 0.10       | 0.027       | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 205-99-2     |      |
| Chrysene         0.026         U         ug/L         0.50         0.026         1         03/24/20         08:14         03/24/20         21:4           Dibenz(a,h)anthracene         0.13         U         ug/L         0.15         0.13         1         03/24/20         08:14         03/24/20         20:46         53:70.3           Fluoranthene         0.018         U         ug/L         0.50         0.018         1         03/24/20         08:14         03/24/20         06:44.0           Fluoranthene         0.12         U         ug/L         0.15         0.12         1         03/24/20         08:14         03/24/20         06:44.0           Fluoranthene         0.19         U         ug/L         0.15         0.12         1         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/24/20         08:14         03/                                                                                                                                                                                                                                                             | Benzo(g,h,i)perylene           | 0.15 U     | ug/L          | 0.50       | 0.15        | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 191-24-2     |      |
| Dibenz(a,h)anthracene         0.13         U         ug/L         0.15         0.13         1         03/24/20         08:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14                                                                                                                                                                                                       | Benzo(k)fluoranthene           | 0.16 U     | ug/L          | 0.50       | 0.16        | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 207-08-9     |      |
| Fluoranthene       0.018       U       ug/L       0.50       0.018       1       03/24/20       03/24/20       20:46       66-73-7         Indeno(1,2,3-cd)pyrene       0.12       U       ug/L       0.50       0.088       1       03/24/20       03:24/20       20:46       86-73-7         Indeno(1,2,3-cd)pyrene       0.12       U       ug/L       2.0       0.19       1       03/24/20       03:24/20       20:46       80-73-7         1-Methylnaphthalene       0.19       U       ug/L       2.0       0.19       1       03/24/20       08:14       03/24/20       20:46       90-12-0         2-Methylnaphthalene       0.29       U       ug/L       2.0       0.68       1       03/24/20       08:14       03/24/20       20:46       91-57-6         Naphthalene       0.29       U       ug/L       2.0       0.02       1       03/24/20       08:14       03/24/20       20:46       85-01-8         Surrogates       U       ug/L       0.50       0.016       1       03/24/20       08:14       10/24/20       20:46       121-60-8         p-Terphenyl-d14 (S)       78       %       54-112       1       03/24/20       08:14                                                                                                                                                                                                                                                                                                                                                                      | Chrysene                       | 0.026 U    | ug/L          | 0.50       | 0.026       | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 218-01-9     |      |
| Fluorene         0.088         U         ug/L         0.50         0.088         1         03/24/20 08:14         03/24/20 20:46         86-73-7           Indeno(1,2,3-cd)pyrene         0.12         U         ug/L         0.15         0.12         1         03/24/20 08:14         03/24/20 20:46         193-39-5           1-Methylnaphthalene         0.19         U         ug/L         2.0         0.19         1         03/24/20 08:14         03/24/20 20:46         90-12-0           2-Methylnaphthalene         0.29         U         ug/L         2.0         0.68         1         03/24/20 08:14         03/24/20 20:46         91-57-6           Naphthalene         0.29         U         ug/L         0.50         0.16         1         03/24/20 08:14         03/24/20 20:46         85-01-8           Pyrene         0.032         U         ug/L         0.50         0.032         1         03/24/20 08:14         03/24/20 20:46         129-00-0           Surrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dibenz(a,h)anthracene          | 0.13 U     | ug/L          | 0.15       | 0.13        | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 53-70-3      |      |
| Indeno(1,2,3-cd)pyrene         0.12         U         ug/L         0.15         0.12         1         03/24/20         08:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14         03/24/20         02:14                                                                                                                                                                                                      | Fluoranthene                   | 0.018 U    | ug/L          | 0.50       | 0.018       | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 206-44-0     |      |
| 1-Methylnaphthalene       0.19 U       U/L       2.0       0.19 1       03/24/20 08:14       03/24/20 20:46       90-12-0         2-Methylnaphthalene       0.68 U       ug/L       2.0       0.68 1       03/24/20 08:14       03/24/20 20:46       91-57-6         Naphthalene       0.29 U       ug/L       2.0       0.29 1       03/24/20 08:14       03/24/20 20:46       91-20-3         Phenanthrene       0.16 U       ug/L       0.50       0.16 1       03/24/20 08:14       03/24/20 20:46       85-01-8         Pyrene       0.032 U       ug/L       0.50       0.032 1       03/24/20 08:14       03/24/20 20:46       129-00-0         Surrogates       2-Fluorobiphenyl (S)       64       %       38-92       1       03/24/20 08:14       03/24/20 20:46       321-60-8         p-Terphenyl-d14 (S)       78       %       54-112       1       03/24/20 08:14       03/24/20 20:46       1718-51-0         8270 MSSV Semivolatile Organic       Analytical Method: EPA 8270       Preparation Method: EPA 8270       1       03/20/20 16:59       03/21/20 23:27       83-32-9         Accenaphthene       0.29 U       ug/L       4.8       0.29 1       03/20/20 16:59       03/21/20 23:27       83-32-9         Aniline <td< td=""><td>Fluorene</td><td>0.088 U</td><td>ug/L</td><td>0.50</td><td>0.088</td><td>1</td><td>03/24/20 08:14</td><td>03/24/20 20:46</td><td>86-73-7</td><td></td></td<>                                                                                                   | Fluorene                       | 0.088 U    | ug/L          | 0.50       | 0.088       | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 86-73-7      |      |
| 2-Methylnaphthalene       0.68 U       ug/L       2.0       0.68       1       03/24/20       08:14       03/24/20       02:04       91-57-6         Naphthalene       0.29 U       ug/L       2.0       0.29       1       03/24/20       08:14       03/24/20       02:046       91-20-3         Phenanthrene       0.16 U       ug/L       0.50       0.16       1       03/24/20       08:14       03/24/20       02:46       85-01-8         Pyrene       0.032 U       ug/L       0.50       0.032       1       03/24/20       08:14       03/24/20       02:46       129-00-0         Surrogates       2       1       03/24/20       08:14       03/24/20       02:46       129-00-0         Surrogates       78       %       54-112       1       03/24/20       08:14       03/24/20       02:46       1718-51-0         Recompthene       0.34 U       ug/L       4.8       0.34       1       03/20/20       03/21/20       23:27       208-96-8         Aniline       0.90 U       ug/L       4.8       0.91       03/20/20       03/21/20       23:27       208-96-8         Aniline       0.90 U       ug/L       4.8       0.91                                                                                                                                                                                                                                                                                                                                                                             | Indeno(1,2,3-cd)pyrene         | 0.12 U     | ug/L          | 0.15       | 0.12        | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 193-39-5     |      |
| Naphthalene         0.29         U         ug/L         2.0         0.29         1         03/24/20         03/24/20         02:44         91-20-3           Phenanthrene         0.16         U         ug/L         0.50         0.16         1         03/24/20         08:14         03/24/20         02:46         85-01-8           Pyrene         0.032         U         ug/L         0.50         0.032         1         03/24/20         08:14         03/24/20         20:46         321-60-8           Surrogates         -         -         1         03/24/20         08:14         03/24/20         20:46         321-60-8           Surrogates         -         78         %         54-112         1         03/24/20         08:14         03/24/20         20:46         1718-51-0           8270 MSSV Semivolatile Organic         Analytical Method: EPA 8270         Preparator Method: EPA         510         321/20         23:27         83-32-9           Acenaphthene         0.34         U         ug/L         4.8         0.30         1         03/20/20         16:59         03/21/20         32:27         28-96-8           Aniline         0.90         U         ug/L         4.8         0.90<                                                                                                                                                                                                                                                                                     | 1-Methylnaphthalene            | 0.19 U     | ug/L          | 2.0        | 0.19        | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 90-12-0      |      |
| Phenanthrene         0.16 U         ug/L         0.50         0.16 I         03/24/20 08:14         03/24/20 20:46         85-01-8           Pyrene         0.032 U         ug/L         0.50         0.032 I         03/24/20 08:14         03/24/20 20:46         129-00-0           Surrogates         2-Fluorobiphenyl (S)         64         %         38-92         1         03/24/20 08:14         03/24/20 20:46         321-60-8           p-Terphenyl-d14 (S)         78         %         54-112         1         03/24/20 08:14         03/24/20 20:46         1718-51-0           8270 MSSV Semivolatile Organic         Analytical Method: EPA 8270         Preparation Method: EPA 8270         03/20/20 16:59         03/21/20 23:27         83-32-9           Acenaphthene         0.34 U         ug/L         4.8         0.34         1         03/20/20 16:59         03/21/20 23:27         83-32-9           Aniline         0.90 U         ug/L         4.8         0.30         1         03/20/20 16:59         03/21/20 23:27         208-96-8           Anthracene         0.21 U         ug/L         4.8         0.90         1         03/20/20 16:59         03/21/20 23:27         208-95-3           Benzo(a)anthracene         0.83 U         ug/L         23.9         <                                                                                                                                                                                                                 | 2-Methylnaphthalene            | 0.68 U     | ug/L          | 2.0        | 0.68        | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 91-57-6      |      |
| Pyrene         0.032         U         ug/L         0.50         0.032         1         03/24/20 08:14         03/24/20 20:46         129-00-0           Surrogates         2-Fluorobiphenyl (S)         64         %         38-92         1         03/24/20 08:14         03/24/20 20:46         321-60-8           p-Terphenyl-d14 (S)         78         %         54-112         1         03/24/20 08:14         03/24/20 20:46         1718-51-0           8270 MSSV Semivolatile Organic         Analytical Wetwet: EPA 8270         Prepartic         EPA 8270         9.032         1         03/20/20 16:59         03/21/20 23:27         83-32-9           Acenaphthene         0.34         U         ug/L         4.8         0.34         1         03/20/20 16:59         03/21/20 23:27         83-32-9           Aniline         0.90         U         ug/L         4.8         0.29         1         03/20/20 16:59         03/21/20 23:27         62-53-3           Anthracene         0.21         U         ug/L         4.8         0.21         1         03/20/20 16:59         03/21/20 23:27         62-53-3           Benzo(a)anthracene         0.23         U         ug/L         4.8         0.19         1         03/20/20 16:59         03/21/                                                                                                                                                                                                                                        | Naphthalene                    | 0.29 U     | ug/L          | 2.0        | 0.29        | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 91-20-3      |      |
| Surrogates         2-Fluorobiphenyl (S)       64       %       38-92       1       03/24/20       03/24/20       20:46       321-60-8         p-Terphenyl-d14 (S)       78       %       54-112       1       03/24/20       08:14       03/24/20       20:46       1718-51-0         8270 MSSV Semivolatile Organic         Acenaphthene       0.34       U       ug/L       4.8       0.34       1       03/20/20       16:59       03/21/20       23:27       83-32-9         Acenaphthene       0.29       U       ug/L       4.8       0.29       1       03/20/20       16:59       03/21/20       23:27       208-96-8         Aniline       0.90       U       ug/L       4.8       0.29       1       03/20/20       16:59       03/21/20       23:27       208-96-8         Aniline       0.90       U       ug/L       4.8       0.29       1       03/20/20       16:59       03/21/20       23:27       208-96-8         Anthracene       0.21       U       ug/L       4.8       0.90       1       03/20/20       16:59       03/21/20       23:27       120-12-7         Benzo(a)anthracene       0.19       U       u                                                                                                                                                                                                                                                                                                                                                                                        | Phenanthrene                   | 0.16 U     | ug/L          | 0.50       | 0.16        | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 85-01-8      |      |
| 2-Fluorobiphenyl (S)       64       %       38-92       1       03/24/20 08:14       03/24/20 20:46       321-60-8         p-Terphenyl-d14 (S)       78       %       54-112       1       03/24/20 08:14       03/24/20 20:46       1718-51-0         8270 MSSV Semivolatile Organic         Analytical Wethod: EPA 8270 Preparation Method: EPA 3510         Acenaphthene       0.34       U       ug/L       4.8       0.34       1       03/20/20 16:59       03/21/20 23:27       83-32-9         Acenaphthylene       0.29       U       ug/L       4.8       0.29       1       03/20/20 16:59       03/21/20 23:27       208-96-8         Aniline       0.90       U       ug/L       4.8       0.90       1       03/20/20 16:59       03/21/20 23:27       62-53-3         Anthracene       0.21       U       ug/L       4.8       0.90       1       03/20/20 16:59       03/21/20 23:27       72-72-73         Benzo(a)anthracene       0.19       U       ug/L       4.8       0.19       1       03/20/20 16:59       03/21/20 23:27       56-55-3         Benzo(a)pyrene       0.16       U       ug/L       1.9       0.26       1       03/20/20 16:59       03/21/2                                                                                                                                                                                                                                                                                                                                        | Pyrene                         | 0.032 U    | ug/L          | 0.50       | 0.032       | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 129-00-0     |      |
| p-Terphenyl-d14 (S)78%54-112103/24/20 08:1403/24/20 20:461718-51-08270 MSSV Semivolatile OrganicAnalytical Method: EPA 8270Preparation Method: EPA 3510Acenaphthene0.34Uug/L4.80.34103/20/20 16:5903/21/20 23:2783-32-9Acenaphthylene0.29Uug/L4.80.29103/20/20 16:5903/21/20 23:27208-96-8Aniline0.90Uug/L4.80.90103/20/20 16:5903/21/20 23:2762-53-3Anthracene0.21Uug/L4.80.90103/20/20 16:5903/21/20 23:2762-53-3Benzidine0.83Uug/L23.90.83103/20/20 16:5903/21/20 23:2792-87-5Benzo(a)anthracene0.19Uug/L4.80.19103/20/20 16:5903/21/20 23:2756-55-3Benzo(a)anthracene0.16Uug/L0.960.16103/20/20 16:5903/21/20 23:2756-55-3Benzo(a)anthracene0.16Uug/L0.960.16103/20/20 16:5903/21/20 23:2750-32-8Benzo(b)fluoranthene0.26Uug/L1.90.26103/20/20 16:5903/21/20 23:27205-99-2Benzo(g,h,i)perylene0.16Uug/L3.80.17103/20/20 16:5903/21/20 23:27205-99-2Benzo(k)fluoranthene0.26Uug/L3.80.171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Surrogates                     |            |               |            |             |          |                |                |              |      |
| 8270 MSSV Semivolatile Organic       Analytical Method: EPA 8270       Preparation Method: EPA 3510         Acenaphthene       0.34 U       ug/L       4.8       0.34 1       03/20/20 16:59       03/21/20 23:27       83-32-9         Acenaphthylene       0.29 U       ug/L       4.8       0.29 1       03/20/20 16:59       03/21/20 23:27       208-96-8         Aniline       0.90 U       ug/L       4.8       0.90 1       03/20/20 16:59       03/21/20 23:27       62-53-3         Anthracene       0.21 U       ug/L       4.8       0.90 1       03/20/20 16:59       03/21/20 23:27       120-12-7         Benzidine       0.83 U       ug/L       23.9       0.83 1       03/20/20 16:59       03/21/20 23:27       92-87-5         Benzo(a)anthracene       0.19 U       ug/L       4.8       0.19 1       03/20/20 16:59       03/21/20 23:27       56-55-3         Benzo(a)anthracene       0.16 U       ug/L       0.96       0.16 1       03/20/20 16:59       03/21/20 23:27       50-32-8         Benzo(b)fluoranthene       0.26 U       ug/L       1.9       0.26 1       03/20/20 16:59       03/21/20 23:27       50-32-8         Benzo(b)fluoranthene       0.26 U       ug/L       1.9       0.26 1       03/20/20 16:59                                                                                                                                                                                                                                                                          | 2-Fluorobiphenyl (S)           | 64         |               | 38-92      |             | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 321-60-8     |      |
| Acenaphthene0.34 Uug/L4.80.34103/20/20 16:5903/21/20 23:2783-32-9Acenaphthylene0.29 Uug/L4.80.29103/20/20 16:5903/21/20 23:27208-96-8Aniline0.90 Uug/L4.80.90103/20/20 16:5903/21/20 23:2762-53-3Anthracene0.21 Uug/L4.80.21103/20/20 16:5903/21/20 23:27120-12-7Benzidine0.83 Uug/L23.90.83103/20/20 16:5903/21/20 23:2792-87-5Benzo(a)anthracene0.19 Uug/L4.80.19103/20/20 16:5903/21/20 23:2756-55-3Benzo(a)anthracene0.16 Uug/L0.960.16103/20/20 16:5903/21/20 23:2750-32-8Benzo(b)fluoranthene0.26 Uug/L1.90.26103/20/20 16:5903/21/20 23:27205-99-2Benzo(g,h,i)perylene0.16 Uug/L4.80.16103/20/20 16:5903/21/20 23:27205-99-2Benzo(k)fluoranthene0.16 Uug/L4.80.16103/20/20 16:5903/21/20 23:27191-24-2Benzo(k)fluoranthene0.17 Uug/L3.80.17103/20/20 16:5903/21/20 23:27207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p-Terphenyl-d14 (S)            | 78         | %             | 54-112     |             | 1        | 03/24/20 08:14 | 03/24/20 20:46 | 1718-51-0    |      |
| Acenaphthylene0.29 Uug/L4.80.29 103/20/20 16:5903/21/20 23:27208-96-8Aniline0.90 Uug/L4.80.90 103/20/20 16:5903/21/20 23:2762-53-3Anthracene0.21 Uug/L4.80.21 103/20/20 16:5903/21/20 23:27120-12-7Benzidine0.83 Uug/L23.90.83 103/20/20 16:5903/21/20 23:2792-87-5Benzo(a)anthracene0.19 Uug/L4.80.19 103/20/20 16:5903/21/20 23:2756-55-3Benzo(a)pyrene0.16 Uug/L0.960.16 103/20/20 16:5903/21/20 23:2750-32-8Benzo(b)fluoranthene0.26 Uug/L1.90.26 103/20/20 16:5903/21/20 23:27205-99-2Benzo(g,h,i)perylene0.16 Uug/L4.80.16 103/20/20 16:5903/21/20 23:27191-24-2Benzo(k)fluoranthene0.17 Uug/L3.80.17 103/20/20 16:5903/21/20 23:27207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8270 MSSV Semivolatile Organic | Analytical | Method: EPA 8 | 270 Prepa  | ration Meth | od: EPA  | 3510           |                |              |      |
| Aniline0.90 Uug/L4.80.90103/20/20 16:5903/21/20 23:2762-53-3Anthracene0.21 Uug/L4.80.21 103/20/20 16:5903/21/20 23:27120-12-7Benzidine0.83 Uug/L23.90.83 103/20/20 16:5903/21/20 23:2792-87-5Benzo(a)anthracene0.19 Uug/L4.80.19 103/20/20 16:5903/21/20 23:2756-55-3Benzo(a)pyrene0.16 Uug/L0.960.16 103/20/20 16:5903/21/20 23:2750-32-8Benzo(b)fluoranthene0.26 Uug/L1.90.26 103/20/20 16:5903/21/20 23:27205-99-2Benzo(g,h,i)perylene0.16 Uug/L4.80.16 103/20/20 16:5903/21/20 23:27191-24-2Benzo(k)fluoranthene0.17 Uug/L3.80.17 103/20/20 16:5903/21/20 23:27207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acenaphthene                   | 0.34 U     | ug/L          | 4.8        | 0.34        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 83-32-9      |      |
| Aniline0.90 Uug/L4.80.90 103/20/20 16:5903/21/20 23:2762-53-3Anthracene0.21 Uug/L4.80.21 103/20/20 16:5903/21/20 23:27120-12-7Benzidine0.83 Uug/L23.90.83 103/20/20 16:5903/21/20 23:2792-87-5Benzo(a)anthracene0.19 Uug/L4.80.19 103/20/20 16:5903/21/20 23:2756-55-3Benzo(a)pyrene0.16 Uug/L0.960.16 103/20/20 16:5903/21/20 23:2750-32-8Benzo(b)fluoranthene0.26 Uug/L1.90.26 103/20/20 16:5903/21/20 23:27205-99-2Benzo(g,h,i)perylene0.16 Uug/L4.80.16 103/20/20 16:5903/21/20 23:27191-24-2Benzo(k)fluoranthene0.17 Uug/L3.80.17 103/20/20 16:5903/21/20 23:27207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acenaphthylene                 | 0.29 U     | ug/L          | 4.8        | 0.29        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 208-96-8     |      |
| Benzoidine         0.83 U         ug/L         23.9         0.83 1         03/20/20 16:59         03/21/20 23:27         92-87-5           Benzo(a)anthracene         0.19 U         ug/L         4.8         0.19 1         03/20/20 16:59         03/21/20 23:27         56-55-3           Benzo(a)pyrene         0.16 U         ug/L         0.96         0.16 1         03/20/20 16:59         03/21/20 23:27         50-32-8           Benzo(b)fluoranthene         0.26 U         ug/L         1.9         0.26 1         03/20/20 16:59         03/21/20 23:27         205-99-2           Benzo(g,h,i)perylene         0.16 U         ug/L         4.8         0.16 1         03/20/20 16:59         03/21/20 23:27         191-24-2           Benzo(k)fluoranthene         0.17 U         ug/L         3.8         0.17 1         03/20/20 16:59         03/21/20 23:27         207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aniline                        | 0.90 U     |               | 4.8        | 0.90        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 62-53-3      |      |
| Benzo(a)anthracene         0.19 U         ug/L         4.8         0.19 1         0.3/20/20 16:59         0.3/21/20 23:27         56-55-3           Benzo(a)pyrene         0.16 U         ug/L         0.96         0.16 1         0.3/20/20 16:59         0.3/21/20 23:27         50-32-8           Benzo(b)fluoranthene         0.26 U         ug/L         1.9         0.26 1         0.3/20/20 16:59         0.3/21/20 23:27         205-99-2           Benzo(g,h,i)perylene         0.16 U         ug/L         4.8         0.16 1         0.3/20/20 16:59         0.3/21/20 23:27         191-24-2           Benzo(k)fluoranthene         0.17 U         ug/L         3.8         0.17 1         0.3/20/20 16:59         0.3/21/20 23:27         207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Anthracene                     | 0.21 U     |               | 4.8        | 0.21        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 120-12-7     |      |
| Benzo(a)pyrene         0.16 U         ug/L         0.96         0.16 1         03/20/20 16:59         03/21/20 23:27         50-32-8           Benzo(b)fluoranthene         0.26 U         ug/L         1.9         0.26 1         03/20/20 16:59         03/21/20 23:27         205-99-2           Benzo(g,h,i)perylene         0.16 U         ug/L         4.8         0.16 1         03/20/20 16:59         03/21/20 23:27         191-24-2           Benzo(k)fluoranthene         0.17 U         ug/L         3.8         0.17 1         03/20/20 16:59         03/21/20 23:27         207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzidine                      | 0.83 U     | ug/L          | 23.9       | 0.83        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 92-87-5      |      |
| Benzo(a)pyrene         0.16 U         ug/L         0.96         0.16 1         03/20/20 16:59         03/21/20 23:27         50-32-8           Benzo(b)fluoranthene         0.26 U         ug/L         1.9         0.26 1         03/20/20 16:59         03/21/20 23:27         205-99-2           Benzo(g,h,i)perylene         0.16 U         ug/L         4.8         0.16 1         03/20/20 16:59         03/21/20 23:27         191-24-2           Benzo(k)fluoranthene         0.17 U         ug/L         3.8         0.17 1         03/20/20 16:59         03/21/20 23:27         207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzo(a)anthracene             | 0.19 U     | ug/L          | 4.8        | 0.19        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 56-55-3      |      |
| Benzo(b)fluoranthene         0.26 U         ug/L         1.9         0.26 I         03/20/20 16:59         03/21/20 23:27         205-99-2           Benzo(g,h,i)perylene         0.16 U         ug/L         4.8         0.16 I         03/20/20 16:59         03/21/20 23:27         191-24-2           Benzo(k)fluoranthene         0.17 U         ug/L         3.8         0.17 I         03/20/20 16:59         03/21/20 23:27         207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzo(a)pyrene                 | 0.16 U     | -             | 0.96       | 0.16        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 50-32-8      |      |
| Benzo(g,h,i)perylene         0.16 U         ug/L         4.8         0.16 1         03/20/20 16:59         03/21/20 23:27         191-24-2           Benzo(k)fluoranthene         0.17 U         ug/L         3.8         0.17 1         03/20/20 16:59         03/21/20 23:27         207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | 0.26 U     |               | 1.9        | 0.26        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 205-99-2     |      |
| Benzo(k)fluoranthene 0.17 U ug/L 3.8 0.17 1 03/20/20 16:59 03/21/20 23:27 207-08-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 0.16 U     | -             | 4.8        | 0.16        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 191-24-2     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | 0.17 U     | -             | 3.8        | 0.17        | 1        | 03/20/20 16:59 | 03/21/20 23:27 | 207-08-9     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | 1.2 U      | -             |            |             | 1        | 03/20/20 16:59 |                |              |      |



#### **ANALYTICAL RESULTS**

#### Project: Safety Kleen Facility

Pace Project No.: 35538498 .....

-

| Sample: MW-2R                  | Lab ID:   | 35538498001     | Collected:  | 03/19/20    | ) 11:40 | Received: 03/  | 19/20 16:30 Ma | atrix: Water |      |
|--------------------------------|-----------|-----------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results   | Units           | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 8270 MSSV Semivolatile Organic | Analytica | I Method: EPA 8 | 270 Prepara | ation Metho | od: EPA | 3510           |                |              |      |
| 4-Bromophenylphenyl ether      | 1.6 U     | ug/L            | 4.8         | 1.6         | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 101-55-3     |      |
| Butylbenzylphthalate           | 1.1 U     | ug/L            | 4.8         | 1.1         | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 85-68-7      |      |
| Caprolactam                    | 0.38 U    | ug/L            | 4.8         | 0.38        | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 105-60-2     | N2   |
| Carbazole                      | 1.1 U     | ug/L            | 4.8         | 1.1         | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 86-74-8      |      |
| 4-Chloro-3-methylphenol        | 5.2 U     | ug/L            | 19.2        | 5.2         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 4-Chloroaniline                | 1.4 U     | ug/L            | 4.8         | 1.4         | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 106-47-8     |      |
| bis(2-Chloroethoxy)methane     | 1.6 U     | ug/L            | 4.8         | 1.6         | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 111-91-1     |      |
| bis(2-Chloroethyl) ether       | 0.33 U    | ug/L            | 3.8         | 0.33        | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 111-44-4     |      |
| bis(2-Chloroisopropyl) ether   | 1.7 U     | ug/L            | 5.7         | 1.7         | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 108-60-1     |      |
| 2-Chloronaphthalene            | 0.33 U    | ug/L            | 4.8         | 0.33        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 2-Chlorophenol                 | 1.3 U     | ug/L            | 4.8         | 1.3         | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 95-57-8      |      |
| 4-Chlorophenylphenyl ether     | 1.4 U     | ug/L            | 4.8         | 1.4         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Chrysene                       | 0.19 U    | ug/L            | 4.8         | 0.19        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Dibenz(a,h)anthracene          | 0.17 U    | ug/L            | 1.9         | 0.17        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Dibenzofuran                   | 1.4 U     | ug/L            | 4.8         | 1.4         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 1,2-Dichlorobenzene            | 1.5 U     | ug/L            | 4.8         | 1.5         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 1,3-Dichlorobenzene            | 1.5 U     | ug/L            | 4.8         | 1.5         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 1,4-Dichlorobenzene            | 1.5 U     | ug/L            | 4.8         | 1.5         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 3,3'-Dichlorobenzidine         | 1.0 U     | ug/L            | 9.6         | 1.0         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 2,4-Dichlorophenol             | 0.33 U    | ug/L            | 1.9         | 0.33        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Diethylphthalate               | 1.4 U     | ug/L            | 4.8         | 1.4         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 2,4-Dimethylphenol             | 0.99 U    | ug/L            | 4.8         | 0.99        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Dimethylphthalate              | 1.4 U     | ug/L            | 4.8         | 1.4         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Di-n-butylphthalate            | 1.0 U     | ug/L            | 4.8         | 1.0         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 4,6-Dinitro-2-methylphenol     | 4.4 U     | ug/L            | 19.2        | 4.4         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 1,2-Dinitrobenzene             | 1.8 U     | ug/L            | 5.7         | 1.8         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 1,3-Dinitrobenzene             | 1.1 U     | ug/L            | 7.7         | 1.1         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 2,4-Dinitrophenol              | 2.5 U     | ug/L            | 19.2        | 2.5         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 2,4-Dinitrotoluene             | 0.26 U    | ug/L            | 3.8         | 0.26        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 2,6-Dinitrotoluene             | 0.27 U    | ug/L            | 1.9         | 0.27        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Di-n-octylphthalate            | 0.88 U    | ug/L            | 4.8         | 0.88        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| 1,2-Diphenylhydrazine          | 1.3 U     | ug/L            | 4.8         | 1.3         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| bis(2-Ethylhexyl)phthalate     | 1.1 U     | ug/L            | 4.8         | 1.1         | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Fluoranthene                   | 0.20 U    | ug/L            | 4.8         | 0.20        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Fluorene                       | 0.33 U    | ug/L            | 4.8         | 0.33        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Hexachloro-1,3-butadiene       | 0.34 U    | ug/L            | 1.9         | 0.34        | 1       |                | 03/21/20 23:27 |              |      |
| Hexachlorobenzene              | 0.28 U    | ug/L            | 0.96        | 0.28        | 1       | 03/20/20 16:59 |                |              |      |
| Hexachlorocyclopentadiene      | 3.3 U     | ug/L            | 10.5        | 3.3         | 1       | 03/20/20 16:59 |                |              |      |
| Hexachloroethane               | 1.3 U     | ug/L            | 4.8         | 1.3         | 1       |                | 03/21/20 23:27 |              |      |
| Indeno(1,2,3-cd)pyrene         | 0.16 U    | ug/L            | 1.0         | 0.16        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |      |
| Isophorone                     | 1.6 U     | ug/L            | 4.8         | 1.6         | 1       |                | 03/21/20 23:27 |              |      |
| 1-Methylnaphthalene            | 0.34 U    | ug/L            | 4.8         | 0.34        | 1       | 03/20/20 16:59 |                |              |      |
| 2-Methylnaphthalene            | 0.27 U    | ug/L            | 4.8         | 0.27        | 1       |                | 03/21/20 23:27 |              |      |
| 2-Methylphenol(o-Cresol)       | 0.29 U    | ug/L            | 4.8         | 0.29        | 1       | 03/20/20 16:59 |                |              |      |
| 3&4-Methylphenol(m&p Cresol)   | 0.20 U    | ug/L            | 9.6         | 0.20        | 1       | 03/20/20 16:59 |                |              |      |
| Naphthalene                    | 0.37 U    | ug/L            | 4.8         | 0.37        | 1       |                | 03/21/20 23:27 | 91-20-3      |      |



#### Project: Safety Kleen Facility

Pace Project No.: 35538498

| Sample: MW-2R                  | Lab ID:   | 35538498001     | Collected   | : 03/19/20 | ) 11:40 | Received: 03/  | 19/20 16:30 M  | atrix: Water |       |
|--------------------------------|-----------|-----------------|-------------|------------|---------|----------------|----------------|--------------|-------|
| Parameters                     | Results   | Units           | PQL         | MDL        | DF      | Prepared       | Analyzed       | CAS No.      | Qual  |
| 8270 MSSV Semivolatile Organic | Analytica | I Method: EPA 8 | 270 Prepara | ation Meth | od: EPA | 3510           |                |              |       |
| 2-Nitroaniline                 | 1.2 U     | ug/L            | 4.8         | 1.2        | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 88-74-4      |       |
| 3-Nitroaniline                 | 1.2 U     | ug/L            | 4.8         | 1.2        | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 99-09-2      |       |
| 4-Nitroaniline                 | 0.18 U    | ug/L            | 3.8         | 0.18       | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 100-01-6     |       |
| Nitrobenzene                   | 0.35 U    | ug/L            | 3.8         | 0.35       | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 98-95-3      |       |
| 2-Nitrophenol                  | 1.3 U     | ug/L            | 4.8         | 1.3        | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 88-75-5      |       |
| 4-Nitrophenol                  | 1.9 U     | ug/L            | 19.2        | 1.9        | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 100-02-7     |       |
| N-Nitrosodimethylamine         | 0.19 U    | ug/L            | 1.9         | 0.19       | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 62-75-9      |       |
| N-Nitroso-di-n-propylamine     | 0.32 U    | ug/L            | 3.8         | 0.32       | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 621-64-7     |       |
| N-Nitrosodiphenylamine         | 1.2 U     | ug/L            | 4.8         | 1.2        | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 86-30-6      |       |
| Pentachlorophenol              | 1.6 U     | ug/L            | 19.2        | 1.6        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| Phenanthrene                   | 0.22 U    | ug/L            | 4.8         | 0.22       | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| Phenol                         | 0.60 U    | ug/L            | 4.8         | 0.60       | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| Pyrene                         | 0.20 U    | ug/L            | 4.8         | 0.20       | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| Pyridine                       | 1.1 U     | ug/L            | 4.8         | 1.1        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| 2,3,4,6-Tetrachlorophenol      | 1.0 U     | ug/L            | 4.8         | 1.0        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| 2,3,5,6-Tetrachlorophenol      | 1.8 U     | ug/L            | 8.6         | 1.8        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              | N2    |
| 1,2,4-Trichlorobenzene         | 1.4 U     | ug/L            | 4.8         | 1.0        | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              | 112   |
| 2,4,5-Trichlorophenol          | 0.22 U    | ug/L            | 3.8         | 0.22       | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| 2,4,6-Trichlorophenol          | 0.34 U    | ug/L            | 1.9         | 0.34       | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| Surrogates                     | 0.54 0    | ug/L            | 1.5         | 0.54       |         | 03/20/20 10.33 | 03/21/20 23.21 | 00-00-2      |       |
| Nitrobenzene-d5 (S)            | 40        | %               | 10-94       |            | 1       | 03/20/20 16:59 | 03/21/20 23:27 | 4165-60-0    |       |
| 2-Fluorobiphenyl (S)           | 48        | %               | 10-96       |            | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| p-Terphenyl-d14 (S)            | 47        | %               | 24-129      |            | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| Phenol-d5 (S)                  | 17        | %               | 10-35       |            | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| 2-Fluorophenol (S)             | 24        | %               | 10-55       |            | 1       | 03/20/20 16:59 | 03/21/20 23:27 |              |       |
| 2,4,6-Tribromophenol (S)       | 57        | %               | 10-126      |            | 1       | 03/20/20 16:59 |                |              |       |
|                                |           |                 |             |            |         | 00/20/20 10:00 | 00/21/20 20:21 | 110-7-0-0    |       |
| 8260 MSV                       | -         | I Method: EPA 8 |             | 5.0        |         |                | 00/00/00 40-04 | 07.04.4      |       |
| Acetone                        | 5.3 U     | ug/L            | 20.0        | 5.3        | 1       |                | 03/20/20 19:04 |              |       |
| Acetonitrile                   | 24.5 U    | ug/L            | 40.0        | 24.5       | 1       |                | 03/20/20 19:04 |              | J(v1) |
| Benzene                        | 0.30 U    | ug/L            | 1.0         | 0.30       | 1       |                | 03/20/20 19:04 |              |       |
| Bromochloromethane             | 0.37 U    | ug/L            | 1.0         | 0.37       | 1       |                | 03/20/20 19:04 |              |       |
| Bromodichloromethane           | 0.19 U    | ug/L            | 0.60        | 0.19       | 1       |                | 03/20/20 19:04 |              |       |
| Bromoform                      | 2.6 U     | ug/L            | 3.0         | 2.6        | 1       |                | 03/20/20 19:04 |              | J(v2) |
| Bromomethane                   | 4.0 U     | ug/L            | 5.0         | 4.0        | 1       |                | 03/20/20 19:04 |              | J(v2) |
| 2-Butanone (MEK)               | 7.5 U     | ug/L            | 10.0        | 7.5        | 1       |                | 03/20/20 19:04 |              |       |
| Carbon disulfide               | 0.45 U    | ug/L            | 10.0        | 0.45       | 1       |                | 03/20/20 19:04 |              |       |
| Carbon tetrachloride           | 1.1 U     | ug/L            | 3.0         | 1.1        | 1       |                | 03/20/20 19:04 | 56-23-5      |       |
| Chlorobenzene                  | 0.35 U    | ug/L            | 1.0         | 0.35       | 1       |                | 03/20/20 19:04 |              |       |
| Chloroethane                   | 3.7 U     | ug/L            | 10.0        | 3.7        | 1       |                | 03/20/20 19:04 |              |       |
| Chloroform                     | 0.32 U    | ug/L            | 1.0         | 0.32       | 1       |                | 03/20/20 19:04 |              |       |
| Chloromethane                  | 0.97 U    | ug/L            | 1.0         | 0.97       | 1       |                | 03/20/20 19:04 | 74-87-3      | J(v2) |
| 1,2-Dibromo-3-chloropropane    | 1.9 U     | ug/L            | 5.0         | 1.9        | 1       |                | 03/20/20 19:04 | 96-12-8      | J(v2) |
| Dibromochloromethane           | 0.45 U    | ug/L            | 2.0         | 0.45       | 1       |                | 03/20/20 19:04 | 124-48-1     |       |
| 1,2-Dibromoethane (EDB)        | 0.31 U    | ug/L            | 1.0         | 0.31       | 1       |                | 03/20/20 19:04 | 106-93-4     |       |
| Dibromomethane                 | 0.68 U    | ug/L            | 2.0         | 0.68       | 1       |                | 03/20/20 19:04 | 74-95-3      |       |



#### Project: Safety Kleen Facility

Pace Project No.: 35538498

| Sample: MW-2R                             | Lab ID:          | 35538498001     | Collecte | d: 03/19/20  | 0 11:40 | Received: 03 | 3/19/20 16:30 M                  | atrix: Water |        |
|-------------------------------------------|------------------|-----------------|----------|--------------|---------|--------------|----------------------------------|--------------|--------|
| Parameters                                | Results          | Units           | PQL      | MDL          | DF      | Prepared     | Analyzed                         | CAS No.      | Qual   |
| 8260 MSV                                  | Analytica        | I Method: EPA 8 | 260      |              |         |              |                                  |              |        |
| 1,2-Dichlorobenzene                       | 0.29 U           | ug/L            | 1.0      | 0.29         | 1       |              | 03/20/20 19:04                   | 95-50-1      |        |
| 1,4-Dichlorobenzene                       | 0.28 U           | ug/L            | 1.0      | 0.28         | 1       |              | 03/20/20 19:04                   | 106-46-7     |        |
| trans-1,4-Dichloro-2-butene               | 2.5 U            | ug/L            | 10.0     | 2.5          | 1       |              | 03/20/20 19:04                   |              |        |
| 1,1-Dichloroethane                        | 0.34 U           | ug/L            | 1.0      | 0.34         | 1       |              | 03/20/20 19:04                   | 75-34-3      |        |
| 1,2-Dichloroethane                        | 0.27 U           | ug/L            | 1.0      | 0.27         | 1       |              | 03/20/20 19:04                   | 107-06-2     |        |
| 1,2-Dichloroethene (Total)                | 0.27 U           | ug/L            | 1.0      | 0.27         | 1       |              | 03/20/20 19:04                   | 540-59-0     | N2     |
| 1,1-Dichloroethene                        | 0.27 U           | ug/L            | 1.0      | 0.27         | 1       |              | 03/20/20 19:04                   | 75-35-4      | J(v1)  |
| cis-1,2-Dichloroethene                    | 0.27 U           | ug/L            | 1.0      | 0.27         | 1       |              | 03/20/20 19:04                   | 156-59-2     |        |
| trans-1,2-Dichloroethene                  | 0.23 U           | ug/L            | 1.0      | 0.23         | 1       |              | 03/20/20 19:04                   | 156-60-5     |        |
| 1,2-Dichloropropane                       | 0.23 U           | ug/L            | 1.0      | 0.23         | 1       |              | 03/20/20 19:04                   | 78-87-5      |        |
| cis-1,3-Dichloropropene                   | 0.17 U           | ug/L            | 0.50     | 0.17         | 1       |              | 03/20/20 19:04                   | 10061-01-5   |        |
| trans-1,3-Dichloropropene                 | 0.17 U           | ug/L            | 0.50     | 0.17         | 1       |              | 03/20/20 19:04                   | 10061-02-6   |        |
| Ethylbenzene                              | 0.30 U           | ug/L            | 1.0      | 0.30         | 1       |              | 03/20/20 19:04                   |              |        |
| 2-Hexanone                                | 0.85 U           | ug/L            | 10.0     | 0.85         | 1       |              | 03/20/20 19:04                   |              |        |
| lodomethane                               | 9.3 U            | ug/L            | 10.0     | 9.3          | 1       |              | 03/20/20 19:04                   |              | J(v2)  |
| Isopropylbenzene (Cumene)                 | 0.30 U           | ug/L            | 1.0      | 0.30         | 1       |              | 03/20/20 19:04                   |              | -()    |
| Methylene Chloride                        | 2.0 U            | ug/L            | 5.0      | 2.0          | 1       |              | 03/20/20 19:04                   |              |        |
| 4-Methyl-2-pentanone (MIBK)               | 0.32 U           | ug/L            | 10.0     | 0.32         | 1       |              | 03/20/20 19:04                   |              |        |
| Methyl-tert-butyl ether                   | 0.51 U           | ug/L            | 2.0      | 0.51         | 1       |              | 03/20/20 19:04                   |              | J(v2)  |
| Styrene                                   | 0.26 U           | ug/L            | 1.0      | 0.26         | 1       |              | 03/20/20 19:04                   |              | 0(12)  |
| 1,1,1,2-Tetrachloroethane                 | 0.32 U           | ug/L            | 1.0      | 0.32         | 1       |              | 03/20/20 19:04                   |              |        |
| 1,1,2,2-Tetrachloroethane                 | 0.32 U           | ug/L            | 0.50     | 0.20         | 1       |              | 03/20/20 19:04                   |              |        |
| Tetrachloroethene                         | 0.38 U           | ug/L            | 1.0      | 0.20         | 1       |              | 03/20/20 19:04                   |              |        |
| Toluene                                   | 0.33 U           | ug/L            | 1.0      | 0.33         | 1       |              | 03/20/20 19:04                   |              |        |
| 1,1,1-Trichloroethane                     | 0.33 U<br>0.30 U | ug/L            | 1.0      | 0.33         | 1       |              | 03/20/20 19:04                   |              |        |
| 1,1,2-Trichloroethane                     | 0.30 U           | -               | 1.0      | 0.30         | 1       |              | 03/20/20 19:04                   |              |        |
|                                           |                  | ug/L            |          |              | 1       |              |                                  |              |        |
| Trichloroethene<br>Trichlorofluoromethane | 0.36 U<br>0.35 U | ug/L            | 1.0      | 0.36<br>0.35 | 1       |              | 03/20/20 19:04<br>03/20/20 19:04 |              | J(L1), |
| Inchioronuoromethane                      | 0.35 0           | ug/L            | 1.0      | 0.35         | I       |              | 03/20/20 19.04                   | 70-09-4      | J(v1)  |
| 1,2,3-Trichloropropane                    | 1.1 U            | ug/L            | 2.0      | 1.1          | 1       |              | 03/20/20 19:04                   | 96-18-4      |        |
| 1,2,4-Trimethylbenzene                    | 0.24 U           | ug/L            | 1.0      | 0.24         | 1       |              | 03/20/20 19:04                   | 95-63-6      |        |
| 1,3,5-Trimethylbenzene                    | 0.24 U           | ug/L            | 1.0      | 0.24         | 1       |              | 03/20/20 19:04                   | 108-67-8     |        |
| Vinyl acetate                             | 0.19 U           | ug/L            | 10.0     | 0.19         | 1       |              | 03/20/20 19:04                   | 108-05-4     |        |
| Vinyl chloride                            | 0.39 U           | ug/L            | 1.0      | 0.39         | 1       |              | 03/20/20 19:04                   | 75-01-4      |        |
| Xylene (Total)                            | 2.1 U            | ug/L            | 5.0      | 2.1          | 1       |              | 03/20/20 19:04                   | 1330-20-7    |        |
| m&p-Xylene                                | 2.1 U            | ug/L            | 4.0      | 2.1          | 1       |              | 03/20/20 19:04                   | 179601-23-1  |        |
| o-Xylene                                  | 0.27 U           | ug/L            | 1.0      | 0.27         | 1       |              | 03/20/20 19:04                   | 95-47-6      |        |
| Surrogates                                |                  | -               |          |              |         |              |                                  |              |        |
| 4-Bromofluorobenzene (S)                  | 90               | %               | 70-130   |              | 1       |              | 03/20/20 19:04                   | 460-00-4     |        |
| 1,2-Dichloroethane-d4 (S)                 | 102              | %               | 70-130   |              | 1       |              | 03/20/20 19:04                   | 17060-07-0   |        |
| Toluene-d8 (S)                            | 103              | %               | 70-130   |              | 1       |              | 03/20/20 19:04                   | 2037-26-5    |        |

#### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

Pace Project No.: 35538498

| Sample: MW-1    | Lab ID:    | 35538498002   | Collecter  | d: 03/19/20 | 0 10:47 | Received: 03/  | 19/20 16:30 Ma | atrix: Water |      |
|-----------------|------------|---------------|------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters      | Results    | Units         | PQL        | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.8 MET ICPMS | Analytical | Method: EPA 2 | 00.8 Prepa | ration Meth | od: EP  | A 200.8        |                |              |      |
| Cadmium         | 0.050 U    | ug/L          | 0.10       | 0.050       | 1       | 03/20/20 02:14 | 03/20/20 11:20 | 7440-43-9    |      |
| Chromium        | 0.68 I     | ug/L          | 1.0        | 0.50        | 1       | 03/20/20 02:14 | 03/20/20 11:20 | 7440-47-3    |      |
| Lead            | 0.50 U     | ug/L          | 1.0        | 0.50        | 1       | 03/20/20 02:14 | 03/20/20 11:20 | 7439-92-1    |      |
| Silver          | 0.050 U    | ug/L          | 0.10       | 0.050       | 1       | 03/20/20 02:14 | 03/20/20 11:20 | 7440-22-4    |      |



Project: Safety Kleen Facility

Pace Project No.: 35538498

| Sample: MW-3    | Lab ID:    | 35538498003   | Collecte   | d: 03/19/20 | ) 11:03 | Received: 03/  | 19/20 16:30 Ma | atrix: Water |      |
|-----------------|------------|---------------|------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters      | Results    | Units         | PQL        | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.8 MET ICPMS | Analytical | Method: EPA 2 | 00.8 Prepa | ration Meth | iod: EP | A 200.8        |                |              |      |
| Cadmium         | 0.050 U    | ug/L          | 0.10       | 0.050       | 1       | 03/20/20 02:14 | 03/20/20 11:22 | 7440-43-9    |      |
| Chromium        | 0.91 I     | ug/L          | 1.0        | 0.50        | 1       | 03/20/20 02:14 | 03/20/20 11:22 | 7440-47-3    |      |
| Lead            | 1.3        | ug/L          | 1.0        | 0.50        | 1       | 03/20/20 02:14 | 03/20/20 11:22 | 7439-92-1    |      |
| Silver          | 0.050 U    | ug/L          | 0.10       | 0.050       | 1       | 03/20/20 02:14 | 03/20/20 11:22 | 7440-22-4    |      |



#### Project: Safety Kleen Facility

Pace Project No.: 35538498

| Sample: Trip Blank          | Lab ID           | 35538498004      | Collecte   | d: 03/19/20 | 00:01 | Received: 03 | 3/19/20 16:30 Ma | atrix: Water |       |
|-----------------------------|------------------|------------------|------------|-------------|-------|--------------|------------------|--------------|-------|
| Parameters                  | Results          | Units            | PQL        | MDL         | DF    | Prepared     | Analyzed         | CAS No.      | Qual  |
| 8260 MSV                    | Analytica        | al Method: EPA 8 | 260        |             |       |              |                  |              |       |
| Acetone                     | 5.3 U            | ug/L             | 20.0       | 5.3         | 1     |              | 03/20/20 14:07   | 67-64-1      |       |
| Acetonitrile                | 24.5 U           | ug/L             | 40.0       | 24.5        | 1     |              | 03/20/20 14:07   | 75-05-8      | J(v1) |
| Benzene                     | 0.30 U           | ug/L             | 1.0        | 0.30        | 1     |              | 03/20/20 14:07   | 71-43-2      |       |
| Bromochloromethane          | 0.37 U           | ug/L             | 1.0        | 0.37        | 1     |              | 03/20/20 14:07   | 74-97-5      |       |
| Bromodichloromethane        | 0.19 U           | ug/L             | 0.60       | 0.19        | 1     |              | 03/20/20 14:07   | 75-27-4      |       |
| Bromoform                   | 2.6 U            | ug/L             | 3.0        | 2.6         | 1     |              | 03/20/20 14:07   | 75-25-2      | J(v2) |
| Bromomethane                | 4.0 U            | ug/L             | 5.0        | 4.0         | 1     |              | 03/20/20 14:07   | 74-83-9      | J(v2) |
| 2-Butanone (MEK)            | 7.5 U            | ug/L             | 10.0       | 7.5         | 1     |              | 03/20/20 14:07   | 78-93-3      | ( )   |
| Carbon disulfide            | 0.45 U           | ug/L             | 10.0       | 0.45        | 1     |              | 03/20/20 14:07   | 75-15-0      |       |
| Carbon tetrachloride        | 1.1 U            | ug/L             | 3.0        | 1.1         | 1     |              | 03/20/20 14:07   |              |       |
| Chlorobenzene               | 0.35 U           | ug/L             | 1.0        | 0.35        | 1     |              | 03/20/20 14:07   |              |       |
| Chloroethane                | 3.7 U            | ug/L             | 10.0       | 3.7         | 1     |              | 03/20/20 14:07   |              |       |
| Chloroform                  | 0.32 U           | ug/L             | 1.0        | 0.32        | 1     |              | 03/20/20 14:07   |              |       |
| Chloromethane               | 0.97 U           | ug/L             | 1.0        | 0.97        | 1     |              | 03/20/20 14:07   |              | J(v2) |
| 1,2-Dibromo-3-chloropropane | 1.9 U            | ug/L             | 5.0        | 1.9         | 1     |              | 03/20/20 14:07   |              | J(v2) |
| Dibromochloromethane        | 0.45 U           | ug/L             | 2.0        | 0.45        | 1     |              | 03/20/20 14:07   |              | 0(12) |
| 1,2-Dibromoethane (EDB)     | 0.45 U<br>0.31 U | ug/L             | 1.0        | 0.43        | 1     |              | 03/20/20 14:07   |              |       |
| Dibromomethane              | 0.68 U           | ug/L             | 2.0        | 0.51        | 1     |              | 03/20/20 14:07   |              |       |
|                             | 0.08 U<br>0.29 U | •                | 2.0<br>1.0 | 0.08        | 1     |              | 03/20/20 14:07   |              |       |
| 1,2-Dichlorobenzene         |                  | ug/L             |            |             | 1     |              |                  |              |       |
| 1,4-Dichlorobenzene         | 0.28 U           | ug/L             | 1.0        | 0.28        |       |              | 03/20/20 14:07   |              |       |
| trans-1,4-Dichloro-2-butene | 2.5 U            | ug/L             | 10.0       | 2.5         | 1     |              | 03/20/20 14:07   |              |       |
| 1,1-Dichloroethane          | 0.34 U           | ug/L             | 1.0        | 0.34        | 1     |              | 03/20/20 14:07   |              |       |
| 1,2-Dichloroethane          | 0.27 U           | ug/L             | 1.0        | 0.27        | 1     |              | 03/20/20 14:07   |              |       |
| 1,2-Dichloroethene (Total)  | 0.27 U           | ug/L             | 1.0        | 0.27        | 1     |              | 03/20/20 14:07   |              | N2    |
| 1,1-Dichloroethene          | 0.27 U           | ug/L             | 1.0        | 0.27        | 1     |              | 03/20/20 14:07   |              | J(v1) |
| cis-1,2-Dichloroethene      | 0.27 U           | ug/L             | 1.0        | 0.27        | 1     |              | 03/20/20 14:07   |              |       |
| trans-1,2-Dichloroethene    | 0.23 U           | ug/L             | 1.0        | 0.23        | 1     |              | 03/20/20 14:07   |              |       |
| 1,2-Dichloropropane         | 0.23 U           | ug/L             | 1.0        | 0.23        | 1     |              | 03/20/20 14:07   |              |       |
| cis-1,3-Dichloropropene     | 0.17 U           | ug/L             | 0.50       | 0.17        | 1     |              | 03/20/20 14:07   |              |       |
| trans-1,3-Dichloropropene   | 0.17 U           | ug/L             | 0.50       | 0.17        | 1     |              | 03/20/20 14:07   | 10061-02-6   |       |
| Ethylbenzene                | 0.30 U           | ug/L             | 1.0        | 0.30        | 1     |              | 03/20/20 14:07   |              |       |
| 2-Hexanone                  | 0.85 U           | ug/L             | 10.0       | 0.85        | 1     |              | 03/20/20 14:07   |              |       |
| lodomethane                 | 9.3 U            | ug/L             | 10.0       | 9.3         | 1     |              | 03/20/20 14:07   | 74-88-4      | J(v2) |
| Isopropylbenzene (Cumene)   | 0.30 U           | ug/L             | 1.0        | 0.30        | 1     |              | 03/20/20 14:07   | 98-82-8      |       |
| Methylene Chloride          | 2.0 U            | ug/L             | 5.0        | 2.0         | 1     |              | 03/20/20 14:07   |              |       |
| 4-Methyl-2-pentanone (MIBK) | 0.32 U           | ug/L             | 10.0       | 0.32        | 1     |              | 03/20/20 14:07   | 108-10-1     |       |
| Methyl-tert-butyl ether     | 0.51 U           | ug/L             | 2.0        | 0.51        | 1     |              | 03/20/20 14:07   | 1634-04-4    | J(v2) |
| Styrene                     | 0.26 U           | ug/L             | 1.0        | 0.26        | 1     |              | 03/20/20 14:07   | 100-42-5     |       |
| 1,1,1,2-Tetrachloroethane   | 0.32 U           | ug/L             | 1.0        | 0.32        | 1     |              | 03/20/20 14:07   | 630-20-6     |       |
| 1,1,2,2-Tetrachloroethane   | 0.20 U           | ug/L             | 0.50       | 0.20        | 1     |              | 03/20/20 14:07   | 79-34-5      |       |
| Tetrachloroethene           | 0.38 U           | ug/L             | 1.0        | 0.38        | 1     |              | 03/20/20 14:07   | 127-18-4     |       |
| Toluene                     | 0.33 U           | ug/L             | 1.0        | 0.33        | 1     |              | 03/20/20 14:07   | 108-88-3     |       |
| 1,1,1-Trichloroethane       | 0.30 U           | ug/L             | 1.0        | 0.30        | 1     |              | 03/20/20 14:07   |              |       |
| 1,1,2-Trichloroethane       | 0.30 U           | ug/L             | 1.0        | 0.30        | 1     |              | 03/20/20 14:07   |              |       |
| Trichloroethene             | 0.36 U           | ug/L             | 1.0        | 0.36        | 1     |              | 03/20/20 14:07   |              |       |



#### Project: Safety Kleen Facility

Pace Project No.: 35538498

| Sample: Trip Blank        | Lab ID:    | 35538498004   | Collecte | d: 03/19/20 | 00:01 | Received: 03 | /19/20 16:30 Ma | atrix: Water |                 |
|---------------------------|------------|---------------|----------|-------------|-------|--------------|-----------------|--------------|-----------------|
| Parameters                | Results    | Units         | PQL      | MDL         | DF    | Prepared     | Analyzed        | CAS No.      | Qual            |
| 8260 MSV                  | Analytical | Method: EPA 8 | 260      |             |       |              |                 |              |                 |
| Trichlorofluoromethane    | 0.35 U     | ug/L          | 1.0      | 0.35        | 1     |              | 03/20/20 14:07  | 75-69-4      | J(L1),<br>J(v1) |
| 1,2,3-Trichloropropane    | 1.1 U      | ug/L          | 2.0      | 1.1         | 1     |              | 03/20/20 14:07  | 96-18-4      | . ,             |
| 1,2,4-Trimethylbenzene    | 0.24 U     | ug/L          | 1.0      | 0.24        | 1     |              | 03/20/20 14:07  | 95-63-6      |                 |
| 1,3,5-Trimethylbenzene    | 0.24 U     | ug/L          | 1.0      | 0.24        | 1     |              | 03/20/20 14:07  | 108-67-8     |                 |
| Vinyl acetate             | 0.19 U     | ug/L          | 10.0     | 0.19        | 1     |              | 03/20/20 14:07  | 108-05-4     |                 |
| Vinyl chloride            | 0.39 U     | ug/L          | 1.0      | 0.39        | 1     |              | 03/20/20 14:07  | 75-01-4      |                 |
| Xylene (Total)            | 2.1 U      | ug/L          | 5.0      | 2.1         | 1     |              | 03/20/20 14:07  | 1330-20-7    |                 |
| m&p-Xylene                | 2.1 U      | ug/L          | 4.0      | 2.1         | 1     |              | 03/20/20 14:07  | 179601-23-1  |                 |
| o-Xylene                  | 0.27 U     | ug/L          | 1.0      | 0.27        | 1     |              | 03/20/20 14:07  | 95-47-6      |                 |
| Surrogates                |            |               |          |             |       |              |                 |              |                 |
| 4-Bromofluorobenzene (S)  | 93         | %             | 70-130   |             | 1     |              | 03/20/20 14:07  | 460-00-4     |                 |
| 1,2-Dichloroethane-d4 (S) | 101        | %             | 70-130   |             | 1     |              | 03/20/20 14:07  | 17060-07-0   |                 |
| Toluene-d8 (S)            | 101        | %             | 70-130   |             | 1     |              | 03/20/20 14:07  | 2037-26-5    |                 |



Pace Project No.: 35538498

| 400 1 | 10,000 100 | 0000040 |
|-------|------------|---------|
|       |            |         |

| QC Batch:          | 619475                    | Analysis Met        | hod: EPA 200.8     | 3 |  |
|--------------------|---------------------------|---------------------|--------------------|---|--|
| QC Batch Method:   | EPA 200.8                 | Analysis Des        | cription: 200.8 ME | Г |  |
| Associated Lab Sam | ples: 35538498001, 355384 | 498002, 35538498003 |                    |   |  |
| METHOD BLANK:      | 3367371                   | Matrix:             | Water              |   |  |
| Associated Lab Sam | ples: 35538498001, 355384 | 498002, 35538498003 |                    |   |  |
|                    |                           | Blank               | Reporting          |   |  |
|                    |                           |                     |                    |   |  |

| Cadmium  | ug/L | 0.050 U | 0.10 | 0.050 | 03/20/20 10:46 |  |
|----------|------|---------|------|-------|----------------|--|
| Chromium | ug/L | 0.50 U  | 1.0  | 0.50  | 03/20/20 10:46 |  |
| Lead     | ug/L | 0.50 U  | 1.0  | 0.50  | 03/20/20 10:46 |  |
| Silver   | ug/L | 0.050 U | 0.10 | 0.050 | 03/20/20 10:46 |  |

#### LABORATORY CONTROL SAMPLE: 3367372

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Cadmium   | ug/L  |                | 5.0           | 101          | 85-115          |            |
| Chromium  | ug/L  | 50             | 51.3          | 103          | 85-115          |            |
| Lead      | ug/L  | 50             | 51.4          | 103          | 85-115          |            |
| Silver    | ug/L  | 5              | 5.3           | 105          | 85-115          |            |

| MATRIX SPIKE & MATRIX S |       | CATE: 3367  | 373         |              | 3367374 |        |       |       |        |     |     |      |
|-------------------------|-------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
| Devenue                 |       | 35538300001 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max | Qual |
| Parameter               | Units | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cadmium                 | ug/L  | 0.050 U     | 5           | 5            | 5.2     | 5.1    | 103   | 102   | 70-130 | 1   | 20  |      |
| Chromium                | ug/L  | 0.50 U      | 50          | 50           | 51.8    | 52.7   | 103   | 104   | 70-130 | 2   | 20  |      |
| Lead                    | ug/L  | 0.50 U      | 50          | 50           | 50.0    | 50.0   | 100   | 100   | 70-130 | 0   | 20  |      |
| Silver                  | ug/L  | 0.050 U     | 5           | 5            | 5.4     | 5.2    | 107   | 105   | 70-130 | 2   | 20  |      |

| MATRIX SPIKE & MATRIX SI | PIKE DUPLIC | CATE: 3367 | 375   |       | 3367376 |        |       |       |        |     |     |      |
|--------------------------|-------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |             |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          | 3           | 5538498001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units       | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cadmium                  | ug/L        | 0.050 U    | 5     | 5     | 5.2     | 5.1    | 104   | 102   | 70-130 | 2   | 20  |      |
| Chromium                 | ug/L        | 0.62 I     | 50    | 50    | 52.7    | 52.9   | 104   | 105   | 70-130 | 0   | 20  |      |
| Lead                     | ug/L        | 0.50 U     | 50    | 50    | 51.7    | 50.8   | 103   | 102   | 70-130 | 2   | 20  |      |
| Silver                   | ug/L        | 0.050 U    | 5     | 5     | 5.4     | 5.3    | 107   | 107   | 70-130 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

| •                             | Kleen Facility           |                  |                |              |                                  |            |
|-------------------------------|--------------------------|------------------|----------------|--------------|----------------------------------|------------|
| Pace Project No.: 355384      | 198                      |                  |                |              |                                  |            |
| QC Batch: 6196                | 16                       | Analysis Met     | hod: EPA       | 8260         |                                  |            |
| QC Batch Method: EPA 8        | 3260                     | Analysis Des     | cription: 8260 | MSV          |                                  |            |
| Associated Lab Samples:       | 35538498001, 35538498004 |                  |                |              |                                  |            |
| METHOD BLANK: 336815          | 54                       | Matrix:          | Water          |              |                                  |            |
| Associated Lab Samples:       | 35538498001, 35538498004 |                  |                |              |                                  |            |
|                               |                          | Blank            | Reporting      |              |                                  |            |
| Parameter                     | Units                    | Result           | Limit          | MDL          | Analyzed                         | Qualifiers |
|                               |                          |                  |                |              | •                                |            |
| 1,1,1,2-Tetrachloroethane     | ug/L                     | 0.32 U           | 1.0            | 0.32         | 03/20/20 12:30                   |            |
| 1,1,1-Trichloroethane         | ug/L                     | 0.30 U           | 1.0            | 0.30         | 03/20/20 12:30                   |            |
| 1,1,2,2-Tetrachloroethane     | ug/L                     | 0.20 U           | 0.50           | 0.20         | 03/20/20 12:30                   |            |
| 1,1,2-Trichloroethane         | ug/L                     | 0.30 U           | 1.0            | 0.30         | 03/20/20 12:30                   |            |
| 1,1-Dichloroethane            | ug/L                     | 0.34 U           | 1.0            | 0.34         | 03/20/20 12:30                   | 1(14)      |
| 1,1-Dichloroethene            | ug/L                     | 0.27 U           | 1.0            | 0.27         | 03/20/20 12:30                   | J(v1)      |
| 1,2,3-Trichloropropane        | ug/L                     | 1.1 U            | 2.0            | 1.1          | 03/20/20 12:30                   |            |
| 1,2,4-Trimethylbenzene        | ug/L                     | 0.24 U           | 1.0            | 0.24         | 03/20/20 12:30                   | 1(0)       |
| 1,2-Dibromo-3-chloropropar    | _                        | 1.9 U            | 5.0            | 1.9          | 03/20/20 12:30                   | J(v2)      |
| 1,2-Dibromoethane (EDB)       | ug/L                     | 0.31 U           | 1.0            | 0.31         | 03/20/20 12:30                   |            |
| 1,2-Dichlorobenzene           | ug/L                     | 0.29 U           | 1.0            | 0.29         | 03/20/20 12:30                   |            |
| 1,2-Dichloroethane            | ug/L                     | 0.27 U           | 1.0            | 0.27         | 03/20/20 12:30                   | NO         |
| 1,2-Dichloroethene (Total)    | ug/L                     | 0.27 U           | 1.0            | 0.27         | 03/20/20 12:30                   | N2         |
| 1,2-Dichloropropane           | ug/L                     | 0.23 U           | 1.0            | 0.23         | 03/20/20 12:30                   |            |
| 1,3,5-Trimethylbenzene        | ug/L                     | 0.24 U           | 1.0            | 0.24         | 03/20/20 12:30                   |            |
| 1,4-Dichlorobenzene           | ug/L                     | 0.28 U<br>7.5 U  | 1.0<br>10.0    | 0.28<br>7.5  | 03/20/20 12:30<br>03/20/20 12:30 |            |
| 2-Butanone (MEK)              | ug/L                     | 0.85 U           | 10.0           | 0.85         | 03/20/20 12:30                   |            |
| 2-Hexanone                    | ug/L                     |                  |                |              |                                  |            |
| 4-Methyl-2-pentanone (MIBI    | · •                      | 0.32 U           | 10.0           | 0.32<br>5.3  | 03/20/20 12:30                   |            |
| Acetone                       | ug/L                     | 5.3 U            | 20.0           |              | 03/20/20 12:30                   | 1(1/1)     |
| Acetonitrile                  | ug/L                     | 24.5 U<br>0.30 U | 40.0<br>1.0    | 24.5<br>0.30 | 03/20/20 12:30<br>03/20/20 12:30 | J(v1)      |
| Benzene<br>Bromochloromethane | ug/L                     | 0.30 U<br>0.37 U | 1.0            | 0.30         | 03/20/20 12:30                   |            |
| Bromodichloromethane          | ug/L                     | 0.37 U<br>0.19 U | 0.60           | 0.37         | 03/20/20 12:30                   |            |
|                               | ug/L                     | 2.6 U            | 3.0            | 2.6          | 03/20/20 12:30                   | 1(1/2)     |
| Bromoform<br>Bromomethane     | ug/L                     | 2.0 U<br>4.0 U   | 5.0            | 2.0<br>4.0   | 03/20/20 12:30                   | J(v2)      |
| Carbon disulfide              | ug/L                     | 4.0 U<br>0.45 U  | 10.0           | 4.0<br>0.45  | 03/20/20 12:30                   | J(v2)      |
| Carbon tetrachloride          | ug/L<br>ug/L             | 0.45 U<br>1.1 U  | 3.0            | 1.1          | 03/20/20 12:30                   |            |
| Chlorobenzene                 | •                        | 0.35 U           | 1.0            | 0.35         | 03/20/20 12:30                   |            |
| Chloroethane                  | ug/L                     | 0.33 U<br>3.7 U  | 10.0           |              | 03/20/20 12:30                   |            |
| Chloroform                    | ug/L                     | 0.32 U           | 1.0            | 0.32         | 03/20/20 12:30                   |            |
| Chloromethane                 | ug/L<br>ug/L             | 0.32 U<br>0.97 U | 1.0            | 0.32         | 03/20/20 12:30                   | J(v2)      |
| cis-1,2-Dichloroethene        | ug/L                     | 0.97 U<br>0.27 U | 1.0            | 0.97         | 03/20/20 12:30                   | 0(12)      |
| cis-1,3-Dichloropropene       | ug/L                     | 0.27 U           | 0.50           | 0.27         | 03/20/20 12:30                   |            |
| Dibromochloromethane          | ug/L                     | 0.17 U<br>0.45 U | 2.0            | 0.17         | 03/20/20 12:30                   |            |
| Dibromomethane                | ug/L                     | 0.43 U<br>0.68 U | 2.0            | 0.45         | 03/20/20 12:30                   |            |
| Ethylbenzene                  | ug/L                     | 0.30 U           | 1.0            | 0.00         | 03/20/20 12:30                   |            |
| Iodomethane                   | ug/L                     | 9.3 U            | 10.0           | 9.3          | 03/20/20 12:30                   | J(v2)      |
| Isopropylbenzene (Cumene      |                          | 0.30 U           | 1.0            | 0.30         | 03/20/20 12:30                   |            |
| m&p-Xylene                    | ug/L                     | 0.30 U<br>2.1 U  | 4.0            | 2.1          | 03/20/20 12:30                   |            |
|                               | ug/L                     | 2.1 0            | 4.0            | 2.1          |                                  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

2.0

0.51 03/20/20 12:30 J(v2)

0.51 U

ug/L

#### **REPORT OF LABORATORY ANALYSIS**

Methyl-tert-butyl ether



Project: Safety Kleen Facility Pace Project No.: 35538498

| METHOD BLANK: 3368154       | ł                        | Matrix: | Water     |      |                |            |
|-----------------------------|--------------------------|---------|-----------|------|----------------|------------|
| Associated Lab Samples:     | 35538498001, 35538498004 |         |           |      |                |            |
|                             |                          | Blank   | Reporting |      |                |            |
| Parameter                   | Units                    | Result  | Limit     | MDL  | Analyzed       | Qualifiers |
| Methylene Chloride          | ug/L                     | 2.0 U   | 5.0       | 2.0  | 03/20/20 12:30 |            |
| o-Xylene                    | ug/L                     | 0.27 U  | 1.0       | 0.27 | 03/20/20 12:30 |            |
| Styrene                     | ug/L                     | 0.26 U  | 1.0       | 0.26 | 03/20/20 12:30 |            |
| Tetrachloroethene           | ug/L                     | 0.38 U  | 1.0       | 0.38 | 03/20/20 12:30 |            |
| Toluene                     | ug/L                     | 0.33 U  | 1.0       | 0.33 | 03/20/20 12:30 |            |
| trans-1,2-Dichloroethene    | ug/L                     | 0.23 U  | 1.0       | 0.23 | 03/20/20 12:30 |            |
| trans-1,3-Dichloropropene   | ug/L                     | 0.17 U  | 0.50      | 0.17 | 03/20/20 12:30 |            |
| trans-1,4-Dichloro-2-butene | ug/L                     | 2.5 U   | 10.0      | 2.5  | 03/20/20 12:30 |            |
| Trichloroethene             | ug/L                     | 0.36 U  | 1.0       | 0.36 | 03/20/20 12:30 |            |
| Trichlorofluoromethane      | ug/L                     | 0.35 U  | 1.0       | 0.35 | 03/20/20 12:30 | J(v1)      |
| Vinyl acetate               | ug/L                     | 0.19 U  | 10.0      | 0.19 | 03/20/20 12:30 |            |
| Vinyl chloride              | ug/L                     | 0.39 U  | 1.0       | 0.39 | 03/20/20 12:30 |            |
| Xylene (Total)              | ug/L                     | 2.1 U   | 5.0       | 2.1  | 03/20/20 12:30 |            |
| 1,2-Dichloroethane-d4 (S)   | %                        | 110     | 70-130    |      | 03/20/20 12:30 |            |
| 4-Bromofluorobenzene (S)    | %                        | 94      | 70-130    |      | 03/20/20 12:30 |            |
| Toluene-d8 (S)              | %                        | 115     | 70-130    |      | 03/20/20 12:30 |            |

#### LABORATORY CONTROL SAMPLE: 3368155

| Spike         LCS         LCS         LCS         % Rec           Parameter         Units         Conc.         Result         % Rec         Limits         Qualifiers           Tetrachloroethane         ug/L         20         17.6         88         70-130           Tetrachloroethane         ug/L         20         21.3         106         70-130           Tetrachloroethane         ug/L         20         21.0         105         68-125           ichloroethane         ug/L         20         22.4         112         70-130           hloroethane         ug/L         20         22.4         112         70-130           hloroethane         ug/L         20         24.7         123         66-133         J(v1)           ichloropropane         ug/L         20         18.4         92         62-127           imethylbenzene         ug/L         20         19.5         98         70-130           omo-3-chloropropane         ug/L         20         14.3         72         45-137         J(v3)           omoethane (EDB)         ug/L         20         20.0         100         70-130 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ichloroethaneug/L2021.310670-130Tetrachloroethaneug/L2021.010568-125ichloroethaneug/L2020.610370-130hloroethaneug/L2022.411270-130hloroethaneug/L2024.712366-133hloroethaneug/L2018.49262-127inchloropropaneug/L2019.59870-130romo-3-chloropropaneug/L2014.37245-137romoethane (EDB)ug/L2020.010070-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tetrachloroethaneug/L2021.010568-125ichloroethaneug/L2020.610370-130iloroethaneug/L2022.411270-130iloroethaneug/L2024.712366-133J(v1)ichloroptopaneug/L2018.49262-127imethylbenzeneug/L2019.59870-130romo-3-chloropropaneug/L2014.37245-137omoethane (EDB)ug/L2020.010070-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ichloroethaneug/L2020.610370-130nloroethaneug/L2022.411270-130nloroetheneug/L2024.712366-133J(v1)ichloropropaneug/L2018.49262-127imethylbenzeneug/L2019.59870-130romo-3-chloropropaneug/L2014.37245-137omoethane (EDB)ug/L2020.010070-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Noroethaneug/L2022.411270-130Noroethaneug/L2024.712366-133 J(v1)Noroethaneug/L2018.49262-127imethylbenzeneug/L2019.59870-130nomo-3-chloropropaneug/L2014.37245-137 J(v3)omoethane (EDB)ug/L2020.010070-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Iloroetheneug/L2024.712366-133J(v1)ichloropropaneug/L2018.49262-127imethylbenzeneug/L2019.59870-130omo-3-chloropropaneug/L2014.37245-137omoethane (EDB)ug/L2020.010070-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ichloropropaneug/L2018.49262-127imethylbenzeneug/L2019.59870-130iomo-3-chloropropaneug/L2014.37245-137iomoethane (EDB)ug/L2020.010070-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| imethylbenzeneug/L2019.59870-130omo-3-chloropropaneug/L2014.37245-137J(v3)omoethane (EDB)ug/L2020.010070-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| omo-3-chloropropaneug/L2014.37245-137J(v3)omoethane (EDB)ug/L2020.010070-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| omoethane (EDB) ug/L 20 20.0 100 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ulorobenzene ug/l 20 20.3 102 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ag.2 20 2010 102 10100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| loroethane ug/L 20 19.6 98 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| loroethene (Total) ug/L 40 42.1 105 70-130 N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| loropropane ug/L 20 21.9 109 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| imethylbenzene ug/L 20 19.9 100 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nlorobenzene ug/L 20 20.4 102 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| one (MEK) ug/L 40 35.2 88 47-143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| none ug/L 40 34.6 87 48-145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1-2-pentanone (MIBK) ug/L 40 35.2 88 57-132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| e ug/L 40 40.8 102 46-148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| rile ug/L 200 267 134 33-175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| e ug/L 20 22.7 113 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| hloromethane ug/L 20 21.1 106 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ichloromethane ug/L 20 19.0 95 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### Project: Safety Kleen Facility 35538498 Pace Project No.:

## LABORATORY CONTROL SAMPLE: 3368155

| Parameter               | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits  | Qualifiers   |
|-------------------------|-------|----------------|---------------|--------------|------------------|--------------|
| romoform                |       |                | 13.8          | 69           |                  |              |
| romomethane             | ug/L  | 20             | 9.8           | 69<br>49     | 49-126           |              |
| arbon disulfide         | ug/L  | 20             | 9.0<br>19.5   | 49<br>98     | 10-165<br>60-141 | J(V3)        |
|                         | ug/L  |                |               |              |                  |              |
| rbon tetrachloride      | ug/L  | 20<br>20       | 18.9          | 94           | 63-126<br>70-130 |              |
| orobenzene              | ug/L  |                | 20.8          | 104          |                  |              |
| proethane               | ug/L  | 20             | 18.2          | 91           | 71-142           |              |
| oroform                 | ug/L  | 20             | 21.8          | 109          | 70-130           |              |
| promethane              | ug/L  | 20             | 14.5          | 72           | 40-140           | . ,          |
| 1,2-Dichloroethene      | ug/L  | 20             | 20.6          | 103          | 70-130           |              |
| 1,3-Dichloropropene     | ug/L  | 20             | 18.7          | 94           | 70-130           |              |
| romochloromethane       | ug/L  | 20             | 16.5          | 82           | 62-118           |              |
| romomethane             | ug/L  | 20             | 19.7          | 98           | 70-130           |              |
| ylbenzene               | ug/L  | 20             | 21.0          | 105          | 70-130           |              |
| omethane                | ug/L  | 40             | 24.7          | 62           | 10-164           | . ,          |
| propylbenzene (Cumene)  | ug/L  | 20             | 21.0          | 105          | 70-130           |              |
| -Xylene                 | ug/L  | 40             | 42.7          | 107          | 70-130           |              |
| yl-tert-butyl ether     | ug/L  | 20             | 15.4          | 77           | 64-124           | . ,          |
| ylene Chloride          | ug/L  | 20             | 21.3          | 106          | 65-136           |              |
| lene                    | ug/L  | 20             | 19.8          | 99           | 70-130           |              |
| ene                     | ug/L  | 20             | 20.2          | 101          | 70-130           |              |
| chloroethene            | ug/L  | 20             | 17.9          | 90           | 64-134           |              |
| ene                     | ug/L  | 20             | 21.1          | 106          | 70-130           |              |
| s-1,2-Dichloroethene    | ug/L  | 20             | 21.4          | 107          | 68-127           |              |
| s-1,3-Dichloropropene   | ug/L  | 20             | 17.6          | 88           | 65-121           |              |
| s-1,4-Dichloro-2-butene | ug/L  | 20             | 17.1          | 86           | 42-129           |              |
| nloroethene             | ug/L  | 20             | 20.8          | 104          | 70-130           |              |
| hlorofluoromethane      | ug/L  | 20             | 27.8          | 139          | 65-135           | J(L1), J(v1) |
| l acetate               | ug/L  | 20             | 19.2          | 96           | 60-144           |              |
| l chloride              | ug/L  | 20             | 22.2          | 111          | 68-131           |              |
| ne (Total)              | ug/L  | 60             | 62.5          | 104          | 70-130           |              |
| Dichloroethane-d4 (S)   | %     |                |               | 100          | 70-130           |              |
| romofluorobenzene (S)   | %     |                |               | 95           | 70-130           |              |
| ene-d8 (S)              | %     |                |               | 101          | 70-130           |              |

| MATRIX SPIKE SAMPLE:      | 3368157 |             |       |        |       |            |            |
|---------------------------|---------|-------------|-------|--------|-------|------------|------------|
|                           |         | 35538604002 | Spike | MS     | MS    | % Rec      |            |
| Parameter                 | Units   | Result      | Conc. | Result | % Rec | Limits     | Qualifiers |
| 1,1,1,2-Tetrachloroethane | ug/L    | 0.32 U      | 20    | 18.1   | 90    | 70-130     |            |
| 1,1,1-Trichloroethane     | ug/L    | 0.30 U      | 20    | 21.6   | 108   | 70-130     |            |
| 1,1,2,2-Tetrachloroethane | ug/L    | 0.20 U      | 20    | 21.3   | 107   | 68-125     |            |
| 1,1,2-Trichloroethane     | ug/L    | 0.30 U      | 20    | 22.4   | 112   | 70-130     |            |
| 1,1-Dichloroethane        | ug/L    | 0.34 U      | 20    | 21.8   | 109   | 70-130     |            |
| 1,1-Dichloroethene        | ug/L    | 0.27 U      | 20    | 25.5   | 127   | 66-133 J(v | 1)         |
| 1,2,3-Trichloropropane    | ug/L    | 1.1 U       | 20    | 24.4   | 122   | 62-127     |            |
| 1,2,4-Trimethylbenzene    | ug/L    | 0.24 U      | 20    | 19.5   | 97    | 70-130     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



## Project: Safety Kleen Facility

Pace Project No.: 35538498

| MATRIX SPIKE SAMPLE:        | 3368157      |                       |                |              |             |                            |
|-----------------------------|--------------|-----------------------|----------------|--------------|-------------|----------------------------|
| Parameter                   | Units        | 35538604002<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits Qualifiers |
| 1,2-Dibromo-3-chloropropane | ug/L         | 1.9 U                 | 20             | 14.5         | 73          | 45-137 J(v3)               |
| 1,2-Dibromoethane (EDB)     | ug/L         | 0.31 U                | 20             | 20.5         | 103         | 70-130                     |
| 1,2-Dichlorobenzene         | ug/L         | 0.29 U                | 20             | 19.9         | 99          | 70-130                     |
| 1,2-Dichloroethane          | ug/L         | 0.27 U                | 20             | 19.6         | 98          | 70-130                     |
| 1,2-Dichloroethene (Total)  | ug/L         | 0.27 U                | 40             | 41.7         | 104         | 70-130 N2                  |
| 1,2-Dichloropropane         | ug/L         | 0.23 U                | 20             | 21.6         | 108         | 70-130                     |
| 1,3,5-Trimethylbenzene      | ug/L         | 0.24 U                | 20             | 20.3         | 101         | 70-130                     |
| 1,4-Dichlorobenzene         | ug/L         | 0.28 U                | 20             | 20.1         | 101         | 70-130                     |
| 2-Butanone (MEK)            | ug/L         | 7.5 U                 | 40             | 34.8         | 87          | 47-143 J(v3)               |
| 2-Hexanone                  | ug/L         | 0.85 U                | 40             | 30.4         | 76          | 48-145                     |
| 4-Methyl-2-pentanone (MIBK) | ug/L         | 0.32 U                | 40             | 33.1         | 83          | 57-132                     |
| Acetone                     | ug/L         | 5.3 U                 | 40             | 37.0         | 81          | 46-148                     |
| Acetonitrile                | ug/L         | 24.5 U                | 200            | 226          | 113         | 33-175 J(v1)               |
| Benzene                     | ug/L         | 0.30 U                | 20             | 22.3         | 111         | 70-130                     |
| Bromochloromethane          | ug/L         | 0.37 U                | 20             | 21.3         | 107         | 70-130                     |
| Bromodichloromethane        | ug/L         | 0.19 U                | 20             | 19.2         | 96          | 70-130                     |
| Bromoform                   | ug/L         | 2.6 U                 | 20             | 14.1         | 70          | 49-126 J(v3)               |
| Bromomethane                | ug/L         | 4.0 U                 | 20             | 13.8         | 69          | 10-165 J(v3)               |
| Carbon disulfide            | ug/L         | 0.45 U                | 20             | 18.8         | 94          | 60-141                     |
| Carbon tetrachloride        | ug/L         | 1.1 U                 | 20             | 19.3         | 97          | 63-126                     |
| Chlorobenzene               | ug/L         | 0.35 U                | 20             | 21.4         | 107         | 70-130                     |
| Chloroethane                | ug/L         | 3.7 U                 | 20             | 15.2         | 76          | 71-142                     |
| Chloroform                  | ug/L         | 0.32 U                | 20             | 21.6         | 108         | 70-130                     |
| Chloromethane               | ug/L         | 0.97 U                | 20             | 12.8         | 64          | 40-140 J(v3)               |
| cis-1,2-Dichloroethene      | ug/L         | 0.27 U                | 20             | 20.8         | 104         | 70-130                     |
| cis-1,3-Dichloropropene     | ug/L         | 0.17 U                | 20             | 17.6         | 88          | 70-130                     |
| Dibromochloromethane        | ug/L         | 0.45 U                | 20             | 17.9         | 89          | 62-118                     |
| Dibromomethane              | ug/L         | 0.68 U                | 20             | 19.8         | 99          | 70-130                     |
| Ethylbenzene                | ug/L         | 0.30 U                | 20             | 21.3         | 106         | 70-130                     |
| Iodomethane                 | ug/L         | 9.3 U                 | 40             | 12.4         | 28          | 10-164 J(v3)               |
| Isopropylbenzene (Cumene)   | ug/L         | 0.30 U                | 20             | 20.6         | 103         | 70-130                     |
| m&p-Xylene                  | ug/L         | 2.1 U                 | 40             | 42.6         | 107         | 70-130                     |
| Methyl-tert-butyl ether     | ug/L         | 0.51 U                | 20             | 13.0         | 65          | 64-124 J(v3)               |
| Methylene Chloride          | ug/L         | 2.0 U                 | 20             | 19.7         | 99          | 65-136                     |
| o-Xylene                    | ug/L         | 0.27 U                | 20             | 19.7         | 98          | 70-130                     |
| Styrene                     | ug/L         | 0.26 U                | 20             | 19.5         | 97          | 70-130                     |
| Tetrachloroethene           | ug/L         | 0.38 U                | 20             | 18.4         | 92          | 64-134                     |
| Toluene                     | ug/L         | 0.33 U                | 20             | 22.2         | 111         | 70-130                     |
| trans-1,2-Dichloroethene    | ug/L         | 0.23 U                | 20             | 20.9         | 104         | 68-127                     |
| trans-1,3-Dichloropropene   | ug/L         | 0.17 U                | 20             | 17.4         | 87          | 65-121                     |
| trans-1,4-Dichloro-2-butene | ug/L         | 2.5 U                 | 20             | 12.8         | 64          | 42-129                     |
| Trichloroethene             | ug/L         | 0.36 U                | 20             | 20.9         | 105         | 70-130                     |
| Trichlorofluoromethane      | ug/L         | 0.35 U                | 20             | 20.9         | 105         | 65-135 J(v1)               |
| Vinyl acetate               | ug/L         | 0.33 U<br>0.19 U      | 20             | 15.0         | 75          | 60-144                     |
| Vinyl chloride              | ug/∟<br>ug/L | 0.19 U                | 20<br>20       | 15.0         | 75<br>96    | 68-131                     |
| -                           | -            | 2.1 U                 | 20<br>60       | 62.3         | 96<br>104   | 70-130                     |
| Xylene (Total)              | ug/L         | 2.1 0                 | 00             | 02.3         |             |                            |
| 1,2-Dichloroethane-d4 (S)   | %            |                       |                |              | 100         | 70-130                     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



## Project: Safety Kleen Facility

Pace Project No.: 35538498

| MATRIX SPIKE SAMPLE:                       | 3368157 | 35538604002           | Spike         | MS     | MS         | % Rec            |            |
|--------------------------------------------|---------|-----------------------|---------------|--------|------------|------------------|------------|
| Parameter                                  | Units   | Result                | Conc.         | Result | % Rec      | Limits           | Qualifiers |
| 4-Bromofluorobenzene (S)<br>Toluene-d8 (S) | %<br>%  |                       |               |        | 92<br>99   | 70-130<br>70-130 |            |
| SAMPLE DUPLICATE: 3368156                  |         |                       |               |        |            |                  |            |
| Parameter                                  | Units   | 35538604001<br>Result | Dup<br>Result | RPD    | Max<br>RPD | Qualifiers       |            |
| 1,1,1,2-Tetrachloroethane                  | ug/L    | 0.32 U                | 0.32 U        |        | 40         |                  |            |
| 1,1,1-Trichloroethane                      | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |
| 1,1,2,2-Tetrachloroethane                  | ug/L    | 0.20 U                | 0.20 U        |        | 40         |                  |            |
| 1,1,2-Trichloroethane                      | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |
| 1,1-Dichloroethane                         | ug/L    | 0.34 U                | 0.34 U        |        | 40         |                  |            |
| 1,1-Dichloroethene                         | ug/L    | 0.27 U                | 0.27 U        |        | 40         | J(v1)            |            |
| 1,2,3-Trichloropropane                     | ug/L    | 1.1 U                 | 1.1 U         |        | 40         |                  |            |
| 1,2,4-Trimethylbenzene                     | ug/L    | 0.24 U                | 0.24 U        |        | 40         |                  |            |
| 1,2-Dibromo-3-chloropropane                | ug/L    | 1.9 U                 | 1.9 U         |        | 40         | J(v2)            |            |
| 1,2-Dibromoethane (EDB)                    | ug/L    | 0.31 U                | 0.31 U        |        | 40         |                  |            |
| 1,2-Dichlorobenzene                        | ug/L    | 0.29 U                | 0.29 U        |        | 40         |                  |            |
| 1,2-Dichloroethane                         | ug/L    | 0.27 U                | 0.27 U        |        | 40         |                  |            |
| 1,2-Dichloroethene (Total)                 | ug/L    | 0.27 U                | 0.27 U        |        | 40         | N2               |            |
| 1,2-Dichloropropane                        | ug/L    | 0.23 U                | 0.23 U        |        | 40         |                  |            |
| 1,3,5-Trimethylbenzene                     | ug/L    | 0.24 U                | 0.24 U        |        | 40         |                  |            |
| 1,4-Dichlorobenzene                        | ug/L    | 0.28 U                | 0.28 U        |        | 40         |                  |            |
| 2-Butanone (MEK)                           | ug/L    | 7.5 U                 | 7.5 U         |        | 40         |                  |            |
| 2-Hexanone                                 | ug/L    | 0.85 U                | 0.85 U        |        | 40         |                  |            |
| 4-Methyl-2-pentanone (MIBK)                | ug/L    | 0.32 U                | 0.32 U        |        | 40         |                  |            |
| Acetone                                    | ug/L    | 7.8 I                 | 8.5 I         |        | 40         |                  |            |
| Acetonitrile                               | ug/L    | 24.5 U                | 24.5 U        |        | 40         |                  |            |
| Benzene                                    | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |
| Bromochloromethane                         | ug/L    | 0.37 U                | 0.37 U        |        | 40         |                  |            |
| Bromodichloromethane                       | ug/L    | 0.19 U                | 0.36 I        |        | 40         |                  |            |
| Bromoform                                  | ug/L    | 2.6 U                 | 2.6 U         |        | 40         | J(v2)            |            |
| Bromomethane                               | ug/L    | 4.0 U                 | 4.0 U         |        | 40         | J(v2)            |            |
| Carbon disulfide                           | ug/L    | 0.45 U                | 0.45 U        |        | 40         |                  |            |
| Carbon tetrachloride                       | ug/L    | 1.1 U                 | 1.1 U         |        | 40         |                  |            |
| Chlorobenzene                              | ug/L    | 0.35 U                | 0.35 U        |        | 40         |                  |            |
| Chloroethane                               | ug/L    | 3.7 U                 | 3.7 U         |        | 40         |                  |            |
| Chloroform                                 | ug/L    | 3.2                   | 3.3           |        | 2 40       |                  |            |
| Chloromethane                              | ug/L    | 0.97 U                | 0.97 U        |        | 40         | J(v2)            |            |
| cis-1,2-Dichloroethene                     | ug/L    | 0.27 U                | 0.27 U        |        | 40         |                  |            |
| cis-1,3-Dichloropropene                    | ug/L    | 0.17 U                | 0.17 U        |        | 40         |                  |            |
| Dibromochloromethane                       | ug/L    | 0.45 U                | 0.45 U        |        | 40         |                  |            |
| Dibromomethane                             | ug/L    | 0.68 U                | 0.68 U        |        | 40         |                  |            |
| Ethylbenzene                               | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |
| Iodomethane                                | ug/L    | 9.3 U                 | 9.3 U         |        | 40         | J(v2)            |            |
| Isopropylbenzene (Cumene)                  | ug/L    | 0.30 U                | 0.30 U        |        | 40         |                  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### Project: Safety Kleen Facility Pace Project No.: 35538498

# SAMPLE DUPLICATE: 3368156

|                             |       | 35538604001 | Dup    |     | Max |            |
|-----------------------------|-------|-------------|--------|-----|-----|------------|
| Parameter                   | Units | Result      | Result | RPD | RPD | Qualifiers |
| m&p-Xylene                  | ug/L  |             | 2.1 U  |     | 40  | )          |
| Methyl-tert-butyl ether     | ug/L  | 0.51 U      | 0.51 U |     | 40  | ) J(v2)    |
| Methylene Chloride          | ug/L  | 2.0 U       | 2.0 U  |     | 40  | )          |
| o-Xylene                    | ug/L  | 0.27 U      | 0.27 U |     | 40  | )          |
| Styrene                     | ug/L  | 0.26 U      | 0.26 U |     | 40  | )          |
| Tetrachloroethene           | ug/L  | 0.38 U      | 0.38 U |     | 40  | )          |
| Toluene                     | ug/L  | 0.33 U      | 0.33 U |     | 40  | )          |
| trans-1,2-Dichloroethene    | ug/L  | 0.23 U      | 0.23 U |     | 40  | )          |
| trans-1,3-Dichloropropene   | ug/L  | 0.17 U      | 0.17 U |     | 40  | )          |
| trans-1,4-Dichloro-2-butene | ug/L  | 2.5 U       | 2.5 U  |     | 40  | )          |
| Trichloroethene             | ug/L  | 0.36 U      | 0.36 U |     | 40  | )          |
| Trichlorofluoromethane      | ug/L  | 0.35 U      | 0.35 U |     | 40  | ) J(v1)    |
| Vinyl acetate               | ug/L  | 0.19 U      | 0.19 U |     | 40  | )          |
| Vinyl chloride              | ug/L  | 0.39 U      | 0.39 U |     | 40  | )          |
| Xylene (Total)              | ug/L  | 2.1 U       | 2.1 U  |     | 40  | )          |
| 1,2-Dichloroethane-d4 (S)   | %     | 102         | 106    |     | 40  | )          |
| 4-Bromofluorobenzene (S)    | %     | 91          | 91     |     | 40  | )          |
| Toluene-d8 (S)              | %     | 104         | 108    |     | 40  | )          |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Safety Kleen Facility

Pace Project No.:

35538498

| QC Batch: 620149            |          | Analysis Met | hod:      | EPA 8270 by SIM  |                |            |
|-----------------------------|----------|--------------|-----------|------------------|----------------|------------|
| QC Batch Method: EPA 3510   |          | Analysis Des | cription: | 8270 Water PAHLV | ' by SIM MSSV  |            |
| Associated Lab Samples: 355 | 38498001 |              |           |                  |                |            |
| METHOD BLANK: 3371134       |          | Matrix:      | Water     |                  |                |            |
| Associated Lab Samples: 355 | 38498001 |              |           |                  |                |            |
|                             |          | Blank        | Reporting |                  |                |            |
| Parameter                   | Units    | Result       | Limit     | MDL              | Analyzed       | Qualifiers |
| 1-Methylnaphthalene         | ug/L     | 0.19 U       | 2.        | .0 0.19          | 03/24/20 19:18 |            |
| 2-Methylnaphthalene         | ug/L     | 0.68 U       | 2.        | .0 0.68          | 03/24/20 19:18 |            |
| Acenaphthene                | ug/L     | 0.040 U      | 0.5       | 0.040            | 03/24/20 19:18 |            |
| Acenaphthylene              | ug/L     | 0.030 U      | 0.5       | 0.030            | 03/24/20 19:18 |            |
| Anthracene                  | ug/L     | 0.043 U      | 0.5       | 0.043            | 03/24/20 19:18 |            |
| Benzo(a)anthracene          | ua/L     | 0.055 U      | 0.1       | 0 0.055          | 03/24/20 19:18 |            |

| 2-Methylnaphthalene    | ug/L | 0.68 U  | 2.0    | 0.68  | 03/24/20 19:18 |
|------------------------|------|---------|--------|-------|----------------|
| Acenaphthene           | ug/L | 0.040 U | 0.50   | 0.040 | 03/24/20 19:18 |
| Acenaphthylene         | ug/L | 0.030 U | 0.50   | 0.030 | 03/24/20 19:18 |
| Anthracene             | ug/L | 0.043 U | 0.50   | 0.043 | 03/24/20 19:18 |
| Benzo(a)anthracene     | ug/L | 0.055 U | 0.10   | 0.055 | 03/24/20 19:18 |
| Benzo(a)pyrene         | ug/L | 0.12 U  | 0.20   | 0.12  | 03/24/20 19:18 |
| Benzo(b)fluoranthene   | ug/L | 0.027 U | 0.10   | 0.027 | 03/24/20 19:18 |
| Benzo(g,h,i)perylene   | ug/L | 0.15 U  | 0.50   | 0.15  | 03/24/20 19:18 |
| Benzo(k)fluoranthene   | ug/L | 0.16 U  | 0.50   | 0.16  | 03/24/20 19:18 |
| Chrysene               | ug/L | 0.026 U | 0.50   | 0.026 | 03/24/20 19:18 |
| Dibenz(a,h)anthracene  | ug/L | 0.13 U  | 0.15   | 0.13  | 03/24/20 19:18 |
| Fluoranthene           | ug/L | 0.018 U | 0.50   | 0.018 | 03/24/20 19:18 |
| Fluorene               | ug/L | 0.088 U | 0.50   | 0.088 | 03/24/20 19:18 |
| Indeno(1,2,3-cd)pyrene | ug/L | 0.12 U  | 0.15   | 0.12  | 03/24/20 19:18 |
| Naphthalene            | ug/L | 0.29 U  | 2.0    | 0.29  | 03/24/20 19:18 |
| Phenanthrene           | ug/L | 0.16 U  | 0.50   | 0.16  | 03/24/20 19:18 |
| Pyrene                 | ug/L | 0.032 U | 0.50   | 0.032 | 03/24/20 19:18 |
| 2-Fluorobiphenyl (S)   | %    | 67      | 38-92  |       | 03/24/20 19:18 |
| p-Terphenyl-d14 (S)    | %    | 83      | 54-112 |       | 03/24/20 19:18 |
|                        |      |         |        |       |                |

#### LABORATORY CONTROL SAMPLE: 3371135

| Parameter              | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|------------------------|-------|----------------|---------------|--------------|-----------------|------------|
| Farameter              |       |                |               | 70 Rec       |                 | Quaimers   |
| 1-Methylnaphthalene    | ug/L  | 5              | 3.3           | 66           | 40-96           |            |
| 2-Methylnaphthalene    | ug/L  | 5              | 3.2           | 64           | 40-94           |            |
| Acenaphthene           | ug/L  | 5              | 3.5           | 71           | 42-96           |            |
| Acenaphthylene         | ug/L  | 5              | 3.5           | 70           | 39-90           |            |
| Anthracene             | ug/L  | 5              | 4.1           | 83           | 46-109          |            |
| Benzo(a)anthracene     | ug/L  | 5              | 4.4           | 87           | 50-116          |            |
| Benzo(a)pyrene         | ug/L  | 5              | 4.4           | 89           | 48-117          |            |
| Benzo(b)fluoranthene   | ug/L  | 5              | 4.5           | 89           | 51-124          |            |
| Benzo(g,h,i)perylene   | ug/L  | 5              | 4.6           | 92           | 47-121          |            |
| Benzo(k)fluoranthene   | ug/L  | 5              | 4.6           | 91           | 50-125          |            |
| Chrysene               | ug/L  | 5              | 4.6           | 93           | 53-122          |            |
| Dibenz(a,h)anthracene  | ug/L  | 5              | 4.4           | 89           | 45-123          |            |
| Fluoranthene           | ug/L  | 5              | 4.5           | 90           | 52-119          |            |
| Fluorene               | ug/L  | 5              | 3.6           | 72           | 44-100          |            |
| Indeno(1,2,3-cd)pyrene | ug/L  | 5              | 4.5           | 89           | 46-121          |            |
| Naphthalene            | ug/L  | 5              | 3.1           | 63           | 40-91           |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### Project: Safety Kleen Facility Pace Project No.: 35538498

#### LABORATORY CONTROL SAMPLE: 3371135

| Parameter            | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|----------------------|-------|----------------|---------------|--------------|-----------------|------------|
| Phenanthrene         | ug/L  | 5              | 4.2           | 85           | 47-111          |            |
| Pyrene               | ug/L  | 5              | 4.5           | 91           | 51-120          |            |
| 2-Fluorobiphenyl (S) | %     |                |               | 64           | 38-92           |            |
| p-Terphenyl-d14 (S)  | %     |                |               | 83           | 54-112          |            |

3371137

#### MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3371136

|                        |       |             | MS    | MSD   |        |        |       |       |        |     |     |      |
|------------------------|-------|-------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------|
|                        |       | 35538498001 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter              | Units | Result      | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| 1-Methylnaphthalene    | ug/L  | 0.19 U      | 5     | 5     | 3.3    | 3.2    | 65    | 64    | 40-96  | 2   | 40  |      |
| 2-Methylnaphthalene    | ug/L  | 0.68 U      | 5     | 5     | 3.2    | 3.1    | 62    | 61    | 40-94  | 3   | 40  |      |
| Acenaphthene           | ug/L  | 0.040 U     | 5     | 5     | 3.4    | 3.5    | 69    | 70    | 42-96  | 2   | 40  |      |
| Acenaphthylene         | ug/L  | 0.030 U     | 5     | 5     | 3.5    | 3.5    | 69    | 69    | 39-90  | 0   | 40  |      |
| Anthracene             | ug/L  | 0.043 U     | 5     | 5     | 4.0    | 4.0    | 80    | 81    | 46-109 | 1   | 40  |      |
| Benzo(a)anthracene     | ug/L  | 0.055 U     | 5     | 5     | 4.1    | 4.2    | 82    | 84    | 50-116 | 2   | 40  |      |
| Benzo(a)pyrene         | ug/L  | 0.12 U      | 5     | 5     | 4.3    | 4.3    | 86    | 86    | 48-117 | 0   | 40  |      |
| Benzo(b)fluoranthene   | ug/L  | 0.027 U     | 5     | 5     | 4.2    | 4.3    | 84    | 86    | 51-124 | 2   | 40  |      |
| Benzo(g,h,i)perylene   | ug/L  | 0.15 U      | 5     | 5     | 4.1    | 4.2    | 83    | 84    | 47-121 | 2   | 40  |      |
| Benzo(k)fluoranthene   | ug/L  | 0.16 U      | 5     | 5     | 4.3    | 4.3    | 85    | 86    | 50-125 | 0   | 40  |      |
| Chrysene               | ug/L  | 0.026 U     | 5     | 5     | 4.3    | 4.4    | 85    | 87    | 53-122 | 2   | 40  |      |
| Dibenz(a,h)anthracene  | ug/L  | 0.13 U      | 5     | 5     | 4.1    | 4.1    | 82    | 82    | 45-123 | 0   | 40  |      |
| Fluoranthene           | ug/L  | 0.018 U     | 5     | 5     | 4.2    | 4.2    | 85    | 84    | 52-119 | 1   | 40  |      |
| Fluorene               | ug/L  | 0.088 U     | 5     | 5     | 3.5    | 3.6    | 69    | 71    | 44-100 | 3   | 40  |      |
| Indeno(1,2,3-cd)pyrene | ug/L  | 0.12 U      | 5     | 5     | 4.1    | 4.1    | 82    | 83    | 46-121 | 1   | 40  |      |
| Naphthalene            | ug/L  | 0.29 U      | 5     | 5     | 3.2    | 3.0    | 62    | 58    | 40-91  | 6   | 40  |      |
| Phenanthrene           | ug/L  | 0.16 U      | 5     | 5     | 4.0    | 4.1    | 80    | 81    | 47-111 | 1   | 40  |      |
| Pyrene                 | ug/L  | 0.032 U     | 5     | 5     | 4.3    | 4.3    | 87    | 86    | 51-120 | 1   | 40  |      |
| 2-Fluorobiphenyl (S)   | %     |             |       |       |        |        | 63    | 62    | 38-92  |     |     |      |
| p-Terphenyl-d14 (S)    | %     |             |       |       |        |        | 76    | 75    | 54-112 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

Pace Project No · 35538498

| DC Batch Method:         EPA 3510         Analysis Description:         B270 Water Full List MSSV           Associated Lab Samples:         35538498001         Matrix: Vater           METHOB BLANK:         3563772         Matrix: Vater           Associated Lab Samples:         35538498001         Matrix: Vater           12.0bit/horobenzene         ug/L         1.4 U         5.0         1.4         032020 10.19           12.0bit/horobenzene         ug/L         1.5 U         5.0         1.5         032020 10.19           13.0bitr/horobenzene         ug/L         1.5 U         5.0         1.5         032020 10.19           2.3.4.6 Tetrachkorophenol         ug/L         1.0 U         5.0         1.0         032020 10.19           2.3.4.6 Tetrachkorophenol         ug/L         0.28 U         2.0         0.24         0.24           2.4.6 Trichkorophenol         ug/L         0.28 U         2.0         2.6 <t< th=""><th>Pace Project No.: 35538498</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                              | Pace Project No.: 35538498       |       |              |             |                    |                |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|--------------|-------------|--------------------|----------------|------------|
| Associated Lab Samples:         35538498001           METHOD BLANK:         3366772           Associated Lab Samples:         35538498001           Parameter         Units         Result         Imit         MDL         Analyzed         Oualifiers           12,4-Trichlorobenzene         ug/L         1.4 U         5.0         1.4         0302020 10:19         .           12,Dintrobenzene         ug/L         1.5 U         5.0         1.5         0320220 10:19         .           12,Dintrobenzene         ug/L         1.5 U         5.0         1.5         0320220 10:19         .           1,Dintrobenzene         ug/L         1.5 U         5.0         1.5         0320220 10:19         .           1,Dintrobenzene         ug/L         1.5 U         5.0         1.5         0320220 10:19         .           2,3.6-Firetachirophenol         ug/L         1.0 U         5.0         1.0         0320220 10:19         .           2,4.6-Trichtorophenol         ug/L         0.36 U         2.0         0.36         0320220 10:19         .           2,4.5-Trichtorophenol         ug/L         0.24 U         2.0         0.36         0320220 10:19         .           2,4.5-Trichtorophenol         <                                                                                                                                                                                | QC Batch: 619415                 |       | Analysis Met | hod: E      | PA 8270            |                |            |
| Matrix         Watrix         Watrix         Watrix           Associated Lab Samples:         35634498001         Blank         Reporting         Unit         MDL         Analyzed         Qualifiers           12.4-Trichforobenzene         ug/L         1.4 U         5.0         1.4         03/20/20 10:19         Qualifiers           12.Dehrobenzene         ug/L         1.4 U         5.0         1.4         03/20/20 10:19         Qualifiers           12.Dehrobenzene         ug/L         1.4 U         5.0         1.4         03/20/20 10:19         Qualifiers           13.Dehrobenzene         ug/L         1.5 U         5.0         1.5         03/20/20 10:19         Qualifiers           14.Dehrobenzene         ug/L         0.36 U         5.0         0.36         03/20/20 10:19         Qualifiers           2.3.4.6 Tetrachiorophenol         ug/L         0.36 U         5.0         0.36         03/20/20 10:19           2.4.6 Trichforophenol         ug/L         0.34 U         2.0         0.36         03/20/20 10:19           2.4.0 Entershorophenol         ug/L         0.34 U         2.0         0.36         03/20/20 10:19           2.4.5 Trichforophenol         ug/L         0.34 U         2.0         0.36 <td< td=""><td>QC Batch Method: EPA 3510</td><td></td><td>Analysis Des</td><td>cription: 8</td><td>270 Water Full Lis</td><td>t MSSV</td><td></td></td<> | QC Batch Method: EPA 3510        |       | Analysis Des | cription: 8 | 270 Water Full Lis | t MSSV         |            |
| Matrix         Watrix         Watrix         Watrix           Associated Lab Samples:         35634498001         Blank         Reporting         Unit         MDL         Analyzed         Qualifiers           12.4-Trichforobenzene         ug/L         1.4 U         5.0         1.4         03/20/20 10:19         Qualifiers           12.Dehrobenzene         ug/L         1.4 U         5.0         1.4         03/20/20 10:19         Qualifiers           12.Dehrobenzene         ug/L         1.4 U         5.0         1.4         03/20/20 10:19         Qualifiers           13.Dehrobenzene         ug/L         1.5 U         5.0         1.5         03/20/20 10:19         Qualifiers           14.Dehrobenzene         ug/L         0.36 U         5.0         0.36         03/20/20 10:19         Qualifiers           2.3.4.6 Tetrachiorophenol         ug/L         0.36 U         5.0         0.36         03/20/20 10:19           2.4.6 Trichforophenol         ug/L         0.34 U         2.0         0.36         03/20/20 10:19           2.4.0 Entershorophenol         ug/L         0.34 U         2.0         0.36         03/20/20 10:19           2.4.5 Trichforophenol         ug/L         0.34 U         2.0         0.36 <td< th=""><th>Associated Lab Samples: 35538498</th><th>001</th><th></th><th>•</th><th></th><th></th><th></th></td<>                                     | Associated Lab Samples: 35538498 | 001   |              | •           |                    |                |            |
| Associated Lab Samples:         3533498001           Parameter         Units         Result         Initit         MDL         Analyzed         Qualifiers           12.4-Trichlorobenzene         ug/L         1.4 U         5.0         1.4         03/20/20 10:19         1.4         0.3/20/20 10:19           1.2-Dichlorobenzene         ug/L         1.4 U         5.0         1.5         03/20/20 10:19           1.2-Dichlorobenzene         ug/L         1.4 U         5.0         1.5         03/20/20 10:19           1.2-Dichlorobenzene         ug/L         1.2 U         8.0         1.2         03/20/20 10:19           1.3-Dinitrobenzene         ug/L         1.0 U         5.0         0.36         03/20/20 10:19           2.3.4.5 Tetrachlorophenol         ug/L         1.0 U         5.0         0.36         03/20/20 10:19           2.3.4.5 Tetrachlorophenol         ug/L         0.23 U         4.0         0.23         03/20/20 10:19           2.4.5 Trichlorophenol         ug/L         0.34 U         2.0         0.34         03/20/20 10:19           2.4.5 Trichlorophenol         ug/L         0.34 U         2.0         0.34         03/20/20 10:19           2.4.5 Trichlorophenol         ug/L         0.24 U         0.0<                                                                                                                                                 |                                  |       |              |             |                    |                |            |
| Parameter         Units         Reporting<br>Result         MDL         Analyzed         Qualifiers           1.2.4-Trichiorobenzene         ug/L         1.4 U         5.0         1.4 03/20/20 10:19         1.1           1.2.Dichlorobenzene         ug/L         1.9 U         6.0         1.9 03/20/20 10:19         03/20/20 10:19           1.2.Dichlorobenzene         ug/L         1.5 U         5.0         1.4 03/20/20 10:19         03/20/20 10:19           1.3.Dichlorobenzene         ug/L         1.5 U         5.0         1.5 03/20/20 10:19         03/20/20 10:19           1.4.Dichlorobenzene         ug/L         1.5 U         5.0         1.6 03/20/20 10:19         03/20/20 10:19           2.3.6.Ferrachlorophenol         ug/L         1.0 U         5.0         0.3 03/20/20 10:19         03/20/20 10:19           2.4.6-Trichlorophenol         ug/L         0.23 U         0.0         0.3 03/20/20 10:19         03/20/20 10:19           2.4.6-Trichlorophenol         ug/L         0.36 U         2.0         0.3 03/20/20 10:19         03/20/20 10:19           2.4.0-Dichlorophenol         ug/L         0.34 U         2.0         0.3 03/20/20 10:19         03/20/20 10:19           2.4.Dichlorophenol         ug/L         0.34 U         0.0         0.3/20/20 10:19                                                                                                      | METHOD BLANK: 3366772            |       | Matrix:      | Water       |                    |                |            |
| Parameter         Units         Result         Limit         MDL         Analyzed         Qualifiers           1,2.4-Trichlorobenzene         ug/L         1.4 U         5.0         1.4         03/20/20 10:19           1.2-Dinklorobenzene         ug/L         1.9 U         6.0         1.9 03/20/20 10:19         03/20/20 10:19           1.2-Dinklorobenzene         ug/L         1.5 U         5.0         1.5 03/20/20 10:19         03/20/20 10:19           1.3-Dinklorobenzene         ug/L         1.2 U         8.0         1.2 03/20/20 10:19         03/20/20 10:19           1.3-Dinklorobenzene         ug/L         1.5 U         5.0         03/20/20 10:19         03/20/20 10:19           2.3.4.6-Trackhorophenol         ug/L         1.0 U         5.0         0.3         03/20/20 10:19           2.4.6-Trackhorophenol         ug/L         0.34 U         2.0         0.36         03/20/20 10:19           2.4.6-Trackhorophenol         ug/L         0.34 U         2.0         0.36         03/20/20 10:19           2.4.6-Trackhorophenol         ug/L         0.34 U         2.0         0.34         03/20/20 10:19           2.4.6-Trackhorophenol         ug/L         0.34 U         2.0         0.34         03/20/20 10:19           2.4                                                                                                                                        | Associated Lab Samples: 35538498 | 001   |              |             |                    |                |            |
| Parameter         Units         Result         Limit         MDL         Analyzed         Qualifiers           1,2.4-Trichlorobenzene         ug/L         1.4 U         5.0         1.4         03/20/20 10:19           1.2-Dinklorobenzene         ug/L         1.9 U         6.0         1.9 03/20/20 10:19         03/20/20 10:19           1.2-Dinklorobenzene         ug/L         1.5 U         5.0         1.5 03/20/20 10:19         03/20/20 10:19           1.3-Dinklorobenzene         ug/L         1.2 U         8.0         1.2 03/20/20 10:19         03/20/20 10:19           1.3-Dinklorobenzene         ug/L         1.5 U         5.0         03/20/20 10:19         03/20/20 10:19           2.3.4.6-Trackhorophenol         ug/L         1.0 U         5.0         0.3         03/20/20 10:19           2.4.6-Trackhorophenol         ug/L         0.34 U         2.0         0.36         03/20/20 10:19           2.4.6-Trackhorophenol         ug/L         0.34 U         2.0         0.36         03/20/20 10:19           2.4.6-Trackhorophenol         ug/L         0.34 U         2.0         0.34         03/20/20 10:19           2.4.6-Trackhorophenol         ug/L         0.34 U         2.0         0.34         03/20/20 10:19           2.4                                                                                                                                        |                                  |       | Blank        | Reporting   |                    |                |            |
| 1.2-Dichlorobenzeneug/L1.5 U5.01.503/20/20 10:191.2-Dinhrubhydrazineug/L1.4 U6.01.403/20/20 10:191.3-Dichlorobenzeneug/L1.5 U6.01.403/20/20 10:191.3-Dichlorobenzeneug/L1.5 U6.01.503/20/20 10:191.4-Dichlorobenzeneug/L1.5 U5.01.503/20/20 10:192.3,6-Tetrachlorophenolug/L1.0 U5.01.003/20/20 10:192.3,6-Tetrachlorophenolug/L1.9 U9.01.003/20/20 10:192.4,6-Trichlorophenolug/L0.36 U2.00.3603/20/20 10:192.4,6-Trichlorophenolug/L0.36 U2.00.3603/20/20 10:192.4,6-Trichlorophenolug/L0.36 U2.00.3603/20/20 10:192.4,6-Trichlorophenolug/L1.0 U5.01.003/20/20 10:192.4,6-Trichlorophenolug/L2.6 U2.02.603/20/20 10:192.4,6-Trichlorophenolug/L2.6 U2.00.3603/20/20 10:192.4,6-Trichlorophenolug/L0.28 U2.00.2603/20/20 10:192.4,6-Trichlorophenolug/L0.28 U5.00.3003/20/20 10:192.4,6-Trichlorophenolug/L0.28 U5.00.4003/20/20 10:192.4,6-Trichlorophenolug/L1.4 U5.01.403/20/20 10:192.4,6-Trichlorophenolug/L1.4 U5.01.403/20/20 10:19<                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parameter                        | Units |              |             | MDL                | Analyzed       | Qualifiers |
| 1.2-Dichlorobenzeneug/L1.5 U5.01.503/20/20 10:191.2-Dinhrubhydrazineug/L1.4 U6.01.403/20/20 10:191.3-Dichlorobenzeneug/L1.5 U6.01.403/20/20 10:191.3-Dichlorobenzeneug/L1.5 U6.01.503/20/20 10:191.4-Dichlorobenzeneug/L1.5 U5.01.503/20/20 10:192.3,6-Tetrachlorophenolug/L1.0 U5.01.003/20/20 10:192.3,6-Tetrachlorophenolug/L1.9 U9.01.003/20/20 10:192.4,6-Trichlorophenolug/L0.36 U2.00.3603/20/20 10:192.4,6-Trichlorophenolug/L0.36 U2.00.3603/20/20 10:192.4,6-Trichlorophenolug/L0.36 U2.00.3603/20/20 10:192.4,6-Trichlorophenolug/L1.0 U5.01.003/20/20 10:192.4,6-Trichlorophenolug/L2.6 U2.02.603/20/20 10:192.4,6-Trichlorophenolug/L2.6 U2.00.3603/20/20 10:192.4,6-Trichlorophenolug/L0.28 U2.00.2603/20/20 10:192.4,6-Trichlorophenolug/L0.28 U5.00.3003/20/20 10:192.4,6-Trichlorophenolug/L0.28 U5.00.4003/20/20 10:192.4,6-Trichlorophenolug/L1.4 U5.01.403/20/20 10:192.4,6-Trichlorophenolug/L1.4 U5.01.403/20/20 10:19<                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 2 4-Trichlorobenzene           | ua/l  | 14 U         | 5.0         | 14                 | 03/20/20 10.19 |            |
| 1.2-Dinkinobenzene       ug/L       1.9 U       6.0       1.9 03/20/20 10:19         1.2-Diphenylhydrazine       ug/L       1.5 U       5.0       1.5 03/20/20 10:19         1.3-Dinkinobenzene       ug/L       1.2 U       8.0       1.2 03/20/20 10:19         1.3-Dinkinobenzene       ug/L       1.5 U       5.0       1.5 03/20/20 10:19         1.4-Dickinobenzene       ug/L       0.36 U       5.0       0.36 03/20/20 10:19         2.3.4.6-Tetrachlorophenol       ug/L       1.9 U       9.0       1.9 03/20/20 10:19         2.3.5.6-Tetrachlorophenol       ug/L       0.32 U       4.0       0.32 03/20/20 10:19         2.4.6-Trichiorophenol       ug/L       0.34 U       2.0       0.36 03/20/20 10:19         2.4.6-Trichiorophenol       ug/L       0.34 U       2.0       0.36 03/20/20 10:19         2.4-Dinktophenol       ug/L       2.6 U       2.0       0.26 03/20/20 10:19         2.4-Dinktophenol       ug/L       2.6 U       2.0       0.26 03/20/20 10:19         2.4-Dinktophenol       ug/L       1.4 U       5.0       0.32 03/20/20 10:19         2.4-Dinktophenol       ug/L       1.4 U       5.0       0.32 03/20/20 10:19         2.4-Dinktophenol       ug/L       1.4 U       5.0<                                                                                                                                                                                           |                                  | -     |              |             |                    |                |            |
| 1.2-Dipheryhtydrazine       ug/L       1.4       U       5.0       1.4       03/20/20       10.19         1.3-Dichlorobenzene       ug/L       1.5       U       8.0       1.2       03/20/20       10.19         1.4-Dichlorobenzene       ug/L       1.5       U       5.0       0.16       03/20/20       10.19         2.3.46-Tetrachlorophenol       ug/L       1.0       U       5.0       0.16       03/20/20       10.19         2.3.46-Tetrachlorophenol       ug/L       0.23       4.0       0.23       03/20/20       10.19         2.4.5-Trichlorophenol       ug/L       0.36       U       2.0       0.34       03/20/20       10.19         2.4.6-Trichlorophenol       ug/L       0.36       U       2.0       0.34       03/20/20       10.19         2.4.4-Dinitroblenol       ug/L       0.36       U       2.0       0.34       03/20/20       10.19         2.4-Dinitrobluene       ug/L       0.27       U       4.0       0.27       0.26/20       10.19         2.4-Dinitrobluene       ug/L       0.27       U       4.0       0.27       0.20/20       10.19         2.4-Dinitrobluene       ug/L       1.4       U                                                                                                                                                                                                                                                                           |                                  | -     |              |             |                    |                |            |
| 1,3-Dinktorbenzene       ug/L       1,5 U       5.0       1,5 03/20/20 10.19         1,3-Dinktobenzene       ug/L       1,5 U       5.0       1,5 03/20/20 10.19         1.4-Michlynbehthalene       ug/L       0.36 U       5.0       0.36 03/20/20 10.19         2,3,4,6-Tetrachlorophenol       ug/L       1.0 U       5.0       0.36 03/20/20 10.19         2,3,5,6-Tetrachlorophenol       ug/L       0.23 U       4.0       0.32 03/20/20 10.19         2,4,6-Trichtorophenol       ug/L       0.34 U       2.0       0.36 03/20/20 10.19         2,4,6-Trichtorophenol       ug/L       0.34 U       2.0       0.34 03/20/20 10.19         2,4-Dinktophenol       ug/L       0.4 U       0.0       0.320/20 10.19         2,4-Dinktophenol       ug/L       2.6 U       2.0       0.36 03/20/20 10.19         2,4-Dinktophenol       ug/L       2.6 U       2.0       2.6 03/20/20 10.19         2,4-Dinktophenol       ug/L       0.28 U       5.0       0.28 03/20/20 10.19         2,4-Dinktophenol       ug/L       0.34 U       5.0       0.34 03/20/20 10.19         2,4-Dinktophenol       ug/L       0.34 U       5.0       0.38 03/20/20 10.19         2,6-Dinktorobenend       ug/L       0.34 U       5.0 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                       | -                                |       |              |             |                    |                |            |
| 1.3-Dinitrobenzene       ug/L       1.2       U       8.0       1.2       03/20/20 10:19         1.4-Dichiorobenzene       ug/L       1.5       U       5.0       0.36       03/20/20 10:19         2.3.4.6-Tetrachlorophenol       ug/L       1.0       U       5.0       0.36       03/20/20 10:19         2.3.4.5-Trichlorophenol       ug/L       0.23       U       4.0       0.23       03/20/20 10:19         2.4.5-Trichlorophenol       ug/L       0.36       U       0.30       03/20/20 10:19         2.4.5-Trichlorophenol       ug/L       0.36       U       0.36       03/20/20 10:19         2.4.5-Dichlorophenol       ug/L       0.26       U       0.37       03/20/20 10:19         2.4-Dinitrobluene       ug/L       0.27       U       0.20       03       03/20/20 10:19         2.4-Dinitrobluene       ug/L       0.27       U       0.27       03/20/20 10:19         2.4-Dinitrobluene       ug/L       0.28       U       0.0       0.27       03/20/20 10:19         2.4-Dinitrobluene       ug/L       0.28       U       2.0       0.3       03/20/20 10:19         2.4-Dinitrobluene       ug/L       0.34       U       0.0       0.                                                                                                                                                                                                                                                   |                                  |       |              |             |                    |                |            |
| 1,4-Dichlorobenzene         ug/L         1,5         5.0         1,5         0.320/20 10:19           1-Methylnaphthalene         ug/L         0.36         U         5.0         0.36         03/20/20 10:19           2,3,6,6-Tertachlorophenol         ug/L         1.9         U         9.0         0.320/20 10:19         N2           2,4,6-Trichlorophenol         ug/L         0.32         U         4.0         0.23         03/20/20 10:19         N2           2,4,6-Trichlorophenol         ug/L         0.34         U         2.0         0.36         03/20/20 10:19           2,4-Dintrohphenol         ug/L         0.34         U         2.0         0.34         03/20/20 10:19           2,4-Dintrohphenol         ug/L         2.6         U         2.0         0.28         03/20/20 10:19           2,4-Dintrohphenol         ug/L         0.27         U         4.0         0.32         0.32/20/20 10:19           2,4-Dintrohphenol         ug/L         0.34         U         5.0         0.34         03/20/20 10:19           2,4-Dintrohphenol         ug/L         0.34         U         5.0         0.34         03/20/20 10:19           2,4-Dintrohphenol         ug/L         1.4         U                                                                                                                                                                                    | -                                | •     |              |             |                    |                |            |
| 1-Methylnaphthalene         ug/L         0.36         U         5.0         0.38         03/20/20 10:19           2,3,4,6 - Tetrachlorophenol         ug/L         1.0         U         5.0         1.0         03/20/20 10:19         N2           2,3,5,6 - Tetrachlorophenol         ug/L         0.23         U         4.0         0.23         03/20/20 10:19         N2           2,4,6-Trichlorophenol         ug/L         0.34         U         0.36         03/20/20 10:19         N2           2,4-Dichlorophenol         ug/L         0.34         U         2.0         0.36         03/20/20 10:19           2,4-Dinitroblenol         ug/L         0.27         U         0.0         2.6         03/20/20 10:19           2,4-Dinitrobluene         ug/L         0.27         U         0.0         2.8         03/20/20 10:19           2,4-Dinitrobluene         ug/L         0.34         U         5.0         0.34         03/20/20 10:19           2,4-Dinitrobluene         ug/L         0.34         U         5.0         0.38         03/20/20 10:19           2,4-Dinitrobluene         ug/L         1.4         U         5.0         1.4         03/20/20 10:19           2,4-Dinitrobluene         ug/L <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                          |                                  | -     |              |             |                    |                |            |
| 2,3,4,6-Tetrachlorophenol       ug/L       1.0       U       5.0       1.0       03/20/20 10:19         2,3,5,6-Tetrachlorophenol       ug/L       0.23       U       0.20       30/20/20 10:19         2,4,6-Trichlorophenol       ug/L       0.36       U       2.0       0.36       03/20/20 10:19         2,4-6-Trichlorophenol       ug/L       0.36       U       2.0       0.36       03/20/20 10:19         2,4-Dinitrophenol       ug/L       0.34       U       0.0       03/20/20 10:19         2,4-Dinitrophenol       ug/L       0.26       U       0.02/20 10:19         2,4-Dinitrophenol       ug/L       0.28       U       2.0       0.26       03/20/20 10:19         2,4-Dinitrotoluene       ug/L       0.28       U       0.02       0.32/20/20 10:19         2,4-Dinitrotoluene       ug/L       0.28       U       0.04       03/20/20 10:19         2,4-Dinitrotoluene       ug/L       0.28       U       0.03       03/20/20 10:19         2,4-Dinitrotoluene       ug/L       0.28       U       0.03       03/20/20 10:19         2,4-Dinitrotoluene       ug/L       1.4       U       5.0       1.4       03/20/20 10:19         2,4-Din                                                                                                                                                                                                                                                  | -                                | -     |              |             |                    |                |            |
| 2,3,5,6-Tetrachlorophenol       ug/L       1,9       U       9,0       1,9       03/20/20       10:19       N2         2,4,5-Trichlorophenol       ug/L       0.36       U       2.0       0.36       03/20/20       10:19         2,4-Dichlorophenol       ug/L       0.34       U       2.0       0.34       03/20/20       10:19         2,4-Dinitrophenol       ug/L       0.6       U       2.0       0.34       03/20/20       10:19         2,4-Dinitrophenol       ug/L       0.27       U       4.0       0.27       03/20/20       10:19         2,4-Dinitrotoluene       ug/L       0.27       U       4.0       0.27       03/20/20       10:19         2,4-Dinitrotoluene       ug/L       0.27       U       4.0       0.27       03/20/20       10:19         2,4-Dinitrotoluene       ug/L       0.28       U       5.0       0.34       03/20/20       10:19         2,4-Dinitrotoluene       ug/L       0.41       U       5.0       0.36       03/20/20       10:19         2,4-Dinitrotoluene       ug/L       0.30       U       5.0       0.30       03/20/20       10:19         2,4-Dinitrotoluene       ug/L <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                     |                                  |       |              |             |                    |                |            |
| 2.4.5-Trichlorophenol       ug/L       0.23       U       4.0       0.23       03/20/20       10:19         2.4.5-Trichlorophenol       ug/L       0.36       U       2.0       0.36       03/20/20       10:19         2.4-Dinkrophenol       ug/L       0.34       U       2.0       0.34       03/20/20       10:19         2.4-Dinkrophenol       ug/L       2.6       U       20.0       2.6       03/20/20       10:19         2.4-Dinkrophenol       ug/L       0.27       U       4.0       0.27       03/20/20       10:19         2.4-Dinkrobluene       ug/L       0.28       U       2.0       0.26       03/20/20       10:19         2.Chlorophenol       ug/L       0.34       U       5.0       0.34       03/20/20       10:19         2.Chlorophenol       ug/L       1.4       U       5.0       0.30       03/20/20       10:19         2.Chlorophenol       ug/L       0.30       U       5.0       0.30       03/20/20       10:19         2.Chlorophenol       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         2.Methylphenol(m&p Cresol)       ug/L       0.22       U <t< td=""><td>• • • •</td><td></td><td></td><td></td><td></td><td></td><td>NO</td></t<>                                                                                                                                                                                                     | • • • •                          |       |              |             |                    |                | NO         |
| 2,4,6-Trichlorophenol       ug/L       0.36       U       2.0       0.36       03/20/20 10:19         2,4-Dinethylphenol       ug/L       0.34       U       2.0       0.34       03/20/20 10:19         2,4-Dinethylphenol       ug/L       2.6       U       20.0       2.6       03/20/20 10:19         2,4-Dinithylphenol       ug/L       0.27       U       4.0       0.27       03/20/20 10:19         2,4-Dinithylphenol       ug/L       0.27       U       4.0       0.28       03/20/20 10:19         2,4-Dinithylphenol       ug/L       0.34       U       5.0       0.34       03/20/20 10:19         2,4-Dinithylphenol(o-Cresol)       ug/L       1.4       U       5.0       0.38       03/20/20 10:19         2-Methylphenol(o-Cresol)       ug/L       1.3       U       5.0       0.30       03/20/20 10:19         2-Nitrophenol       ug/L       1.3       U       5.0       1.4       03/20/20 10:19         2-Nitrophenol(m&p Cresol)       ug/L       1.4       U       5.0       1.4       03/20/20 10:19         3-Nitroaniline       ug/L       1.4       U       5.0       1.4       03/20/20 10:19         4-Chlorophenylphenyl ether                                                                                                                                                                                                                                                      | • • • •                          |       |              |             |                    |                | NZ         |
| 2.4-Dichlorophenol       ug/L       0.34       U       2.0       0.34       03/20/20 10:19         2.4-Dinterthylphenol       ug/L       1.0       U       5.0       1.0       03/20/20 10:19         2.4-Dinitrobluene       ug/L       0.27       U       4.0       0.27       03/20/20 10:19         2.4-Dinitrobluene       ug/L       0.28       U       2.0       0.28       03/20/20 10:19         2.4-Dinitrobluene       ug/L       0.34       U       5.0       0.34       03/20/20 10:19         2.4-Dinitrobluene       ug/L       0.34       U       5.0       0.34       03/20/20 10:19         2.Chlorophenol       ug/L       1.4       U       5.0       0.34       03/20/20 10:19         2.Methylphenol(o-Cresol)       ug/L       0.30       U       5.0       0.30       03/20/20 10:19         2.Nitroanline       ug/L       1.4       U       5.0       1.4       03/20/20 10:19         3.3-Dichlorobenzidine       ug/L       1.4       U       5.0       1.4       03/20/20 10:19         4.4-Dinitro-2-methylphenol       ug/L       1.3       U       5.0       1.3       03/20/20 10:19         4.5-Diorobenzidine       ug/L                                                                                                                                                                                                                                                              |                                  |       |              |             |                    |                |            |
| 2,4-Dimethylphenol       ug/L       1.0       U       5.0       1.0       03/20/20       10:19         2,4-Dinitrophenol       ug/L       0.27       U       4.0       0.27       03/20/20       10:19         2,4-Dinitrobluene       ug/L       0.28       U       2.0       0.28       03/20/20       10:19         2.Chintrobluene       ug/L       0.34       U       5.0       0.34       03/20/20       10:19         2.Chintrobluene       ug/L       0.34       U       5.0       0.38       03/20/20       10:19         2.Chintrobluene       ug/L       1.4       U       5.0       0.38       03/20/20       10:19         2.Chintrophenol       ug/L       1.3       U       5.0       0.38       03/20/20       10:19         2.Methylphenol(o-Cresol)       ug/L       1.3       U       5.0       1.4       03/20/20       10:19         2.Nitrophenol       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         3.3-Dichorobenzidine       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         3.4-Methylphenol(m& Ug/L       1.5       U       1.0       0                                                                                                                                                                                                                                                                                        | •                                |       |              |             |                    |                |            |
| 2,4-Dinitrophenol       ug/L       2.6 U       2.0.0       2.6 03/20/20 10:19         2,4-Dinitrotoluene       ug/L       0.27 U       4.0       0.27 03/20/20 10:19         2,6-Dinitrotoluene       ug/L       0.28 U       2.0       0.28 03/20/20 10:19         2-Chloronaphthalene       ug/L       0.34 U       5.0       0.34 03/20/20 10:19         2-Chloronaphthalene       ug/L       0.28 U       5.0       0.38 03/20/20 10:19         2-Methylphenol(o-Cresol)       ug/L       0.30 U       5.0       0.30 03/20/20 10:19         2-Nitroaniline       ug/L       1.3 U       5.0       1.3 03/20/20 10:19         2-Nitrophenol       ug/L       0.22 U       10.0       0.22 03/20/20 10:19         3-Nitroaniline       ug/L       1.0 U       10.0       0.1.0       03/20/20 10:19         3-Nitroaniline       ug/L       1.3 U       5.0       1.3       03/20/20 10:19         3-Nitroaniline       ug/L       1.7 U       5.0       1.7       03/20/20 10:19         4-Chloro-3-methylphenol       ug/L       1.4 U       5.0       1.4       03/20/20 10:19         4-Chloro-3-methylphenol       ug/L       1.4 U       5.0       1.4       03/20/20 10:19         4-Chloro-3-meth                                                                                                                                                                                                             |                                  |       |              |             |                    |                |            |
| 2.4-Dinitrololuene       ug/L       0.27       U       4.0       0.27       03/20/20       10:19         2.4-Dinitrololuene       ug/L       0.28       U       2.0       0.28       03/20/20       10:19         2.4-Dinitrololuene       ug/L       0.34       U       5.0       0.34       03/20/20       10:19         2.4-Dinitrololuene       ug/L       1.4       U       5.0       0.28       03/20/20       10:19         2.Chiorophenol       ug/L       0.28       U       5.0       0.28       03/20/20       10:19         2.Methylphenol(o-Cresol)       ug/L       1.3       U       5.0       0.30       03/20/20       10:19         2.Nitrophenol       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         3.4-Methylphenol(m&p Cresol)       ug/L       1.4       U       5.0       1.3       03/20/20       10:19         3.4-Methylphenol       ug/L       1.4       U       5.0       1.3       03/20/20       10:19         3.4-Methylphenol(m&p Cresol)       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         3.4-Dichroz-methylphenol       ug/L       1.4                                                                                                                                                                                                                                                                             |                                  |       |              |             |                    |                |            |
| 2,6-Dinitrotoluene       ug/L       0.28       U       2.0       0.28       03/20/20       10:19         2-Chloronaphthalene       ug/L       0.34       U       5.0       0.34       03/20/20       10:19         2-Chlorophenol       ug/L       1.4       U       5.0       0.28       03/20/20       10:19         2-Methylnaphthalene       ug/L       0.30       U       5.0       0.28       03/20/20       10:19         2-Methylphenol(o-Cresol)       ug/L       0.30       U       5.0       0.30       03/20/20       10:19         2-Nitroaniline       ug/L       1.3       U       5.0       1.4       03/20/20       10:19         3-Witrobhenol       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         3-Nitroaniline       ug/L       1.0       U       10.0       0.0       0.0       3/20/20       10:19         4-Shorophenylphenol       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         3-Nitroaniline       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         4-Chloroaphenylphenyl ether       ug/L       1.4       <                                                                                                                                                                                                                                                                                    |                                  | •     |              |             |                    |                |            |
| 2-Chloronaphthalene         ug/L         0.34         U         5.0         0.34         03/20/20         10:19           2-Chlorophenol         ug/L         1.4         U         5.0         0.28         03/20/20         10:19           2-Methylnaphthalene         ug/L         0.28         U         5.0         0.28         03/20/20         10:19           2-Methylphenol(o-Cresol)         ug/L         1.3         U         5.0         0.30         03/20/20         10:19           2-Nitroanline         ug/L         1.3         U         5.0         0.30         03/20/20         10:19           3.4-Dichlorobenzidine         ug/L         1.4         U         5.0         1.4         03/20/20         10:19           3.3-Dichlorobenzidine         ug/L         1.0         U         10.0         0.022         03/20/20         10:19           4.6-Dinitro-2-methylphenol         ug/L         1.3         U         5.0         1.3         03/20/20         10:19           4.6-Dionitro-2-methylphenol         ug/L         1.4         U         5.0         1.4         03/20/20         10:19           4-Chloroanline         ug/L         1.4         U         5.0         1.4<                                                                                                                                                                                                | -                                | -     |              |             |                    |                |            |
| 2-Chlorophenol       ug/L       1.4       U       5.0       1.4       03/20/20 10:19         2-Methylphaphthalene       ug/L       0.28       U       5.0       0.28       03/20/20 10:19         2-Methylphenol(o-Cresol)       ug/L       1.3       U       5.0       0.30       03/20/20 10:19         2-Nitrophenol       ug/L       1.3       U       5.0       1.3       03/20/20 10:19         2-Nitrophenol       ug/L       1.4       U       5.0       1.4       03/20/20 10:19         3-Nitrophenol       ug/L       0.22       U       10.0       0.22       03/20/20 10:19         3-Aitrophenol       ug/L       1.0       U       10.0       1.0       03/20/20 10:19         3-Nitrophino       ug/L       1.3       U       5.0       1.3       03/20/20 10:19         3-Nitrophino/2-methylphenol       ug/L       1.6       U       20.0       4.6       03/20/20 10:19         4-Schlorophenylphenyl ether       ug/L       1.7       U       5.0       1.7       03/20/20 10:19         4-Chloropaniline       ug/L       1.4       U       5.0       1.4       03/20/20 10:19         4-Nitrophenol       ug/L       0.19       <                                                                                                                                                                                                                                                                 |                                  |       |              |             |                    |                |            |
| 2-Methylnaphthalene         ug/L         0.28         U         5.0         0.28         03/20/20         10:19           2-Methylphenol(o-Cresol)         ug/L         0.30         U         5.0         0.30         03/20/20         10:19           2-Nitroaniline         ug/L         1.3         U         5.0         1.3         03/20/20         10:19           2-Nitroaniline         ug/L         1.4         U         5.0         1.4         03/20/20         10:19           3-Nichlorobenzidine         ug/L         1.4         U         5.0         1.3         03/20/20         10:19           3-Nitroaniline         ug/L         1.0         U         10.0         0.0         03/20/20         10:19           3-Nitroaniline         ug/L         1.3         U         5.0         1.3         03/20/20         10:19           4-Chioro-3-methylphenol         ug/L         1.4         U         5.0         1.7         03/20/20         10:19           4-Chioroaniline         ug/L         1.4         U         5.0         1.4         03/20/20         10:19           4-Chioroaniline         ug/L         0.14         U         0.019         03/20/20         10:19 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                               | -                                |       |              |             |                    |                |            |
| 2-Methylphenol(o-Cresol)       ug/L       0.30       U       5.0       0.30       03/20/20       10:19         2-Nitroaniline       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         2-Nitrophenol       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         3&4-Methylphenol(m&p Cresol)       ug/L       0.22       U       10.0       0.22       03/20/20       10:19         3.3'-Dichlorobenzidine       ug/L       1.0       U       10.0       1.0       03/20/20       10:19         3.Nitroaniline       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         4.6-Dinitro-2-methylphenol       ug/L       4.6       U       20.0       4.6       03/20/20       10:19         4-Chloroa-smethylphenol       ug/L       1.7       U       5.0       1.7       03/20/20       10:19         4-Chlorophenylphenyl ether       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         4-Chlorophenylphenyl ether       ug/L       0.19       U       2.0       1.4       03/20/20       10:19         4-Nitroaphenol       ug/L       0                                                                                                                                                                                                                                                                      |                                  |       |              |             |                    |                |            |
| 2-Nitroaniline       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         2-Nitrophenol       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         3&4-Methylphenol(m&p Cresol)       ug/L       0.22       U       10.0       0.22       03/20/20       10:19         3.3-Dichlorobenzidine       ug/L       1.0       U       10.0       0.3/20/20       10:19         3.3-Dichlorobenzidine       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         3.3-Dichlorobenzidine       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         3-Nitroaniline       ug/L       1.3       U       5.0       1.7       03/20/20       10:19         4-Chloro-3-methylphenol       ug/L       1.7       U       5.0       1.7       03/20/20       10:19         4-Chloro-3-methylphenol       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         4-Chloroaniline       ug/L       0.19       U       4.0       0.19       03/20/20       10:19         4-Nitrophenol       ug/L       0.19       U       0.0                                                                                                                                                                                                                                                                                    | 2-Methylnaphthalene              | ug/L  |              | 5.0         |                    |                |            |
| 2-Nitrophenolug/L1.4U5.01.403/20/2010:193&4-Methylphenol(m&p Cresol)ug/L0.22U10.00.2203/20/2010:193,3'-Dichlorobenzidineug/L1.0U10.01.003/20/2010:193-Nitroanilineug/L1.3U5.01.303/20/2010:194,6-Dinitro-2-methylphenolug/L4.6U20.04.603/20/2010:194-Bromophenylphenyl etherug/L1.7U5.01.703/20/2010:194-Chloroa-illineug/L5.4U20.05.403/20/2010:194-Chlorophenylphenyl etherug/L1.4U5.01.403/20/2010:194-Chlorophenylphenyl etherug/L1.4U5.01.403/20/2010:194-Nitroanilineug/L0.19U4.00.1903/20/2010:194-Nitrophenolug/L0.19U20.02.003/20/2010:194-Nitrophenolug/L0.36U5.00.3603/20/2010:19Acenaphtheneug/L0.36U5.00.3003/20/2010:19Acenaphtheneug/L0.94U5.00.2203/20/2010:19Anilineug/L0.87U5.00.2203/20/2010:19Anilineug/L0.87U5.00.2203/20/2010:19Benzidin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Methylphenol(o-Cresol)         | ug/L  |              | 5.0         |                    |                |            |
| 3&4-Methylphenol(m&p Cresol)       ug/L       0.22       U       10.0       0.22       03/20/20       10:19         3,3'-Dichlorobenzidine       ug/L       1.0       U       10.0       1.0       03/20/20       10:19         3,3'-Dichlorobenzidine       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         3-Nitroaniline       ug/L       4.6       U       20.0       4.6       03/20/20       10:19         4-Bromophenylphenyl ether       ug/L       1.7       U       5.0       1.7       03/20/20       10:19         4-Chloro-3-methylphenol       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         4-Chloro-3-methylphenol       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         4-Chloro-3-methylphenol       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         4-Chloro-Benylphenyl ether       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         4-Chlorophenylphenyl ether       ug/L       0.19       U       20.0       2.0       03/20/20       10:19         4-Nitrophenol       ug/L <td>2-Nitroaniline</td> <td>ug/L</td> <td>1.3 U</td> <td>5.0</td> <td>1.3</td> <td>03/20/20 10:19</td> <td></td>                                                                                                                                               | 2-Nitroaniline                   | ug/L  | 1.3 U        | 5.0         | 1.3                | 03/20/20 10:19 |            |
| 3,3'-Dichlorobenzidine       ug/L       1.0       U       10.0       1.0       03/20/20       10:19         3-Nitroaniline       ug/L       1.3       U       5.0       1.3       03/20/20       10:19         4-Bromophenylphenol       ug/L       4.6       U       20.0       4.6       03/20/20       10:19         4-Bromophenylphenyl ether       ug/L       1.7       U       5.0       1.7       03/20/20       10:19         4-Chloro-3-methylphenol       ug/L       5.4       U       20.0       5.4       03/20/20       10:19         4-Chloro-3-methylphenol       ug/L       1.4       U       5.0       1.7       03/20/20       10:19         4-Chloroaniline       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         4-Chlorophenylphenyl ether       ug/L       1.4       U       5.0       1.4       03/20/20       10:19         4-Nitroaniline       ug/L       0.19       U       4.0       0.19       03/20/20       10:19         4-Nitroaniline       ug/L       0.30       U       5.0       0.36       03/20/20       10:19         Acenaphthene       ug/L       0.30       U <td>2-Nitrophenol</td> <td>ug/L</td> <td>1.4 U</td> <td>5.0</td> <td>1.4</td> <td>03/20/20 10:19</td> <td></td>                                                                                                                                                                   | 2-Nitrophenol                    | ug/L  | 1.4 U        | 5.0         | 1.4                | 03/20/20 10:19 |            |
| A-Nitroanilineug/L1.3U5.01.303/20/2010:194,6-Dinitro-2-methylphenolug/L4.6U20.04.603/20/2010:194-Bromophenylphenyl etherug/L1.7U5.01.703/20/2010:194-Chloro-3-methylphenolug/L5.4U20.05.403/20/2010:194-Chloroanilineug/L1.4U5.01.403/20/2010:194-Chlorophenylphenyl etherug/L1.4U5.01.403/20/2010:194-Chlorophenylphenyl etherug/L0.19U4.00.1903/20/2010:194-Nitroanilineug/L0.19U20.02.003/20/2010:194-Nitrophenolug/L0.36U5.00.3603/20/2010:194-Nitrophenolug/L0.30U5.00.3603/20/2010:19Acenaphtheneug/L0.30U5.00.3603/20/2010:19Acenaphthyleneug/L0.94U5.00.9403/20/2010:19Anthraceneug/L0.22U5.00.8703/20/2010:19Benzidineug/L0.87U25.00.8703/20/2010:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/2010:19Benzo(a)pyreneug/L0.17U1.00.1703/20/2010:19 </td <td>3&amp;4-Methylphenol(m&amp;p Cresol)</td> <td>ug/L</td> <td>0.22 U</td> <td>10.0</td> <td>0.22</td> <td>03/20/20 10:19</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3&4-Methylphenol(m&p Cresol)     | ug/L  | 0.22 U       | 10.0        | 0.22               | 03/20/20 10:19 |            |
| 4,6-Dinitro-2-methylphenolug/L4.6 U20.04.6 03/20/20 10:194-Bromophenylphenyl etherug/L1.7 U5.01.7 03/20/20 10:194-Chloro-3-methylphenolug/L5.4 U20.05.4 03/20/20 10:194-Chloroanilineug/L1.4 U5.01.4 03/20/20 10:194-Chlorophenylphenyl etherug/L1.4 U5.01.4 03/20/20 10:194-Chlorophenylphenyl etherug/L0.19 U4.00.19 03/20/20 10:194-Nitroanilineug/L0.19 U4.00.19 03/20/20 10:194-Nitrophenolug/L2.0 U20.02.003/20/20 10:194-Nitrophenolug/L0.36 U5.00.36 03/20/20 10:19Acenaphtheneug/L0.30 U5.00.3003/20/20 10:19Acenaphthyleneug/L0.94 U5.00.3003/20/20 10:19Anthraceneug/L0.94 U5.00.9403/20/20 10:19Benzidineug/L0.87 U25.00.8703/20/20 10:19Benzo(a)anthraceneug/L0.20 U5.00.2003/20/20 10:19Benzo(a)pyreneug/L0.17 U1.00.1703/20/20 10:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,3'-Dichlorobenzidine           | ug/L  | 1.0 U        | 10.0        | 1.0                | 03/20/20 10:19 |            |
| 4-Bromophenylphenyl etherug/L1.7U5.01.703/20/20 10:194-Chloro-3-methylphenolug/L5.4U20.05.403/20/20 10:194-Chloroanilineug/L1.4U5.01.403/20/20 10:194-Chlorophenylphenyl etherug/L1.4U5.01.403/20/20 10:194-Nitroanilineug/L0.19U4.00.1903/20/20 10:194-Nitrophenolug/L2.0U20.02.003/20/20 10:194-Nitrophenolug/L0.36U5.00.3603/20/20 10:194-Nitrophenolug/L0.36U5.00.3603/20/20 10:19Acenaphtheneug/L0.30U5.00.3603/20/20 10:19Acenaphthyleneug/L0.94U5.00.9403/20/20 10:19Anthraceneug/L0.22U5.00.2203/20/20 10:19Benzidineug/L0.87U25.00.8703/20/20 10:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/20 10:19Benzo(a)pyreneug/L0.17U1.00.1703/20/20 10:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-Nitroaniline                   | ug/L  | 1.3 U        | 5.0         | 1.3                | 03/20/20 10:19 |            |
| 4-Chloro-3-methylphenolug/L5.4U20.05.403/20/2010:194-Chloroanilineug/L1.4U5.01.403/20/2010:194-Chlorophenylphenyl etherug/L1.4U5.01.403/20/2010:194-Nitroanilineug/L0.19U4.00.1903/20/2010:194-Nitrophenolug/L2.0U20.02.003/20/2010:194-Nitrophenolug/L0.36U5.00.3603/20/2010:19Acenaphtheneug/L0.30U5.00.3603/20/2010:19Acenaphthyleneug/L0.30U5.00.3003/20/2010:19Anilineug/L0.94U5.00.9403/20/2010:19Anthraceneug/L0.94U5.00.9403/20/2010:19Benzidineug/L0.87U25.00.8703/20/2010:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/2010:19Benzo(a)pyreneug/L0.17U1.00.1703/20/2010:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,6-Dinitro-2-methylphenol       | ug/L  | 4.6 U        | 20.0        | 4.6                | 03/20/20 10:19 |            |
| 4-Chloroanilineug/L1.4 U5.01.403/20/20 10:194-Chlorophenylphenyl etherug/L1.4 U5.01.403/20/20 10:194-Nitroanilineug/L0.19 U4.00.1903/20/20 10:194-Nitrophenolug/L2.0 U20.02.003/20/20 10:19Acenaphtheneug/L0.36 U5.00.3603/20/20 10:19Acenaphthyleneug/L0.30 U5.00.3003/20/20 10:19Anilineug/L0.94 U5.00.9403/20/20 10:19Anthraceneug/L0.94 U5.00.9403/20/20 10:19Benzidineug/L0.87 U25.00.8703/20/20 10:19Benzo(a)anthraceneug/L0.20 U5.00.2003/20/20 10:19Benzo(a)pyreneug/L0.17 U1.00.1703/20/20 10:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Bromophenylphenyl ether        | ug/L  | 1.7 U        | 5.0         | 1.7                | 03/20/20 10:19 |            |
| 4-Chlorophenylphenyl etherug/L1.4U5.01.403/20/20 10:194-Nitroanilineug/L0.19U4.00.1903/20/20 10:194-Nitrophenolug/L2.0U20.02.003/20/20 10:19Acenaphtheneug/L0.36U5.00.3603/20/20 10:19Acenaphthyleneug/L0.30U5.00.3003/20/20 10:19Anilineug/L0.94U5.00.9403/20/20 10:19Anthraceneug/L0.94U5.00.9403/20/20 10:19Benzidineug/L0.87U25.00.8703/20/20 10:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/20 10:19Benzo(a)pyreneug/L0.17U1.00.1703/20/20 10:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Chloro-3-methylphenol          | ug/L  | 5.4 U        | 20.0        | 5.4                | 03/20/20 10:19 |            |
| 4-Nitroanilineug/L0.19U4.00.1903/20/2010:194-Nitrophenolug/L2.0U20.02.003/20/2010:19Acenaphtheneug/L0.36U5.00.3603/20/2010:19Acenaphthyleneug/L0.30U5.00.3003/20/2010:19Anilineug/L0.94U5.00.9403/20/2010:19Anthraceneug/L0.22U5.00.2203/20/2010:19Benzidineug/L0.87U25.00.8703/20/2010:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/2010:19Benzo(a)pyreneug/L0.17U1.00.1703/20/2010:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-Chloroaniline                  | ug/L  | 1.4 U        | 5.0         | 1.4                | 03/20/20 10:19 |            |
| 4-Nitroanilineug/L0.19U4.00.1903/20/2010:194-Nitrophenolug/L2.0U20.02.003/20/2010:19Acenaphtheneug/L0.36U5.00.3603/20/2010:19Acenaphthyleneug/L0.30U5.00.3003/20/2010:19Anilineug/L0.94U5.00.9403/20/2010:19Anthraceneug/L0.22U5.00.2203/20/2010:19Benzidineug/L0.87U25.00.8703/20/2010:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/2010:19Benzo(a)pyreneug/L0.17U1.00.1703/20/2010:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-Chlorophenylphenyl ether       | ug/L  | 1.4 U        | 5.0         | 1.4                | 03/20/20 10:19 |            |
| Acenaphtheneug/L0.36U5.00.3603/20/2010:19Acenaphthyleneug/L0.30U5.00.3003/20/2010:19Anilineug/L0.94U5.00.9403/20/2010:19Anthraceneug/L0.22U5.00.2203/20/2010:19Benzidineug/L0.87U25.00.8703/20/2010:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/2010:19Benzo(a)pyreneug/L0.17U1.00.1703/20/2010:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Nitroaniline                   | ug/L  |              |             |                    |                |            |
| Acenaphtheneug/L0.36U5.00.3603/20/2010:19Acenaphthyleneug/L0.30U5.00.3003/20/2010:19Anilineug/L0.94U5.00.9403/20/2010:19Anthraceneug/L0.22U5.00.2203/20/2010:19Benzidineug/L0.87U25.00.8703/20/2010:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/2010:19Benzo(a)pyreneug/L0.17U1.00.1703/20/2010:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Nitrophenol                    | ug/L  | 2.0 U        | 20.0        | 2.0                | 03/20/20 10:19 |            |
| Acenaphthyleneug/L0.30U5.00.3003/20/2010:19Anilineug/L0.94U5.00.9403/20/2010:19Anthraceneug/L0.22U5.00.2203/20/2010:19Benzidineug/L0.87U25.00.8703/20/2010:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/2010:19Benzo(a)pyreneug/L0.17U1.00.1703/20/2010:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acenaphthene                     |       |              | 5.0         | 0.36               | 03/20/20 10:19 |            |
| Anilineug/L0.94U5.00.940.3/20/2010:19Anthraceneug/L0.22U5.00.2203/20/2010:19Benzidineug/L0.87U25.00.8703/20/2010:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/2010:19Benzo(a)pyreneug/L0.17U1.00.1703/20/2010:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Acenaphthylene                   |       |              |             |                    | 03/20/20 10:19 |            |
| Anthraceneug/L0.22U5.00.2203/20/2010:19Benzidineug/L0.87U25.00.8703/20/2010:19Benzo(a)anthraceneug/L0.20U5.00.2003/20/2010:19Benzo(a)pyreneug/L0.17U1.00.1703/20/2010:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aniline                          |       |              |             |                    |                |            |
| Benzidine         ug/L         0.87         U         25.0         0.87         03/20/20         10:19           Benzo(a)anthracene         ug/L         0.20         U         5.0         0.20         03/20/20         10:19           Benzo(a)pyrene         ug/L         0.17         U         1.0         0.17         03/20/20         10:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Anthracene                       |       |              |             |                    |                |            |
| Benzo(a)anthracene         ug/L         0.20         U         5.0         0.20         03/20/20         10:19           Benzo(a)pyrene         ug/L         0.17         U         1.0         0.17         03/20/20         10:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzidine                        |       |              |             |                    |                |            |
| Benzo(a)pyrene ug/L 0.17 U 1.0 0.17 03/20/20 10:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |       |              |             |                    |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |       |              |             |                    |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |       |              |             |                    |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                              | 5     |              |             |                    |                |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Matrix: Water

| Project:          | Safety Kleen Facility |
|-------------------|-----------------------|
| Pace Project No.: | 35538498              |

#### METHOD BLANK: 3366772

Associated Lab Samples: 35538498001

| Associated Lab Samples. 35538498 | 5001  |        |           |      |                |            |
|----------------------------------|-------|--------|-----------|------|----------------|------------|
| _                                |       | Blank  | Reporting |      |                |            |
| Parameter                        | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Benzo(g,h,i)perylene             | ug/L  | 0.17 U | 5.0       | 0.17 | 03/20/20 10:19 |            |
| Benzo(k)fluoranthene             | ug/L  | 0.18 U | 4.0       | 0.18 | 03/20/20 10:19 |            |
| Benzyl alcohol                   | ug/L  | 1.3 U  | 5.0       | 1.3  | 03/20/20 10:19 |            |
| bis(2-Chloroethoxy)methane       | ug/L  | 1.6 U  | 5.0       | 1.6  | 03/20/20 10:19 |            |
| bis(2-Chloroethyl) ether         | ug/L  | 0.34 U | 4.0       | 0.34 | 03/20/20 10:19 |            |
| bis(2-Chloroisopropyl) ether     | ug/L  | 1.8 U  | 6.0       | 1.8  | 03/20/20 10:19 |            |
| bis(2-Ethylhexyl)phthalate       | ug/L  | 1.1 U  | 5.0       | 1.1  | 03/20/20 10:19 |            |
| Butylbenzylphthalate             | ug/L  | 1.1 U  | 5.0       | 1.1  | 03/20/20 10:19 |            |
| Caprolactam                      | ug/L  | 0.40 U | 5.0       | 0.40 | 03/20/20 10:19 | N2         |
| Carbazole                        | ug/L  | 1.1 U  | 5.0       | 1.1  | 03/20/20 10:19 |            |
| Chrysene                         | ug/L  | 0.20 U | 5.0       | 0.20 | 03/20/20 10:19 |            |
| Di-n-butylphthalate              | ug/L  | 1.1 U  | 5.0       | 1.1  | 03/20/20 10:19 |            |
| Di-n-octylphthalate              | ug/L  | 0.92 U | 5.0       | 0.92 | 03/20/20 10:19 |            |
| Dibenz(a,h)anthracene            | ug/L  | 0.18 U | 2.0       | 0.18 | 03/20/20 10:19 |            |
| Dibenzofuran                     | ug/L  | 1.5 U  | 5.0       | 1.5  | 03/20/20 10:19 |            |
| Diethylphthalate                 | ug/L  | 1.4 U  | 5.0       | 1.4  | 03/20/20 10:19 |            |
| Dimethylphthalate                | ug/L  | 1.4 U  | 5.0       | 1.4  | 03/20/20 10:19 |            |
| Fluoranthene                     | ug/L  | 0.21 U | 5.0       | 0.21 | 03/20/20 10:19 |            |
| Fluorene                         | ug/L  | 0.34 U | 5.0       | 0.34 | 03/20/20 10:19 |            |
| Hexachloro-1,3-butadiene         | ug/L  | 0.35 U | 2.0       | 0.35 | 03/20/20 10:19 |            |
| Hexachlorobenzene                | ug/L  | 0.29 U | 1.0       | 0.29 | 03/20/20 10:19 |            |
| Hexachlorocyclopentadiene        | ug/L  | 3.4 U  | 11.0      | 3.4  | 03/20/20 10:19 |            |
| Hexachloroethane                 | ug/L  | 1.4 U  | 5.0       | 1.4  | 03/20/20 10:19 |            |
| Indeno(1,2,3-cd)pyrene           | ug/L  | 0.17 U | 2.0       | 0.17 | 03/20/20 10:19 |            |
| lsophorone                       | ug/L  | 1.7 U  | 5.0       | 1.7  | 03/20/20 10:19 |            |
| N-Nitroso-di-n-propylamine       | ug/L  | 0.33 U | 4.0       | 0.33 | 03/20/20 10:19 |            |
| N-Nitrosodimethylamine           | ug/L  | 0.20 U | 2.0       | 0.20 | 03/20/20 10:19 |            |
| N-Nitrosodiphenylamine           | ug/L  | 1.2 U  | 5.0       | 1.2  | 03/20/20 10:19 |            |
| Naphthalene                      | ug/L  | 0.39 U | 5.0       | 0.39 | 03/20/20 10:19 |            |
| Nitrobenzene                     | ug/L  | 0.37 U | 4.0       | 0.37 | 03/20/20 10:19 |            |
| Pentachlorophenol                | ug/L  | 1.6 U  | 20.0      | 1.6  | 03/20/20 10:19 |            |
| Phenanthrene                     | ug/L  | 0.23 U | 5.0       | 0.23 | 03/20/20 10:19 |            |
| Phenol                           | ug/L  | 0.63 U | 5.0       | 0.63 | 03/20/20 10:19 |            |
| Pyrene                           | ug/L  | 0.21 U | 5.0       | 0.21 | 03/20/20 10:19 |            |
| Pyridine                         | ug/L  | 1.1 U  | 5.0       | 1.1  | 03/20/20 10:19 |            |
| 2,4,6-Tribromophenol (S)         | %     | 100    | 10-126    |      | 03/20/20 10:19 |            |
| 2-Fluorobiphenyl (S)             | %     | 79     | 10-96     |      | 03/20/20 10:19 |            |
| 2-Fluorophenol (S)               | %     | 47     | 10-55     |      | 03/20/20 10:19 |            |
| Nitrobenzene-d5 (S)              | %     | 71     | 10-94     |      | 03/20/20 10:19 |            |
| p-Terphenyl-d14 (S)              | %     | 87     | 24-129    |      | 03/20/20 10:19 |            |
| Phenol-d5 (S)                    | %     | 35     | 10-35     |      | 03/20/20 10:19 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### Project: Safety Kleen Facility

35538498 Pace Project No.:

#### LABORATORY CONTROL SAMPLE: 3366773

| Parameter                    | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|------------------------------|-------|----------------|---------------|--------------|-----------------|------------|
|                              |       |                |               |              |                 |            |
| 1,2,4-Trichlorobenzene       | ug/L  | 50             | 33.8          | 68           | 33-89           |            |
| 1,2-Dichlorobenzene          | ug/L  | 50             | 32.3          | 65           | 30-85           |            |
| 1,2-Dinitrobenzene           | ug/L  | 50             | 43.9          | 88           | 55-111          |            |
| 1,2-Diphenylhydrazine        | ug/L  | 50             | 37.4          | 75           | 49-106          |            |
| ,3-Dichlorobenzene           | ug/L  | 50             | 31.7          | 63           | 28-83           |            |
| ,3-Dinitrobenzene            | ug/L  | 50             | 45.8          | 92           | 55-114          |            |
| ,4-Dichlorobenzene           | ug/L  | 50             | 32.0          | 64           | 26-87           |            |
| I-Methylnaphthalene          | ug/L  | 50             | 35.1          | 70           | 40-94           |            |
| 2,3,4,6-Tetrachlorophenol    | ug/L  | 50             | 42.5          | 85           | 56-108          |            |
| .,3,5,6-Tetrachlorophenol    | ug/L  | 50             | 43.8          | 88           | 57-108          | N2         |
| ,4,5-Trichlorophenol         | ug/L  | 50             | 41.4          | 83           | 46-111          |            |
| ,4,6-Trichlorophenol         | ug/L  | 50             | 40.1          | 80           | 45-108          |            |
| ,4-Dichlorophenol            | ug/L  | 50             | 37.1          | 74           | 46-94           |            |
| ,4-Dimethylphenol            | ug/L  | 50             | 37.5          | 75           | 44-92           |            |
| ,4-Dinitrophenol             | ug/L  | 50             | 46.4          | 93           | 49-123          |            |
| ,4-Dinitrotoluene            | ug/L  | 50             | 45.6          | 91           | 47-120          |            |
| ,6-Dinitrotoluene            | ug/L  | 50             | 42.9          | 86           | 57-107          |            |
| -Chloronaphthalene           | ug/L  | 50             | 34.3          | 69           | 39-98           |            |
| -Chlorophenol                | ug/L  | 50             | 32.8          | 66           | 35-83           |            |
| Methylnaphthalene            | ug/L  | 50             | 35.7          | 71           | 39-95           |            |
| Methylphenol(o-Cresol)       | ug/L  | 50             | 31.3          | 63           | 29-84           |            |
| Nitroaniline                 | ug/L  | 50             | 43.0          | 86           | 56-107          |            |
| Nitrophenol                  | ug/L  | 50<br>50       | 37.6          | 75           | 43-96           |            |
| 4-Methylphenol(m&p Cresol)   | ug/L  | 50<br>50       | 29.5          | 59           | 26-82           |            |
| 3'-Dichlorobenzidine         | ug/L  | 50<br>50       | 44.5          | 89           | 61-113          |            |
| Nitroaniline                 | ug/L  | 50<br>50       | 39.3          | 79           | 56-104          |            |
|                              | -     | 50<br>50       | 50.0          | 100          | 51-131          |            |
| 6-Dinitro-2-methylphenol     | ug/L  |                |               |              |                 |            |
| Bromophenylphenyl ether      | ug/L  | 50             | 41.8          | 84           | 51-105          |            |
| Chloro-3-methylphenol        | ug/L  | 50             | 38.4          | 77           | 51-98           |            |
| Chloroaniline                | ug/L  | 50             | 38.2          | 76           | 50-92           |            |
| Chlorophenylphenyl ether     | ug/L  | 50             | 40.2          | 80           | 48-103          |            |
| Nitroaniline                 | ug/L  | 50             | 45.6          | 91           | 61-108          |            |
| -Nitrophenol                 | ug/L  | 50             | 18.6 I        | 37           | 10-61           |            |
| cenaphthene                  | ug/L  | 50             | 39.0          | 78           | 45-102          |            |
| cenaphthylene                | ug/L  | 50             | 38.2          | 76           | 46-99           |            |
| niline                       | ug/L  | 50             | 33.5          | 67           | 33-88           |            |
| nthracene                    | ug/L  | 50             | 41.4          | 83           | 56-106          |            |
| senzidine                    | ug/L  | 50             | 28.5          | 57           | 10-110          |            |
| enzo(a)anthracene            | ug/L  | 50             | 43.0          | 86           | 45-114          |            |
| enzo(a)pyrene                | ug/L  | 50             | 44.2          | 88           | 36-115          |            |
| enzo(b)fluoranthene          | ug/L  | 50             | 42.7          | 85           | 37-118          |            |
| Benzo(g,h,i)perylene         | ug/L  | 50             | 45.2          | 90           | 32-120          |            |
| Benzo(k)fluoranthene         | ug/L  | 50             | 45.3          | 91           | 35-119          |            |
| Benzyl alcohol               | ug/L  | 50             | 31.3          | 63           | 35-78           |            |
| is(2-Chloroethoxy)methane    | ug/L  | 50             | 35.4          | 71           | 43-94           |            |
| is(2-Chloroethyl) ether      | ug/L  | 50             | 32.3          | 65           | 34-90           |            |
| bis(2-Chloroisopropyl) ether | ug/L  | 50             | 29.6          | 59           | 26-96           |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### Project: Safety Kleen Facility

35538498 Pace Project No.:

#### LABORATORY CONTROL SAMPLE: 3366773

| Parameter                | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits  | Qualifiers |
|--------------------------|-------|----------------|---------------|--------------|------------------|------------|
|                          |       |                | 43.0          | 86           | 28-125           |            |
| s(2-Ethylhexyl)phthalate | ug/L  | 50<br>50       | 43.0          | 86           | 20-125<br>54-116 |            |
| utylbenzylphthalate      | ug/L  |                | 43.2<br>14.0  |              | 10-36            | NO         |
| aprolactam               | ug/L  | 50             |               | 28           |                  | NZ         |
| arbazole                 | ug/L  | 50             | 43.2          | 86           | 58-109           |            |
| rysene                   | ug/L  | 50             | 42.7          | 85           | 44-115           |            |
| n-butylphthalate         | ug/L  | 50             | 42.7          | 85           | 57-113           |            |
| n-octylphthalate         | ug/L  | 50             | 43.9          | 88           | 28-124           |            |
| penz(a,h)anthracene      | ug/L  | 50             | 44.6          | 89           | 30-121           |            |
| benzofuran               | ug/L  | 50             | 39.2          | 78           | 47-101           |            |
| ethylphthalate           | ug/L  | 50             | 41.6          | 83           | 57-107           |            |
| nethylphthalate          | ug/L  | 50             | 41.1          | 82           | 56-104           |            |
| ioranthene               | ug/L  | 50             | 43.5          | 87           | 56-110           |            |
| orene                    | ug/L  | 50             | 40.1          | 80           | 49-104           |            |
| xachloro-1,3-butadiene   | ug/L  | 50             | 34.0          | 68           | 25-95            |            |
| kachlorobenzene          | ug/L  | 50             | 41.8          | 84           | 44-111           |            |
| achlorocyclopentadiene   | ug/L  | 50             | 37.5          | 75           | 10-126           |            |
| achloroethane            | ug/L  | 50             | 31.5          | 63           | 21-87            |            |
| no(1,2,3-cd)pyrene       | ug/L  | 50             | 44.1          | 88           | 31-120           |            |
| horone                   | ug/L  | 50             | 35.6          | 71           | 46-95            |            |
| itroso-di-n-propylamine  | ug/L  | 50             | 33.1          | 66           | 44-92            |            |
| itrosodimethylamine      | ug/L  | 50             | 23.3          | 47           | 18-64            |            |
| litrosodiphenylamine     | ug/L  | 50             | 40.9          | 82           | 53-105           |            |
| hthalene                 | ug/L  | 50             | 34.8          | 70           | 37-90            |            |
| obenzene                 | ug/L  | 50             | 33.1          | 66           | 36-95            |            |
| ntachlorophenol          | ug/L  | 50             | 44.7          | 89           | 45-127           |            |
| enanthrene               | ug/L  | 50             | 41.8          | 84           | 55-106           |            |
| enol                     | ug/L  | 50             | 14.9          | 30           | 10-44            |            |
| rene                     | ug/L  | 50             | 43.3          | 87           | 54-114           |            |
| ridine                   | ug/L  | 50             | 17.3          | 35           | 10-57            |            |
| ,6-Tribromophenol (S)    | %     |                |               | 91           | 10-126           |            |
| uorobiphenyl (S)         | %     |                |               | 70           | 10-96            |            |
| luorophenol (S)          | %     |                |               | 41           | 10-55            |            |
| robenzene-d5 (S)         | %     |                |               | 67           | 10-94            |            |
| erphenyl-d14 (S)         | %     |                |               | 78           | 24-129           |            |
| enol-d5 (S)              | %     |                |               | 30           | 10-35            |            |

| MATRIX SPIKE & MATRIX S |       | CATE: 3366 | 774   |       | 3366775 |        |       |       |        |     |     |      |
|-------------------------|-------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                         |       |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                         | 3     | 5538029001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| 1,2,4-Trichlorobenzene  | ug/L  | 1.4 U      | 48.6  | 50.2  | 22.5    | 26.6   | 46    | 53    | 33-89  | 17  | 40  |      |
| 1,2-Dichlorobenzene     | ug/L  | 1.5 U      | 48.6  | 50.2  | 21.5    | 26.2   | 44    | 52    | 30-85  | 20  | 40  |      |
| 1,2-Dinitrobenzene      | ug/L  | 1.9 U      | 48.6  | 50.2  | 34.9    | 37.9   | 72    | 76    | 55-111 | 8   | 40  |      |
| 1,2-Diphenylhydrazine   | ug/L  | 1.4 U      | 48.6  | 50.2  | 27.8    | 29.7   | 57    | 59    | 49-106 | 7   | 40  |      |
| 1,3-Dichlorobenzene     | ug/L  | 1.5 U      | 48.6  | 50.2  | 20.9    | 25.5   | 43    | 51    | 28-83  | 20  | 40  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Safety Kleen Facility Pace Project No.: 35538498

| MATRIX SPIKE & MATRIX SP                     | IKE DUPI     | LICATE: 3366          |                      |                       | 3366775      |               |             |              |                  |         |            |         |
|----------------------------------------------|--------------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|------------------|---------|------------|---------|
| Parameter                                    | Units        | 35538029001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits  | RPD     | Max<br>RPD | Qua     |
| 1,3-Dinitrobenzene                           | ug/L         |                       | 48.6                 | 50.2                  | 36.1         | 39.1          | 74          | 78           | 55-114           | 8       | 40         |         |
| 1,4-Dichlorobenzene                          | ug/L         | 1.6 U                 | 48.6                 | 50.2                  | 21.1         | 25.6          | 43          | 51           | 26-87            | 19      | 40         |         |
| 1-Methylnaphthalene                          | ug/L         | 0.36 U                | 48.6                 | 50.2                  | 25.1         | 28.3          | 52          | 56           | 40-94            | 12      | 40         |         |
| 2,3,4,6-Tetrachlorophenol                    | ug/L         | 1.1 U                 | 48.6                 | 50.2                  | 33.1         | 36.5          | 68          | 73           | 56-108           | 10      | 40         |         |
| 2,3,5,6-Tetrachlorophenol                    | ug/L         | 1.9 U                 | 48.6                 | 50.2                  | 35.1         | 38.2          | 72          | 76           | 57-108           | 8       | 40         | N2      |
| 2,4,5-Trichlorophenol                        | ug/L         | 0.23 U                | 48.6                 | 50.2                  | 33.0         | 35.9          | 68          | 71           | 46-111           | 8       | 40         |         |
| 2,4,6-Trichlorophenol                        | ug/L         | 0.36 U                | 48.6                 | 50.2                  | 31.6         | 34.6          | 65          | 69           | 45-108           | 9       |            |         |
| 2,4-Dichlorophenol                           | ug/L         | 0.34 U                | 48.6                 | 50.2                  | 28.5         | 31.9          | 59          | 63           | 46-94            | 11      | 40         |         |
| 2,4-Dimethylphenol                           | ug/L         | 1.0 U                 | 48.6                 | 50.2                  | 30.1         | 33.2          | 62          | 66           | 44-92            | 10      | 40         |         |
| 2,4-Dinitrophenol                            | ug/L         | 2.7 U                 | 48.6                 | 50.2                  | 39.8         | 43.8          | 82          | 87           | 49-123           | 10      | 40         |         |
| 2,4-Dinitrotoluene                           | ug/L         | 0.27 U                | 48.6                 | 50.2                  | 35.0         | 38.2          | 72          | 76           | 47-120           | .0      |            |         |
| 2,6-Dinitrotoluene                           | ug/L         | 0.27 U                | 48.6                 | 50.2                  | 33.3         | 36.2          | 69          | 70           | 57-107           | 8       | 40         |         |
| 2-Chloronaphthalene                          | ug/L         | 0.20 U                | 48.6                 | 50.2                  | 24.8         | 27.9          | 51          | 56           | 39-98            | 12      |            |         |
| 2-Chlorophenol                               | ug/L         | 1.4 U                 | 48.6                 | 50.2                  | 23.9         | 28.3          | 49          | 56           | 35-83            | 17      | 40         |         |
| 2-Methylnaphthalene                          | ug/L         | 0.28 U                | 48.6                 | 50.2                  | 25.0         | 28.7          | 52          | 57           | 39-95            | 14      |            |         |
| 2-Methylphenol(o-Cresol)                     | ug/L         | 2.0 1                 | 48.6                 | 50.2                  | 26.0         | 20.7          | 49          | 55           | 29-84            | 12      |            |         |
| 2-Nitroaniline                               | ug/L         | 1.3 U                 | 48.6                 | 50.2<br>50.2          | 34.7         | 37.3          | 71          | 55<br>74     | 56-107           | 7       |            |         |
| 2-Nitrophenol                                | ug/L         | 1.3 U<br>1.4 U        | 48.6                 | 50.2<br>50.2          | 26.9         | 31.6          | 55          | 63           | 43-96            | ,<br>16 |            |         |
| 3&4-Methylphenol(m&p<br>Cresol)              | ug/L         | 51.5                  | 48.6                 | 50.2                  | 71.8         | 81.6          | 42          | 60           | 43-90<br>26-82   | 13      |            |         |
| 3,3'-Dichlorobenzidine                       | ug/L         | 1.1 U                 | 48.6                 | 50.2                  | 2.8 I        | 2.3 I         | 6           | 5            | 61-113           |         | 40         | J(M1)   |
| 3-Nitroaniline                               | ug/L         | 1.3 U                 | 48.6                 | 50.2                  | 29.5         | 32.0          | 61          | 64           | 56-104           | 8       |            |         |
| 4,6-Dinitro-2-methylphenol                   | ug/L         | 4.6 U                 | 48.6                 | 50.2                  | 39.1         | 43.7          | 80          | 87           | 51-131           | 11      | 40         |         |
| 4-Bromophenylphenyl ether                    | ug/L         | 1.7 U                 | 48.6                 | 50.2                  | 30.9         | 33.7          | 64          | 67           | 51-105           | 9       |            |         |
| 4-Chloro-3-methylphenol                      | ug/L         | 5.5 U                 | 48.6                 | 50.2                  | 38.6         | 40.1          | 79          | 80           | 51-98            | 4       |            |         |
| 4-Chloroaniline                              | ug/L         | 1.4 U                 | 48.6                 | 50.2                  | 25.8         | 30.2          | 53          | 60           | 50-92            | 16      | 40         |         |
| 4-Chlorophenylphenyl ether                   | ug/L         | 1.5 U                 | 48.6                 | 50.2                  | 28.8         | 31.7          | 59          | 63           | 48-103           | 9       |            |         |
| 4-Nitroaniline                               | ug/L         | 0.19 U                | 48.6                 | 50.2                  | 34.7         | 37.7          | 71          | 75           | 61-108           | 8       | 40         |         |
| 4-Nitrophenol                                | ug/L         | 2.0 U                 | 48.6                 | 50.2                  | 16.0 I       | 16.7 I        | 33          | 33           | 10-61            |         | 40         |         |
| Acenaphthene                                 | ug/L         | 0.36 U                | 48.6                 | 50.2                  | 28.9         | 31.7          | 59          | 63           | 45-102           | 10      |            |         |
| Acenaphthylene                               | ug/L         | 0.30 U                | 48.6                 | 50.2                  | 28.2         | 31.3          | 58          | 62           | 46-99            | 10      |            |         |
| Aniline                                      | ug/L         | 0.95 U                | 48.6                 | 50.2                  | 24.3         | 28.6          | 50          | 57           | 33-88            | 16      |            |         |
| Anthracene                                   | ug/L         | 0.22 U                | 48.6                 | 50.2                  | 30.0         | 33.1          | 62          | 66           | 56-106           | 10      |            |         |
| Benzidine                                    | ug/L         | 0.88 U                | 48.6                 | 50.2                  | 0.85 U       | 0.87 U        | 0           | 0            | 10-110           | 10      |            | J(M1)   |
| Benzo(a)anthracene                           | ug/L         | 0.20 U                | 48.6                 | 50.2                  | 28.4         | 31.7          | 58          | 63           | 45-114           | 11      | 40         | 0(1011) |
| Benzo(a)pyrene                               | ug/L         | 0.20 U<br>0.17 U      | 48.6                 | 50.2<br>50.2          | 20.4         | 30.7          | 57          | 61           | 36-115           | 11      | 40         |         |
|                                              | ug/L         |                       | 48.6                 |                       |              | 29.8          | 55          | 59           |                  | 11      | 40         |         |
| Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene | ug/L         | 0.27 U<br>0.17 U      | 48.6                 | 50.2<br>50.2          | 26.8<br>26.4 | 29.8<br>29.8  | 55<br>54    | 59<br>59     | 37-118<br>32-120 | 12      |            |         |
|                                              | ug/L         | 0.17 U<br>0.18 U      | 48.6                 | 50.2<br>50.2          | 20.4<br>26.9 | 29.8<br>30.3  | 54<br>55    | 59<br>60     | 35-120           | 12      |            |         |
| Benzo(k)fluoranthene<br>Benzyl alcohol       | -            | 1.3 U                 | 40.0<br>48.6         | 50.2<br>50.2          | 26.9<br>25.1 | 30.3<br>29.2  | 55<br>51    | 58           | 35-119           | 12      |            |         |
| bis(2-<br>Chloroethoxy)methane               | ug/L<br>ug/L | 1.3 U<br>1.6 U        | 48.6<br>48.6         | 50.2<br>50.2          | 25.1<br>25.9 | 29.2<br>29.5  | 53          | 58<br>59     | 35-78<br>43-94   | 13      |            |         |
| bis(2-Chloroethyl) ether                     | ug/L         | 0.34 U                | 48.6                 | 50.2                  | 22.3         | 26.9          | 46          | 54           | 34-90            | 19      | 40         |         |
| bis(2-Chloroisopropyl) ether                 | ug/L         | 1.8 U                 | 48.6                 | 50.2                  | 20.6         | 24.4          | 42          | 49           | 26-96            | 17      |            |         |
| bis(2-Ethylhexyl)phthalate                   | ug/L         | 1.1 U                 | 48.6                 | 50.2                  | 19.1         | 20.2          | 39          | 40           | 28-125           | 5       |            |         |
| Butylbenzylphthalate                         | ug/L         | 1.1 U                 | 48.6                 | 50.2                  | 30.6         | 33.8          | 63          | 67           | 54-116           | 10      |            |         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility Pace Project No.: 35538498

| MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3366774 |       |             |       |       | 3366775 |        |       |       |        |     |     |      |
|------------------------------------------------|-------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                                                |       |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                                                |       | 35538029001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                                      | Units | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Caprolactam                                    | ug/L  | 0.40 U      | 48.6  | 50.2  | 11.9    | 12.9   | 24    | 26    | 10-36  | 8   | 40  | N2   |
| Carbazole                                      | ug/L  | 1.1 U       | 48.6  | 50.2  | 33.0    | 36.2   | 68    | 72    | 58-109 | 9   | 40  |      |
| Chrysene                                       | ug/L  | 0.20 U      | 48.6  | 50.2  | 28.6    | 32.0   | 59    | 64    | 44-115 | 11  | 40  |      |
| Di-n-butylphthalate                            | ug/L  | 1.1 U       | 48.6  | 50.2  | 30.5    | 34.6   | 62    | 68    | 57-113 | 12  | 40  |      |
| Di-n-octylphthalate                            | ug/L  | 0.93 U      | 48.6  | 50.2  | 19.1    | 20.2   | 39    | 40    | 28-124 | 5   | 40  |      |
| Dibenz(a,h)anthracene                          | ug/L  | 0.18 U      | 48.6  | 50.2  | 24.8    | 27.6   | 51    | 55    | 30-121 | 11  | 40  |      |
| Dibenzofuran                                   | ug/L  | 1.5 U       | 48.6  | 50.2  | 28.7    | 31.7   | 59    | 63    | 47-101 | 10  | 40  |      |
| Diethylphthalate                               | ug/L  | 1.4 U       | 48.6  | 50.2  | 33.9    | 38.0   | 67    | 73    | 57-107 | 11  | 40  |      |
| Dimethylphthalate                              | ug/L  | 1.4 U       | 48.6  | 50.2  | 31.7    | 34.4   | 65    | 68    | 56-104 | 8   | 40  |      |
| Fluoranthene                                   | ug/L  | 0.21 U      | 48.6  | 50.2  | 30.8    | 34.0   | 63    | 68    | 56-110 | 10  | 40  |      |
| Fluorene                                       | ug/L  | 0.34 U      | 48.6  | 50.2  | 29.6    | 32.1   | 61    | 64    | 49-104 | 8   | 40  |      |
| Hexachloro-1,3-butadiene                       | ug/L  | 0.35 U      | 48.6  | 50.2  | 21.5    | 25.9   | 44    | 52    | 25-95  | 18  | 40  |      |
| Hexachlorobenzene                              | ug/L  | 0.29 U      | 48.6  | 50.2  | 28.5    | 32.3   | 59    | 64    | 44-111 | 12  | 40  |      |
| Hexachlorocyclopentadiene                      | ug/L  | 3.5 U       | 48.6  | 50.2  | 26.9    | 31.7   | 55    | 63    | 10-126 | 16  | 40  |      |
| Hexachloroethane                               | ug/L  | 1.4 U       | 48.6  | 50.2  | 20.8    | 24.9   | 43    | 50    | 21-87  | 18  | 40  |      |
| Indeno(1,2,3-cd)pyrene                         | ug/L  | 0.17 U      | 48.6  | 50.2  | 25.2    | 28.3   | 52    | 56    | 31-120 | 11  | 40  |      |
| Isophorone                                     | ug/L  | 1.7 U       | 48.6  | 50.2  | 26.2    | 29.4   | 54    | 59    | 46-95  | 11  | 40  |      |
| N-Nitroso-di-n-propylamine                     | ug/L  | 0.33 U      | 48.6  | 50.2  | 25.0    | 28.4   | 52    | 57    | 44-92  | 13  | 40  |      |
| N-Nitrosodimethylamine                         | ug/L  | 0.20 U      | 48.6  | 50.2  | 18.1    | 20.7   | 37    | 41    | 18-64  | 13  | 40  |      |
| N-Nitrosodiphenylamine                         | ug/L  | 1.2 U       | 48.6  | 50.2  | 31.4    | 34.3   | 65    | 68    | 53-105 | 9   | 40  |      |
| Naphthalene                                    | ug/L  | 0.39 U      | 48.6  | 50.2  | 23.9    | 27.6   | 49    | 55    | 37-90  | 14  | 40  |      |
| Nitrobenzene                                   | ug/L  | 0.37 U      | 48.6  | 50.2  | 23.2    | 26.8   | 48    | 53    | 36-95  | 14  | 40  |      |
| Pentachlorophenol                              | ug/L  | 1.7 U       | 48.6  | 50.2  | 36.4    | 39.3   | 75    | 78    | 45-127 | 8   | 40  |      |
| Phenanthrene                                   | ug/L  | 0.23 U      | 48.6  | 50.2  | 30.5    | 33.0   | 63    | 66    | 55-106 | 8   | 40  |      |
| Phenol                                         | ug/L  | 25.3        | 48.6  | 50.2  | 33.3    | 37.1   | 16    | 23    | 10-44  | 11  | 40  |      |
| Pyrene                                         | ug/L  | 0.21 U      | 48.6  | 50.2  | 30.4    | 33.5   | 62    | 67    | 54-114 | 10  | 40  |      |
| Pyridine                                       | ug/L  | 1.1 U       | 48.6  | 50.2  | 16.2    | 18.9   | 33    | 38    | 10-57  | 15  | 40  |      |
| 2,4,6-Tribromophenol (S)                       | %     |             |       |       |         |        | 74    | 78    | 10-126 |     |     |      |
| 2-Fluorobiphenyl (S)                           | %     |             |       |       |         |        | 52    | 58    | 10-96  |     |     |      |
| 2-Fluorophenol (S)                             | %     |             |       |       |         |        | 30    | 34    | 10-55  |     |     |      |
| Nitrobenzene-d5 (S)                            | %     |             |       |       |         |        | 46    | 53    | 10-94  |     |     |      |
| p-Terphenyl-d14 (S)                            | %     |             |       |       |         |        | 52    | 58    | 24-129 |     |     |      |
| Phenol-d5 (S)                                  | %     |             |       |       |         |        | 24    | 26    | 10-35  |     |     |      |
|                                                |       |             |       |       |         |        |       |       |        |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



| Project: Safety Kleen Fa       | cility         |                         |           |         |            |               |  |  |
|--------------------------------|----------------|-------------------------|-----------|---------|------------|---------------|--|--|
| Pace Project No.: 35538498     |                |                         |           |         |            |               |  |  |
| QC Batch: 620365               |                | Analysis Method: FL-PRO |           |         |            |               |  |  |
| QC Batch Method: EPA 3510      |                | Analysis E              |           |         |            |               |  |  |
| Associated Lab Samples: 355384 | 98001          |                         |           |         |            |               |  |  |
| METHOD BLANK: 3372064          |                | Matr                    | ix: Water |         |            |               |  |  |
| Associated Lab Samples: 355384 | 98001          |                         |           |         |            |               |  |  |
|                                |                | Blank                   | Reporting |         |            |               |  |  |
| Parameter                      | Units          | Result                  | Limit     | MDL     | Analyz     | ed Qualifiers |  |  |
| Petroleum Range Organics       | mg/L           | 0.80                    |           | 1.0 0.8 |            |               |  |  |
| N-Pentatriacontane (S)         | %              | 10                      |           |         | 03/24/20 2 |               |  |  |
| o-Terphenyl (S)                | %              | 8                       | 5 66-1    | 39      | 03/24/20 2 | 21:55         |  |  |
| LABORATORY CONTROL SAMPLE      | 3372065        |                         |           |         |            |               |  |  |
|                                |                | Spike                   | LCS       | LCS     | % Rec      |               |  |  |
| Parameter                      | Units          | Conc.                   | Result    | % Rec   | Limits     | Qualifiers    |  |  |
| Petroleum Range Organics       | mg/L           | 2.5                     | 2.0       | 78      | 66-119     |               |  |  |
| N-Pentatriacontane (S)         | %              |                         |           | 90      | 42-159     |               |  |  |
| o-Terphenyl (S)                | %              |                         |           | 96      | 66-139     |               |  |  |
| MATRIX SPIKE & MATRIX SPIKE DI | JPLICATE: 3372 | 066                     | 337206    | 67      |            |               |  |  |
|                                |                | MS MS                   | D         |         |            |               |  |  |

| Parameter                | Units | 35538378002<br>Result | Spike<br>Conc. | Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
|--------------------------|-------|-----------------------|----------------|----------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Petroleum Range Organics | mg/L  | 0.76 U                | 2.4            | 2.3            | 1.6          | 1.8           | 65          | 77           | 65-123          | 12  | 20         |      |
| N-Pentatriacontane (S)   | %     |                       |                |                |              |               | 67          | 98           | 42-159          |     |            |      |
| o-Terphenyl (S)          | %     |                       |                |                |              |               | 85          | 74           | 66-139          |     |            |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

#### Project: Safety Kleen Facility

Pace Project No.: 35538498

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(L1) Estimated Value. Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J(v1) The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Safety Kleen FacilityPace Project No.:35538498

| Lab ID                     | Sample ID           | QC Batch Method      | QC Batch         | Analytical Method | Analytical<br>Batch |
|----------------------------|---------------------|----------------------|------------------|-------------------|---------------------|
| 35538498001                | MW-2R               | EPA 3510             | 620365           | FL-PRO            | 620456              |
| 35538498001                | MW-2R               | EPA 200.8            | 619475           | EPA 200.8         | 619478              |
| 35538498002                | MW-1                | EPA 200.8            | 619475           | EPA 200.8         | 619478              |
| 35538498003                | MW-3                | EPA 200.8            | 619475           | EPA 200.8         | 619478              |
| 35538498001                | MW-2R               | EPA 3510             | 620149           | EPA 8270 by SIM   | 620263              |
| 35538498001                | MW-2R               | EPA 3510             | 619415           | EPA 8270          | 619509              |
| 35538498001<br>35538498004 | MW-2R<br>Trip Blank | EPA 8260<br>EPA 8260 | 619616<br>619616 |                   |                     |

| ectio          | www.paceLass.com<br>n A<br>red Client Information:                                  | Section B                                                             |                                                        |                        |                  | The C   | hain-of- | Custo                     |            | 355                  | <br>538          | 498              |         |          |                   |                |                  |                                  |                     |                  |            | curate  | ly.   | _                 |                        |                                    |             |
|----------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|------------------------|------------------|---------|----------|---------------------------|------------|----------------------|------------------|------------------|---------|----------|-------------------|----------------|------------------|----------------------------------|---------------------|------------------|------------|---------|-------|-------------------|------------------------|------------------------------------|-------------|
| mpa            |                                                                                     | Required<br>Report To:                                                |                                                        | formation:<br>Aorrison |                  | _       |          | -                         | Invo       | ntion:               |                  | 174              | Mi.     |          | . 20              | -              |                  | _                                | _                   |                  |            |         |       | Page :            | 1                      | Of                                 | 1           |
| dres           | S. 1408 North Westshore Bilvd<br>FL 33607                                           | Copy To:                                                              | v                                                      |                        |                  |         |          |                           | Con        | npany N              | lame:            | 1-2              | the     | ELA      |                   |                |                  |                                  |                     |                  | -          |         |       |                   |                        |                                    |             |
| nail:          | kmorrison@ectinc.com                                                                | Purchase                                                              | Order #                                                |                        |                  |         |          | _                         |            | ress.<br>e Quote     | c                | 100              | -       | 140      | EN                | . 1            | NES              | tsh                              | ave                 | BIN              | 1#1        | 15      | 2.1   | Regul             | atory Age              | ncy                                |             |
| none:<br>eques | 613-493-0383 Fax <b>B13-169 438</b><br>sted Due Date:                               | Project Na<br>Project #:                                              |                                                        | afety Kleer            | Facility         | _       |          |                           |            | e Projec             | 11/04/11         | 111111-0         |         | palm     | er@pa             | celab          | s.com,           |                                  |                     |                  | . 15       |         | 152   | Stat              | e / Locatio            | n                                  | 12 12       |
|                |                                                                                     | r rejectiv                                                            |                                                        |                        | -0100            | -       |          |                           | Pace       | e Profile            | 9 <del>#</del> : | 9321             | line 1  | -        |                   | 100            | R                | eques                            | ted An              | alvsis           | Filtere    | d (Y/N) | 1     |                   | FL                     |                                    | 1.50 100    |
| #              | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-9 /, -)<br>Sample Ide must be unique | g Water DW<br>₩T<br>Water WW<br>t P<br>iid SL<br>OL<br>WP<br>AR<br>OT | CODE (see valid codes to left)<br>TYPE (G=GRAB C=COMP) | ST                     | COLLE            |         | ND       | SAMPLE TEMP AT COLLECTION | CONTAINERS | ved                  | Pr               | reserv           | vatives |          | reae Tast VIN     | 1001           | st plus PAHs     | Volume for Wate<br>8 An Cd Cr Ph |                     |                  |            |         |       | Chlorine (Y/N)    |                        |                                    |             |
| ITEM           | Tisson                                                                              | TS                                                                    | MATRIX CODE<br>SAMPLE TYPE                             | DATE                   | Savap            | DATE    | TIME     |                           | HO #       | Unpreserved<br>H2SO4 | HNO3             | Ē                | NaOH ~  | Methanol | Other             | 8260 Full List | 8270 Full        | FL Pro Low<br>Metals 200         | 8270 Full<br>MS/MSD | FL. PRO I        | Trip BLANK |         |       | Residual Chlorine |                        | 2                                  |             |
| 1              | MW-2R                                                                               |                                                                       | WT 2                                                   | 3/4/20                 | 1119             | 3/19/20 | 1140     | M                         | 8          | 31                   | Ŧ                | 3                |         |          |                   | x              | x                | x x                              | R                   | X                |            |         |       |                   |                        |                                    | 5           |
| 2              | MVV-1                                                                               |                                                                       | WT 1                                                   | 3/19/20                | 1044             | 5/14/2  | 1047     |                           | 1          | 1                    | 1                |                  |         |          | 1                 |                |                  | x                                | 1                   |                  |            |         |       |                   |                        |                                    |             |
| 3              | MW-3                                                                                |                                                                       | WT                                                     | 3/19/2                 | 0 1100           | 3/14/2  | 1103     | 11                        | Î          |                      | 1                |                  |         |          |                   |                |                  | x                                | 1                   |                  |            |         | T     |                   |                        |                                    |             |
| 4              | Trip Blank                                                                          |                                                                       | wт                                                     | )itta                  | -                | 2)++    | -        |                           | 2          |                      |                  | Ħ                |         |          |                   |                | Ħ                |                                  | 1                   | $\square$        | x          |         | 1     | T.                |                        |                                    |             |
| 5              | QABC-MW-2R                                                                          | 0                                                                     |                                                        | 319-2                  |                  |         | 2)140    | 5                         | 1          | -11-2                |                  | 11               | 1       |          |                   | F              | +                | +                                | 1                   |                  | ^          | ++      | +     | +                 |                        |                                    |             |
| 6              |                                                                                     |                                                                       |                                                        |                        |                  |         |          |                           | 0          | -                    |                  | H                | +       |          | -                 | H              |                  | +                                | X                   |                  | -          | +       | +     | +                 |                        |                                    |             |
| 7              | 2                                                                                   |                                                                       |                                                        |                        |                  |         | 1        |                           | +          | +                    |                  | H                | +       | $\vdash$ | -                 | H              | $\left  \right $ | +                                | +                   |                  | -          | ++      | -     | -                 |                        | _                                  |             |
|                | 5                                                                                   |                                                                       |                                                        |                        |                  |         |          |                           | +          | +                    |                  | $\left  \right $ | 1       | 4        | -1                | ⊢              | $\left  \right $ | +                                | -                   | $\left  \right $ | +          | ++      |       | $\square$         |                        |                                    |             |
| 8              |                                                                                     |                                                                       |                                                        |                        | - K <sup>1</sup> |         |          | $\square$                 | +          | -                    | -                |                  |         | 4        | 4                 | H              | 11               | +                                | -                   |                  | _          | 11      |       | -                 |                        |                                    |             |
| 9              |                                                                                     |                                                                       | ++                                                     |                        |                  |         |          |                           |            | -                    |                  |                  | -       |          |                   |                |                  | -                                |                     |                  | _          |         |       | Ц                 |                        |                                    |             |
| 0              |                                                                                     |                                                                       |                                                        |                        |                  | -       |          |                           |            |                      |                  |                  |         |          |                   |                |                  |                                  |                     |                  |            |         |       |                   |                        |                                    |             |
| 1              |                                                                                     |                                                                       |                                                        |                        |                  |         |          | Ц                         |            |                      |                  |                  |         |          |                   |                | · ]              |                                  |                     |                  |            |         |       |                   |                        |                                    |             |
| 12             |                                                                                     |                                                                       |                                                        |                        |                  | 1       |          |                           |            |                      |                  |                  |         |          |                   |                |                  |                                  |                     |                  |            |         |       |                   |                        |                                    |             |
|                | ADDITIONAL COMMENTS                                                                 |                                                                       | RELINQUIS                                              | SHED BY / A            | FFILIATION       |         | DATE     | 1.10                      | Ť          | IME                  | 100              |                  | ACC     | EPTE     | DBY/A             | AFFILL         | ATION            |                                  |                     | C                | ATE        | TIM     | E     |                   | SAMPLE                 | CONDITION                          | s           |
|                | Bottle                                                                              |                                                                       | here of                                                |                        |                  |         | 3-167    |                           |            |                      |                  | Ver              | d7      | 1        | Un                | su             | ~1               | EC                               | Ť                   | 3-1              | 6-201      | 5 16    | 8     | 712               |                        |                                    |             |
|                |                                                                                     | 741                                                                   | att ?                                                  | 7.No                   | mm)              | EY      | 3.19     | 202                       | 01         | روعو                 | -                | 1                | mf      | 76       | al                | e              |                  |                                  | -                   |                  | g 1200     |         |       | 11,6              | Ÿ                      | N                                  | Y           |
|                |                                                                                     |                                                                       |                                                        |                        | -                |         |          | 1                         |            |                      | 100000           |                  |         | 2500     | 6 <sup>2</sup> 74 |                |                  |                                  |                     |                  |            |         |       |                   |                        |                                    | 1           |
|                |                                                                                     |                                                                       |                                                        |                        | SAMPLER          |         |          |                           |            | 14                   |                  | 1                |         | -        |                   |                |                  | 9.93                             |                     |                  | 3          |         | 10.14 | U                 | uo p                   |                                    |             |
|                |                                                                                     |                                                                       |                                                        |                        | SIGN             | ATURE   | of SAMP  | ER-                       | Ke         | th                   | F                | 20               | 201     | WS       | ich               | <u> </u>       | DATE             | Signa                            | d :                 | _                |            |         |       | MP In             | Received<br>Se<br>Y/N) | Custody<br>Sealed<br>Cooler<br>Y/M | nples<br>ct |
|                |                                                                                     |                                                                       | 6.00                                                   |                        | - Orona          | ALONE ( | o GROUPL | .u                        | 14         | 2022                 | -                | FY               | Uni     | n        | 1 2               | 1.13           | UATE             | signe                            | " 3                 | -19              | 72         | 020     |       | 10                | Rec                    | Co                                 | Sar         |

| Pace Analytical                                                                                     | Sample Cond                      | cument Name:<br>ition Upon Receipt<br>ocument No.: | Form                              | Document Revised:<br>May 30, 2018<br>Issuing Authority:                                  |
|-----------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------|
|                                                                                                     |                                  | C-007 rev. 13                                      |                                   | Pace Florida Quality Office                                                              |
|                                                                                                     | Sample Con                       | dition Upor                                        | n Receipt Form (SC                | UR)                                                                                      |
| Project #<br>Project Manager:<br>Client:                                                            | WO#: 35                          | Due Date:                                          |                                   | Date and Initials of person:<br>Examining contents: 3/19/20<br>Label:<br>Deliver:<br>pH; |
| Thermometer Used: 172                                                                               | 3 Date                           | 3/19/                                              | دم Time: 163                      |                                                                                          |
| State of Origin: FL                                                                                 |                                  | For WV                                             | projects, all containers verified | I to <6 °C                                                                               |
| Cooler #1 Temp.°C_U_5_(Visu                                                                         | al) TB. 1 (Correc                |                                                    |                                   | $\mathbb{N}$ Samples on ice, cooling process has begun                                   |
| Cooler #2 Temp.°C(Visu                                                                              |                                  |                                                    |                                   | Samples on ice, cooling process has begun                                                |
| Cooler #3 Temp.°C(Visu                                                                              |                                  |                                                    |                                   | Samples on ice, cooling process has begun                                                |
| Cooler #4 Temp.°C(Visu                                                                              |                                  |                                                    |                                   | Samples on ice, cooling process has begun                                                |
| Cooler #5 Temp.°C(Visu                                                                              | al)(Correc                       | tion Factor)                                       | (Actual)                          | Samples on ice, cooling process has begun                                                |
| Cooler #6 Temp.°C(Visu                                                                              | al)(Correc                       | tion Factor)                                       | (Actual)                          | Samples on ice, cooling process has begun                                                |
|                                                                                                     |                                  |                                                    |                                   |                                                                                          |
|                                                                                                     |                                  |                                                    |                                   | Other                                                                                    |
| Shipping Method:                                                                                    |                                  | nt 🗆 Standar                                       | d Overnight 🛛 Ground              | International Priority                                                                   |
| Billing:                                                                                            | □ Sender □                       | Third Party                                        | Credit Card                       | Unknown                                                                                  |
| Tracking #                                                                                          | 0                                |                                                    |                                   |                                                                                          |
| Packing Material: Bubble Wrap Samples shorted to lab (If Yes, con                                   |                                  | None C                                             | Other Shorted                     | Time: Qty:                                                                               |
| Chain of Custody Present                                                                            | NYes                             | □ No □N/A                                          | Comments.                         |                                                                                          |
| Chain of Custody Filled Out                                                                         | 161150                           |                                                    | 7                                 |                                                                                          |
| Relinquished Signature & Sampler N                                                                  |                                  | □ No □N/A                                          |                                   |                                                                                          |
| Samples Arrived within Hold Time                                                                    |                                  |                                                    | 14 (C                             |                                                                                          |
| Rush TAT requested on COC                                                                           | □Yes                             | No DN/A                                            |                                   |                                                                                          |
| Sufficient Volume                                                                                   | Dyes                             | □ No □N/A                                          |                                   |                                                                                          |
| Correct Containers Used                                                                             | Yes                              | □ No □N/A                                          |                                   |                                                                                          |
| Containers Intact                                                                                   | Tyes                             | □ No □N/A                                          |                                   |                                                                                          |
| Sample Labels match COC (sample IDs & collection)                                                   |                                  | □ No □N/A                                          |                                   |                                                                                          |
| All containers needing acid/base preserva<br>shecked.<br>All Containers needing preservation are fo | ation have been                  | □ No □N/A                                          | Preservative:                     | eservation Information:                                                                  |
| compliance with EPA recommendation:                                                                 |                                  | ⊡ No ⊡N/A                                          | Date:                             | Time:                                                                                    |
| Headspace in VOA Vials? ( >6mm):                                                                    | rm, TOC, O&G, Carbamates<br>□Yes |                                                    | Initials:                         |                                                                                          |
| rip Blank Present:                                                                                  |                                  |                                                    |                                   |                                                                                          |
| Client Notification/ Resolution:                                                                    |                                  |                                                    | Date/Time:                        |                                                                                          |
| Comments/ Resolution (use back f                                                                    | or additional comments           | ):                                                 |                                   |                                                                                          |
|                                                                                                     |                                  |                                                    |                                   |                                                                                          |
| Project Manager Review:                                                                             | 7                                |                                                    |                                   | Date: Page 32 of                                                                         |

| Permit #:<br>Facility Name:<br>Facility Address: | IW-333<br>SAFETY-KLEEN SYST<br>8755 NW 95 ST<br>MEDLEY, FL 33178    | Permit Year:<br>EMS, INC. | 2020<br>2019               | Reports must be mailed to:<br>Department of Regulatory and Economic Resources<br>Environmental Resources Management<br>701 NW 1st Ct, Suite #700<br>Miami, FL 33136-3912                  |
|--------------------------------------------------|---------------------------------------------------------------------|---------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contact Name:                                    | Mr. Larry Rodriguez                                                 |                           |                            | General distance of the state of t                                                                          |
| being reported and atta                          | ch the applicable information                                       | (e.g. waste manifests,    | analytical results, etc.)  | e" box(es) from the listing below. In addition, indicate the period<br>as required by each Source Type. Refer to the operating permit<br>dologies, applicable to the referenced facility. |
|                                                  | R-1<br>ples of manifests and/or rece                                |                           | este, industrial waste, in | Reporting Period:<br>dustrial wastewater, sludge and/or ash disposed of<br>be maintained on-site for review.                                                                              |
| Sampling Requirer                                | nents:                                                              |                           |                            |                                                                                                                                                                                           |
|                                                  | IP-1<br>undwater from the facility mo<br>mium (Total), Chromlum (To |                           |                            | Reporting Period: <b>6 15 ( &gt; )</b>                                                                                                                                                    |
|                                                  | (P-2<br>undwater from monitoring we<br>A Series 8260, EPA Series 8; |                           |                            | charge point.                                                                                                                                                                             |
| Average Daily Was<br>Sewers:                     | te Water Flow Discha                                                | rge to Sanitary           |                            | Gallons Per Day (GPD)                                                                                                                                                                     |
| I hereby certify that,                           | to the best of my knowl                                             | edge, this documen        | t and all attachment       | ts are true, accurate and complete.<br>5 4 1 2 1                                                                                                                                          |
| Authorized Representat                           | ive or Corporate Officer                                            |                           |                            | Report Completion Date                                                                                                                                                                    |
|                                                  | 2                                                                   | e                         |                            | ž                                                                                                                                                                                         |

3 3

May 4, 2021 210212-0100

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** Environmental Resources Management 701 NW 1<sup>st</sup> Court, Suite #700 Miami, Florida 33136-3912

## Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2020/2021 (File # 10139) Annual Report of Groundwater Quality

Dear Mr. Montano:

On behalf of Safety-Kleen Systems, Inc. (SK), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for SK's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On April 12, 2021, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FLPRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed <u>Figure 1</u>.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in <u>Attachment B</u>.

The laboratory report indicated that concentrations for two of the four metals (i.e., silver and cadmium) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.601 micrograms per liter ( $\mu$ g/L) at monitoring well MW-1, 0.691  $\mu$ g/L at monitoring well MW-2R, and 0.571  $\mu$ g/L at monitoring well MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are well below the groundwater cleanup target level (GCTL) of 100  $\mu$ g/L for chromium as specified in the permit. Lead was also detected at an estimated concentration of 0.821  $\mu$ g/L at monitoring well MW-3 which was between the laboratory MDL and the laboratory PQL and is well below the GCTL of 15  $\mu$ g/L as specified in the permit.



Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** May 4, 2021 Page 2

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

- 1. FLPRO concentrations were below the MDL; that is, none was detected.
- 2. No SVOC was detected (i.e., EPA Series 8270 parameters).
- 3. No VOC was detected (i.e., EPA Series 8260 parameters).

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of SK at (561) 523-4719. Thank you.

Sincerely,

#### **ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.**

There 7. Morrison

Keith F. Morrison Project Manager

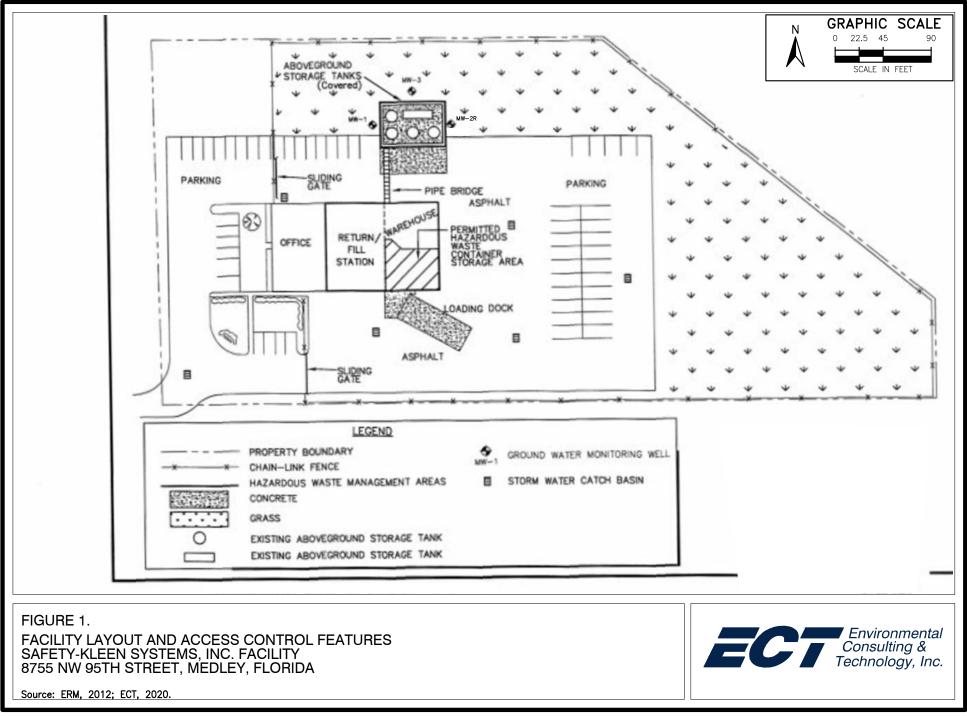
Front B. A. -

Gregory B. Page, P.E. Senior Engineer III

#### SAFETY-KLEEN SYSTEMS, INC.

Jeff Curtis EHS Manager, Florida Safety-Kleen Systems, Inc. 5610 Alpha Drive Boynton Beach, Florida 33426 jeff.curtis@safety-kleen.com

Enclosures:


Figure 1

Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration Logs Attachment B - Laboratory Report

cc: Robert Schoepke – S-K (electronic only) Greg Page – ECT (electronic only) Keith Morrison – ECT (electronic only) Facility 999 File #1760, % S-K Medley facility Branch General Manager



FIGURE



T:\PROJECTS\2020\SK Medley\200228\0100\Layout.dwg

# ATTACHMENT A

# FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

| an               | State of the state | -     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| SAFET<br>ECT-Res | 1-KLEEN MEDLEY, F2<br>210212-01000 P.<br>morroson/4/11/2124/12/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |
| 12.30 M          | nob lize to condo M FA Landre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eal   |
| 575              | at condo n for Landerdale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|                  | complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -     |
| 4-12-21;         | 40 calibration checkon metus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 700              | off to Safaty-Kleen Medley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 740              | onste soldy- Klein, weathe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n     |
|                  | Orleseest 73 of NO wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|                  | abers on with office !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|                  | opening wens muni, MW-2R+MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3    |
| 806              | owning MW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 11  |
| 83               | punging MW-3<br>punging MW-2R with second por<br>pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sath  |
|                  | pump / .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| X 832            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| K855             | Sampling MW-2<br>Sempling MW-2R QALOC Sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ples  |
|                  | also collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 917              | purging MW-1 with second pun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P     |
| xgyn             | Sampling MW-1, claim up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     |
|                  | container The Divestigation Derive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rd_   |
|                  | Waste (IDW), close wells, check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ust   |
|                  | at selety Repar medley office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 1030             | off for more The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 1125             | by more The + coffee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| H-35             | off to PACE LIDD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 1535             | at PACE Labo, Dropped att Cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -     |
| 1600             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | monte |
| X= Sama          | I Time Keith J. Mourn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | owho  |
| n-Jump           | Kenter Signation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -     |

# Pace Container Order #796677

| Return Shipping Labels       Misc         No Shipper       Sampling Instructions       Extra Bubble Wrap         With Shipper       Sampling Instructions       Short Hold/Rush Stickers         Number of Blanks       DI Water       Liter(s)         Yre-Printed       Solorer       USDA Regulated Soils         A of Samples       Matrix       Test       Container       Total       # of       Lot #       Notes         1       WT       8260 Full List       3-40mL vial HCl       3       0       Image: Coolers       USDA Regulated Soils         3       WT       8260 Full List       3-40mL vial HCl       3       0       Image: Coolers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           | esses —                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                      |           |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|-----------|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contact Merrison, Keith Contact Merrison, Keith Contact Merrison, Keith Ernal Incremention (Beach Corn Address 102 Broth Westshore Bitvd Address 2 Bute 115 Address 2 |                                                                           | -                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                             |                                                                      |           |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Einsti kmortison@ectinc.com       Einsti kmortison@ectinc.com       Address 100 North Westhore Bild       Bortio Lobels       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                      | ing &     |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address 1408 North Westshore Bild       Address 1408 North Westshore Bild       Address 110 South Bayview Bild.         Address 2 Suite 115       Address 2       Address 2         City Tampa       City Tampa       City Tampa         State FL       Zip 33607       State FL       Zip 33607         Phone 813-493-0383       Phone 813-493-0383       Phone 813-493-0383       Phone 813-493-0383         Project Name Safety Keen Facility       Due Date (J405/2021       Profile 9321 line 1       Quote         Project Name Safety Keen Facility       Due Date (J405/2021       Profile 9321 line 1       Quote         Project Name Safety Keen Facility       Due Date (J405/2021       Profile 9321 line 1       Quote         Project Name Safety Keen Facility       Due Date (J405/2021       Profile 9321 line 1       Quote         Project Name Safety Keen Facility       Due Date (J405/2021       Profile 9321 line 1       Quote         With Stipper       Baink       Baink       Boxed Cases       Individuality Wrapped         With Stipper       With Stipper       Safety Keen Facility       Baink       Dividuality Wrapped         With Stipper       Short HotdRuuth Stickes       Dividuality Wrapped       Dividuality Wrapped         With Stipper       Short HotdRuuth Stickes       Dividuality Wrapped       Divid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                      |           |         | Contact   | Palmer, Lori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Address 2. Sule 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Email k                                                                   | morrison@e                                                     | ctinc.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                      |           |         | Email     | lori.palmer@pacelabs.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| City Tampa       City Tampa       City Tampa       City Oldsmar         State FL       Zip 33607       State FL       Zip 33607         Phone 813-493-0383       Phone 813-403-0383       Phone 813-403-0383       Phone 813-403-0383         Info       Project Name Sadey Keen Facility       Due Date 04/05/2021       Profile 9321 line 1       Quote         Project Name Sadey Keen Facility       Due Date 04/05/2021       Profile 9321 line 1       Quote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Address 1                                                                 | 408 North W                                                    | estshore Blivd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Address                                       | 1408 North Westsh                                                    | ore Bllvd |         | Address   | 110 South Bayview Blvd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| State FL       Zlp 33607       State FL       Zlp 33607       State FL       Zlp 34677         Phone B13-693-0383       Phone B13-693-0383       Phone B13-693-0383       Phone B13-695-1844         Info       Project Name Satey Keen Facility       Due Date 04/05/2021       Profile 3321 lino 1       Quote         Project Name Satey Keen Facility       Due Date 04/05/2021       Profile 3321 lino 1       Quote         Project Name Satey Keen Facility       Due Date 04/05/2021       Profile 3321 lino 1       Quote         Project Name Satey Keen Facility       Due Date 04/05/2021       Profile 3321 lino 1       Quote         Project Name Satey Keen Facility       Due Date 04/05/2021       Profile 3321 lino 1       Quote         Project Name Satey Keen Facility       Due Date 04/05/2021       Profile 3321 lino 1       Quote         Project Name Satey Keen Facility       Due Date 04/05/2021       Profile 3321 lino 1       Quote         Return Shipping Labols       Blank       Blank       Blank       Bottle Labels       Bot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Address 2 S                                                               | uite 115                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Address 2                                     | Suite 115                                                            |           |         | Address 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phone 813-493-0383       Phone 813-493-0383       Phone 813-493-0383       Phone 813-493-0383         Info       Project Manager Pame, Lot       Due Date 04/05/2021       Profile 9321 line 1       Quote         Project Manager Pame, Lot       Return Date       Carrier Page Courier       Location FL         Trip Blanks       Bottle Labels       Bottles       Bottles         All Indude Trip Blanks       Bottle Labels       Bottles       Individually Wrapped         Return Shipping Labels       Misc       Bank       Diver Liter(s)       Diver Liter(s)         Vinh Shipper       Sampling Instructions       Diver Liter(s)       Diver Liter(s)         Vinh Shipper       Sampling Instructions       Diver Liter(s)       Diver Liter(s)         Vinh Shipper       Octobia       Sampling Instructions       Diver Liter(s)         Vinh Shipper       Sampling Instructions       Diver Liter(s)       Diver Liter(s)         Vinges       Sampling Instructions       Diver Liter(s)       Diver Liter(s)         Vinges       Some Advinger       Diver Liter(s)       Diver Liter(s)       Diver Liter(s)         Vinges       Some Advinger       2 0       Lot #       Notes       Some Advinger         Mark 200 Full tot Mark 200 Full tot Mark 200 Ang Cd, C/P Point Class Unpreserved + 220 2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | City T                                                                    | ampa                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | City                                          | Tampa                                                                |           |         | City      | Qldsmar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Info       Project Name       Safety Kleen Facility       Due Date       Pace Autom       Safety Kleen Facility       Due Date       Carrier       Pace Courier       Location       FL         Project Manager       Paimer, Lot       Return Date       Carrier       Pace Courier       Location       FL         Trip Blanks       Bottle Labels       Bottle Labels       Bottle Cabels       Bottle Cabels       Bottles       Bottles         Number of Blanks       Bottle Labels       Bottle Labels       Bottles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | State F                                                                   | L Zij                                                          | 9 33607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | State                                         | FL. Zip 336                                                          | 07        |         | State     | FL Zip 34677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Project Name       Suday Kleen Facility       Due Date       Out/05/2021       Profile       9321       Ine       Outot         Project Manager       Paimer, Lod       Return Date       Carrier       Pace Courier       Location       FL         Trip Blanks       Include Trip Blanks       Blank       Bottlo Labels       Bottlo Sample IDs       Include Trip Blanks         Include Trip Blanks       Pro-Printed No Sample IDs       Pro-Printed With Sample IDs       Include Wrapped         Return Shipping       Labels       Bottlo Labels       Include Wrapped         With Shipper       Custody Seal       Dottlot Hot/Rush Stockers       Dottlot Wrap         COC Options       Custody Seal       Dottlot Labels       Dottlot Labels       Dottlot Wrap         Yringes       Syringes       Syringes       USDA Regulated Sole       Dottlot Wrap         Norther of Blanks       Test       Container       Total # of       Lot #       Notes         Mort Szo Putitat pas Patie SubMark       Test       Container       Total # of       Lot #       Notes         Mort Szo Putitat pas Patie SubMark       Test       Container       Total # of       Lot #       Notes         Mort Szo Putitat pas Patie SubMark       Test       Container       Total # of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phone 8                                                                   | 13-493-0383                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phone                                         | 813-493-0383                                                         |           |         | Phone     | 813-855-1844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Trip Blanks       Bottle Labels       Bottles       Boxed Cases         Include Trip Blanks       Pre-Printed No Sample IDs       Boxed Cases       Individually Wrapped         Pre-Printed With Sample IDs       Misc       Sampling Instructions       Extra Bubble Wrap         Octory Scall       Sampling Instructions       Extra Bubble Wrap         COC Options       Octory Scall       Diversity Scale       Diversity Scale         Number of Blanks       Diversity Scale       USDA Regulated Scils       Diversity Scale         Syringes       Syringes       USDA Regulated Scils       USDA Regulated Scils         WT       Pre-Printed       3       0       Inter(s)       USDA Regulated Scils         1       WT       Proble Scies       20       0       Inter(s)       USDA Regulated Scils         3       WT       File Disco Volume for Waters       2-00 mg Jass amber H3804       2       0       Inter(s)       USDA Regulated Scils         3       WT       File Disco Notices Unpreserved + 280       0       Inter(s)       USDA Regulated Scils       Pre-Printed       Inter(s)       USDA Regulated Scils       Scils       Pre-Printed       Inter(s)       USDA Regulated Scils       Inter(s)       USDA Regulated Scils       Scils       Scils       Scils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project                                                                   | Name Safe                                                      | and the second se | Due Date                                      | 04/05/2021                                                           | Profi     | le 9321 | ine 1     | Quote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Include Trip Blanks       Blank       Pre-Printed With Sample IDs       Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Project Ma                                                                | anager Palm                                                    | ner, Lori Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eturn Date                                    |                                                                      | Carri     | er Pace | Courier   | Location FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Image: Stripper       Image: Stripper <tdt< th=""><th>X Inclu</th><th></th><th>ıks</th><th></th><th>Blank<br/>Pre-Printed</th><th>No Samp</th><th></th><th></th><th>Boxed Cases</th></tdt<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X Inclu                                                                   |                                                                | ıks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | Blank<br>Pre-Printed                                                 | No Samp   |         |           | Boxed Cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| of Samples       Matrix       Test       Container       Total       # of       Lot #       Notes         1       WT       8260 Full List       3-40mL vial HCl       3       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - COC 0                                                                   | ptions —                                                       | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               | Custody Sea                                                          | ıl        | ,       |           | Short Hold/Rush Stickers DI Water Liter(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Image:       WT       8260 Full List       3-40mL vial HCl       3       0       Image:       Image:       0       Image:       Image: <th>of Samples</th> <th>Matrix</th> <th>Test</th> <th>Containe</th> <th>r</th> <th>Total</th> <th># of</th> <th>Lot#</th> <th>Notes</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of Samples                                                                | Matrix                                                         | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Containe                                      | r                                                                    | Total     | # of    | Lot#      | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IL Amber Glass Unpreserved + 250       0       0       0         MT       B270 Full list plus PAHs       IL Amber Glass Unpreserved + 250       2       0         MT       FL Pro Low Volume for Waters       2-100 ml glass amber H2SO4       2       0         WT       B270 Full list plus PAHs MS/MSD       250mL AG unpres       3       0         WT       B270 Full list plus PAHs MS/MSD       2-1L Amber Glass Unpreserved + 4       4       4         WT       B270 Full list plus PAHs MS/MSD       2-1L Amber Glass Unpreserved + 4       4       4         WT       B270 Full list plus PAHs MS/MSD       2-1L Amber Glass Unpreserved + 4       4       4         WT       B270 Full list plus PAHs MS/MSD       2-1L Amber Glass Unpreserved + 4       4       4         WT       B270 Full list plus PAHs MS/MSD       100ml glass amber H2SO4       2       2       2         Hazard Shipping Placard In Place : NO       LAB USÉ:       Ship Date : [04/05/202       04/05/202         Imager.       Ece Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal.       Verified By:       Bo Pollar         Verified Reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal.       Verified By:       Date Rec'd:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                         |                                                                | 260 Full List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                                                      | 1         |         |           | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WT       FL Pro Low Volume for Waters       2-100 ml glass amber H2SO4       2       0         WT       Metals 200.8 Ag, Cd, Cr, Pb       250mL plastic w/HNO3       3       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1L Amber G                                    | lass Unpreserved + 25                                                | 0,0       |         |           | Selection of the select |
| WT       Metals 200.8 Ag,Cd,Cr,Pb       250mL plastic w/HN03       3       0         WT       8270 Full list plus PAHs MS/MSD       2:1. Amber Glass Unpreserved + 4       4       4         WT       FL PRO MS/MSD       100ml glass amber H2SO4       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | et a                                                                      | -                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mL AG unp                                     | res                                                                  | -         | -       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WT       8270 Full list plus PAHs MS/MSD       2-1L Amber Glass Unpreserved + 4       4       4         WT       FL PRO MS/MSD       100ml glass amber H2SO4       2       2       2         WT       8260 Trip Blank       2-40ml vials w/HCL + DI       2       2       2       3         Hazard Shipping Placard In Place : NO       LAB USE:         mple receiving hours are Mon-Fri 8:00am-6:00pm unless special arrangements are made with your project tager.       Ship Date : 04/05/202       04/05/202         Prepared By: Bo Pollar         Ce Analytical reserves the right to return hazardous, toxic, or radioactive samples to you.         Ce Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal.       Verified By:       Bo Pollar         yment term are net 30 days.       ase include the proposal number on the chain of custody to insure proper billing.       CLIENT USE (Optional):       Date Rec'd:         Received By:       Verified By:       Verified By:       Verified By:       Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | -                                                              | Intels 200 8 Are Col Co Dh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                             |                                                                      |           |         |           | · 3· 1 w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| WT       EVEN Discrete Strain St                                        |                                                                           | 0                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                      | -         |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WT       8260 Trip Blank       2-40ml vials w/HCL + DI       2       2       2         LAB USE:         Mazard Shipping Placard In Place : NO       LAB USE:         Mazard Shipping Placard In Place : NO       LAB USE:         mple receiving hours are Mon-Fri 8:00am-6:00pm unless special arrangements are made with your project ager.       Ship Date : 04/05/202         Prepared By:         be Analytical reserves the right to return hazardous, toxic, or radioactive samples to you.         ve Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal.       Verified By:         wrment term are net 30 days.       ase include the proposal number on the chain of custody to insure proper billing.       CLIENT USE (Optional):         Date Rec'd: Received By:         Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | 441                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 250 mL AG                                     | unpres                                                               | -         | -       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hazard Shipping Placard In Place : NO       LAB USE:         mple receiving hours are Mon-Fri 8:00am-6:00pm unless special arrangements are made with your project       Ship Date : 04/05/202         reger.       Prepared By:         bigstyle       Bo Pollar         ce Analytical reserves the right to return hazardous, toxic, or radioactive samples to you.       Verified By:         ce Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal.       Verified By:         yment term are net 30 days.       ase include the proposal number on the chain of custody to insure proper billing.       CLIENT USE (Optional):         Sample       Date Rec'd:       Received By:         Verified By:       Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                      | -         |         |           | e.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample CLIENT USE (Optional):<br>Date Rec'd:<br>Received By:<br>Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mple receivir<br>nager.<br>ce Analytical<br>ce Analytical<br>yment term a | ng hours are<br>reserves the<br>reserves the<br>are net 30 day | Mon-Fri 8:00am-6:00pm unl<br>right to return hazardous, to<br>right to charge for unused b<br>ys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ess special<br>oxic, or radi<br>oottles, as v | arrangements are m<br>oactive samples to y<br>vell as cost associate | ou.       |         | iect      | Ship Date : 04/05/2021<br>Prepared By: Bo Pollard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Date Rec'd:<br>Received By:<br>Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ase include                                                               | the proposal                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ody to insu                                   | re proper billing.                                                   |           |         |           | ISE (Optionally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Received By:<br>Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                      |           |         | CLIENT    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Page 1 of 2 Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                      |           |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dono 1 of 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                      |           |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL-C-009-rev.00, 19Dec2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Page 1 of 2                                                          |           |         |           | Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALL-C-009-1                                                               | rev.00, 19D                                                    | ec2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                      |           |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                      |           |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| TITANE. OU                                                          | fety Kleen                                                         | Systems                                                            | Inc                                                                         |                                                             |                                                    | SITE                                                                                                                                                  | 0755 NIM                                       | O <sub>E</sub> th ( | Street A                                                                 | ledley, FL                                                                                                        |                                                                           |                                                     |                               |
|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|
| WELL NO:                                                            |                                                                    | eystems,                                                           |                                                                             | SAMP                                                        | LE ID: MW-                                         |                                                                                                                                                       |                                                | 90                  | Street, N                                                                |                                                                                                                   | 12 00                                                                     |                                                     |                               |
|                                                                     |                                                                    | _                                                                  |                                                                             | 0AM                                                         |                                                    | JRGING                                                                                                                                                |                                                |                     |                                                                          | URIE. 91                                                                                                          | 2/21                                                                      |                                                     |                               |
| WELL                                                                |                                                                    | TUBING                                                             | 1                                                                           | 4-OD W                                                      | ELL SCREEN                                         |                                                                                                                                                       |                                                | TIC DE              | PTH                                                                      | PUF                                                                                                               |                                                                           | PE                                                  |                               |
| DIAMETER                                                            |                                                                    | DIAMET                                                             | ER (inches):                                                                | 1/8- <b>ID</b> D                                            | EPTH: 2 fee                                        |                                                                                                                                                       | -                                              | WATER               |                                                                          |                                                                                                                   | BAILER:                                                                   | PP                                                  |                               |
|                                                                     | UME PURGE:<br>if applicable)                                       | 1 WELL VOI                                                         | .UME = (TO)                                                                 |                                                             |                                                    |                                                                                                                                                       |                                                |                     |                                                                          |                                                                                                                   |                                                                           |                                                     |                               |
| FOLIIDMEN                                                           | T VOLUME PU                                                        |                                                                    |                                                                             |                                                             |                                                    | 3.01                                                                                                                                                  | feet) >                                        |                     | 0.16                                                                     | gallons/fc<br>TH) + FLOW CE                                                                                       |                                                                           | ga O                                                | llons                         |
|                                                                     | if applicable)                                                     | NOL. TEQU                                                          |                                                                             | =                                                           | gallons + (                                        |                                                                                                                                                       | allons/foot X                                  | 101                 |                                                                          | feet) +                                                                                                           | gallons =                                                                 | = gallo                                             | ns                            |
| INITIAL PU                                                          |                                                                    | 3                                                                  | FINAL PU                                                                    | MP OR TUBI                                                  | NG                                                 | PUR                                                                                                                                                   |                                                |                     | PURGIN                                                                   |                                                                                                                   | TOTAL VOL                                                                 |                                                     |                               |
| DEPTH IN \                                                          | WELL (feet):                                                       | 7.0                                                                | DEPTH IN                                                                    | WELL (feet)                                                 | 7.0                                                |                                                                                                                                                       | ATED AT: 9                                     | 17                  | ENDED                                                                    | G<br>AT: 940                                                                                                      | PURGED (ga                                                                | UME 1, alions):                                     | 1                             |
| TIME                                                                | VOLUME<br>PURGED<br>(gallons)                                      | CUMUL.<br>VOLUME<br>PURGED<br>(gallons)                            | PURGE<br>RATE<br>(gpm)                                                      | DEPTH<br>TO<br>WATER<br>(feet)                              | pH<br>(standard<br>units)                          | TEMP.<br>(°C)                                                                                                                                         | COND.<br>(circle units)<br>µmhos/m<br>or µS/cm |                     | SOLVED<br>(YGEN<br>cle units)<br>ig/Lor<br>aturation                     | TURBIDITY<br>(NTUs)                                                                                               | COLOR<br>(describe)                                                       | ODOR<br>(describe)                                  | ORF                           |
| 934                                                                 | 1,36                                                               | 1.36                                                               | 0.09                                                                        | 3.1)                                                        | 7.14                                               | 23.41                                                                                                                                                 | SIV                                            | 0                   | 15                                                                       | 1,48                                                                                                              | Claro                                                                     | Slight                                              | -22                           |
| 937                                                                 | 0,24                                                               | 1.6                                                                | 1                                                                           | 3.11                                                        | 7.13                                               | 23.7                                                                                                                                                  | 1515                                           | 0                   | 11                                                                       | 0,98                                                                                                              | 1                                                                         | wgmit                                               | -22                           |
| 940                                                                 | 0,24                                                               | 1.84                                                               |                                                                             | 3.11                                                        | 713                                                | 23.80                                                                                                                                                 | 515                                            | A                   | 14                                                                       | 0.92                                                                                                              |                                                                           | ) !                                                 | -22                           |
|                                                                     |                                                                    | 1.01                                                               | V                                                                           |                                                             |                                                    |                                                                                                                                                       |                                                | 0                   | 1.                                                                       | 0.0                                                                                                               |                                                                           |                                                     |                               |
|                                                                     |                                                                    |                                                                    |                                                                             |                                                             |                                                    |                                                                                                                                                       |                                                |                     |                                                                          |                                                                                                                   |                                                                           |                                                     |                               |
|                                                                     |                                                                    |                                                                    |                                                                             |                                                             |                                                    |                                                                                                                                                       |                                                |                     |                                                                          |                                                                                                                   |                                                                           |                                                     |                               |
| WELL CAP                                                            | ACITY (Gallon<br>ISIDE DIA. CA                                     | s Per Foot):                                                       | 0.75" = 0.02;<br>(Ft ): 1/8" = 0                                            | 1" = 0.04<br>0.0006: 3/                                     | ; <b>1.25</b> " = 0<br>16" = 0.0014;               | 0.06; 2" =<br>1/4" = 0.                                                                                                                               |                                                | : 0.37;<br>6" = 0.0 | 4" = 0.65<br>04: 3/8                                                     |                                                                                                                   | 6" = 1.47;<br>2" = 0.010;                                                 | 12" = 5.88<br>5/8" = 0.016                          |                               |
|                                                                     | EQUIPMENT (                                                        |                                                                    | B = Bailer;                                                                 | BP = Bladd                                                  |                                                    |                                                                                                                                                       | ctric Submersi                                 |                     |                                                                          | = Peristaltic Pur                                                                                                 |                                                                           | ther (Specify)                                      |                               |
|                                                                     |                                                                    |                                                                    |                                                                             |                                                             |                                                    |                                                                                                                                                       |                                                |                     |                                                                          |                                                                                                                   |                                                                           | (-F))                                               |                               |
|                                                                     |                                                                    |                                                                    |                                                                             |                                                             |                                                    | MPLIN                                                                                                                                                 | G DATA                                         |                     |                                                                          |                                                                                                                   |                                                                           |                                                     |                               |
| SAMPLED                                                             | BY (PRINT)                                                         | FEILIATION:                                                        | Sintea                                                                      | -                                                           | SA<br>(S) SIGNATU                                  |                                                                                                                                                       |                                                | ~                   | SAMPLI                                                                   |                                                                                                                   | SAMPLIN<br>ENDED A                                                        | GOUT                                                | ;                             |
| PUMP OR                                                             | TUBING                                                             | T                                                                  | smlea                                                                       | TUBING                                                      | (S) SIGNATU                                        | RE(S):                                                                                                                                                | G DATA                                         | FIEI                | D-FILTER                                                                 | NG<br>ED AT: 941<br>ED: Y N                                                                                       | SAMPLIN<br>ENDED A                                                        | GOUT                                                | μm                            |
| PUMP OR<br>DEPTH IN                                                 | ermr.                                                              | Morn<br>7.0                                                        |                                                                             | TUBING                                                      | (S) SIGNATU                                        | MPLIN<br>RE(S):<br>F M<br>DPE                                                                                                                         | G DATA                                         | FIEI                | D-FILTER                                                                 | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:                                                                         | SAMPLIN<br>ENDED A                                                        | G 943                                               | μm                            |
| PUMP OR<br>DEPTH IN<br>FIELD DEC                                    | TUBING<br>WELL (feet):                                             | 7.0<br>0N: PU                                                      | MP Y C                                                                      |                                                             | (S) SIGNATU                                        | MPLIN<br>RE(S):<br>7<br>DPE<br>3 Y                                                                                                                    | G DATA                                         | FIEI                | INITIATE                                                                 | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y                                                               | SAMPLIN<br>ENDED A<br>FILTEI<br>N<br>SAMPLING                             | IG 947<br>R SIZE:                                   | E PUMP                        |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID                 | TUBING<br>WELL (feet):<br>CONTAMINATION<br>MPLE CONTAINE<br>#      | MOCO<br>7.0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL                | MP Y C                                                                      | TUBING<br>MATERIAI<br>N<br>SA<br>PRESERV                    | (S) SIGNATU<br>L CODE: H<br>TUBING<br>AMPLE PRESEF | AMPLIN<br>RE(S):<br>F<br>DPE<br>3 Y<br>RVATION (included)                                                                                             | G DATA                                         |                     | INITIATE                                                                 | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:                                                                         | SAMPLIN<br>ENDED A<br>FILTEI                                              | IG<br>T: 947<br>R SIZE:                             |                               |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE         | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS           | 7.0<br>ON: PUI                                                     |                                                                             | TUBING<br>MATERIAL<br>N                                     | ATIVE                                              | MPLIN<br>RE(S):<br>T<br>DPE<br>3 Y<br>RVATION (incl                                                                                                   | G DATA                                         | FIEI<br>Filtr       | INITIATE<br>D-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr, | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA                | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT                | G 947<br>T: 947<br>R SIZE:<br>FLOW<br>(mL pe        | E PUMP<br>/ RATE              |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE         | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS           |                                                                    |                                                                             | TUBING<br>MATERIAI<br>N<br>SA<br>PRESERV<br>USEI            | ATIVE                                              | AMPLIN<br>RE(S):<br>F<br>DPE<br>3 Y<br>RVATION (incl<br>TOTAL VC<br>DDED IN FIEL                                                                      | G DATA                                         | FIEI<br>Filtr       | INITIATE<br>D-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr, | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD                                 | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | IG<br>T: 947<br>R SIZE:                             | E PUMP<br>/ RATE              |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE         | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS           |                                                                    |                                                                             | TUBING<br>MATERIAI<br>N<br>SA<br>PRESERV<br>USEI            | ATIVE                                              | AMPLIN<br>RE(S):<br>F<br>DPE<br>3 Y<br>RVATION (incl<br>TOTAL VC<br>DDED IN FIEL                                                                      | G DATA                                         | FIEI<br>Filtr       | INITIATE<br>D-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr, | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA                | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | G 947<br>T: 947<br>R SIZE:<br>FLOW<br>(mL pe        | E PUMP<br>/ RATE              |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE         | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS           |                                                                    |                                                                             | TUBING<br>MATERIAI<br>N<br>SA<br>PRESERV<br>USEI            | ATIVE                                              | AMPLIN<br>RE(S):<br>F<br>DPE<br>3 Y<br>RVATION (incl<br>TOTAL VC<br>DDED IN FIEL                                                                      | G DATA                                         | FIEI<br>Filtr       | INITIATE<br>D-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr, | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA                | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | G 947<br>T: 947<br>R SIZE:<br>FLOW<br>(mL pe        | E PUMP<br>/ RATE              |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE         | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS           |                                                                    |                                                                             | TUBING<br>MATERIAI<br>N<br>S/<br>PRESERV<br>USEI            | ATIVE                                              | AMPLIN<br>RE(S):<br>F<br>DPE<br>3 Y<br>RVATION (incl<br>TOTAL VC<br>DDED IN FIEL                                                                      | G DATA                                         | FIEI<br>Filtr       | INITIATE<br>D-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr, | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA                | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | G 947<br>T: 947<br>R SIZE:<br>FLOW<br>(mL pe        | E PUMP<br>/ RATE              |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE         | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS           |                                                                    |                                                                             | TUBING<br>MATERIAI<br>N<br>S/<br>PRESERV<br>USEI            | ATIVE                                              | AMPLIN<br>RE(S):<br>F<br>DPE<br>3 Y<br>RVATION (incl<br>TOTAL VC<br>DDED IN FIEL                                                                      | G DATA                                         | FIEI<br>Filtr       | INITIATE<br>D-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr, | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA                | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | G 947<br>T: 947<br>R SIZE:<br>FLOW<br>(mL pe        | E PUMP<br>/ RATE              |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE         | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS           |                                                                    |                                                                             | TUBING<br>MATERIAI<br>N<br>S/<br>PRESERV<br>USEI            | ATIVE                                              | AMPLIN<br>RE(S):<br>F<br>DPE<br>3 Y<br>RVATION (incl<br>TOTAL VC<br>DDED IN FIEL                                                                      | G DATA                                         | FIEI<br>Filtr       | INITIATE<br>D-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr, | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA                | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | G 947<br>T: 947<br>R SIZE:<br>FLOW<br>(mL pe        | E PUMP<br>/ RATE              |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID                       | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS           |                                                                    |                                                                             | TUBING<br>MATERIAI<br>N<br>S/<br>PRESERV<br>USEI            | ATIVE                                              | AMPLIN<br>RE(S):<br>F<br>DPE<br>3 Y<br>RVATION (incl<br>TOTAL VC<br>DDED IN FIEL                                                                      | G DATA                                         | FIEI<br>Filtr       | INITIATE<br>D-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr, | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA                | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | G 947<br>T: 947<br>R SIZE:<br>FLOW<br>(mL pe        | E PUMP<br>/ RATE              |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID                       | TUBING WELL (feet): CONTAMINATI MPLE CONTAINERS 1 1                | Morra<br>7.0<br>ON: PUP<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>PE | I/P Y                                                                       | TUBING<br>MATERIAI<br>N<br>S/<br>PRESERV<br>USEI            |                                                    | AMPLIN<br>RE(S):<br>T<br>DPE<br>3 Y<br>RVATION (inclu-<br>TOTAL VC<br>DDED IN FIEL<br>NONE                                                            | G DATA                                         | FIEI<br>Filtr       | INITIATE<br>D-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr, | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA                | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | G 947<br>T: 947<br>R SIZE:<br>FLOW<br>(mL pe        | E PUMP<br>/ RATE              |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE               | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS<br>1<br>1 | AG = Amber                                                         | MP Y                                                                        | TUBING<br>MATERIAL<br>N<br>PRESERV<br>USE<br>HNO3+          | SS; HDPE                                           | AMPLIN<br>RE(S):<br>T<br>OPE<br>G<br>VATION (incl<br>TOTAL VC<br>DDED IN FIEL<br>NONE                                                                 | G DATA                                         | FINAL<br>PH<br><2   | INITIATE                                                                 | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA                | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP | G 947<br>T: 947<br>R SIZE:<br>FLOW<br>(mL pe        | E PUMP<br>/ RATE<br>r minute) |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE<br>CODE | TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAINERS<br>1<br>1 | AG = Amber<br>S = Silicone;<br>CODES:                              | MP Y<br>ION<br>VOLUME<br>250 ml<br>Glass; CG<br>T = Teflon<br>APP = After ( | TUBING<br>MATERIAL<br>N<br>PRESERV<br>USE<br>HNO3H<br>HNO3H | SS; HDPE                                           | AMPLIN<br>RE(S):<br>F<br>AVATION (inclustry)<br>AVATION (inclustry)<br>AVATION (inclustry)<br>AVATION (inclustry)<br>TOTAL VC<br>DDED IN FIEL<br>NONE | G DATA                                         | FINAL<br>pH<br><2   | LDPE = Lo                                                                | NG<br>ED AT: 941<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>/OR METHOD<br>Pb, Ag by EPA<br>ethod 200.8 | SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP | G 947<br>T: 947<br>R SIZE:<br>BLOW<br>(mL pe<br>303 | E PUMP<br>/ RATE<br>r minute) |

**pH:**  $\pm$  0.2 units **Temperature:**  $\pm$  0.2 °C **Specific Conductance:**  $\pm$  5% **Dissolved Oxygen:** all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) **Turbidity:** readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

### DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| WELL NO:                                                                                                                          | MW-2R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLE ID: MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2 6111                                                                                                                                                                                                            | 27021                                                                                                     |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE: L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -12-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | URGING                                                                                                                                                                                                             |                                                                                                           | _                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |
| WELL                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TUBIN                                                                                                                                                                                | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1⁄4-OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WELL SCREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                    | ST                                                                                                        | ATIC D                                                                                     | EPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PURGE PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |
| DIAMETER                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      | TER (inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :1/8-ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEPTH: 2 fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | et to 12 feet                                                                                                                                                                                                      | то                                                                                                        | WATE                                                                                       | R (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OR BAILER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >                                                                            |
| WELL VOL                                                                                                                          | UME PURGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 1 WELL VC                                                                                                                                                                          | LUME = (TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAL WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEPTH – S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TATIC DEPT                                                                                                                                                                                                         | H TO WATE                                                                                                 | R) X                                                                                       | WELL CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      | = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .4 feet –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.49                                                                                                                                                                                                               | feet)                                                                                                     | x                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gallor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hs/foot = 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | allons                                                                       |
| EQUIPMEN                                                                                                                          | NT VOLUME P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | URGE: 1 EQ                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DL. = PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOLUME + (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UBING CAPA                                                                                                                                                                                                         | CITY X                                                                                                    | TU                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CELL VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Janons                                                                       |
|                                                                                                                                   | if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gallons + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g                                                                                                                                                                                                                  | allons/foot X                                                                                             |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = dal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | llons                                                                        |
| INITIAL PU                                                                                                                        | MP OR TUBIN<br>WELL (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IG , a                                                                                                                                                                               | FINAL PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JMP OR TUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BING 5, U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PURC                                                                                                                                                                                                               |                                                                                                           | 01                                                                                         | PURGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NG 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~                                                                            |
| DEPTH IN                                                                                                                          | WELL (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0                                                                                                                                                                                  | DEPTH I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N WELL (fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t): <b>)</b> , <b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INITI                                                                                                                                                                                                              | ATED AT: 🖸                                                                                                | 51                                                                                         | ENDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AT: 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PURGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (gallons):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                            |
| 10.01                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CUMUL.                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000                                                                                                                                                                                                               | COND.                                                                                                     | DIS                                                                                        | SOLVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |
| TIME                                                                                                                              | VOLUME<br>PURGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOLUME<br>PURGED                                                                                                                                                                     | PURGE<br>RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | то                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pH<br>(standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TEMP.                                                                                                                                                                                                              | (circle units)<br>µmhos/m                                                                                 |                                                                                            | XYGEN<br>ircle units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TURBIDIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ODOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OF                                                                           |
|                                                                                                                                   | (gallons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (gallons)                                                                                                                                                                            | (gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WATER<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (°C)                                                                                                                                                                                                               | or µS/cm                                                                                                  |                                                                                            | mg/L or<br>saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (describe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (describe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                           | 70                                                                                         | saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                            |
| 848                                                                                                                               | 1,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.36                                                                                                                                                                                 | 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.64                                                                                                                                                                                                              | 520                                                                                                       | 0                                                                                          | .34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                           |
| 851                                                                                                                               | 0,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    | 1.25                                                                                                      |                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Slight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01                                                                           |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - vi                                                                                                                                                                                                               | 520                                                                                                       |                                                                                            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 19                                                                         |
| 854                                                                                                                               | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.84                                                                                                                                                                                 | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2369                                                                                                                                                                                                               | 520                                                                                                       | 0,                                                                                         | .21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -194                                                                         |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                  |                                                                                                           | -                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                            |
| WELL CAP                                                                                                                          | PACITY (Gallor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns Per Foot):                                                                                                                                                                        | <b>0.75</b> " = 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : <b>1</b> " = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4: 1.25" =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.06: <b>2</b> " =                                                                                                                                                                                                 | 0 16 <sup>.</sup> 3" =                                                                                    | 0.37                                                                                       | <b>4</b> " = 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5: 5 <sup>2</sup> = 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $b^{*} = 1.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10" - 5.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |
| TUBING IN                                                                                                                         | PACITY (Gallo<br>ISIDE DIA. CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PACITY (Gal.                                                                                                                                                                         | /Ft.): 1/8" =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0006; 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16" = 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.06; <b>2"</b> =<br>; 1/4" = 0.0                                                                                                                                                                                  | 0.16; <b>3"</b> =<br>0026; <b>5/1</b>                                                                     | 0.37;<br>6" = 0.0                                                                          | <b>4</b> " = 0.65<br>004; <b>3/8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5; <b>5</b> " = 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2; 6" = 1.47;<br>1/2" = 0.010;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>12</b> " = 5.88<br><b>5/8</b> " = 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |
| TUBING IN                                                                                                                         | PACITY (Gallor<br>ISIDE DIA. CA<br>EQUIPMENT (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PACITY (Gal.                                                                                                                                                                         | <b>0.75</b> " = 0.02<br>/Ft.): <b>1/8</b> " =<br><b>3</b> = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ; 1" = 0.0<br>0.0006; 3<br>BP = Blade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | //16" = 0.0014<br>der Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ; 1/4" = 0.0<br>ESP = Elect                                                                                                                                                                                        | 0026; 5/1<br>tric Submersi                                                                                | 6" = 0.0                                                                                   | 004; <b>3/8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>1/2"</b> = 0.010;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                            |
| TUBING IN<br>PURGING I                                                                                                            | EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AFFILIATION:                                                                                                                                                                         | /Ft.): 1/8" =<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006; 3<br>BP = Blade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/16" = 0.0014<br>der Pump;<br>S/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : 1/4" = 0.0<br>ESP = Elect<br>AMPLING                                                                                                                                                                             | 0026; 5/1<br>tric Submersi                                                                                | 6" = 0.0                                                                                   | 004; 3/8<br>np; PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9" = 0.006;<br>P = Peristaltic I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1/2"</b> = 0.010;<br>Pump; <b>O</b> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/8" = 0.016<br>Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |
| PURGING IN<br>SAMPLED                                                                                                             | BYPRINT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AFFILIATION:                                                                                                                                                                         | /Ft.): 1/8" =<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006; 3<br>BP = Blade<br>SAMPLEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | //16" = 0.0014<br>der Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ; 1/4" = 0.0<br>ESP = Elect<br>AMPLING<br>IRE(S):                                                                                                                                                                  | 0026; 5/1<br>tric Submersi<br>G DATA                                                                      | 6" = 0.0                                                                                   | 004; 3/8<br>np; PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9" = 0.006;<br>P = Peristaltic I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1/2"</b> = 0.010;<br>Pump; <b>O</b> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/8" = 0.016<br>Other (Specify)<br>NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |
| TUBING IN<br>PURGING I<br>SAMPLED                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AFFILIATION:                                                                                                                                                                         | /Ft.): 1/8" =<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006; 3<br>BP = Blade<br>SAMPLEF<br>TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0/16" = 0.0014<br>der Pump;<br>S/<br>R(S) SIGNATU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>JRE(S):<br>MOM                                                                                                                                                           | 0026; 5/1<br>tric Submersi<br>G DATA                                                                      | 6" = 0.(                                                                                   | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9" = 0.006;<br>P = Peristaltic I<br>NG<br>ED AT:<br>ED: Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/8" = 0.016<br>Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                            |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN                                                                          | BYPRINT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AFFILIATION:                                                                                                                                                                         | /Ft.): 1/8" =<br>3 = Bailer;<br>1 ECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0006; 3<br>BP = Blade<br>SAMPLEF<br>TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/16" = 0.0014<br>der Pump;<br>S/<br>R(S) SIGNATU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>JRE(5):<br>DPE                                                                                                                                                           | 0026; 5/1<br>tric Submersi<br>G DATA                                                                      | 6" = 0.(                                                                                   | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P = 0.006;<br>P = Peristaltic I<br>NG<br>ED AT:<br>ED AT:<br>ED: Y<br>ment Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           FILTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: <b>92.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >                                                                            |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC                                                             | EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AFFILIATION:<br>5,0<br>ION: PUI                                                                                                                                                      | /Ft.): 1/8" =<br>B = Bailer;<br>I ECT<br>MP Y C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0006; 3<br>BP = Blado<br>SAMPLEF<br>TUBING<br>MATERIA<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N16" = 0.0014<br>der Pump;<br>SJ<br>R(S) SIGNATU<br>LL CODE: H<br>TUBIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>JRE(S):<br>MOM<br>DPE<br>G Y N                                                                                                                                           | 0026; 5/1<br>tric Submersi<br>G DATA                                                                      | 6" = 0.(                                                                                   | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P = 0.006;<br>P = Peristaltic I<br>NG<br>ED AT:<br>ED AT:<br>ED: Y<br>ment Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           FILTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: <b>92.0</b><br>ER SIZE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>)</b><br>_ μm                                                             |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | SIDE DIA. CA<br>EQUIPMENT<br>BE (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AFFILIATION:<br>5,0<br>ION: PUI                                                                                                                                                      | /Ft.): 1/8" =<br>3 = Bailer;<br>  ECT<br>MP Y (<br>10N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0006; 3<br>BP = Blado<br>SAMPLEF<br>TUBING<br>MATERIA<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMPLE PRESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>IRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu                                                                                                                                | 0026; 5/1<br>tric Submersi<br>G DATA                                                                      | 6" = 0.(<br>ble Pur<br>FIE<br>FIE                                                          | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Second state     Image: Second state       Ing     Image: Second state <t< td=""><td>1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           N           SAMPLING           EQUIPMENT</td><td>5/8" = 0.016<br/>Other (Specify)<br/>NG<br/>AT: <b>92.3</b><br/>ER SIZE:<br/>FLOV</td><td>μm<br/>_ μm<br/>_E PUMP<br/>V RATE</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           N           SAMPLING           EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: <b>92.3</b><br>ER SIZE:<br>FLOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μm<br>_ μm<br>_E PUMP<br>V RATE                                              |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | SIDE DIA. CA<br>EQUIPMENT<br>BE (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AFFILIATION:<br>AFFILIATION:<br>5,0<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE                                                                                                 | /Ft.): 1/8" =<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMPLE PRESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ;     1/4" = 0.0       ESP = Elect       AMPLING       IRE(S):       DPE       3     Y       RVATION (inclu       TOTAL VOD       DDED IN FIELD                                                                    | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)                                       | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>INAL<br>pH                                         | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Second state of the | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           FILTI           N           SAMPLING           EQUIPMENT           CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: 92.0<br>ER SIZE:<br>SAMPI<br>FLOV<br>(mL pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μm<br>_ μm<br>LE PUMP<br>V RATE<br>er minute)                                |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | SIDE DIA. CA<br>EQUIPMENT<br>BE (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AFFILIATION:<br>AFFILIATION:<br>5,0<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL                                                                                                         | /Ft.): 1/8" =<br>3 = Bailer;<br>  ECT<br>MP Y (<br>10N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0006; 3<br>BP = Blade<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AMPLE PRESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLINO<br>IRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu-<br>TOTAL VOI                                                                                                                  | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)                                       | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr                                                       | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Second state state         Image: Second state         Image: Seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           N           SAMPLING           EQUIPMENT           CODE           APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/8" = 0.016<br>Other (Specify)<br>AT: 92.0<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm<br>LE PUMP<br>V RATE<br>rr minute)                                        |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | SIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>2.1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AFFILIATION:<br>AFFILIATION:<br>5,0<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG                                                                                           | /Ft.): 1/8" =<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMPLE PRESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>JRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu<br>TOTAL VOE<br>DDED IN FIELE<br>NONE                                                                                          | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)                                       | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>INAL<br>pH                                         | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Image: Second state state         ING         ED AT:         SED:         Y         Image: Second state         ATE:         Y         IDED ANALYSIS         YOR METHOD         60-Volatile         IC Compound         A Method 826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           N           SAMPLING           EQUIPMENT           CODE           APP           30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: <b>92.3</b><br>ER SIZE:<br>FLOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μm<br>LE PUMP<br>V RATE<br>rr minute)                                        |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAM                                                      | SIDE DIA. CA<br>EQUIPMENT<br>BE (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AFFILIATION:<br>AFFILIATION:<br>5,0<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE                                                                                                 | /Ft.): 1/8" =<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMPLE PRESEL<br>VATIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;     1/4" = 0.0       ESP = Elect       AMPLING       IRE(S):       DPE       3     Y       RVATION (inclu       TOTAL VOD       DDED IN FIELD                                                                    | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)                                       | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>INAL<br>pH                                         | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Second state sta | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           N           SAMPLING           EQUIPMENT           CODE           APP           30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/8" = 0.016<br>Other (Specify)<br>AT: 92.1<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm<br>μm<br>v RATE<br>r minute)                                              |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | SIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>2.1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AFFILIATION:<br>AFFILIATION:<br>S,0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG                                                                                      | /Ft.): 1/8" =<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>HCI+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AMPLE PRESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>JRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu<br>TOTAL VOE<br>DDED IN FIELE<br>NONE                                                                                          | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)                                       | 6" = 0.(<br>ble Pur<br>FIE<br>Filtr<br>INAL<br>pH<br><2                                    | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Image: Second state sta | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           N           SAMPLING           EQUIPMENT           CODE           APP           S0           S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/8" = 0.016<br>Other (Specify)<br>AT: 92.0<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm<br>μm<br>v RATE<br>r minute)                                              |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | SIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>2.1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AFFILIATION:<br>AFFILIATION:<br>5,0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG                                                                                | /Ft.): 1/8" =<br>3 = Bailer;<br>I ECT<br>VP Y (<br>10N<br>VOLUME<br>40 ml<br>250 ml<br>1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0006; 3<br>BP = Blade<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>USE<br>HCI+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMPLE PRESEL<br>VATIVE A<br>ICCODE: H<br>TUBINI<br>AMPLE PRESEL<br>VATIVE A<br>ICC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>RRE(S):<br>DPE<br>3 Y N<br>RVATION (Inclui<br>TOTAL VOI<br>DDED IN FIELE<br>NONE                                                                                         | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)                                       | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>INAL<br>pH<br><2                                   | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organie<br>by EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Image: Second state sta | 1/2" = 0.010;           Pump;         0 = 0           5         SAMPLI<br>ENDED           1         FILTI           N         SAMPLING<br>EQUIPMENT           SAMPLING<br>EQUIPMENT         APP           30         APP           50         APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/8" = 0.016<br>Other (Specify)<br>AT: 92.0<br>ER SIZE:<br>SAMPL<br>FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV))<br>(FLOV<br>(FLOV))<br>(FLOV<br>(FLOV))<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(F | μm<br>E PUMP<br>V RATE<br>rr minute)<br>224<br>3                             |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | ISIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>2 3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AFFILIATION:<br>AFFILIATION:<br>SON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AC<br>PE                                                                                | /Ft.):       1/8" =         3 = Bailer;         IECT         MP       Y         ION         VOLUME         40 ml         250 ml         JL         250 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>HCI+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AMPLE PRESEL<br>VATIVE A<br>ICCODE: H<br>TUBINI<br>AMPLE PRESEL<br>VATIVE A<br>ICC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>JRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu<br>TOTAL VOL<br>DOED IN FIELD<br>NONE<br>11<br>NONE                                                                            | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)                                       | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>INAL<br>PH<br><2                                   | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organie<br>by EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Image: Second state in the second s | 1/2" = 0.010;           Pump;         0 = 0           SAMPLIS           ENDED           N           SAMPLING           EQUIPMENT           CODE           35           360           S           APP           360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/8" = 0.016<br>Other (Specify)<br>AT: 92.1<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm<br>E PUMP<br>V RATE<br>rr minute)<br>224<br>3                             |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | ISIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>2 3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AFFILIATION:<br>AFFILIATION:<br>5,0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG                                                                                | /Ft.): 1/8" =<br>3 = Bailer;<br>I ECT<br>VP Y (<br>10N<br>VOLUME<br>40 ml<br>250 ml<br>1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0006; 3<br>BP = Blade<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>USE<br>HCI+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMPLE PRESENT<br>AMPLE PRESENT<br>AM                                  | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>JRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu<br>TOTAL VOL<br>DOED IN FIELD<br>NONE<br>NONE                                                                                  | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)<br>(mL) F                             | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>INAL<br>PH<br><2                                   | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organi<br>by EPA<br>62, Cr, F<br>Method<br>TRPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Image: Second state sta | 1/2" = 0.010;           Pump;         0 = 0           SAMPLING           EAUIPMENT           SAMPLING           EAUIPMENT           CODE           APP           So           SAPP           APP           APP           APP           APP           APP           APP           APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: 92.0<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe<br>DO<br>C 3 0<br>Q 3 0<br>C 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μm<br>E PUMP<br>V RATE<br>rr minute)<br>V 2 Pm<br>3                          |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | ISIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>21 3<br>1<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AFFILIATION:<br>AFFILIATION:<br>S.O<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG<br>PE<br>AG                                                                   | /Ft.): 1/8" =<br>3 = Bailer;<br>I ECT<br>MP Y (<br>10N<br>VOLUME<br>40 ml<br>250 ml<br>100 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S<br>PRESERV<br>USE<br>HCI+<br>ICC<br>HNO3<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AMPLE PRESEL<br>AMPLE | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>JRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu<br>TOTAL VOL<br>DOED IN FIELD<br>NONE<br>11<br>NONE                                                                            | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)<br>(mL) F                             | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>INAL<br>pH<br><2<br><br>((<br><2                   | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organi<br>by EPA<br>62, Cr, F<br>Method<br>TRPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Image: Second state sta | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           FILTI           N           SAMPLING           EQUIPMENT           CODE           APP           SO           APP           APP           APP           APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/8" = 0.016<br>Other (Specify)<br>AT: 92.0<br>ER SIZE:<br>SAMPL<br>FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV<br>(FLOV))<br>(FLOV<br>(FLOV))<br>(FLOV<br>(FLOV))<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(FLOV)<br>(F | μm<br>E PUMP<br>v RATE<br>r minute)<br>γ2Pm<br>3                             |
| TUBING IN<br>PURGING I<br>SAMPLED<br>DEPTH IN I<br>FIELD DEC<br>SAMPLE ID<br>CODE                                                 | ISIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>UBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>21 3<br>1<br>1<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AFFILIATION:<br>AFFILIATION:<br>S.O<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG<br>PE<br>AG                                                                   | /Ft.): 1/8" =<br>3 = Bailer;<br>I ECT<br>MP Y (<br>10N<br>VOLUME<br>40 ml<br>250 ml<br>100 ml<br>100 ml<br>3 cmpU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0006; 3<br>BP = Bladd<br>TUBING<br>MATERIA<br>N<br>PRESERV<br>USE<br>HCI+<br>ice<br>HNO3<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AMPLE PRESEL<br>AMPLE | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>JRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu<br>TOTAL VOL<br>DOED IN FIELD<br>NONE<br>11<br>NONE                                                                            | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)<br>(mL) F                             | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>INAL<br>pH<br><2<br><br>((<br><2                   | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organi<br>by EPA<br>62, Cr, F<br>Method<br>TRPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Image: Second state sta | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           FILTI           N           SAMPLING           EQUIPMENT           CODE           APP           SO           APP           APP           APP           APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: 92.0<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe<br>DO<br>C 3 0<br>Q 3 0<br>C 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μm<br>E PUMP<br>v RATE<br>r minute)<br>γ2Pm<br>3                             |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED                                                  | ISIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>2 3<br>7<br>1<br>2<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AFFILIATION:<br>AFFILIATION:<br>S.O<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG<br>PE<br>AG                                                                   | /Ft.): 1/8" =<br>3 = Bailer;<br>I ECT<br>MP Y (<br>10N<br>VOLUME<br>40 ml<br>250 ml<br>100 ml<br>100 ml<br>3 cmpU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0006; 3<br>BP = Bladd<br>TUBING<br>MATERIA<br>N<br>PRESERV<br>USE<br>HCI+<br>ice<br>HNO3<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AMPLE PRESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>IRE(S):<br>DPE<br>3 Y N<br>RVATION (Inclui<br>TOTAL VOI<br>DDED IN FIELE<br>NONE<br>11<br>NONE<br>11<br>NONE                                                             | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)<br>(mL) F                             | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>INAL<br>pH<br><2<br><br>((<br><2                   | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organi<br>by EPA<br>62, Cr, F<br>Method<br>TRPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Image: Second state sta | 1/2" = 0.010;           Pump;         0 = 0           SAMPLI           ENDED           FILTI           N           SAMPLING           EQUIPMENT           CODE           APP           SO           APP           APP           APP           APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: 92.0<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe<br>DO<br>C 3 0<br>Q 3 0<br>C 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μm<br>E PUMP<br>v RATE<br>r minute)<br>γ2Pm<br>3                             |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLED<br>CODE<br>CODE<br>CODE<br>R-0412<br>REMARKS:    | ISIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>21 3<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AFFILIATION:<br>AFFILIATION:<br>SION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AC<br>PE<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG                   | /Ft.):       1/8" =         B = Bailer;         B = Bailer;         IECT         MP Y         ION         VOLUME         40 ml         250 ml         JL         250 ml         JL         250 ml         JU         Scmptu         Sce                                                                                                                                                                                                                                                                                             | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>HCI+<br>ICE<br>HNO3<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/16" = 0.0014         der Pump;         SJ         R(S) SIGNATL         IL CODE:         H         TUBING         AMPLE PRESER         VATIVE         ICe         + Ice         + Ice         - + Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>IRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu<br>TOTAL VOL<br>DOED IN FIELD<br>NONE<br>11<br>NONE<br>11<br>NONE                                                              | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)<br>(mL) F                             | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>iNAL<br>PH<br><2<br><br>((<br><2<br><2             | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organic<br>by EPA<br>Cd, Cr, I<br>Method<br>TRPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Image: Second state sta | 1/2" = 0.010;       Pump;     0 = 0       SAMPLING       EAUIPMENT       CODE       APP       So       So       APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: 92.0<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe<br>DO<br>C 3 0<br>Q 3 0<br>C 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μm<br>E PUMP<br>v RATE<br>r minute)<br>γ2Pm<br>3                             |
| TUBING IN<br>PURGING I<br>SAMPLED<br>DEPTH IN I<br>FIELD DEC<br>SAMPLE ID<br>CODE                                                 | ISIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>21 3<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PACITY (Gal.<br>CODES: I<br>AFFILIATION:<br>5,0<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AC<br>PE<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG | /Ft.):       1/8" =         B = Bailer;         B = Bailer;         IECT         MP       Y         ION         VOLUME         40 ml         250 ml         JL         250 ml         JL         250 ml         JU         Scmptu         Scmptu         Scarpe         Scarpe | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>SS<br>PRESERV<br>HCI+<br>ICE<br>HNO3<br>H2SO4<br>HNO3<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ide" = 0.0014         der Pump;         SJ         R(S) SIGNATU         IL CODE:         H         TUBING         AMPLE PRESER         VATIVE         ICC         ICC         + ICC         + ICC         ss;         HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>IRE(S):<br>DPE<br>3 Y N<br>RVATION (Inclui<br>TOTAL VOI<br>DDED IN FIELE<br>NONE<br>11<br>NONE<br>11<br>NONE                                                             | 0026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)<br>(mL) F                             | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br>iNAL<br>PH<br><2<br><br>((<br><2<br><2             | 004; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organic<br>by EPA<br>Cd, Cr, I<br>Method<br>TRPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Image: Second state sta | 1/2" = 0.010;       Pump;     0 = 0       SAMPLING       EQUIPMENT       CODE       APP       So       So       APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: 92.0<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe<br>DO<br>C 3 0<br>Q 3 0<br>C 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μm<br>LE PUMP<br>V RATE<br>rr minute)<br>V RATE<br>rr minute)                |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE<br>REMARKS:                            | ISIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>21 3<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PACITY (Gai.<br>CODES: I<br>AFFILIATION:<br>5,0<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>A                    | /Ft.): 1/8" =<br>B = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>SS<br>PRESERV<br>HCI+<br>ICC<br>HNO3<br>H2SO4<br>HNO3<br>H2SO4<br>CO Sec<br>I mm<br>Clear Gla<br>; O = Otho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ide" = 0.0014         der Pump;         SJ         R(S) SIGNATL         IL CODE:         H         TUBING         AMPLE PRESER         VATIVE         ICE         + ICE         + ICE         ss;         HDPE         er (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ; 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>DPE<br>3 Y N<br>RVATION (inclu<br>TOTAL VOL<br>DOED IN FIELD<br>NONE<br>11<br>NONE<br>11<br>NONE<br>14<br>NONE                                                           | b026; 5/1<br>tric Submersi<br>G DATA<br>(replaced)<br>ding wet ice)<br>(mL) F<br>(mL) F<br>ty Polyethyler | 6" = 0.(<br>ble Pur<br>FIEI<br>Filtr<br><br>((<br><2<br><2<br><2                           | D04; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organic<br>by EPA<br>8270-S<br>Organic<br>by EPA<br>Cd, Cr, I<br>Method<br>TRPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Image: Second state sta | 1/2" = 0.010;       Pump;     0 = 0       Pump;     0 = 0       SAMPLING<br>EQUIPMENT<br>CODE       SAMPLING<br>EQUIPMENT       SAMPLING<br>EQUIPMENT       SAMPLING<br>EQUIPMENT       SAMPLING<br>EQUIPMENT       SAMPLING<br>EQUIPMENT       SAMPLING<br>EQUIPMENT       SAMPLING<br>EQUIPMENT       SAMPLING<br>EQUIPMENT       SAMPLING<br>EQUIPMENT       SA | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: 92.3<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe<br>D 100<br>C 30<br>0 30<br>0 30<br>P = Polypropyle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μm<br>LE PUMP<br>V RATE<br>rr minute)<br>V RATE<br>rr minute)<br>V RATE<br>3 |
| TUBING IN<br>PURGING I<br>SAMPLED<br>DEPTH IN<br>FIELD DEC<br>SAMPLED<br>CODE<br>CODE<br>CODE<br>REMARKS:<br>MATERIAL<br>SAMPLING | ISIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>MPLE CONTAIN<br>CONTAINERS<br>21 3<br>1<br>21 3<br>21 5<br>21 5 | PACITY (Gal.<br>CODES: I<br>AFFILIATION:<br>5,0<br>ION: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>A                    | /Ft.):       1/8" =         B = Bailer;         B = Bailer;         IECT         INP         YON         VOLUME         40 ml         250 ml         JL         250 ml         JU         250 ml         JU         250 ml         JOO ml         Benplu         Glass;       CG         T = Teflon         APP = After (         RFPP = Reve                                                                                                                                                                                                                                                                                                                         | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>HCI+<br>ICE<br>HNO3<br>H2SO4<br>CO Sec<br>Co | AMPLE PRESER<br>AMPLE PRESER<br>VATIVE A<br>ICC AMPLE A                                                                                                                                                                | i 1/4" = 0.(<br>ESP = Elect<br>AMPLING<br>IRE(S):<br>DPE<br>3 Y N<br>RVATION (inclu<br>TOTAL VOE<br>NONE<br>NONE<br>11<br>NONE<br>14<br>NONE<br>14<br>NONE<br>14<br>NONE<br>14<br>NONE<br>14<br>NONE<br>14<br>NONE | b026; 5/1 tric Submersi G DATA ()(replaced) (ing wet ice) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL          | 6" = 0.0<br>ble Pur<br>FIEI<br>Filtr<br>iNAL<br>PH<br><2<br><br>((<br><2<br><2<br><2<br><2 | D04; 3/8<br>np; PF<br>SAMPLI<br>INITIATI<br>LD-FILTER<br>ation Equip<br>DUPLIC<br>UPLIC<br>INTEN<br>AND<br>820<br>Organi<br>by EPA<br>8270-S<br>Organi<br>by EPA<br>8270-S<br>Organi<br>Batta<br>8270-S<br>Organi<br>Batta<br>8270-S<br>Organi<br>Batta<br>8270-S<br>Organi<br>Batta<br>8270-S<br>Organi<br>Batta<br>8270-S<br>Organi<br>Batta<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270-S<br>Organi<br>8270 | Image: Second state of the second s | 1/2" = 0.010;       Pump;     0 = 0       SAMPLING       EQUIPMENT       CODE       APP       So       So       APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5/8" = 0.016<br>Other (Specify)<br>NG<br>AT: 92.3<br>ER SIZE:<br>SAMPL<br>FLOV<br>(mL pe<br>D 100<br>C 30<br>0 30<br>0 30<br>P = Polypropyle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μm<br>LE PUMP<br>V RATE<br>rr minute)<br>V RATE<br>rr minute)<br>V RATE<br>3 |

**pH:**  $\pm$  0.2 units **Temperature:**  $\pm$  0.2 °C **Specific Conductance:**  $\pm$  5% **Dissolved Oxygen:** all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) **Turbidity:** all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

| DEP | Form | FD | 9000-24: | GROU | NDWAT | ER : | SAMP | LING | LOG |
|-----|------|----|----------|------|-------|------|------|------|-----|
|     |      |    |          |      |       |      |      |      |     |

|                                                                  | MANA 2                                                                                                       |                                                                                           | , Inc.                                                                                                  | 1.                                                 |                                                                                                                                                                                | LOCATION:                                                                                                                                                   |                                                                                                   |                                                                   | Jucet,                                                                                                      |                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |         |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|
| WELL NO:                                                         | MVV-3                                                                                                        |                                                                                           |                                                                                                         | SA                                                 | MPLE ID: MV                                                                                                                                                                    | 0.1                                                                                                                                                         | 22021                                                                                             |                                                                   |                                                                                                             | DATE:                                                                                                                                                              | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    | _       |
|                                                                  |                                                                                                              |                                                                                           |                                                                                                         |                                                    |                                                                                                                                                                                | URGING                                                                                                                                                      |                                                                                                   |                                                                   |                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    | _       |
| WELL<br>DIAMETER                                                 | R (inches): 2                                                                                                | TUBIN                                                                                     |                                                                                                         | 4-0D                                               |                                                                                                                                                                                | EN INTERVAI<br>eet to 12 feet                                                                                                                               |                                                                                                   | TATIC DE<br>O WATER                                               |                                                                                                             | LI 1                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RGE PUMP T<br>BAILER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    | 5       |
|                                                                  | LUME PURGE:                                                                                                  |                                                                                           | TER (inches)                                                                                            | TAL WEL                                            |                                                                                                                                                                                |                                                                                                                                                             |                                                                                                   |                                                                   |                                                                                                             |                                                                                                                                                                    | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAILEN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |         |
| (only fill ou                                                    | t if applicable)                                                                                             |                                                                                           |                                                                                                         |                                                    |                                                                                                                                                                                | 100                                                                                                                                                         |                                                                                                   |                                                                   |                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |         |
| EQUIPME                                                          | NT VOLUME P                                                                                                  | URGE: 1 EQ                                                                                | = (<br>UIPMENT VO                                                                                       | L. = PUM                                           | 1.6 feet –<br>P VOLUME + (                                                                                                                                                     | TUBING CAP                                                                                                                                                  | feet)<br>ACITY X                                                                                  |                                                                   | 0.16                                                                                                        | ga<br>GTH) + FL                                                                                                                                                    | allons/fo<br>OW CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                  | g       |
|                                                                  | t if applicable)                                                                                             |                                                                                           |                                                                                                         | =                                                  | gallons + (                                                                                                                                                                    |                                                                                                                                                             | allons/foot >                                                                                     |                                                                   |                                                                                                             | feet) +                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = ga                                                                                                               | JI.     |
| INITIAL PL                                                       | JMP OR TUBIN                                                                                                 | IG                                                                                        | FINAL PU                                                                                                | JMP OR T                                           | UBING                                                                                                                                                                          | PUR                                                                                                                                                         |                                                                                                   |                                                                   | PURGI                                                                                                       | NG                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOTAL VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |         |
| DEPTH IN                                                         | WELL (feet):                                                                                                 | 7.0                                                                                       | DEPTH IN                                                                                                | N WELL (fe                                         | eet): 7,                                                                                                                                                                       |                                                                                                                                                             | GING<br>ATED AT:                                                                                  | 806                                                               | ENDED                                                                                                       | AT: 83                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gallons): 2                                                                                                        | -       |
|                                                                  |                                                                                                              | CUMUL.                                                                                    |                                                                                                         | DEPT                                               | н                                                                                                                                                                              |                                                                                                                                                             | COND.                                                                                             | DISS                                                              | OLVED                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |         |
| TIME                                                             | VOLUME<br>PURGED                                                                                             | VOLUME<br>PURGED                                                                          | PURGE<br>RATE                                                                                           | TO<br>WATE                                         | PH<br>(standar                                                                                                                                                                 | d TEMP.<br>(°C)                                                                                                                                             | (circle units<br>µmbee/m                                                                          |                                                                   | YGEN<br>Le units)                                                                                           | TURBI                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ODOR                                                                                                               |         |
|                                                                  | (gallons)                                                                                                    | (gallons)                                                                                 | (gpm)                                                                                                   | (feet)                                             | I Innite )                                                                                                                                                                     | (~C)                                                                                                                                                        | or uS/cm                                                                                          | ) (m                                                              | g/L or                                                                                                      | (NTU                                                                                                                                                               | JS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (describe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (describe)                                                                                                         |         |
| _                                                                |                                                                                                              |                                                                                           |                                                                                                         |                                                    | -                                                                                                                                                                              | -                                                                                                                                                           |                                                                                                   | 1                                                                 |                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |         |
| 825                                                              | 1.52                                                                                                         | 1,52                                                                                      | 0,08                                                                                                    | 26                                                 | 0 67:                                                                                                                                                                          | 5 22.02                                                                                                                                                     | 493                                                                                               | 1.2                                                               | 6                                                                                                           | 2-2                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | None                                                                                                               |         |
| 828                                                              | 0,24                                                                                                         | 1.76                                                                                      | 1                                                                                                       | 21                                                 | 0 6.75                                                                                                                                                                         | 22.04                                                                                                                                                       | 494                                                                                               | 1.2                                                               | 4                                                                                                           | 21                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                  |         |
| 831                                                              | 0.24                                                                                                         | 2.0                                                                                       |                                                                                                         | 2.61                                               | 6.7                                                                                                                                                                            | 5 22.07                                                                                                                                                     | 495                                                                                               |                                                                   | 2                                                                                                           | 21                                                                                                                                                                 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                                                  |         |
| 0,11                                                             |                                                                                                              | 0.70                                                                                      | v                                                                                                       | -/01                                               |                                                                                                                                                                                | 1-1-1                                                                                                                                                       |                                                                                                   | 116                                                               |                                                                                                             | 01                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |         |
|                                                                  |                                                                                                              |                                                                                           |                                                                                                         |                                                    |                                                                                                                                                                                |                                                                                                                                                             |                                                                                                   |                                                                   |                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |         |
| -                                                                |                                                                                                              |                                                                                           |                                                                                                         |                                                    |                                                                                                                                                                                |                                                                                                                                                             |                                                                                                   |                                                                   |                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    | 1       |
|                                                                  |                                                                                                              |                                                                                           |                                                                                                         |                                                    |                                                                                                                                                                                |                                                                                                                                                             |                                                                                                   |                                                                   |                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                                                                                                 |         |
| WELL CA                                                          | PACITY (Gallor<br>SIDE DIA, CA                                                                               | ns Per Foot):                                                                             | <b>0.75</b> " = 0.02;                                                                                   | 1"=0                                               | .04; 1.25" =                                                                                                                                                                   | 0.06. 2% -                                                                                                                                                  |                                                                                                   | - 0 27.                                                           | 4" = 0.65                                                                                                   |                                                                                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    | -       |
|                                                                  |                                                                                                              | PACITY (Gal.                                                                              | /Ft.): 1/8" = 1                                                                                         | 0.0006:                                            | 3/16" = 0.001                                                                                                                                                                  | 4: <b>1/4"</b> = 0                                                                                                                                          | 0.16; <b>3</b> "                                                                                  |                                                                   |                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6" = 1.47;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12'' = 5.88                                                                                                        |         |
| PURGING                                                          |                                                                                                              |                                                                                           | /Ft.): <b>1/8"</b> =<br>B = Bailer;                                                                     |                                                    | 3/16" = 0.001<br>idder Pump;                                                                                                                                                   | 4; <b>1/4"</b> = 0.                                                                                                                                         | 0.16; 3"<br>0026; 5/<br>stric Submer:                                                             | 16" = 0.00                                                        | 04; <b>3/8</b>                                                                                              | b; 5" = "<br><b>5</b> " = 0.006;<br><b>7</b> = Peristal                                                                                                            | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>"</b> = 0.010;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12" = 5.88<br>5/8" = 0.016<br>Other (Specify                                                                       | -       |
|                                                                  | EQUIPMENT                                                                                                    | CODES: I                                                                                  | B = Bailer;                                                                                             | BP = Bla                                           | idder Pump;                                                                                                                                                                    | 4; 1/4" = 0.<br>ESP = Elect<br>AMPLIN                                                                                                                       | 0026; 5/                                                                                          | 16" = 0.00<br>sible Pum                                           | 04; <b>3/8</b><br>p; PF                                                                                     | 8" = 0.006;<br>9 = Peristal                                                                                                                                        | 1/2<br>Itic Pun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | np; <b>O</b> = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/8" = 0.016<br>Other (Specify                                                                                     | 1)      |
|                                                                  | EQUIPMENT                                                                                                    | CODES: I                                                                                  | B = Bailer;                                                                                             | BP = Bla                                           | idder Pump;<br>S<br>ER(S) SIGNAT                                                                                                                                               | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S);                                                                                                             | 0026; 5/<br>stric Submers<br>G DATA                                                               | 16" = 0.00<br>sible Pum                                           | 04; <b>3/8</b><br>p; PF                                                                                     | 8" = 0.006;<br>9 = Peristal                                                                                                                                        | 1/2<br>Itic Pun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | np; <b>O</b> = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/8" = 0.016<br>Other (Specify                                                                                     | 1)      |
| SAMPLED<br>PUMP OR                                               | BY (PRINT) / ,<br>TUBING                                                                                     | AFFILIATION:                                                                              | B = Bailer;                                                                                             | BP = Bla<br>SAMPL<br>TUBING                        | idder Pump;<br>S<br>ER(S) SIGNAT                                                                                                                                               | 4; 1/4" = 0.<br>ESP = Elect<br>AMPLIN<br>URE(S):<br>7 Mon                                                                                                   | 0026; 5/<br>stric Submers<br>G DATA                                                               | 16" = 0.00<br>sible Pum<br>A<br>FIEL                              | )4; 3/8<br>p; PF<br>SAMPLI<br>INITIAT<br>D-FILTER                                                           | 8" = 0.006;<br>P = Peristal<br>ING<br>ED AT: 8<br>ED: Y                                                                                                            | 1/2<br>Itic Pun<br>32<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | " = 0.010;           np;         0 = 0           SAMPLIN           ENDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/8" = 0.016                                                                                                       | ()<br>5 |
| SAMPLED<br>PUMP OR<br>DEPTH IN                                   | BY (PRIME)/                                                                                                  | AFFILIATION:<br>MONS<br>7-0                                                               | B = Bailer;                                                                                             | BP = Bla<br>SAMPL<br>TUBING                        | Idder Pump;<br>S<br>ER(S) SIGNAT<br>ER(S) SIGNAT<br>IAL CODE:                                                                                                                  | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE                                                                                            | 0026; 5/<br>stric Submers<br>G DATA                                                               | 16" = 0.00<br>sible Pum<br>A<br>FIEL                              | )4; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip                                            | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT:<br>ED AT:<br>ED: Y<br>oment Type                                                                                       | 1/2<br>Itic Pun<br>32<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image: 0     = 0.010;       Imp;     0     = 0       SAMPLIN     ENDED /       FILTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/8" = 0.016<br>Dther (Specify<br>NG<br>AT: <b>83</b>                                                              | ()<br>( |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC                      | EQUIPMENT                                                                                                    |                                                                                           | B = Bailer;<br>MP Y (                                                                                   | BP = Bla<br>SAMPL<br>TUBING<br>MATER               | Idder Pump;<br>S<br>ER(S) SIGNAT<br>A<br>IAL CODE:<br>TUBIN                                                                                                                    | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>HDPE<br>IG Y (1)                                                                                | 0026; 5/<br>stric Submers<br>G DATA                                                               | 16" = 0.00<br>sible Pum<br>A<br>FIEL                              | )4; 3/8<br>p; PF<br>SAMPLI<br>INITIAT<br>D-FILTER                                                           | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT:<br>ED AT:<br>ED: Y<br>oment Type                                                                                       | 1/2<br>Itic Pun<br>32<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image: 0         = 0.010;           hp;         0         = 0           SAMPLIN         ENDED /           FILTE         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/8" = 0.016<br>Other (Specify<br>NG 839<br>AT: 837<br>R SIZE:                                                     | ()<br>5 |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID         | EQUIPMENT                                                                                                    | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL               | B = Bailer;<br>MP Y (<br>TION                                                                           | BP = Bla<br>SAMPL<br>TUBING<br>MATER               | Idder Pump;<br>S<br>ER(S) SIGNAT<br>ER(S) SIGNAT<br>IAL CODE:                                                                                                                  | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>HDPE<br>IG Y (1)                                                                                | 0026; 5/<br>stric Submers<br>G DATA<br>() replaced)<br>uding wet ice)                             | 16" = 0.00<br>sible Pum<br>A<br>FIEL                              | )4; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC                                  | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT:<br>ED AT:<br>ED: Y<br>oment Type                                                                                       | 1/2<br>Itic Pun<br>32<br>N<br>S:<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Constraint of the second sec       | 5/8" = 0.016<br>Other (Specify<br>NG: <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO                                        |         |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC                      | EQUIPMENT                                                                                                    | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE       | B = Bailer;<br>MP Y (<br>TION<br>VOLUME                                                                 | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Idder Pump;<br>S<br>ER(S) SIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED                                                                                       | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu-<br>TOTAL VO<br>ADDED IN FIEL                               | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIAT<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND                   | B" = 0.006;         P = Perista         ING         ED AT:         WOR METHOR                                                                                      | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 Y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | /)      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT<br>BY (PRIMT) / ,<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1 | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL               | B = Bailer;<br>MP Y (<br>TION                                                                           | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Idder Pump;<br>S<br>ERSSSIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE                                                                                                | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>HDPE<br>IG Y (1)<br>ERVATION (inclu-<br>TOTAL VO                                                | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>FIITA                         | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>ED AT: 8<br>ED AT: 9<br>ED: Y (<br>oment Type<br>ATE:<br>DED ANALY                                                                  | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second sec       | 5/8" = 0.016<br>Other (Specify<br>NG: <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO                                        | /)      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT<br>BY (PRIMT) / ,<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1 | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE       | B = Bailer;<br>MP Y (<br>TION<br>VOLUME                                                                 | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Idder Pump;<br>S<br>ER(S) SIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED                                                                                       | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu-<br>TOTAL VO<br>ADDED IN FIEL                               | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 9<br>ED AT: 9<br>ED AT: 9<br>ED ATE:<br>DED ANALY<br>OR METHO<br>Pb, Ag by                                 | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | /)      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID         | EQUIPMENT<br>BY (PRIMT) / ,<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1 | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE       | B = Bailer;<br>MP Y (<br>TION<br>VOLUME                                                                 | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Idder Pump;<br>S<br>ER(S) SIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED                                                                                       | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu-<br>TOTAL VO<br>ADDED IN FIEL                               | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 9<br>ED AT: 9<br>ED AT: 9<br>ED ATE:<br>DED ANALY<br>OR METHO<br>Pb, Ag by                                 | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | /)      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT<br>BY (PRIMT) / ,<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1 | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE       | B = Bailer;<br>MP Y (<br>TION<br>VOLUME                                                                 | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Idder Pump;<br>S<br>ER(S) SIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED                                                                                       | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu-<br>TOTAL VO<br>ADDED IN FIEL                               | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 9<br>ED AT: 9<br>ED AT: 9<br>ED ATE:<br>DED ANALY<br>OR METHO<br>Pb, Ag by                                 | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | ()      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT<br>BY (PRIMT) / ,<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1 | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE       | B = Bailer;<br>MP Y (<br>TION<br>VOLUME                                                                 | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Idder Pump;<br>S<br>ER(S) SIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED                                                                                       | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu-<br>TOTAL VO<br>ADDED IN FIEL                               | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 9<br>ED AT: 9<br>ED AT: 9<br>ED ATE:<br>DED ANALY<br>OR METHO<br>Pb, Ag by                                 | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | ()      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT<br>BY (PRIMT) / ,<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1 | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE       | B = Bailer;<br>MP Y (<br>TION<br>VOLUME                                                                 | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Idder Pump;<br>S<br>ER(S) SIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED                                                                                       | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu-<br>TOTAL VO<br>ADDED IN FIEL                               | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 9<br>ED AT: 9<br>ED AT: 9<br>ED ATE:<br>DED ANALY<br>OR METHO<br>Pb, Ag by                                 | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | r)      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT<br>BY (PRIMT) / ,<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1 | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE       | B = Bailer;<br>MP Y (<br>TION<br>VOLUME                                                                 | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Idder Pump;<br>S<br>ER(S) SIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED                                                                                       | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu-<br>TOTAL VO<br>ADDED IN FIEL                               | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 9<br>ED AT: 9<br>ED AT: 9<br>ED ATE:<br>DED ANALY<br>OR METHO<br>Pb, Ag by                                 | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | /)      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT<br>BY (PRIMT) / ,<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1 | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE       | B = Bailer;<br>MP Y (<br>TION<br>VOLUME                                                                 | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Idder Pump;<br>S<br>ER(S) SIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED                                                                                       | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu-<br>TOTAL VO<br>ADDED IN FIEL                               | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 9<br>ED AT: 9<br>ED AT: 9<br>ED ATE:<br>DED ANALY<br>OR METHO<br>Pb, Ag by                                 | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | ()      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT                                                                                                    | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>PE | B = Bailer;<br>MP Y (<br>TION<br>VOLUME<br>250 ml                                                       | BP = Bla                                           | Idder Pump;<br>S<br>ER(S) SIGNAT<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED                                                                                       | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu-<br>TOTAL VO<br>ADDED IN FIEL                               | 0026; 5/<br>stric Submers<br>G DATA<br>(replaced)<br>uding wet ice)<br>L                          | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 9<br>ED AT: 9<br>ED AT: 9<br>ED ATE:<br>DED ANALY<br>OR METHO<br>Pb, Ag by                                 | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | ()      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT                                                                                                    | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE       | B = Bailer;<br>MP Y (<br>TION<br>VOLUME<br>250 ml                                                       | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N          | Adder Pump;<br>S<br>ERSSIGNAT<br>ALCODE: H<br>TUBIN<br>SAMPLE PRESSI<br>RVATIVE<br>SED<br>3+ ICE                                                                               | 4: 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu<br>TOTAL VO<br>ADDED IN FIEL<br>NONE                        | 0026; 5/<br>stric Submers<br>G DATA<br>() replaced)<br>uding wet ice)<br>(mL)                     | 16" = 0.00<br>sible Pum<br>FIELI<br>Filtra                        | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,       | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 9<br>ED AT: 9<br>ED AT: 9<br>ED ATE:<br>DED ANALY<br>OR METHO<br>Pb, Ag by                                 | 1/2<br>htic Pun<br>32<br>N<br>2<br>Y<br>(Sis<br>SoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Constraint of the second se | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | /)      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT                                                                                                    | AFFILIATION:<br>AFFILIATION:<br>7-0<br>ON: PUI<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>PE | B = Bailer;<br>MP Y (<br>TION<br>VOLUME<br>250 ml                                                       | BP = Bla                                           | Adder Pump;<br>S<br>ER(S) SIGNAT<br>ALCODE:<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED<br>3+ ICE                                                                  | 4: 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu<br>TOTAL VO<br>ADDED IN FIEL<br>NONE                        | 0026; 5/<br>stric Submers<br>G DATA<br>() replaced)<br>iding wet ice)<br>L<br>(mL)                | 16" = 0.00<br>sible Purm<br>FileLl<br>Filtra<br>FINAL<br>pH<br><2 | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,<br>Me | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT:<br>ED AT:<br>Coment Type<br>ATE:<br>DED ANALN<br>/OR METHO<br>Pb, Ag by<br>athod 200.8                                 | 1/2<br>Normal Sector Secto | Image: Constraint of the second se               | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 Y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | /)      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT                                                                                                    | CODES: I                                                                                  | B = Bailer;<br>MP Y (<br>TION<br>VOLUME<br>250 ml                                                       | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N<br>PRESE | Adder Pump;<br>S<br>ER(S) SIGNAT<br>ALCODE:<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED<br>3+ ICE                                                                  | 4: 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MON<br>IDPE<br>IG Y (1)<br>ERVATION (Inclu<br>TOTAL VO<br>ADDED IN FIEL<br>NONE                        | 0026; 5/<br>stric Submers<br>G DATA<br>() replaced)<br>iding wet ice)<br>L<br>(mL)                | 16" = 0.00<br>sible Purm<br>FileLl<br>Filtra<br>FINAL<br>pH<br><2 | 04; 3/8<br>p; PF<br>SAMPLI<br>INITIATI<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,<br>Me | B" = 0.006;<br>P = Peristal<br>NG<br>ED AT: 8<br>ED AT: 8<br>ED: Y (<br>pment Type<br>ATE:<br>DED ANALY<br>(OR METHO<br>Pb, Ag by                                  | 1/2<br>Normal Sector Secto | Image: Constraint of the second se               | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 Y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p                                | /)      |
| SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | EQUIPMENT                                                                                                    | CODES: I                                                                                  | B = Bailer;<br>MP Y (<br>TION<br>VOLUME<br>250 ml<br>250 ml<br>Glass; CG<br>T = Teflon<br>APP = After ( | BP = Bla<br>SAMPL<br>TUBING<br>MATER<br>N<br>PRESE | Adder Pump;<br>S<br>ER(S) SIGNAT<br>ALCODE:<br>IAL CODE:<br>TUBIN<br>SAMPLE PRESE<br>RVATIVE<br>SED<br>3+ ICE<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 4; 1/4" = 0.<br>ESP = Elec<br>AMPLIN<br>URE(S):<br>J MONE<br>IG Y (1)<br>ERVATION (Inclu<br>TOTAL VO<br>ADDED IN FIEL<br>NONE<br>B = High Dens<br>p; B = Ba | 0026; 5/<br>stric Submers<br>G DATA<br>() replaced)<br>uding wet ice)<br>b (mL)<br>ity Polyethyle | 16" = 0.00<br>sible Purm<br>FINAL<br>FINAL<br>PH<br><2            | D4; 3/8<br>p; PF<br>SAMPLI<br>INITIAT<br>D-FILTER<br>tion Equip<br>DUPLIC<br>INTEN<br>AND<br>Cd, Cr,<br>Me  | B" = 0.006;<br>P = Peristal<br>ING ED AT:<br>ED AT:<br>ED: Y (<br>poment Type<br>ATE:<br>IDED ANALY<br>/OR METHO<br>Pb, Ag by<br>ethod 200.8<br>Density<br>ESP = 1 | 1/2<br>Normal Sectors 1/2<br>Normal Sectors 1/2<br>Normal Sectors 1/2<br>Polyeth<br>Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image: Constraint of the second se               | 5/8" = 0.016<br>Dther (Specify<br>NG <b>Ø3 Y</b><br>R SIZE:<br>SAMP<br>FLO<br>(mL p)<br><b>3</b> 03<br><b>3</b> 03 | /)      |

PH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater)

# Sosfety-Kleen Medley - Annual Groundwater Montoling Event-per Industrial Waste Permit

| Instrument Make: InSitu / YSI |             | Troll /556 MP |             | Identification: |             | tion Log                                |                                       |                 |               |
|-------------------------------|-------------|---------------|-------------|-----------------|-------------|-----------------------------------------|---------------------------------------|-----------------|---------------|
| Sampler's Name / Signature:   | Kem         | E Macos       | Som / These | L7MM            | m           | Date: (mm/do                            | w ayle                                | 2121            |               |
| Procedure Type: ICV, CCV, Cal |             | icv, ccv, cal |             |                 |             | icv, ccv, cal                           |                                       |                 | icv, ccv, cal |
| Standard Values Time          | 1040        | 1600          |             |                 |             | , , , , , , , , , , , , , , , , , , , , | , ,                                   |                 |               |
| pH 4.01 S.U.                  | 4.04        | 4,05          |             |                 |             |                                         | · · · · · · · · · · · · · · · · · · · |                 |               |
| pH 7.00 S.U.                  | 7.00        | 204           |             |                 |             |                                         |                                       |                 |               |
| pH 10.00 S.U.                 | 9.96        | 10.03         |             |                 |             |                                         |                                       |                 |               |
| Within 0.2 S.U ?              | Rass / Fail | Rass/Fail     | Pass / Fail | Pass / Fail     | Pass / Fail | Pass / Fail                             | Pass / Fail                           | Pass / Fail     | Pass / Fail   |
| Calibration Required?         | Yes / No    | Yes /No       | Yes / No    | Yes / No        | Yes / No    | Yes / No                                | Yes / No                              | Yes / No        | Yes / No      |
| Sampler's Initials            | 12m         | Ken           |             | 1.              |             |                                         |                                       |                 |               |
| Conductivity SOV µS/cm Cal    | 499         | 503           |             |                 |             | -                                       |                                       |                 |               |
| Conductivity 1000 µS/cm Ver   | 991         | 990           |             |                 |             |                                         | -                                     |                 |               |
| Within 5% ?                   | Rass / Fail | Fass / Fail   | Pass / Fail | Pass / Fail     | Pass / Fail | Pass / Fail                             | Pass / Fail                           | Pass / Fail     | Pass / Fail   |
| Calibration Required?         | Yes/No      | Yes / No      | Yes / No    | Yes / No        | Yes / No    | Yes / No                                | Yes / No                              | Yes / No        | Yes / No      |
| Sampler's Initials            | 14th        | KA            | 41          |                 |             |                                         |                                       |                 |               |
| Temperature During D.O.       | 20.5 °C     | 23 °C         | °C          | °C              | °C          | °C                                      | °C                                    | °C              | °(            |
| D.O. mg/L @ Saturation        | 8,9/99,44   | 9,6 99.2%     | )           |                 |             |                                         |                                       |                 |               |
| Within 0.3 mg/L ?             | Pass / Fail | Fass / Fail   | Pass / Fail | Pass / Fail     | Pass / Fail | Pass / Fail                             | Pass / Fail                           | Pass / Fail     | Pass / Fail   |
| Calibration Required?         | Yes / No    | Yes / No      | Yes / No    | Yes / No        | Yes / No    | Yes / No                                | Yes / No                              | Yes / No        | Yes / No      |
| Sampler's Initials            | 182         | ion           |             |                 |             |                                         |                                       |                 |               |
| Temperature During ORP        | 20.5 °C     | 23 °C         | °C          | °C              | °C          | °C                                      | °C                                    | °C              | •0            |
| ORP in mV                     | 236         | 234           |             |                 |             |                                         |                                       |                 |               |
| Within 10 mV ?                | Pass / Fail | Pass/Fail     | Pass / Fail | Pass / Fail     | Pass / Fail | Pass / Fail                             | Pass / Fail                           | Pass / Fail     | Pass / Fail   |
| Calibration Required?         | Yes /No     | Yes / No      | Yes / No    | Yes / No        | Yes / No    | Yes / No                                | Yes / No                              | Yes / No        | Yes / No      |
| Sampler's Initials            | KAM         | KEN           |             |                 |             |                                         |                                       |                 |               |
| Calibration Solutions         |             | Manufacturer  |             |                 | Lot Number  |                                         | E                                     | Expiration Date | 9             |
| pH 4.01 S.U.                  | Exaxol      |               |             | 2007            | 24C         |                                         |                                       | 12022           |               |
| pH 7.00 S.U.                  | Exaxol      |               |             | 19071           | 5.4         |                                         |                                       | 131/2022        | _             |
| pH 10.00 S.U.                 | Exaxol      |               |             | 2007            |             |                                         |                                       | 12022           |               |
| Conductivity 500 µS/cm Cal    | Exaxol      |               |             | 2007            | 28B         |                                         |                                       | 12021           |               |
| Conductivity 000 µS/cm Ver    | Exaxol      |               |             | 20072           | CA          |                                         | 09                                    | 12021           |               |
| ORP: mV@°C per mfr. specs.    | 231 02:     | 5°C           |             | 2007            |             |                                         | NA                                    | 2021            |               |

## Instrument Calibration and Field Verification Log

Notes Cal = Calibration

This form meets or exceeds the requirements of FDEP Form FD 9000-8

ICV = Initial Calibration Verification

CCV = Continued Calibration Verification

| Sett        | -Kleen 1           | Medlay            | FT               | 1000 Gen         | UEP-Si<br>eral Field | UP-001/<br>Testing | 01<br>and | Measuremer        |                |                   |
|-------------|--------------------|-------------------|------------------|------------------|----------------------|--------------------|-----------|-------------------|----------------|-------------------|
| Annual G    | rusudapa           | ter               | movitria         | 1 weste          |                      | looting            | anv       | Medourei Hei      | 11             |                   |
| Monitori    | vy Event           | For               | m FD 900         | ·:+<br>0-8: FIEL | D INSTR              | UMENT              | CAL       | IBRATION I        | RECORDS        |                   |
|             | Mornon             |                   |                  | JEL#)            | MACH 2               | 1006               |           | INSTRU            | MENT # SNA     | 1611000 53 5      |
|             | PARAME             | :TER: [0          | check only       | ' one]           |                      |                    |           |                   |                |                   |
| -           |                    | APERATU<br>BIDITY | _                | CONDUC           |                      |                    | NITY      |                   |                |                   |
|             | STANDA             | RDS: /s           | pecify the h     | ne(s) of sta     | adarda yaa           | DO 🗌 DO            | ation     | the origin of the |                |                   |
|             |                    |                   |                  |                  | ared or purc         |                    |           |                   | sianuaros, ine | I Standard        |
|             |                    |                   |                  |                  | 68480)               |                    |           |                   |                |                   |
|             | Stand              | ard C             | ONTUS            | Cate 26          | 694901               | Lot#               | AY        | 226               |                |                   |
|             | DATE<br>(yy/mm/dd) | TIME<br>(hr:min)  | STD<br>(A, B, C) | STD              | INSTRUM              | ENT                | DEV       | CALIBRATED        | TYPE           | SAMPLER           |
| April 12, 2 | 21                 | 642               | A                | IONTUS           | 10,1                 |                    | 07        | (YES, NO)         | (INIT, CONT)   | INITIALS<br>KARUS |
|             |                    | 644               | B                | 20 m             | 20-1                 | IT.                |           | Vas               | INT            | KAN               |
|             |                    | 646               | C                | 100 "            | 99.6                 | 7                  | 5.5%      | YOU               | DNET           | ILA               |
|             |                    | 1612              | AB               | 10 11            | 10.2                 |                    | 07        | Yes               | Cont           | Kitur             |
|             | d                  | 1616              | <br>             | 20 11<br>100 m   | 19.8                 |                    | 8%        | Yes               | Cont           | (Pm               |
|             |                    |                   |                  | 1.00             | 1071                 | -6.                |           | yes               | Lont           | Kan               |
|             |                    |                   |                  |                  |                      |                    |           |                   |                |                   |
|             |                    |                   |                  |                  |                      |                    |           |                   |                |                   |
|             |                    |                   |                  |                  |                      |                    | _         |                   |                |                   |
|             |                    |                   |                  |                  |                      |                    | -         |                   |                |                   |
|             |                    |                   |                  |                  |                      |                    | +         |                   |                |                   |
|             |                    |                   |                  |                  |                      |                    | +         |                   |                |                   |
|             |                    |                   |                  |                  |                      |                    |           |                   |                |                   |
|             |                    |                   |                  | -                |                      |                    |           |                   |                |                   |
|             |                    |                   |                  |                  |                      |                    | -         |                   |                |                   |
|             |                    |                   |                  |                  |                      |                    | -         |                   |                |                   |
|             | 4                  |                   |                  |                  |                      | -                  | -         |                   |                |                   |
| [           |                    |                   |                  |                  |                      |                    | +         |                   |                |                   |
| ļ           |                    |                   |                  |                  |                      |                    |           |                   |                | •                 |
| L           |                    |                   |                  |                  |                      |                    |           |                   |                |                   |

# ATTACHMENT B

# LABORATORY REPORT



Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

April 19, 2021

Keith Morrison Environmental Consulting & Techlology 1408 North Westshore Bllvd Suite 115 Tampa, FL 33607

RE: Project: Safety Kleen Facility Pace Project No.: 35625214

Dear Keith Morrison:

Enclosed are the analytical results for sample(s) received by the laboratory on April 12, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Ormond Beach

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

SA Palmer

Lori Palmer lori.palmer@pacelabs.com 813-855-1844 Project Manager

Enclosures

cc: A/P, Environmental Consulting & Technology





Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

### CERTIFICATIONS

Project: Safety Kleen Facility Pace Project No.: 35625214

#### Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174 Alaska DEC- CS/UST/LUST Alabama Certification #: 41320 Arizona Certification# AZ0819 Colorado Certification: FL NELAC Reciprocity Connecticut Certification #: PH-0216 Delaware Certification: FL NELAC Reciprocity Florida Certification #: E83079 Georgia Certification #: 955 Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity Illinois Certification #: 200068 Indiana Certification: FL NELAC Reciprocity Kansas Certification #: E-10383 Kentucky Certification #: 90050 Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007 Maryland Certification: #346 Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity Missouri Certification #: 236

Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608 North Carolina Environmental Certificate #: 667 North Carolina Certification #: 12710 North Dakota Certification #: R-216 Ohio DEP 87780 Oklahoma Certification #: D9947 Pennsylvania Certification #: 68-00547 Puerto Rico Certification #: FL01264 South Carolina Certification: #96042001 Tennessee Certification #: TN02974 Texas Certification: FL NELAC Reciprocity US Virgin Islands Certification: FL NELAC Reciprocity Virginia Environmental Certification #: 460165 West Virginia Certification #: 9962C Wisconsin Certification #: 399079670 Wyoming (EPA Region 8): FL NELAC Reciprocity



### SAMPLE SUMMARY

Project: Safety Kleen Facility

Pace Project No.: 35625214

| Lab ID      | Sample ID      | Matrix | Date Collected | Date Received  |
|-------------|----------------|--------|----------------|----------------|
| 35625214001 | MW-2R-04122021 | Water  | 04/12/21 09:20 | 04/12/21 15:35 |
| 35625214002 | MW-1-04122021  | Water  | 04/12/21 09:43 | 04/12/21 15:35 |
| 35625214003 | MW-3-04122021  | Water  | 04/12/21 08:34 | 04/12/21 15:35 |
| 35625214004 | Trip Blank     | Water  | 04/12/21 08:34 | 04/12/21 15:35 |



### SAMPLE ANALYTE COUNT

Project:Safety Kleen FacilityPace Project No.:35625214

| Lab ID      | Sample ID          | Method          | Analysts | Analytes<br>Reported |
|-------------|--------------------|-----------------|----------|----------------------|
| 35625214001 | <br>MW-2R-04122021 | FL-PRO          | BMC      | 3                    |
|             |                    | EPA 200.8       | SLG      | 4                    |
|             |                    | EPA 8270 by SIM | RJR      | 20                   |
|             |                    | EPA 8270        | TWB      | 82                   |
|             |                    | EPA 8260        | AST      | 57                   |
| 35625214002 | MW-1-04122021      | EPA 200.8       | SLG      | 4                    |
| 35625214003 | MW-3-04122021      | EPA 200.8       | SLG      | 4                    |
| 35625214004 | Trip Blank         | EPA 8260        | AST      | 57                   |

PASI-O = Pace Analytical Services - Ormond Beach



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| Sample: MW-2R-04122021         | Lab ID:          | 35625214001       | Collected   | 1: 04/12/21 | 09:20               | Received: 04/        | (12/21 15:35 Ma               | atrix: Water |      |
|--------------------------------|------------------|-------------------|-------------|-------------|---------------------|----------------------|-------------------------------|--------------|------|
| Parameters                     | Results          | Units             | PQL         | MDL         | DF                  | Prepared             | Analyzed                      | CAS No.      | Qual |
| FL-PRO Water, Low Volume       | Analytica        | Method: FL-PF     | RO Preparat | tion Method | 1: EPA 3            | 3510                 |                               |              |      |
|                                | Pace Ana         | lytical Services  | - Ormond B  | each        |                     |                      |                               |              |      |
| Petroleum Range Organics       | 0.75 U           | mg/L              | 0.94        | 0.75        | 1                   | 04/13/21 16:56       | 04/14/21 01:16                |              |      |
| Surrogates                     |                  | 0                 |             |             |                     |                      |                               |              |      |
| o-Terphenyl (S)                | 73               | %                 | 66-139      |             | 1                   | 04/13/21 16:56       | 04/14/21 01:16                | 84-15-1      |      |
| N-Pentatriacontane (S)         | 85               | %                 | 42-159      |             | 1                   | 04/13/21 16:56       | 04/14/21 01:16                | 630-07-09    |      |
| 200.8 MET ICPMS                | Analytica        | I Method: EPA 2   | 200.8 Prepa | ration Meth | od: EP/             | A 200.8              |                               |              |      |
|                                | Pace Ana         | lytical Services  | - Ormond B  | each        |                     |                      |                               |              |      |
| Cadmium                        | 0.050 U          | ug/L              | 0.10        | 0.050       | 1                   | 04/14/21 07:44       | 04/16/21 11:41                | 7440-43-9    |      |
| Chromium                       | 0.69 1           | ug/L              | 1.0         | 0.50        | 1                   |                      | 04/16/21 11:41                |              |      |
| Lead                           | 0.22 U           | ug/L              | 1.0         | 0.22        | 1                   |                      | 04/16/21 11:41                |              |      |
| Silver                         | 0.21 U           | ug/L              | 0.50        | 0.21        | 1                   |                      | 04/16/21 11:41                |              |      |
|                                |                  | -                 |             |             |                     |                      |                               |              |      |
| 8270 MSSV PAHLV by SIM         | -                | Method: EPA 8     | •           | •           | on Meth             | od: EPA 3510         |                               |              |      |
|                                | Pace Ana         | llytical Services | - Ormond B  | each        |                     |                      |                               |              |      |
| Acenaphthene                   | 0.040 U          | ug/L              | 0.50        | 0.040       | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 83-32-9      |      |
| Acenaphthylene                 | 0.030 U          | ug/L              | 0.50        | 0.030       | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 208-96-8     |      |
| Anthracene                     | 0.043 U          | ug/L              | 0.50        | 0.043       | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 120-12-7     |      |
| Benzo(a)anthracene             | 0.055 U          | ug/L              | 0.10        | 0.055       | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 56-55-3      |      |
| Benzo(a)pyrene                 | 0.12 U           | ug/L              | 0.20        | 0.12        | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 50-32-8      |      |
| Benzo(b)fluoranthene           | 0.027 U          | ug/L              | 0.10        | 0.027       | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 205-99-2     |      |
| Benzo(g,h,i)perylene           | 0.15 U           | ug/L              | 0.50        | 0.15        | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 191-24-2     |      |
| Benzo(k)fluoranthene           | 0.16 U           | ug/L              | 0.50        | 0.16        | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 207-08-9     |      |
| Chrysene                       | 0.026 U          | ug/L              | 0.50        | 0.026       | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 218-01-9     |      |
| Dibenz(a,h)anthracene          | 0.13 U           | ug/L              | 0.15        | 0.13        | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 53-70-3      |      |
| Fluoranthene                   | 0.018 U          | ug/L              | 0.50        | 0.018       | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 206-44-0     |      |
| Fluorene                       | 0.088 U          | ug/L              | 0.50        | 0.088       | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 86-73-7      |      |
| Indeno(1,2,3-cd)pyrene         | 0.12 U           | ug/L              | 0.15        | 0.12        | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 193-39-5     |      |
| 1-Methylnaphthalene            | 0.19 U           | ug/L              | 2.0         | 0.19        | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 90-12-0      |      |
| 2-Methylnaphthalene            | 0.68 U           | ug/L              | 2.0         | 0.68        | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 91-57-6      |      |
| Naphthalene                    | 0.29 U           | ug/L              | 2.0         | 0.29        | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 91-20-3      |      |
| Phenanthrene                   | 0.16 U           | ug/L              | 0.50        | 0.16        | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 85-01-8      |      |
| Pyrene                         | 0.032 U          | ug/L              | 0.50        | 0.032       | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 129-00-0     |      |
| Surrogates                     |                  |                   |             |             |                     |                      |                               |              |      |
| 2-Fluorobiphenyl (S)           | 53               | %                 | 32-100      |             | 1                   |                      | 04/13/21 18:42                |              |      |
| p-Terphenyl-d14 (S)            | 69               | %                 | 48-112      |             | 1                   | 04/13/21 08:30       | 04/13/21 18:42                | 1718-51-0    |      |
| 8270 MSSV Semivolatile Organic | Analytica        | I Method: EPA 8   | 3270 Prepar | ation Meth  | od <sup>.</sup> FPA | 3510                 |                               |              |      |
| erre meer commendance organie  | -                | lytical Services  |             |             |                     |                      |                               |              |      |
| Acenaphthene                   | 0.34 U           | ug/L              | 4.8         | 0.34        | 1                   | 04/12/21 21:53       | 04/14/21 15:54                | 83-32-9      |      |
| Acenaphthylene                 | 0.34 U<br>0.29 U | ug/L              | 4.8         | 0.29        | 1                   |                      | 04/14/21 15:54                |              |      |
| Aniline                        | 0.23 U<br>0.90 U | ug/L              | 4.8         | 0.29        | 1                   |                      | 04/14/21 15:54                |              |      |
| Anthracene                     | 0.21 U           | ug/L              | 4.8         | 0.21        | 1                   |                      | 04/14/21 15:54                |              |      |
| Benzidine                      | 0.21 U           | ug/L              | 23.8        | 0.83        | 1                   |                      | 04/14/21 15:54                |              |      |
| Benzo(a)anthracene             | 0.03 U           | ug/L              | 4.8         | 0.00        | 1                   |                      | 04/14/21 15:54                |              |      |
| Benzo(a)pyrene                 | 0.15 U           | ug/L              | 0.95        | 0.16        | 1                   |                      | 04/14/21 15:54                |              |      |
|                                | 0.10 0           | ug, L             | 0.00        | 0.10        |                     | 5 TI I LI L I L I.JJ | 5-7/1-7/2 1 10.0 <del>4</del> |              |      |



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| Sample: MW-2R-04122021         | Lab ID: | 35625214001   | Collected | : 04/12/2 | 1 09:20 | Received: 04/  | 12/21 15:35 Ma | atrix: Water |      |
|--------------------------------|---------|---------------|-----------|-----------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results | Units         | PQL       | MDL       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 8270 MSSV Semivolatile Organic | -       | Method: EPA 8 |           |           | od: EPA | 3510           |                |              |      |
| Benzo(b)fluoranthene           | 0.26 U  | ug/L          | 1.9       | 0.26      | 1       | 04/12/21 21:53 | 04/14/21 15:54 | 205-99-2     |      |
| Benzo(g,h,i)perylene           | 0.16 U  | ug/L          | 4.8       | 0.16      | 1       | 04/12/21 21:53 | 04/14/21 15:54 |              |      |
| Benzo(k)fluoranthene           | 0.17 U  | ug/L          | 3.8       | 0.17      | 1       | 04/12/21 21:53 |                |              |      |
| Benzyl alcohol                 | 1.2 U   | ug/L          | 4.8       | 1.2       | 1       | 04/12/21 21:53 |                |              |      |
| 4-Bromophenylphenyl ether      | 1.6 U   | ug/L          | 4.8       | 1.6       | 1       | 04/12/21 21:53 |                |              |      |
| Butylbenzylphthalate           | 1.1 U   | ug/L          | 4.8       | 1.1       | 1       |                | 04/14/21 15:54 |              |      |
| Caprolactam                    | 0.38 U  | ug/L          | 4.8       | 0.38      | 1       | 04/12/21 21:53 |                |              | N2   |
| Carbazole                      | 1.1 U   | ug/L          | 4.8       | 1.1       | 1       | 04/12/21 21:53 |                |              | 112  |
| 4-Chloro-3-methylphenol        | 5.2 U   | ug/L          | 19.1      | 5.2       | 1       | 04/12/21 21:53 |                |              |      |
| 4-Chloroaniline                | 1.3 U   | ug/L          | 4.8       | 1.3       | 1       | 04/12/21 21:53 |                |              |      |
| bis(2-Chloroethoxy)methane     | 1.5 U   | ug/L          | 4.8       | 1.5       | 1       |                | 04/14/21 15:54 |              |      |
| bis(2-Chloroethyl) ether       | 0.32 U  | ug/L          | 3.8       | 0.32      | 1       | 04/12/21 21:53 |                |              |      |
| bis(2-Chloroisopropyl) ether   | 1.7 U   | ug/L          | 5.7       | 1.7       | 1       | 04/12/21 21:53 |                |              |      |
| 2-Chloronaphthalene            | 0.32 U  | ug/L          | 4.8       | 0.32      | 1       | 04/12/21 21:53 |                |              |      |
| 2-Chlorophenol                 | 1.3 U   | ug/L          | 4.8       | 1.3       | 1       | 04/12/21 21:53 |                |              |      |
| 4-Chlorophenylphenyl ether     | 1.3 U   | ug/L          | 4.8       | 1.3       | 1       | 04/12/21 21:53 |                |              |      |
| Chrysene                       | 0.19 U  | ug/L<br>ug/L  | 4.8       | 0.19      | 1       | 04/12/21 21:53 |                |              |      |
| Dibenz(a,h)anthracene          | 0.19 U  | ug/L          | 4.0       | 0.19      | 1       | 04/12/21 21:53 |                |              |      |
| Dibenzofuran                   |         | -             | 4.8       | 1.4       | 1       | 04/12/21 21:53 |                |              |      |
|                                | 1.4 U   | ug/L          |           |           | 1       |                |                |              |      |
| 1,2-Dichlorobenzene            | 1.5 U   | ug/L          | 4.8       | 1.5       |         | 04/12/21 21:53 |                |              |      |
| 1,3-Dichlorobenzene            | 1.4 U   | ug/L          | 4.8       | 1.4       | 1       |                | 04/14/21 15:54 |              |      |
| 1,4-Dichlorobenzene            | 1.5 U   | ug/L          | 4.8       | 1.5       | 1       | 04/12/21 21:53 |                |              |      |
| 3,3'-Dichlorobenzidine         | 1.0 U   | ug/L          | 9.5       | 1.0       | 1       | 04/12/21 21:53 |                |              |      |
| 2,4-Dichlorophenol             | 0.32 U  | ug/L          | 1.9       | 0.32      | 1       | 04/12/21 21:53 |                |              |      |
| Diethylphthalate               | 1.3 U   | ug/L          | 4.8       | 1.3       | 1       | 04/12/21 21:53 | 04/14/21 15:54 |              |      |
| 2,4-Dimethylphenol             | 0.98 U  | ug/L          | 4.8       | 0.98      | 1       | 04/12/21 21:53 |                |              |      |
| Dimethylphthalate              | 1.4 U   | ug/L          | 4.8       | 1.4       | 1       | 04/12/21 21:53 |                |              |      |
| Di-n-butylphthalate            | 1.0 U   | ug/L          | 4.8       | 1.0       | 1       | 04/12/21 21:53 |                |              |      |
| 4,6-Dinitro-2-methylphenol     | 4.4 U   | ug/L          | 19.1      | 4.4       | 1       | 04/12/21 21:53 |                |              |      |
| 1,2-Dinitrobenzene             | 1.8 U   | ug/L          | 5.7       | 1.8       | 1       | 04/12/21 21:53 |                |              |      |
| 1,3-Dinitrobenzene             | 0.26 U  | ug/L          | 7.6       | 0.26      | 1       |                | 04/14/21 15:54 |              |      |
| 2,4-Dinitrophenol              | 2.5 U   | ug/L          | 19.1      | 2.5       | 1       | 04/12/21 21:53 |                |              |      |
| 2,4-Dinitrotoluene             | 0.26 U  | ug/L          | 3.8       | 0.26      | 1       | 04/12/21 21:53 |                |              |      |
| 2,6-Dinitrotoluene             | 0.27 U  | ug/L          | 1.9       | 0.27      | 1       |                | 04/14/21 15:54 |              |      |
| Di-n-octylphthalate            | 0.88 U  | ug/L          | 4.8       | 0.88      | 1       |                | 04/14/21 15:54 |              |      |
| 1,2-Diphenylhydrazine          | 1.3 U   | ug/L          | 4.8       | 1.3       | 1       |                | 04/14/21 15:54 |              |      |
| bis(2-Ethylhexyl)phthalate     | 1.1 U   | ug/L          | 4.8       | 1.1       | 1       |                | 04/14/21 15:54 |              |      |
| Fluoranthene                   | 0.20 U  | ug/L          | 4.8       | 0.20      | 1       |                | 04/14/21 15:54 |              |      |
| Fluorene                       | 0.32 U  | ug/L          | 4.8       | 0.32      | 1       |                | 04/14/21 15:54 |              |      |
| Hexachloro-1,3-butadiene       | 0.33 U  | ug/L          | 1.9       | 0.33      | 1       |                | 04/14/21 15:54 |              |      |
| Hexachlorobenzene              | 0.28 U  | ug/L          | 0.95      | 0.28      | 1       |                | 04/14/21 15:54 |              |      |
| Hexachlorocyclopentadiene      | 3.3 U   | ug/L          | 10.5      | 3.3       | 1       |                | 04/14/21 15:54 |              |      |
| Hexachloroethane               | 1.3 U   | ug/L          | 4.8       | 1.3       | 1       |                | 04/14/21 15:54 |              |      |
| Indeno(1,2,3-cd)pyrene         | 0.16 U  | ug/L          | 1.9       | 0.16      | 1       |                | 04/14/21 15:54 |              |      |
| Isophorone                     | 1.6 U   | ug/L          | 4.8       | 1.6       | 1       | 04/12/21 21:53 | 04/14/21 15:54 | 78-59-1      |      |



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| Sample: MW-2R-04122021         | Lab ID:    | 35625214001      | Collected  | I: 04/12/21 | 09:20   | Received: 04/  | 12/21 15:35 Ma | atrix: Water |       |
|--------------------------------|------------|------------------|------------|-------------|---------|----------------|----------------|--------------|-------|
| Parameters                     | Results    | Units            | PQL        | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual  |
| 8270 MSSV Semivolatile Organic | Analytical | Method: EPA 8    | 270 Prepar | ation Metho | od: EPA | 3510           |                |              |       |
|                                | Pace Ana   | lytical Services | - Ormond B | each        |         |                |                |              |       |
| 1-Methylnaphthalene            | 0.34 U     | ug/L             | 4.8        | 0.34        | 1       | 04/12/21 21:53 | 04/14/21 15:54 | 90-12-0      |       |
| 2-Methylnaphthalene            | 0.27 U     | ug/L             | 4.8        | 0.27        | 1       | 04/12/21 21:53 |                |              |       |
| 2-Methylphenol(o-Cresol)       | 0.29 U     | ug/L             | 4.8        | 0.29        | 1       |                | 04/14/21 15:54 |              |       |
| 3&4-Methylphenol(m&p Cresol)   | 0.21 U     | ug/L             | 9.5        | 0.20        | 1       | 04/12/21 21:53 |                |              |       |
| Naphthalene                    | 0.37 U     | ug/L             | 4.8        | 0.37        | 1       |                | 04/14/21 15:54 | 91-20-3      |       |
| 2-Nitroaniline                 | 1.2 U      | ug/L             | 4.8        | 1.2         | 1       |                | 04/14/21 15:54 |              |       |
| 3-Nitroaniline                 | 1.2 U      | ug/L             | 4.8        | 1.2         | 1       | 04/12/21 21:53 |                |              |       |
| 4-Nitroaniline                 | 0.18 U     | ug/L             | 3.8        | 0.18        | 1       |                | 04/14/21 15:54 |              |       |
| Nitrobenzene                   | 0.35 U     | ug/L             | 3.8        | 0.35        | 1       | 04/12/21 21:53 |                |              |       |
| 2-Nitrophenol                  | 1.3 U      | ug/L             | 4.8        | 1.3         | 1       |                | 04/14/21 15:54 |              |       |
| 4-Nitrophenol                  | 0.91 U     | ug/L             | 19.1       | 0.91        | 1       |                | 04/14/21 15:54 |              |       |
| N-Nitrosodimethylamine         | 0.19 U     | ug/L             | 1.9        | 0.19        | 1       | 04/12/21 21:53 |                |              |       |
| N-Nitroso-di-n-propylamine     | 0.31 U     | ug/L             | 3.8        | 0.31        | 1       |                | 04/14/21 15:54 |              |       |
| N-Nitrosodiphenylamine         | 1.2 U      | ug/L             | 4.8        | 1.2         | 1       | 04/12/21 21:53 |                |              |       |
| Pentachlorophenol              | 1.6 U      | ug/L             | 19.1       | 1.6         | 1       |                | 04/14/21 15:54 |              |       |
| Phenanthrene                   | 0.22 U     | ug/L             | 4.8        | 0.22        | 1       | 04/12/21 21:53 |                |              |       |
| Phenol                         | 0.60 U     | ug/L             | 4.8        | 0.60        | 1       | 04/12/21 21:53 |                |              |       |
| Pyrene                         | 0.20 U     | ug/L             | 4.8        | 0.20        | 1       |                | 04/14/21 15:54 |              |       |
| Pyridine                       | 1.1 U      | ug/L             | 4.8        | 1.1         | 1       |                | 04/14/21 15:54 |              |       |
| 2,3,4,6-Tetrachlorophenol      | 1.0 U      | ug/L             | 4.8        | 1.0         | 1       |                | 04/14/21 15:54 |              |       |
| 2,3,5,6-Tetrachlorophenol      | 1.8 U      | ug/L             | 8.6        | 1.8         | 1       |                | 04/14/21 15:54 |              | N2    |
| 1,2,4-Trichlorobenzene         | 1.4 U      | ug/L             | 4.8        | 1.4         | 1       | 04/12/21 21:53 |                |              |       |
| 2,4,5-Trichlorophenol          | 0.22 U     | ug/L             | 3.8        | 0.22        | 1       | 04/12/21 21:53 |                |              |       |
| 2,4,6-Trichlorophenol          | 0.34 U     | ug/L             | 1.9        | 0.34        | 1       | 04/12/21 21:53 |                |              |       |
| Surrogates                     |            | -9               |            |             |         |                |                |              |       |
| Nitrobenzene-d5 (S)            | 40         | %                | 10-188     |             | 1       | 04/12/21 21:53 | 04/14/21 15:54 | 4165-60-0    |       |
| 2-Fluorobiphenyl (S)           | 47         | %                | 22-101     |             | 1       | 04/12/21 21:53 | 04/14/21 15:54 | 321-60-8     |       |
| p-Terphenyl-d14 (S)            | 58         | %                | 48-124     |             | 1       | 04/12/21 21:53 | 04/14/21 15:54 | 1718-51-0    |       |
| Phenol-d5 (S)                  | 16         | %                | 10-48      |             | 1       | 04/12/21 21:53 | 04/14/21 15:54 | 4165-62-2    |       |
| 2-Fluorophenol (S)             | 22         | %                | 10-57      |             | 1       | 04/12/21 21:53 | 04/14/21 15:54 | 367-12-4     |       |
| 2,4,6-Tribromophenol (S)       | 64         | %                | 28-114     |             | 1       | 04/12/21 21:53 | 04/14/21 15:54 | 118-79-6     |       |
| 8260 MSV                       | Analytical | Method: EPA 8    | 260        |             |         |                |                |              |       |
|                                | ,          | lytical Services |            | each        |         |                |                |              |       |
| Acetone                        | 5.3 U      | ug/L             | 25.0       | 5.3         | 1       |                | 04/14/21 03:19 | 67-64-1      |       |
| Acetonitrile                   | 5.8 U      | ug/L             | 50.0       | 5.8         | 1       |                | 04/14/21 03:19 |              |       |
| Benzene                        | 0.30 U     | ug/L             | 1.0        | 0.30        | 1       |                | 04/14/21 03:19 |              |       |
| Bromochloromethane             | 0.37 U     | ug/L             | 1.0        | 0.37        | 1       |                | 04/14/21 03:19 |              |       |
| Bromodichloromethane           | 0.19 U     | ug/L             | 1.0        | 0.19        | 1       |                | 04/14/21 03:19 |              |       |
| Bromoform                      | 1.0 U      | ug/L             | 3.0        | 1.0         | 1       |                | 04/14/21 03:19 |              |       |
| Bromomethane                   | 2.3 U      | ug/L             | 10.0       | 2.3         | 1       |                | 04/14/21 03:19 |              | J(v2) |
| 2-Butanone (MEK)               | 3.4 U      | ug/L             | 50.0       | 3.4         | 1       |                | 04/14/21 03:19 |              | . /   |
| Carbon disulfide               | 1.8 U      | ug/L             | 10.0       | 1.8         | 1       |                | 04/14/21 03:19 |              |       |
| Carbon tetrachloride           | 0.44 U     | ug/L             | 3.0        | 0.44        | 1       |                | 04/14/21 03:19 |              |       |
|                                |            |                  |            |             |         |                |                |              |       |



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| Sample: MW-2R-04122021                 | Lab ID:          | 35625214001      | Collecte   | d: 04/12/2  | 1 09:20 | Received: 04 | /12/21 15:35  | Matrix: Water |       |
|----------------------------------------|------------------|------------------|------------|-------------|---------|--------------|---------------|---------------|-------|
| Parameters                             | Results          | Units            | PQL        | MDL         | DF      | Prepared     | Analyzed      | CAS No.       | Qual  |
| 8260 MSV                               | Analytica        | I Method: EPA 8  | 260        |             |         |              |               |               |       |
|                                        | Pace Ana         | lytical Services | - Ormond E | Beach       |         |              |               |               |       |
| Chloroethane                           | 1.4 U            | ug/L             | 10.0       | 1.4         | 1       |              | 04/14/21 03:1 | 9 75-00-3     |       |
| Chloroform                             | 0.32 U           | ug/L             | 1.0        | 0.32        | 1       |              | 04/14/21 03:1 |               |       |
| Chloromethane                          | 0.96 U           | ug/L             | 1.0        | 0.96        | 1       |              | 04/14/21 03:1 |               |       |
| 1,2-Dibromo-3-chloropropane            | 1.9 U            | ug/L             | 5.0        | 1.9         | 1       |              | 04/14/21 03:1 |               |       |
| Dibromochloromethane                   | 0.45 U           | ug/L             | 2.0        | 0.45        | 1       |              | 04/14/21 03:1 |               |       |
| 1,2-Dibromoethane (EDB)                | 0.31 U           | ug/L             | 1.0        | 0.31        | 1       |              | 04/14/21 03:1 |               |       |
| Dibromomethane                         | 0.24 U           | ug/L             | 2.0        | 0.24        | 1       |              | 04/14/21 03:1 |               |       |
| 1,2-Dichlorobenzene                    | 0.60 U           | ug/L             | 1.0        | 0.60        | 1       |              | 04/14/21 03:1 |               |       |
| 1,4-Dichlorobenzene                    | 0.28 U           | ug/L             | 1.0        | 0.28        | 1       |              | 04/14/21 03:1 |               |       |
| trans-1,4-Dichloro-2-butene            | 0.53 U           | ug/L             | 10.0       | 0.53        | 1       |              | 04/14/21 03:1 |               |       |
| 1,1-Dichloroethane                     | 0.34 U           | ug/L             | 1.0        | 0.34        | 1       |              | 04/14/21 03:1 |               |       |
| 1,2-Dichloroethane                     | 0.34 U           | ug/L             | 1.0        | 0.04        | 1       |              | 04/14/21 03:1 |               |       |
| 1,2-Dichloroethene (Total)             | 0.27 U           | ug/L             | 1.0        | 0.27        | 1       |              | 04/14/21 03:1 |               | N2    |
| 1,1-Dichloroethene                     | 0.59 U           | ug/L             | 1.0        | 0.59        | 1       |              | 04/14/21 03:1 |               | 112   |
| cis-1,2-Dichloroethene                 | 0.33 U           | ug/L             | 1.0        | 0.00        | 1       |              | 04/14/21 03:1 |               |       |
| trans-1,2-Dichloroethene               | 0.27 U           | ug/L             | 1.0        | 0.27        | 1       |              | 04/14/21 03:1 |               |       |
| 1,2-Dichloropropane                    | 0.23 U           | ug/L             | 1.0        | 0.23        | 1       |              | 04/14/21 03:1 |               |       |
| cis-1,3-Dichloropropene                | 0.23 U<br>0.17 U | ug/L             | 1.0        | 0.23        | 1       |              |               | 9 10061-01-5  |       |
| trans-1,3-Dichloropropene              | 0.17 U           | ug/L             | 1.0        | 0.17        | 1       |              |               | 9 10061-01-5  |       |
|                                        | 0.37 U           | -                | 1.0        | 0.37        | 1       |              | 04/14/21 03:1 |               |       |
| Ethylbenzene<br>2-Hexanone             | 3.2 U            | ug/L             |            | 3.2         | 1       |              | 04/14/21 03:1 |               |       |
|                                        |                  | ug/L             | 25.0       |             |         |              |               |               | 1/22) |
| lodomethane                            | 9.3 U            | ug/L             | 10.0       | 9.3<br>0.30 | 1       |              | 04/14/21 03:1 |               | J(v2) |
| Isopropylbenzene (Cumene)              | 0.30 U           | ug/L             | 1.0        |             | 1       |              | 04/14/21 03:1 |               |       |
| Methylene Chloride                     | 1.5 U            | ug/L             | 5.0        | 1.5         | 1       |              | 04/14/21 03:1 |               |       |
| 4-Methyl-2-pentanone (MIBK)            | 2.8 U            | ug/L             | 25.0       | 2.8         | 1       |              | 04/14/21 03:1 |               |       |
| Methyl-tert-butyl ether                | 0.53 U           | ug/L             | 5.0        | 0.53        | 1       |              | 04/14/21 03:1 |               |       |
| Styrene                                | 0.26 U           | ug/L             | 1.0        | 0.26        | 1       |              | 04/14/21 03:1 |               |       |
| 1,1,1,2-Tetrachloroethane              | 0.32 U           | ug/L             | 1.0        | 0.32        | 1       |              | 04/14/21 03:1 |               |       |
| 1,1,2,2-Tetrachloroethane              | 0.18 U           | ug/L             | 1.0        | 0.18        | 1       |              | 04/14/21 03:1 |               |       |
| Tetrachloroethene                      | 0.38 U           | ug/L             | 1.0        | 0.38        | 1       |              | 04/14/21 03:1 |               |       |
| Toluene                                | 0.33 U           | ug/L             | 1.0        | 0.33        | 1       |              | 04/14/21 03:1 |               |       |
| 1,1,1-Trichloroethane                  | 0.30 U           | ug/L             | 1.0        | 0.30        | 1       |              | 04/14/21 03:1 |               |       |
| 1,1,2-Trichloroethane                  | 0.30 U           | ug/L             | 1.0        | 0.30        | 1       |              | 04/14/21 03:1 |               |       |
| Trichloroethene                        | 0.36 U           | ug/L             | 1.0        | 0.36        | 1       |              | 04/14/21 03:1 |               |       |
| Trichlorofluoromethane                 | 0.35 U           | ug/L             | 1.0        | 0.35        | 1       |              | 04/14/21 03:1 |               |       |
| 1,2,3-Trichloropropane                 | 0.53 U           | ug/L             | 2.0        | 0.53        | 1       |              | 04/14/21 03:1 |               |       |
| 1,2,4-Trimethylbenzene                 | 0.24 U           | ug/L             | 1.0        | 0.24        | 1       |              | 04/14/21 03:1 |               |       |
| 1,3,5-Trimethylbenzene                 | 0.24 U           | ug/L             | 1.0        | 0.24        | 1       |              | 04/14/21 03:1 |               |       |
| Vinyl acetate                          | 0.84 U           | ug/L             | 10.0       | 0.84        | 1       |              | 04/14/21 03:1 |               |       |
| Vinyl chloride                         | 0.39 U           | ug/L             | 1.0        | 0.39        | 1       |              | 04/14/21 03:1 |               |       |
| Xylene (Total)                         | 0.63 U           | ug/L             | 5.0        | 0.63        | 1       |              |               | 9 1330-20-7   |       |
| m&p-Xylene                             | 0.63 U           | ug/L             | 4.0        | 0.63        | 1       |              |               | 9 179601-23-1 |       |
| o-Xylene                               | 0.57 U           | ug/L             | 1.0        | 0.57        | 1       |              | 04/14/21 03:1 | 9 95-47-6     |       |
| Surrogates<br>4-Bromofluorobenzene (S) | 100              | %                | 70-130     |             | 1       |              | 04/14/21 03:1 | 9 460-00-4    |       |
|                                        |                  |                  |            |             |         |              |               |               |       |



Project: Safety Kleen Facility

Pace Project No.: 35625214

| Sample: MW-2R-04122021                                            | Lab ID:    | 35625214001                       | Collecte         | d: 04/12/2 | 21 09:20 | Received: 04 | /12/21 15:35 Ma                  | trix: Water |      |
|-------------------------------------------------------------------|------------|-----------------------------------|------------------|------------|----------|--------------|----------------------------------|-------------|------|
| Parameters                                                        | Results    | Units                             | PQL              | MDL        | DF       | Prepared     | Analyzed                         | CAS No.     | Qual |
| 8260 MSV                                                          | <b>,</b>   | Method: EPA 8<br>lytical Services |                  | Beach      |          |              |                                  |             |      |
| <i>Surrogates</i><br>Toluene-d8 (S)<br>1,2-Dichlorobenzene-d4 (S) | 101<br>103 | %<br>%                            | 70-130<br>70-130 |            | 1<br>1   |              | 04/14/21 03:19<br>04/14/21 03:19 |             |      |



Project: Safety Kleen Facility

Pace Project No.: 35625214

| Sample: MW-1-04122021 | Lab ID: 35625214002 |                                  | Collected: 04/12/21 09:43 |       |        | Received: 04/  | atrix: Water   |           |      |
|-----------------------|---------------------|----------------------------------|---------------------------|-------|--------|----------------|----------------|-----------|------|
| Parameters            | Results             | Units                            | PQL                       | MDL   | DF     | Prepared       | Analyzed       | CAS No.   | Qual |
| 200.8 MET ICPMS       |                     | Method: EPA 2<br>ytical Services | •                         |       | od: EP | A 200.8        |                |           |      |
| Cadmium               | 0.050 U             | ug/L                             | 0.10                      | 0.050 | 1      | 04/14/21 07:44 | 04/16/21 11:43 | 7440-43-9 |      |
| Chromium              | 0.60                | ug/L                             | 1.0                       | 0.000 | 1      | 04/14/21 07:44 | 04/16/21 11:43 |           |      |
| Lead                  | 0.22 U              | ug/L                             | 1.0                       | 0.22  | 1      | 04/14/21 07:44 | 04/16/21 11:43 |           |      |
| Silver                | 0.21 U              | ug/L                             | 0.50                      | 0.21  | 1      | 04/14/21 07:44 | 04/16/21 11:43 | 7440-22-4 |      |



Project: Safety Kleen Facility

Pace Project No.: 35625214

| Sample: MW-3-04122021 | Lab ID: 35625214003 |                 | Collected: 04/12/21 08:34 |       |        | Received: 04/  |                |           |      |
|-----------------------|---------------------|-----------------|---------------------------|-------|--------|----------------|----------------|-----------|------|
| Parameters            | Results             | Units           | PQL                       | MDL   | DF     | Prepared       | Analyzed       | CAS No.   | Qual |
| 200.8 MET ICPMS       |                     | Method: EPA 2   | •                         |       | od: EP | A 200.8        |                |           |      |
| Cadmium               | 0.050 U             | ytical Services |                           | 0.050 | 1      | 04/14/21 07:44 | 04/16/01 11:46 | 7440 42 0 |      |
|                       |                     | ug/L            | 0.10                      |       | 1      | •              | 04/16/21 11:46 |           |      |
| Chromium              | 0.57 I              | ug/L            | 1.0                       | 0.50  | 1      | 04/14/21 07:44 | 04/16/21 11:46 |           |      |
| Lead                  | 0.82 I              | ug/L            | 1.0                       | 0.22  | 1      | 04/14/21 07:44 | 04/16/21 11:46 | 7439-92-1 |      |
| Silver                | 0.21 U              | ug/L            | 0.50                      | 0.21  | 1      | 04/14/21 07:44 | 04/16/21 11:46 | 7440-22-4 |      |



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| Sample: Trip Blank                              | Lab ID:          | 35625214004      | Collecte     | d: 04/12/2  | 1 08:34 | Received: 04 | 4/12/21 15:35 M                  | atrix: Water |        |
|-------------------------------------------------|------------------|------------------|--------------|-------------|---------|--------------|----------------------------------|--------------|--------|
| Parameters                                      | Results          | Units            | PQL          | MDL         | DF      | Prepared     | Analyzed                         | CAS No.      | Qual   |
| 8260 MSV                                        | Analytical       | Method: EPA 8    | 260          |             |         |              |                                  |              |        |
|                                                 | Pace Ana         | lytical Services | - Ormond E   | Beach       |         |              |                                  |              |        |
| Acetone                                         | 5.3 U            | ug/L             | 25.0         | 5.3         | 1       |              | 04/14/21 01:42                   | 67-64-1      |        |
| Acetonitrile                                    | 5.8 U            | ug/L             | 50.0         | 5.8         | 1       |              | 04/14/21 01:42                   |              |        |
| Benzene                                         | 0.30 U           | ug/L             | 1.0          | 0.30        | 1       |              | 04/14/21 01:42                   |              |        |
| Bromochloromethane                              | 0.37 U           | ug/L             | 1.0          | 0.37        | 1       |              | 04/14/21 01:42                   |              |        |
| Bromodichloromethane                            | 0.19 U           | ug/L             | 1.0          | 0.19        | 1       |              | 04/14/21 01:42                   |              |        |
| Bromoform                                       | 1.0 U            | ug/L             | 3.0          | 1.0         | 1       |              | 04/14/21 01:42                   |              |        |
| Bromomethane                                    | 2.3 U            | ug/L             | 10.0         | 2.3         | 1       |              | 04/14/21 01:42                   |              | J(v2)  |
| 2-Butanone (MEK)                                | 3.4 U            | ug/L             | 50.0         | 3.4         | 1       |              | 04/14/21 01:42                   |              | 0(12)  |
| Carbon disulfide                                | 1.8 U            | ug/L             | 10.0         | 1.8         | 1       |              | 04/14/21 01:42                   |              |        |
| Carbon tetrachloride                            | 0.44 U           | ug/L             | 3.0          | 0.44        | 1       |              | 04/14/21 01:42                   |              |        |
| Chlorobenzene                                   | 0.35 U           | ug/L             | 1.0          | 0.35        | 1       |              | 04/14/21 01:42                   |              |        |
| Chloroethane                                    | 1.4 U            | ug/L             | 10.0         | 1.4         | 1       |              | 04/14/21 01:42                   |              |        |
| Chloroform                                      | 0.32 U           | ug/L             | 1.0          | 0.32        | 1       |              | 04/14/21 01:42                   |              |        |
| Chloromethane                                   | 0.96 U           | ug/L             | 1.0          | 0.96        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,2-Dibromo-3-chloropropane                     | 1.9 U            | ug/L             | 5.0          | 1.9         | 1       |              | 04/14/21 01:42                   |              |        |
| Dibromochloromethane                            | 0.45 U           | ug/L             | 2.0          | 0.45        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,2-Dibromoethane (EDB)                         | 0.45 U           | ug/L             | 1.0          | 0.43        | 1       |              | 04/14/21 01:42                   |              |        |
| Dibromomethane                                  | 0.31 U           | ug/L             | 2.0          | 0.31        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,2-Dichlorobenzene                             | 0.60 U           | ug/L             | 1.0          | 0.24        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,4-Dichlorobenzene                             | 0.00 U           | ug/L             | 1.0          | 0.00        | 1       |              | 04/14/21 01:42                   |              |        |
| trans-1,4-Dichloro-2-butene                     | 0.53 U           | ug/L             | 10.0         | 0.20        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,1-Dichloroethane                              | 0.33 U<br>0.34 U | ug/L             | 1.0          | 0.33        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,2-Dichloroethane                              | 0.34 U<br>0.27 U | ug/L<br>ug/L     | 1.0          | 0.34        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,2-Dichloroethene (Total)                      | 0.27 U           | ug/L             | 1.0          | 0.27        | 1       |              | 04/14/21 01:42                   |              | N2     |
| 1,1-Dichloroethene                              | 0.59 U           | ug/L             | 1.0          | 0.27        | 1       |              | 04/14/21 01:42                   |              | INZ    |
| cis-1,2-Dichloroethene                          | 0.39 U<br>0.27 U | -                | 1.0          | 0.39        | 1       |              | 04/14/21 01:42                   |              |        |
| trans-1,2-Dichloroethene                        | 0.27 U           | ug/L             | 1.0          | 0.27        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,2-Dichloropropane                             | 0.23 U           | ug/L<br>ug/L     | 1.0          | 0.23        | 1       |              | 04/14/21 01:42                   |              |        |
| cis-1,3-Dichloropropene                         | 0.17 U           | ug/L             | 1.0          | 0.23        | 1       |              | 04/14/21 01:42                   |              |        |
|                                                 | 0.17 U           | -                | 1.0          | 0.17        | 1       |              | 04/14/21 01:42                   |              |        |
| trans-1,3-Dichloropropene                       | 0.37 U<br>0.30 U | ug/L             | 1.0          | 0.37        | 1       |              | 04/14/21 01:42                   |              |        |
| Ethylbenzene<br>2-Hexanone                      | 3.2 U            | ug/L             | 25.0         | 3.2         | 1       |              | 04/14/21 01:42                   |              |        |
| lodomethane                                     | 3.2 U<br>9.3 U   | ug/L             | 25.0<br>10.0 | 3.2<br>9.3  | 1       |              | 04/14/21 01:42                   |              | 1(1/2) |
|                                                 |                  | ug/L             | 10.0         | 9.3<br>0.30 | 1       |              | 04/14/21 01:42                   |              | J(v2)  |
| Isopropylbenzene (Cumene)<br>Methylene Chloride | 0.30 U<br>1.5 U  | ug/L             | 5.0          | 1.5         | 1       |              | 04/14/21 01:42                   |              |        |
| -                                               |                  | ug/L             |              |             |         |              |                                  |              |        |
| 4-Methyl-2-pentanone (MIBK)                     | 2.8 U            | ug/L             | 25.0         | 2.8         | 1       |              | 04/14/21 01:42                   |              |        |
| Methyl-tert-butyl ether                         | 0.53 U           | ug/L             | 5.0          | 0.53        | 1       |              | 04/14/21 01:42<br>04/14/21 01:42 |              |        |
| Styrene                                         | 0.26 U           | ug/L             | 1.0          | 0.26        | 1       |              |                                  |              |        |
| 1,1,1,2-Tetrachloroethane                       | 0.32 U           | ug/L             | 1.0          | 0.32        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,1,2,2-Tetrachloroethane                       | 0.18 U           | ug/L             | 1.0          | 0.18        | 1       |              | 04/14/21 01:42                   |              |        |
| Tetrachloroethene                               | 0.38 U           | ug/L             | 1.0          | 0.38        | 1       |              | 04/14/21 01:42                   |              |        |
| Toluene                                         | 0.33 U           | ug/L             | 1.0          | 0.33        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,1,1-Trichloroethane                           | 0.30 U           | ug/L             | 1.0          | 0.30        | 1       |              | 04/14/21 01:42                   |              |        |
| 1,1,2-Trichloroethane                           | 0.30 U           | ug/L             | 1.0          | 0.30        | 1       |              | 04/14/21 01:42                   |              |        |
| Trichloroethene                                 | 0.36 U           | ug/L             | 1.0          | 0.36        | 1       |              | 04/14/21 01:42                   | 79-01-6      |        |



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| Sample: Trip Blank         | Lab ID:    | 35625214004      | Collecte   | d: 04/12/2 | 08:34 | Received: 04 | /12/21 15:35 Ma | atrix: Water |      |
|----------------------------|------------|------------------|------------|------------|-------|--------------|-----------------|--------------|------|
| Parameters                 | Results    | Units            | PQL        | MDL        | DF    | Prepared     | Analyzed        | CAS No.      | Qual |
| 8260 MSV                   | Analytical | Method: EPA 8    | 260        |            |       |              |                 |              |      |
|                            | Pace Ana   | lytical Services | - Ormond E | Beach      |       |              |                 |              |      |
| Trichlorofluoromethane     | 0.35 U     | ug/L             | 1.0        | 0.35       | 1     |              | 04/14/21 01:42  | 75-69-4      |      |
| 1,2,3-Trichloropropane     | 0.53 U     | ug/L             | 2.0        | 0.53       | 1     |              | 04/14/21 01:42  | 96-18-4      |      |
| 1,2,4-Trimethylbenzene     | 0.24 U     | ug/L             | 1.0        | 0.24       | 1     |              | 04/14/21 01:42  | 95-63-6      |      |
| 1,3,5-Trimethylbenzene     | 0.24 U     | ug/L             | 1.0        | 0.24       | 1     |              | 04/14/21 01:42  | 108-67-8     |      |
| Vinyl acetate              | 0.84 U     | ug/L             | 10.0       | 0.84       | 1     |              | 04/14/21 01:42  | 108-05-4     |      |
| Vinyl chloride             | 0.39 U     | ug/L             | 1.0        | 0.39       | 1     |              | 04/14/21 01:42  | 75-01-4      |      |
| Xylene (Total)             | 0.63 U     | ug/L             | 5.0        | 0.63       | 1     |              | 04/14/21 01:42  | 1330-20-7    |      |
| m&p-Xylene                 | 0.63 U     | ug/L             | 4.0        | 0.63       | 1     |              | 04/14/21 01:42  | 179601-23-1  |      |
| o-Xylene                   | 0.57 U     | ug/L             | 1.0        | 0.57       | 1     |              | 04/14/21 01:42  | 95-47-6      |      |
| Surrogates                 |            | -                |            |            |       |              |                 |              |      |
| 4-Bromofluorobenzene (S)   | 94         | %                | 70-130     |            | 1     |              | 04/14/21 01:42  | 460-00-4     |      |
| Toluene-d8 (S)             | 96         | %                | 70-130     |            | 1     |              | 04/14/21 01:42  | 2037-26-5    |      |
| 1,2-Dichlorobenzene-d4 (S) | 104        | %                | 70-130     |            | 1     |              | 04/14/21 01:42  | 2199-69-1    |      |



| QC Batch: 7208          | 307        |                             | Anal        | ysis Me       | ethoo    | d:          | EPA       | 200.8    |          |            |        |           |          |     |     |
|-------------------------|------------|-----------------------------|-------------|---------------|----------|-------------|-----------|----------|----------|------------|--------|-----------|----------|-----|-----|
| QC Batch Method: EPA    | 200.8      |                             | Analy       | ,<br>ysis De  | escrip   | otion:      | 200.8 MET |          |          |            |        |           |          |     |     |
|                         |            |                             |             | ,<br>oratory: |          |             | Pace      | e Analyt | ical Sei | vices - Oi | mond   | Beach     |          |     |     |
| Associated Lab Samples: | 356252140  | 001, 3562521400             | 02, 3562521 | 14003         |          |             |           | ,        |          |            |        |           |          |     |     |
| METHOD BLANK: 39286     | 676        |                             |             | Matrix        | c Wa     | ater        |           |          |          |            |        |           |          |     |     |
| Associated Lab Samples: | 356252140  | 01, 3562521400              | 2, 3562521  | 14003         |          |             |           |          |          |            |        |           |          |     |     |
|                         |            |                             | Blai        | nk            | F        | Reporting   |           |          |          |            |        |           |          |     |     |
| Parameter               |            | Units                       | Res         | ult           |          | Limit       |           | MD       | L        | Analy      | /zed   | Qu        | alifiers |     |     |
| Cadmium                 |            | ug/L                        | 0.          | .050 U        | J        | 0.1         | 0         |          | 0.050    | 04/14/2    | 1 13:5 | 9         |          |     |     |
| Chromium                |            | ug/L                        | (           | 0.50 U        | J        | 1.          | .0        |          | 0.50     | 04/14/2    | 1 13:5 | 9         |          |     |     |
| Lead                    |            | ug/L                        | (           | 0.22 U        | J        | 1.          | .0        |          | 0.22     | 04/14/2    | 1 13:5 | 9         |          |     |     |
| Silver                  |            | ug/L                        | (           | 0.21 U        | J        | 0.5         | 50        |          | 0.21     | 04/14/2    | 1 13:5 | 9         |          |     |     |
|                         |            | 2020677                     |             |               |          |             |           |          |          |            |        |           |          |     |     |
| LABORATORY CONTROL      | SAIVIPLE:  | 3928677                     | Spike       |               | LC       | 9           | ı         | .CS      | 0,       | 6 Rec      |        |           |          |     |     |
| Parameter               |            | Units                       | Conc.       |               | Res      |             |           | Rec      |          | _imits     | Q      | ualifiers |          |     |     |
| Cadmium                 |            |                             |             | 5             |          | 4.9         |           | 9        |          | 85-115     |        |           | _        |     |     |
| Chromium                |            | ug/L<br>ug/L                |             | 5<br>50       |          | 4.9<br>46.1 |           | 9        |          | 85-115     |        |           |          |     |     |
| Lead                    |            | ug/L                        |             | 50            |          | 47.1        |           | 94       |          | 85-115     |        |           |          |     |     |
| Silver                  |            | ug/L                        |             | 5             |          | 4.7         |           | 94       |          | 85-115     |        |           |          |     |     |
|                         |            |                             |             |               |          |             |           |          |          |            |        |           |          |     |     |
| MATRIX SPIKE & MATRIX   | SPIKE DUPI | LICATE: 3928                | MS          | MSE           | <b>`</b> | 3928679     | J         |          |          |            |        |           |          |     |     |
|                         |            | 35623077001                 | Spike       | Spike         |          | MS          | N         | ISD      | MS       | MS         | п      | % Rec     |          | Max |     |
| Parameter               | Units      | Result                      | Conc.       | Cond          |          | Result      |           | esult    | % Re     |            |        | Limits    | RPD      | RPD | Qua |
| Cadmium                 | ug/L       | 0.000050                    | 5           |               | 5        | 4.0         |           | 4.0      |          | 80         | 80     | 70-130    | 0        | 20  |     |
| Chromium                | ug/L       | U mg/L<br>0.0013            | 50          |               | 50       | 39.9        |           | 39.7     |          | 77         | 77     | 70-130    | 0        | 20  |     |
| Lead                    | ug/L       | mg/L<br>0.00022             | 50          |               | 50       | 42.1        |           | 41.8     |          | 84         | 84     | 70-130    | 1        | 20  |     |
| Silver                  | ug/L       | U mg/L<br>0.00035 1<br>mg/L | 5           |               | 5        | 4.2         |           | 4.2      |          | 77         | 77     | 70-130    | 1        | 20  |     |
|                         |            | -                           |             |               |          |             |           |          |          |            |        |           |          |     |     |
| MATRIX SPIKE & MATRIX   | SPIKE DUPI | LICATE: 3928                |             |               |          | 392868      | 1         |          |          |            |        |           |          |     |     |
|                         |            |                             | MS          | MSE           |          |             | -         |          |          |            | _      |           |          |     |     |
| Deveryoter              | m !+-      | 35624869002                 | Spike       | Spik          |          | MS          |           | /ISD     | MS       | MS         |        | % Rec     |          | Max | 0   |
| Parameter               | Units      | Result                      | Conc.       | Conc          | C.       | Result      | R         | esult    | % Re     | c% R       | ec     | Limits    | RPD      | RPD | Qua |
| Cadmium                 | ug/L       | 0.000050                    | 5           |               | 5        | 4.2         |           | 4.2      |          | 83         | 84     | 70-130    | 2        | 20  |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

5

50

50

42.7

42.3

4.0

43.5

43.0

4.1

79

84

81

81

86

82

70-130

70-130

70-130

U mg/L 0.0032

mg/L 0.00022

U mg/L 0.00021

U mg/L

50

50

5

ug/L

ug/L

ug/L

### **REPORT OF LABORATORY ANALYSIS**

Chromium

Lead

Silver

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

2 20

2

1 20

20



| ,                 | ,        |
|-------------------|----------|
| Pace Project No.: | 35625214 |

| AC Batch Method:EPA 8260ssociated Lab Samples:35625214001, 35625214004IETHOD BLANK:3928445ssociated Lab Samples:35625214001, 35625214004 | Analysis Des<br>Laboratory:<br>Matrix: | P         | 260 MSV<br>ace Analytical Se | rvices - Ormond B | each       |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|------------------------------|-------------------|------------|
| IETHOD BLANK: 3928445                                                                                                                    |                                        |           | ace Analytical Se            | rvices - Ormond B | each       |
| IETHOD BLANK: 3928445                                                                                                                    | Matrix:                                | Mator     |                              |                   |            |
|                                                                                                                                          | Matrix:                                | \M/atar   |                              |                   |            |
| ssociated Lab Samples: 35625214001, 35625214004                                                                                          |                                        | vvaler    |                              |                   |            |
|                                                                                                                                          |                                        |           |                              |                   |            |
|                                                                                                                                          | Blank                                  | Reporting |                              |                   |            |
| Parameter Units                                                                                                                          | Result                                 | Limit     | MDL                          | Analyzed          | Qualifiers |
| ,1,1,2-Tetrachloroethane ug/L                                                                                                            | 0.32 U                                 | 1.0       | 0.32                         | 04/14/21 00:29    |            |
| ,1,1-Trichloroethane ug/L                                                                                                                | 0.30 U                                 | 1.0       | 0.30                         | 04/14/21 00:29    |            |
| ,1,2,2-Tetrachloroethane ug/L                                                                                                            | 0.18 U                                 | 1.0       | 0.18                         | 04/14/21 00:29    |            |
| ,1,2-Trichloroethane ug/L                                                                                                                | 0.30 U                                 | 1.0       | 0.30                         | 04/14/21 00:29    |            |
| ,1-Dichloroethane ug/L                                                                                                                   | 0.34 U                                 | 1.0       | 0.34                         | 04/14/21 00:29    |            |
| ,1-Dichloroethene ug/L                                                                                                                   | 0.59 U                                 | 1.0       | 0.59                         | 04/14/21 00:29    |            |
| ,2,3-Trichloropropane ug/L                                                                                                               | 0.53 U                                 | 2.0       | 0.53                         | 04/14/21 00:29    |            |
| ,2,4-Trimethylbenzene ug/L                                                                                                               | 0.24 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| ,2-Dibromo-3-chloropropane ug/L                                                                                                          | 1.9 U                                  | 5.0       |                              | 04/14/21 00:29    |            |
| ,2-Dibromoethane (EDB) ug/L                                                                                                              | 0.31 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| ,2-Dichlorobenzene ug/L                                                                                                                  | 0.60 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| ,2-Dichloroethane ug/L                                                                                                                   | 0.27 U                                 | 1.0       | 0.27                         | 04/14/21 00:29    |            |
| ,2-Dichloroethene (Total) ug/L                                                                                                           | 0.27 U                                 | 1.0       |                              | 04/14/21 00:29    | N2         |
| ,2-Dichloropropane ug/L                                                                                                                  | 0.23 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| ,3,5-Trimethylbenzene ug/L                                                                                                               | 0.24 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| ,4-Dichlorobenzene ug/L                                                                                                                  | 0.28 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| -Butanone (MEK) ug/L                                                                                                                     | 3.4 U                                  | 50.0      |                              | 04/14/21 00:29    |            |
| -Hexanone ug/L                                                                                                                           | 3.2 U                                  | 25.0      |                              | 04/14/21 00:29    |            |
| -Methyl-2-pentanone (MIBK) ug/L                                                                                                          | 2.8 U                                  | 25.0      |                              | 04/14/21 00:29    |            |
| cetone ug/L                                                                                                                              | 5.3 U                                  | 25.0      |                              | 04/14/21 00:29    |            |
| cetonitrile ug/L                                                                                                                         | 5.8 U                                  | 50.0      |                              | 04/14/21 00:29    |            |
| enzene ug/L                                                                                                                              | 0.30 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| romochloromethane ug/L                                                                                                                   | 0.37 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| romodichloromethane ug/L                                                                                                                 | 0.19 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| romoform ug/L                                                                                                                            | 1.0 U                                  | 3.0       |                              | 04/14/21 00:29    |            |
| romomethane ug/L                                                                                                                         | 2.3 U                                  | 10.0      |                              | 04/14/21 00:29    | J(v2)      |
| arbon disulfide ug/L                                                                                                                     | 1.8 U                                  | 10.0      |                              | 04/14/21 00:29    | -(/        |
| arbon tetrachloride ug/L                                                                                                                 | 0.44 U                                 | 3.0       |                              | 04/14/21 00:29    |            |
| chlorobenzene ug/L                                                                                                                       | 0.35 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| hloroethane ug/L                                                                                                                         | 1.4 U                                  | 10.0      |                              | 04/14/21 00:29    |            |
| hloroform ug/L                                                                                                                           | 0.32 U                                 | 1.0       |                              |                   |            |
| hloromethane ug/L                                                                                                                        | 0.92 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| is-1,2-Dichloroethene ug/L                                                                                                               | 0.90 U<br>0.27 U                       | 1.0       |                              | 04/14/21 00:29    |            |
| is-1,3-Dichloropropene ug/L                                                                                                              | 0.27 U                                 | 1.0       |                              | 04/14/21 00:29    |            |
| ibromochloromethane ug/L                                                                                                                 | 0.45 U                                 | 2.0       |                              | 04/14/21 00:29    |            |
| bibromoethane ug/L                                                                                                                       | 0.43 U<br>0.24 U                       | 2.0       |                              | 04/14/21 00:29    |            |
| thylbenzene ug/L                                                                                                                         | 0.24 U<br>0.30 U                       | 2.0       |                              | 04/14/21 00:29    |            |
| odomethane ug/L                                                                                                                          | 9.3 U                                  | 10.0      |                              | 04/14/21 00:29    | J(v2)      |
|                                                                                                                                          | 9.3 U<br>0.30 U                        | 1.0       |                              | 04/14/21 00:29    | 0(VZ)      |
| sopropylbenzene (Cumene) ug/L<br>1&p-Xylene ug/L                                                                                         | 0.30 U<br>0.63 U                       | 4.0       |                              | 04/14/21 00:29    |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility Pace Project No.: 35625214

| METHOD BLANK: 392844        | 5                        | Matrix: | Water     |      |                |            |
|-----------------------------|--------------------------|---------|-----------|------|----------------|------------|
| Associated Lab Samples:     | 35625214001, 35625214004 |         |           |      |                |            |
|                             |                          | Blank   | Reporting |      |                |            |
| Parameter                   | Units                    | Result  | Limit     | MDL  | Analyzed       | Qualifiers |
| Methyl-tert-butyl ether     | ug/L                     | 0.53 U  | 5.0       | 0.53 | 04/14/21 00:29 |            |
| Methylene Chloride          | ug/L                     | 1.5 U   | 5.0       | 1.5  | 04/14/21 00:29 |            |
| o-Xylene                    | ug/L                     | 0.57 U  | 1.0       | 0.57 | 04/14/21 00:29 |            |
| Styrene                     | ug/L                     | 0.26 U  | 1.0       | 0.26 | 04/14/21 00:29 |            |
| Tetrachloroethene           | ug/L                     | 0.38 U  | 1.0       | 0.38 | 04/14/21 00:29 |            |
| Toluene                     | ug/L                     | 0.33 U  | 1.0       | 0.33 | 04/14/21 00:29 |            |
| trans-1,2-Dichloroethene    | ug/L                     | 0.23 U  | 1.0       | 0.23 | 04/14/21 00:29 |            |
| trans-1,3-Dichloropropene   | ug/L                     | 0.37 U  | 1.0       | 0.37 | 04/14/21 00:29 |            |
| trans-1,4-Dichloro-2-butene | ug/L                     | 0.53 U  | 10.0      | 0.53 | 04/14/21 00:29 |            |
| Trichloroethene             | ug/L                     | 0.36 U  | 1.0       | 0.36 | 04/14/21 00:29 |            |
| Trichlorofluoromethane      | ug/L                     | 0.35 U  | 1.0       | 0.35 | 04/14/21 00:29 |            |
| Vinyl acetate               | ug/L                     | 0.84 U  | 10.0      | 0.84 | 04/14/21 00:29 |            |
| Vinyl chloride              | ug/L                     | 0.39 U  | 1.0       | 0.39 | 04/14/21 00:29 |            |
| Xylene (Total)              | ug/L                     | 0.63 U  | 5.0       | 0.63 | 04/14/21 00:29 |            |
| 1,2-Dichlorobenzene-d4 (S)  | %                        | 104     | 70-130    |      | 04/14/21 00:29 |            |
| 4-Bromofluorobenzene (S)    | %                        | 94      | 70-130    |      | 04/14/21 00:29 |            |
| Toluene-d8 (S)              | %                        | 97      | 70-130    |      | 04/14/21 00:29 |            |

#### LABORATORY CONTROL SAMPLE: 3928446

|                             |       | Spike | LCS    | LCS   | % Rec    | 0          |
|-----------------------------|-------|-------|--------|-------|----------|------------|
| Parameter                   | Units | Conc. | Result | % Rec | Limits   | Qualifiers |
| 1,1,1,2-Tetrachloroethane   | ug/L  | 20    | 21.7   | 108   | 70-130   |            |
| 1,1,1-Trichloroethane       | ug/L  | 20    | 21.4   | 107   | 70-130   |            |
| 1,1,2,2-Tetrachloroethane   | ug/L  | 20    | 23.0   | 115   | 68-125   |            |
| 1,1,2-Trichloroethane       | ug/L  | 20    | 22.8   | 114   | 70-130   |            |
| 1,1-Dichloroethane          | ug/L  | 20    | 22.5   | 113   | 70-130   |            |
| 1,1-Dichloroethene          | ug/L  | 20    | 22.9   | 115   | 66-133   |            |
| 1,2,3-Trichloropropane      | ug/L  | 20    | 22.8   | 114   | 62-127   |            |
| 1,2,4-Trimethylbenzene      | ug/L  | 20    | 21.4   | 107   | 70-130   |            |
| 1,2-Dibromo-3-chloropropane | ug/L  | 20    | 20.2   | 101   | 45-137   |            |
| 1,2-Dibromoethane (EDB)     | ug/L  | 20    | 22.2   | 111   | 70-130   |            |
| 1,2-Dichlorobenzene         | ug/L  | 20    | 21.4   | 107   | 70-130   |            |
| 1,2-Dichloroethane          | ug/L  | 20    | 22.0   | 110   | 70-130   |            |
| 1,2-Dichloroethene (Total)  | ug/L  | 40    | 44.0   | 110   | 70-130 I | N2         |
| ,2-Dichloropropane          | ug/L  | 20    | 21.5   | 108   | 70-130   |            |
| 1,3,5-Trimethylbenzene      | ug/L  | 20    | 22.3   | 112   | 70-130   |            |
| 1,4-Dichlorobenzene         | ug/L  | 20    | 21.5   | 107   | 70-130   |            |
| 2-Butanone (MEK)            | ug/L  | 100   | 101    | 101   | 47-143   |            |
| 2-Hexanone                  | ug/L  | 100   | 111    | 111   | 48-145   |            |
| 4-Methyl-2-pentanone (MIBK) | ug/L  | 100   | 114    | 114   | 57-132   |            |
| Acetone                     | ug/L  | 100   | 103    | 103   | 46-148   |            |
| Acetonitrile                | ug/L  | 100   | 100    | 100   | 33-175   |            |
| Benzene                     | ug/L  | 20    | 21.7   | 108   | 70-130   |            |
| Bromochloromethane          | ug/L  | 20    | 21.6   | 108   | 70-130   |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| Parameter               | Units | Spike<br>Conc. | LCS    | LCS<br>% Rec | % Rec  | Qualifiers |  |
|-------------------------|-------|----------------|--------|--------------|--------|------------|--|
|                         |       |                | Result |              | Limits |            |  |
| romodichloromethane     | ug/L  | 20             | 21.4   | 107          | 70-130 |            |  |
| moform                  | ug/L  | 20             | 19.8   | 99           | 49-126 |            |  |
| momethane               | ug/L  | 20             | 11.8   | 59           | 10-165 | J(v3)      |  |
| bon disulfide           | ug/L  | 20             | 22.4   | 112          | 60-141 |            |  |
| bon tetrachloride       | ug/L  | 20             | 22.1   | 111          | 63-126 |            |  |
| orobenzene              | ug/L  | 20             | 21.7   | 108          | 70-130 |            |  |
| oroethane               | ug/L  | 20             | 18.6   | 93           | 71-142 |            |  |
| oroform                 | ug/L  | 20             | 22.4   | 112          | 70-130 |            |  |
| loromethane             | ug/L  | 20             | 19.0   | 95           | 40-140 |            |  |
| 1,2-Dichloroethene      | ug/L  | 20             | 21.6   | 108          | 70-130 |            |  |
| 1,3-Dichloropropene     | ug/L  | 20             | 22.5   | 113          | 70-130 |            |  |
| romochloromethane       | ug/L  | 20             | 21.4   | 107          | 62-118 |            |  |
| romomethane             | ug/L  | 20             | 21.7   | 109          | 70-130 |            |  |
| ylbenzene               | ug/L  | 20             | 21.4   | 107          | 70-130 |            |  |
| omethane                | ug/L  | 20             | 9.3 U  | 24           | 10-164 | J(v3)      |  |
| propylbenzene (Cumene)  | ug/L  | 20             | 22.4   | 112          | 70-130 |            |  |
| p-Xylene                | ug/L  | 40             | 43.7   | 109          | 70-130 |            |  |
| hyl-tert-butyl ether    | ug/L  | 20             | 22.1   | 110          | 64-124 |            |  |
| hylene Chloride         | ug/L  | 20             | 21.6   | 108          | 65-136 |            |  |
| lene                    | ug/L  | 20             | 21.5   | 107          | 70-130 |            |  |
| ene                     | ug/L  | 20             | 22.8   | 114          | 70-130 |            |  |
| achloroethene           | ug/L  | 20             | 22.0   | 110          | 64-134 |            |  |
| ene                     | ug/L  | 20             | 21.6   | 108          | 70-130 |            |  |
| s-1,2-Dichloroethene    | ug/L  | 20             | 22.5   | 112          | 68-127 |            |  |
| s-1,3-Dichloropropene   | ug/L  | 20             | 23.4   | 117          | 65-121 |            |  |
| s-1,4-Dichloro-2-butene | ug/L  | 20             | 18.0   | 90           | 42-129 |            |  |
| hloroethene             | ug/L  | 20             | 21.6   | 108          | 70-130 |            |  |
| hlorofluoromethane      | ug/L  | 20             | 19.2   | 96           | 65-135 |            |  |
| /l acetate              | ug/L  | 20             | 21.9   | 110          | 60-144 |            |  |
| yl chloride             | ug/L  | 20             | 17.2   | 86           | 68-131 |            |  |
| ene (Total)             | ug/L  | 60             | 65.2   | 109          | 70-130 |            |  |
| Dichlorobenzene-d4 (S)  | %     |                |        | 100          | 70-130 |            |  |
| romofluorobenzene (S)   | %     |                |        | 100          | 70-130 |            |  |
| uene-d8 (S)             | %     |                |        | 99           | 70-130 |            |  |

| MATRIX SPIKE SAMPLE:      | 3928448 |                       |                |              |             |                 |            |
|---------------------------|---------|-----------------------|----------------|--------------|-------------|-----------------|------------|
| Parameter                 | Units   | 35625332001<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane | ug/L    | 0.32 U                | 20             | 21.4         | 107         | 70-130          |            |
| 1,1,1-Trichloroethane     | ug/L    | 0.30 U                | 20             | 22.8         | 114         | 70-130          |            |
| 1,1,2,2-Tetrachloroethane | ug/L    | 0.18 U                | 20             | 20.8         | 104         | 68-125          |            |
| 1,1,2-Trichloroethane     | ug/L    | 0.30 U                | 20             | 20.9         | 105         | 70-130          |            |
| 1,1-Dichloroethane        | ug/L    | 0.34 U                | 20             | 23.3         | 117         | 70-130          |            |
| 1,1-Dichloroethene        | ug/L    | 0.59 U                | 20             | 25.1         | 126         | 66-133          |            |
| 1,2,3-Trichloropropane    | ug/L    | 0.53 U                | 20             | 20.3         | 102         | 62-127          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| MATRIX SPIKE SAMPLE:        | 3928448 | 35625332001 | Spike | MS     | MS    | % Rec             |
|-----------------------------|---------|-------------|-------|--------|-------|-------------------|
| Parameter                   | Units   | Result      | Conc. | Result | % Rec | Limits Qualifiers |
| 1,2,4-Trimethylbenzene      | ug/L    | 0.24 U      | 20    | 20.9   | 105   | 70-130            |
| 1,2-Dibromo-3-chloropropane | ug/L    | 1.9 U       | 20    | 16.7   | 84    | 45-137            |
| 1,2-Dibromoethane (EDB)     | ug/L    | 0.31 U      | 20    | 20.4   | 102   | 70-130            |
| 1,2-Dichlorobenzene         | ug/L    | 0.60 U      | 20    | 20.9   | 104   | 70-130            |
| 1,2-Dichloroethane          | ug/L    | 0.27 U      | 20    | 22.0   | 110   | 70-130            |
| 1,2-Dichloroethene (Total)  | ug/L    | 0.27 U      | 40    | 44.3   | 111   | 70-130 N2         |
| 1,2-Dichloropropane         | ug/L    | 0.23 U      | 20    | 21.9   | 110   | 70-130            |
| 1,3,5-Trimethylbenzene      | ug/L    | 0.24 U      | 20    | 21.8   | 109   | 70-130            |
| 1,4-Dichlorobenzene         | ug/L    | 0.28 U      | 20    | 21.1   | 106   | 70-130            |
| 2-Butanone (MEK)            | ug/L    | 3.4 U       | 100   | 87.6   | 88    | 47-143            |
| 2-Hexanone                  | ug/L    | 3.2 U       | 100   | 89.3   | 89    | 48-145            |
| 4-Methyl-2-pentanone (MIBK) | ug/L    | 2.8 U       | 100   | 91.7   | 92    | 57-132            |
| Acetone                     | ug/L    | 5.3 U       | 100   | 92.9   | 93    | 46-148            |
| Acetonitrile                | ug/L    | 5.8 U       | 100   | 102    | 102   | 33-175            |
| Benzene                     | ug/L    | 0.30 U      | 20    | 22.5   | 112   | 70-130            |
| Bromochloromethane          | ug/L    | 0.37 U      | 20    | 22.3   | 111   | 70-130            |
| Bromodichloromethane        | ug/L    | 0.19 U      | 20    | 22.0   | 110   | 70-130            |
| Bromoform                   | ug/L    | 1.0 U       | 20    | 19.7   | 99    | 49-126            |
| Bromomethane                | ug/L    | 2.3 U       | 20    | 10.5   | 53    | 10-165 J(v3)      |
| Carbon disulfide            | ug/L    | 1.8 U       | 20    | 23.6   | 118   | 60-141            |
| Carbon tetrachloride        | ug/L    | 0.44 U      | 20    | 23.9   | 120   | 63-126            |
| Chlorobenzene               | ug/L    | 0.35 U      | 20    | 21.3   | 107   | 70-130            |
| Chloroethane                | ug/L    | 1.4 U       | 20    | 20.4   | 102   | 71-142            |
| Chloroform                  | ug/L    | 0.32 U      | 20    | 23.2   | 116   | 70-130            |
| Chloromethane               | ug/L    | 0.96 U      | 20    | 18.8   | 94    | 40-140            |
| cis-1,2-Dichloroethene      | ug/L    | 0.27 U      | 20    | 21.7   | 109   | 70-130            |
| cis-1,3-Dichloropropene     | ug/L    | 0.17 U      | 20    | 18.8   | 94    | 70-130            |
| Dibromochloromethane        | ug/L    | 0.45 U      | 20    | 20.6   | 103   | 62-118            |
| Dibromomethane              | ug/L    | 0.24 U      | 20    | 20.9   | 104   | 70-130            |
| Ethylbenzene                | ug/L    | 0.30 U      | 20    | 21.1   | 105   | 70-130            |
| Iodomethane                 | ug/L    | 9.3 U       | 20    | 9.5 I  | 47    | 10-164 J(v3)      |
| Isopropylbenzene (Cumene)   | ug/L    | 0.30 U      | 20    | 21.9   | 110   | 70-130            |
| m&p-Xylene                  | ug/L    | 0.63 U      | 40    | 43.3   | 108   | 70-130            |
| Methyl-tert-butyl ether     | ug/L    | 0.53 U      | 20    | 19.9   | 99    | 64-124            |
| Methylene Chloride          | ug/L    | 1.5 U       | 20    | 20.9   | 104   | 65-136            |
| o-Xylene                    | ug/L    | 0.57 U      | 20    | 21.0   | 105   | 70-130            |
| Styrene                     | ug/L    | 0.26 U      | 20    | 22.5   | 112   | 70-130            |
| Tetrachloroethene           | ug/L    | 0.38 U      | 20    | 20.3   | 102   | 64-134            |
| Toluene                     | ug/L    | 0.33 U      | 20    | 21.0   | 105   | 70-130            |
| trans-1,2-Dichloroethene    | ug/L    | 0.23 U      | 20    | 22.6   | 113   | 68-127            |
| trans-1,3-Dichloropropene   | ug/L    | 0.37 U      | 20    | 21.3   | 107   | 65-121            |
| trans-1,4-Dichloro-2-butene | ug/L    | 0.53 U      | 20    | 21.4   | 107   | 42-129            |
| Trichloroethene             | ug/L    | 0.36 U      | 20    | 21.7   | 108   | 70-130            |
| Trichlorofluoromethane      | ug/L    | 0.35 U      | 20    | 22.2   | 111   | 65-135            |
| Vinyl acetate               | ug/L    | 0.84 U      | 20    | 16.4   | 82    | 60-144            |
| Vinyl chloride              | ug/L    | 0.39 U      | 20    | 18.9   | 95    | 68-131            |
| Xylene (Total)              | ug/L    | 0.63 U      | 60    | 64.3   | 107   | 70-130            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| MATRIX SPIKE SAMPLE:       | 3928448 |             |       |        |       |        |            |
|----------------------------|---------|-------------|-------|--------|-------|--------|------------|
|                            |         | 35625332001 | Spike | MS     | MS    | % Rec  |            |
| Parameter                  | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,2-Dichlorobenzene-d4 (S) | %       |             |       |        | 99    | 70-130 |            |
| 4-Bromofluorobenzene (S)   | %       |             |       |        | 100   | 70-130 |            |
| Toluene-d8 (S)             | %       |             |       |        | 98    | 70-130 |            |
|                            |         |             |       |        |       |        |            |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,1,1,2-Tetrachloroethane         ug/L         0.32 U         0.32 U         40           1,1,1-Trichloroethane         ug/L         0.30 U         0.30 U         40           1,1,2-Tetrachloroethane         ug/L         0.30 U         0.30 U         40           1,1,2,2-Tetrachloroethane         ug/L         0.18 U         0.18 U         40           1,1,2-Trichloroethane         ug/L         0.30 U         0.30 U         40           1,1,2-Trichloroethane         ug/L         0.30 U         0.30 U         40           1,1-Dichloroethane         ug/L         0.34 U         0.34 U         40           1,1-Dichloroethane         ug/L         0.59 U         40         40           1,2,3-Trichloropropane         ug/L         0.53 U         40         40           1,2,4-Trimethylbenzene         ug/L         0.24 U         40         40           1,2-Dibromo-3-chloropropane         ug/L         1.9 U         40         40           1,2-Dibromoethane (EDB)         ug/L         0.31 U         0.31 U         40 |
| 1,1,1-Trichloroethane       ug/L       0.30 U       0.30 U       40         1,1,2,2-Tetrachloroethane       ug/L       0.18 U       0.18 U       40         1,1,2-Trichloroethane       ug/L       0.30 U       0.30 U       40         1,1,2-Trichloroethane       ug/L       0.30 U       0.30 U       40         1,1,2-Trichloroethane       ug/L       0.34 U       0.34 U       40         1,1-Dichloroethane       ug/L       0.59 U       0.59 U       40         1,1-Dichloroethene       ug/L       0.59 U       0.59 U       40         1,2,3-Trichloropropane       ug/L       0.53 U       0.53 U       40         1,2,4-Trimethylbenzene       ug/L       0.24 U       0.24 U       40         1,2-Dibromo-3-chloropropane       ug/L       1.9 U       40       40         1,2-Dibromoethane (EDB)       ug/L       0.31 U       0.31 U       40                                                                                                                                                                                             |
| 1,1,2,2-Tetrachloroethaneug/L0.18 U0.18 U401,1,2-Trichloroethaneug/L0.30 U0.30 U401,1-Dichloroethaneug/L0.34 U0.34 U401,1-Dichloroethaneug/L0.59 U0.59 U401,1-Dichloroethaneug/L0.53 U0.53 U401,2,3-Trichloropropaneug/L0.24 U0.24 U401,2,4-Trimethylbenzeneug/L1.9 U401,2-Dibromo-3-chloropropaneug/L1.9 U401,2-Dibromoethane (EDB)ug/L0.31 U0.31 U40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1,2-Trichloroethane       ug/L       0.30 U       0.30 U       40         1,1-Dichloroethane       ug/L       0.34 U       0.34 U       40         1,1-Dichloroethane       ug/L       0.59 U       0.59 U       40         1,1-Dichloroethane       ug/L       0.59 U       0.59 U       40         1,2,3-Trichloropropane       ug/L       0.53 U       0.53 U       40         1,2,4-Trimethylbenzene       ug/L       0.24 U       0.24 U       40         1,2-Dibromo-3-chloropropane       ug/L       1.9 U       1.9 U       40         1,2-Dibromoethane (EDB)       ug/L       0.31 U       0.31 U       40                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1,2-Trichloroethane       ug/L       0.30 U       0.30 U       40         1,1-Dichloroethane       ug/L       0.34 U       0.34 U       40         1,1-Dichloroethane       ug/L       0.59 U       0.59 U       40         1,2,3-Trichloropropane       ug/L       0.53 U       0.53 U       40         1,2,4-Trimethylbenzene       ug/L       0.24 U       0.24 U       40         1,2-Dibromo-3-chloropropane       ug/L       1.9 U       1.9 U       40         1,2-Dibromoethane (EDB)       ug/L       0.31 U       0.31 U       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,1-Dichloroethaneug/L0.59 U0.59 U401,2,3-Trichloropropaneug/L0.53 U0.53 U401,2,4-Trimethylbenzeneug/L0.24 U0.24 U401,2-Dibromo-3-chloropropaneug/L1.9 U1.9 U401,2-Dibromoethane (EDB)ug/L0.31 U0.31 U40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,2,3-Trichloropropane       ug/L       0.53 U       0.53 U       40         1,2,4-Trimethylbenzene       ug/L       0.24 U       0.24 U       40         1,2-Dibromo-3-chloropropane       ug/L       1.9 U       1.9 U       40         1,2-Dibromoethane (EDB)       ug/L       0.31 U       0.31 U       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1,2,4-Trimethylbenzene       ug/L       0.24 U       0.24 U       40         1,2-Dibromo-3-chloropropane       ug/L       1.9 U       1.9 U       40         1,2-Dibromoethane (EDB)       ug/L       0.31 U       0.31 U       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1,2,4-Trimethylbenzene       ug/L       0.24 U       0.24 U       40         1,2-Dibromo-3-chloropropane       ug/L       1.9 U       1.9 U       40         1,2-Dibromoethane (EDB)       ug/L       0.31 U       0.31 U       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1,2-Dibromo-3-chloropropane         ug/L         1.9 U         1.9 U         40           1,2-Dibromoethane (EDB)         ug/L         0.31 U         0.31 U         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ·,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1,2-Dichlorobenzene ug/L 0.60 U 0.60 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1,2-Dichloroethane ug/L 0.27 U 0.27 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,2-Dichloroethene (Total) ug/L 0.27 U 0.27 U 40 N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1,2-Dichloropropane ug/L 0.23 U 0.23 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1,3,5-Trimethylbenzene ug/L 0.24 U 0.24 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,4-Dichlorobenzene ug/L 0.28 U 0.28 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2-Butanone (MEK) ug/L 3.4 U 3.4 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2-Hexanone ug/L 3.2 U 3.2 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4-Methyl-2-pentanone (MIBK) ug/L 2.8 U 2.8 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Acetone ug/L 5.3 U 5.3 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acetonitrile ug/L 5.8 U 5.8 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benzene ug/L 0.30 U 0.30 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bromochloromethane ug/L 0.37 U 0.37 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bromodichloromethane ug/L 0.19 U 0.19 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bromoform ug/L 1.0 U 1.0 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bromomethane ug/L 2.3 U 2.3 U 40 J(v2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Carbon disulfide ug/L 1.8 U 1.8 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Carbon tetrachloride ug/L 0.44 U 0.44 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chlorobenzene ug/L 0.35 U 0.35 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chloroethane ug/L 1.4 U 1.4 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chloroform ug/L 0.32 U 0.32 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chloromethane ug/L 0.96 U 0.96 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| cis-1,2-Dichloroethene ug/L 0.27 U 0.27 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| cis-1,3-Dichloropropene ug/L 0.17 U 0.17 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dibromochloromethane ug/L 0.45 U 0.45 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dibromomethane ug/L 0.24 U 0.24 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ethylbenzene ug/L 0.30 U 0.30 U 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| lodomethane ug/L 9.3 U 9.3 U 40 J(v2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility Pace Project No.: 35625214

#### SAMPLE DUPLICATE: 3928447

|                             |       | 35624882011 | Dup    |     | Max |            |
|-----------------------------|-------|-------------|--------|-----|-----|------------|
| Parameter                   | Units | Result      | Result | RPD | RPD | Qualifiers |
| Isopropylbenzene (Cumene)   | ug/L  | 0.30 U      | 0.30 U |     | 40  |            |
| m&p-Xylene                  | ug/L  | 0.63 U      | 0.63 U |     | 40  |            |
| Methyl-tert-butyl ether     | ug/L  | 0.53 U      | 0.53 U |     | 40  |            |
| Methylene Chloride          | ug/L  | 1.5 U       | 1.5 U  |     | 40  |            |
| o-Xylene                    | ug/L  | 0.57 U      | 0.57 U |     | 40  |            |
| Styrene                     | ug/L  | 0.26 U      | 0.26 U |     | 40  |            |
| Tetrachloroethene           | ug/L  | 0.38 U      | 0.38 U |     | 40  |            |
| Toluene                     | ug/L  | 0.33 U      | 0.33 U |     | 40  |            |
| trans-1,2-Dichloroethene    | ug/L  | 0.23 U      | 0.23 U |     | 40  |            |
| trans-1,3-Dichloropropene   | ug/L  | 0.37 U      | 0.37 U |     | 40  |            |
| trans-1,4-Dichloro-2-butene | ug/L  | 0.53 U      | 0.53 U |     | 40  |            |
| Trichloroethene             | ug/L  | 0.36 U      | 0.36 U |     | 40  |            |
| Trichlorofluoromethane      | ug/L  | 0.35 U      | 0.35 U |     | 40  |            |
| Vinyl acetate               | ug/L  | 0.84 U      | 0.84 U |     | 40  |            |
| Vinyl chloride              | ug/L  | 0.39 U      | 0.39 U |     | 40  |            |
| Xylene (Total)              | ug/L  | 0.63 U      | 0.63 U |     | 40  |            |
| 1,2-Dichlorobenzene-d4 (S)  | %     | 106         | 107    |     | 40  |            |
| 4-Bromofluorobenzene (S)    | %     | 92          | 94     |     | 40  |            |
| Toluene-d8 (S)              | %     | 97          | 98     |     | 40  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| Project: | Safety Kleen Facility |
|----------|-----------------------|
|          |                       |

| Pace Project No.: | 35625214 |
|-------------------|----------|
|-------------------|----------|

| QC Batch: 720473                |       | Analysis Metl | hod: E      | PA 8270 by SIM      |                    |            |
|---------------------------------|-------|---------------|-------------|---------------------|--------------------|------------|
| QC Batch Method: EPA 3510       |       | Analysis Des  | cription: 8 | 270 Water PAHLV     | ' by SIM MSSV      |            |
|                                 |       | Laboratory:   | F           | Pace Analytical Ser | rvices - Ormond Be | ach        |
| Associated Lab Samples: 3562521 | 4001  |               |             |                     |                    |            |
| METHOD BLANK: 3926580           |       | Matrix:       | Water       |                     |                    |            |
| Associated Lab Samples: 3562521 | 4001  |               |             |                     |                    |            |
|                                 |       | Blank         | Reporting   |                     |                    |            |
| Parameter                       | Units | Result        | Limit       | MDL                 | Analyzed           | Qualifiers |
| 1-Methylnaphthalene             | ug/L  | 0.19 U        | 2.0         | 0.19                | 04/13/21 11:54     |            |
| 2-Methylnaphthalene             | ug/L  | 0.68 U        | 2.0         | 0.68                | 04/13/21 11:54     |            |
|                                 |       |               |             |                     |                    |            |

| r-meurymaphulaiene     | ug/L | 0.15 0  | 2.0    | 0.15  | 04/10/21 11.04 |  |
|------------------------|------|---------|--------|-------|----------------|--|
| 2-Methylnaphthalene    | ug/L | 0.68 U  | 2.0    | 0.68  | 04/13/21 11:54 |  |
| Acenaphthene           | ug/L | 0.040 U | 0.50   | 0.040 | 04/13/21 11:54 |  |
| Acenaphthylene         | ug/L | 0.030 U | 0.50   | 0.030 | 04/13/21 11:54 |  |
| Anthracene             | ug/L | 0.043 U | 0.50   | 0.043 | 04/13/21 11:54 |  |
| Benzo(a)anthracene     | ug/L | 0.055 U | 0.10   | 0.055 | 04/13/21 11:54 |  |
| Benzo(a)pyrene         | ug/L | 0.12 U  | 0.20   | 0.12  | 04/13/21 11:54 |  |
| Benzo(b)fluoranthene   | ug/L | 0.027 U | 0.10   | 0.027 | 04/13/21 11:54 |  |
| Benzo(g,h,i)perylene   | ug/L | 0.15 U  | 0.50   | 0.15  | 04/13/21 11:54 |  |
| Benzo(k)fluoranthene   | ug/L | 0.16 U  | 0.50   | 0.16  | 04/13/21 11:54 |  |
| Chrysene               | ug/L | 0.026 U | 0.50   | 0.026 | 04/13/21 11:54 |  |
| Dibenz(a,h)anthracene  | ug/L | 0.13 U  | 0.15   | 0.13  | 04/13/21 11:54 |  |
| Fluoranthene           | ug/L | 0.018 U | 0.50   | 0.018 | 04/13/21 11:54 |  |
| Fluorene               | ug/L | 0.088 U | 0.50   | 0.088 | 04/13/21 11:54 |  |
| Indeno(1,2,3-cd)pyrene | ug/L | 0.12 U  | 0.15   | 0.12  | 04/13/21 11:54 |  |
| Naphthalene            | ug/L | 0.29 U  | 2.0    | 0.29  | 04/13/21 11:54 |  |
| Phenanthrene           | ug/L | 0.16 U  | 0.50   | 0.16  | 04/13/21 11:54 |  |
| Pyrene                 | ug/L | 0.032 U | 0.50   | 0.032 | 04/13/21 11:54 |  |
| 2-Fluorobiphenyl (S)   | %    | 54      | 32-100 |       | 04/13/21 11:54 |  |
| p-Terphenyl-d14 (S)    | %    | 74      | 48-112 |       | 04/13/21 11:54 |  |
|                        |      |         |        |       |                |  |

| LABORATORY CO | JNTROL | . SAMPLE: | 3926581 |
|---------------|--------|-----------|---------|

| LABORATORY CONTROL SAMPLE. | 3920301 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1-Methylnaphthalene        | ug/L    | 5     | 2.9    | 58    | 34-103 |            |
| 2-Methylnaphthalene        | ug/L    | 5     | 2.8    | 57    | 35-100 |            |
| Acenaphthene               | ug/L    | 5     | 2.9    | 58    | 38-102 |            |
| Acenaphthylene             | ug/L    | 5     | 2.7    | 55    | 35-97  |            |
| Anthracene                 | ug/L    | 5     | 3.5    | 69    | 46-107 |            |
| Benzo(a)anthracene         | ug/L    | 5     | 4.1    | 83    | 55-113 |            |
| Benzo(a)pyrene             | ug/L    | 5     | 4.7    | 93    | 51-112 |            |
| Benzo(b)fluoranthene       | ug/L    | 5     | 4.9    | 98    | 58-116 |            |
| Benzo(g,h,i)perylene       | ug/L    | 5     | 4.1    | 81    | 45-116 |            |
| Benzo(k)fluoranthene       | ug/L    | 5     | 5.0    | 99    | 58-118 |            |
| Chrysene                   | ug/L    | 5     | 4.6    | 92    | 58-120 |            |
| Dibenz(a,h)anthracene      | ug/L    | 5     | 4.2    | 84    | 46-114 |            |
| Fluoranthene               | ug/L    | 5     | 4.1    | 83    | 54-118 |            |
| Fluorene                   | ug/L    | 5     | 3.1    | 61    | 40-105 |            |
| Indeno(1,2,3-cd)pyrene     | ug/L    | 5     | 4.1    | 83    | 46-114 |            |
|                            |         |       |        |       |        |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### Project: Safety Kleen Facility Pace Project No.: 35625214

#### LABORATORY CONTROL SAMPLE: 3926581

|                      |       | Spike | LCS    | LCS   | % Rec  |            |
|----------------------|-------|-------|--------|-------|--------|------------|
| Parameter            | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene          | ug/L  | 5     | 2.8    | 56    | 34-97  |            |
| Phenanthrene         | ug/L  | 5     | 3.5    | 70    | 47-110 |            |
| Pyrene               | ug/L  | 5     | 4.2    | 83    | 54-117 |            |
| 2-Fluorobiphenyl (S) | %     |       |        | 54    | 32-100 |            |
| p-Terphenyl-d14 (S)  | %     |       |        | 72    | 48-112 |            |

| MATRIX SPIKE & MATRIX SPIKE DU | JPLICATE: 3926 | 3582  |       | 3926583 |        |       |       |        |     |     |      |
|--------------------------------|----------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                                |                | MS    | MSD   |         |        |       |       |        |     |     |      |
|                                | 35625202006    | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter Un                   | ts Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| 1-Methylnaphthalene ug         | /L 0.27 I      | 5     | 5     | 2.7     | 2.5    | 49    | 45    | 34-103 | 7   | 40  |      |
| 2-Methylnaphthalene ug         | /L 0.68 U      | 5     | 5     | 2.8     | 2.6    | 46    | 43    | 35-100 | 6   | 40  |      |
| Acenaphthene ug                | /L 0.040 U     | 5     | 5     | 2.6     | 2.5    | 51    | 49    | 38-102 | 4   | 40  |      |
| Acenaphthylene ug              | /L 0.030 U     | 5     | 5     | 2.4     | 2.3    | 48    | 46    | 35-97  | 5   | 40  |      |
| Anthracene ug                  | /L 0.043 U     | 5     | 5     | 3.1     | 3.3    | 63    | 66    | 46-107 | 5   | 40  |      |
| Benzo(a)anthracene ug          | /L 0.055 U     | 5     | 5     | 3.8     | 3.8    | 76    | 77    | 55-113 | 1   | 40  |      |
| Benzo(a)pyrene ug              | /L 0.12 U      | 5     | 5     | 4.2     | 4.3    | 85    | 86    | 51-112 | 2   | 40  |      |
| Benzo(b)fluoranthene ug        | /L 0.027 U     | 5     | 5     | 4.5     | 4.5    | 89    | 90    | 58-116 | 0   | 40  |      |
| Benzo(g,h,i)perylene ug        | /L 0.15 U      | 5     | 5     | 3.7     | 3.8    | 75    | 75    | 45-116 | 1   | 40  |      |
| Benzo(k)fluoranthene ug        |                | 5     | 5     | 4.5     | 4.5    | 89    | 90    | 58-118 | 1   | 40  |      |
| Chrysene ug                    | /L 0.026 U     | 5     | 5     | 4.2     | 4.2    | 84    | 84    | 58-120 | 1   | 40  |      |
| Dibenz(a,h)anthracene ug       | /L 0.13 U      | 5     | 5     | 3.8     | 3.9    | 77    | 78    | 46-114 | 1   | 40  |      |
| Fluoranthene ug                |                | 5     | 5     | 3.8     | 3.9    | 76    | 79    | 54-118 | 3   | 40  |      |
| Fluorene ug                    | /L 0.088 U     | 5     | 5     | 2.7     | 2.8    | 55    | 56    | 40-105 | 2   | 40  |      |
| Indeno(1,2,3-cd)pyrene ug      |                | 5     | 5     | 3.8     | 3.8    | 75    | 77    | 46-114 | 2   | 40  |      |
| Naphthalene ug                 | /L 0.96 I      | 5     | 5     | 3.1     | 3.0    | 44    | 41    | 34-97  | 4   | 40  |      |
| Phenanthrene ug                | /L 0.16 U      | 5     | 5     | 3.2     | 3.4    | 65    | 69    | 47-110 | 6   | 40  |      |
| Pyrene ug                      |                | 5     | 5     | 3.8     | 4.0    | 77    | 79    | 54-117 | 4   | 40  |      |
| 2-Fluorobiphenyl (S)           |                |       |       |         |        | 49    | 46    | 32-100 |     |     |      |
| p-Terphenyl-d14 (S) %          | )              |       |       |         |        | 66    | 66    | 48-112 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| Project: Safety Kleen Facility |
|--------------------------------|
|--------------------------------|

Pace Project No.: 35625214

| QC Batch:           | 720426             |       | Analysis Metl | hod:      | EPA 8270          |                     |            |
|---------------------|--------------------|-------|---------------|-----------|-------------------|---------------------|------------|
| QC Batch Method:    | EPA 3510           |       | Analysis Des  | cription: | 8270 Water Full   | ist MSSV            |            |
|                     |                    |       | Laboratory:   |           | Pace Analytical S | ervices - Ormond Be | each       |
| Associated Lab Sa   | mples: 35625214001 |       |               |           |                   |                     |            |
| METHOD BLANK:       | 3926308            |       | Matrix:       | Water     |                   |                     |            |
| Associated Lab Sar  | mples: 35625214001 |       |               |           |                   |                     |            |
|                     |                    |       | Blank         | Reporting |                   |                     |            |
| Para                | meter              | Units | Result        | Limit     | MDL               | Analyzed            | Qualifiers |
| 1.2.4-Trichlorobenz |                    | ug/L  | 1.4 U         | 5.        | 0 1.              | 4 04/14/21 10:04    |            |

| Parameter                    | Units | Result | Limit | MDL  | Analyzed       | Qualifiers |
|------------------------------|-------|--------|-------|------|----------------|------------|
| 1,2,4-Trichlorobenzene       | ug/L  | 1.4 U  | 5.0   | 1.4  | 04/14/21 10:04 |            |
| 1,2-Dichlorobenzene          | ug/L  | 1.5 U  | 5.0   | 1.5  | 04/14/21 10:04 |            |
| 1,2-Dinitrobenzene           | ug/L  | 1.9 U  | 6.0   | 1.9  | 04/14/21 10:04 |            |
| 1,2-Diphenylhydrazine        | ug/L  | 1.4 U  | 5.0   | 1.4  | 04/14/21 10:04 |            |
| 1,3-Dichlorobenzene          | ug/L  | 1.5 U  | 5.0   | 1.5  | 04/14/21 10:04 |            |
| 1,3-Dinitrobenzene           | ug/L  | 0.27 U | 8.0   | 0.27 | 04/14/21 10:04 |            |
| 1,4-Dichlorobenzene          | ug/L  | 1.5 U  | 5.0   | 1.5  | 04/14/21 10:04 |            |
| 1-Methylnaphthalene          | ug/L  | 0.36 U | 5.0   | 0.36 | 04/14/21 10:04 |            |
| 2,3,4,6-Tetrachlorophenol    | ug/L  | 1.0 U  | 5.0   | 1.0  | 04/14/21 10:04 |            |
| 2,3,5,6-Tetrachlorophenol    | ug/L  | 1.9 U  | 9.0   | 1.9  | 04/14/21 10:04 | N2         |
| 2,4,5-Trichlorophenol        | ug/L  | 0.23 U | 4.0   | 0.23 | 04/14/21 10:04 |            |
| 2,4,6-Trichlorophenol        | ug/L  | 0.36 U | 2.0   | 0.36 | 04/14/21 10:04 |            |
| 2,4-Dichlorophenol           | ug/L  | 0.34 U | 2.0   | 0.34 | 04/14/21 10:04 |            |
| 2,4-Dimethylphenol           | ug/L  | 1.0 U  | 5.0   | 1.0  | 04/14/21 10:04 |            |
| 2,4-Dinitrophenol            | ug/L  | 2.6 U  | 20.0  | 2.6  | 04/14/21 10:04 |            |
| 2,4-Dinitrotoluene           | ug/L  | 0.27 U | 4.0   | 0.27 | 04/14/21 10:04 |            |
| 2,6-Dinitrotoluene           | ug/L  | 0.28 U | 2.0   | 0.28 | 04/14/21 10:04 |            |
| 2-Chloronaphthalene          | ug/L  | 0.34 U | 5.0   | 0.34 | 04/14/21 10:04 |            |
| 2-Chlorophenol               | ug/L  | 1.4 U  | 5.0   | 1.4  | 04/14/21 10:04 |            |
| 2-Methylnaphthalene          | ug/L  | 0.28 U | 5.0   | 0.28 | 04/14/21 10:04 |            |
| 2-Methylphenol(o-Cresol)     | ug/L  | 0.30 U | 5.0   | 0.30 | 04/14/21 10:04 |            |
| 2-Nitroaniline               | ug/L  | 1.3 U  | 5.0   | 1.3  | 04/14/21 10:04 |            |
| 2-Nitrophenol                | ug/L  | 1.4 U  | 5.0   | 1.4  | 04/14/21 10:04 |            |
| 3&4-Methylphenol(m&p Cresol) | ug/L  | 0.22 U | 10.0  | 0.22 | 04/14/21 10:04 |            |
| 3,3'-Dichlorobenzidine       | ug/L  | 1.0 U  | 10.0  | 1.0  | 04/14/21 10:04 |            |
| 3-Nitroaniline               | ug/L  | 1.3 U  | 5.0   | 1.3  | 04/14/21 10:04 |            |
| 4,6-Dinitro-2-methylphenol   | ug/L  | 4.6 U  | 20.0  | 4.6  | 04/14/21 10:04 |            |
| 4-Bromophenylphenyl ether    | ug/L  | 1.7 U  | 5.0   | 1.7  | 04/14/21 10:04 |            |
| 4-Chloro-3-methylphenol      | ug/L  | 5.4 U  | 20.0  | 5.4  | 04/14/21 10:04 |            |
| 4-Chloroaniline              | ug/L  | 1.4 U  | 5.0   | 1.4  | 04/14/21 10:04 |            |
| 4-Chlorophenylphenyl ether   | ug/L  | 1.4 U  | 5.0   | 1.4  | 04/14/21 10:04 |            |
| 4-Nitroaniline               | ug/L  | 0.19 U | 4.0   | 0.19 | 04/14/21 10:04 |            |
| 4-Nitrophenol                | ug/L  | 0.95 U | 20.0  | 0.95 | 04/14/21 10:04 |            |
| Acenaphthene                 | ug/L  | 0.36 U | 5.0   | 0.36 | 04/14/21 10:04 |            |
| Acenaphthylene               | ug/L  | 0.30 U | 5.0   | 0.30 | 04/14/21 10:04 |            |
| Aniline                      | ug/L  | 0.94 U | 5.0   | 0.94 | 04/14/21 10:04 |            |
| Anthracene                   | ug/L  | 0.22 U | 5.0   | 0.22 | 04/14/21 10:04 |            |
| Benzidine                    | ug/L  | 0.87 U | 25.0  | 0.87 | 04/14/21 10:04 |            |
| Benzo(a)anthracene           | ug/L  | 0.20 U | 5.0   | 0.20 | 04/14/21 10:04 |            |
| Benzo(a)pyrene               | ug/L  | 0.17 U | 1.0   | 0.17 | 04/14/21 10:04 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Matrix: Water

Project: Safety Kleen Facility Pace Project No.: 35625214

### METHOD BLANK: 3926308

Associated Lab Samples: 35625214001

| Deremeter                    | Linita | Blank  | Reporting |      | Applyzod       | Qualifiana |
|------------------------------|--------|--------|-----------|------|----------------|------------|
| Parameter                    | Units  | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Benzo(b)fluoranthene         | ug/L   | 0.27 U | 2.0       | 0.27 | 04/14/21 10:04 |            |
| Benzo(g,h,i)perylene         | ug/L   | 0.17 U | 5.0       | 0.17 | 04/14/21 10:04 |            |
| Benzo(k)fluoranthene         | ug/L   | 0.18 U | 4.0       | 0.18 | 04/14/21 10:04 |            |
| Benzyl alcohol               | ug/L   | 1.3 U  | 5.0       | 1.3  | 04/14/21 10:04 |            |
| ois(2-Chloroethoxy)methane   | ug/L   | 1.6 U  | 5.0       | 1.6  | 04/14/21 10:04 |            |
| bis(2-Chloroethyl) ether     | ug/L   | 0.34 U | 4.0       | 0.34 | 04/14/21 10:04 |            |
| ois(2-Chloroisopropyl) ether | ug/L   | 1.8 U  | 6.0       | 1.8  | 04/14/21 10:04 |            |
| is(2-Ethylhexyl)phthalate    | ug/L   | 1.1 U  | 5.0       | 1.1  | 04/14/21 10:04 |            |
| Butylbenzylphthalate         | ug/L   | 1.1 U  | 5.0       | 1.1  | 04/14/21 10:04 |            |
| Caprolactam                  | ug/L   | 0.40 U | 5.0       | 0.40 | 04/14/21 10:04 | N2         |
| Carbazole                    | ug/L   | 1.1 U  | 5.0       | 1.1  | 04/14/21 10:04 |            |
| Chrysene                     | ug/L   | 0.20 U | 5.0       | 0.20 | 04/14/21 10:04 |            |
| 0i-n-butylphthalate          | ug/L   | 1.1 U  | 5.0       | 1.1  | 04/14/21 10:04 |            |
| Di-n-octylphthalate          | ug/L   | 0.92 U | 5.0       | 0.92 | 04/14/21 10:04 |            |
| Dibenz(a,h)anthracene        | ug/L   | 0.18 U | 2.0       | 0.18 | 04/14/21 10:04 |            |
| Dibenzofuran                 | ug/L   | 1.5 U  | 5.0       | 1.5  | 04/14/21 10:04 |            |
| Diethylphthalate             | ug/L   | 1.4 U  | 5.0       | 1.4  | 04/14/21 10:04 |            |
| Dimethylphthalate            | ug/L   | 1.4 U  | 5.0       | 1.4  | 04/14/21 10:04 |            |
| luoranthene                  | ug/L   | 0.21 U | 5.0       | 0.21 | 04/14/21 10:04 |            |
| luorene                      | ug/L   | 0.34 U | 5.0       | 0.34 | 04/14/21 10:04 |            |
| lexachloro-1,3-butadiene     | ug/L   | 0.35 U | 2.0       | 0.35 | 04/14/21 10:04 |            |
| lexachlorobenzene            | ug/L   | 0.29 U | 1.0       | 0.29 | 04/14/21 10:04 |            |
| lexachlorocyclopentadiene    | ug/L   | 3.4 U  | 11.0      | 3.4  | 04/14/21 10:04 |            |
| lexachloroethane             | ug/L   | 1.4 U  | 5.0       | 1.4  | 04/14/21 10:04 |            |
| ndeno(1,2,3-cd)pyrene        | ug/L   | 0.17 U | 2.0       | 0.17 | 04/14/21 10:04 |            |
| sophorone                    | ug/L   | 1.7 U  | 5.0       | 1.7  | 04/14/21 10:04 |            |
| I-Nitroso-di-n-propylamine   | ug/L   | 0.33 U | 4.0       | 0.33 | 04/14/21 10:04 |            |
| I-Nitrosodimethylamine       | ug/L   | 0.20 U | 2.0       | 0.20 | 04/14/21 10:04 |            |
| I-Nitrosodiphenylamine       | ug/L   | 1.2 U  | 5.0       | 1.2  | 04/14/21 10:04 |            |
| laphthalene                  | ug/L   | 0.39 U | 5.0       | 0.39 | 04/14/21 10:04 |            |
| litrobenzene                 | ug/L   | 0.37 U | 4.0       | 0.37 | 04/14/21 10:04 |            |
| Pentachlorophenol            | ug/L   | 1.6 U  | 20.0      | 1.6  | 04/14/21 10:04 |            |
| Phenanthrene                 | ug/L   | 0.23 U | 5.0       | 0.23 | 04/14/21 10:04 |            |
| Phenol                       | ug/L   | 0.63 U | 5.0       | 0.63 | 04/14/21 10:04 |            |
| Pyrene                       | ug/L   | 0.21 U | 5.0       | 0.21 | 04/14/21 10:04 |            |
| Pyridine                     | ug/L   | 1.1 U  | 5.0       | 1.1  | 04/14/21 10:04 |            |
| ,4,6-Tribromophenol (S)      | %      | 69     | 28-114    |      | 04/14/21 10:04 |            |
| P-Fluorobiphenyl (S)         | %      | 61     | 22-101    |      | 04/14/21 10:04 |            |
| P-Fluorophenol (S)           | %      | 36     | 10-57     |      | 04/14/21 10:04 |            |
| litrobenzene-d5 (S)          | %      | 61     | 10-188    |      | 04/14/21 10:04 |            |
| -Terphenyl-d14 (S)           | %      | 57     | 48-124    |      | 04/14/21 10:04 |            |
| Phenol-d5 (S)                | %      | 25     | 10-48     |      | 04/14/21 10:04 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### Project: Safety Kleen Facility

Pace Project No.: 35625214

### LABORATORY CONTROL SAMPLE: 3926309

| Parameter                    | Units        | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|------------------------------|--------------|----------------|---------------|--------------|-----------------|------------|
| 1,2,4-Trichlorobenzene       | ug/L         |                | 32.4          | 65           | 38-87           |            |
| 1,2-Dichlorobenzene          | ug/L         | 50             | 29.1          | 58           | 37-83           |            |
| 1,2-Dinitrobenzene           | ug/L         | 50             | 36.8          | 74           | 55-111          |            |
| 1,2-Diphenylhydrazine        | ug/L         | 50             | 31.4          | 63           | 47-104          |            |
| 1,3-Dichlorobenzene          | ug/L         | 50<br>50       | 28.6          | 57           | 36-81           |            |
| 1,3-Dinitrobenzene           | ug/L         | 50             | 37.4          | 75           | 56-104          |            |
| 1,4-Dichlorobenzene          | ug/L         | 50             | 28.7          | 57           | 37-82           |            |
| 1-Methylnaphthalene          | ug/L         | 50<br>50       | 32.9          | 66           | 42-91           |            |
| 2,3,4,6-Tetrachlorophenol    |              | 50<br>50       | 38.3          | 77           | 55-106          |            |
| 2,3,5,6-Tetrachlorophenol    | ug/L<br>ug/L | 50<br>50       | 38.9          | 78           | 54-109          | NO         |
| -                            |              |                |               |              |                 | INZ        |
| 2,4,5-Trichlorophenol        | ug/L         | 50             | 35.4          | 71           | 54-97           |            |
| 2,4,6-Trichlorophenol        | ug/L         | 50             | 36.2          | 72           | 52-97           |            |
| 2,4-Dichlorophenol           | ug/L         | 50             | 33.5          | 67           | 47-92           |            |
| 2,4-Dimethylphenol           | ug/L         | 50             | 31.8          | 64           | 48-90           |            |
| 2,4-Dinitrophenol            | ug/L         | 50             | 33.0          | 66           | 42-120          |            |
| 2,4-Dinitrotoluene           | ug/L         | 50             | 37.6          | 75           | 60-101          |            |
| 2,6-Dinitrotoluene           | ug/L         | 50             | 36.0          | 72           | 55-100          |            |
| 2-Chloronaphthalene          | ug/L         | 50             | 30.5          | 61           | 42-95           |            |
| 2-Chlorophenol               | ug/L         | 50             | 28.4          | 57           | 41-83           |            |
| 2-Methylnaphthalene          | ug/L         | 50             | 32.8          | 66           | 42-91           |            |
| -Methylphenol(o-Cresol)      | ug/L         | 50             | 25.9          | 52           | 39-78           |            |
| -Nitroaniline                | ug/L         | 50             | 36.4          | 73           | 53-103          |            |
| -Nitrophenol                 | ug/L         | 50             | 36.0          | 72           | 45-93           |            |
| &4-Methylphenol(m&p Cresol)  | ug/L         | 50             | 24.4          | 49           | 37-75           |            |
| ,3'-Dichlorobenzidine        | ug/L         | 50             | 37.4          | 75           | 64-106          |            |
| -Nitroaniline                | ug/L         | 50             | 32.4          | 65           | 52-105          |            |
| ,6-Dinitro-2-methylphenol    | ug/L         | 50             | 34.1          | 68           | 54-115          |            |
| -Bromophenylphenyl ether     | ug/L         | 50             | 34.7          | 69           | 48-103          |            |
| -Chloro-3-methylphenol       | ug/L         | 50             | 31.9          | 64           | 51-95           |            |
| -Chloroaniline               | ug/L         | 50             | 32.5          | 65           | 52-92           |            |
| -Chlorophenylphenyl ether    | ug/L         | 50             | 34.8          | 70           | 50-97           |            |
| -Nitroaniline                | ug/L         | 50             | 38.2          | 76           | 57-104          |            |
| -Nitrophenol                 | ug/L         | 50             | 14.5 I        | 29           | 20-51           |            |
| Acenaphthene                 | ug/L         | 50             | 32.8          | 66           | 47-96           |            |
| Acenaphthylene               | ug/L         | 50<br>50       | 32.8          | 66           | 46-99           |            |
| niline                       | ug/L         | 50             | 28.8          | 58           | 43-84           |            |
| Anthracene                   | ug/L         | 50             | 34.9          | 70           | 58-98           |            |
| Benzidine                    | ug/L         | 50             | 12.2 I        | 24           | 10-103          |            |
| Benzo(a)anthracene           | ug/L         | 50             | 36.3          | 73           | 61-101          |            |
| Benzo(a)pyrene               | ug/L         | 50<br>50       | 36.9          | 73           | 59-103          |            |
|                              |              | 50<br>50       | 35.8          | 74           | 37-118          |            |
| Benzo(b)fluoranthene         | ug/L         |                |               |              |                 |            |
| Benzo(g,h,i)perylene         | ug/L         | 50             | 32.8          | 66<br>80     | 58-107          |            |
| Benzo(k)fluoranthene         | ug/L         | 50             | 40.2          | 80           | 61-106          |            |
| Benzyl alcohol               | ug/L         | 50             | 26.2          | 52           | 40-82           |            |
| bis(2-Chloroethoxy)methane   | ug/L         | 50             | 30.4          | 61           | 44-91           |            |
| bis(2-Chloroethyl) ether     | ug/L         | 50             | 28.5          | 57           | 37-91           |            |
| bis(2-Chloroisopropyl) ether | ug/L         | 50             | 32.7          | 65           | 31-97           |            |
|                              |              |                |               |              |                 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### Project: Safety Kleen Facility

Pace Project No.: 35625214

| LABORATORY | CONTROL | SAMPLE.    | 3926309 |
|------------|---------|------------|---------|
| LABORATORI | CONTROL | SAIVIF LL. | 3920309 |

| Parameter                | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|--------------------------|-------|----------------|---------------|--------------|-----------------|------------|
|                          |       |                |               |              |                 | Quaimers   |
| s(2-Ethylhexyl)phthalate | ug/L  | 50             | 34.9          | 70           | 52-113          |            |
| utylbenzylphthalate      | ug/L  | 50             | 36.4          | 73           | 60-111          |            |
| aprolactam               | ug/L  | 50             | 8.8           | 18           | 15-32           | N2         |
| arbazole                 | ug/L  | 50             | 35.7          | 71           | 61-101          |            |
| irysene                  | ug/L  | 50             | 36.5          | 73           | 62-102          |            |
| n-butylphthalate         | ug/L  | 50             | 35.2          | 70           | 60-105          |            |
| n-octylphthalate         | ug/L  | 50             | 34.8          | 70           | 53-112          |            |
| enz(a,h)anthracene       | ug/L  | 50             | 33.1          | 66           | 58-107          |            |
| enzofuran                | ug/L  | 50             | 33.3          | 67           | 50-95           |            |
| ethylphthalate           | ug/L  | 50             | 31.9          | 64           | 57-98           |            |
| nethylphthalate          | ug/L  | 50             | 33.4          | 67           | 53-99           |            |
| ioranthene               | ug/L  | 50             | 36.2          | 72           | 61-102          |            |
| orene                    | ug/L  | 50             | 33.9          | 68           | 51-96           |            |
| xachloro-1,3-butadiene   | ug/L  | 50             | 33.6          | 67           | 36-90           |            |
| kachlorobenzene          | ug/L  | 50             | 37.2          | 74           | 57-97           |            |
| achlorocyclopentadiene   | ug/L  | 50             | 18.0          | 36           | 13-100          |            |
| kachloroethane           | ug/L  | 50             | 27.7          | 55           | 33-84           |            |
| eno(1,2,3-cd)pyrene      | ug/L  | 50             | 32.3          | 65           | 58-106          |            |
| phorone                  | ug/L  | 50             | 31.6          | 63           | 44-93           |            |
| litroso-di-n-propylamine | ug/L  | 50             | 31.0          | 62           | 41-96           |            |
| litrosodimethylamine     | ug/L  | 50             | 19.7          | 39           | 25-63           |            |
| Nitrosodiphenylamine     | ug/L  | 50             | 34.9          | 70           | 56-97           |            |
| ohthalene                | ug/L  | 50             | 31.1          | 62           | 41-87           |            |
| obenzene                 | ug/L  | 50             | 30.5          | 61           | 41-91           |            |
| ntachlorophenol          | ug/L  | 50             | 40.5          | 81           | 48-112          |            |
| enanthrene               | ug/L  | 50             | 34.8          | 70           | 58-98           |            |
| enol                     | ug/L  | 50             | 12.3          | 25           | 17-40           |            |
| ene                      | ug/L  | 50             | 35.9          | 72           | 61-104          |            |
| idine                    | ug/L  | 50             | 20.1          | 40           | 14-60           |            |
| 6-Tribromophenol (S)     | %     |                |               | 81           | 28-114          |            |
| uorobiphenyl (S)         | %     |                |               | 65           | 22-101          |            |
| luorophenol (S)          | %     |                |               | 33           | 10-57           |            |
| obenzene-d5 (S)          | %     |                |               | 59           | 10-188          |            |
| erphenyl-d14 (S)         | %     |                |               | 55           | 48-124          |            |
| enol-d5 (S)              | %     |                |               | 24           | 10-48           |            |

| MATRIX SPIKE & MATRIX S |       | CATE: 3926 | 310         |              | 3926311 |        |       |       |        |     |     |      |
|-------------------------|-------|------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                         | 3     | 5624754001 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units | Result     | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| 1,2,4-Trichlorobenzene  | ug/L  | 1.4 U      | 49.9        | 50.1         | 28.2    | 29.7   | 57    | 59    | 38-87  | 5   | 40  |      |
| 1,2-Dichlorobenzene     | ug/L  | 1.5 U      | 49.9        | 50.1         | 25.8    | 27.4   | 52    | 55    | 37-83  | 6   | 40  |      |
| 1,2-Dinitrobenzene      | ug/L  | 1.9 U      | 49.9        | 50.1         | 34.7    | 32.8   | 69    | 66    | 55-111 | 6   | 40  |      |
| 1,2-Diphenylhydrazine   | ug/L  | 1.4 U      | 49.9        | 50.1         | 32.8    | 35.3   | 66    | 71    | 47-104 | 7   | 40  |      |
| 1,3-Dichlorobenzene     | ug/L  | 1.5 U      | 49.9        | 50.1         | 24.9    | 26.7   | 50    | 53    | 36-81  | 7   | 40  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

Pace Project No.: 35625214

| MSMSD35624754001SpikeSpikeParameterUnitsResultConc.1,3-Dinitrobenzeneug/L0.27 U49.91,4-Dichlorobenzeneug/L1.6 U49.91-Methylnaphthaleneug/L8.249.9           | MS<br>Result<br>36.0<br>25.2 | MSD<br>Result<br>33.4 | MS<br>% Rec | MSD<br>% Rec | % Rec  |     | Max |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|-------------|--------------|--------|-----|-----|-----------------|
| ParameterUnitsResultConc.Conc.1,3-Dinitrobenzeneug/L0.27 U49.950.11,4-Dichlorobenzeneug/L1.6 U49.950.1                                                      | Result<br>36.0<br>25.2       | Result                |             |              |        |     | Max |                 |
| 1,3-Dinitrobenzene         ug/L         0.27 U         49.9         50.1           1,4-Dichlorobenzene         ug/L         1.6 U         49.9         50.1 | 36.0<br>25.2                 |                       | % Rec       | % Por        |        |     |     | - ·             |
| 1,4-Dichlorobenzene ug/L 1.6 U 49.9 50.1                                                                                                                    | 25.2                         | 22.4                  |             | 70 1100      | Limits | RPD | RPD | Qual            |
| 6                                                                                                                                                           |                              | 33.4                  | 72          | 67           | 56-104 | 8   | 40  |                 |
| 1-Methylnaphthalene ug/L 8.2 49.9 50.1                                                                                                                      |                              | 26.6                  | 51          | 53           | 37-82  | 5   | 40  |                 |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                       | 38.4                         | 46.1                  | 60          | 76           | 42-91  | 18  |     |                 |
| 2,3,4,6-Tetrachlorophenol ug/L 1.1 U 49.9 50.1                                                                                                              | 34.1                         | 31.7                  | 68          | 63           | 55-106 | 7   | 40  |                 |
| 2,3,5,6-Tetrachlorophenol ug/L 1.9 U 49.9 50.1                                                                                                              | 35.3                         | 30.8                  | 71          | 62           | 54-109 | 14  | 40  | N2              |
| 2,4,5-Trichlorophenol ug/L 0.23 U 49.9 50.1                                                                                                                 | 33.3                         | 32.7                  | 67          | 65           | 54-97  | 2   | 40  |                 |
| 2,4,6-Trichlorophenol ug/L 0.36 U 49.9 50.1                                                                                                                 | 32.7                         | 34.4                  | 66          | 69           | 52-97  | 5   | 40  |                 |
| 2,4-Dichlorophenol ug/L 0.34 U 49.9 50.1                                                                                                                    | 29.8                         | 31.2                  | 60          | 62           | 47-92  | 4   | 40  |                 |
| 2,4-Dimethylphenol ug/L 1.0 U 49.9 50.1                                                                                                                     | 30.0                         | 32.0                  | 60          | 64           | 48-90  | 6   | 40  |                 |
| 2,4-Dinitrophenol ug/L 2.7 U 49.9 50.1                                                                                                                      | 37.1                         | 34.7                  | 74          | 69           | 42-120 | 7   | 40  |                 |
| 2,4-Dinitrotoluene ug/L 0.27 U 49.9 50.1                                                                                                                    | 35.1                         | 34.6                  | 70          | 69           | 60-101 | 1   | 40  |                 |
| 2,6-Dinitrotoluene ug/L 0.28 U 49.9 50.1                                                                                                                    | 34.1                         | 34.0                  | 68          | 68           | 55-100 | 0   | 40  |                 |
| 2-Chloronaphthalene ug/L 0.34 U 49.9 50.1                                                                                                                   | 34.2                         | 36.9                  | 68          | 74           | 42-95  | 8   | 40  |                 |
| 2-Chlorophenol ug/L 1.4 U 49.9 50.1                                                                                                                         | 24.8                         | 26.6                  | 50          | 53           | 41-83  | 7   | 40  |                 |
| 2-Methylnaphthalene ug/L 10.1 49.9 50.1                                                                                                                     | 39.9                         | 49.2                  | 60          | 78           | 42-91  | 21  | 40  |                 |
| 2-Methylphenol(o-Cresol) ug/L 0.30 U 49.9 50.1                                                                                                              | 23.1                         | 23.9                  | 46          | 48           | 39-78  | 3   | 40  |                 |
| 2-Nitroaniline ug/L 1.3 U 49.9 50.1                                                                                                                         | 35.5                         | 35.1                  | 71          | 70           | 53-103 | 1   | 40  |                 |
| 2-Nitrophenol ug/L 1.4 U 49.9 50.1                                                                                                                          | 30.8                         | 33.2                  | 62          | 66           | 45-93  | 8   | 40  |                 |
| 3&4-Methylphenol(m&p ug/L 0.61 I 49.9 50.1                                                                                                                  | 22.6                         | 23.2                  | 44          | 45           | 37-75  | 3   | 40  |                 |
| Cresol)                                                                                                                                                     |                              |                       |             |              |        |     |     |                 |
| 3,3'-Dichlorobenzidine ug/L 1.1 U 49.9 50.1                                                                                                                 | 23.7                         | 14.1                  | 47          | 28           | 64-106 | 51  | 40  | J(M1),<br>J(R1) |
| 3-Nitroaniline ug/L 1.3 U 49.9 50.1                                                                                                                         | 33.9                         | 31.0                  | 68          | 62           | 52-105 | 9   | 40  | 5(111)          |
| 4,6-Dinitro-2-methylphenol ug/L 4.6 U 49.9 50.1                                                                                                             | 37.0                         | 37.6                  | 74          | 75           | 54-115 | 2   |     |                 |
| 4-Bromophenylphenyl ether ug/L 1.7 U 49.9 50.1                                                                                                              | 31.5                         | 30.5                  | 63          | 61           | 48-103 | 3   |     |                 |
| 4-Chloro-3-methylphenol ug/L 5.5 U 49.9 50.1                                                                                                                | 35.1                         | 38.6                  | 70          | 77           | 51-95  | 10  | 40  |                 |
| 4-Chloroaniline ug/L 1.4 U 49.9 50.1                                                                                                                        | 30.3                         | 29.3                  | 61          | 59           | 52-92  | 3   |     |                 |
| 4-Chlorophenylphenyl ether ug/L 1.5 U 49.9 50.1                                                                                                             | 31.9                         | 32.8                  | 64          | 65           | 50-97  | 3   |     |                 |
| 4-Nitroaniline ug/L 0.19 U 49.9 50.1                                                                                                                        | 32.9                         | 30.9                  | 66          | 62           | 57-104 | 6   |     |                 |
| 4-Nitrophenol ug/L 0.96 U 49.9 50.1                                                                                                                         | 15.0 I                       | 14.7 I                | 30          | 29           | 20-51  |     | 40  |                 |
| Acenaphthene ug/L 0.36 U 49.9 50.1                                                                                                                          | 32.3                         | 32.4                  | 65          | 65           | 47-96  | 1   | 40  |                 |
| Acenaphthylene ug/L 0.30 U 49.9 50.1                                                                                                                        | 31.3                         | 32.3                  | 63          | 64           | 46-99  | 3   |     |                 |
| Aniline ug/L 0.95 U 49.9 50.1                                                                                                                               | 27.7                         | 28.0                  | 56          | 56           | 43-84  | 1   | 40  |                 |
| Anthracene ug/L 0.22 U 49.9 50.1                                                                                                                            | 33.7                         | 34.6                  | 68          | 69           | 58-98  | 2   |     |                 |
| Benzidine ug/L 0.88 U 49.9 50.1                                                                                                                             | 0.87 U                       | 0.87 U                | 0           | 1            | 10-103 | _   |     | J(M1)           |
| Benzo(a)anthracene ug/L 0.20 U 49.9 50.1                                                                                                                    | 32.7                         | 32.9                  | 65          | 66           | 61-101 | 1   | 40  | 0(111)          |
| Benzo(a)pyrene ug/L 0.17 U 49.9 50.1                                                                                                                        | 30.2                         | 30.9                  | 60          | 62           | 59-103 | 2   |     |                 |
| Benzo(b)fluoranthene ug/L 0.27 U 49.9 50.1                                                                                                                  | 30.6                         | 25.8                  | 61          | 51           | 37-118 | 17  | 40  |                 |
| Benzo(g,h,i)perylene ug/L 0.17 U 49.9 50.1                                                                                                                  | 24.6                         | 24.8                  | 49          | 49           | 58-107 | 1   |     | J(M1)           |
| Benzo(k)fluoranthene ug/L 0.18 U 49.9 50.1                                                                                                                  | 30.3                         | 26.1                  | 40<br>61    | 52           | 61-106 | 15  |     | J(M1)           |
| Benzyl alcohol ug/L 1.3 U 49.9 50.1                                                                                                                         | 26.6                         | 27.3                  | 53          | 54           | 40-82  | 3   |     | -()             |
| bis(2- ug/L 1.6 U 49.9 50.1                                                                                                                                 | 32.1                         | 34.2                  | 53<br>64    | 68           | 40-82  | 7   |     |                 |
| Chloroethoxy)methane                                                                                                                                        | 52.1                         | 54.2                  | 04          | 00           |        | 1   | -0  |                 |
| bis(2-Chloroethyl) ether ug/L 0.34 U 49.9 50.1                                                                                                              | 27.0                         | 28.7                  | 54          | 57           | 37-91  | 6   | 40  |                 |
| bis(2-Chloroisopropyl) ether ug/L 1.8 U 49.9 50.1                                                                                                           | 27.7                         | 29.1                  | 56          | 58           | 31-97  | 5   | 40  |                 |
| bis(2-Ethylhexyl)phthalate ug/L 1.1 U 49.9 50.1                                                                                                             | 27.8                         | 28.4                  | 55          | 56           | 52-113 | 2   |     |                 |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

Pace Project No.: 35625214

| MATRIX SPIKE & MATRIX SP   | VIKE DUPL | _ICATE: 3926 | 310   |       | 3926311 |        |             |       |        |     |     |       |
|----------------------------|-----------|--------------|-------|-------|---------|--------|-------------|-------|--------|-----|-----|-------|
|                            |           |              | MS    | MSD   |         |        |             |       |        |     |     |       |
| Devenator                  | Linita    | 35624754001  | Spike | Spike | MS      | MSD    | MS<br>% Dee | MSD   | % Rec  |     | Max | 0     |
| Parameter                  | Units     | Result       | Conc. | Conc. | Result  | Result | % Rec       | % Rec | Limits | RPD | RPD | Qua   |
| Butylbenzylphthalate       | ug/L      | 1.1 U        | 49.9  | 50.1  | 33.6    | 34.7   | 67          | 69    | 60-111 | 3   |     |       |
| Caprolactam                | ug/L      | 0.41 U       | 49.9  | 50.1  | 14.8    | 13.8   | 30          | 28    | 15-32  | 7   |     | N2    |
| Carbazole                  | ug/L      | 1.1 U        | 49.9  | 50.1  | 34.8    | 36.0   | 70          | 72    | 61-101 | 3   |     |       |
| Chrysene                   | ug/L      | 0.20 U       | 49.9  | 50.1  | 33.8    | 33.9   | 68          | 68    | 62-102 | 0   |     |       |
| Di-n-butylphthalate        | ug/L      | 1.1 U        | 49.9  | 50.1  | 34.8    | 35.9   | 69          | 71    | 60-105 | 3   |     |       |
| Di-n-octylphthalate        | ug/L      | 0.93 U       | 49.9  | 50.1  | 28.5    | 29.4   | 57          | 59    | 53-112 | 3   | 40  |       |
| Dibenz(a,h)anthracene      | ug/L      | 0.18 U       | 49.9  | 50.1  | 29.9    | 30.1   | 60          | 60    | 58-107 | 1   | 40  |       |
| Dibenzofuran               | ug/L      | 1.5 U        | 49.9  | 50.1  | 32.0    | 32.6   | 64          | 65    | 50-95  | 2   |     |       |
| Diethylphthalate           | ug/L      | 1.7 I        | 49.9  | 50.1  | 30.7    | 30.1   | 58          | 57    | 57-98  | 2   |     |       |
| Dimethylphthalate          | ug/L      | 1.4 U        | 49.9  | 50.1  | 32.3    | 30.6   | 65          | 61    | 53-99  | 6   | 40  |       |
| Fluoranthene               | ug/L      | 0.21 U       | 49.9  | 50.1  | 26.1    | 26.1   | 52          | 52    | 61-102 | 0   | 40  | J(M1) |
| Fluorene                   | ug/L      | 0.34 U       | 49.9  | 50.1  | 32.3    | 32.3   | 65          | 64    | 51-96  | 0   | 40  |       |
| Hexachloro-1,3-butadiene   | ug/L      | 0.35 U       | 49.9  | 50.1  | 27.6    | 28.6   | 55          | 57    | 36-90  | 4   | 40  |       |
| Hexachlorobenzene          | ug/L      | 0.29 U       | 49.9  | 50.1  | 33.3    | 35.3   | 67          | 70    | 57-97  | 6   | 40  |       |
| Hexachlorocyclopentadiene  | ug/L      | 3.5 U        | 49.9  | 50.1  | 25.8    | 26.8   | 52          | 53    | 13-100 | 4   | 40  |       |
| Hexachloroethane           | ug/L      | 1.4 U        | 49.9  | 50.1  | 27.1    | 29.3   | 54          | 58    | 33-84  | 8   | 40  |       |
| Indeno(1,2,3-cd)pyrene     | ug/L      | 0.17 U       | 49.9  | 50.1  | 30.6    | 30.4   | 61          | 61    | 58-106 | 1   | 40  |       |
| Isophorone                 | ug/L      | 1.7 U        | 49.9  | 50.1  | 30.7    | 31.4   | 61          | 63    | 44-93  | 3   | 40  |       |
| N-Nitroso-di-n-propylamine | ug/L      | 0.33 U       | 49.9  | 50.1  | 30.8    | 31.2   | 62          | 62    | 41-96  | 1   | 40  |       |
| N-Nitrosodimethylamine     | ug/L      | 0.20 U       | 49.9  | 50.1  | 18.8    | 19.6   | 38          | 39    | 25-63  | 4   | 40  |       |
| N-Nitrosodiphenylamine     | ug/L      | 1.2 U        | 49.9  | 50.1  | 33.5    | 33.8   | 67          | 67    | 56-97  | 1   | 40  |       |
| Naphthalene                | ug/L      | 14.0         | 49.9  | 50.1  | 42.4    | 55.2   | 57          | 82    | 41-87  | 26  | 40  |       |
| Nitrobenzene               | ug/L      | 0.37 U       | 49.9  | 50.1  | 29.5    | 30.8   | 59          | 62    | 41-91  | 4   | 40  |       |
| Pentachlorophenol          | ug/L      | 1.7 U        | 49.9  | 50.1  | 36.6    | 38.3   | 73          | 76    | 48-112 | 4   | 40  |       |
| Phenanthrene               | ug/L      | 0.23 U       | 49.9  | 50.1  | 33.2    | 35.6   | 66          | 71    | 58-98  | 7   | 40  |       |
| Phenol                     | ug/L      | 0.64 U       | 49.9  | 50.1  | 11.0    | 11.4   | 22          | 23    | 17-40  | 4   | 40  |       |
| Pyrene                     | ug/L      | 0.21 U       | 49.9  | 50.1  | 33.4    | 33.2   | 67          | 66    | 61-104 | 0   | 40  |       |
| Pyridine                   | ug/L      | 1.1 U        | 49.9  | 50.1  | 17.7    | 18.9   | 35          | 38    | 14-60  | 6   | 40  |       |
| 2,4,6-Tribromophenol (S)   | %         |              |       |       |         |        | 66          | 64    | 28-114 |     |     |       |
| 2-Fluorobiphenyl (S)       | %         |              |       |       |         |        | 60          | 61    | 22-101 |     |     |       |
| 2-Fluorophenol (S)         | %         |              |       |       |         |        | 27          | 29    | 10-57  |     |     |       |
| Nitrobenzene-d5 (S)        | %         |              |       |       |         |        | 58          | 60    | 10-188 |     |     |       |
| p-Terphenyl-d14 (S)        | %         |              |       |       |         |        | 48          | 49    | 48-124 |     |     |       |
| Phenol-d5 (S)              | %         |              |       |       |         |        | 21          | 22    | 10-48  |     |     |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



|                                                                                                                                | Safety Kleen Faci                                              | lity                                                                |                    |                        |                                |                                           |             |                                                      |                           |          |            |      |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|--------------------|------------------------|--------------------------------|-------------------------------------------|-------------|------------------------------------------------------|---------------------------|----------|------------|------|
| Pace Project No.: 3                                                                                                            | 35625214                                                       |                                                                     |                    |                        |                                |                                           |             |                                                      |                           |          |            |      |
| QC Batch:                                                                                                                      | 720651                                                         |                                                                     | Analy              | sis Metho              | d: F                           | L-PRO                                     |             |                                                      |                           |          |            |      |
| QC Batch Method:                                                                                                               | EPA 3510                                                       |                                                                     | Analy              | sis Descri             | ption: F                       | L-PRO Wa                                  | ter Low \   | /olume                                               |                           |          |            |      |
|                                                                                                                                |                                                                |                                                                     | Labo               | ratory:                | F                              | ace Analyti                               | cal Servi   | ices - Ormor                                         | nd Beach                  |          |            |      |
| Associated Lab Samp                                                                                                            | oles: 35625214                                                 | 001                                                                 |                    |                        |                                |                                           |             |                                                      |                           |          |            |      |
| METHOD BLANK: 3                                                                                                                | 3927286                                                        |                                                                     |                    | Matrix: W              | ater                           |                                           |             |                                                      |                           |          |            |      |
| Associated Lab Samp                                                                                                            | oles: 35625214                                                 | 001                                                                 |                    |                        |                                |                                           |             |                                                      |                           |          |            |      |
|                                                                                                                                |                                                                |                                                                     | Blan               | ık                     | Reporting                      |                                           |             |                                                      |                           |          |            |      |
| Parame                                                                                                                         | eter                                                           | Units                                                               | Resu               |                        | Limit                          | MDL                                       |             | Analyzed                                             | Qu                        | alifiers |            |      |
| Petroleum Range Org                                                                                                            | anics                                                          | mg/L                                                                | 0                  | .80 U                  | 1.0                            | )                                         | 0.80        | 04/13/21 22                                          | :20                       |          |            |      |
| N-Pentatriacontane (S                                                                                                          | 5)                                                             | %                                                                   |                    | 91                     | 42-159                         | )                                         | (           | 04/13/21 22                                          | :20                       |          |            |      |
| o-Terphenyl (S)                                                                                                                |                                                                | %                                                                   |                    | 71                     | 66-139                         | )                                         | (           | 04/13/21 22                                          | :20                       |          |            |      |
|                                                                                                                                |                                                                |                                                                     |                    |                        |                                |                                           |             |                                                      |                           |          |            |      |
|                                                                                                                                | ROL SAMPLE:                                                    | 3927287                                                             |                    |                        |                                |                                           |             |                                                      |                           |          |            |      |
|                                                                                                                                | FROL SAMPLE:                                                   | 3927287                                                             | Spike              | LC                     | S                              | LCS                                       | %           | Rec                                                  |                           |          |            |      |
|                                                                                                                                |                                                                | 3927287<br>Units                                                    | Spike<br>Conc.     | LC<br>Res              | -                              | LCS<br>% Rec                              |             |                                                      | Qualifiers                |          |            |      |
| LABORATORY CONT<br>Parame                                                                                                      | eter                                                           |                                                                     | Conc.              |                        | -                              |                                           | Lin         |                                                      | Qualifiers                |          |            |      |
| LABORATORY CONT<br>Parame<br>Petroleum Range Org                                                                               | anics                                                          | Units                                                               | Conc.              | Res                    | sult                           | % Rec                                     | Lin         | nits                                                 | Qualifiers                | _        |            |      |
| LABORATORY CONT                                                                                                                | anics                                                          | Units<br>mg/L                                                       | Conc.              | Res                    | sult                           | % Rec<br>89                               | Lin         | nits<br>66-119                                       | Qualifiers                |          |            |      |
| LABORATORY CONT<br>Parame<br>Petroleum Range Org<br>N-Pentatriacontane (S<br>o-Terphenyl (S)                                   | eter<br>janics<br>5)                                           | Units<br>mg/L<br>%<br>%                                             | Conc.              | Res                    | sult                           | % Rec<br>89<br>117                        | Lin         | nits<br>66-119<br>42-159                             | Qualifiers                | _        |            |      |
| LABORATORY CONT<br>Parame<br>Petroleum Range Org<br>N-Pentatriacontane (S                                                      | eter<br>janics<br>5)                                           | Units<br>mg/L<br>%<br>%                                             | Conc.              | Res                    | 4.4                            | % Rec<br>89<br>117                        | Lin         | nits<br>66-119<br>42-159                             | Qualifiers                |          |            |      |
| LABORATORY CONT<br>Parame<br>Petroleum Range Org<br>N-Pentatriacontane (S<br>o-Terphenyl (S)                                   | eter<br>janics<br>5)                                           | Units<br>mg/L<br>%<br>%                                             | Conc.              | Res                    | 4.4                            | % Rec<br>89<br>117                        | Lin         | nits<br>66-119<br>42-159                             | Qualifiers<br>% Rec       |          | Мах        |      |
| LABORATORY CONT<br>Parame<br>Petroleum Range Org<br>N-Pentatriacontane (S<br>o-Terphenyl (S)                                   | eter<br>janics<br>5)                                           | Units<br>mg/L<br>%<br>%<br>PLICATE: 3927<br>35625202006             | Conc.              | 5<br>MSD               | 3927700                        | % Rec<br>89<br>117<br>85                  | Lin         | nits<br>66-119<br>42-159<br>66-139                   |                           | RPD      | Max<br>RPD | Qual |
| LABORATORY CONT<br>Parame<br>Petroleum Range Org<br>N-Pentatriacontane (S<br>o-Terphenyl (S)<br>MATRIX SPIKE & MA              | eter<br>janics<br>S)<br>TRIX SPIKE DUF                         | Units<br>mg/L<br>%<br>%<br>PLICATE: 3927<br>35625202006<br>s Result | G99<br>MS<br>Spike | 5<br>5<br>MSD<br>Spike | 3927700<br>MS                  | % Rec<br>89<br>117<br>85<br>MSD           | Lin<br>MS   | MSD<br>% Rec                                         | % Rec<br>Limits           |          | RPD        | Qual |
| LABORATORY CONT<br>Parame<br>Petroleum Range Org<br>N-Pentatriacontane (S<br>o-Terphenyl (S)<br>MATRIX SPIKE & MA<br>Parameter | eter<br>janics<br>S)<br>TRIX SPIKE DUF<br>Units<br>janics mg/l | Units<br>mg/L<br>%<br>%<br>PLICATE: 3927<br>35625202006<br>s Result | Conc.              | MSD<br>Spike<br>Conc.  | 4.4<br>3927700<br>MS<br>Result | % Rec<br>89<br>117<br>85<br>MSD<br>Result | MS<br>% Rec | MSD<br>66-119<br>42-159<br>66-139<br>MSD<br>89<br>89 | % Rec<br>Limits<br>65-123 |          | RPD        | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

### Project: Safety Kleen Facility

Pace Project No.: 35625214

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J(R1) Estimated Value. RPD value was outside control limits.
- J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Safety Kleen Facility Pace Project No.: 35625214

| Lab ID                     | Sample ID                    | QC Batch Method      | QC Batch         | Analytical Method | Analytical<br>Batch |
|----------------------------|------------------------------|----------------------|------------------|-------------------|---------------------|
| 35625214001                | MW-2R-04122021               | EPA 3510             | 720651           | FL-PRO            | 720753              |
| 35625214001                | MW-2R-04122021               | EPA 200.8            | 720807           | EPA 200.8         | 720899              |
| 35625214002                | MW-1-04122021                | EPA 200.8            | 720807           | EPA 200.8         | 720899              |
| 35625214003                | MW-3-04122021                | EPA 200.8            | 720807           | EPA 200.8         | 720899              |
| 35625214001                | MW-2R-04122021               | EPA 3510             | 720473           | EPA 8270 by SIM   | 720578              |
| 35625214001                | MW-2R-04122021               | EPA 3510             | 720426           | EPA 8270          | 720477              |
| 35625214001<br>35625214004 | MW-2R-04122021<br>Trip Blank | EPA 8260<br>EPA 8260 | 720766<br>720766 |                   |                     |

Pace Analytical"

Section B

Section A

# CHAIN-OF-CUSTODY / Analytical Request Docu The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be

Section C



| Require          | d Client Information:                     | Required P                               | roject li      | nformation           | -          |         |          |               | Invo       | ice In         | forma         | tion: |        |         |          |       |                |                          | _                       |             |                            |               |                 | 020  | 214   | •   |                         |                   |                             |                           |      |
|------------------|-------------------------------------------|------------------------------------------|----------------|----------------------|------------|---------|----------|---------------|------------|----------------|---------------|-------|--------|---------|----------|-------|----------------|--------------------------|-------------------------|-------------|----------------------------|---------------|-----------------|------|-------|-----|-------------------------|-------------------|-----------------------------|---------------------------|------|
| Compar           |                                           | Report To:                               | Keith          | Morrison             |            |         |          |               |            | ntion          |               |       |        |         | _        | _     |                |                          | _                       |             | _                          |               |                 |      |       |     |                         |                   |                             |                           |      |
| Address          |                                           | Сору То:                                 |                | _                    | _          |         |          | _             | _          |                | Name          | :     | -      |         | _        |       | _              | _                        | _                       | _           |                            | _             | -               | _    |       |     |                         |                   |                             |                           | _    |
|                  | FL 33607                                  | Purchase O                               | nd na th       | 0101                 | 10         | 1 4 1   | -        | _             | Addr       | ress:<br>e Quo | to:           | _     | _      | _       |          |       |                | -                        | _                       |             | _                          |               | -               |      | 2     | -   | Regu                    | latory Ag         | ency                        |                           | 1    |
| Email:<br>Phone: | kmorrison@ectinc.com<br>813-493-0383 Fax: | Project Nam                              |                | 2102<br>Safety Kleer |            | 0100    |          | -             | -          |                | ect Ma        | nager |        | lacia   | alme     |       | aalab          |                          |                         |             | _                          |               | -+              | -    | -     | -   | Chal                    | te / Locat        |                             |                           | -    |
| 1.0              | and Due Date:                             | Project #                                |                | 1021                 |            | 00      |          | -             | -          | e Profi        |               | -     | 1 line |         | anne     | n@pa  | ceiac          | IS COI                   | п,                      |             | -                          |               | -               | -    |       | -   | Sta                     | FL                | on                          | _                         | -    |
| Troqueor         |                                           | In rejecting                             | 1              | 1021                 | 1          |         | _        | _             | 1. 000     | -1.700         | ing in        | 332   | a urse |         | _        | B     | 0.0            | -                        | Rec                     | ueste       | d An                       | alvsi         | is Filt         | ered | (Y/N) | -   | -                       | FL                |                             |                           | ->   |
|                  |                                           |                                          | Ê              | £                    |            |         |          | 1             |            | 1.             | _             |       |        | -       |          |       | Т              | T                        | T                       | T           | T                          | T             |                 | 1    | 1     | T   |                         |                   |                             |                           |      |
|                  |                                           | 0005                                     | codes to left) | C=COMP)              | 001        | ECTED   |          | 7             |            |                | P             | resei | nyativ | 100     |          |       |                |                          |                         |             |                            |               |                 |      |       |     | - 18                    |                   |                             |                           |      |
|                  | MATRIX<br>Drinking V                      |                                          | odes           | 5                    | COLL       | 1       |          | 10            | 11         | 1              | Ť             | 1     |        | 1       | 1        | Ť     |                | 1                        | 3                       | -           | Z                          | -             |                 | -    | +     | -   |                         | T                 |                             |                           | -    |
|                  | Water<br>Waste Wa                         | WT<br>aler WW                            | valid c        | AB                   |            |         |          | LEC           |            |                |               |       |        |         |          |       |                | AHS                      | 5                       | l,          | AHs                        |               |                 |      |       |     | 12                      | 2                 |                             |                           |      |
|                  | SAMPLE ID Product<br>Soil/Solid           | P<br>SL                                  | (see va        | (G=GKAB              |            |         |          | AT COLLECTION |            |                |               |       |        |         |          | To be | D              |                          | E E                     | Ag,Cd,Cr,Pb | S P                        |               |                 |      |       |     |                         | -                 |                             |                           |      |
|                  | One Character per box.                    | OL<br>WP                                 |                | -                    | ART        | E       | ND       | AT            | IER.       |                |               |       |        |         |          |       |                |                          |                         | P.B         | t plr                      | MSL           | ark             |      |       |     | - Line                  |                   |                             |                           |      |
|                  | (A-7 0-9 / -) Air                         | AR                                       | ODE            | H L                  |            |         |          | TEMP          | CONTAINERS | ved            |               |       |        | _       |          |       |                | i isi                    | }<br>ŏ                  | 200.8       | llist                      | MS/           | ā               |      |       |     | 8                       | 5                 |                             |                           |      |
| #<br>∑           | Sample Ids must be unique Tissue          | OT<br>TS                                 | XI             | 4                    |            |         |          | Ē             | CON        | ese            | 7 6           |       |        | 320     | ano      |       |                |                          | 2                       | Is 2        | 2                          | ß             | [Ē]             |      |       |     |                         |                   |                             |                           |      |
| ITEM             |                                           |                                          | MATRIX CODE    | DATE                 | -          |         | -        | SAMPLE        | # OF       | Unpreserved    | H2SO4<br>HN03 | HCI   | NaOH   | Na2S203 | Methanol | Other | 8260 Full List | 8270 Full list plus PAHs | FL Pro Low Volume for W | Metals      | 8270 Full list plus PAHs N | FL PRO MS/MSD | 8260 Trip Blank |      |       |     | Residual Chlorina (V/M) |                   |                             |                           |      |
| -                |                                           |                                          | 1210           |                      | TIME       | DATE    | TIME     |               | <u> </u>   | -              | w .           |       | -      | -       | -        | Ť     | +              | 100                      | +-                      | =           | +                          |               |                 | +    | -     | +   |                         | +                 |                             |                           | -    |
| 1                | WW-2R-04722021                            | _                                        | WΤ             | 4-12-2)              | 1          | 4-12-21 | 1        | Mig           | 14         | X              | <b>X</b> )    | 47    |        | -       |          | 4     | x              | X                        | X                       | x           | X                          | ×             |                 | _    |       |     |                         |                   |                             |                           | _    |
| 2                | MW-2R-04722021<br>MW-1-04122021           |                                          | WT             | 4-12-21              |            | 4-12-21 | 943      | 1             | 1          |                | 1             |       |        |         |          | _     | L              |                          |                         | x           |                            |               |                 |      |       |     |                         |                   |                             |                           |      |
| 3                | 14144-2 - 04122021                        |                                          | WT             | 4-12-21              | 832        | 4.12.21 | 834      | 11            | 5          |                | y             |       |        |         |          |       |                |                          |                         | x           |                            |               |                 |      |       |     |                         |                   |                             |                           |      |
| 4                | Trip Blank                                |                                          | WT             | NA                   | TNA        | N       | R        | 17            | 2          |                |               | X     |        |         |          |       |                |                          |                         |             |                            |               | x               |      |       |     |                         |                   |                             |                           |      |
| 5                |                                           |                                          |                |                      |            |         |          |               |            |                |               |       |        |         |          |       |                |                          |                         |             |                            |               |                 |      |       |     |                         |                   |                             |                           |      |
| 6                |                                           |                                          |                |                      |            |         |          |               |            |                |               |       |        |         |          |       |                |                          | T                       |             |                            |               |                 |      |       |     |                         |                   |                             |                           |      |
| 7                |                                           |                                          | T              |                      |            |         |          |               |            |                |               | 1     |        |         |          |       | F              | 1                        | T                       |             |                            |               |                 | 1    | 1     |     |                         |                   |                             |                           |      |
| 8                |                                           |                                          | T              |                      |            |         |          |               |            |                | 1             | 1     |        |         | 1        |       | F              | 1                        | 1                       | 1           |                            |               |                 | 1    | 1     | -   |                         | -                 |                             |                           |      |
| 9                |                                           |                                          | tt             | 1                    |            |         |          |               |            | 1              | -             | 1     |        | 1       |          |       | F              | 1                        | +                       | 1           |                            |               | -               | 1    | 1     | 1   |                         | F                 |                             |                           |      |
| 10               |                                           |                                          | Ħ              | 1                    |            |         |          |               |            | -              | 1             |       |        | 1       | +        |       | F              | 1                        | 1                       |             |                            |               |                 | 1    | 1     |     | H                       | -                 |                             |                           | -    |
| 11               |                                           |                                          |                | 1                    |            |         |          |               | H          | 1              | 1             | 1     |        | 1       | +        | T     | F              | 1                        | 1                       | 1           |                            |               |                 | 1    | 1     |     |                         | -                 |                             |                           | -    |
| 12               |                                           |                                          |                |                      |            |         |          |               |            | +              | 1             | 1     |        | 1       | 1        | 1     | F              | 1                        | +                       |             |                            |               |                 | 1    | 1     |     |                         | 1                 | -                           |                           |      |
| 12               | ADDITIONAL COMMENTS                       | F                                        | RELING         | ISHED BY I           | AFFILIATIO | DN N    | DATE     |               | Т          | TIME           |               |       | 4      | ACCE    | PTED     | BYI   | FFILI          | ATIO                     | N                       |             |                            |               | DATE            |      | TIM   | E   | -                       | SAMPL             | E CONDITIO                  | INIS                      |      |
|                  | Bottle                                    | Kit 🖅                                    | 200.           | 0                    | PAC        | ,E      | 3.50.    | 21            | 10         | >25            |               | Ke    | H      | 1       | N        | 1000  | 11/1           | 20                       | t                       | T           |                            | 2             | 30-7            | 1    | 140   | A 1 | Th.                     | 1                 | 1                           | 1                         |      |
|                  |                                           |                                          | 11-1           | Men                  |            | t/T     | 4.12     | 21            |            | 53:            | -             | 20    | 0      | D       | 1        | DI    | L              | VV                       |                         | 4           |                            | 41            | 121             | 1    | 153   |     | 10,0                    | 1                 | N                           | 1,                        |      |
|                  |                                           | 14                                       | a              | men                  | WINY       | ECI     | 1-12-    | 21            | 10         | 22             |               | -0    | YV     | K       | V        | U     |                |                          | -                       |             | -                          | 11            | 1 - 11          |      |       | ر   | 1.070                   | 47                | 1.                          | 17                        | 4    |
|                  | 15                                        | 17                                       |                |                      |            |         |          |               | i.         | 1              | 1             |       | È.     | -       | ;        |       | _              | -                        | 1                       | 5           | ſ                          |               | 1               | 1    |       |     |                         | 1                 | 1.6.                        |                           | -    |
|                  |                                           | 9441                                     |                | - 1                  | SAMPLE     | RNAME   | AND SIG  | NATI          | JRE        |                | 1             | 1º    | 12     | 1       | 1        |       |                |                          | -                       | -           | 1                          |               | 1               |      | 25    |     |                         | 5                 | 1                           | 1                         |      |
| -                |                                           | an a |                |                      | PRI        | NT Name | of SAMPI | LER:          | K          | ad             | 5             | F.    | M      | 0.0     | ni       | SA    | 11             | E                        | UT                      | 1           |                            | 1             | 1               |      |       |     | TEMP IN C               | Received on<br>ce | d b r                       | oles                      |      |
| 1913             |                                           | 91.58h                                   |                | -                    | SIG        | NATURE  | of SAMPL | ER:           | シ          | 2              | t             | 11    | 1      | 13/     | 10       | 1     | T              |                          |                         |             | U                          | -)            | 2-              | 20   | 21    |     | TEMF                    | Recei             | Custody<br>Sealed<br>Cooler | (Y/N)<br>Samples<br>ntact | Y/N) |

| Pace Analytical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Document Name:<br>Sample Condition Upon Receipt Fo<br>Document No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orm                                                                                                             | Document Revised:<br>May 30, 2018<br>Issuing Authority:            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Frontification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F-FL-C-007 rev. 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | Pace Florida Quality Office                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Condition Linon I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pacoint Form (SC                                                                                                | CUR)                                                               |
| Project #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W0#:3562521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                               | Date and Initials of person:                                       |
| Project Manager:<br>Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM: LAP Due Date:<br>CLIENT: 37-ECTTAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04/19/21                                                                                                        | Examining contents: <u>Em</u><br>Label: <u>4/12/21</u><br>Deliver: |
| Thermometer Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date: 4/12/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L) Time: 15                                                                                                     | pH: <u>(//2/2)</u><br>ダロ Initials: MVC                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                    |
| State of Origin: FL<br>Cooler #1 Temp. °C 10, °C (Visu<br>Cooler #2 Temp. °C (Visu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al) <u>6,</u> (Correction Factor) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | Samples on ice, cooling process has t                              |
| Cooler #3 Temp. C (Visu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second se | Samples on ice, cooling process has l                              |
| •`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al)(Correction Factor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | Samples on ice, cooling process has t                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al)(Correction Factor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | Samples on ice, cooling process has t                              |
| Cooler #6 Temp.°C(Visu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a state of the sta |                                                                                                                 | Samples on ice, cooling process has I                              |
| Courier: Gred Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UPS USPS Client Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nmercial 🗆 Pace                                                                                                 | ☐ Other                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ight 	□ Priority Overnight 	□ Standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                    |
| Billing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | □ Sender □ Third Party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Credit Card                                                                                                     | Unknown                                                            |
| Tracking #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                    |
| Custody Seal on Cooler/Box Prese<br>Packing Material: Bubble Wrap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>&gt;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tact: 🗌 Yes 🗌 No                                                                                                | Ice Wet Blue Dry None                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mplete) Shorted Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ner<br>Short                                                                                                    | ed Time: Qty:                                                      |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mplete) Shorted Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ner                                                                                                             |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bubble Bags None Ott mplete) Shorted Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ner<br>Short                                                                                                    |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dispubble Bags None Ott<br>mplete) Shorted Date:<br>Yes No N/A<br>Yes No N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ner<br>Short                                                                                                    |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dispubble Bags None Ott<br>mplete) Shorted Date:<br>Yes No N/A<br>Yes No N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ner<br>Short                                                                                                    |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bubble Bags     None     Ott       mplete)     Shorted Date:     C       Yes     No     N/A       Yes     No     N/A       Yes     No     N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ner<br>Short                                                                                                    |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bubble Bags     None     Ott       mplete)     Shorted Date:     Ott       Yes     No     N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ner<br>Short                                                                                                    |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC                                                                                                                                                                                                                                                                                                                                                                                                    | Bubble Bags     None     Ott       mplete)     Shorted Date:     Ott       Yes     No     N/A       Yes     No     N/A       Vame COC     Yes     No       Yes     No     N/A       Yes     No     N/A       Yes     No     N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ner<br>Short                                                                                                    |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used<br>Containers Intact                                                                                                                                                                                                                                                                                                                               | Bubble Bags     None     Ott       mplete)     Shorted Date:     Ott       Yes     No     N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ner<br>Short                                                                                                    |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used                                                                                                                                                                                                                                                                                                                                                    | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         Yes       No       N/A         Xes       No       N/A         Xes       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ner<br>Short                                                                                                    |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used<br>Containers Intact<br>Sample Labels match COC (sample IDs -<br>collection)<br>All containers needing acid/base preserv                                                                                                                                                                                                                           | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         Yes       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er Short                                                                                                        |                                                                    |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used<br>Containers Intact<br>Sample Labels match COC (sample IDs -<br>collection)                                                                                                                                                                                                                                                                       | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         No       NA       No       NA         New COC       Yes       No       NA         Name COC       Yes       No       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Preservative                                                                                                    | ed Time: Qty:                                                      |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used<br>Containers Intact<br>Sample Labels match COC (sample IDs<br>collection)<br>All containers needing acid/base preserv<br>checked.<br>All Containers needing preservation are f<br>compliance with EPA recommendation:                                                                                                                             | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         Yes       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Preservative<br>Lot #/Trace :<br>Date:                                                                          | ed Time: Qty:                                                      |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used<br>Containers Intact<br>Sample Labels match COC (sample IDs<br>collection)<br>All containers needing acid/base preserv<br>checked.<br>All Containers needing preservation are f<br>compliance with EPA recommendation:<br>Exceptions: VOA, Colife                                                                                                  | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         Yes       No       N/A         found to be in       NYes       No         Norm, TOC, O&G, Carbamates       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Preservative<br>Lot #/Trace :<br>Date:                                                                          | ed Time: Qty:                                                      |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used<br>Containers Intact<br>Sample Labels match COC (sample IDs<br>collection)<br>All containers needing acid/base preserv<br>checked.<br>All Containers needing preservation are f<br>compliance with EPA recommendation:<br>Exceptions: VOA, Colife<br>Headspace in VOA Vials? ( >6mm):                                                              | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         New Pres       No       N/A         New COC       Yes       No       N/A         Name COC       Yes       No       N/A         ate/time of       Yes       No       N/A         found to be in       Yes       No       N/A         Orm, TOC, O&G, Carbamates       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Preservative<br>Lot #/Trace :<br>Date:                                                                          | ed Time: Qty:                                                      |
| Packing Material: Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used<br>Containers Intact<br>Sample Labels match COC (sample IDs<br>collection)<br>All containers needing acid/base preserv<br>checked.<br>All Containers needing preservation are f<br>compliance with EPA recommendation:<br>Exceptions: VOA, Colife                                                                                                  | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         Yes       No       N/A         found to be in       NYes       No         Norm, TOC, O&G, Carbamates       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Preservative<br>Lot #/Trace :<br>Date:                                                                          | ed Time: Qty:                                                      |
| Packing Material: □Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used<br>Containers Intact<br>Sample Labels match COC (sampie IDs.<br>collection)<br>All containers needing acid/base preserv<br>checked.<br>All Containers needing preservation are f<br>compliance with EPA recommendation:<br>Exceptions: VOA, Colife<br>Headspace in VOA Vials? ( >6mm):<br>Trip Blank Present:<br>Client Notification/ Resolution: | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         NYes       No       N/A         NYes       No       N/A         Neme COC       Yes       No       N/A         Neme COC       Yes       No       N/A         Neme COC       Yes       No       N/A         found to be in       N/es       No         Yes       No       N/A         Yes       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Preservative<br>Lot #/Trace<br>Date:<br>Initials:                                                               | ed Time: Qty:                                                      |
| Packing Material: Bubble Wrap Samples shorted to lab (If Yes, con Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler N Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs collection) All containers needing acid/base preserv checked. All Containers needing preservation are f compliance with EPA recommendation: Exceptions: VOA, Colific Headspace in VOA Vials? (>6mm): Trip Blank Present: Client Notification/ Resolution: Person Contacted:                                          | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         Yes       No       N/A         found to be in       Yes       No         Yes       No       N/A         Yes       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date/Time:                                                                                                      | ed Time: Qty:                                                      |
| Packing Material: □Bubble Wrap<br>Samples shorted to lab (If Yes, con<br>Chain of Custody Present<br>Chain of Custody Filled Out<br>Relinquished Signature & Sampler N<br>Samples Arrived within Hold Time<br>Rush TAT requested on COC<br>Sufficient Volume<br>Correct Containers Used<br>Containers Intact<br>Sample Labels match COC (sampie IDs.<br>collection)<br>All containers needing acid/base preserv<br>checked.<br>All Containers needing preservation are f<br>compliance with EPA recommendation:<br>Exceptions: VOA, Colife<br>Headspace in VOA Vials? ( >6mm):<br>Trip Blank Present:<br>Client Notification/ Resolution: | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         Yes       No       N/A         found to be in       Yes       No         Yes       No       N/A         Yes       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date/Time:                                                                                                      | ed Time: Qty:                                                      |
| Packing Material: Bubble Wrap Samples shorted to lab (If Yes, con Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler N Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs collection) All containers needing acid/base preserv checked. All Containers needing preservation are f compliance with EPA recommendation: Exceptions: VOA, Colific Headspace in VOA Vials? (>6mm): Trip Blank Present: Client Notification/ Resolution: Person Contacted:                                          | Bubble Bags       None       Ott         mplete)       Shorted Date:       Ott         Yes       No       N/A         found to be in       Yes       No         Yes       No       N/A         Yes       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date/Time:                                                                                                      | ed Time: Qty:                                                      |

# Industrial Waste Operating Report Form (IWORF)

| Permit #:         | IW-333              | Permit Year: | 2021 | Reports must be mailed to:<br>Department of Regulatory and Economic Resources<br>Environmental Resources Management |
|-------------------|---------------------|--------------|------|---------------------------------------------------------------------------------------------------------------------|
| Facility Name:    | SAFETY-KLEEN SYST   | TEMS, INC.   |      | 701 NW 1st Ct, Suite #700<br>Miami, FL 33136-3912                                                                   |
| Facility Address: | 8755 NW 95 ST       |              |      |                                                                                                                     |
|                   | MEDLEY, FL 33178    |              |      |                                                                                                                     |
| Contact Name:     | Mr. Larry Rodriguez |              |      |                                                                                                                     |

Instructions: Indicate which report is being provided by checking off the applicable "Source Type" box(es) from the listing below. In addition, indicate the period being reported and attach the applicable information (e.g. waste manifests, analytical results, etc.) as required by each Source Type. Refer to the operating permit document for more information on reporting and sampling requirements, including analytical methodologies, applicable to the referenced facility.

| Reporting Requirements:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                       |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------|
| Source Type:RR-1                             | Reporting Frequency: Quarterly<br>receipts of all hazardous waste, industrial waste, industrial waste<br>, volume and final destination. Records shall also be maintained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reporting Period:<br>water, sludge and/o<br>on-site for review. | or ash disposed of.   |
| Sampling Requirements:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reporting Period:                                               | 2022                  |
| Source Type: SMP-1                           | Reporting Frequency: Annually                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reporting Period:                                               |                       |
| Description: Groundwater from the facilit    | y monitoring well(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                       |
| Parameters: Cadmium (Total), Chromiur        | n (Total), Lead (Total), Silver (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |                       |
| Source Type: SMP-2                           | Reporting Frequency; Annually                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reporting Period:                                               | 5037                  |
| Dependent Groundwater from monitorin         | g well nearest the containment area slormwater discharge point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                       |
| Parameters: EPA Series 8260, EPA Ser         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                       |
| Average Daily Waste Water Flow Disc          | harge to Sanitary Sewers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 | Gallons Per Day (GPD) |
|                                              | والمراجع والمتنافة والمراجع والمراجع والمراجع والمراجع والمتحفظ والمراجع و | rate and complete                                               | ).                    |
| I hereby certify that, to the best of my kno | wledge, this document and all attachments are true, accu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5116                                                            | 122                   |
| Jug-D                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                       |

Authorized Representative or Corporate Officer

Report Completion Date

May 16, 2022 210212-2201

Mrs. Maya Fisher, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** Environmental Resources Management 701 NW 1<sup>st</sup> Court, 7<sup>th</sup> Floor Miami, Florida 33136-3912

# Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2021/2022 (File # 10139) Annual Report of Groundwater Quality

Dear Mrs. Fisher:

On behalf of Safety-Kleen Systems, Inc. (SK), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for SK's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On April 18, 2022, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FL-PRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed <u>Figure 1</u>.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in <u>Attachment B</u>.

The laboratory report indicated that concentrations for three of the four metals (i.e., cadmium, lead, and silver) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.621 micrograms per liter ( $\mu$ g/L) at monitoring well MW-1, 0.791  $\mu$ g/L at monitoring well MW-2R, and 0.901  $\mu$ g/L at monitoring well MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are well below the groundwater cleanup target level (GCTL) of 100  $\mu$ g/L for chromium as specified in the permit.

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

1. FL-PRO concentration was below the laboratory MDL; that is, none was detected.



Mrs. Maya Fisher, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** May 16, 2022 Page 2

- 2. No SVOC was detected (i.e., EPA Series 8270 parameters).
- 3. No VOC was detected (i.e., EPA Series 8260 parameters).

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of SK at (561) 523-4719. Thank you.

Sincerely,

#### **ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.**

Teest 1. Mariison Keith F. Morrison Senior Associate Scientist I

Gregory Sattler, P.E. Senior Remediation Engineer

# SAFETY-KLEEN SYSTEMS, INC.

Jeff Curtis EHS Manager, Florida Safety-Kleen Systems, Inc. 5610 Alpha Drive Boynton Beach, Florida 33426 jeff.curtis@safety-kleen.com

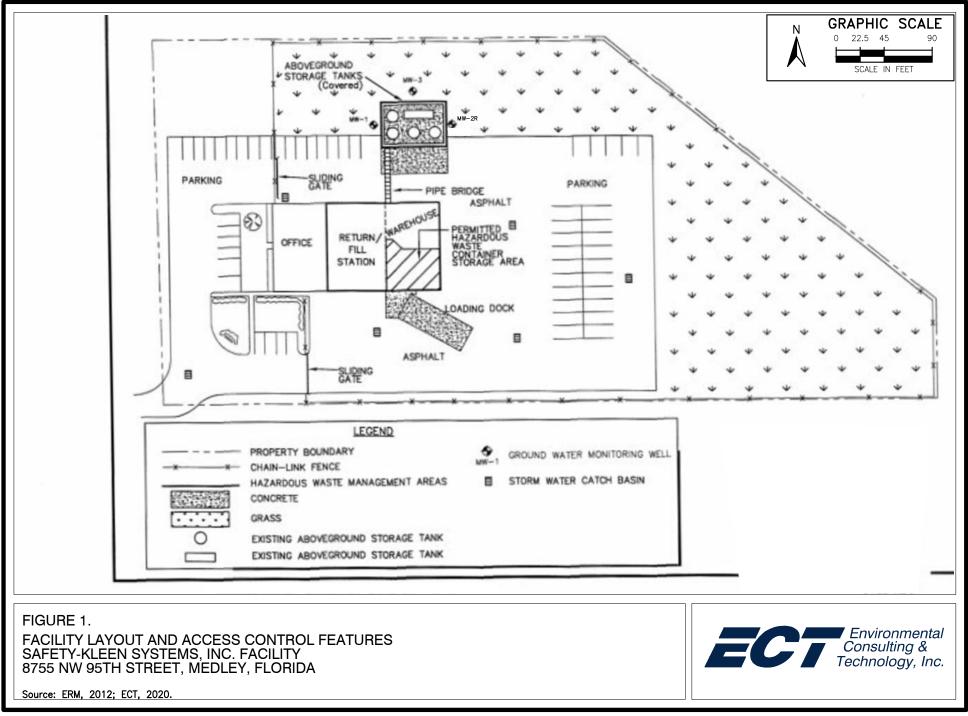

#### Enclosures:

Figure 1 Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration Logs Attachment B - Laboratory Report

cc: Robert Schoepke – S-K (electronic only) Gregory Sattler – ECT (electronic only) Keith Morrison – ECT (electronic only) Facility 999 File #1760, % S-K Medley facility Branch General Manager



FIGURE



# ATTACHMENT A

# FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

Safety Pleen medly Py 210212-020 Ect- 200 RMS MSn JUNNAY 1823, P.2 Load T-13 off FU 1315 1615 got gas, water ER 1845 at condo m FA lander dela / computer Kennons 645 canbrotim dwell as metos 7 to off to Septerphileon med lege ero anote Safety Klen Medley , ChailCin Danbel Vilarohao New Managen affice at Doniel is on Vacation, Gu over MASP weather - Partly cluridy 790F NEWING Burgh pursing mw-1 838 2901 Samping mul 913 purging MW-3 × 938 sampting MWB 949 purpos MW-2R - confuting MS/MSD Scuper from Discharge from Stor gurrish all VIORSamptons MW-2R 1025 Sture two S-gallon Proms of Divestigation Denied unsh at Safety-Kleen Facility VOLUMII Cab Results off to NACE Labs in oldsmer Fel 1300 get 1315 of AEL Cabo/ 1530egot move go 900 invad T13, calibration 1550 at ECT office. meet on meters/ 1615 Compiele. Keath & Mon

# DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| NAME: Safety Kle                                                                                                                                                 | en Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | stems.                                                                                 | Inc.                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SITE<br>LOCA                                                                                | TION: 8                                                                                                                                 | 755 N                                      | W 95 <sup>tt</sup>                                                                              | Street.                                                                                                       | Medley, I                                                                                                                                                                                                                             | -L                                      |                                                                                               |                                                                                               |                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------|
| WELL NO: MW-1                                                                                                                                                    | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , , ,                                                                                  |                                                                                                 | SAM                                                                           | PLE ID: M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                         |                                            |                                                                                                 |                                                                                                               | DATE:                                                                                                                                                                                                                                 | 41                                      | 8/22                                                                                          |                                                                                               |                                            |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                                                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PURG                                                                                        |                                                                                                                                         |                                            |                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                       | 11.                                     | 010-                                                                                          |                                                                                               |                                            |
| WELL<br>DIAMETER (inches):                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        | ER (inches):1                                                                                   |                                                                               | WELL SCR<br>DEPTH: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EEN INTI                                                                                    | ERVAL                                                                                                                                   | 5                                          | STATIC                                                                                          | EPTH<br>R (feet): 3                                                                                           | .35                                                                                                                                                                                                                                   |                                         | SE PUMP TY<br>AILER:                                                                          | PE<br>PF                                                                                      | )                                          |
| WELL VOLUME PUR(<br>(only fill out if applicabl                                                                                                                  | GE: 1V<br>le)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELL VOL                                                                                | UME = (TOT<br>= (                                                                               | AL WELL                                                                       | .2 feet-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,3                                                                                         | 5                                                                                                                                       | TO WAT                                     | TER) X                                                                                          | WELL CA                                                                                                       | PACITY                                                                                                                                                                                                                                | ons/fool                                | t = 1,26                                                                                      | > {                                                                                           | allons                                     |
| (only fill out if applicabl                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L. ILQU                                                                                |                                                                                                 | =                                                                             | gallons +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                         |                                            |                                                                                                 |                                                                                                               | feet) +                                                                                                                                                                                                                               |                                         | gallons =                                                                                     |                                                                                               | 1                                          |
| INITIAL PUMP OR TU                                                                                                                                               | BING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | FINAL PUN                                                                                       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                    |                                                                                                                                         | lons/foot                                  |                                                                                                 | PURGI                                                                                                         | ,                                                                                                                                                                                                                                     | - 1                                     | TOTAL VOL                                                                                     |                                                                                               | lons                                       |
| DEPTH IN WELL (feet                                                                                                                                              | :): 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                      | DEPTH IN                                                                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                           | INITIAT                                                                                                                                 | ED AT:                                     | 838                                                                                             | ENDE                                                                                                          | AT: 90(                                                                                                                                                                                                                               |                                         | PURGED (ga                                                                                    |                                                                                               | 8                                          |
| TIME VOLUME<br>PURGEI<br>(gallons)                                                                                                                               | E VO<br>D PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JMUL.<br>DLUME<br>IRGED<br>allons)                                                     | PURGE<br>RATE<br>(gpm)                                                                          | DEPTH<br>TO<br>WATER<br>(feet)                                                | pH<br>(standa<br>units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ard 1                                                                                       | MP.<br>℃)                                                                                                                               | COND<br>(circle uni<br>µmhos/r<br>or µS/ci | its) (                                                                                          | SSOLVED<br>XYGEN<br>circle units)<br>mg/L or<br>saturation                                                    | TURBIDI<br>(NTUs                                                                                                                                                                                                                      |                                         | COLOR<br>(describe)                                                                           | ODOR<br>(describe)                                                                            | ORP                                        |
| 854 ×1,3                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .3                                                                                     | 0.08                                                                                            | 3.50                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 21                                                                                        | 1.11                                                                                                                                    | 40                                         | 1 (                                                                                             | 18                                                                                                            | 1.66                                                                                                                                                                                                                                  | 5 0                                     | loor                                                                                          | signt                                                                                         | -271                                       |
| 857 -0,2                                                                                                                                                         | 1 =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,54                                                                                    |                                                                                                 | 3,50                                                                          | 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 2                                                                                         | 112                                                                                                                                     | 481                                        |                                                                                                 | 3.19                                                                                                          | 1-67                                                                                                                                                                                                                                  |                                         | 1                                                                                             | orgenic                                                                                       | -275                                       |
| 900 -0524                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,18                                                                                    | ¥                                                                                               | 3.50                                                                          | 7,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02                                                                                          | 4,14                                                                                                                                    | 481                                        | Č                                                                                               | 19                                                                                                            | 1.63                                                                                                                                                                                                                                  |                                         | L                                                                                             | L                                                                                             | -280                                       |
|                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |                                                                                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                         |                                            |                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                       |                                         |                                                                                               |                                                                                               |                                            |
| WELL CAPACITY (Ga<br>TUBING INSIDE DIA                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                                                                 |                                                                               | 4; <b>1.25</b> "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0.06;                                                                                     | 2" = 0.<br>4" = 0.00                                                                                                                    | .16; <b>3</b>                              |                                                                                                 | 4" = 0.6                                                                                                      |                                                                                                                                                                                                                                       |                                         |                                                                                               | 12" = 5.88<br>5/8" = 0.016                                                                    |                                            |
| WELL CAPACITY (Ga<br>TUBING INSIDE DIA.<br>PURGING EQUIPMEI                                                                                                      | CAPAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ITY (Gal./                                                                             |                                                                                                 | .0006; 3                                                                      | 8/16" = 0.00<br>der Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 014; 1/<br>ESP                                                                              | 4* = 0.00<br>= Electri                                                                                                                  | )26;<br>ic Subme                           | 5/16" = 0<br>ersible Pu                                                                         | .004; 3/                                                                                                      | 5; 5" = 1.0<br>8" = 0.006;<br>P = Peristaltic                                                                                                                                                                                         | 1/2"                                    | = 0.010;                                                                                      | <b>12" =</b> 5.88<br>5/8" = 0.016<br>ther (Specify                                            |                                            |
| TUBING INSIDE DIA.<br>PURGING EQUIPME                                                                                                                            | CAPAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ITY (Gal./<br>ES: B                                                                    | Ft.): <b>1/8"</b> = 0<br>= Bailer;                                                              | .0006; 3<br>BP = Blad                                                         | 8/16" = 0.00<br>der Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 014: 1/<br>ESP<br>SAMP                                                                      | 4" = 0.00<br>= Electri<br>PLING                                                                                                         | D26;<br>ic Subme<br><b>DAT</b>             | 5/16" = 0<br>ersible Pu                                                                         | .004; 3/<br>imp; P                                                                                            | 8" = 0.006;<br>P = Peristaltio                                                                                                                                                                                                        | 1/2"<br>Pump                            | = 0.010; ;<br>; <b>0</b> = Ot                                                                 | 5/8" = 0.016<br>her (Specify                                                                  | )                                          |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRIM                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ITY (Gal./<br>ES: B                                                                    | Ft.): 1/8" = 0                                                                                  | .0006; 3<br>BP = Blad<br>SAMPLEI                                              | 8/16" = 0.00<br>der Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 014: 1/<br>ESP<br>SAMP                                                                      | 4" = 0.00<br>= Electri<br>LING                                                                                                          | D26;<br>ic Subme<br><b>DAT</b>             | 5/16" = 0<br>ersible Pu<br>'A                                                                   | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT                                                                        | 8" = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90                                                                                                                                                                                    | 1/2"<br>Pump                            | = 0.010; 3<br>; 0 = Ot<br>SAMPLING<br>ENDED A                                                 | 5/8" = 0.016<br>her (Specify<br>G<br>T: ? ()                                                  | )<br>3                                     |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRIM                                                                                                       | CAPAC<br>NT COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ITY (Gal./<br>ES: B                                                                    | Ft.): 1/8" = 0                                                                                  | .0006; 3<br>BP = Blad<br>SAMPLEI                                              | 8/16" = 0.00<br>der Pump;<br>R(S) SIGNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ESP<br>SAMP<br>TURE(S                                                                       | 4" = 0.00<br>= Electri<br>PLING<br>:<br>:                                                                                               | D26;<br>ic Subme<br><b>DAT</b>             | 5/16" = 0<br>ersible Pu<br><b>`A</b><br>Fi                                                      | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT                                                                        | 8" = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90                                                                                                                                                                                    | 1/2"<br>Pump                            | = 0.010; 3<br>; 0 = Ot<br>SAMPLING<br>ENDED A                                                 | 5/8" = 0.016<br>ther (Specify                                                                 | )<br>3                                     |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRIM<br>PUMP OR TUBING                                                                                     | CAPAC<br>NT COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ITY (Gal./<br>ES: B                                                                    | Ft.): 1/8" = 0<br>= Bailer;<br>00/ECT                                                           | .0006; 3<br>BP = Blad<br>SAMPLEI                                              | 8/16" = 0.00<br>der Pump;<br>(S) SIGNA<br>CODE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESP<br>SAMP<br>TURE(S                                                                       | 4" = 0.00<br>= Electri<br>PLING                                                                                                         | D26;<br>ic Subme<br><b>DAT</b>             | 5/16" = 0<br>ersible Po<br><b>'A</b><br>FI<br>Fi                                                | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT                                                                        | B <sup>#</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90<br>RED: Y<br>pment Type:                                                                                                                                               | 1/2"<br>Pump                            | = 0.010; 3<br>; 0 = Ot<br>SAMPLING<br>ENDED A                                                 | 5/8" = 0.016<br>her (Specify<br>G<br>T: ? ()                                                  | )<br>3                                     |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRIM<br>PUMP OR TUBING<br>DEPTH IN WELL (feet<br>FIELD DECONTAMIN<br>SAMPLE CONT                           | CAPAC<br>NT COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | Ft.): 1/8" = 0<br>= Bailer;<br>m/ECT<br>IP Y C                                                  | .0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA                         | 8/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>ML CODE:<br>TUB<br>SAMPLE PRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ESP<br>SAMP<br>TURE(S<br>HDPE<br>BING                                                       | 4" = 0.00<br>= Electri<br>PLING<br>):<br>(<br>(<br>N<br>):<br>(<br>):<br>(<br>):<br>(<br>):<br>(<br>):<br>(<br>):<br>(                  | D26;<br>ic Subme<br>DAT                    | 5/16" = 0<br>ersible Pu<br>•A<br>Fi<br>Fi<br>d)                                                 | .004; 3/<br>mp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC                                 | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ED AT: 90<br>RED: Y (<br>prment Type:<br>CATE:<br>NDED ANALYS                                                                                                                           | 1/2"<br>Pump<br>(<br>N<br>Y<br>IS       | = 0.010;<br>; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER                                          | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 96<br>R SIZE:                                        | )<br>_μm<br>LE PUMP                        |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRINT<br>PUMP OR TUBING<br>DEPTH IN WELL (feet<br>FIELD DECONTAMIN<br>SAMPLE D<br>CODE<br>CONTAINER        | CAPAC<br>NT CODI<br>F) / AFFII<br>t):<br>t):<br>tATION:<br>TAINER SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITY (Gal./<br>ES: B<br>LIATION:<br>DOM<br>D<br>PUN<br>PECIFICATI<br>ATERIAL<br>CODE    | Ft.): 1/8" = 0<br>= Bailer;                                                                     | .0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA<br>N<br>S<br>PRESER     | 6/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>ML CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14: 1/<br>ESP<br>SAMP<br>TURE(S<br>HDPE<br>BING<br>SERVATIO                                 | 4" = 0.00<br>= Electri<br>PLING<br>):<br>of N<br>N (includi<br>TAL VOL<br>IN FIELD                                                      | D26;<br>ic Subme<br>DAT                    | 5/16" = 0<br>ersible Pu<br>A<br>Fi<br>b)<br>FINAL<br>pH                                         | .004; 3/<br>Imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTEL<br>ANI                | B <sup>#</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90<br>RED: Y<br>pment Type:<br>CATE:<br>NDED ANALYS<br>X/OR METHOD                                                                                                        | 1/2"<br>Pump<br>(<br>N<br>Y             | SAMPLING<br>EQUIPMENT<br>CODE                                                                 | 5/8" = 0.016<br>ther (Specify<br>G<br>T: ? 6<br>R SIZE:<br>SAMP<br>FLO<br>(mL p               | )<br>3<br>_µm                              |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRINT<br>PUMP OR TUBING<br>DEPTH IN WELL (feet<br>FIELD DECONTAMIN<br>SAMPLE CONT<br>SAMPLE ID #           | CAPAC<br>NT CODI<br>F) / AFFII<br>t):<br>t):<br>tATION:<br>TAINER SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITY (Gal./<br>ES: B<br>IATION:<br>1.3<br>PUN<br>PECIFICATI                             | Ft.): 1/8" = 0<br>= Bailer;                                                                     | .0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA                         | 6/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>ML CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14: 1/<br>ESP<br>SAMP<br>TURE(S<br>HDPE<br>BING<br>SERVATIO                                 | 4" = 0.00<br>= Electri<br>PLING<br>):<br>of N<br>)N (includi<br>TAL VOL                                                                 | D26;<br>ic Subme<br>DAT                    | 5/16" = 0<br>ersible Pu<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                            | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTE<br>ANI<br>Cd, Ci       | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ED AT: 90<br>RED: Y (<br>prment Type:<br>CATE:<br>NDED ANALYS                                                                                                                           | 1/2"<br>Pump<br>(<br>N<br>Y             | SAMPLING<br>SAMPLING<br>ENDED A<br>FILTER                                                     | 5/8" = 0.016<br>ther (Specify<br>G<br>T: ? 0<br>R SIZE:<br>SAMP<br>FLO                        | )<br>_ µm<br>LE PUMP<br>W RATE             |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRINT<br>PUMP OR TUBING<br>DEPTH IN WELL (feet<br>FIELD DECONTAMIN<br>SAMPLE D<br>CODE<br>CONTAINER        | CAPAC<br>NT CODI<br>F) / AFFII<br>t):<br>t):<br>tATION:<br>TAINER SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITY (Gal./<br>ES: B<br>LIATION:<br>DOM<br>D<br>PUN<br>PECIFICATI<br>ATERIAL<br>CODE    | Ft.): 1/8" = 0<br>= Bailer;                                                                     | .0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA<br>N<br>S<br>PRESER     | 6/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>ML CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14: 1/<br>ESP<br>SAMP<br>TURE(S<br>HDPE<br>BING<br>SERVATIO                                 | 4" = 0.00<br>= Electri<br>PLING<br>):<br>of N<br>N (includi<br>TAL VOL<br>IN FIELD                                                      | D26;<br>ic Subme<br>DAT                    | 5/16" = 0<br>ersible Pu<br>A<br>Fi<br>b)<br>FINAL<br>pH                                         | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTE<br>ANI<br>Cd, Ci       | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90<br>RED: Y<br>prment Type:<br>CATE:<br>NDED ANALYS<br>D/OR METHOD<br>, Pb, Ag by E                                                                                      | 1/2"<br>Pump<br>(<br>N<br>Y             | SAMPLING<br>EQUIPMENT<br>CODE                                                                 | 5/8" = 0.016<br>ther (Specify<br>G<br>T: ? 6<br>R SIZE:<br>SAMP<br>FLO<br>(mL p               | )<br>_ µm<br>LE PUMP<br>W RATE             |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRINT<br>PUMP OR TUBING<br>DEPTH IN WELL (feet<br>FIELD DECONTAMIN<br>SAMPLE D<br>CODE<br>CONTAINER        | CAPAC<br>NT CODI<br>F) / AFFII<br>t):<br>t):<br>tATION:<br>TAINER SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITY (Gal./<br>ES: B<br>LIATION:<br>DOM<br>D<br>PUN<br>PECIFICATI<br>ATERIAL<br>CODE    | Ft.): 1/8" = 0<br>= Bailer;                                                                     | .0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA<br>N<br>S<br>PRESER     | 6/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>ML CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14: 1/<br>ESP<br>SAMP<br>TURE(S<br>HDPE<br>BING<br>SERVATIO                                 | 4" = 0.00<br>= Electri<br>PLING<br>:<br>r<br>N (includi<br>TAL VOL<br>IN FIELD                                                          | D26;<br>ic Subme<br>DAT                    | 5/16" = 0<br>ersible Pu<br>A<br>Fi<br>b)<br>FINAL<br>pH                                         | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTE<br>ANI<br>Cd, Ci       | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90<br>RED: Y<br>prment Type:<br>CATE:<br>NDED ANALYS<br>D/OR METHOD<br>, Pb, Ag by E                                                                                      | 1/2"<br>Pump<br>(<br>N<br>Y             | SAMPLING<br>EQUIPMENT<br>CODE                                                                 | 5/8" = 0.016<br>ther (Specify<br>G<br>T: ? 6<br>R SIZE:<br>SAMP<br>FLO<br>(mL p               | )<br>_ µm<br>LE PUMP<br>W RATE             |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRINT<br>PUMP OR TUBING<br>DEPTH IN WELL (feet<br>FIELD DECONTAMIN<br>SAMPLE D<br>CODE<br>CONTAINER        | CAPAC<br>NT CODI<br>F) / AFFII<br>t):<br>t):<br>tATION:<br>TAINER SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITY (Gal./<br>ES: B<br>LIATION:<br>DOM<br>D<br>PUN<br>PECIFICATI<br>ATERIAL<br>CODE    | Ft.): 1/8" = 0<br>= Bailer;                                                                     | .0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA<br>N<br>S<br>PRESER     | 6/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>ML CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14: 1/<br>ESP<br>SAMP<br>TURE(S<br>HDPE<br>BING<br>SERVATIO                                 | 4" = 0.00<br>= Electri<br>PLING<br>:<br>r<br>N (includi<br>TAL VOL<br>IN FIELD                                                          | D26;<br>ic Subme<br>DAT                    | 5/16" = 0<br>ersible Pu<br>A<br>Fi<br>b)<br>FINAL<br>pH                                         | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTE<br>ANI<br>Cd, Ci       | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90<br>RED: Y<br>prment Type:<br>CATE:<br>NDED ANALYS<br>D/OR METHOD<br>, Pb, Ag by E                                                                                      | 1/2"<br>Pump<br>(<br>N<br>Y             | SAMPLING<br>EQUIPMENT<br>CODE                                                                 | 5/8" = 0.016<br>ther (Specify<br>G<br>T: ? 6<br>R SIZE:<br>SAMP<br>FLO<br>(mL p               | )<br>_ µm<br>LE PUMP<br>W RATE             |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRINT<br>PUMP OR TUBING<br>DEPTH IN WELL (feet<br>FIELD DECONTAMIN<br>SAMPLE CONT<br>SAMPLE ID #<br>CODE # | CAPAC<br>NT CODI<br>F) / AFFII<br>t):<br>t):<br>tATION:<br>TAINER SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITY (Gal./<br>ES: B<br>LIATION:<br>DOM<br>D<br>PUN<br>PECIFICATI<br>ATERIAL<br>CODE    | Ft.): 1/8" = 0<br>= Bailer;                                                                     | .0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA<br>N<br>S<br>PRESER     | 6/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>ML CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14: 1/<br>ESP<br>SAMP<br>TURE(S<br>HDPE<br>BING<br>SERVATIO                                 | 4" = 0.00<br>= Electri<br>PLING<br>:<br>r<br>N (includi<br>TAL VOL<br>IN FIELD                                                          | D26;<br>ic Subme<br>DAT                    | 5/16" = 0<br>ersible Pu<br>A<br>Fi<br>b)<br>FINAL<br>pH                                         | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTE<br>ANI<br>Cd, Ci       | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90<br>RED: Y<br>prment Type:<br>CATE:<br>NDED ANALYS<br>D/OR METHOD<br>, Pb, Ag by E                                                                                      | 1/2"<br>Pump<br>(<br>N<br>Y             | SAMPLING<br>EQUIPMENT<br>CODE                                                                 | 5/8" = 0.016<br>ther (Specify<br>G<br>T: ? 6<br>R SIZE:<br>SAMP<br>FLO<br>(mL p               | )<br>_ µm<br>LE PUMP<br>W RATE             |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRINT<br>PUMP OR TUBING<br>DEPTH IN WELL (feet<br>FIELD DECONTAMIN<br>SAMPLE CONT<br>SAMPLE ID #<br>CODE # | CAPAC<br>NT CODI<br>F) / AFFII<br>t):<br>t):<br>tATION:<br>TAINER SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITY (Gal./<br>ES: B<br>LIATION:<br>DOM<br>D<br>PUN<br>PECIFICATI<br>ATERIAL<br>CODE    | Ft.): 1/8" = 0<br>= Bailer;                                                                     | .0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA<br>N<br>S<br>PRESER     | 6/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>ML CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14: 1/<br>ESP<br>SAMP<br>TURE(S<br>HDPE<br>BING<br>SERVATIO                                 | 4" = 0.00<br>= Electri<br>PLING<br>:<br>r<br>N (includi<br>TAL VOL<br>IN FIELD                                                          | D26;<br>ic Subme<br>DAT                    | 5/16" = 0<br>ersible Pu<br>A<br>Fi<br>b)<br>FINAL<br>pH                                         | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTE<br>ANI<br>Cd, Ci       | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90<br>RED: Y<br>prment Type:<br>CATE:<br>NDED ANALYS<br>D/OR METHOD<br>, Pb, Ag by E                                                                                      | 1/2"<br>Pump<br>(<br>N<br>Y             | SAMPLING<br>EQUIPMENT<br>CODE                                                                 | 5/8" = 0.016<br>ther (Specify<br>G<br>T: ? 6<br>R SIZE:<br>SAMP<br>FLO<br>(mL p               | )<br>_ µm<br>LE PUMP<br>W RATE             |
| TUBING INSIDE DIA.<br>PURGING EQUIPMEN<br>SAMPLED BY (PRINT<br>PUMP OR TUBING<br>DEPTH IN WELL (feet<br>FIELD DECONTAMIN<br>SAMPLE D #<br>CODE #<br>CONTAINER    | CAPAC<br>NT CODI<br>) / AFFII<br>) / AFFII<br>(ATION:<br>CAINER SI<br>CAINER SI | ITY (Gal./<br>ES: B<br>LIATION:<br>Dov S<br>PUN<br>PECIFICATI<br>ATERIAL<br>CODE<br>PE | Ft.): 1/8" = 0<br>= Bailer;<br>MP Y N<br>ION<br>VOLUME<br>250 ml                                | 0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA<br>PRESER<br>USI<br>HNO3 | B/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>R(S) SIGNA<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED<br>++ 1Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 114: 1/<br>ESP<br>SAMP<br>TURE(S<br>HDPE<br>BING<br>SERVATIC<br>ADDED<br>N                  | 4* = 0.00<br>= Electri<br>PLING<br>:<br>ON (includi<br>TAL VOL<br>N FIELD<br>IONE                                                       | D26;<br>ic Subme<br>DAT                    | 5/16" = 0<br>ersible Pu<br>A<br>Fi<br>b)<br>FINAL<br>pH                                         | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTE<br>ANI<br>Cd, Ci       | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90<br>RED: Y<br>prment Type:<br>CATE:<br>NDED ANALYS<br>D/OR METHOD<br>, Pb, Ag by E                                                                                      | 1/2"<br>Pump<br>(<br>N<br>Y             | SAMPLING<br>EQUIPMENT<br>CODE                                                                 | 5/8" = 0.016<br>ther (Specify<br>G<br>T: ? 6<br>R SIZE:<br>SAMP<br>FLO<br>(mL p               | )<br>_ µm<br>LE PUMP<br>W RATE             |
| TUBING INSIDE DIA. PURGING EQUIPMEN SAMPLED BY (PRIM PUMP OR TUBING DEPTH IN WELL (feet FIELD DECONTAMIN SAMPLE ID SAMPLE ID CONTAINEN 1                         | CAPAC<br>NT CODI<br>F) / AFFII<br>HATION:<br>AINER SI<br>RS M<br>CALL<br>CALL<br>AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ITY (Gal./<br>ES: B<br>JATION:<br>PUM<br>PECIFICATI<br>ATERIAL<br>CODE<br>PE           | Ft.): 1/8" = 0<br>= Bailer;<br>MECT<br>IP Y N<br>ION<br>VOLUME<br>250 ml<br>3300 f<br>Glass; CG | 0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA<br>PRESER<br>USH<br>HNO3 | B/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>AL CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED<br>++ 1Ce<br>AL CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED<br>++ 1Ce<br>AL CODE:<br>TUB<br>SAMPLE PRE<br>D<br>AL CODE:<br>TUB<br>AL CODE:<br>TUB<br>SAMPLE PRE<br>D<br>AL CODE:<br>TUB<br>AL CODE: |                                                                                             | 4" = 0.00<br>= Electri<br>PLING<br>:<br>ON (includi<br>TAL VOL<br>IN FIELD<br>IONE                                                      | D26;                                       | 5/16* = 0<br>ersible Po<br>A<br>Fi<br>d)<br>=)<br>FINAL<br>pH<br>                               | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTEL<br>ANI<br>Cd, Ci<br>M | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ING<br>ED AT: 90<br>RED: Y<br>prment Type:<br>CATE:<br>NDED ANALYS<br>D/OR METHOD<br>, Pb, Ag by E                                                                                      | 1/2"<br>Pump<br>(<br>N<br>Y<br>IS<br>PA | = 0.010;<br>; O = Ot<br>SAMPLINE<br>ENDED A<br>FILTER<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP | 5/8" = 0.016<br>ther (Specify<br>G<br>T: ? 6<br>R SIZE:<br>SAMP<br>FLO<br>(mL p               | )<br>µm<br>LE PUMP<br>W RATE<br>er minute) |
| TUBING INSIDE DIA. PURGING EQUIPMEN SAMPLED BY (PRIM PUMP OR TUBING DEPTH IN WELL (feel FIELD DECONTAMIN SAMPLE CONT SAMPLE ID CODE CONTAINEN                    | CAPAC<br>NT CODI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ITY (Gal./<br>ES: B<br>JATION:<br>PUM<br>PECIFICATI<br>ATERIAL<br>CODE<br>PE           | Ft.): 1/8" = 0<br>= Bailer;                                                                     | 0006; 3<br>BP = Blad<br>SAMPLEI<br>TUBING<br>MATERIA<br>PRESER<br>USI<br>HNO3 | B/16" = 0.00<br>der Pump;<br>R(S) SIGNA<br>R(S) SIGNA<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED<br>+ 1Ce<br>AL CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED<br>+ 1Ce<br>AL CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED<br>+ 1Ce<br>AL CODE:<br>TUB<br>SAMPLE PRE<br>VATIVE<br>ED<br>+ 1Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114: 1/<br>ESP<br>SAMP<br>TURE(S<br>ING `<br>SERVATIC<br>SERVATIC<br>ADDED<br>N<br>SERVATIC | 4* = 0.00<br>= Electri<br>LING<br>:<br>r N<br>in (includi<br>TAL VOL<br>IN FIELD<br>JONE<br>DN (includi<br>M FIELD<br>JONE<br>B = Baild | Polyether; E                               | 5/16* = 0<br>ersible Pu<br>A<br>FI<br>J<br>FINAL<br>pH<br><br><br><br><br><br><br><br><br><br>- | .004; 3/<br>imp; P<br>SAMPL<br>INITIAT<br>ELD-FILTEF<br>tration Equi<br>DUPLIC<br>INTEL<br>ANI<br>Cd, Ci<br>M | B <sup>*</sup> = 0.006;<br>P = Peristaltic<br>ING 90<br>ED AT: 90<br>RED: Y (<br>priment Type:<br>CATE:<br>NDED ANALYS<br>WOR METHOD<br>; Pb, Ag by E<br>ethod 200.8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1/2" Pump IS PA Volvethy ectric S       | = 0.010;<br>; O = Ot<br>SAMPLINE<br>ENDED A<br>FILTER<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP | 5/8" = 0.016<br>ther (Specify<br>G ? 0 0<br>R SIZE:<br>R SIZE:<br>SAMP<br>FLO<br>(mL p<br>303 | )<br>µm<br>LE PUMP<br>W RATE<br>er minute) |

16 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

# DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

| SITE                                                                                       | fety Kleen                                                                                                                                                   | Systems,                                                                                                                                      | Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                      | SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TION 8754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 NW C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )5 <sup>th</sup> S                                | Street N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /ledley, FL                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                                              |                                       |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|
| WELL NO:                                                                                   |                                                                                                                                                              | oystems,                                                                                                                                      | 110.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMP                                                                                                                                                                                    | IEID·M                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE:                                                                                                                                                                                                                                                                                                                                            | 18/22                                                                                                                             |                                                                                              |                                       |
|                                                                                            |                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GAMI                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ING DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 4                                                                                                                                                                                                                                                                                                                                              | 10/22                                                                                                                             |                                                                                              |                                       |
| WELL                                                                                       |                                                                                                                                                              | TUBING                                                                                                                                        | 3 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-OD W                                                                                                                                                                                  | VELL SCR                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IC DEF                                            | РТН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PU                                                                                                                                                                                                                                                                                                                                               | RGE PUMP TY                                                                                                                       | PE                                                                                           |                                       |
| DIAMETER                                                                                   | . ,                                                                                                                                                          | DIAMET                                                                                                                                        | FER (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/8-ID D                                                                                                                                                                                | EPTH: 2                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | то w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATER                                              | (feet):3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80 OR                                                                                                                                                                                                                                                                                                                                            | BAILER:                                                                                                                           | PP                                                                                           |                                       |
|                                                                                            | UME PURGE:<br>if applicable)                                                                                                                                 | 1 WELL VOI                                                                                                                                    | UME = (TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAL WELL D                                                                                                                                                                              | EPTH –                                                                                                                                                                               | STATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEPTH TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WATER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | хv                                                | VELL CAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACITY                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                                              |                                       |
|                                                                                            | ,                                                                                                                                                            |                                                                                                                                               | = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.                                                                                                                                                                                     | 4 feet –                                                                                                                                                                             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>()</b> f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eet) X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | ).16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  | oot = [.2                                                                                                                         | 2g                                                                                           | allons                                |
|                                                                                            | T VOLUME P                                                                                                                                                   | URGE: 1 EQU                                                                                                                                   | IPMENT VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L. = PUMP V                                                                                                                                                                             | OLUME +                                                                                                                                                                              | (TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TUB                                               | ING LENG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TH) + FLOW CI                                                                                                                                                                                                                                                                                                                                    | ELL VOLUME                                                                                                                        |                                                                                              |                                       |
| · ·                                                                                        |                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                                                                                                                                                                       | gallons +                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | foot X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet) +                                                                                                                                                                                                                                                                                                                                          | gallons =                                                                                                                         | = gall                                                                                       | ons                                   |
| INITIAL PUI<br>DEPTH IN V                                                                  | MP OR TUBIN<br>WELL (feet):                                                                                                                                  | <sup>16</sup> 45                                                                                                                              | FINAL PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MP OR TUBI                                                                                                                                                                              |                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PURGING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT: QL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a                                                 | PURGIN<br>ENDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  | TOTAL VOL<br>PURGED (g                                                                                                            | UME                                                                                          | 3                                     |
|                                                                                            | ( /                                                                                                                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |                                                                                              | 0                                     |
| TIME                                                                                       | VOLUME<br>PURGED<br>(gallons)                                                                                                                                | CUMUL.<br>VOLUME<br>PURGED<br>(gallons)                                                                                                       | PURGE<br>RATE<br>(gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DEPTH<br>TO<br>WATER<br>(feet)                                                                                                                                                          | pH<br>(standa<br>units                                                                                                                                                               | aro (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MP. (circl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DND.<br>e units)<br>hos/m<br>µS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OX<br>(circl                                      | OLVED<br>YGEN<br>le units)<br>g/or<br>atturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TURBIDITY<br>(NTUs)                                                                                                                                                                                                                                                                                                                              | COLOR<br>(describe)                                                                                                               | ODOR<br>(describe)                                                                           | ORP                                   |
|                                                                                            |                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |                                                                                              |                                       |
| 1005                                                                                       | ≂1,3                                                                                                                                                         | 5-1,3                                                                                                                                         | D.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.90                                                                                                                                                                                    | 2.2                                                                                                                                                                                  | 22 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.94 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _0,                                               | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.69                                                                                                                                                                                                                                                                                                                                             | Clear                                                                                                                             | ugenre                                                                                       | =286                                  |
| 1008                                                                                       | 0,24                                                                                                                                                         | 1.54                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.90                                                                                                                                                                                    | 7,2                                                                                                                                                                                  | 0 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.80 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.                                                | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-84                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                 | 1                                                                                            | - 290                                 |
| 1011                                                                                       | 0-24                                                                                                                                                         | 1.78                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.90                                                                                                                                                                                    | 71                                                                                                                                                                                   | 1 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .77 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,93                                                                                                                                                                                                                                                                                                                                             | d                                                                                                                                 | 2                                                                                            | -294                                  |
|                                                                                            |                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.10                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ur                                                | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.1                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                                              | ~~~                                   |
|                                                                                            |                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |                                                                                              |                                       |
|                                                                                            |                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |                                                                                              |                                       |
|                                                                                            |                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |                                                                                              |                                       |
| WELL CAP                                                                                   | ACITY (Gallor                                                                                                                                                | ns Per Foot):                                                                                                                                 | <b>0.75</b> " = 0.02;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>1"</b> = 0.04                                                                                                                                                                        | ; 1.25"                                                                                                                                                                              | = 0.06;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>2</b> " = 0.16;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>3</b> " = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .37:                                              | <b>4"</b> = 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ; 5" = 1.02;                                                                                                                                                                                                                                                                                                                                     | <b>6</b> " = 1.47:                                                                                                                | <b>12" =</b> 5.88                                                                            |                                       |
| TUBING IN                                                                                  | SIDE DIA. CA                                                                                                                                                 | ns Per Foot):<br>PACITY (Gal./                                                                                                                | Ft.): 1/8" = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0006; <b>3/</b>                                                                                                                                                                       | 16" = 0.00                                                                                                                                                                           | )14; <b>1</b> /-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>t"</b> = 0.0026;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5/16"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ' = 0.00                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | " = 0.006; 1 <i>1</i>                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   | <b>12"</b> = 5.88<br><b>5/8"</b> = 0.016                                                     |                                       |
| TUBING IN                                                                                  |                                                                                                                                                              | PACITY (Gal./                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         | 16" = 0.00<br>er Pump;                                                                                                                                                               | 014; 1/4<br>ESP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #" = 0.0026;<br>= Electric SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/16"<br>bmersible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ' = 0.00                                          | 04; <b>3/8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  | <b>2" =</b> 0.010;                                                                                                                |                                                                                              |                                       |
| TUBING IN<br>PURGING I<br>SAMPLED                                                          | SIDE DIA. CA                                                                                                                                                 | AFFILIATION:                                                                                                                                  | Ft.): 1/8" = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0006; <b>3/</b>                                                                                                                                                                       | 16" = 0.00<br>er Pump;<br>(S) SIGNA                                                                                                                                                  | 14; 1/<br>ESP<br>SAMP<br>TURE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •" = 0.0026;<br>= Electric SL<br>LING D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/16"<br>bmersible<br>ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ' = 0.00                                          | )4; 3/8'<br>p; PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | " = 0.006; 1/.<br>= Peristaltic Pu                                                                                                                                                                                                                                                                                                               | 2" = 0.010;<br>mp; O = O<br>SAMPLIN                                                                                               | <b>5/8"</b> = 0.016<br>ther (Specify)<br>G                                                   | ¢                                     |
| TUBING IN<br>PURGING I<br>SAMPLED                                                          |                                                                                                                                                              | AFFILIATION:                                                                                                                                  | Ft.): 1/8" = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D.0006; 3/<br>BP = Bladd<br>SAMPLER<br>TUBING                                                                                                                                           | 16" = 0.00<br>er Pump;<br>(S) SIGNA                                                                                                                                                  | ESP<br>SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #" = 0.0026;<br>= Electric SL<br>LING D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/16"<br>bmersible<br>ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ' = 0.00<br>e Pump                                | 04; <b>3/8</b> '<br>p; <b>PP</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | " = 0.006; 1/<br>= Peristaltic Pur<br>NG<br>ED AT: 1012                                                                                                                                                                                                                                                                                          | 2* = 0.010;<br>mp; <b>O</b> = O<br>SAMPLIN<br>ENDED A                                                                             | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 1/072                                              | 5                                     |
| TUBING IN<br>PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN                                     | SIDE DIA. CA<br>EQUIPMENT                                                                                                                                    | APACITY (Gal./<br>CODES: E                                                                                                                    | Ft.): 1/8" = (<br>s = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D.0006; 3/<br>BP = Bladd<br>SAMPLER<br>TUBING<br>MATERIAL                                                                                                                               | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>Verial<br>CODE:                                                                                                                               | HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #" = 0.0026;<br>= Electric SL<br>LING D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5/16"<br>bmersible<br>ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ' = 0.00<br>e Pump<br>FIEL                        | )4; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | " = 0.006; 1/<br>= Peristaltic Pur<br>NG<br>:D AT: 1012<br>ED: Y N<br>ment Type:                                                                                                                                                                                                                                                                 | 2" = 0.010;<br>mp; O = O<br>SAMPLIN<br>ENDED A<br>) FILTER                                                                        | <b>5/8"</b> = 0.016<br>ther (Specify)<br>G                                                   | 5                                     |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC                      | SIDE DIA. CA<br>EQUIPMENT<br>BY (PRINT)/<br>TUBING<br>WELL (feet):<br>CONTAMINATI                                                                            | APACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>UN: PUN                                                                                         | Ft.): 1/8" = (<br>s = Bailer;<br>MECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D.0006; 3/<br>BP = Bladdo<br>SAMPLER<br>TUBING<br>MATERIAL                                                                                                                              | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>CODE:<br>TUB                                                                                                                                  | BING N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4" = 0.0026;<br>= Electric SL<br>LING D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5/16"<br>bmersible<br>ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ' = 0.00<br>e Pump<br>FIEL                        | )4; <b>3/8</b><br>p; <b>PP</b><br>SAMPLII<br>INITIATE<br>D-FILTERI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | " = 0.006; 1/<br>= Peristaltic Pur<br>NG<br>:D AT: 1012<br>ED: Y N<br>ment Type:                                                                                                                                                                                                                                                                 | 2* = 0.010;<br>mp; <b>O</b> = O<br>SAMPLIN<br>ENDED A                                                                             | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 1.07<br>R SIZE:                                    | μm                                    |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC                      | SIDE DIA. CA<br>EQUIPMENT<br>BY (PRINT)<br>TUBING<br>WELL (feet):<br>CONTAMINATI                                                                             | APACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>UN: PUN<br>ER SPECIFICAT                                                                        | Ft.): 1/8" = (<br>3 = Bailer;<br>/P Y (<br>ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D.0006; 3/<br>BP = Bladdo<br>SAMPLER<br>TUBING<br>MATERIAL<br>N                                                                                                                         | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>CODE:<br>TUB                                                                                                                                  | ESP<br>SAMP<br>TURE(S)<br>HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I = 0.0026;<br>= Electric SL<br>LING D,<br>(N)(repl<br>N (including w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5/16"<br>bmersible<br>ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ' = 0.00<br>e Pump<br>FIELI<br>FIItrat            | )4; 3/8'<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTER<br>tion Equip<br>DUPLIC/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * = 0.006;     1/.       = Peristattic Pure       NG       ED:     Y       Ment Type:       ATE:     Y                                                                                                                                                                                                                                           | 2" = 0.010;<br>mp; O = O<br>SAMPLIN<br>ENDED A<br>) FILTER<br>N<br>SAMPLING<br>EQUIPMENT                                          | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 107<br>R SIZE:<br>SAMPL<br>FLOV                    | _ μm<br>E PUMP<br>VRATE               |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC                      | SIDE DIA. CA<br>EQUIPMENT<br>BY (PRINT)//<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS                                        | AFFILIATION:<br>AFFILIATION:<br>UN: PUN<br>ER SPECIFICAT                                                                                      | Ft.): 1/8" = (<br>= Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D.0006; 3/<br>BP = Bladd<br>SAMPLER<br>TUBING<br>MATERIAL<br>N<br>SA<br>PRESERV.<br>USEL                                                                                                | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>CODE:<br>TUB<br>MPLE PRE                                                                                                                      | 14; 14<br>ESP<br>SAMP<br>SAMP<br>SAMP<br>SAMP<br>SERVATION<br>ADDED 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Image: 100026;           = Electric SL           LING D.           Image: 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/16"<br>bmersible<br>ATA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r = 0.00<br>e Pump<br>FIELI<br>Filtrat            | 04; 3/8'<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>DO-FILTERI<br>DUPLIC/<br>INTENI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * = 0.006; 1/<br>= Peristaltic Pur<br>NG<br>ED AT: 0 2<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>OR METHOD                                                                                                                                                                                                                           | 2" = 0.010;<br>mp: O = O<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE                                    | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 107<br>R SIZE:<br>SAMPL<br>FLOV                    | _ μm<br>E PUMP                        |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | SIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>UBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>3                                            | APACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>UN: PUN<br>IER SPECIFICAT<br>CODE<br>CG                                                         | Ft.): 1/8" = (<br>3 = Bailer;<br>/P Y (<br>ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D.0006; 3/<br>BP = Bladd<br>SAMPLER<br>TUBING<br>MATERIAL<br>N<br>SA<br>PRESERV.                                                                                                        | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>CODE:<br>TUB<br>MPLE PRE                                                                                                                      | 14; 14<br>ESP<br>SAMP<br>SAMP<br>SAMP<br>SAMP<br>SERVATION<br>ADDED 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Image: 100026;         Electric SL           LING D.         Image: 100026;           Image: 100026;         Image: 10 | 5/16"<br>bmersible<br>ATA<br>aced)<br>et ice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r = 0.00<br>e Pump<br>FIELI<br>Filtrat            | 04; 3/8"<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipi<br>DUPLIC/<br>INTENI<br>AND/<br>826<br>Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * = 0.006;     1/.       = Peristattic Pure       NG       ED:     Y       Ment Type:       ATE:     Y                                                                                                                                                                                                                                           | 2" = 0.010;<br>mp; O = O<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP                             | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 107<br>R SIZE:<br>SAMPL<br>FLOV                    | _ μm<br>E PUMP<br>V RATE<br>r minute) |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID         | SIDE DIA. CA<br>EQUIPMENT<br>BY (PRINT)//<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS                                        | AFFILIATION:<br>AFFILIATION:<br>UN: PUN<br>ER SPECIFICAT                                                                                      | Ft.): 1/8" = (<br>= Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D.0006; 3/<br>BP = Bladd<br>SAMPLER<br>TUBING<br>MATERIAL<br>N<br>SA<br>PRESERV.<br>USEL                                                                                                | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>CODE:<br>TUB<br>MPLE PRE<br>ATIVE                                                                                                             | 114; 114<br>ESP<br>SAMP<br>ATURE(S)<br>ING N<br>SERVATIC<br>TO<br>ADDED 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Image: 100026;           = Electric SL           LING D.           Image: 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/16"<br>bmersible<br>ATA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ' = 0.00<br>e Pump<br>FIELC<br>Filtrat<br>HL<br>H | 04; 3/8"<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipi<br>DUPLIC/<br>INTENI<br>AND/<br>8270<br>Organic<br>by EPA<br>8270-Si<br>Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>* = 0.006; 1/. = Peristaltic Purion NG ED: Y N ment Type: ATE: Y DED ANALYSIS OR METHOD i0-Volatile c Compounds</pre>                                                                                                                                                                                                                       | 2" = 0.010;<br>mp; O = O<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP                             | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 1.07<br>R SIZE:<br>SAMPL<br>FLOV<br>(mL pe         | _ μm<br>E PUMP<br>V RATE<br>r minute) |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | SIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>UBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>3                                            | APACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>UN: PUN<br>IER SPECIFICAT<br>CODE<br>CG                                                         | Ft.): 1/8" = (<br>B = Bailer;<br>MP Y (<br>ION<br>VOLUME<br>40 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D.0006; 3/<br>BP = Bladdd<br>SAMPLER<br>TUBING<br>MATERIAL<br>N<br>PRESERV,<br>USET<br>HCI+ I                                                                                           | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>CODE:<br>TUB<br>MPLE PRE<br>ATIVE                                                                                                             | N14; 14<br>ESP<br>SAMP<br>ATURE(S)<br>ING N<br>SERVATIC<br>ADDED 1<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I = 0.0026;<br>= Electric SL<br>LING D,<br>(n) (repl<br>N (including w<br>rAL VOL<br>N FIELD (mL)<br>ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5/16"<br>bmersible<br>ATA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FIELC<br>FIELC<br>Filtrat                         | 04; 3/8"<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipi<br>DUPLIC/<br>INTENI<br>AND/<br>8270<br>Sy EPA<br>8270-Si<br>Organic<br>by EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>* = 0.006; 1/.</li> <li>= Peristaltic Pui</li> <li>NG</li> <li>ED AT: 012</li> <li>ED: Y N</li> <li>ment Type:</li> <li>ATE: Y</li> <li>DED ANALYSIS</li> <li>OR METHOD</li> <li>O-Volatile</li> <li>c Compounds</li> <li>Method 8260</li> <li>emi-Volatile</li> <li>c Compounds</li> <li>Method 8270</li> <li>Pb, Ag by EPA</li> </ul> | 2" = 0.010;<br>mp; O = O<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP                             | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 1.07<br>R SIZE:<br>SAMPL<br>FLOV<br>(mL pe         | _ μm<br>E PUMP<br>V RATE<br>r minute) |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | SIDE DIA. CA<br>EQUIPMENT<br>EQUIPMENT<br>UBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>3                                            | AFFILIATION:<br>AFFILIATION:<br>ION: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG                                                     | Ft.):     1/8" = (       B = Bailer;       MECT       IP     Y       ION       VOLUME       40 ml       1 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D.0006; 3/<br>BP = Bladdd<br>SAMPLER<br>TUBING<br>MATERIAL<br>N<br>PRESERV,<br>USEE<br>HCI+ I<br>ICe                                                                                    | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>Vout<br>CODE:<br>TUB<br>MPLE PRE<br>ATIVE<br>CCE<br>ICCE                                                                                      | N14; 14<br>ESP<br>SAMP<br>ATURE(S)<br>ING N<br>SERVATIC<br>TO<br>ADDED 1<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I = 0.0026;<br>= Electric SL<br>LING D,<br>(n) (repl<br>N (including w<br>rAL VOL<br>N FIELD (mL)<br>ONE<br>ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/16"<br>bmersible<br>ATA<br>aced)<br>et ice)<br>FIN<br>pt<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIELC<br>FIELC<br>Filtrat                         | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipin<br>DUPLIC/<br>INTENI<br>AND/<br>8270-Si<br>Organic<br>by EPA<br>8270-Si<br>Organic<br>by EPA<br>Cd, Cr, F<br>Method 2<br>TRPH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>* = 0.006; 1/.</li> <li>= Peristaltic Pui</li> <li>NG</li> <li>ED AT: 012</li> <li>ED: Y N</li> <li>ment Type:</li> <li>ATE: Y</li> <li>DED ANALYSIS</li> <li>OR METHOD</li> <li>O-Volatile</li> <li>c Compounds</li> <li>Method 8260</li> <li>emi-Volatile</li> <li>c Compounds</li> <li>Method 8270</li> <li>Pb, Ag by EPA</li> </ul> | 2" = 0.010;<br>mp; O = O<br>SAMPLIN<br>ENDED A<br>FILTEF<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP<br>APP                      | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 1.07<br>R SIZE:<br>SAMPL<br>FLOV<br>(mL pe         | _ μm<br>E PUMP<br>V RATE<br>r minute) |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | SIDE DIA. CA<br>EQUIPMENT (<br>BY (PRINT)<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>3<br>1<br>1<br>1<br>2<br>1               | AFFILIATION:<br>AFFILIATION:<br>UN: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CG<br>AG<br>PE                                                        | Ft.): 1/8" = (<br>= Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D.0006; 3/<br>BP = Bladdd<br>SAMPLER<br>TUBING<br>MATERIAL<br>N<br>SA<br>PRESERV.<br>USEL<br>HCI+ I<br>ICE                                                                              | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>(S) SIGNA<br>CODE:<br>TUB<br>MPLE PRE<br>ATIVE<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | N14; 1/4<br>ESP<br>SAMP<br>STURE(S)<br>HDPE<br>NNG Y<br>SERVATION<br>SERVATION<br>ADDED I<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IT = 0.0026;<br>= Electric SL<br>LING D,<br>(N)(repl<br>N (including w<br>FIELD (mL)<br>ONE<br>ONE<br>ONE<br>ONE<br>ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/16"<br>bmersible<br>ATA<br>aced)<br>et ice)<br>FIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I = 0.00<br>e Pump<br>FIELU<br>Filtrat            | 04; 3/8'<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipi<br>DUPLIC/<br>INTENI<br>AND/<br>8270-Si<br>Organic<br>by EPA<br>8270-Si<br>Organic<br>by EPA<br>Cd, Cr, F<br>Method 2<br>TRPH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * = 0.006; 1//<br>= Peristattic Purion<br>NG<br>ED AT: 1012<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>OR METHOD<br>60-Volatile<br>c Compounds<br>Method 8260<br>emi-Volatile<br>c Compounds<br>Method 8270<br>7b, Ag by EPA<br>200.8<br>s by FL-PRO                                                                                  | 2" = 0.010;<br>mp: O = O<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP<br>APP                      | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 1.07<br>R SIZE:<br>SAMPL<br>FLOV<br>(mL pe         | _ μm<br>E PUMP<br>V RATE<br>r minute) |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | SIDE DIA. CA<br>EQUIPMENT (<br>BY (PRINT)<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>3<br>1<br>1<br>1<br>2<br>1               | APACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>UN: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>PE<br>AG                            | Ft.):       1/8" = 0         B = Bailer;       Image: state sta | D.0006; 3/<br>BP = Bladdd<br>SAMPLER<br>TUBING<br>MATERIAL<br>N<br>SA<br>PRESERV,<br>USEI<br>HCI+ I<br>ICe<br>HNO3 +<br>H2SO4                                                           | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>(S) SIGNA<br>CODE:<br>TUB<br>MPLE PRE<br>ATIVE<br>D<br>ICE<br>+ ICE<br>+ ICE                                                                  | N14; 14<br>ESP<br>SAMP<br>TURE(S)<br>ING N<br>SERVATIC<br>ADDED 1<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I = 0.0026;<br>= Electric SL<br>LING D,<br>M(including w<br>ral vol<br>N FIELD (mL)<br>ONE<br>ONE<br>ONE<br>ONE<br>ONE<br>ONE<br>ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/16"<br>bmersible<br>ATA<br>aced)<br>et ice)<br>FIN<br>pt<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i = 0.00<br>e Pump<br>FIELI<br>Filtrat<br>H<br>-  | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipin<br>DUPLIC/<br>INTENI<br>AND/<br>8270<br>0rganic<br>by EPA<br>8270-Si<br>Organic<br>by EPA<br>Cd, Cr, F<br>Method 2<br>TRPH:<br>8277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * = 0.006; 1/.<br>= Peristattic Purion<br>NG<br>ED AT: 1012<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>OR METHOD<br>0-Volatile<br>c Compounds<br>Method 8260<br>emi-Volatile<br>c Compounds<br>Method 8270<br>Pb, Ag by EPA<br>200.8<br>s by FL-PRO<br>Method<br>0 LLPAHS<br>MED ANALYSIS                                             | 2" = 0.010;<br>mp; O = O<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP<br>APP<br>APP               | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 1.07<br>R SIZE:<br>SAMPL<br>FLOV<br>(mL pe         | S<br>_ µm<br>V RATE<br>r minute)<br>3 |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | SIDE DIA. CA<br>EQUIPMENT (<br>BY (PRINT)/<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>MPLE CONTAIN<br>MPLE CONTAIN<br>T<br>1<br>1<br>2<br>1 | AFFILIATION:<br>AFFILIATION:<br>UN: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>A         | Ft.):       1/8" = 0         a = Bailer;         JECT         IP       Y         ION         VOLUME         40 ml         1 L         250 ml         100 ml         250 ml         00 JUNE         Glass;       CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D.0006; 3/<br>BP = Bladdo<br>SAMPLER<br>TUBING<br>MATERIAL<br>N<br>SA<br>PRESERV,<br>USEL<br>HCI+ I<br>ICC<br>HNO3 -<br>H2SO4<br>ICC<br>C<br>= Clear Glas                               | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>(S) SIGNA<br>CODE:<br>TUB<br>MPLE PRE<br>ATIVE<br>ICE<br>+ ICE<br>+ ICE<br>+ ICE                                                              | 14; 14<br>ESP<br>SAMP<br>SAMP<br>ING V<br>SERVATIC<br>ADDED 1<br>N<br>N<br>N<br>N<br>N<br>N<br>PE = High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IT = 0.0026;<br>= Electric SL<br>LING D,<br>(N)(repl<br>N (including w<br>FIELD (mL)<br>ONE<br>ONE<br>ONE<br>ONE<br>ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/16"<br>bmersible<br>ATA<br>aced)<br>et ice)<br>FiN<br>pt<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIELD<br>FIELD<br>FIELD<br>FILT<br>HAL<br>H<br>-  | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipin<br>DUPLIC/<br>INTENI<br>AND/<br>8270<br>0rganic<br>by EPA<br>8270-Sic<br>Organic<br>by EPA<br>Cd, Cr, F<br>Method 2<br>TRPH:<br>1<br>8277<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * = 0.006; 1/.<br>= Peristattic Purion<br>NG<br>ED AT: 1012<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>OR METHOD<br>0-Volatile<br>c Compounds<br>Method 8260<br>emi-Volatile<br>c Compounds<br>Method 8270<br>Pb, Ag by EPA<br>200.8<br>s by FL-PRO<br>Method<br>0 LLPAHS<br>MED ANALYSIS                                             | 2" = 0.010;<br>mp: O = O<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP<br>APP<br>APP<br>APP<br>APP | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 1.07<br>R SIZE:<br>SAMPL<br>FLO7<br>(mL pe         | S<br>_ µm<br>/ RATE<br>r minute)<br>3 |
| TUBING IN<br>PURGING I<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE | SIDE DIA. CA<br>EQUIPMENT (<br>BY (PRINT)/<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>MPLE CONTAIN<br>MPLE CONTAIN<br>T<br>1<br>1<br>2<br>1 | AFFILIATION:<br>AFFILIATION:<br>UN: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>AG<br>A | Ft.):       1/8" = 0         B = Bailer;       Image: Comparison of the second se | D.0006; 3/<br>BP = Bladdo<br>SAMPLER<br>TUBING<br>MATERIAL<br>N<br>SA<br>PRESERV,<br>USEE<br>HCI+ I<br>ICC<br>HNO3 -<br>H2SO4<br>ICC<br>C<br>= Clear Glas<br>; O = Othe<br>Through) Per | 16" = 0.00<br>er Pump;<br>(S) SIGNA<br>(S) SIGNA<br>(CODE:<br>TUB<br>MPLE PRE<br>ATIVE<br>ICE<br>+ ICE<br>+ ICE<br>+ ICE<br>+ ICE<br>+ ICE                                           | M14;         1/4           ESP           SAMP           NTURE(S)           MORE           MORE           NO           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N           N <td></td> <td>5/16"<br/>bmersible<br/>ATA<br/>aced)<br/>et ice)<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>pt<br/>control<br/>FIN<br/>FIN<br/>FIN<br/>FIN<br/>FIN<br/>FIN<br/>FIN<br/>FIN<br/>FIN<br/>FIN</td> <td>FIELD<br/>FIELD<br/>FIELD<br/>FILTAN</td> <td>04; 3/8<br/>p; PP<br/>SAMPLII<br/>INITIATE<br/>D-FILTERI<br/>tion Equipin<br/>DUPLIC/<br/>INTENI<br/>AND/<br/>8270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S270<br/>S</td> <td>* = 0.006; 1//<br/>= Peristattic Purion<br/>NG<br/>ED AT: 1012<br/>ED: Y N<br/>ment Type:<br/>ATE: Y<br/>DED ANALYSIS<br/>OR METHOD<br/>i0-Volatile<br/>c Compounds<br/>Method 8260<br/>emi-Volatile<br/>c Compounds<br/>Method 8270<br/>Pb, Ag by EPA<br/>200.8<br/>s by FL-PRO<br/>Method<br/>0 LLPAHS<br/>Method SD<br/>C SD<br/>W Density Polyee<br/>ESP = Electri</td> <td>2" = 0.010;<br/>mp: O = O<br/>SAMPLIN<br/>ENDED A<br/>FILTER<br/>N<br/>SAMPLING<br/>EQUIPMENT<br/>CODE<br/>APP<br/>APP<br/>APP<br/>APP<br/>APP</td> <td>5/8" = 0.016<br/>ther (Specify)<br/>G<br/>T: 1.07<br/>R SIZE:<br/>SAMPL<br/>FLOV<br/>(mL pe<br/>7 30</td> <td>S<br/>_ µm<br/>VRATE<br/>r minute)<br/>3</td> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/16"<br>bmersible<br>ATA<br>aced)<br>et ice)<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>pt<br>control<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN | FIELD<br>FIELD<br>FIELD<br>FILTAN                 | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipin<br>DUPLIC/<br>INTENI<br>AND/<br>8270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S270<br>S | * = 0.006; 1//<br>= Peristattic Purion<br>NG<br>ED AT: 1012<br>ED: Y N<br>ment Type:<br>ATE: Y<br>DED ANALYSIS<br>OR METHOD<br>i0-Volatile<br>c Compounds<br>Method 8260<br>emi-Volatile<br>c Compounds<br>Method 8270<br>Pb, Ag by EPA<br>200.8<br>s by FL-PRO<br>Method<br>0 LLPAHS<br>Method SD<br>C SD<br>W Density Polyee<br>ESP = Electri  | 2" = 0.010;<br>mp: O = O<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP<br>APP<br>APP<br>APP<br>APP | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 1.07<br>R SIZE:<br>SAMPL<br>FLOV<br>(mL pe<br>7 30 | S<br>_ µm<br>VRATE<br>r minute)<br>3  |

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) 12

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

# DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

|                                                                                   | fety Kleen                                                                                                                                                 | Systems,                                                                                                                            | Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                                                                                                                             | SITE<br>LOCATION:                                                                                                                             | 8755                                                                   | NW 9                                        | 95 <sup>th</sup> S                   | Street, N                                                                                                          | /ledley, F                                                                                                                                                                                                                                                                         | ٦L                                       |                                                                                                    |                                                                                         |                                            |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|
| WELL NO:                                                                          |                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMF                                                                                           | PLE ID: MV                                                                                                                                  | N-3-041                                                                                                                                       |                                                                        |                                             |                                      |                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                          | 18-22                                                                                              |                                                                                         |                                            |
|                                                                                   |                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                             | PURGING                                                                                                                                       |                                                                        |                                             | _                                    |                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                          |                                                                                                    |                                                                                         |                                            |
| WELL                                                                              |                                                                                                                                                            | TUBING                                                                                                                              | ; 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 0 0                                                                                          |                                                                                                                                             | EN INTERVA                                                                                                                                    |                                                                        |                                             | FIC DEI                              |                                                                                                                    | 20.1                                                                                                                                                                                                                                                                               | PUR                                      | GE PUMP TY                                                                                         |                                                                                         |                                            |
|                                                                                   | . ,                                                                                                                                                        |                                                                                                                                     | ER (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 10                                                                                         |                                                                                                                                             | feet to 12 feet<br>STATIC DEPT                                                                                                                |                                                                        |                                             |                                      | (feet): 2                                                                                                          |                                                                                                                                                                                                                                                                                    | OR B                                     | AILER:                                                                                             | PP                                                                                      |                                            |
|                                                                                   | if applicable)                                                                                                                                             | 1 WELL VOL                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                             |                                                                                                                                               |                                                                        |                                             |                                      |                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                          | (a)                                                                                                | 0                                                                                       |                                            |
|                                                                                   |                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.                                                                                            | .6 feet -                                                                                                                                   | 2-84<br>(TUBING CAP                                                                                                                           | fee                                                                    | et) X                                       | )<br>TUD                             | ).16                                                                                                               | gallo<br>(TH) + FLO                                                                                                                                                                                                                                                                |                                          | t = 1.9                                                                                            | U g                                                                                     | allons                                     |
|                                                                                   | if applicable)                                                                                                                                             | URGE: 1 EQU                                                                                                                         | IPMENT VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |                                                                                                                                             | •                                                                                                                                             |                                                                        |                                             | TUB                                  |                                                                                                                    |                                                                                                                                                                                                                                                                                    | V CEL                                    |                                                                                                    |                                                                                         |                                            |
|                                                                                   |                                                                                                                                                            | 0                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | gallons + (                                                                                                                                 | ( 0                                                                                                                                           | allons/fo                                                              |                                             |                                      |                                                                                                                    | feet) +                                                                                                                                                                                                                                                                            | -                                        | gallons =                                                                                          |                                                                                         | lons                                       |
|                                                                                   | MP OR TUBIN<br>WELL (feet):                                                                                                                                | <sup>6</sup> 7.2                                                                                                                    | DEPTH IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MP OR TUB                                                                                      | ): 7/0                                                                                                                                      |                                                                                                                                               | GING<br>ATED AT                                                        | т: <b>9)</b>                                | 3                                    | ENDED                                                                                                              | <sup>G</sup><br>ат:937                                                                                                                                                                                                                                                             |                                          | TOTAL VOLU<br>PURGED (ga                                                                           | allons): [ >                                                                            | 7                                          |
| TIME                                                                              | VOLUME<br>PURGED<br>(gallons)                                                                                                                              | CUMUL.<br>VOLUME<br>PURGED<br>(gallons)                                                                                             | PURGE<br>RATE<br>(gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEPTH<br>TO<br>WATER<br>(feet)                                                                 | pH<br>(standai<br>units)                                                                                                                    |                                                                                                                                               | CON<br>(circle<br>µmbe<br>or<br>us                                     | units)                                      | OX<br>(circ                          | OLVED<br>YGEN<br>JL or<br>aturation                                                                                | TURBIDI'<br>(NTUs)                                                                                                                                                                                                                                                                 |                                          | COLOR<br>(describe)                                                                                | ODOR<br>(describe)                                                                      | ORF                                        |
| 931                                                                               | 1.44                                                                                                                                                       | 644                                                                                                                                 | 0,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,90                                                                                           | 7.13                                                                                                                                        | 23.51                                                                                                                                         | 4                                                                      | 39                                          | 01                                   | G                                                                                                                  | 1.99                                                                                                                                                                                                                                                                               |                                          | Char                                                                                               | Show                                                                                    | -299                                       |
| 934                                                                               | 0,24                                                                                                                                                       | 1.68                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,99                                                                                           | 7,12                                                                                                                                        | 1 23.47                                                                                                                                       | 49                                                                     | D                                           | 010                                  | 19                                                                                                                 | 2122                                                                                                                                                                                                                                                                               | 1                                        |                                                                                                    | andanis                                                                                 | -30                                        |
| 937                                                                               | 0.24                                                                                                                                                       | 1,92                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.99                                                                                           | 7,1                                                                                                                                         | 5 2 3.                                                                                                                                        | 48                                                                     | 9                                           | 01                                   | 09                                                                                                                 | 2,39                                                                                                                                                                                                                                                                               |                                          | U                                                                                                  | T                                                                                       | -30                                        |
|                                                                                   |                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                             |                                                                                                                                               |                                                                        | _                                           |                                      |                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                          |                                                                                                    |                                                                                         |                                            |
|                                                                                   |                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                             |                                                                                                                                               |                                                                        |                                             |                                      |                                                                                                                    |                                                                                                                                                                                                                                                                                    | _                                        |                                                                                                    |                                                                                         |                                            |
|                                                                                   |                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                             |                                                                                                                                               |                                                                        |                                             |                                      |                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                          |                                                                                                    |                                                                                         |                                            |
| WELL CAI                                                                          | DACITY (Gallor                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                             |                                                                                                                                               |                                                                        |                                             |                                      |                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                          |                                                                                                    |                                                                                         |                                            |
| TUBING IN                                                                         |                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                             | = 0.06; <b>2</b> " =<br>14; <b>1/4"</b> = 0                                                                                                   |                                                                        |                                             | ).37;<br>" = 0.00                    | 4" = 0.65<br>)4; 3/8                                                                                               | ; 5" = 1.0<br>= 0.006;                                                                                                                                                                                                                                                             |                                          |                                                                                                    | <b>12</b> " = 5.88<br><b>5/8"</b> = 0.016                                               |                                            |
|                                                                                   |                                                                                                                                                            | PACITY (Gal./                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | / <b>16"</b> = 0.001<br>der Pump;                                                                                                           | 14; <b>1/4"</b> = 0<br>ESP = Elec                                                                                                             | .0026;<br>ctric Subi                                                   | 5/16<br>mersib                              | " = 0.00                             | )4; <b>3/8</b> '                                                                                                   |                                                                                                                                                                                                                                                                                    | 1/2"                                     | = 0.010;                                                                                           |                                                                                         |                                            |
| PURGING                                                                           | ISIDE DÍA. CA<br>EQUIPMENT                                                                                                                                 | PACITY (Gal./<br>CODES: B                                                                                                           | Ft.): <b>1/8"</b> = 0<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0006; 3<br>BP = Blado                                                                        | /16" = 0.001<br>der Pump;                                                                                                                   | 14; 1/4" = 0<br>ESP = Elec<br>SAMPLIN                                                                                                         | .0026;<br>ctric Subi                                                   | 5/16<br>mersib                              | " = 0.00                             | )4; <b>3/8</b> '<br>p; PP                                                                                          | " = 0.006;<br>= Peristaltic                                                                                                                                                                                                                                                        | 1/2"<br>Pump                             | = 0.010;<br>b; <b>O</b> = Ot                                                                       | 5/8" = 0.016<br>ther (Specify                                                           |                                            |
| SAMPLED                                                                           | BY (PRINT) /                                                                                                                                               | PACITY (Gal./<br>CODES: E                                                                                                           | Ft.): <b>1/8"</b> = 0<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0006; 3.<br>BP = Blado<br>SAMPLEF                                                            | /16" = 0.001<br>der Pump;<br>S(S) SIGNA                                                                                                     | 14; 1/4" = 0<br>ESP = Elec<br>SAMPLIN                                                                                                         | .0026;<br>ctric Sub<br><b>G DA</b>                                     | 5/16<br>mersib                              | " = 0.00                             | )4; <b>3/8</b> '<br>p; PP                                                                                          | " = 0.006;<br>= Peristaltic                                                                                                                                                                                                                                                        | 1/2"<br>Pump                             | = 0.010;<br>; O = Ot<br>SAMPLIN<br>ENDED A                                                         | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 9.40                                          | )                                          |
| PURGING<br>SAMPLED<br>PUMP OR                                                     | BY (PRINT) /                                                                                                                                               | PACITY (Gal./<br>CODES: E                                                                                                           | Ft.): 1/8" = 0<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0006; 3<br>BP = Blado<br>SAMPLEF<br>TUBING                                                   | /16" = 0.001<br>der Pump;<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 14: 1/4" = 0<br>ESP = Elect<br>SAMPLIN<br>TURE(S):                                                                                            | .0026;<br>ctric Sub<br><b>G DA</b>                                     | 5/16<br>mersib                              | " = 0.00<br>le Pum<br>FIEL           | )4; <b>3/8</b><br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI                                                        | " = 0.006;<br>= Peristaltic<br>NG<br>ED AT: 243<br>ED: Y                                                                                                                                                                                                                           | 1/2"<br>Pump                             | = 0.010;<br>; O = Ot<br>SAMPLIN<br>ENDED A                                                         | 5/8" = 0.016<br>ther (Specify)                                                          | )                                          |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN                                         | BY (PRINT) /                                                                                                                                               | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>(Son) F<br>7.2                                                                         | Ft.): <b>1/8"</b> = 0<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0006; 3<br>BP = Blado<br>SAMPLEF<br>TUBING                                                   | /16" = 0.001<br>der Pump;<br>S(S) SIGNA                                                                                                     | 14; 1/4" = 0<br>ESP = Elect<br>SAMPLIN<br>TURE(S):<br>HDPE                                                                                    | .0026;<br>ctric Sub<br><b>G DA</b>                                     | 5/16<br>mersib                              | " = 0.00<br>le Pum<br>FIEL           | )4; <b>3/8</b><br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI                                                        | NG<br>ED: Y<br>ment Type:                                                                                                                                                                                                                                                          | 1/2"<br>Pump                             | = 0.010;<br>; O = Ot<br>SAMPLIN<br>ENDED A                                                         | 5/8" = 0.016<br>ther (Specify)<br>G<br>T: 9.40                                          | )                                          |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC                            | ISIDE DIA. CA<br>EQUIPMENT<br>BY (PRINT) /<br>TUBING<br>WELL (feet):                                                                                       | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>7.2<br>ION: PUN                                                                        | Ft.): <b>1/8"</b> = (<br>= Bailer;<br>MP Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0006; 3,<br>BP = Blado<br>SAMPLEF<br>TUBING<br>MATERIA<br>N                                  | /16" = 0.001<br>der Pump;<br>S(S) SIGNA<br>CODE:<br>L CODE:<br>TUBI                                                                         | 14; 1/4" = 0<br>ESP = Elect<br>SAMPLIN<br>TURE(S):<br>HDPE                                                                                    | .0026;<br>ctric Suba<br>G DA                                           | 5/16<br>mersib<br>TA                        | " = 0.00<br>le Pum<br>FIEL           | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/                                     | " = 0.006;<br>= Peristaltic<br>DAT: 43<br>ED: 43<br>Ment Type:<br>ATE:                                                                                                                                                                                                             | 1/2"<br>c Pump<br>8<br>8<br>N<br>Y       | SAMPLIN<br>ENDED A<br>FILTEF                                                                       | 5/8" = 0.016<br>her (Specify<br>G<br>T: <u>9,40</u><br>R SIZE:                          | )                                          |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID               | ISIDE DIA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#                                               | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>7.2<br>ION: PUN<br>ER SPECIFICAT<br>MATERIAL                                           | Ft.): <b>1/8"</b> = (<br>= Bailer;<br>MP Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0006; 3<br>BP = Blado<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>SA<br>PRESERV                  | Infer = 0.001<br>der Pump;<br>(S) SIGNAT<br>(CODE:<br>TUBI<br>AMPLE PRES<br>VATIVE                                                          | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC                                             | .0026;<br>ctric Subr<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | " = 0.00<br>le Pum<br>FIEL<br>Filtra | )4; 3/8'<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipi<br>DUPLIC/                                    | NG<br>ED: Y<br>ment Type:                                                                                                                                                                                                                                                          | 1/2"<br>c Pump<br>8<br>8<br>N<br>Y<br>IS | = 0.010;<br>; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTEF                                               | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 9.40<br>R SIZE:<br>SAMPI<br>FLOV               | )<br>μm                                    |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE       | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1                            | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>7_2<br>ON: PUN<br>ER SPECIFICAT                                                        | Ft.): 1/8" = (<br>3 = Bailer;<br>AP Y (<br>ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N                                   | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE                                                           | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl                                                         | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | " = 0.00<br>le Pum<br>FIEL<br>Filtra | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN:<br>ENDED A<br>FILTEF<br>N<br>SAMPLING<br>EQUIPMENT               | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE       | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1                            | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>0N: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE                                           | Ft.):         1/8" = (           B = Bailer;         Image: second s | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERL<br>USE           | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE                                                           | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL                            | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | FIEL<br>FIEL<br>Filtra               | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | # = 0.006;         = Peristaltic         NG         ED AT:         ED:       Y         ment Type:         ATE:         DED ANALYS         OR METHOD                                                                                                                                | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 9.40<br>R SIZE:<br>SAMPI<br>FLOV               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1                            | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>0N: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE                                           | Ft.):         1/8" = (           B = Bailer;         Image: second s | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERL<br>USE           | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE                                                           | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL                            | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | FIEL<br>FIEL<br>Filtra               | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE       | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1                            | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>0N: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE                                           | Ft.):         1/8" = (           B = Bailer;         Image: second s | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERL<br>USE           | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE                                                           | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL                            | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | FIEL<br>FIEL<br>Filtra               | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE       | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1                            | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>0N: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE                                           | Ft.):         1/8" = (           B = Bailer;         Image: second s | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERL<br>USE           | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE                                                           | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL                            | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | FIEL<br>FIEL<br>Filtra               | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE       | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1                            | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>0N: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE                                           | Ft.):         1/8" = (           B = Bailer;         Image: second s | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERL<br>USE           | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE                                                           | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL                            | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | FIEL<br>FIEL<br>Filtra               | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE       | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1                            | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>0N: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE                                           | Ft.):         1/8" = (           B = Bailer;         Image: second s | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERL<br>USE           | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE                                                           | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL                            | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | FIEL<br>FIEL<br>Filtra               | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE       | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>#<br>CONTAINERS<br>1                            | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>0N: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE                                           | Ft.):         1/8" = (           B = Bailer;         Image: second s | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERL<br>USE           | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE                                                           | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL                            | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | FIEL<br>FIEL<br>Filtra               | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>1                                 | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>7.2<br>ON: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>PE                              | Ft.):       1/8" = 1         3 = Bailer;         AP         Y         ION         VOLUME         250 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0006; 3.<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>S.<br>PRESERV<br>USE<br>HNO3- | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE                                                           | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL                            | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | FIEL<br>FIEL<br>Filtra               | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAMPLE ID<br>CODE       | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>CONTAINERS<br>1                                 | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>7.2<br>ON: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>PE                              | Ft.):         1/8" = (           B = Bailer;         Image: second s | 0.0006; 3<br>BP = Blado<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>SA<br>PRESERV<br>HNO3          | /16" = 0.001<br>der Pump;<br>S(S) SIGNAT<br>CODE:<br>TUBI<br>AMPLE PRES<br>VATIVE<br>D<br>+ ICE                                             | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>MOPE<br>ING Y<br>SERVATION (incl<br>ADDED IN FIEL<br>NONE                                | .0026;<br>ctric Subt<br>G DA<br>N replac<br>uding wet                  | 5/16<br>mersib<br>TA<br>ced)<br>ice)        | FIEL<br>FIEL<br>Filtra               | 04; 3/8<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipt<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,        | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>c Pump<br>N<br>Y<br>IS           | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTER<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE        | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>LE PUMP<br>W RATE               |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SA<br>SAMPLE ID<br>CODE | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>MPLE CONTAIN<br>MPLE CONTAIN<br>CONTAINERS<br>1 | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>7.2<br>ON: PUN<br>ER SPECIFICAT<br>MATERIAL<br>CODE<br>PE<br>PE                        | Ft.): 1/8" = (<br>B = Bailer;<br>MP Y (<br>ION<br>VOLUME<br>250 ml<br>50 ml<br>6 ass; CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0006; 3<br>BP = Bladd<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>PRESERV<br>USE<br>HINO3        | /16" = 0.001<br>der Pump;<br>S(S) SIGNA<br>CODE:<br>TUBI<br>AMPLE PRES<br>/ATIVE<br>D<br>+ ICe                                              | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>SERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL<br>NONE<br>PE = High Dense | .0026;<br>ctric Subr<br>G DA<br>N replac<br>uding wet<br>DL<br>.D (mL) | 5/16<br>mersib<br>TA<br>ced)<br>ice)<br>FII | VAL                                  | 04; 3/8'<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipi<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,<br>Me | " = 0.006;         = Peristaltic         NG         ED AT:         20 AT:         21 AT:         22 ATE:         DED ANALYS         ORD ATHOD         Pb, Ag by E                                                                                                                  | 1/2"<br>E Pump<br>N<br>Y<br>IS<br>PA     | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTEF<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>FLOV<br>(mL pe               | )<br>µm<br>VRATE<br>pr minute)             |
| PURGING<br>SAMPLED<br>PUMP OR<br>DEPTH IN<br>FIELD DEG<br>SAMPLE ID<br>CODE       | ISIDE DÍA. CA<br>EQUIPMENT (<br>BY (PRINT) / /<br>TUBING<br>WELL (feet):<br>CONTAMINATI<br>MPLE CONTAIN<br>MPLE CONTAIN<br>MPLE CONTAIN<br>CONTAINERS<br>1 | PACITY (Gal./<br>CODES: E<br>AFFILIATION:<br>DN: PUN<br>ER SPECIFICAT<br>MATERIAL<br>ODE<br>PE<br>PE<br>AG = Amber<br>S = Sillcone; | Ft.): 1/8" = (<br>3 = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0006; 3<br>BP = Blado<br>SAMPLEF<br>TUBING<br>MATERIA<br>N<br>PRESERV<br>HNO3                | /16" = 0.001<br>der Pump;<br>S(S) SIGNA<br>CODE:<br>TUBI<br>AMPLE PRES<br>VATIVE<br>D<br>+ Ice<br>ss; HDF<br>er (Specify)                   | 14: 1/4" = 0<br>ESP = Elec<br>SAMPLIN<br>TURE(S):<br>HDPE<br>ING Y<br>ESERVATION (incl<br>TOTAL VC<br>ADDED IN FIEL<br>NONE<br>PE = High Den: | sity Polye                                                             | 5/16<br>mersib<br>TA<br>ced)<br>ice)<br>FII | r = 0.00<br>le Pum<br>FIEL<br>Filtra | 04; 3/8'<br>p; PP<br>SAMPLII<br>INITIATE<br>D-FILTERI<br>tion Equipi<br>DUPLIC/<br>INTENI<br>AND/<br>Cd, Cr,<br>Me | <pre>m = 0.006;<br/>= Peristaltic<br/>NG 04<br/>ED AT: 04<br/>ED: Y 05<br/>ment Type:<br/>ATE:<br/>DED ANALYS<br/>OR METHOD<br/>Pb, Ag by E<br/>thod 200.8<br/>7<br/>7<br/>8<br/>8<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9</pre> | 1/2"<br>Pump<br>P<br>IS<br>PA            | = 0.010;<br>c; O = Ot<br>SAMPLIN<br>ENDED A<br>FILTEF<br>N<br>SAMPLING<br>EQUIPMENT<br>CODE<br>APP | 5/8" = 0.016<br>ther (Specify<br>G<br>T: 940<br>R SIZE:<br>SAMP<br>FLO<br>(mL pe<br>303 | )<br>µm<br>LE PUMP<br>W RATE<br>er minute) |

19 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

| FIE                           | LD INSTRUMEN        | T CALIBRAT         | ION REG    | CORDS - EXA               | MPLE CALIBI        | RATION LOG -         | PRP                                     |         |        |
|-------------------------------|---------------------|--------------------|------------|---------------------------|--------------------|----------------------|-----------------------------------------|---------|--------|
| Project Site/FacID:           | ion: Keime          | 2 Momor            | nlec       | J Kouch                   | Fragm              |                      | Boldly "X" this bo<br>qualified data on | -       |        |
| Temperature (Quarterly)       | Date of La          | ast Temp Ve        | erificatio |                           |                    | See log book:        |                                         |         |        |
| DISSOLVED OXYGEN (DO) (       | REFERENCE: DEP      | SOP FT 1500        | )}         |                           | Acceptance C       | Criteria +/-0.3 n    | ng DO/L                                 |         |        |
| Meter/Instrument Nar          | me and Unique ID:   | YSIS               | 536 r      | NPSISN.                   | # 04D 8            | 023 AP               |                                         |         |        |
| Initials D                    | ate Time            | Standard<br>(DO %) | Temp<br>°C | Saturation<br>mg/L (100%) | Response DO<br>(%) | Deviation<br>mg DO/L | Deviation<br>mg DO/L                    | Pass or | r Fail |
| CAL ICV CCV 12m 4-            | 1822 645            | 100%               | 20.0       | 100.69.                   | 9100.3             | 9.2                  | 0.11                                    | P       | F      |
| CAL ICV (CC) 12m 4-1          | 9-22 1550           | <u>100%</u>        | 21.2       | 8.98                      | 100.1              | 9.02                 | 0.15                                    | P       | F      |
| CAL ICV CCV                   |                     | <u>100%</u>        |            |                           |                    |                      |                                         | Ρ       | F      |
| CAL ICV CCV                   |                     | <u>100%</u>        |            | <u></u>                   |                    |                      |                                         | Ρ       | F      |
| CAL ICV CCV                   |                     | <u>100%</u>        |            |                           |                    |                      |                                         | Р       | F      |
| CAL ICV CCV                   |                     | <u>100%</u>        |            | . <u> </u>                |                    |                      |                                         | Р       | F      |
| See Table FT 1500-1 and/or Ta | ble FS 2200-2 for D | issolved Oxyg      | en Satura  | ition correspo            | nding to Tempe     | rature.              |                                         |         |        |
| SPECIFIC CONDUCTANCE (F       | REFERENCE: DEP      | SOP FT 1200        | )          |                           | Acce               | eptance Criteria     | +/-5% the stan                          | Idard   |        |
| Meter/Instrument Na           | me and Unique ID:   | YSI -              | 536 M      | APSI SI                   | UA 0408            | 023 AP               |                                         |         |        |

| Meter/      | nstrumer | nt Name and | Unique ID | YSI 556 M          | NPS SA    | 12 04D 80 | 23 AP    |               |         |        |
|-------------|----------|-------------|-----------|--------------------|-----------|-----------|----------|---------------|---------|--------|
|             | Initials | Date        | Time      | Standard (µmho/cm) | Exp. Date | Lot #     | Response | Deviation (%) | Pass or | r Fail |
| CAL CV CCV  | 1 LFm    | 4-1822      | 647       | 1,413              | 4/22      | 16-01207  | 1419     | 15%           | P       | F      |
| CAL ICV COV | Um       | 4-19-22     | 552       | 1,413              | 4/22      | 1601207   | 1420     | =58           | P       | F      |
| CAL ICV CCV |          |             |           |                    |           |           |          |               | Ρ       | F      |
| CAL ICV CCV |          |             |           |                    | <u></u>   |           |          |               | Р       | F      |
| CAL ICV CCV | ·        |             |           |                    |           |           |          |               | Р       | F      |
| CAL ICV CCV |          |             |           |                    | <u> </u>  |           |          |               | Р       | F      |
| CAL ICV CCV | ·        |             |           | <u>.</u>           |           |           |          |               | Ρ       | F      |
| CAL ICV CCV | ·        |             |           |                    |           |           |          |               | Р       | F      |
| CAL ICV CCV |          |             |           | ×                  |           |           |          |               | Р       | F      |

# OXIDATION-REDUCTION POTENTIAL (ORP)

Acceptance Criteria +/-10 mV

REFERENCE: EPA Region 4, Operating Procedure, Field Measurement of Oxidation-Reduction Potential (ORP)

|     | Meter/I | nstrumen | t Name and | Unique ID: | <u></u>       |           |                 |               |               |        |        |
|-----|---------|----------|------------|------------|---------------|-----------|-----------------|---------------|---------------|--------|--------|
|     |         | Initials | Date       | Time       | Standard (mV) | Exp. Date | Lot #           | Response (mV) | Response (mV) | Pass o | r Fail |
|     | cv ccv  |          | 4-18-22    |            | 240mv         | 4/31/22   | 160531          | 246           | 76            | P      | F      |
| CAL | ICV CCV | 12m      | 4-18-22    | 1555       | 240 "         | 4/31/22   | 1 <u>G-D531</u> | 249           | 31%           | P      | F      |
| CAL | ICV CCV |          |            |            |               |           |                 |               |               | P      | F      |
| CAL | ICV CCV |          | <u> </u>   |            |               |           |                 |               |               | Ρ      | F      |
| CAL | ICV CCV |          |            |            |               |           |                 |               | <u></u>       | Ρ      | F      |
| CAL | ICV CCV |          |            |            |               |           |                 |               |               | Р      | F      |

Perform ICVs and CCVs only in "READ/RUN" mode.

CAL - Calibration; ICV - Initial Calibration Verification; and, CCV - Continuing Calibration Verification.

FIELD INSTRUMENT CALIBRATION RECORDS - EXAMPLE CALIBRATION LOG - PRP

Project Site/FacID: Sofety Kleinmedley Calibrated by (Print)/Affiliation: Keinfr Morrison / ECT

Boldly "X" this box if there is qualified data on this page.

| F*                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                | 1                                                                                                                                                                                 | K MUMDON                                                                                 | t.                                                                                                                                                                                 |                                                                                          |                                                                                                                     |                                                                        |                                                                    | -                                         |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|
| TURBID                                                                                                                      | ITY (REFERENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E: DEP SOP                                                                                                                                                                                     | FT 1600)                                                                                                                                                                          | Meter/Instr                                                                              | ument Name a                                                                                                                                                                       | and Unique ID:                                                                           | HACH 21000                                                                                                          | SN# 16110005                                                           | 354                                                                | 6                                         |
|                                                                                                                             | Std=0.1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NTU +/-10%                                                                                                                                                                                     | 5                                                                                                                                                                                 | Std=11-40 NTU +/-8                                                                       | % Std=4                                                                                                                                                                            | 1-100 NTU +/                                                                             | -6.5%                                                                                                               | Std>100 NTU +/                                                         | -5%                                                                |                                           |
|                                                                                                                             | Initials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                | Time                                                                                                                                                                              | Standard (NTU)                                                                           | Exp. Date                                                                                                                                                                          | Lot #                                                                                    | Response (NTU)                                                                                                      |                                                                        | Pass of                                                            | r Fail                                    |
| CAL                                                                                                                         | V CCV 14Fm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                |                                                                                                                                                                                   | 10 NTVS                                                                                  | 7/22                                                                                                                                                                               | 2961901                                                                                  | 9-73                                                                                                                | 3.7%                                                                   | P                                                                  | F                                         |
| CAL (IC                                                                                                                     | y ccv Ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41822                                                                                                                                                                                          | 654                                                                                                                                                                               | 20 11                                                                                    | 7/22                                                                                                                                                                               | 2654 901                                                                                 | 19.4                                                                                                                | 3%                                                                     | (P)                                                                | F                                         |
|                                                                                                                             | v) ccv IPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                | 655                                                                                                                                                                               | 100 m                                                                                    | 7/22                                                                                                                                                                               | 2694901                                                                                  | 961                                                                                                                 | 3.97                                                                   | (P/                                                                | F                                         |
|                                                                                                                             | v CCV KPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-18-22                                                                                                                                                                                        | 1557                                                                                                                                                                              | 10 11                                                                                    | 7/22                                                                                                                                                                               | 2961801                                                                                  | 9.75                                                                                                                | 3.5%                                                                   | P                                                                  | F                                         |
| CAL IC                                                                                                                      | v Cov <u>IVPn</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-18-22                                                                                                                                                                                        |                                                                                                                                                                                   | 20 11                                                                                    | 7/22                                                                                                                                                                               | 2684801                                                                                  | 19.3                                                                                                                | 3.52                                                                   | (P)                                                                | F                                         |
| CAL IC                                                                                                                      | v Ecv <u>V</u> Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-18-22                                                                                                                                                                                        | 1559                                                                                                                                                                              | 100 "                                                                                    | 7/22                                                                                                                                                                               | 268490                                                                                   | 965                                                                                                                 | 3.57                                                                   | P2                                                                 | F                                         |
| CAL IC                                                                                                                      | V CCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                          |                                                                                                                                                                                    |                                                                                          |                                                                                                                     |                                                                        | Ρ                                                                  | F                                         |
| CAL IC                                                                                                                      | v ccv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                          |                                                                                                                                                                                    | <u></u>                                                                                  |                                                                                                                     |                                                                        | Ρ                                                                  | F                                         |
| CAL IC                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                          |                                                                                                                                                                                    |                                                                                          |                                                                                                                     |                                                                        | Ρ                                                                  | F                                         |
| CAL IC                                                                                                                      | v ccv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                          |                                                                                                                                                                                    |                                                                                          |                                                                                                                     |                                                                        | Ρ                                                                  | F                                         |
| CAL IC                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                          |                                                                                                                                                                                    |                                                                                          |                                                                                                                     |                                                                        | Ρ                                                                  | F                                         |
| CAL IC                                                                                                                      | v ccv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                          |                                                                                                                                                                                    |                                                                                          |                                                                                                                     |                                                                        | Ρ                                                                  | F                                         |
| CAL IC                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                          |                                                                                                                                                                                    |                                                                                          |                                                                                                                     |                                                                        | Р                                                                  | F                                         |
| CAL IC                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                                   | ·                                                                                        |                                                                                                                                                                                    |                                                                                          |                                                                                                                     |                                                                        | Р                                                                  | F                                         |
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                          | <u></u>                                                                                                                                                                            |                                                                                          |                                                                                                                     |                                                                        | Р                                                                  | F                                         |
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                          |                                                                                                                                                                                    |                                                                                          |                                                                                                                     |                                                                        |                                                                    |                                           |
| pH (REF                                                                                                                     | ERENCE: DEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SOP FT 110                                                                                                                                                                                     | 0)                                                                                                                                                                                |                                                                                          |                                                                                                                                                                                    |                                                                                          | Accepta                                                                                                             | nce Criteria +/-0                                                      | ).2 SU                                                             |                                           |
| I                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                | •                                                                                                                                                                                 | NST 556 MG                                                                               | SISNU                                                                                                                                                                              | 0409023                                                                                  |                                                                                                                     | nce Criteria +/-0                                                      | ).2 SU                                                             |                                           |
| I                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ent Name and                                                                                                                                                                                   | •                                                                                                                                                                                 | <u>VST 556 M(</u><br>Standard (SU)                                                       | SISNU (<br>Exp. Date                                                                                                                                                               | D 4 D 90 2 3                                                                             |                                                                                                                     | nce Criteria +/-C                                                      | Pass o                                                             | or Fail                                   |
|                                                                                                                             | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date                                                                                                                                                                           | d Unique ID:<br>Time                                                                                                                                                              |                                                                                          |                                                                                                                                                                                    | 1                                                                                        | AP<br>Response (SU)                                                                                                 | 1                                                                      |                                                                    | or Fail<br>F                              |
| CAL C                                                                                                                       | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date                                                                                                                                                                           | d Unique ID:<br>Time<br>- <u>657</u>                                                                                                                                              | Standard (SU)                                                                            | Exp. Date<br><u> 522</u><br>09123                                                                                                                                                  | Lot #                                                                                    | AP<br>Response (SU)                                                                                                 | Deviation (SU)                                                         | Pass o                                                             |                                           |
| CAL C<br>CAL C<br>CAL C                                                                                                     | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br><u>418-22</u><br><u>418-22</u><br><u>418-22</u>                                                                                                                        | d Unique ID:<br>Time<br>- <u>657</u><br><u>700</u><br>703                                                                                                                         | Standard (SU)<br><u>4</u> ,0<br>7,0<br>10,0                                              | Exp. Date<br><u>522</u><br><u>9923</u><br><u>0223</u>                                                                                                                              | Lot #<br>200728C<br><u>161031</u><br>200728D                                             | AP<br>Response (SU)<br><u>4-66</u><br><u>7-09</u><br>9.92                                                           | Deviation (SU)<br><u>-0,06</u><br><u>0-09</u><br><u>0-08</u>           | Pass o                                                             | F                                         |
| CAL C<br>CAL C<br>CAL C<br>CAL IC                                                                                           | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u>                                                                                      | Unique ID:<br>Time<br>- 657<br>- 700<br>- 703<br>- 1605                                                                                                                           | Standard (SU)<br><u>4.0</u><br>7.0<br>10.0<br><u>4.0</u>                                 | Exp. Date<br><u>05/22</u><br>09/23<br>02/23<br>5/22                                                                                                                                | Lot #<br>200728C<br><u>16081</u><br><u>200728</u> D<br>200718C                           | AP<br>Response (SU)<br><u>4-66</u><br>7-09<br>9-92<br>4-09                                                          | Deviation (SU)<br>$\frac{0.06}{0.09}$ $\frac{0.08}{0.08}$              | Pass o                                                             | F                                         |
| CAL C<br>CAL C<br>CAL C<br>CAL IC                                                                                           | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u>                                                                                      | Unique ID:<br>Time<br>- 657<br>- 700<br>- 703<br>- 1605                                                                                                                           | Standard (SU)<br><u>4.0</u><br>7.0<br>10.0<br><u>4.0</u>                                 | Exp. Date<br><u>05/22</u><br>09/23<br>02/23<br>5/22                                                                                                                                | Lot #<br>200728C<br><u>16081</u><br><u>200728</u> D<br>200718C                           | AP<br>Response (SU)<br><u>4-66</u><br>7-09<br>9-92<br>4-09                                                          | Deviation (SU)<br>$\frac{0.06}{0.09}$ $\frac{0.08}{0.08}$              | Pass o<br>P<br>P<br>P                                              | F<br>F<br>F                               |
| CAL C<br>CAL C<br>CAL C<br>CAL IC                                                                                           | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u>                                                                                      | Unique ID:<br>Time<br>- 657<br>- 700<br>- 703<br>- 1605                                                                                                                           | Standard (SU)<br><u>4.0</u><br>7.0<br>10.0<br><u>4.0</u>                                 | Exp. Date<br><u>05/22</u><br>09/23<br>02/23<br>5/22                                                                                                                                | Lot #<br>200728C<br><u>16081</u><br><u>200728</u> D<br>200718C                           | AP<br>Response (SU)<br><u>4-66</u><br>7-09<br>9-92<br>4-09                                                          | Deviation (SU)<br>$\frac{0.06}{0.09}$ $\frac{0.08}{0.08}$              | Pass o                                                             | F<br>F<br>F<br>F                          |
| CAL C<br>CAL C<br>CAL C<br>CAL IC<br>CAL IC<br>CAL IC                                                                       | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u>                                                    | Unique ID:<br>Time<br>- 657<br>700<br>703<br>1605<br>1610<br>1610<br>1615                                                                                                         | Standard (SU)<br><u>4</u> ,0<br>7,0<br>10,0<br><u>7</u> ,0<br><u>10,0</u>                | Exp. Date<br><u>5</u> 22<br>0923<br>0223<br>522<br>9/23<br>2/22                                                                                                                    | Lot #<br>200728C<br><u>16081</u><br><u>200728D</u><br>200728D<br>161081<br><u>200728</u> | AP<br>Response (SU)<br><u>4.66</u><br><u>7.09</u><br><u>9.92</u><br><u>4.08</u><br><u>7.11</u><br>0 <u>9.90</u>     | Deviation (SU)<br>$\frac{0.06}{0.09}$ $\frac{0.08}{0.08}$              | Pass o<br>P<br>P<br>P<br>P                                         | F<br>F<br>F<br>F                          |
| CAL C<br>CAL C<br>CAL C<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC                                                             | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br>$4.8.2^{-}$<br>$4.8.2^{-}$<br>$4.8.2^{-}$<br>$4.18.2^{-}$<br>$4.18.2^{-}$<br>$4.18.2^{-}$<br>$4.18.2^{-}$<br>$4.18.2^{-}$<br>$4.18.2^{-}$                              | d Unique ID:<br>Time<br>$-\frac{651}{100}$<br>$-\frac{100}{103}$<br>1605<br>1610<br>1615                                                                                          | Standard (SU)<br><u>4</u> ,0<br>7,0<br>10,0<br><u>4</u> ,0<br><u>7</u> ,0<br><u>10,0</u> | Exp. Date<br>5/22<br>09/23<br>02/23<br>5/22<br>9/23<br>2/22                                                                                                                        | Lot #<br>200728C<br>161081<br>200728D<br>200728D<br>200718C<br>161081<br>200728          | AP<br>Response (SU)<br><u>4.66</u><br><u>7.09</u><br><u>9.92</u><br><u>4.09</u><br><u>7.11</u><br>0 <u>9.90</u>     | Deviation (SU)<br>-0.06<br>0-09<br>0-08<br>0.09<br>0.11<br>0.1         | Pass o<br>P<br>P<br>P<br>P<br>P<br>P                               | F<br>F<br>F<br>F                          |
| CAL C<br>CAL C<br>CAL C<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC                                                   | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u>                  | Unique ID:<br>Time<br><u>657</u><br><u>700</u><br><u>703</u><br><u>1605</u><br><u>1610</u><br><u>1610</u><br><u>1615</u>                                                          | Standard (SU)<br><u>4</u> ,0<br>7,0<br>10,0<br>4,0<br>7,0<br>10,0                        | Exp. Date<br>5/22<br>09/23<br>02/23<br>5/22<br>9/23<br>2/12                                                                                                                        | Lot #<br>200728C<br><u>161091</u><br>200728D<br>200778C<br>161081<br>200728              | AP<br>Response (SU)<br><u>4.66</u><br><u>7.09</u><br><u>9.92</u><br><u>4.09</u><br><u>7.11</u><br>0 <u>9.90</u>     | Deviation (SU)<br>-0.06<br>0-09<br>0-08<br>0.09<br>0.11<br>0.1         | Pass o<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P                | F<br>F<br>F<br>F<br>F<br>F                |
| CAL C<br>CAL C<br>CAL C<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC                                         | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br><u>41822</u><br><u>41822</u><br><u>41822</u><br><u>41822</u><br><u>41822</u><br><u>41822</u><br><u>41822</u><br><u>41822</u>                                           | Unique ID:<br>Time<br>657<br>700<br>703<br>1605<br>1610<br>1610                                                                                                                   | Standard (SU)<br><u>4</u> ,0<br>7,0<br>10,0<br><u>7</u> ,0<br>10,0                       | Exp. Date<br>5/22<br>09/23<br>02/23<br>5/22<br>9/23<br>2/22                                                                                                                        | Lot #<br>200728C<br><u>161091</u><br>200728D<br>200778C<br>161081<br>200728              | AP<br>Response (SU)<br><u>4.66</u><br><u>7.09</u><br><u>9.92</u><br><u>4.09</u><br><u>7.11</u><br>0 <u>9.90</u>     | Deviation (SU)<br>-0,06<br>0-09<br>0-08<br>0,00<br>0,00<br>0-11<br>0,1 | Pass o<br>P<br>P<br>P<br>P<br>P<br>P<br>P                          | F<br>F<br>F<br>F<br>F<br>F                |
| CAL C<br>CAL C<br>CAL C<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC                               | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br>$418-2^{-}$<br>$418-2^{-}$<br>$418-2^{-}$<br>418-22<br>418-22<br>418-22<br>418-22<br>418-22<br>418-22                                                                  | d Unique ID:<br>Time<br>651<br>700<br>703<br>1605<br>1610<br>160                                                                                                                  | Standard (SU)<br>4.0<br>7.0<br>10.0<br>4.0<br>7.0<br>10.0                                | Exp. Date<br><u>\$5 22</u><br><u>\$9 23</u><br><u>\$2 23</u><br><u>\$ 22</u><br><u>9 23</u><br><u>\$ 22</u><br><u>9 23</u><br><u>2 22</u>                                          | Lot #<br>200728C<br><u>161081</u><br>200728P<br>200728P<br>200728C<br>161081<br>200728   | AP<br>Response (SU)<br><u>4.66</u><br><u>7.09</u><br><u>9.92</u><br><u>4.09</u><br><u>7.11</u><br>0 <u>9.90</u>     | Deviation (SU)<br>-0,06<br>0-09<br>0-08<br>0,00<br>0,00<br>0-11<br>0,1 | Pass o<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P                     | F<br>F<br>F<br>F<br>F<br>F<br>F           |
| CAL C<br>CAL C<br>CAL C<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC                               | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br><u>448-22</u><br><u>448-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u>                                                    | d Unique ID:<br>Time<br>- 657<br>- 700<br>- 703<br>- 1605<br>- 1610<br>- 1615<br>- 1610<br>- 1615<br>                                                                             | Standard (SU)<br>4.0<br>7.0<br>10.0<br>4.0<br>7.0<br>10.0                                | Exp. Date<br>5/22<br>09/23<br>02/23<br>5/22<br>9/23<br>2/22<br>12                                                                                                                  | Lot #<br>200728C<br>1610#1<br>200728P<br>206778C<br>161081<br>200728                     | AP<br>Response (SU)<br><u>4.66</u><br><u>7.09</u><br><u>9.92</u><br><u>4.09</u><br><u>7.11</u><br>0 <u>9.90</u>     | Deviation (SU)<br>-0.06<br>0-09<br>0-08<br>0.09<br>0-11<br>0.1         | Pass o<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P                | F<br>F<br>F<br>F<br>F<br>F<br>F           |
| CAL C<br>CAL C<br>CAL C<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC           | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br><u>448-22</u><br><u>448-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u><br><u>418-22</u>                                                    | Unique ID:<br>Time<br>657<br>700<br>703<br>1605<br>1605<br>1610<br>1605                                                                                                           | Standard (SU)<br><u>4</u> ,0<br>7,0<br>10,0<br><u>4</u> ,0<br><u>7</u> ,0<br><u>10,0</u> | Exp. Date<br><u>\$5 22</u><br><u>\$9 23</u><br><u>\$2 23</u><br><u>\$122</u><br><u>9 23</u><br><u>2 23</u><br><u>2 22</u>                                                          | Lot #<br>200728C<br><u>161091</u><br>200728D<br>200778C<br>161081<br>200728              | AP<br>Response (SU)<br><u>4.66</u><br><u>7.09</u><br><u>9.92</u><br><u>4.09</u><br><u>7.11</u><br>0 <u>9.90</u>     | Deviation (SU)                                                         | Pass o<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P                | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F      |
| CAL C<br>CAL C<br>CAL C<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC           | Meter/Instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Name and<br>Date<br>$418-2^{-}$<br>$418-2^{-}$<br>$418-2^{-}$<br>418-22<br>418-22<br>418-22<br>418-22<br>418-22<br>418-22<br>418-22                                                        | d Unique ID:<br>Time<br><u>651</u><br><u>700</u><br><u>703</u><br><u>1605</u><br><u>1610</u><br><u>16(5</u> )<br><u>16(5</u> )<br><u>16(5</u> )<br><u>16(5</u> )<br><u>16(5</u> ) | Standard (SU)<br>4.0<br>7.0<br>10.0<br>4.0<br>7.0<br>10.0                                | Exp. Date<br><u>\$5/22</u><br><u>\$9/23</u><br><u>\$222</u><br><u>9/23</u><br><u>2/22</u><br><u>2/22</u><br><u>2/22</u>                                                            | Lot #<br>200728C<br><u>16091</u><br>200728P<br>200728P<br>200728C<br>161081<br>200728    | AP<br>Response (SU)<br><u>4.66</u><br><u>7.09</u><br><u>9.92</u><br><u>4.09</u><br><u>7.11</u><br>0 <u>9.90</u><br> | Deviation (SU)<br>-0.06<br>0-09<br>0-08<br>0.09<br>0-11<br>0.1         | Pass o<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P           | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F      |
| CAL C<br>CAL C<br>CAL C<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC<br>CAL IC | Meter/Instrume         Initials         V       CCV         V       CCV | ent Name and<br>Date<br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>448-22</u><br><u>418-22</u><br><u>418-22</u> | d Unique ID:<br>Time<br>657<br>700<br>703<br>1605<br>1605<br>1610<br>16(5                                                                                                         | Standard (SU)<br><u>4</u> ,0<br>7,0<br>10,0<br><u>4</u> ,0<br><u>7</u> ,0<br><u>10,0</u> | Exp. Date<br><u>\$5 22</u><br><u>\$9 23</u><br><u>\$22</u><br><u>9 23</u><br><u>\$22</u><br><u>9 23</u><br><u>2 22</u><br><u>9 23</u><br><u>2 22</u><br><u>9 23</u><br><u>2 22</u> | Lot #<br>200728C<br>16081<br>200728P<br>200728P<br>200728C<br>161081<br>200728           | AP<br>Response (SU)<br><u>4.66</u><br>7.09<br><u>9.92</u><br><u>4.08</u><br>7.11<br>0 <u>9.90</u><br>               | Deviation (SU)                                                         | Pass o<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F |

Perform ICVs and CCVs only in "READ/RUN" mode.

CAL - Calibration; ICV - Initial Calibration Verification; and, CCV - Continuing Calibration Verification.

| Pace | Container | Order | #94167 | 73 |
|------|-----------|-------|--------|----|
|------|-----------|-------|--------|----|

|                                                                    |                    |                                                             |                                                    |           | 1011               | 070           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------|--------------------|-------------------------------------------------------------|----------------------------------------------------|-----------|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                    | Pa                                                          | ce Container Or                                    | der       | #941               | 673           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Addre<br>Order By                                                  |                    | 7                                                           | Ship To :                                          |           |                    | Retur         | n To:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                    | ·                  | al Consulting &                                             | Company Environmental Consultin                    | na &      |                    |               | Pace Analytical Oldsmar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Contact Mo                                                         |                    |                                                             | Contact Morrison, Keith                            |           |                    | =             | Palmer, Lori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| · · · · · ·                                                        |                    | ectinc.com                                                  | Email kmorrison@ectinc.co                          | m         |                    |               | lori.palmer@pacelabs.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                    |                    | Westshore Bllvd                                             | Address 1408 North Westsho                         |           |                    | -             | 110 South Bayview Blvd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Address 2 Su                                                       |                    |                                                             | Address 2 Suite 115                                |           |                    | Address 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                    |                                                             |                                                    |           |                    | 2             | Oldsmar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| City Ta                                                            |                    |                                                             | City Tampa                                         | 7         |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| State FL                                                           |                    | Zip 33607                                                   | State FL Zip 3360                                  | )/        |                    | State         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phone 81                                                           | 3-493-038          | 33                                                          | Phone 813-493-0383                                 |           |                    | Phone         | 813-855-1844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                    |                    |                                                             |                                                    |           |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project                                                            | Name <sub>Sa</sub> | fety Kleen Facility                                         | Due Date 04/08/2022                                | Profi     | le 9321 li         | ne 1          | Quote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Crimpony Er                                                        | i    10 ∦ .        | V 9                                                         | turn Date                                          |           | er Pace (          |               | actin d Closupp<br>Location FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Project Ma                                                         | nager pa           | limer, Lori Re                                              |                                                    | Garrie    | Pace               | Jourier       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trip Bla                                                           | ich ic 🚽           | 94 II. <u>K</u>                                             | Bottle Labels                                      | -         |                    | - De          | ottles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ciclicias 14                                                       |                    |                                                             |                                                    |           |                    |               | Boxed Cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| i X Inclu                                                          | ide Trip Bl        | anks                                                        | Blank<br>Pre-Printed N                             |           |                    |               | Individually Wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| cutly Te                                                           | e p                |                                                             | X Pre-Printed V                                    |           |                    |               | Grouped By Sample ID/Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gielė Fi                                                           |                    |                                                             |                                                    | ann oan   | ipic iba           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hore B                                                             | 0                  | 1 - k - k                                                   | Adia a                                             |           |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                    | g Labels                                                    |                                                    |           |                    |               | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                    | Shipper<br>Shipper |                                                             | Sampling Ins                                       |           | 3                  |               | Extra Bubble Wrap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                    |                    |                                                             | Custody Sea                                        |           |                    |               | Short Hold/Rush Stickers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - coc o                                                            | ptions -           | 5                                                           | Temp. Blank                                        | 5         |                    |               | DI Water Liter(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                    | ber of Bla         |                                                             | Syringes                                           |           |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - X Pre-                                                           | Printed            | 14 M                                                        |                                                    |           |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the second                                                     |                    | Track                                                       | Caratainas                                         | Tetal     | # -6               | 1 at #        | -Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| of Samples                                                         |                    | Test                                                        |                                                    | Total     | # of               | Lot #         | .Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                    | WT.<br>WT          | 8260 Full List                                              | 3-40mL vial HCl<br>1L AG Unpres + 250 mL AG unpres | 3         | 0                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                    | 8270 Full list plus PAHs<br>FL Pro Low Volume for Waters    |                                                    | -         | -                  |               | A CONTRACTOR OF A CONTRACTOR O |
| No raisi                                                           | WT<br>WT           |                                                             | 2-100 ml glass amber H2SO4                         | 2         | 0                  |               | موجع بر تهری بود.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                    | WT                 | Metals 200.8 Ag,Cd,Cr,Pb<br>8270 Full list plus PAHs MS/MSD | 250mL plastic w/HNO3<br>2-1L AG Unpres + 250 mL AG | 4         | 4                  | 1             | 14. E. Adva 4. 10. 1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                    | WŤ                 | FL PRO MS/MSD                                               | unpres<br>100ml glass amber H2SO4                  | 4         | - 2                |               | nt in ed-Plade Suckers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1997 - Barrier<br>Maria - Maria - Mariana<br>Maria - Maria - Maria | WT                 | 8260 Trip Blank                                             | 2-40ml vials w/HCL + DI                            | 2         | 2                  |               | State Anti-Anti-Anti-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The second                                                         |                    |                                                             | h                                                  |           |                    |               | Mail Aguialer Scilol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ······································                             |                    |                                                             |                                                    |           |                    |               | and the second sec                                                                                                                                                                                                                                             |
|                                                                    | ard Sh             | ipping Placard In P                                         |                                                    |           |                    | 1 AF          | B USE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.1                                                                |                    |                                                             | ess special arrangements are π                     | ade wit   | h your nro         |               | Ship Date : 04/08/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nager.                                                             |                    |                                                             |                                                    |           | , <b>j</b> oor pro | 001           | Prepared By: LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                    |                                                             | oxic, or radioactive samples to y                  |           | omele ei-          | ropoldionant  | Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ce Analytical<br>yment term a                                      | ×                  |                                                             | pottles, as well as cost associate                 | eu with s | ampie sto          | aye/disposal. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                    | sal number on the chain of cus                              | tody to insure proper billing.                     |           |                    |               | a se anna airte airtean an a san an<br>Anna a shan airte airtean an airtean airte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                    | anle -             |                                                             |                                                    |           |                    |               | USE (Optional):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| San<br>uote # 00107                                                | 1                  |                                                             |                                                    |           |                    | VLIENI        | Date Rec'd:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a farmer a                                                         | 4                  |                                                             | ō — III                                            |           |                    |               | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                    |                    |                                                             |                                                    |           |                    |               | Verified By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ALL-C-009-                                                         | <u></u>            | 00002016                                                    | Page 1 of 1                                        |           |                    |               | vermed by.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                    | rev.uu, 1<br>2 1 1 |                                                             |                                                    |           |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| สารสารสาร<br>สารสารสาร                                             |                    |                                                             |                                                    |           |                    |               | r Tate 104/08/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                    |                    |                                                             |                                                    |           |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| -1  | -  | inter- | -            | -   |
|-----|----|--------|--------------|-----|
| 1   | ٢. | 1      |              | 12  |
| 0   | 1  | 10     | Ce           | 1   |
| αti | 1  | 100    | $\cup \odot$ | 1.0 |

# CHAIN-OF-CUSTODY / Analytical Request Dc

WO#:35711376

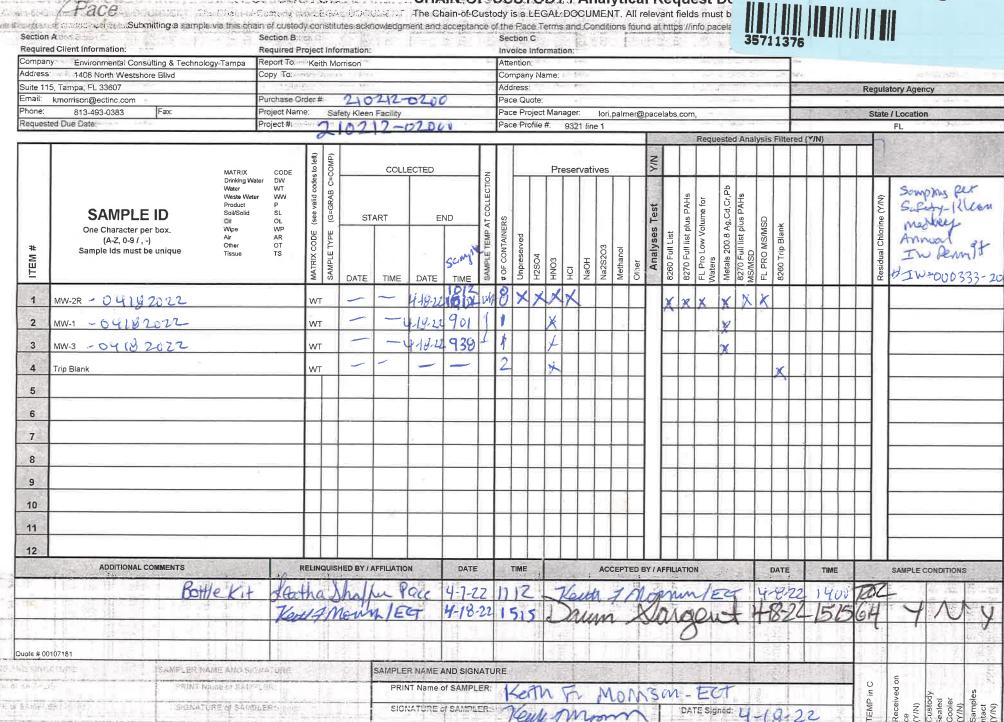
(m) (e)

2022

Justody Sealed Cooler (Y/N)

Ce (V/N)

Sample ntact (Y/N)


TEMP

22

Q

DATE Signad:

5 ... m 1-00 0 m/ Ended State Charles Concerned and ESAC DOCUMENT. The Chain-of-Custody is a EEGAL DOCUMENT. All relevant fields must b vie IP units and constant wahter a Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Race Terms and Conditions found at https://info.paceia



SIGNATURE of SAMPLERS

SHARATURE & SAMELER!

RELAK STATET

DC#\_Title: ENV-FRM-ORB1-0093 Sample Condition Upon Receipt Form

| Version: 3   Effective Date: 12/29/2021   Issued by: Ormond Beach                                           |      |
|-------------------------------------------------------------------------------------------------------------|------|
| WO#: 35711376 UR) Pace                                                                                      |      |
| Project # PM: LAP Due Date: 04/25/22 Date and Initials of person;                                           | NIL  |
| Project Manager: CLIENT: 37-ECTTAM Examining contents:                                                      | μη   |
| Label: 1/ 1/ /                                                                                              | -    |
| Client: Deliver: 410 Client:                                                                                | -    |
| Thermometer Used: <u>T202</u> Date: <u>4-18-22</u> Time: <u>565</u> Initials: <u>55</u>                     |      |
| State of Origin:FL For WV projects, all containers verified to ≤6 °C                                        |      |
| Cooler #1 Temp."C_01_2_(Visual)+0.2_(Correction Factor)_014_(Actual) Samples on ice, cooling process has be | gun  |
| Cooler #2 Temp."C(Visual)(Correction Factor)(Actual) Samples on ice, cooling process has be                 | ∋gun |
| Cooler #3 Temp.°C(Visual)(Correction Factor)(Actual)                                                        | ∋gun |
| Cooler #4 Temp."C(Visual)(Correction Factor)(Actual)                                                        | gun  |
| Cooler #5 Temp. C(Visual)(Correction Factor)(Actual)                                                        | gun  |
| Cooler #6 Temp.°C(Visual)(Correction Factor)(Actual)                                                        | gun  |
| Recheck for OOT °C(Visual)(Correction Factor)(Actual) Time:Initials:                                        |      |
| Courier: Ged Ex UPS USPS Client Commercial Pace Conter                                                      |      |
| Shipping Method:  First Overnight  Priority Overnight  Standard Overnight  Ground  International Priority   |      |
| Other                                                                                                       |      |
| Billing:   Recipient  Sender  Third Party  Credit Card  Unknown                                             |      |
| Tracking #                                                                                                  |      |
| Custody Seal on Cooler/Box Present: Yes Yes No Seals intact: Yes No (Ice: Wet Blue Melted None              |      |
| Packing Material: Bubble Wrap Bubble Bags None Other                                                        |      |
| Samples shorted to lab (If Yes, complete)     Shorted Date:     Shorted Time:     Qty:                      |      |
| Comments:                                                                                                   |      |
| Chain of Custody Present ZYes D No DN/A                                                                     |      |
| Chain of Custody Filled Out                                                                                 |      |
| Relinquished Signature & Sampler Name COC                                                                   |      |
| Samples Arrived within Hold Time                                                                            |      |
| Rush TAT requested on COC                                                                                   |      |
| Sufficient Volume Area No IN/A                                                                              |      |
| Correct Containers Used                                                                                     |      |
| Containers Intact Sample Labels match COC (sample IDs & date/time of collection)                            |      |
| All containers needing acid/base preservation have Preservation Information:                                |      |
| been checked.  All Containers needing preservation are found to be in Lot #/Trace #:                        |      |
| compliance with EPA recommendation:                                                                         |      |
| Exceptions: Vials, Microbiology, O&G, PÉAS                                                                  |      |
| Headspace In VOA Vials? ( >6mm):                                                                            |      |
| Trip Blank Present:                                                                                         |      |
| Comments/ Resolution (use back for additional comments):/                                                   |      |
|                                                                                                             |      |

# ATTACHMENT B

# LABORATORY REPORT



Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

April 25, 2022

Keith Morrison Environmental Consulting & Techlology 1408 North Westshore Bllvd Suite 115 Tampa, FL 33607

RE: Project: Safety Kleen Facility Pace Project No.: 35711376

Dear Keith Morrison:

Enclosed are the analytical results for sample(s) received by the laboratory on April 18, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Ormond Beach

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

SA Palmer

Lori Palmer lori.palmer@pacelabs.com 813-855-1844 Project Manager

Enclosures

cc: A/P, Environmental Consulting & Technology





Pace Analytical Services, LLC 110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

#### CERTIFICATIONS

Project: Safety Kleen Facility Pace Project No.: 35711376

#### Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174 Alaska DEC- CS/UST/LUST Alabama Certification #: 41320 Colorado Certification: FL NELAC Reciprocity Connecticut Certification #: PH-0216 Delaware Certification: FL NELAC Reciprocity Florida Certification #: E83079 Georgia Certification #: 955 Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity Illinois Certification #: 200068 Indiana Certification: FL NELAC Reciprocity Kansas Certification #: E-10383 Kentucky Certification #: 90050 Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007 Maine Certification #: FL01264 Maryland Certification: #346 Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity Missouri Certification #: 236

Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608 North Carolina Environmental Certificate #: 667 North Carolina Certification #: 12710 North Dakota Certification #: R-216 Ohio DEP 87780 Oklahoma Certification #: D9947 Pennsylvania Certification #: 68-00547 Puerto Rico Certification #: FL01264 South Carolina Certification: #96042001 Tennessee Certification #: TN02974 Texas Certification: FL NELAC Reciprocity US Virgin Islands Certification: FL NELAC Reciprocity Virginia Environmental Certification #: 460165 West Virginia Certification #: 9962C Wisconsin Certification #: 399079670 Wyoming (EPA Region 8): FL NELAC Reciprocity



#### SAMPLE SUMMARY

Project: Safety Kleen Facility

Pace Project No.: 35711376

| Lab ID      | Sample ID      | Matrix | Date Collected | Date Received  |
|-------------|----------------|--------|----------------|----------------|
| 35711376001 | MW-2R-04182022 | Water  | 04/18/22 10:12 | 04/18/22 15:15 |
| 35711376002 | MW-1-04182022  | Water  | 04/18/22 09:01 | 04/18/22 15:15 |
| 35711376003 | MW-3-04182022  | Water  | 04/18/22 09:38 | 04/18/22 15:15 |
| 35711376004 | Trip Blank     | Water  | 04/18/22 00:01 | 04/18/22 15:15 |



# SAMPLE ANALYTE COUNT

Project: Safety Kleen Facility Pace Project No.: 35711376

| Lab ID      | Sample ID      | Method          | Analysts | Analytes<br>Reported |
|-------------|----------------|-----------------|----------|----------------------|
| 35711376001 | MW-2R-04182022 | FL-PRO          | NCB1     | 3                    |
|             |                | EPA 200.8       | AS3      | 4                    |
|             |                | EPA 8270 by SIM | JPB      | 20                   |
|             |                | EPA 8270        | TWB      | 82                   |
|             |                | EPA 8260        | AST      | 52                   |
| 35711376002 | MW-1-04182022  | EPA 200.8       | AS3      | 4                    |
| 35711376003 | MW-3-04182022  | EPA 200.8       | AS3      | 4                    |
| 35711376004 | Trip Blank     | EPA 8260        | AST      | 52                   |
|             |                |                 |          |                      |

PASI-O = Pace Analytical Services - Ormond Beach



Project: Safety Kleen Facility

Pace Project No.: 35711376

| Sample: MW-2R-04182022         | Lab ID:    | 35711376001                       | Collected        | d: 04/18/22 | 2 10:12  | Received: 04/  | (18/22 15:15 Ma                  | atrix: Water |      |
|--------------------------------|------------|-----------------------------------|------------------|-------------|----------|----------------|----------------------------------|--------------|------|
| Parameters                     | Results    | Units                             | PQL              | MDL         | DF       | Prepared       | Analyzed                         | CAS No.      | Qual |
| FL-PRO Water, Low Volume       | Analytical | Method: FL-PF                     | RO Prepara       | tion Method | d: EPA 3 | 3510           |                                  |              |      |
|                                | Pace Ana   | lytical Services                  | - Ormond E       | Beach       |          |                |                                  |              |      |
| Petroleum Range Organics       | 0.78 U     | mg/L                              | 0.97             | 0.78        | 1        | 04/20/22 20:30 | 04/21/22 13:24                   |              |      |
| Surrogates                     |            |                                   |                  |             |          |                |                                  |              |      |
| o-Terphenyl (S)                | 85         | %                                 | 66-139           |             | 1        | 04/20/22 20:30 |                                  |              |      |
| N-Pentatriacontane (S)         | 102        | %                                 | 42-159           |             | 1        | 04/20/22 20:30 | 04/21/22 13:24                   | 630-07-09    |      |
| 200.8 MET ICPMS                | -          | Method: EPA 2<br>lytical Services |                  |             | nod: EP/ | A 200.8        |                                  |              |      |
| Cadmium                        | 0.050 U    | ug/L                              | 0.10             | 0.050       | 1        | 04/19/22 06:52 | 04/19/22 19:30                   | 7440-43-9    |      |
| Chromium                       | 0.79 1     | ug/L                              | 1.0              | 0.50        | 1        |                | 04/19/22 19:30                   |              |      |
| Lead                           | 0.22 U     | ug/L                              | 1.0              | 0.22        | 1        |                | 04/19/22 19:30                   |              |      |
| Silver                         | 0.21 U     | ug/L                              | 0.50             | 0.21        | 1        | 04/19/22 06:52 | 04/19/22 19:30                   | 7440-22-4    |      |
| 8270 MSSV PAHLV by SIM         | Analvtical | Method: EPA 8                     | 3270 by SIM      | Preparatio  | on Meth  | od: EPA 3510   |                                  |              |      |
|                                | -          | lytical Services                  | -                |             |          |                |                                  |              |      |
| Acenaphthene                   | 0.019 U    | ug/L                              | 0.50             | 0.019       | 1        | 04/20/22 13.15 | 04/21/22 00:40                   | 83-32-9      |      |
| Acenaphthylene                 | 0.031 U    | ug/L                              | 0.50             | 0.031       | 1        | 04/20/22 13:15 |                                  |              |      |
| Anthracene                     | 0.020 U    | ug/L                              | 0.50             | 0.020       | 1        | 04/20/22 13:15 |                                  |              |      |
| Benzo(a)anthracene             | 0.020 U    | ug/L                              | 0.10             | 0.020       | 1        |                | 04/21/22 00:40                   |              |      |
| Benzo(a)pyrene                 | 0.021 U    | ug/L                              | 0.20             | 0.021       | 1        |                | 04/21/22 00:40                   |              |      |
| Benzo(b)fluoranthene           | 0.027 U    | ug/L                              | 0.10             | 0.027       | 1        | 04/20/22 13:15 | 04/21/22 00:40                   | 205-99-2     |      |
| Benzo(g,h,i)perylene           | 0.023 U    | ug/L                              | 0.50             | 0.023       | 1        | 04/20/22 13:15 | 04/21/22 00:40                   | 191-24-2     |      |
| Benzo(k)fluoranthene           | 0.024 U    | ug/L                              | 0.50             | 0.024       | 1        | 04/20/22 13:15 | 04/21/22 00:40                   | 207-08-9     |      |
| Chrysene                       | 0.026 U    | ug/L                              | 0.50             | 0.026       | 1        | 04/20/22 13:15 | 04/21/22 00:40                   | 218-01-9     |      |
| Dibenz(a,h)anthracene          | 0.025 U    | ug/L                              | 0.15             | 0.025       | 1        | 04/20/22 13:15 | 04/21/22 00:40                   | 53-70-3      |      |
| Fluoranthene                   | 0.018 U    | ug/L                              | 0.50             | 0.018       | 1        | 04/20/22 13:15 | 04/21/22 00:40                   | 206-44-0     |      |
| Fluorene                       | 0.017 U    | ug/L                              | 0.50             | 0.017       | 1        | 04/20/22 13:15 | 04/21/22 00:40                   | 86-73-7      |      |
| Indeno(1,2,3-cd)pyrene         | 0.024 U    | ug/L                              | 0.15             | 0.024       | 1        | 04/20/22 13:15 | 04/21/22 00:40                   | 193-39-5     |      |
| 1-Methylnaphthalene            | 0.19 U     | ug/L                              | 2.0              | 0.19        | 1        |                | 04/21/22 00:40                   |              |      |
| 2-Methylnaphthalene            | 0.17 U     | ug/L                              | 2.0              | 0.17        | 1        |                | 04/21/22 00:40                   |              |      |
| Naphthalene                    | 0.29 U     | ug/L                              | 2.0              | 0.29        | 1        |                | 04/21/22 00:40                   |              |      |
| Phenanthrene                   | 0.019 U    | ug/L                              | 0.50             | 0.019       | 1        |                | 04/21/22 00:40                   |              |      |
| Pyrene                         | 0.032 U    | ug/L                              | 0.50             | 0.032       | 1        | 04/20/22 13:15 | 04/21/22 00:40                   | 129-00-0     |      |
| Surrogates                     | 70         | %                                 | 22 100           |             | 1        | 04/20/22 12:15 | 04/21/22 00:40                   | 221 60 9     |      |
| 2-Fluorobiphenyl (S)           | 70<br>06   | %                                 | 32-100<br>48-112 |             | 1<br>1   |                | 04/21/22 00:40<br>04/21/22 00:40 |              |      |
| p-Terphenyl-d14 (S)            | 96         |                                   |                  |             |          |                | 04/21/22 00.40                   | 1710-01-0    |      |
| 8270 MSSV Semivolatile Organic | -          | Method: EPA 8                     |                  |             | od: EPA  | 3510           |                                  |              |      |
|                                | Pace Ana   | lytical Services                  | - Ormond E       | Beach       |          |                |                                  |              |      |
| Acenaphthene                   | 0.34 U     | ug/L                              | 4.8              | 0.34        | 1        |                | 04/25/22 11:07                   |              |      |
| Acenaphthylene                 | 0.29 U     | ug/L                              | 4.8              | 0.29        | 1        |                | 04/25/22 11:07                   |              |      |
| Aniline                        | 0.90 U     | ug/L                              | 4.8              | 0.90        | 1        |                | 04/25/22 11:07                   |              |      |
| Anthracene                     | 0.21 U     | ug/L                              | 4.8              | 0.21        | 1        |                | 04/25/22 11:07                   |              |      |
| Benzidine                      | 0.83 U     | ug/L                              | 23.8             | 0.83        | 1        |                | 04/25/22 11:07                   |              |      |
| Benzo(a)anthracene             | 0.19 U     | ug/L                              | 4.8              | 0.19        | 1        |                | 04/25/22 11:07                   |              |      |
| Benzo(a)pyrene                 | 0.16 U     | ug/L                              | 0.95             | 0.16        | 1        | 04/22/22 18:15 | 04/25/22 11:07                   | 50-32-8      |      |



#### Project: Safety Kleen Facility

Pace Project No.: 35711376

| Sample: MW-2R-04182022         | Lab ID: | 35711376001                      | Collected | 04/18/22 | 2 10:12 | Received: 04/  | 18/22 15:15 Ma | atrix: Water |      |
|--------------------------------|---------|----------------------------------|-----------|----------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results | Units                            | PQL       | MDL      | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 8270 MSSV Semivolatile Organic | -       | Method: EPA 8<br>ytical Services |           |          | od: EPA | 3510           |                |              |      |
| Benzo(b)fluoranthene           | 0.26 U  | ug/L                             | 1.9       | 0.26     | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 205-99-2     |      |
| Benzo(g,h,i)perylene           | 0.16 U  | ug/L                             | 4.8       | 0.16     | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 191-24-2     |      |
| Benzo(k)fluoranthene           | 0.17 U  | ug/L                             | 3.8       | 0.17     | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 207-08-9     |      |
| Benzyl alcohol                 | 1.2 U   | ug/L                             | 4.8       | 1.2      | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 100-51-6     |      |
| 4-Bromophenylphenyl ether      | 1.6 U   | ug/L                             | 4.8       | 1.6      | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 101-55-3     |      |
| Butylbenzylphthalate           | 1.1 U   | ug/L                             | 4.8       | 1.1      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| Caprolactam                    | 0.81 U  | ug/L                             | 4.8       | 0.81     | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 105-60-2     | N2   |
| Carbazole                      | 1.1 U   | ug/L                             | 4.8       | 1.1      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 4-Chloro-3-methylphenol        | 5.2 U   | ug/L                             | 19.1      | 5.2      | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 59-50-7      |      |
| 4-Chloroaniline                | 1.3 U   | ug/L                             | 4.8       | 1.3      | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 106-47-8     |      |
| bis(2-Chloroethoxy)methane     | 1.5 U   | ug/L                             | 4.8       | 1.5      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| bis(2-Chloroethyl) ether       | 0.32 U  | ug/L                             | 3.8       | 0.32     | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| bis(2-Chloroisopropyl) ether   | 1.7 U   | ug/L                             | 5.7       | 1.7      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 2-Chloronaphthalene            | 0.32 U  | ug/L                             | 4.8       | 0.32     | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 2-Chlorophenol                 | 1.3 U   | ug/L                             | 4.8       | 1.3      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 4-Chlorophenylphenyl ether     | 1.4 U   | ug/L                             | 4.8       | 1.4      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| Chrysene                       | 0.19 U  | ug/L                             | 4.8       | 0.19     | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| Dibenz(a,h)anthracene          | 0.17 U  | ug/L                             | 1.9       | 0.17     | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| Dibenzofuran                   | 1.4 U   | ug/L                             | 4.8       | 1.4      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 1,2-Dichlorobenzene            | 1.5 U   | ug/L                             | 4.8       | 1.5      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 1,3-Dichlorobenzene            | 1.4 U   | ug/L                             | 4.8       | 1.4      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 1,4-Dichlorobenzene            | 1.5 U   | ug/L                             | 4.8       | 1.5      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 3,3'-Dichlorobenzidine         | 1.0 U   | ug/L                             | 9.5       | 1.0      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 2,4-Dichlorophenol             | 0.32 U  | ug/L                             | 1.9       | 0.32     | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| Diethylphthalate               | 1.3 U   | ug/L                             | 4.8       | 1.3      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 2,4-Dimethylphenol             | 0.98 U  | ug/L                             | 4.8       | 0.98     | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| Dimethylphthalate              | 1.4 U   | ug/L                             | 4.8       | 1.4      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| Di-n-butylphthalate            | 3.4 U   | ug/L                             | 4.8       | 3.4      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 4,6-Dinitro-2-methylphenol     | 4.4 U   | ug/L                             | 19.1      | 4.4      | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 534-52-1     |      |
| 1,2-Dinitrobenzene             | 1.8 U   | ug/L                             | 5.7       | 1.8      | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 528-29-0     |      |
| 1,3-Dinitrobenzene             | 1.7 U   | ug/L                             | 7.6       | 1.7      | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |      |
| 2,4-Dinitrophenol              | 2.5 U   | ug/L                             | 19.1      | 2.5      | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 51-28-5      |      |
| 2,4-Dinitrotoluene             | 1.1 U   | ug/L                             | 3.8       | 1.1      | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 121-14-2     |      |
| 2,6-Dinitrotoluene             | 0.84 U  | ug/L                             | 1.9       | 0.84     | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 606-20-2     |      |
| Di-n-octylphthalate            | 0.88 U  | ug/L                             | 4.8       | 0.88     | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 117-84-0     |      |
| 1,2-Diphenylhydrazine          | 1.3 U   | ug/L                             | 4.8       | 1.3      | 1       |                | 04/25/22 11:07 |              |      |
| bis(2-Ethylhexyl)phthalate     | 1.3 U   | ug/L                             | 4.8       | 1.3      | 1       | 04/22/22 18:15 |                |              |      |
| Fluoranthene                   | 0.20 U  | ug/L                             | 4.8       | 0.20     | 1       | 04/22/22 18:15 |                |              |      |
| Fluorene                       | 0.32 U  | ug/L                             | 4.8       | 0.32     | 1       | 04/22/22 18:15 |                |              |      |
| Hexachloro-1,3-butadiene       | 0.33 U  | ug/L                             | 1.9       | 0.33     | 1       | 04/22/22 18:15 |                |              |      |
| Hexachlorobenzene              | 0.28 U  | ug/L                             | 0.95      | 0.28     | 1       | 04/22/22 18:15 |                |              |      |
| Hexachlorocyclopentadiene      | 3.3 U   | ug/L                             | 10.5      | 3.3      | 1       |                | 04/25/22 11:07 |              |      |
| Hexachloroethane               | 1.3 U   | ug/L                             | 4.8       | 1.3      | 1       |                | 04/25/22 11:07 |              |      |
| Indeno(1,2,3-cd)pyrene         | 0.16 U  | ug/L                             | 1.9       | 0.16     | 1       |                | 04/25/22 11:07 |              |      |
| Isophorone                     | 1.6 U   | ug/L                             | 4.8       | 1.6      | 1       |                | 04/25/22 11:07 |              |      |



#### Project: Safety Kleen Facility

Pace Project No.: 35711376

| Sample: MW-2R-04182022                  | Lab ID:          | 35711376001     | Collecte   | d: 04/18/22  | 2 10:12 | Received: 04/  | 18/22 15:15 Ma | atrix: Water |       |
|-----------------------------------------|------------------|-----------------|------------|--------------|---------|----------------|----------------|--------------|-------|
| Parameters                              | Results          | Units           | PQL        | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual  |
| 8270 MSSV Semivolatile Organic          | Analytical       | Method: EPA 8   | 270 Prepa  | ration Metho | od: EPA | 3510           |                |              |       |
|                                         | Pace Anal        | ytical Services | - Ormond E | Beach        |         |                |                |              |       |
| 1-Methylnaphthalene                     | 0.34 U           | ug/L            | 4.8        | 0.34         | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 90-12-0      |       |
| 2-Methylnaphthalene                     | 0.27 U           | ug/L            | 4.8        | 0.27         | 1       | 04/22/22 18:15 |                |              |       |
| 2-Methylphenol(o-Cresol)                | 0.29 U           | ug/L            | 4.8        | 0.29         | 1       |                | 04/25/22 11:07 |              |       |
| 3&4-Methylphenol(m&p Cresol)            | 0.21 U           | ug/L            | 9.5        | 0.21         | 1       | 04/22/22 18:15 |                |              |       |
| Naphthalene                             | 0.37 U           | ug/L            | 4.8        | 0.37         | 1       | 04/22/22 18:15 |                | 91-20-3      |       |
| 2-Nitroaniline                          | 1.2 U            | ug/L            | 4.8        | 1.2          | 1       | 04/22/22 18:15 |                |              |       |
| 3-Nitroaniline                          | 1.2 U            | ug/L            | 4.8        | 1.2          | 1       | 04/22/22 18:15 |                |              |       |
| 4-Nitroaniline                          | 0.83 U           | ug/L            | 3.8        | 0.83         | 1       | 04/22/22 18:15 |                |              |       |
| Nitrobenzene                            | 0.35 U           | ug/L            | 3.8        | 0.35         | 1       |                | 04/25/22 11:07 |              |       |
| 2-Nitrophenol                           | 1.3 U            | ug/L            | 4.8        | 1.3          | 1       |                | 04/25/22 11:07 |              |       |
| 4-Nitrophenol                           | 1.0 U            | ug/L            | 19.1       | 1.9          | 1       | 04/22/22 18:15 |                |              |       |
| N-Nitrosodimethylamine                  | 0.19 U           | ug/L            | 1.9        | 0.19         | 1       |                | 04/25/22 11:07 |              |       |
| N-Nitroso-di-n-propylamine              | 0.13 U           | ug/L            | 3.8        | 0.13         | 1       |                | 04/25/22 11:07 |              |       |
| N-Nitrosodiphenylamine                  | 1.2 U            | ug/L            | 4.8        | 1.2          | 1       |                | 04/25/22 11:07 |              |       |
| Pentachlorophenol                       | 1.2 U<br>1.6 U   | ug/L            | 19.1       | 1.6          | 1       | 04/22/22 18:15 |                |              |       |
| Phenanthrene                            | 0.22 U           | ug/L            | 4.8        | 0.22         | 1       | 04/22/22 18:15 |                |              |       |
| Phenol                                  | 0.22 U<br>0.60 U | ug/L            | 4.8        | 0.22         | 1       | 04/22/22 18:15 |                |              |       |
| Pyrene                                  | 0.00 U<br>0.20 U | ug/L            | 4.8        | 0.00         | 1       | 04/22/22 18:15 |                |              |       |
| Pyridine                                | 1.1 U            | ug/L            | 4.8        | 1.1          | 1       |                | 04/25/22 11:07 |              |       |
| 2,3,4,6-Tetrachlorophenol               | 1.1 U<br>1.0 U   | -               | 4.8        | 1.1          | 1       |                | 04/25/22 11:07 |              |       |
| •                                       |                  | ug/L            |            | 1.0          | 1       |                |                |              | NO    |
| 2,3,5,6-Tetrachlorophenol               | 1.8 U<br>1.4 U   | ug/L            | 8.6        |              |         | 04/22/22 18:15 |                |              | N2    |
| 1,2,4-Trichlorobenzene                  | 0.22 U           | ug/L            | 4.8        | 1.4          | 1<br>1  | 04/22/22 18:15 |                |              |       |
| 2,4,5-Trichlorophenol                   | 0.22 U<br>0.34 U | ug/L            | 3.8<br>1.9 | 0.22<br>0.34 |         | 04/22/22 18:15 | 04/25/22 11:07 |              |       |
| 2,4,6-Trichlorophenol <i>Surrogates</i> | 0.34 0           | ug/L            | 1.9        | 0.34         | 1       | 04/22/22 10.15 | 04/25/22 11.07 | 00-00-2      |       |
| Nitrobenzene-d5 (S)                     | 46               | %               | 10-188     |              | 1       | 04/22/22 18:15 | 04/25/22 11:07 | 4165 60 0    |       |
| 2-Fluorobiphenyl (S)                    | 40               | %               | 22-101     |              | 1       | 04/22/22 18:15 |                |              |       |
| p-Terphenyl-d14 (S)                     | 71               | %               | 48-124     |              | 1       | 04/22/22 18:15 |                |              |       |
| Phenol-d6 (S)                           | 16               | %               | 10-48      |              | 1       | 04/22/22 18:15 |                |              |       |
| 2-Fluorophenol (S)                      | 23               | %               | 10-48      |              | 1       | 04/22/22 18:15 | 04/25/22 11:07 |              |       |
| 2,4,6-Tribromophenol (S)                | 23<br>68         | %               | 28-114     |              | 1       |                | 04/25/22 11:07 |              |       |
|                                         |                  |                 |            |              | I       | 04/22/22 10.15 | 04/23/22 11.07 | 110-79-0     |       |
| 8260 MSV                                | 3                | Method: EPA 8   |            | ) a a a b    |         |                |                |              |       |
|                                         |                  | ytical Services |            | beach        |         |                |                |              |       |
| Acetone                                 | 9.4 U            | ug/L            | 25.0       | 9.4          | 1       |                | 04/20/22 02:22 | 67-64-1      |       |
| Benzene                                 | 0.30 U           | ug/L            | 1.0        | 0.30         | 1       |                | 04/20/22 02:22 |              |       |
| Bromobenzene                            | 0.21 U           | ug/L            | 1.0        | 0.21         | 1       |                | 04/20/22 02:22 |              |       |
| Bromochloromethane                      | 0.37 U           | ug/L            | 1.0        | 0.37         | 1       |                | 04/20/22 02:22 | 74-97-5      |       |
| Bromodichloromethane                    | 0.44 U           | ug/L            | 1.0        | 0.44         | 1       |                | 04/20/22 02:22 | 75-27-4      |       |
| Bromoform                               | 2.8 U            | ug/L            | 3.0        | 2.8          | 1       |                | 04/20/22 02:22 | 75-25-2      |       |
| Bromomethane                            | 3.9 U            | ug/L            | 10.0       | 3.9          | 1       |                | 04/20/22 02:22 | 74-83-9      | J(v2) |
| 2-Butanone (MEK)                        | 6.0 U            | ug/L            | 50.0       | 6.0          | 1       |                | 04/20/22 02:22 | 78-93-3      |       |
| Carbon disulfide                        | 1.8 U            | ug/L            | 10.0       | 1.8          | 1       |                | 04/20/22 02:22 | 75-15-0      |       |
| Carbon tetrachloride                    | 0.44 U           | ug/L            | 3.0        | 0.44         | 1       |                | 04/20/22 02:22 | 56-23-5      |       |
| Chlorobenzene                           | 0.35 U           | ug/L            | 1.0        | 0.35         | 1       |                | 04/20/22 02:22 |              |       |



#### Project: Safety Kleen Facility

Pace Project No.: 35711376

| Sample: MW-2R-04182022         | Lab ID:    | 35711376001                             | Collected: | 04/18/22 | 2 10:12 | Received: | 04/18/22 15:15 | Matrix: Water |       |  |  |  |
|--------------------------------|------------|-----------------------------------------|------------|----------|---------|-----------|----------------|---------------|-------|--|--|--|
| Parameters                     | Results    | Units                                   | PQL        | MDL      | DF      | Prepared  | Analyzed       | CAS No.       | Qual  |  |  |  |
| 8260 MSV                       | Analytical | Method: EPA 8                           | 260        |          |         |           |                |               |       |  |  |  |
|                                | Pace Ana   | Pace Analytical Services - Ormond Beach |            |          |         |           |                |               |       |  |  |  |
| Chloroethane                   | 3.7 U      | ug/L                                    | 10.0       | 3.7      | 1       |           | 04/20/22 02    | :22 75-00-3   |       |  |  |  |
| Chloroform                     | 0.56 U     | ug/L                                    | 1.0        | 0.56     | 1       |           |                | :22 67-66-3   |       |  |  |  |
| Chloromethane                  | 0.92 U     | ug/L                                    | 1.0        | 0.92     | 1       |           | 04/20/22 02    | :22 74-87-3   | J(v1) |  |  |  |
| Dibromochloromethane           | 0.97 U     | ug/L                                    | 2.0        | 0.97     | 1       |           | 04/20/22 02    | :22 124-48-1  | . ,   |  |  |  |
| Dibromomethane                 | 0.34 U     | ug/L                                    | 2.0        | 0.34     | 1       |           | 04/20/22 02    | :22 74-95-3   |       |  |  |  |
| 1,2-Dichlorobenzene            | 0.60 U     | ug/L                                    | 1.0        | 0.60     | 1       |           |                | :22 95-50-1   |       |  |  |  |
| 1,3-Dichlorobenzene            | 0.33 U     | ug/L                                    | 1.0        | 0.33     | 1       |           | 04/20/22 02    | :22 541-73-1  |       |  |  |  |
| 1,4-Dichlorobenzene            | 0.28 U     | ug/L                                    | 1.0        | 0.28     | 1       |           | 04/20/22 02    | :22 106-46-7  |       |  |  |  |
| Dichlorodifluoromethane        | 0.84 U     | ug/L                                    | 1.0        | 0.84     | 1       |           | 04/20/22 02    | :22 75-71-8   |       |  |  |  |
| 1,1-Dichloroethane             | 0.34 U     | ug/L                                    | 1.0        | 0.34     | 1       |           | 04/20/22 02    | :22 75-34-3   |       |  |  |  |
| 1,2-Dichloroethane             | 0.27 U     | ug/L                                    | 1.0        | 0.27     | 1       |           | 04/20/22 02    | :22 107-06-2  |       |  |  |  |
| 1,1-Dichloroethene             | 0.59 U     | ug/L                                    | 1.0        | 0.59     | 1       |           | 04/20/22 02    | :22 75-35-4   |       |  |  |  |
| cis-1,2-Dichloroethene         | 0.83 U     | ug/L                                    | 1.0        | 0.83     | 1       |           | 04/20/22 02    | :22 156-59-2  |       |  |  |  |
| trans-1,2-Dichloroethene       | 0.23 U     | ug/L                                    | 1.0        | 0.23     | 1       |           | 04/20/22 02    | :22 156-60-5  |       |  |  |  |
| 1,2-Dichloropropane            | 0.23 U     | ug/L                                    | 1.0        | 0.23     | 1       |           | 04/20/22 02    | :22 78-87-5   |       |  |  |  |
| 1,3-Dichloropropane            | 0.26 U     | ug/L                                    | 1.0        | 0.26     | 1       |           | 04/20/22 02    | :22 142-28-9  |       |  |  |  |
| 1,1-Dichloropropene            | 0.31 U     | ug/L                                    | 1.0        | 0.31     | 1       |           | 04/20/22 02    | :22 563-58-6  |       |  |  |  |
| Ethylbenzene                   | 0.30 U     | ug/L                                    | 1.0        | 0.30     | 1       |           | 04/20/22 02    | :22 100-41-4  |       |  |  |  |
| 2-Hexanone                     | 10.0 U     | ug/L                                    | 25.0       | 10.0     | 1       |           | 04/20/22 02    | :22 591-78-6  |       |  |  |  |
| Isopropylbenzene (Cumene)      | 0.30 U     | ug/L                                    | 1.0        | 0.30     | 1       |           |                | :22 98-82-8   |       |  |  |  |
| Methylene Chloride             | 4.4 U      | ug/L                                    | 5.0        | 4.4      | 1       |           | 04/20/22 02    | :22 75-09-2   |       |  |  |  |
| 4-Methyl-2-pentanone (MIBK)    | 7.5 U      | ug/L                                    | 25.0       | 7.5      | 1       |           | 04/20/22 02    | :22 108-10-1  |       |  |  |  |
| Methyl-tert-butyl ether        | 1.6 U      | ug/L                                    | 5.0        | 1.6      | 1       |           |                | :22 1634-04-4 |       |  |  |  |
| Styrene                        | 0.65 U     | ug/L                                    | 1.0        | 0.65     | 1       |           | 04/20/22 02    | :22 100-42-5  |       |  |  |  |
| 1,1,2,2-Tetrachloroethane      | 0.59 U     | ug/L                                    | 1.0        | 0.59     | 1       |           |                | :22 79-34-5   |       |  |  |  |
| Tetrachloroethene              | 0.38 U     | ug/L                                    | 1.0        | 0.38     | 1       |           |                | :22 127-18-4  |       |  |  |  |
| Toluene                        | 0.71 U     | ug/L                                    | 1.0        | 0.71     | 1       |           |                | :22 108-88-3  |       |  |  |  |
| 1,1,1-Trichloroethane          | 0.30 U     | ug/L                                    | 1.0        | 0.30     | 1       |           |                | :22 71-55-6   |       |  |  |  |
| 1,1,2-Trichloroethane          | 0.30 U     | ug/L                                    | 1.0        | 0.30     | 1       |           |                | :22 79-00-5   |       |  |  |  |
| Trichloroethene                | 0.36 U     | ug/L                                    | 1.0        | 0.36     | 1       |           |                | :22 79-01-6   |       |  |  |  |
| Trichlorofluoromethane         | 0.82 U     | ug/L                                    | 1.0        | 0.82     | 1       |           |                | :22 75-69-4   |       |  |  |  |
| 1,2,3-Trichloropropane         | 0.53 U     | ug/L                                    | 2.0        | 0.53     | 1       |           |                | :22 96-18-4   |       |  |  |  |
| 1,1,2-Trichlorotrifluoroethane | 3.5 U      | ug/L                                    | 5.0        | 3.5      | 1       |           | 04/20/22 02    | :22 76-13-1   |       |  |  |  |
| 1,2,4-Trimethylbenzene         | 0.58 U     | ug/L                                    | 1.0        | 0.58     | 1       |           |                | :22 95-63-6   |       |  |  |  |
| 1,3,5-Trimethylbenzene         | 0.64 U     | ug/L                                    | 1.0        | 0.64     | 1       |           |                | :22 108-67-8  |       |  |  |  |
| Vinyl acetate                  | 1.8 U      | ug/L                                    | 10.0       | 1.8      | 1       |           |                | :22 108-05-4  | J(v1) |  |  |  |
| Vinyl chloride                 | 0.88 U     | ug/L                                    | 1.0        | 0.88     | 1       |           |                | :22 75-01-4   | 、 /   |  |  |  |
| Xylene (Total)                 | 2.1 U      | ug/L                                    | 5.0        | 2.1      | 1       |           |                | :22 1330-20-7 |       |  |  |  |
| Surrogates                     | -          | 5                                       |            |          |         |           |                |               |       |  |  |  |
| 4-Bromofluorobenzene (S)       | 96         | %                                       | 70-130     |          | 1       |           | 04/20/22 02    | :22 460-00-4  |       |  |  |  |
| Toluene-d8 (S)                 | 104        | %                                       | 70-130     |          | 1       |           | 04/20/22 02    | :22 2037-26-5 |       |  |  |  |
| 1,2-Dichlorobenzene-d4 (S)     | 100        | %                                       | 70-130     |          | 1       |           | 04/20/22 02    | :22 2199-69-1 |       |  |  |  |



Project: Safety Kleen Facility

Pace Project No.: 35711376

| Sample: MW-1-04182022 | Lab ID: | 35711376002                      | Collected | 1: 04/18/22 | 2 09:01 | Received: 04/  | 18/22 15:15 Ma  | atrix: Water |      |
|-----------------------|---------|----------------------------------|-----------|-------------|---------|----------------|-----------------|--------------|------|
| Parameters            | Results | Units                            | PQL       | MDL         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 200.8 MET ICPMS       | ,       | Method: EPA 2<br>vtical Services | •         |             | od: EP  | A 200.8        |                 |              |      |
| Cadmium               | 0.050 U | ug/L                             | 0.10      | 0.050       | 1       | 04/19/22 06:52 | 04/19/22 19:31  | 7440-43-9    |      |
| Chromium              | 0.62    | ug/L                             | 1.0       | 0.50        | 1       | 04/19/22 06:52 | • • • . • . • . |              |      |
| Lead                  | 0.22 U  | ug/L                             | 1.0       | 0.22        | 1       | 04/19/22 06:52 | 04/19/22 19:31  | 7439-92-1    |      |
| Silver                | 0.21 U  | ug/L                             | 0.50      | 0.21        | 1       | 04/19/22 06:52 | 04/19/22 19:31  | 7440-22-4    |      |



Project: Safety Kleen Facility

Pace Project No.: 35711376

| Sample: MW-3-04182022 | Lab ID: | 35711376003                      | Collected | d: 04/18/22 | 2 09:38 | Received: 04/  | 18/22 15:15 Ma | atrix: Water |      |
|-----------------------|---------|----------------------------------|-----------|-------------|---------|----------------|----------------|--------------|------|
| Parameters            | Results | Units                            | PQL       | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.8 MET ICPMS       | ,       | Method: EPA 2<br>vtical Services | •         |             | od: EP  | A 200.8        |                |              |      |
| Cadmium               | 0.050 U | uq/L                             | 0.10      | 0.050       | 1       | 04/19/22 06:52 | 04/19/22 19:33 | 7440-43-9    |      |
| Chromium              | 0.90    | ug/L                             | 1.0       | 0.50        | 1       | 04/19/22 06:52 | 04/19/22 19:33 | 7440-47-3    |      |
| Lead                  | 0.22 U  | ug/L                             | 1.0       | 0.22        | 1       | 04/19/22 06:52 | 04/19/22 19:33 | 7439-92-1    |      |
| Silver                | 0.21 U  | ug/L                             | 0.50      | 0.21        | 1       | 04/19/22 06:52 | 04/19/22 19:33 | 7440-22-4    |      |



#### Project: Safety Kleen Facility

Pace Project No.: 35711376

| Sample: Trip Blank             | Lab ID:          | 35711376004       | Collected  | d: 04/18/22 | 2 00:01 | Received: 04 | 4/18/22 15:15 M | latrix: Water |       |
|--------------------------------|------------------|-------------------|------------|-------------|---------|--------------|-----------------|---------------|-------|
| Parameters                     | Results          | Units             | PQL        | MDL         | DF      | Prepared     | Analyzed        | CAS No.       | Qual  |
| 8260 MSV                       | Analytica        | I Method: EPA 8   | 260        |             |         |              |                 |               |       |
|                                | Pace Ana         | alytical Services | - Ormond E | Beach       |         |              |                 |               |       |
| Acetone                        | 9.4 U            | ug/L              | 25.0       | 9.4         | 1       |              | 04/20/22 12:26  | 67-64-1       |       |
| Benzene                        | 0.30 U           | ug/L              | 1.0        | 0.30        | 1       |              | 04/20/22 12:26  |               |       |
| Bromobenzene                   | 0.21 U           | ug/L              | 1.0        | 0.21        | 1       |              | 04/20/22 12:26  |               |       |
| Bromochloromethane             | 0.37 U           | ug/L              | 1.0        | 0.37        | 1       |              | 04/20/22 12:26  | 74-97-5       |       |
| Bromodichloromethane           | 0.44 U           | ug/L              | 1.0        | 0.44        | 1       |              | 04/20/22 12:26  | 75-27-4       |       |
| Bromoform                      | 2.8 U            | ug/L              | 3.0        | 2.8         | 1       |              | 04/20/22 12:26  |               |       |
| Bromomethane                   | 3.9 U            | ug/L              | 10.0       | 3.9         | 1       |              | 04/20/22 12:26  |               |       |
| 2-Butanone (MEK)               | 6.0 U            | ug/L              | 50.0       | 6.0         | 1       |              | 04/20/22 12:26  |               |       |
| Carbon disulfide               | 1.8 U            | ug/L              | 10.0       | 1.8         | 1       |              | 04/20/22 12:26  |               |       |
| Carbon tetrachloride           | 0.44 U           | ug/L              | 3.0        | 0.44        | 1       |              | 04/20/22 12:26  |               |       |
| Chlorobenzene                  | 0.35 U           | ug/L              | 1.0        | 0.35        | 1       |              | 04/20/22 12:26  |               |       |
| Chloroethane                   | 3.7 U            | ug/L              | 10.0       | 3.7         | 1       |              | 04/20/22 12:26  |               | J(v2) |
| Chloroform                     | 0.56 U           | ug/L              | 1.0        | 0.56        | 1       |              | 04/20/22 12:26  |               | 0(12) |
| Chloromethane                  | 0.92 U           | ug/L              | 1.0        | 0.92        | 1       |              | 04/20/22 12:26  |               |       |
| Dibromochloromethane           | 0.92 U           | ug/L              | 2.0        | 0.92        | 1       |              | 04/20/22 12:20  |               |       |
| Dibromomethane                 | 0.37 U           | ug/L              | 2.0        | 0.34        | 1       |              | 04/20/22 12:20  |               |       |
|                                | 0.34 U<br>0.60 U | -                 |            | 0.60        | 1       |              |                 |               |       |
| 1,2-Dichlorobenzene            | 0.80 U<br>0.33 U | ug/L              | 1.0<br>1.0 | 0.80        | 1       |              | 04/20/22 12:26  |               |       |
| 1,3-Dichlorobenzene            |                  | ug/L              |            |             | 1       |              |                 |               |       |
| 1,4-Dichlorobenzene            | 0.28 U<br>0.84 U | ug/L              | 1.0        | 0.28        |         |              | 04/20/22 12:26  |               | 1/0)  |
| Dichlorodifluoromethane        |                  | ug/L              | 1.0        | 0.84        | 1       |              | 04/20/22 12:26  |               | J(v2) |
| 1,1-Dichloroethane             | 0.34 U           | ug/L              | 1.0        | 0.34        | 1       |              | 04/20/22 12:26  |               |       |
| 1,2-Dichloroethane             | 0.27 U           | ug/L              | 1.0        | 0.27        | 1       |              | 04/20/22 12:26  |               | 1(0)  |
| 1,1-Dichloroethene             | 0.59 U           | ug/L              | 1.0        | 0.59        | 1       |              | 04/20/22 12:26  |               | J(v2) |
| cis-1,2-Dichloroethene         | 0.83 U           | ug/L              | 1.0        | 0.83        | 1       |              | 04/20/22 12:26  |               |       |
| trans-1,2-Dichloroethene       | 0.23 U           | ug/L              | 1.0        | 0.23        | 1       |              | 04/20/22 12:26  |               |       |
| 1,2-Dichloropropane            | 0.23 U           | ug/L              | 1.0        | 0.23        | 1       |              | 04/20/22 12:26  |               |       |
| 1,3-Dichloropropane            | 0.26 U           | ug/L              | 1.0        | 0.26        | 1       |              | 04/20/22 12:26  |               |       |
| 1,1-Dichloropropene            | 0.31 U           | ug/L              | 1.0        | 0.31        | 1       |              | 04/20/22 12:26  |               |       |
| Ethylbenzene                   | 0.30 U           | ug/L              | 1.0        | 0.30        | 1       |              | 04/20/22 12:26  |               |       |
| 2-Hexanone                     | 10.0 U           | ug/L              | 25.0       | 10.0        | 1       |              | 04/20/22 12:26  |               |       |
| Isopropylbenzene (Cumene)      | 0.30 U           | ug/L              | 1.0        | 0.30        | 1       |              | 04/20/22 12:26  |               |       |
| Methylene Chloride             | 4.4 U            | ug/L              | 5.0        | 4.4         | 1       |              | 04/20/22 12:26  |               |       |
| 4-Methyl-2-pentanone (MIBK)    | 7.5 U            | ug/L              | 25.0       | 7.5         | 1       |              | 04/20/22 12:26  | 108-10-1      |       |
| Methyl-tert-butyl ether        | 1.6 U            | ug/L              | 5.0        | 1.6         | 1       |              | 04/20/22 12:26  |               |       |
| Styrene                        | 0.65 U           | ug/L              | 1.0        | 0.65        | 1       |              | 04/20/22 12:26  | 100-42-5      |       |
| 1,1,2,2-Tetrachloroethane      | 0.59 U           | ug/L              | 1.0        | 0.59        | 1       |              | 04/20/22 12:26  |               |       |
| Tetrachloroethene              | 0.38 U           | ug/L              | 1.0        | 0.38        | 1       |              | 04/20/22 12:26  | 127-18-4      |       |
| Toluene                        | 0.71 U           | ug/L              | 1.0        | 0.71        | 1       |              | 04/20/22 12:26  |               |       |
| 1,1,1-Trichloroethane          | 0.30 U           | ug/L              | 1.0        | 0.30        | 1       |              | 04/20/22 12:26  |               |       |
| 1,1,2-Trichloroethane          | 0.30 U           | ug/L              | 1.0        | 0.30        | 1       |              | 04/20/22 12:26  |               |       |
| Trichloroethene                | 0.36 U           | ug/L              | 1.0        | 0.36        | 1       |              | 04/20/22 12:26  | 79-01-6       |       |
| Trichlorofluoromethane         | 0.82 U           | ug/L              | 1.0        | 0.82        | 1       |              | 04/20/22 12:26  | 75-69-4       | J(v2) |
| 1,2,3-Trichloropropane         | 0.53 U           | ug/L              | 2.0        | 0.53        | 1       |              | 04/20/22 12:26  | 96-18-4       |       |
| 1,1,2-Trichlorotrifluoroethane | 3.5 U            | ug/L              | 5.0        | 3.5         | 1       |              | 04/20/22 12:26  | 76-13-1       | J(v2) |
| 1,2,4-Trimethylbenzene         | 0.58 U           | ug/L              | 1.0        | 0.58        | 1       |              | 04/20/22 12:26  | 95-63-6       |       |



Project: Safety Kleen Facility

Pace Project No.: 35711376

| Sample: Trip Blank         | Lab ID:    | 35711376004     | Collecte   | d: 04/18/22 | 00:01 | Received: 04 | /18/22 15:15 Ma | atrix: Water |      |
|----------------------------|------------|-----------------|------------|-------------|-------|--------------|-----------------|--------------|------|
| Parameters                 | Results    | Units           | PQL        | MDL         | DF    | Prepared     | Analyzed        | CAS No.      | Qual |
| 8260 MSV                   | Analytical | Method: EPA 8   | 260        |             |       |              |                 |              |      |
|                            | Pace Anal  | ytical Services | - Ormond E | Beach       |       |              |                 |              |      |
| 1,3,5-Trimethylbenzene     | 0.64 U     | ug/L            | 1.0        | 0.64        | 1     |              | 04/20/22 12:26  | 108-67-8     |      |
| Vinyl acetate              | 1.8 U      | ug/L            | 10.0       | 1.8         | 1     |              | 04/20/22 12:26  | 108-05-4     |      |
| Vinyl chloride             | 0.88 U     | ug/L            | 1.0        | 0.88        | 1     |              | 04/20/22 12:26  | 75-01-4      |      |
| Xylene (Total)             | 2.1 U      | ug/L            | 5.0        | 2.1         | 1     |              | 04/20/22 12:26  | 1330-20-7    |      |
| Surrogates                 |            | •               |            |             |       |              |                 |              |      |
| 4-Bromofluorobenzene (S)   | 99         | %               | 70-130     |             | 1     |              | 04/20/22 12:26  | 460-00-4     |      |
| Toluene-d8 (S)             | 104        | %               | 70-130     |             | 1     |              | 04/20/22 12:26  | 2037-26-5    |      |
| 1,2-Dichlorobenzene-d4 (S) | 102        | %               | 70-130     |             | 1     |              | 04/20/22 12:26  | 2199-69-1    |      |



| QC Batch:        | 817116          |                    | Analysis M     | lethod.   | EPA 200.8     |         |              |            |            |     |  |
|------------------|-----------------|--------------------|----------------|-----------|---------------|---------|--------------|------------|------------|-----|--|
| QC Batch Method  |                 |                    | Analysis D     |           | 200.8 MET     |         |              |            |            |     |  |
|                  | 1. EI7(200.0    |                    | Laboratory     |           |               | ical Se | rvices - Orm | ond Reach  |            |     |  |
| Associated Lab S | amples: 3571137 | 76001, 35711376002 | ,              |           | 1 doe / maryt |         |              |            |            |     |  |
| METHOD BLANK     | (: 4487096      |                    | Matri          | x: Water  |               |         |              |            |            |     |  |
| Associated Lab S | amples: 3571137 | 76001, 35711376002 | 2, 35711376003 |           |               |         |              |            |            |     |  |
|                  |                 |                    | Blank          | Reporting | 9             |         |              |            |            |     |  |
| Par              | rameter         | Units              | Result         | Limit     | MDI           | _       | Analyze      | ed C       | Qualifiers | i   |  |
| Cadmium          |                 | ug/L               | 0.050          | J         | 0.10          | 0.050   | 04/19/22 1   | 9:13       |            |     |  |
| Chromium         |                 | ug/L               | 0.50           | J         | 1.0           | 0.50    | 04/19/22 1   | 9:13       |            |     |  |
| Lead             |                 | ug/L               | 0.22           | J         | 1.0           | 0.22    | 04/19/22 1   |            |            |     |  |
| Silver           |                 | ug/L               | 0.21           | J 0       | 0.50          | 0.21    | 04/19/22 1   | 9:13       |            |     |  |
| LABORATORY C     | ONTROL SAMPLE:  | 4487097            |                |           |               |         |              |            |            |     |  |
|                  |                 |                    | Spike          | LCS       | LCS           | 9       | % Rec        |            |            |     |  |
| Par              | rameter         | Units              | Conc.          | Result    | % Rec         | I       | Limits       | Qualifiers |            |     |  |
| Cadmium          |                 | ug/L               | 5              | 5.0       | 100           | )       | 85-115       |            |            |     |  |
| Chromium         |                 | ug/L               | 50             | 50.8      | 102           | 2       | 85-115       |            |            |     |  |
| Lead             |                 | ug/L               | 50             | 49.5      | 99            | 9       | 85-115       |            |            |     |  |
| Silver           |                 | ug/L               | 5              | 4.9       | 99            | 9       | 85-115       |            |            |     |  |
|                  |                 | JPLICATE: 44870    | )98            | 44870     | 99            |         |              |            |            |     |  |
| MATRIX SPIKE &   |                 |                    |                |           |               |         |              |            |            |     |  |
| MATRIX SPIKE &   | MATRIX SPIKE DU | DI LICATE. 44070   | MS MS          | D         |               |         |              |            |            |     |  |
| MATRIX SPIKE 8   | MATRIX SPIKE DU | 35711376003        |                |           | MSD           | MS      | MSD          | % Rec      |            | Max |  |

5

50

50

5

5.1

52.6

50.4

5.1

102

103

101

102

101

105

101

101

70-130

70-130

70-130

70-130

5.0

53.2

50.8

5.1

0.050 U

0.90 I

0.22 U

0.21 U

ug/L

ug/L

ug/L

ug/L

5

50

50

5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

Cadmium

Chromium

Lead

Silver

20

20

20

1

1

1

0 20



| Project: Sat | fety Kleen Facility |
|--------------|---------------------|
|--------------|---------------------|

| Pace Project No.: 35711376          |       |               |             |                    |                    |            |  |  |
|-------------------------------------|-------|---------------|-------------|--------------------|--------------------|------------|--|--|
| QC Batch: 817412                    |       | Analysis Meth | nod:        | EPA 8260           |                    |            |  |  |
| QC Batch Method: EPA 8260           |       | Analysis Des  | cription: 8 | 8260 MSV           |                    |            |  |  |
|                                     |       | Laboratory:   | 1           | Pace Analytical Se | rvices - Ormond Be | each       |  |  |
| Associated Lab Samples: 35711376001 | l     |               |             |                    |                    |            |  |  |
| METHOD BLANK: 4488900               |       | Matrix:       | Water       |                    |                    |            |  |  |
| Associated Lab Samples: 35711376001 |       |               |             |                    |                    |            |  |  |
|                                     |       | Blank         | Reporting   |                    |                    |            |  |  |
| Parameter                           | Units | Result        | Limit       | MDL                | Analyzed           | Qualifiers |  |  |
| 1,1,1-Trichloroethane               | ug/L  | 0.30 U        | 1.          | 0 0.30             | 04/19/22 22:29     |            |  |  |
| 1,1,2,2-Tetrachloroethane           | ug/L  | 0.59 U        | 1.          | 0 0.59             | 04/19/22 22:29     |            |  |  |
| 1,1,2-Trichloroethane               | ug/L  | 0.30 U        | 1.          | 0 0.30             | 04/19/22 22:29     |            |  |  |
| 1,1,2-Trichlorotrifluoroethane      | ug/L  | 3.5 U         | 5.          | 0 3.5              | 04/19/22 22:29     |            |  |  |
| 1,1-Dichloroethane                  | ug/L  | 0.34 U        | 1.          | 0 0.34             | 04/19/22 22:29     |            |  |  |
| 1,1-Dichloroethene                  | ug/L  | 0.59 U        | 1.          | 0 0.59             | 04/19/22 22:29     |            |  |  |
| 1,1-Dichloropropene                 | ug/L  | 0.31 U        | 1.          | 0 0.31             | 04/19/22 22:29     |            |  |  |
| 1,2,3-Trichloropropane              | ug/L  | 0.53 U        | 2.          | 0 0.53             | 04/19/22 22:29     |            |  |  |
| 1,2,4-Trimethylbenzene              | ug/L  | 0.58 U        | 1.          | 0 0.58             | 04/19/22 22:29     |            |  |  |
| 1,2-Dichlorobenzene                 | ug/L  | 0.60 U        | 1.          | 0.60               | 04/19/22 22:29     |            |  |  |
| 1,2-Dichloroethane                  | ug/L  | 0.27 U        | 1.          | 0 0.27             | 04/19/22 22:29     |            |  |  |
| 1,2-Dichloropropane                 | ug/L  | 0.23 U        | 1.          | 0 0.23             | 04/19/22 22:29     |            |  |  |
| 1,3,5-Trimethylbenzene              | ug/L  | 0.64 U        | 1.          | 0 0.64             | 04/19/22 22:29     |            |  |  |
| 1,3-Dichlorobenzene                 | ug/L  | 0.33 U        | 1.          | 0 0.33             | 04/19/22 22:29     |            |  |  |
| 1,3-Dichloropropane                 | ug/L  | 0.26 U        | 1.          | 0 0.26             | 04/19/22 22:29     |            |  |  |
|                                     |       |               |             |                    |                    |            |  |  |

| 2.0                       | ~g, _ | ·····  |      | •.=. |                |       |
|---------------------------|-------|--------|------|------|----------------|-------|
| Bromochloromethane        | ug/L  | 0.37 U | 1.0  | 0.37 | 04/19/22 22:29 |       |
| Bromodichloromethane      | ug/L  | 0.44 U | 1.0  | 0.44 | 04/19/22 22:29 |       |
| Bromoform                 | ug/L  | 2.8 U  | 3.0  | 2.8  | 04/19/22 22:29 |       |
| Bromomethane              | ug/L  | 3.9 U  | 10.0 | 3.9  | 04/19/22 22:29 | J(v2) |
| Carbon disulfide          | ug/L  | 1.8 U  | 10.0 | 1.8  | 04/19/22 22:29 |       |
| Carbon tetrachloride      | ug/L  | 0.44 U | 3.0  | 0.44 | 04/19/22 22:29 |       |
| Chlorobenzene             | ug/L  | 0.35 U | 1.0  | 0.35 | 04/19/22 22:29 |       |
| Chloroethane              | ug/L  | 3.7 U  | 10.0 | 3.7  | 04/19/22 22:29 |       |
| Chloroform                | ug/L  | 0.56 U | 1.0  | 0.56 | 04/19/22 22:29 |       |
| Chloromethane             | ug/L  | 0.92 U | 1.0  | 0.92 | 04/19/22 22:29 | J(v1) |
| cis-1,2-Dichloroethene    | ug/L  | 0.83 U | 1.0  | 0.83 | 04/19/22 22:29 |       |
| Dibromochloromethane      | ug/L  | 0.97 U | 2.0  | 0.97 | 04/19/22 22:29 |       |
| Dibromomethane            | ug/L  | 0.34 U | 2.0  | 0.34 | 04/19/22 22:29 |       |
| Dichlorodifluoromethane   | ug/L  | 0.84 U | 1.0  | 0.84 | 04/19/22 22:29 |       |
| Ethylbenzene              | ug/L  | 0.30 U | 1.0  | 0.30 | 04/19/22 22:29 |       |
| Isopropylbenzene (Cumene) | ug/L  | 0.30 U | 1.0  | 0.30 | 04/19/22 22:29 |       |
| Methyl-tert-butyl ether   | ug/L  | 1.6 U  | 5.0  | 1.6  | 04/19/22 22:29 |       |
| Methylene Chloride        | ug/L  | 4.4 U  | 5.0  | 4.4  | 04/19/22 22:29 |       |
|                           |       |        |      |      |                |       |

0.28 U

6.0 U

10.0 U

7.5 U

9.4 U

0.30 U

0.21 U

1.0

50.0

25.0

25.0

25.0

1.0

1.0

0.28 04/19/22 22:29

6.0 04/19/22 22:29

10.0 04/19/22 22:29

7.5 04/19/22 22:29

9.4 04/19/22 22:29

0.30 04/19/22 22:29

0.21 04/19/22 22:29

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

1,4-Dichlorobenzene

4-Methyl-2-pentanone (MIBK)

2-Butanone (MEK)

2-Hexanone

Bromobenzene

Acetone

Benzene



Matrix: Water

Project: Safety Kleen Facility Pace Project No.: 35711376

#### METHOD BLANK: 4488900

Associated Lab Samples: 35711376001

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers Styrene 0.65 U ug/L 1.0 0.65 04/19/22 22:29 Tetrachloroethene ug/L 0.38 U 1.0 0.38 04/19/22 22:29 Toluene 0.71 U 1.0 04/19/22 22:29 ug/L 0.71 0.23 U trans-1,2-Dichloroethene 0.23 04/19/22 22:29 1.0 ug/L Trichloroethene 0.36 U 1.0 0.36 04/19/22 22:29 ug/L Trichlorofluoromethane ug/L 0.82 U 1.0 0.82 04/19/22 22:29 Vinyl acetate ug/L 1.8 U 10.0 1.8 04/19/22 22:29 J(v1) Vinyl chloride ug/L 0.88 U 1.0 0.88 04/19/22 22:29 Xylene (Total) ug/L 2.1 U 5.0 2.1 04/19/22 22:29 1,2-Dichlorobenzene-d4 (S) % 101 70-130 04/19/22 22:29 4-Bromofluorobenzene (S) % 70-130 04/19/22 22:29 96 Toluene-d8 (S) % 105 70-130 04/19/22 22:29

#### LABORATORY CONTROL SAMPLE: 4488901

|                                |       | Spike | LCS    | LCS   | % Rec    |            |
|--------------------------------|-------|-------|--------|-------|----------|------------|
| Parameter                      | Units | Conc. | Result | % Rec | Limits   | Qualifiers |
| 1,1,1-Trichloroethane          | ug/L  | 20    | 22.5   | 112   | 70-130   |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | 20    | 23.3   | 117   | 68-125   |            |
| 1,1,2-Trichloroethane          | ug/L  | 20    | 22.6   | 113   | 70-130   |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | 20    | 22.4   | 112   | 57-145   |            |
| 1,1-Dichloroethane             | ug/L  | 20    | 21.3   | 106   | 70-130   |            |
| 1,1-Dichloroethene             | ug/L  | 20    | 21.1   | 106   | 66-133   |            |
| 1,1-Dichloropropene            | ug/L  | 20    | 21.4   | 107   | 70-130   |            |
| 1,2,3-Trichloropropane         | ug/L  | 20    | 22.2   | 111   | 62-127   |            |
| 1,2,4-Trimethylbenzene         | ug/L  | 20    | 21.1   | 105   | 70-130   |            |
| 1,2-Dichlorobenzene            | ug/L  | 20    | 21.1   | 105   | 70-130   |            |
| ,2-Dichloroethane              | ug/L  | 20    | 21.4   | 107   | 70-130   |            |
| ,2-Dichloropropane             | ug/L  | 20    | 20.9   | 105   | 70-130   |            |
| ,3,5-Trimethylbenzene          | ug/L  | 20    | 21.4   | 107   | 70-130   |            |
| 1,3-Dichlorobenzene            | ug/L  | 20    | 21.7   | 109   | 70-130   |            |
| I,3-Dichloropropane            | ug/L  | 20    | 21.8   | 109   | 70-130   |            |
| ,4-Dichlorobenzene             | ug/L  | 20    | 20.6   | 103   | 70-130   |            |
| 2-Butanone (MEK)               | ug/L  | 100   | 109    | 109   | 47-143   |            |
| 2-Hexanone                     | ug/L  | 100   | 109    | 109   | 48-145   |            |
| 1-Methyl-2-pentanone (MIBK)    | ug/L  | 100   | 106    | 106   | 57-132   |            |
| Acetone                        | ug/L  | 100   | 111    | 111   | 46-148   |            |
| Benzene                        | ug/L  | 20    | 22.1   | 111   | 70-130   |            |
| Bromobenzene                   | ug/L  | 20    | 21.4   | 107   | 70-130   |            |
| Bromochloromethane             | ug/L  | 20    | 19.7   | 98    | 70-130   |            |
| Bromodichloromethane           | ug/L  | 20    | 23.0   | 115   | 70-130   |            |
| Bromoform                      | ug/L  | 20    | 23.7   | 119   | 49-126   |            |
| Bromomethane                   | ug/L  | 20    | 4.0 I  | 20    | 10-165 J | (v3)       |
| Carbon disulfide               | ug/L  | 20    | 21.9   | 110   | 60-141   |            |
| Carbon tetrachloride           | ug/L  | 20    | 22.2   | 111   | 63-126   |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



# Project: Safety Kleen Facility

Pace Project No.: 35711376

#### LABORATORY CONTROL SAMPLE: 4488901

|                         |       | Spike | LCS    | LCS   | % Rec  |            |
|-------------------------|-------|-------|--------|-------|--------|------------|
| Parameter               | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Chlorobenzene           | ug/L  | 20    | 21.8   | 109   | 70-130 |            |
| Chloroethane            | ug/L  | 20    | 22.3   | 112   | 71-142 |            |
| hloroform               | ug/L  | 20    | 22.2   | 111   | 70-130 |            |
| hloromethane            | ug/L  | 20    | 24.3   | 122   | 40-140 | J(v1)      |
| s-1,2-Dichloroethene    | ug/L  | 20    | 20.7   | 104   | 70-130 |            |
| bromochloromethane      | ug/L  | 20    | 22.2   | 111   | 62-118 |            |
| bromomethane            | ug/L  | 20    | 21.8   | 109   | 70-130 |            |
| chlorodifluoromethane   | ug/L  | 20    | 21.1   | 105   | 47-150 |            |
| hylbenzene              | ug/L  | 20    | 21.5   | 107   | 70-130 |            |
| propylbenzene (Cumene)  | ug/L  | 20    | 21.5   | 107   | 70-130 |            |
| thyl-tert-butyl ether   | ug/L  | 20    | 19.0   | 95    | 64-124 |            |
| thylene Chloride        | ug/L  | 20    | 20.6   | 103   | 65-136 |            |
| rene                    | ug/L  | 20    | 22.3   | 111   | 70-130 |            |
| rachloroethene          | ug/L  | 20    | 21.6   | 108   | 64-134 |            |
| Jene                    | ug/L  | 20    | 22.0   | 110   | 70-130 |            |
| ns-1,2-Dichloroethene   | ug/L  | 20    | 20.9   | 104   | 68-127 |            |
| chloroethene            | ug/L  | 20    | 22.6   | 113   | 70-130 |            |
| chlorofluoromethane     | ug/L  | 20    | 21.3   | 106   | 65-135 |            |
| nyl acetate             | ug/L  | 20    | 24.7   | 124   | 60-144 | J(v1)      |
| nyl chloride            | ug/L  | 20    | 23.9   | 120   | 68-131 |            |
| ene (Total)             | ug/L  | 60    | 64.8   | 108   | 70-130 |            |
| -Dichlorobenzene-d4 (S) | %     |       |        | 98    | 70-130 |            |
| romofluorobenzene (S)   | %     |       |        | 97    | 70-130 |            |
| uene-d8 (S)             | %     |       |        | 101   | 70-130 |            |

| MATRIX SPIKE SAMPLE:           | 4488903 |             |       |        |       |        |            |
|--------------------------------|---------|-------------|-------|--------|-------|--------|------------|
|                                |         | 35711433007 | Spike | MS     | MS    | % Rec  |            |
| Parameter                      | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1-Trichloroethane          | ug/L    | 0.30 U      | 20    | 25.4   | 127   | 70-130 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 0.59 U      | 20    | 23.4   | 117   | 68-125 |            |
| 1,1,2-Trichloroethane          | ug/L    | 0.30 U      | 20    | 22.8   | 114   | 70-130 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 3.5 U       | 20    | 24.7   | 124   | 57-145 |            |
| 1,1-Dichloroethane             | ug/L    | 0.34 U      | 20    | 23.7   | 119   | 70-130 |            |
| 1,1-Dichloroethene             | ug/L    | 0.59 U      | 20    | 22.4   | 112   | 66-133 |            |
| 1,1-Dichloropropene            | ug/L    | 0.31 U      | 20    | 24.3   | 122   | 70-130 |            |
| 1,2,3-Trichloropropane         | ug/L    | 0.53 U      | 20    | 22.7   | 113   | 62-127 |            |
| 1,2,4-Trimethylbenzene         | ug/L    | 0.58 U      | 20    | 21.4   | 107   | 70-130 |            |
| 1,2-Dichlorobenzene            | ug/L    | 0.60 U      | 20    | 20.5   | 103   | 70-130 |            |
| 1,2-Dichloroethane             | ug/L    | 0.27 U      | 20    | 21.7   | 108   | 70-130 |            |
| 1,2-Dichloropropane            | ug/L    | 0.23 U      | 20    | 22.7   | 114   | 70-130 |            |
| 1,3,5-Trimethylbenzene         | ug/L    | 0.64 U      | 20    | 21.4   | 107   | 70-130 |            |
| 1,3-Dichlorobenzene            | ug/L    | 0.33 U      | 20    | 21.6   | 108   | 70-130 |            |
| 1,3-Dichloropropane            | ug/L    | 0.26 U      | 20    | 22.3   | 111   | 70-130 |            |
| 1,4-Dichlorobenzene            | ug/L    | 0.28 U      | 20    | 20.8   | 104   | 70-130 |            |
| 2-Butanone (MEK)               | ug/L    | 6.0 U       | 100   | 111    | 111   | 47-143 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

Pace Project No.: 35711376

| MATRIX SPIKE SAMPLE:        | 4488903 |             |       |        |       |        |              |
|-----------------------------|---------|-------------|-------|--------|-------|--------|--------------|
|                             |         | 35711433007 | Spike | MS     | MS    | % Rec  |              |
| Parameter                   | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers   |
| 2-Hexanone                  | ug/L    | 10.0 U      | 100   | 115    | 115   | 48-145 |              |
| 4-Methyl-2-pentanone (MIBK) | ug/L    | 7.5 U       | 100   | 111    | 111   | 57-132 |              |
| Acetone                     | ug/L    | 9.4 U       | 100   | 115    | 110   | 46-148 |              |
| Benzene                     | ug/L    | 0.30 U      | 20    | 24.5   | 122   | 70-130 |              |
| Bromobenzene                | ug/L    | 0.21 U      | 20    | 21.9   | 110   | 70-130 |              |
| Bromochloromethane          | ug/L    | 0.37 U      | 20    | 22.0   | 110   | 70-130 |              |
| Bromodichloromethane        | ug/L    | 0.44 U      | 20    | 24.1   | 121   | 70-130 |              |
| Bromoform                   | ug/L    | 2.8 U       | 20    | 23.8   | 119   | 49-126 |              |
| Bromomethane                | ug/L    | 3.9 U       | 20    | 9.9 I  | 50    | 10-165 | J(v3)        |
| Carbon disulfide            | ug/L    | 1.8 U       | 20    | 20.3   | 102   | 60-141 |              |
| Carbon tetrachloride        | ug/L    | 0.44 U      | 20    | 26.3   | 132   | 63-126 | J(M1)        |
| Chlorobenzene               | ug/L    | 0.35 U      | 20    | 23.2   | 116   | 70-130 |              |
| Chloroethane                | ug/L    | 3.7 U       | 20    | 20.9   | 104   | 71-142 |              |
| Chloroform                  | ug/L    | 0.56 U      | 20    | 23.8   | 119   | 70-130 |              |
| Chloromethane               | ug/L    | 0.92 U      | 20    | 28.4   | 142   | 40-140 | J(M1), J(v1) |
| cis-1,2-Dichloroethene      | ug/L    | 0.83 U      | 20    | 23.3   | 116   | 70-130 |              |
| Dibromochloromethane        | ug/L    | 0.97 U      | 20    | 22.9   | 115   | 62-118 |              |
| Dibromomethane              | ug/L    | 0.34 U      | 20    | 22.4   | 112   | 70-130 |              |
| Dichlorodifluoromethane     | ug/L    | 0.84 U      | 20    | 24.9   | 125   | 47-150 |              |
| Ethylbenzene                | ug/L    | 0.30 U      | 20    | 23.0   | 115   | 70-130 |              |
| Isopropylbenzene (Cumene)   | ug/L    | 0.30 U      | 20    | 22.4   | 112   | 70-130 |              |
| Methyl-tert-butyl ether     | ug/L    | 1.6 U       | 20    | 18.6   | 93    | 64-124 |              |
| Methylene Chloride          | ug/L    | 4.4 U       | 20    | 22.5   | 112   | 65-136 |              |
| Styrene                     | ug/L    | 0.65 U      | 20    | 22.7   | 113   | 70-130 |              |
| Tetrachloroethene           | ug/L    | 0.38 U      | 20    | 22.0   | 110   | 64-134 |              |
| Toluene                     | ug/L    | 0.71 U      | 20    | 23.1   | 116   | 70-130 |              |
| trans-1,2-Dichloroethene    | ug/L    | 0.23 U      | 20    | 22.4   | 112   | 68-127 |              |
| Trichloroethene             | ug/L    | 0.36 U      | 20    | 24.8   | 124   | 70-130 |              |
| Trichlorofluoromethane      | ug/L    | 0.82 U      | 20    | 25.1   | 126   | 65-135 |              |
| √inyl acetate               | ug/L    | 1.8 U       | 20    | 23.6   | 118   | 60-144 | J(v1)        |
| √inyl chloride              | ug/L    | 0.88 U      | 20    | 28.0   | 140   | 68-131 | J(M1)        |
| Xylene (Total)              | ug/L    | 2.1 U       | 60    | 67.6   | 113   | 70-130 |              |
| 1,2-Dichlorobenzene-d4 (S)  | %       |             |       |        | 97    | 70-130 |              |
| 4-Bromofluorobenzene (S)    | %       |             |       |        | 100   | 70-130 |              |
| Toluene-d8 (S)              | %       |             |       |        | 100   | 70-130 |              |

#### SAMPLE DUPLICATE: 4488902

| Parameter                      | Units | 35711433006<br>Result | Dup<br>Result | RPD | Max<br>RPD | Qualifiers |
|--------------------------------|-------|-----------------------|---------------|-----|------------|------------|
| Farameter                      | Units |                       | Result        | RFD |            | Qualifiers |
| 1,1,1-Trichloroethane          | ug/L  | 0.30 U                | 0.30 U        |     | 40         |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | 0.59 U                | 0.59 U        |     | 40         |            |
| 1,1,2-Trichloroethane          | ug/L  | 0.30 U                | 0.30 U        |     | 40         |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | 3.5 U                 | 3.5 U         |     | 40         |            |
| 1,1-Dichloroethane             | ug/L  | 0.34 U                | 0.34 U        |     | 40         |            |
| 1,1-Dichloroethene             | ug/L  | 0.59 U                | 0.59 U        |     | 40         |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



# Project: Safety Kleen Facility

Pace Project No.: 35711376

| SAMPLE DUPLICATE: 4488902  |           | 35711433006 | Dup      |     | Max            |
|----------------------------|-----------|-------------|----------|-----|----------------|
| Parameter                  | Units     | Result      | Result   | RPD | RPD Qualifiers |
| ,1-Dichloropropene         | ug/L      | 0.31 U      | 0.31 U   |     | 40             |
| ,2,3-Trichloropropane      | ug/L      | 0.53 U      | 0.53 U   |     | 40             |
| ,2,4-Trimethylbenzene      | ug/L      | 0.58 U      | 0.58 U   |     | 40             |
| ,2-Dichlorobenzene         | ug/L      | 0.60 U      | 0.60 U   |     | 40             |
| ,2-Dichloroethane          | ug/L      | 0.27 U      | 0.27 U   |     | 40             |
| ,2-Dichloropropane         | ug/L      | 0.23 U      | 0.23 U   |     | 40             |
| ,3,5-Trimethylbenzene      | ug/L      | 0.64 U      | 0.64 U   |     | 40             |
| ,3-Dichlorobenzene         | ug/L      | 0.33 U      | 0.33 U   |     | 40             |
| ,3-Dichloropropane         | ug/L      | 0.26 U      | 0.26 U   |     | 40             |
| ,4-Dichlorobenzene         | ug/L      | 0.28 U      | 0.28 U   |     | 40             |
| -Butanone (MEK)            | ug/L      | 6.0 U       | 6.0 U    |     | 40             |
| -Hexanone                  | ug/L      | 10.0 U      | 10.0 U   |     | 40             |
| -Methyl-2-pentanone (MIBK) | ug/L      | 7.5 U       | 7.5 U    |     | 40             |
| cetone                     | ug/L      | 9.4 U       | 9.4 U    |     | 40             |
| enzene                     | ug/L      | 0.30 U      | 0.30 U   |     | 40             |
| romobenzene                | ug/L      | 0.21 U      | 0.21 U   |     | 40             |
| romochloromethane          | ug/L      | 0.37 U      | 0.37 U   |     | 40             |
| romodichloromethane        | ug/L      | 0.44 U      | 0.44 U   |     | 40             |
| romoform                   | ug/L      | 2.8 U       | 2.8 U    |     | 40             |
| romomethane                | ug/L      | 3.9 U       | 3.9 U    |     | 40 J(v2)       |
| arbon disulfide            | ug/L      | 1.8 U       | 1.8 U    |     | 40             |
| arbon tetrachloride        | ug/L      | 0.44 U      | 0.44 U   |     | 40             |
| llorobenzene               | ug/L      | 0.35 U      | 0.35 U   |     | 40             |
| loroethane                 | ug/L      | 3.7 U       | 3.7 U    |     | 40             |
| nloroform                  | ug/L      | 0.56 U      | 0.56 U   |     | 40             |
| nloromethane               | ug/L      | 0.92 U      | 0.92 U   |     | 40 J(v1)       |
| s-1,2-Dichloroethene       | ug/L      | 0.83 U      | 0.83 U   |     | 40             |
| ibromochloromethane        | ug/L      | 0.97 U      | 0.97 U   |     | 40             |
| ibromomethane              | ug/L      | 0.34 U      | 0.34 U   |     | 40             |
| ichlorodifluoromethane     | ug/L      | 0.84 U      | 0.84 U   |     | 40             |
| thylbenzene                | ug/L      | 0.30 U      | 0.30 U   |     | 40             |
| opropylbenzene (Cumene)    | ug/L      | 0.30 U      | 0.30 U   |     | 40             |
| ethyl-tert-butyl ether     | ug/L      | 1.6 U       | 1.6 U    |     | 40             |
| lethylene Chloride         | ug/L      | 4.4 U       | 4.4 U    |     | 40             |
| tyrene                     | ug/L      | 0.65 U      | 0.65 U   |     | 40             |
| etrachloroethene           | ug/L      | 0.38 U      | 0.38 U   |     | 40             |
| bluene                     | ug/L      | 0.71 U      | 0.71 U   |     | 40             |
| ans-1,2-Dichloroethene     | ug/L      | 0.23 U      | 0.23 U   |     | 40             |
| ichloroethene              | ug/L      | 0.36 U      | 0.36 U   |     | 40             |
| ichlorofluoromethane       | ug/L      | 0.82 U      | 0.82 U   |     | 40             |
| nyl acetate                | ug/L      | 1.8 U       | 1.8 U    |     | 40<br>40 J(v1) |
| nyl chloride               | ug/L      | 0.88 U      | 0.88 U   |     | 40 3(01)       |
| ylene (Total)              | -         | 2.1 U       | 2.1 U    |     | 40<br>40       |
| ,2-Dichlorobenzene-d4 (S)  | ug/L<br>% | 103         | 2.1 0    |     | 40<br>40       |
| -Bromofluorobenzene (S)    | %         | 94          | 99<br>97 |     | 40<br>40       |
| DIOMONUODENZENE (3)        | 70        | 105         | 97       |     | 40             |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



| Project: | Safety Kleen Facility |
|----------|-----------------------|
|----------|-----------------------|

| Project. Salety Rieen Facil      | ity   |               |               |                 |                   |            |
|----------------------------------|-------|---------------|---------------|-----------------|-------------------|------------|
| Pace Project No.: 35711376       |       |               |               |                 |                   |            |
| QC Batch: 817586                 |       | Analysis Meth | nod: EP/      | A 8260          |                   |            |
| QC Batch Method: EPA 8260        |       | Analysis Des  | cription: 826 | 0 MSV           |                   |            |
|                                  |       | Laboratory:   | •             | e Analytical Se | rvices - Ormond B | each       |
| Associated Lab Samples: 35711376 | 004   | Laboratory    |               |                 |                   | ouon       |
|                                  |       |               |               |                 |                   |            |
| METHOD BLANK: 4489415            |       | Matrix:       | Water         |                 |                   |            |
| Associated Lab Samples: 35711376 | 004   |               |               |                 |                   |            |
|                                  |       | Blank         | Reporting     |                 |                   |            |
| Parameter                        | Units | Result        | Limit         | MDL             | Analyzed          | Qualifiers |
| 1,1,1-Trichloroethane            | ug/L  | <br>0.30 U    | 1.0           | 0.30            | 04/20/22 10:57    |            |
| 1,1,2,2-Tetrachloroethane        | ug/L  | 0.59 U        | 1.0           | 0.59            | 04/20/22 10:57    |            |
| 1,1,2-Trichloroethane            | ug/L  | 0.30 U        | 1.0           | 0.30            | 04/20/22 10:57    |            |
| 1,1,2-Trichlorotrifluoroethane   | ug/L  | 3.5 U         | 5.0           | 3.5             | 04/20/22 10:57    | J(v2)      |
| 1,1-Dichloroethane               | ug/L  | 0.34 U        | 1.0           | 0.34            | 04/20/22 10:57    | ( )        |
| 1,1-Dichloroethene               | ug/L  | 0.59 U        | 1.0           | 0.59            | 04/20/22 10:57    | J(v2)      |
| ,1-Dichloropropene               | ug/L  | 0.31 U        | 1.0           | 0.31            | 04/20/22 10:57    | ( <i>)</i> |
| I,2,3-Trichloropropane           | ug/L  | 0.53 U        | 2.0           | 0.53            | 04/20/22 10:57    |            |
| 1,2,4-Trimethylbenzene           | ug/L  | 0.58 U        | 1.0           | 0.58            | 04/20/22 10:57    |            |
| 1,2-Dichlorobenzene              | ug/L  | 0.60 U        | 1.0           | 0.60            | 04/20/22 10:57    |            |
| 1,2-Dichloroethane               | ug/L  | 0.27 U        | 1.0           | 0.27            | 04/20/22 10:57    |            |
| 1,2-Dichloropropane              | ug/L  | 0.23 U        | 1.0           | 0.23            | 04/20/22 10:57    |            |
| 1,3,5-Trimethylbenzene           | ug/L  | 0.64 U        | 1.0           | 0.64            | 04/20/22 10:57    |            |
| 1,3-Dichlorobenzene              | ug/L  | 0.33 U        | 1.0           | 0.33            | 04/20/22 10:57    |            |
| 1,3-Dichloropropane              | ug/L  | 0.26 U        | 1.0           | 0.26            | 04/20/22 10:57    |            |
| 1,4-Dichlorobenzene              | ug/L  | 0.28 U        | 1.0           | 0.28            | 04/20/22 10:57    |            |
| 2-Butanone (MEK)                 | ug/L  | 6.0 U         | 50.0          | 6.0             | 04/20/22 10:57    |            |
| 2-Hexanone                       | ug/L  | 10.0 U        | 25.0          | 10.0            | 04/20/22 10:57    |            |
| 1-Methyl-2-pentanone (MIBK)      | ug/L  | 7.5 U         | 25.0          | 7.5             | 04/20/22 10:57    |            |
| Acetone                          | ug/L  | 9.4 U         | 25.0          | 9.4             | 04/20/22 10:57    |            |
| Benzene                          | ug/L  | 0.30 U        | 1.0           | 0.30            | 04/20/22 10:57    |            |
| Bromobenzene                     | ug/L  | 0.21 U        | 1.0           | 0.21            | 04/20/22 10:57    |            |
| Bromochloromethane               | ug/L  | 0.37 U        | 1.0           | 0.37            | 04/20/22 10:57    |            |
|                                  |       |               |               |                 |                   |            |

ug/L

1.0

3.0

10.0

10.0

3.0

1.0

10.0

1.0

1.0

1.0

2.0

2.0

1.0

1.0

1.0

5.0

5.0

0.44 04/20/22 10:57

2.8 04/20/22 10:57

3.9 04/20/22 10:57

04/20/22 10:57

04/20/22 10:57

04/20/22 10:57

04/20/22 10:57

04/20/22 10:57

0.92 04/20/22 10:57 0.83 04/20/22 10:57

0.97 04/20/22 10:57

0.34 04/20/22 10:57

0.84 04/20/22 10:57

0.30 04/20/22 10:57

0.30 04/20/22 10:57

04/20/22 10:57

04/20/22 10:57

J(v2)

J(v2)

1.8

0.44

0.35

3.7

0.56

1.6

4.4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

0.44 U

2.8 U

3.9 U

1.8 U

0.44 U

0.35 U

3.7 U

0.56 U

0.92 U

0.83 U

0.97 U

0.34 U

0.84 U

0.30 U

0.30 U

1.6 U

4.4 U

### **REPORT OF LABORATORY ANALYSIS**

Bromodichloromethane

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

Dibromomethane

Ethylbenzene

Chloroethane

Chloroform

Carbon tetrachloride

cis-1,2-Dichloroethene

Dibromochloromethane

Dichlorodifluoromethane

Methyl-tert-butyl ether

Methylene Chloride

Isopropylbenzene (Cumene)



Matrix: Water

Project: Safety Kleen Facility Pace Project No.: 35711376

### METHOD BLANK: 4489415

Associated Lab Samples: 35711376004

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers Styrene 0.65 U ug/L 1.0 0.65 04/20/22 10:57 Tetrachloroethene ug/L 0.38 U 1.0 0.38 04/20/22 10:57 04/20/22 10:57 Toluene 0.71 U 1.0 ug/L 0.71 trans-1,2-Dichloroethene 0.23 U 1.0 0.23 04/20/22 10:57 ug/L Trichloroethene 0.36 U 1.0 0.36 04/20/22 10:57 ug/L Trichlorofluoromethane ug/L 0.82 U 1.0 0.82 04/20/22 10:57 J(v2) Vinyl acetate ug/L 1.8 U 10.0 1.8 04/20/22 10:57 Vinyl chloride ug/L 0.88 U 1.0 0.88 04/20/22 10:57 Xylene (Total) ug/L 2.1 U 5.0 2.1 04/20/22 10:57 1,2-Dichlorobenzene-d4 (S) % 99 70-130 04/20/22 10:57 4-Bromofluorobenzene (S) % 70-130 96 04/20/22 10:57 Toluene-d8 (S) % 104 70-130 04/20/22 10:57

#### LABORATORY CONTROL SAMPLE: 4489416

| LABORATORT CONTROL SAMPLE.     | 4409410 | Spike | LCS    | LCS   | % Rec  |            |
|--------------------------------|---------|-------|--------|-------|--------|------------|
| Parameter                      | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1-Trichloroethane          | ug/L    | 20    | 17.7   | 89    | 70-130 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 20    | 21.2   | 106   | 68-125 |            |
| 1,1,2-Trichloroethane          | ug/L    | 20    | 19.7   | 99    | 70-130 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 20    | 15.5   | 78    | 57-145 | J(v3)      |
| 1,1-Dichloroethane             | ug/L    | 20    | 17.1   | 85    | 70-130 |            |
| 1,1-Dichloroethene             | ug/L    | 20    | 15.7   | 79    | 66-133 | J(v3)      |
| 1,1-Dichloropropene            | ug/L    | 20    | 16.7   | 84    | 70-130 |            |
| 1,2,3-Trichloropropane         | ug/L    | 20    | 20.9   | 104   | 62-127 |            |
| 1,2,4-Trimethylbenzene         | ug/L    | 20    | 18.6   | 93    | 70-130 |            |
| 1,2-Dichlorobenzene            | ug/L    | 20    | 18.6   | 93    | 70-130 |            |
| 1,2-Dichloroethane             | ug/L    | 20    | 18.4   | 92    | 70-130 |            |
| 1,2-Dichloropropane            | ug/L    | 20    | 18.0   | 90    | 70-130 |            |
| 1,3,5-Trimethylbenzene         | ug/L    | 20    | 18.4   | 92    | 70-130 |            |
| 1,3-Dichlorobenzene            | ug/L    | 20    | 19.2   | 96    | 70-130 |            |
| 1,3-Dichloropropane            | ug/L    | 20    | 19.4   | 97    | 70-130 |            |
| 1,4-Dichlorobenzene            | ug/L    | 20    | 18.6   | 93    | 70-130 |            |
| 2-Butanone (MEK)               | ug/L    | 100   | 113    | 113   | 47-143 |            |
| 2-Hexanone                     | ug/L    | 100   | 112    | 112   | 48-145 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L    | 100   | 108    | 108   | 57-132 |            |
| Acetone                        | ug/L    | 100   | 109    | 109   | 46-148 |            |
| Benzene                        | ug/L    | 20    | 18.2   | 91    | 70-130 |            |
| Bromobenzene                   | ug/L    | 20    | 18.6   | 93    | 70-130 |            |
| Bromochloromethane             | ug/L    | 20    | 17.2   | 86    | 70-130 |            |
| Bromodichloromethane           | ug/L    | 20    | 19.6   | 98    | 70-130 |            |
| Bromoform                      | ug/L    | 20    | 22.3   | 112   | 49-126 |            |
| Bromomethane                   | ug/L    | 20    | 20.4   | 102   | 10-165 |            |
| Carbon disulfide               | ug/L    | 20    | 17.5   | 88    | 60-141 |            |
| Carbon tetrachloride           | ug/L    | 20    | 17.6   | 88    | 63-126 |            |
|                                |         |       |        |       |        |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



# Project: Safety Kleen Facility

Pace Project No.: 35711376

#### LABORATORY CONTROL SAMPLE: 4489416

|                         |       | Spike | LCS    | LCS   | % Rec  |            |
|-------------------------|-------|-------|--------|-------|--------|------------|
| Parameter               | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Chlorobenzene           | ug/L  | 20    | 18.9   | 94    | 70-130 |            |
| Chloroethane            | ug/L  | 20    | 14.7   | 74    | 71-142 | J(v3)      |
| Chloroform              | ug/L  | 20    | 18.3   | 92    | 70-130 |            |
| Chloromethane           | ug/L  | 20    | 20.9   | 105   | 40-140 |            |
| s-1,2-Dichloroethene    | ug/L  | 20    | 17.3   | 87    | 70-130 |            |
| bromochloromethane      | ug/L  | 20    | 20.0   | 100   | 62-118 |            |
| bromomethane            | ug/L  | 20    | 19.9   | 99    | 70-130 |            |
| chlorodifluoromethane   | ug/L  | 20    | 15.0   | 75    | 47-150 | J(v3)      |
| hylbenzene              | ug/L  | 20    | 17.9   | 90    | 70-130 |            |
| propylbenzene (Cumene)  | ug/L  | 20    | 18.2   | 91    | 70-130 |            |
| thyl-tert-butyl ether   | ug/L  | 20    | 16.8   | 84    | 64-124 |            |
| thylene Chloride        | ug/L  | 20    | 18.3   | 91    | 65-136 |            |
| rene                    | ug/L  | 20    | 19.3   | 97    | 70-130 |            |
| rachloroethene          | ug/L  | 20    | 20.1   | 100   | 64-134 |            |
| Jene                    | ug/L  | 20    | 17.8   | 89    | 70-130 |            |
| ns-1,2-Dichloroethene   | ug/L  | 20    | 16.3   | 81    | 68-127 |            |
| chloroethene            | ug/L  | 20    | 18.2   | 91    | 70-130 |            |
| chlorofluoromethane     | ug/L  | 20    | 16.0   | 80    | 65-135 | J(v3)      |
| nyl acetate             | ug/L  | 20    | 23.6   | 118   | 60-144 |            |
| nyl chloride            | ug/L  | 20    | 16.6   | 83    | 68-131 |            |
| ene (Total)             | ug/L  | 60    | 54.7   | 91    | 70-130 |            |
| -Dichlorobenzene-d4 (S) | %     |       |        | 99    | 70-130 |            |
| Bromofluorobenzene (S)  | %     |       |        | 98    | 70-130 |            |
| luene-d8 (S)            | %     |       |        | 104   | 70-130 |            |

| MATRIX SPIKE SAMPLE:           | 4489418 |             |       |        |       |           |            |
|--------------------------------|---------|-------------|-------|--------|-------|-----------|------------|
|                                |         | 35711696002 | Spike | MS     | MS    | % Rec     |            |
| Parameter                      | Units   | Result      | Conc. | Result | % Rec | Limits    | Qualifiers |
| 1,1,1-Trichloroethane          | ug/L    | 0.30 U      | 20    | 20.5   | 102   | 70-130    |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 0.59 U      | 20    | 20.8   | 104   | 68-125    |            |
| 1,1,2-Trichloroethane          | ug/L    | 0.30 U      | 20    | 19.1   | 96    | 70-130    |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 3.5 U       | 20    | 19.9   | 100   | 57-145 J( | (v3)       |
| 1,1-Dichloroethane             | ug/L    | 0.34 U      | 20    | 19.4   | 97    | 70-130    |            |
| 1,1-Dichloroethene             | ug/L    | 0.59 U      | 20    | 19.0   | 95    | 66-133 J( | (v3)       |
| 1,1-Dichloropropene            | ug/L    | 0.31 U      | 20    | 20.2   | 101   | 70-130    |            |
| 1,2,3-Trichloropropane         | ug/L    | 0.53 U      | 20    | 20.2   | 101   | 62-127    |            |
| 1,2,4-Trimethylbenzene         | ug/L    | 0.58 U      | 20    | 18.5   | 92    | 70-130    |            |
| 1,2-Dichlorobenzene            | ug/L    | 0.60 U      | 20    | 17.7   | 89    | 70-130    |            |
| 1,2-Dichloroethane             | ug/L    | 0.27 U      | 20    | 18.3   | 92    | 70-130    |            |
| 1,2-Dichloropropane            | ug/L    | 0.23 U      | 20    | 18.7   | 94    | 70-130    |            |
| 1,3,5-Trimethylbenzene         | ug/L    | 0.64 U      | 20    | 18.2   | 91    | 70-130    |            |
| 1,3-Dichlorobenzene            | ug/L    | 0.33 U      | 20    | 18.6   | 93    | 70-130    |            |
| 1,3-Dichloropropane            | ug/L    | 0.26 U      | 20    | 19.0   | 95    | 70-130    |            |
| 1,4-Dichlorobenzene            | ug/L    | 0.28 U      | 20    | 18.2   | 91    | 70-130    |            |
| 2-Butanone (MEK)               | ug/L    | 6.0 U       | 100   | 85.8   | 86    | 47-143    |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

35711376 Pace Project No.:

| MATRIX SPIKE SAMPLE:        | 4489418 |             |       |        |       |          |            |
|-----------------------------|---------|-------------|-------|--------|-------|----------|------------|
|                             |         | 35711696002 | Spike | MS     | MS    | % Rec    |            |
| Parameter                   | Units   | Result      | Conc. | Result | % Rec | Limits   | Qualifiers |
| 2-Hexanone                  | ug/L    | 10.0 U      | 100   | 97.0   | 97    | 48-145   |            |
| 4-Methyl-2-pentanone (MIBK) | ug/L    | 7.5 U       | 100   | 93.2   | 93    | 57-132   |            |
| Acetone                     | ug/L    | 9.4 U       | 100   | 91.8   | 92    | 46-148   |            |
| Benzene                     | ug/L    | 0.30 U      | 20    | 20.3   | 101   | 70-130   |            |
| Bromobenzene                | ug/L    | 0.21 U      | 20    | 18.5   | 92    | 70-130   |            |
| Bromochloromethane          | ug/L    | 0.37 U      | 20    | 17.8   | 89    | 70-130   |            |
| Bromodichloromethane        | ug/L    | 0.44 U      | 20    | 20.4   | 102   | 70-130   |            |
| Bromoform                   | ug/L    | 2.8 U       | 20    | 21.4   | 107   | 49-126   |            |
| Bromomethane                | ug/L    | 3.9 U       | 20    | 7.1 I  | 35    | 10-165   |            |
| Carbon disulfide            | ug/L    | 1.8 U       | 20    | 20.4   | 102   | 60-141   |            |
| Carbon tetrachloride        | ug/L    | 0.44 U      | 20    | 20.2   | 101   | 63-126   |            |
| Chlorobenzene               | ug/L    | 0.35 U      | 20    | 19.5   | 97    | 70-130   |            |
| Chloroethane                | ug/L    | 3.7 U       | 20    | 19.8   | 99    | 71-142 J | l(v3)      |
| Chloroform                  | ug/L    | 0.56 U      | 20    | 19.4   | 97    | 70-130   |            |
| Chloromethane               | ug/L    | 0.92 U      | 20    | 25.0   | 125   | 40-140   |            |
| cis-1,2-Dichloroethene      | ug/L    | 0.83 U      | 20    | 18.4   | 92    | 70-130   |            |
| Dibromochloromethane        | ug/L    | 0.97 U      | 20    | 19.8   | 99    | 62-118   |            |
| Dibromomethane              | ug/L    | 0.34 U      | 20    | 19.2   | 96    | 70-130   |            |
| Dichlorodifluoromethane     | ug/L    | 0.84 U      | 20    | 18.9   | 95    | 47-150 J | l(v3)      |
| Ethylbenzene                | ug/L    | 0.30 U      | 20    | 19.2   | 96    | 70-130   |            |
| sopropylbenzene (Cumene)    | ug/L    | 0.30 U      | 20    | 18.6   | 93    | 70-130   |            |
| Methyl-tert-butyl ether     | ug/L    | 1.6 U       | 20    | 15.8   | 79    | 64-124   |            |
| Methylene Chloride          | ug/L    | 4.4 U       | 20    | 18.1   | 90    | 65-136   |            |
| Styrene                     | ug/L    | 0.65 U      | 20    | 19.4   | 97    | 70-130   |            |
| Tetrachloroethene           | ug/L    | 0.38 U      | 20    | 18.5   | 93    | 64-134   |            |
| Toluene                     | ug/L    | 0.71 U      | 20    | 19.5   | 97    | 70-130   |            |
| trans-1,2-Dichloroethene    | ug/L    | 0.23 U      | 20    | 18.1   | 90    | 68-127   |            |
| Trichloroethene             | ug/L    | 0.36 U      | 20    | 19.5   | 98    | 70-130   |            |
| Trichlorofluoromethane      | ug/L    | 0.82 U      | 20    | 19.8   | 99    | 65-135 J | l(v3)      |
| √inyl acetate               | ug/L    | 1.8 U       | 20    | 22.2   | 111   | 60-144   |            |
| √inyl chloride              | ug/L    | 0.88 U      | 20    | 23.6   | 118   | 68-131   |            |
| Xylene (Total)              | ug/L    | 2.1 U       | 60    | 56.9   | 95    | 70-130   |            |
| 1,2-Dichlorobenzene-d4 (S)  | %       |             |       |        | 100   | 70-130   |            |
| 4-Bromofluorobenzene (S)    | %       |             |       |        | 100   | 70-130   |            |
| Toluene-d8 (S)              | %       |             |       |        | 101   | 70-130   |            |

#### SAMPLE DUPLICATE: 4489417

|                                |       | 35711696001 | Dup    |     | Max |            |
|--------------------------------|-------|-------------|--------|-----|-----|------------|
| Parameter                      | Units | Result      | Result | RPD | RPD | Qualifiers |
| 1,1,1-Trichloroethane          | ug/L  | 0.30 U      | 0.30 U |     | 40  |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | 0.59 U      | 0.59 U |     | 40  |            |
| 1,1,2-Trichloroethane          | ug/L  | 0.30 U      | 0.30 U |     | 40  |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | 3.5 U       | 3.5 U  |     | 40  | J(v2)      |
| 1,1-Dichloroethane             | ug/L  | 0.34 U      | 0.34 U |     | 40  |            |
| 1,1-Dichloroethene             | ug/L  | 0.59 U      | 0.59 U |     | 40  | J(v2)      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



# Project: Safety Kleen Facility

Pace Project No.: 35711376

|                           |       | 35711696001 | Dup    |     | Max     |            |
|---------------------------|-------|-------------|--------|-----|---------|------------|
| Parameter                 | Units | Result      | Result | RPD | RPD C   | Qualifiers |
| ,1-Dichloropropene        | ug/L  | 0.31 U      | 0.31 U |     | 40      |            |
| ,2,3-Trichloropropane     | ug/L  | 0.53 U      | 0.53 U |     | 40      |            |
| ,2,4-Trimethylbenzene     | ug/L  | 0.58 U      | 0.58 U |     | 40      |            |
| ,2-Dichlorobenzene        | ug/L  | 0.60 U      | 0.60 U |     | 40      |            |
| ,2-Dichloroethane         | ug/L  | 0.27 U      | 0.27 U |     | 40      |            |
| 2-Dichloropropane         | ug/L  | 0.23 U      | 0.23 U |     | 40      |            |
| 3,5-Trimethylbenzene      | ug/L  | 0.64 U      | 0.64 U |     | 40      |            |
| 3-Dichlorobenzene         | ug/L  | 0.33 U      | 0.33 U |     | 40      |            |
| 3-Dichloropropane         | ug/L  | 0.26 U      | 0.26 U |     | 40      |            |
| 4-Dichlorobenzene         | ug/L  | 0.28 U      | 0.28 U |     | 40      |            |
| Butanone (MEK)            | ug/L  | 6.0 U       | 6.0 U  |     | 40      |            |
| Hexanone                  | ug/L  | 10.0 U      | 10.0 U |     | 40      |            |
| Methyl-2-pentanone (MIBK) | ug/L  | 7.5 U       | 7.5 U  |     | 40      |            |
| cetone                    | ug/L  | 9.4 U       | 9.4 U  |     | 40      |            |
| enzene                    | ug/L  | 0.30 U      | 0.30 U |     | 40      |            |
| omobenzene                | ug/L  | 0.21 U      | 0.21 U |     | 40      |            |
| omochloromethane          | ug/L  | 0.37 U      | 0.37 U |     | 40      |            |
| omodichloromethane        | ug/L  | 0.44 U      | 0.44 U |     | 40      |            |
| omoform                   | ug/L  | 2.8 U       | 2.8 U  |     | 40      |            |
| omomethane                | ug/L  | 3.9 U       | 3.9 U  |     | 40      |            |
| rbon disulfide            | ug/L  | 1.8 U       | 1.8 U  |     | 40      |            |
| rbon tetrachloride        | ug/L  | 0.44 U      | 0.44 U |     | 40      |            |
| lorobenzene               | ug/L  | 0.35 U      | 0.35 U |     | 40      |            |
| loroethane                | ug/L  | 3.7 U       | 3.7 U  |     | 40 J(v2 | 2)         |
| loroform                  | ug/L  | 0.56 U      | 0.56 U |     | 40      |            |
| loromethane               | ug/L  | 0.92 U      | 0.92 U |     | 40      |            |
| -1,2-Dichloroethene       | ug/L  | 0.83 U      | 0.83 U |     | 40      |            |
| bromochloromethane        | ug/L  | 0.97 U      | 0.97 U |     | 40      |            |
| promomethane              | ug/L  | 0.34 U      | 0.34 U |     | 40      |            |
| chlorodifluoromethane     | ug/L  | 0.84 U      | 0.84 U |     | 40 J(v2 | 2)         |
| nylbenzene                | ug/L  | 0.30 U      | 0.30 U |     | 40      |            |
| propylbenzene (Cumene)    | ug/L  | 1.6         | 1.8    | 13  | 40      |            |
| ethyl-tert-butyl ether    | ug/L  | 1.6 U       | 1.6 U  |     | 40      |            |
| ethylene Chloride         | ug/L  | 4.4 U       | 4.4 U  |     | 40      |            |
| yrene                     | ug/L  | 0.65 U      | 0.65 U |     | 40      |            |
| trachloroethene           | ug/L  | 0.38 U      | 0.38 U |     | 40      |            |
| luene                     | ug/L  | 0.71 U      | 0.71 U |     | 40      |            |
| ns-1,2-Dichloroethene     | ug/L  | 0.23 U      | 0.23 U |     | 40      |            |
| chloroethene              | ug/L  | 0.36 U      | 0.36 U |     | 40      |            |
| chlorofluoromethane       | ug/L  | 0.82 U      | 0.82 U |     | 40 J(v2 | 2)         |
| nyl acetate               | ug/L  | 1.8 U       | 1.8 U  |     | 40      |            |
| nyl chloride              | ug/L  | 0.88 U      | 0.88 U |     | 40      |            |
| (lene (Total)             | ug/L  | 2.1 U       | 2.1 U  |     | 40      |            |
| 2-Dichlorobenzene-d4 (S)  | %     | 99          | 102    |     | 40      |            |
| Bromofluorobenzene (S)    | %     | 101         | 102    |     | 40      |            |
| luene-d8 (S)              | %     | 107         | 110    |     | 40      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

| QC Batch:         | 817483             | Analysis Method:      | EPA 8270 by SIM                         |
|-------------------|--------------------|-----------------------|-----------------------------------------|
| QC Batch Method:  | EPA 3510           | Analysis Description: | 8270 Water PAHLV by SIM MSSV            |
|                   |                    | Laboratory:           | Pace Analytical Services - Ormond Beach |
| Associated Lab Sa | mples: 35711376001 |                       |                                         |
|                   |                    |                       |                                         |
| METHOD BLANK:     | 4489072            | Matrix: Water         |                                         |

|                        |       | Blank   | Reporting |       |                |            |
|------------------------|-------|---------|-----------|-------|----------------|------------|
| Parameter              | Units | Result  | Limit     | MDL   | Analyzed       | Qualifiers |
| 1-Methylnaphthalene    | ug/L  | 0.19 U  | 2.0       | 0.19  | 04/20/22 20:36 |            |
| 2-Methylnaphthalene    | ug/L  | 0.17 U  | 2.0       | 0.17  | 04/20/22 20:36 |            |
| Acenaphthene           | ug/L  | 0.019 U | 0.50      | 0.019 | 04/20/22 20:36 |            |
| Acenaphthylene         | ug/L  | 0.031 U | 0.50      | 0.031 | 04/20/22 20:36 |            |
| Anthracene             | ug/L  | 0.020 U | 0.50      | 0.020 | 04/20/22 20:36 |            |
| Benzo(a)anthracene     | ug/L  | 0.020 U | 0.10      | 0.020 | 04/20/22 20:36 |            |
| Benzo(a)pyrene         | ug/L  | 0.021 U | 0.20      | 0.021 | 04/20/22 20:36 |            |
| Benzo(b)fluoranthene   | ug/L  | 0.027 U | 0.10      | 0.027 | 04/20/22 20:36 |            |
| Benzo(g,h,i)perylene   | ug/L  | 0.023 U | 0.50      | 0.023 | 04/20/22 20:36 |            |
| Benzo(k)fluoranthene   | ug/L  | 0.024 U | 0.50      | 0.024 | 04/20/22 20:36 |            |
| Chrysene               | ug/L  | 0.026 U | 0.50      | 0.026 | 04/20/22 20:36 |            |
| Dibenz(a,h)anthracene  | ug/L  | 0.025 U | 0.15      | 0.025 | 04/20/22 20:36 |            |
| Fluoranthene           | ug/L  | 0.018 U | 0.50      | 0.018 | 04/20/22 20:36 |            |
| Fluorene               | ug/L  | 0.017 U | 0.50      | 0.017 | 04/20/22 20:36 |            |
| Indeno(1,2,3-cd)pyrene | ug/L  | 0.024 U | 0.15      | 0.024 | 04/20/22 20:36 |            |
| Naphthalene            | ug/L  | 0.29 U  | 2.0       | 0.29  | 04/20/22 20:36 |            |
| Phenanthrene           | ug/L  | 0.019 U | 0.50      | 0.019 | 04/20/22 20:36 |            |
| Pyrene                 | ug/L  | 0.032 U | 0.50      | 0.032 | 04/20/22 20:36 |            |
| 2-Fluorobiphenyl (S)   | %     | 60      | 32-100    |       | 04/20/22 20:36 |            |
| p-Terphenyl-d14 (S)    | %     | 89      | 48-112    |       | 04/20/22 20:36 |            |

### LABORATORY CONTROL SAMPLE: 4489073

| LABORATORY CONTROL SAMPLE. | 4409073 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1-Methylnaphthalene        | ug/L    | 5     | 3.7    | 74    | 34-103 |            |
| 2-Methylnaphthalene        | ug/L    | 5     | 3.7    | 74    | 35-100 |            |
| Acenaphthene               | ug/L    | 5     | 4.1    | 82    | 38-102 |            |
| Acenaphthylene             | ug/L    | 5     | 3.5    | 69    | 35-97  |            |
| Anthracene                 | ug/L    | 5     | 4.2    | 83    | 46-107 |            |
| Benzo(a)anthracene         | ug/L    | 5     | 4.3    | 86    | 55-113 |            |
| Benzo(a)pyrene             | ug/L    | 5     | 3.5    | 71    | 51-112 |            |
| Benzo(b)fluoranthene       | ug/L    | 5     | 4.0    | 79    | 58-116 |            |
| Benzo(g,h,i)perylene       | ug/L    | 5     | 3.9    | 79    | 45-116 |            |
| Benzo(k)fluoranthene       | ug/L    | 5     | 4.0    | 80    | 58-118 |            |
| Chrysene                   | ug/L    | 5     | 4.5    | 91    | 58-120 |            |
| Dibenz(a,h)anthracene      | ug/L    | 5     | 4.0    | 80    | 46-114 |            |
| Fluoranthene               | ug/L    | 5     | 4.4    | 89    | 54-118 |            |
| Fluorene                   | ug/L    | 5     | 4.0    | 81    | 40-105 |            |
| Indeno(1,2,3-cd)pyrene     | ug/L    | 5     | 3.9    | 78    | 46-114 |            |
|                            |         |       |        |       |        |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### Project: Safety Kleen Facility Pace Project No.: 35711376

#### LABORATORY CONTROL SAMPLE: 4489073

| Parameter           | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|---------------------|-------|----------------|---------------|--------------|-----------------|------------|
| Naphthalene         | ug/L  | 5              | 3.8           | 76           | 34-97           |            |
| Phenanthrene        | ug/L  | 5              | 4.3           | 85           | 47-110          |            |
| Pyrene              | ug/L  | 5              | 4.3           | 87           | 54-117          |            |
| -Fluorobiphenyl (S) | %     |                |               | 77           | 32-100          |            |
| o-Terphenyl-d14 (S) | %     |                |               | 100          | 48-112          |            |

| MATRIX SPIKE & MATRIX S                                       | PIKE DUPLIC       | CATE: 4489        | 078    |        | 4489079    | 1          |                      |                      |                                     |        |          |       |
|---------------------------------------------------------------|-------------------|-------------------|--------|--------|------------|------------|----------------------|----------------------|-------------------------------------|--------|----------|-------|
|                                                               |                   |                   | MS     | MSD    |            |            |                      |                      |                                     |        |          |       |
|                                                               | 3                 | 5711419004        | Spike  | Spike  | MS         | MSD        | MS                   | MSD                  | % Rec                               |        | Max      |       |
| Parameter                                                     | Units             | Result            | Conc.  | Conc.  | Result     | Result     | % Rec                | % Rec                | Limits                              | RPD    | RPD      | Qual  |
| 1-Methylnaphthalene                                           | ug/L              | 0.19 U            | 5      | 5      | 2.2        | 2.0        | 43                   | 40                   | 34-103                              | 7      | 40       |       |
| 2-Methylnaphthalene                                           | ug/L              | 0.17 U            | 5      | 5      | 2.2        | 2.0        | 43                   | 40                   | 35-100                              | 6      | 40       |       |
| Acenaphthene                                                  | ug/L              | 0.019 U           | 5      | 5      | 2.5        | 2.4        | 51                   | 47                   | 38-102                              | 7      | 40       |       |
| Acenaphthylene                                                | ug/L              | 0.031 U           | 5      | 5      | 2.0        | 1.9        | 41                   | 39                   | 35-97                               | 6      | 40       |       |
| Anthracene                                                    | ug/L              | 0.020 U           | 5      | 5      | 2.7        | 2.5        | 53                   | 51                   | 46-107                              | 5      | 40       |       |
| Benzo(a)anthracene                                            | ug/L              | 0.020 U           | 5      | 5      | 2.8        | 2.7        | 56                   | 55                   | 55-113                              | 1      | 40       |       |
| Benzo(a)pyrene                                                | ug/L              | 0.021 U           | 5      | 5      | 2.3        | 2.2        | 45                   | 45                   | 51-112                              | 2      | 40       | J(M1) |
| Benzo(b)fluoranthene                                          | ug/L              | 0.027 U           | 5      | 5      | 2.6        | 2.5        | 53                   | 51                   | 58-116                              | 4      | 40       | J(M1) |
| Benzo(g,h,i)perylene                                          | ug/L              | 0.023 U           | 5      | 5      | 2.5        | 2.5        | 51                   | 50                   | 45-116                              | 2      | 40       |       |
| Benzo(k)fluoranthene                                          | ug/L              | 0.024 U           | 5      | 5      | 2.6        | 2.5        | 53                   | 51                   | 58-118                              | 4      | 40       | J(M1) |
| Chrysene                                                      | ug/L              | 0.026 U           | 5      | 5      | 3.0        | 2.9        | 60                   | 58                   | 58-120                              | 2      | 40       |       |
| Dibenz(a,h)anthracene                                         | ug/L              | 0.025 U           | 5      | 5      | 2.6        | 2.5        | 52                   | 50                   | 46-114                              | 3      | 40       |       |
| Fluoranthene                                                  | ug/L              | 0.018 U           | 5      | 5      | 2.9        | 2.8        | 57                   | 56                   | 54-118                              | 1      | 40       |       |
| Fluorene                                                      | ug/L              | 0.017 U           | 5      | 5      | 2.6        | 2.4        | 52                   | 49                   | 40-105                              | 6      | 40       |       |
| Indeno(1,2,3-cd)pyrene                                        |                   | 0.024 U           | 5      | 5      | 2.5        | 2.5        | 51                   | 50                   | 46-114                              | 2      | 40       |       |
| Naphthalene                                                   | ug/L              | 0.29 U            | 5      | 5      | 2.2        | 2.1        | 39                   | 37                   | 34-97                               | 5      | 40       |       |
| Phenanthrene                                                  | ug/L              | 0.019 U           | 5      | 5      | 2.8        | 2.7        | 57                   | 54                   | 47-110                              | 5      | 40       |       |
| Pyrene                                                        |                   | 0.032 U           | 5      | 5      | 2.8        | 2.8        | 57                   | 56                   | 54-117                              | 2      | 40       |       |
| 2-Fluorobiphenyl (S)                                          | %                 |                   |        |        |            |            | 45                   | 42                   | 32-100                              |        |          |       |
| p-Terphenyl-d14 (S)                                           | %                 |                   |        |        |            |            | 63                   | 63                   | 48-112                              |        |          |       |
| Naphthalene<br>Phenanthrene<br>Pyrene<br>2-Fluorobiphenyl (S) | ug/L<br>ug/L<br>% | 0.29 U<br>0.019 U | 5<br>5 | 5<br>5 | 2.2<br>2.8 | 2.1<br>2.7 | 39<br>57<br>57<br>45 | 37<br>54<br>56<br>42 | 34-97<br>47-110<br>54-117<br>32-100 | 5<br>5 | 40<br>40 |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

Pace Project No.: 35711376

| QC Batch:          | 818452            | Analysis Method:      | EPA 8270                                |
|--------------------|-------------------|-----------------------|-----------------------------------------|
| QC Batch Method:   | EPA 3510          | Analysis Description: | 8270 Water Full List MSSV               |
|                    |                   | Laboratory:           | Pace Analytical Services - Ormond Beach |
| Associated Lab Sam | ples: 35711376001 |                       |                                         |
|                    |                   |                       |                                         |
| METHOD BLANK:      | 4494705           | Matrix: Water         |                                         |

Associated Lab Samples: 35711376001

|                             |       | Blank  | Reporting |      |                |            |
|-----------------------------|-------|--------|-----------|------|----------------|------------|
| Parameter                   | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| ,2,4-Trichlorobenzene       | ug/L  | 1.4 U  | 5.0       | 1.4  | 04/25/22 09:01 |            |
| ,2-Dichlorobenzene          | ug/L  | 1.5 U  | 5.0       | 1.5  | 04/25/22 09:01 |            |
| ,2-Dinitrobenzene           | ug/L  | 1.9 U  | 6.0       | 1.9  | 04/25/22 09:01 |            |
| ,2-Diphenylhydrazine        | ug/L  | 1.4 U  | 5.0       | 1.4  | 04/25/22 09:01 |            |
| ,3-Dichlorobenzene          | ug/L  | 1.5 U  | 5.0       | 1.5  | 04/25/22 09:01 |            |
| ,3-Dinitrobenzene           | ug/L  | 1.8 U  | 8.0       | 1.8  | 04/25/22 09:01 |            |
| ,4-Dichlorobenzene          | ug/L  | 1.5 U  | 5.0       | 1.5  | 04/25/22 09:01 |            |
| -Methylnaphthalene          | ug/L  | 0.36 U | 5.0       | 0.36 | 04/25/22 09:01 |            |
| ,3,4,6-Tetrachlorophenol    | ug/L  | 1.0 U  | 5.0       | 1.0  | 04/25/22 09:01 |            |
| 3,5,6-Tetrachlorophenol     | ug/L  | 1.9 U  | 9.0       | 1.9  | 04/25/22 09:01 | N2         |
| ,4,5-Trichlorophenol        | ug/L  | 0.23 U | 4.0       | 0.23 | 04/25/22 09:01 |            |
| ,4,6-Trichlorophenol        | ug/L  | 0.36 U | 2.0       | 0.36 | 04/25/22 09:01 |            |
| ,4-Dichlorophenol           | ug/L  | 0.34 U | 2.0       | 0.34 | 04/25/22 09:01 |            |
| 4-Dimethylphenol            | ug/L  | 1.0 U  | 5.0       | 1.0  | 04/25/22 09:01 |            |
| ,4-Dinitrophenol            | ug/L  | 2.6 U  | 20.0      | 2.6  | 04/25/22 09:01 |            |
| ,4-Dinitrotoluene           | ug/L  | 1.2 U  | 4.0       | 1.2  | 04/25/22 09:01 |            |
| ,6-Dinitrotoluene           | ug/L  | 0.88 U | 2.0       | 0.88 | 04/25/22 09:01 |            |
| Chloronaphthalene           | ug/L  | 0.34 U | 5.0       | 0.34 | 04/25/22 09:01 |            |
| -Chlorophenol               | ug/L  | 1.4 U  | 5.0       | 1.4  | 04/25/22 09:01 |            |
| Methylnaphthalene           | ug/L  | 0.28 U | 5.0       | 0.28 | 04/25/22 09:01 |            |
| -Methylphenol(o-Cresol)     | ug/L  | 0.30 U | 5.0       | 0.30 | 04/25/22 09:01 |            |
| Nitroaniline                | ug/L  | 1.3 U  | 5.0       | 1.3  | 04/25/22 09:01 |            |
| -Nitrophenol                | ug/L  | 1.4 U  | 5.0       | 1.4  | 04/25/22 09:01 |            |
| &4-Methylphenol(m&p Cresol) | ug/L  | 0.22 U | 10.0      | 0.22 | 04/25/22 09:01 |            |
| 3'-Dichlorobenzidine        | ug/L  | 1.0 U  | 10.0      | 1.0  | 04/25/22 09:01 |            |
| Nitroaniline                | ug/L  | 1.3 U  | 5.0       | 1.3  | 04/25/22 09:01 |            |
| 6-Dinitro-2-methylphenol    | ug/L  | 4.6 U  | 20.0      | 4.6  | 04/25/22 09:01 |            |
| Bromophenylphenyl ether     | ug/L  | 1.7 U  | 5.0       | 1.7  | 04/25/22 09:01 |            |
| Chloro-3-methylphenol       | ug/L  | 5.4 U  | 20.0      | 5.4  | 04/25/22 09:01 |            |
| Chloroaniline               | ug/L  | 1.4 U  | 5.0       | 1.4  | 04/25/22 09:01 |            |
| -Chlorophenylphenyl ether   | ug/L  | 1.4 U  | 5.0       | 1.4  | 04/25/22 09:01 |            |
| -Nitroaniline               | ug/L  | 0.87 U | 4.0       | 0.87 | 04/25/22 09:01 |            |
| -Nitrophenol                | ug/L  | 2.0 U  | 20.0      | 2.0  | 04/25/22 09:01 |            |
| cenaphthene                 | ug/L  | 0.36 U | 5.0       | 0.36 | 04/25/22 09:01 |            |
| cenaphthylene               | ug/L  | 0.30 U | 5.0       | 0.30 | 04/25/22 09:01 |            |
| niline                      | ug/L  | 0.94 U | 5.0       | 0.94 | 04/25/22 09:01 |            |
| nthracene                   | ug/L  | 0.22 U | 5.0       | 0.22 | 04/25/22 09:01 |            |
| enzidine                    | ug/L  | 0.87 U | 25.0      | 0.87 | 04/25/22 09:01 |            |
| enzo(a)anthracene           | ug/L  | 0.20 U | 5.0       | 0.20 | 04/25/22 09:01 |            |
| enzo(a)pyrene               | ug/L  | 0.17 U | 1.0       | 0.17 | 04/25/22 09:01 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Matrix: Water

#### Project: Safety Kleen Facility Pace Project No.: 35711376

### METHOD BLANK: 4494705

Associated Lab Samples: 35711376001

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers 0.27 U Benzo(b)fluoranthene ug/L 2.0 0.27 04/25/22 09:01 Benzo(g,h,i)perylene 0.17 U 5.0 04/25/22 09:01 ug/L 0.17 Benzo(k)fluoranthene 018 U 40 04/25/22 09:01 ug/L 0 18 Benzyl alcohol 1.3 U 5.0 1.3 04/25/22 09:01 ug/L bis(2-Chloroethoxy)methane 1.6 U 5.0 1.6 04/25/22 09:01 ug/L bis(2-Chloroethyl) ether ug/L 0.34 U 4.0 0.34 04/25/22 09:01 bis(2-Chloroisopropyl) ether ug/L 1.8 U 6.0 1.8 04/25/22 09:01 bis(2-Ethylhexyl)phthalate ug/L 1.4 U 5.0 1.4 04/25/22 09:01 Butylbenzylphthalate ug/L 1.1 U 5.0 1.1 04/25/22 09:01 Caprolactam 0.85 U 5.0 0.85 04/25/22 09:01 ug/L N2 Carbazole ug/L 1.1 U 5.0 1.1 04/25/22 09:01 0.20 U Chrysene 5.0 0.20 04/25/22 09:01 ug/L Di-n-butylphthalate 3.6 U 5.0 3.6 04/25/22 09:01 ug/L 0.92 U Di-n-octylphthalate 5.0 0.92 04/25/22 09:01 ug/L 0.18 U 2.0 04/25/22 09:01 Dibenz(a,h)anthracene ug/L 0 18 Dibenzofuran 1.5 U 5.0 ug/L 1.5 04/25/22 09:01 Diethylphthalate ug/L 1.4 U 5.0 1.4 04/25/22 09:01 Dimethylphthalate ug/L 1.4 U 5.0 1.4 04/25/22 09:01 Fluoranthene ug/L 0.21 U 5.0 0.21 04/25/22 09:01 0.34 U 5.0 0.34 04/25/22 09:01 Fluorene ug/L 0.35 U Hexachloro-1,3-butadiene ug/L 2.0 0.35 04/25/22 09:01 0.29 U Hexachlorobenzene ug/L 1.0 0.29 04/25/22 09:01 Hexachlorocyclopentadiene ug/L 3.4 U 11.0 3.4 04/25/22 09:01 Hexachloroethane ug/L 1.4 U 5.0 14 04/25/22 09:01 Indeno(1,2,3-cd)pyrene ug/L 0 17 11 20 0 17 04/25/22 09:01 Isophorone ug/L 1.7 U 5.0 1.7 04/25/22 09:01 0.33 U N-Nitroso-di-n-propylamine ug/L 4.0 0.33 04/25/22 09:01 N-Nitrosodimethylamine ug/L 0.20 U 2.0 0.20 04/25/22 09:01 N-Nitrosodiphenylamine ug/L 1.2 U 5.0 1.2 04/25/22 09:01 Naphthalene 0.39 U 5.0 0.39 04/25/22 09:01 ug/L 0.37 U 4.0 04/25/22 09:01 Nitrobenzene ug/L 0.37 Pentachlorophenol 1.6 U 20.0 04/25/22 09:01 ug/L 1.6 Phenanthrene ug/L 0.23 U 5.0 0.23 04/25/22 09:01 Phenol ug/L 0.63 U 5.0 0.63 04/25/22 09:01 0.21 U 5.0 04/25/22 09:01 Pyrene ug/L 0.21 Pyridine 1.1 U 5.0 04/25/22 09:01 ug/L 1.1 28-114 % 67 04/25/22 09:01 2,4,6-Tribromophenol (S) % 50 22-101 2-Fluorobiphenyl (S) 04/25/22 09:01 % 31 2-Fluorophenol (S) 10-57 04/25/22 09:01 % Nitrobenzene-d5 (S) 54 10-188 04/25/22 09:01 p-Terphenyl-d14 (S) % 77 48-124 04/25/22 09:01 Phenol-d6 (S) % 22 10-48 04/25/22 09:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



### Project: Safety Kleen Facility

Pace Project No.: 35711376

#### LABORATORY CONTROL SAMPLE: 4494706

| Parameter                                  | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits  | Qualifiers |
|--------------------------------------------|-------|----------------|---------------|--------------|------------------|------------|
| 1.2.4-Trichlorobenzene                     | ug/L  |                | 25.6          | 51           | 38-87            |            |
| 1,2-Dichlorobenzene                        | ug/L  | 50<br>50       | 23.0          | 49           | 37-83            |            |
| 1,2-Dinitrobenzene                         | ug/L  | 50             | 39.2          | 78           | 55-111           |            |
| 1,2-Dinhtobenzene<br>1,2-Diphenylhydrazine | ug/L  | 50<br>50       | 37.0          | 76           | 47-104           |            |
| 1,3-Dichlorobenzene                        | ug/L  | 50             | 22.9          | 46           | 36-81            |            |
| 1,3-Dinitrobenzene                         | ug/L  | 50<br>50       | 40.7          | 81           | 56-104           |            |
| 1,4-Dichlorobenzene                        | ug/L  | 50<br>50       | 23.3          | 47           | 37-82            |            |
| 1-Methylnaphthalene                        | -     | 50<br>50       | 30.7          | 61           | 42-91            |            |
|                                            | ug/L  |                | 40.2          |              | 42-91<br>55-106  |            |
| 2,3,4,6-Tetrachlorophenol                  | ug/L  | 50<br>50       | 40.2          | 80<br>84     | 55-100<br>54-109 |            |
| 2,3,5,6-Tetrachlorophenol                  | ug/L  |                |               |              |                  | INZ        |
| 2,4,5-Trichlorophenol                      | ug/L  | 50             | 38.1          | 76           | 54-97            |            |
| 2,4,6-Trichlorophenol                      | ug/L  | 50             | 37.5          | 75           | 52-97            |            |
| 2,4-Dichlorophenol                         | ug/L  | 50             | 33.1          | 66           | 47-92            |            |
| 2,4-Dimethylphenol                         | ug/L  | 50             | 32.1          | 64           | 48-90            |            |
| 2,4-Dinitrophenol                          | ug/L  | 50             | 45.8          | 92           | 42-120           |            |
| 2,4-Dinitrotoluene                         | ug/L  | 50             | 39.9          | 80           | 60-101           |            |
| 2,6-Dinitrotoluene                         | ug/L  | 50             | 37.9          | 76           | 55-100           |            |
| 2-Chloronaphthalene                        | ug/L  | 50             | 32.2          | 64           | 42-95            |            |
| 2-Chlorophenol                             | ug/L  | 50             | 27.9          | 56           | 41-83            |            |
| 2-Methylnaphthalene                        | ug/L  | 50             | 30.1          | 60           | 42-91            |            |
| 2-Methylphenol(o-Cresol)                   | ug/L  | 50             | 28.2          | 56           | 39-78            |            |
| 2-Nitroaniline                             | ug/L  | 50             | 38.6          | 77           | 53-103           |            |
| 2-Nitrophenol                              | ug/L  | 50             | 33.8          | 68           | 45-93            |            |
| 3&4-Methylphenol(m&p Cresol)               | ug/L  | 50             | 26.7          | 53           | 37-75            |            |
| 3,3'-Dichlorobenzidine                     | ug/L  | 50             | 36.8          | 74           | 64-106           |            |
| 3-Nitroaniline                             | ug/L  | 50             | 38.0          | 76           | 52-105           |            |
| ,6-Dinitro-2-methylphenol                  | ug/L  | 50             | 40.9          | 82           | 54-115           |            |
| -Bromophenylphenyl ether                   | ug/L  | 50             | 34.6          | 69           | 48-103           |            |
| -Chloro-3-methylphenol                     | ug/L  | 50             | 35.0          | 70           | 51-95            |            |
| l-Chloroaniline                            | ug/L  | 50             | 34.3          | 69           | 52-92            |            |
| -Chlorophenylphenyl ether                  | ug/L  | 50             | 34.8          | 70           | 50-97            |            |
| I-Nitroaniline                             | ug/L  | 50             | 39.4          | 79           | 57-104           |            |
| I-Nitrophenol                              | ug/L  | 50             | 16.8 I        | 34           | 20-51            |            |
| Acenaphthene                               | ug/L  | 50             | 34.7          | 69           | 47-96            |            |
| Acenaphthylene                             | ug/L  | 50             | 33.7          | 67           | 46-99            |            |
| Aniline                                    | ug/L  | 50             | 30.2          | 60           | 43-84            |            |
| Anthracene                                 | ug/L  | 50             | 37.0          | 74           | 58-98            |            |
| Benzidine                                  | ug/L  | 50             | 6.3 I         | 13           | 10-103           |            |
| Benzo(a)anthracene                         | ug/L  | 50             | 38.9          | 78           | 61-101           |            |
| Benzo(a)pyrene                             | ug/L  | 50             | 38.8          | 78           | 59-103           |            |
| Benzo(b)fluoranthene                       | ug/L  | 50             | 38.8          | 78           | 37-118           |            |
| Benzo(g,h,i)perylene                       | ug/L  | 50             | 39.9          | 80           | 58-107           |            |
| Benzo(k)fluoranthene                       | ug/L  | 50             | 40.8          | 82           | 61-106           |            |
| Benzyl alcohol                             | ug/L  | 50             | 27.7          | 55           | 40-82            |            |
| bis(2-Chloroethoxy)methane                 | ug/L  | 50             | 32.6          | 65           | 44-91            |            |
| bis(2-Chloroethyl) ether                   | ug/L  | 50             | 29.6          | 59           | 37-91            |            |
|                                            |       |                |               |              |                  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



#### Project: Safety Kleen Facility

35711376 Pace Project No.:

#### LABORATORY CONTROL SAMPLE: 4494706

| Parameter                 | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|---------------------------|-------|----------------|---------------|--------------|-----------------|------------|
| is(2-Ethylhexyl)phthalate | ug/L  |                | 41.1          | 82           | 52-113          |            |
| utylbenzylphthalate       | ug/L  | 50<br>50       | 41.1          | 82           | 60-111          |            |
| 5 51                      | -     | 50<br>50       | 41.1          | 22           | 15-32           | NO         |
| aprolactam<br>arbazole    | ug/L  | 50<br>50       | 38.1          | 76           | 61-101          | INZ        |
|                           | ug/L  | 50<br>50       | 30.1<br>39.0  | 78           | 62-102          |            |
| nrysene                   | ug/L  | 50<br>50       | 39.0<br>38.9  | 78<br>78     | 62-102          |            |
| n-butylphthalate          | ug/L  |                |               |              | 53-112          |            |
| n-octylphthalate          | ug/L  | 50             | 39.4          | 79           |                 |            |
| penz(a,h)anthracene       | ug/L  | 50             | 39.6          | 79           | 58-107          |            |
| benzofuran                | ug/L  | 50             | 34.7          | 69           | 50-95           |            |
| ethylphthalate            | ug/L  | 50             | 37.6          | 75           | 57-98           |            |
| nethylphthalate           | ug/L  | 50             | 36.4          | 73           | 53-99           |            |
| loranthene                | ug/L  | 50             | 37.6          | 75           | 61-102          |            |
| orene                     | ug/L  | 50             | 35.5          | 71           | 51-96           |            |
| kachloro-1,3-butadiene    | ug/L  | 50             | 24.3          | 49           | 36-90           |            |
| achlorobenzene            | ug/L  | 50             | 35.6          | 71           | 57-97           |            |
| kachlorocyclopentadiene   | ug/L  | 50             | 25.4          | 51           | 13-100          |            |
| kachloroethane            | ug/L  | 50             | 22.5          | 45           | 33-84           |            |
| eno(1,2,3-cd)pyrene       | ug/L  | 50             | 38.5          | 77           | 58-106          |            |
| phorone                   | ug/L  | 50             | 33.4          | 67           | 44-93           |            |
| litroso-di-n-propylamine  | ug/L  | 50             | 31.6          | 63           | 41-96           |            |
| litrosodimethylamine      | ug/L  | 50             | 20.0          | 40           | 25-63           |            |
| Nitrosodiphenylamine      | ug/L  | 50             | 37.0          | 74           | 56-97           |            |
| phthalene                 | ug/L  | 50             | 28.7          | 57           | 41-87           |            |
| robenzene                 | ug/L  | 50             | 31.6          | 63           | 41-91           |            |
| ntachlorophenol           | ug/L  | 50             | 42.8          | 86           | 48-112          |            |
| enanthrene                | ug/L  | 50             | 36.8          | 74           | 58-98           |            |
| enol                      | ug/L  | 50             | 13.4          | 27           | 17-40           |            |
| rene                      | ug/L  | 50             | 39.4          | 79           | 61-104          |            |
| ridine                    | ug/L  | 50             | 15.3          | 31           | 14-60           |            |
| ,6-Tribromophenol (S)     | %     |                |               | 81           | 28-114          |            |
| luorobiphenyl (S)         | %     |                |               | 62           | 22-101          |            |
| luorophenol (S)           | %     |                |               | 33           | 10-57           |            |
| obenzene-d5 (S)           | %     |                |               | 62           | 10-188          |            |
| erphenyl-d14 (S)          | %     |                |               | 79           | 48-124          |            |
| enol-d6 (S)               | %     |                |               | 25           | 10-48           |            |

| MATRIX SPIKE & MATRIX S |       | CATE: 4494 | 709   |       | 4494710 |        |       |       |        |     |     |       |
|-------------------------|-------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|-------|
|                         |       |            | MS    | MSD   |         |        |       |       |        |     |     |       |
|                         | 3     | 5711711073 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |       |
| Parameter               | Units | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual  |
| 1,2,4-Trichlorobenzene  | ug/L  | 1.5 U      | 51.5  | 49.6  | 13.8    | 12.4   | 27    | 25    | 38-87  | 11  | 40  | J(M1) |
| 1,2-Dichlorobenzene     | ug/L  | 1.6 U      | 51.5  | 49.6  | 12.5    | 11.3   | 24    | 23    | 37-83  | 10  | 40  | J(M1) |
| 1,2-Dinitrobenzene      | ug/L  | 2.0 U      | 51.5  | 49.6  | 34.5    | 31.4   | 67    | 63    | 55-111 | 9   | 40  |       |
| 1,2-Diphenylhydrazine   | ug/L  | 1.4 U      | 51.5  | 49.6  | 31.5    | 28.2   | 61    | 57    | 47-104 | 11  | 40  |       |
| 1,3-Dichlorobenzene     | ug/L  | 1.6 U      | 51.5  | 49.6  | 11.5    | 10.4   | 22    | 21    | 36-81  | 10  | 40  | J(M1) |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

Pace Project No.: 35711376

| MATRIX SPIKE & MATRIX SP     | IKE DUPI | LICATE: 4494 | 709                 |       | 4494710 |        |       |       |        |     |     |       |
|------------------------------|----------|--------------|---------------------|-------|---------|--------|-------|-------|--------|-----|-----|-------|
|                              |          |              | MS                  | MSD   |         |        |       |       |        |     |     |       |
|                              |          | 35711711073  | Spike               | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |       |
| Parameter                    | Units    | Result       | Conc.               | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual  |
| 1,3-Dinitrobenzene           | ug/L     | 1.8 U        | 51.5                | 49.6  | 35.4    | 32.4   | 69    | 65    | 56-104 | 9   | 40  |       |
| 1,4-Dichlorobenzene          | ug/L     | 1.6 U        | 51.5                | 49.6  | 11.9    | 10.7   | 23    | 22    | 37-82  | 10  | 40  | J(M1) |
| 1-Methylnaphthalene          | ug/L     | 0.37 U       | 51.5                | 49.6  | 19.6    | 17.2   | 38    | 35    | 42-91  | 13  | 40  | J(M1) |
| 2,3,4,6-Tetrachlorophenol    | ug/L     | 1.1 U        | 51.5                | 49.6  | 34.6    | 31.5   | 67    | 63    | 55-106 | 9   | 40  |       |
| 2,3,5,6-Tetrachlorophenol    | ug/L     | 1.9 U        | 51.5                | 49.6  | 36.4    | 33.0   | 71    | 67    | 54-109 | 10  |     | N2    |
| 2,4,5-Trichlorophenol        | ug/L     | 0.24 U       | 51.5                | 49.6  | 31.5    | 28.4   | 61    | 57    | 54-97  | 10  | 40  |       |
| 2,4,6-Trichlorophenol        | ug/L     | 0.37 U       | 51.5                | 49.6  | 29.1    | 26.1   | 57    | 53    | 52-97  | 11  | 40  |       |
| 2,4-Dichlorophenol           | ug/L     | 0.35 U       | 51.5                | 49.6  | 22.0    | 19.2   | 43    | 39    | 47-92  | 14  |     | J(M1) |
| 2,4-Dimethylphenol           | ug/L     | 1.1 U        | 51.5                | 49.6  | 21.6    | 18.7   | 42    | 38    | 48-90  | 15  | 40  | J(M1) |
| 2,4-Dinitrophenol            | ug/L     | 2.7 U        | 51.5                | 49.6  | 40.9    | 38.5   | 80    | 78    | 42-120 | 6   | 40  |       |
| 2,4-Dinitrotoluene           | ug/L     | 1.2 U        | 51.5                | 49.6  | 35.8    | 32.9   | 70    | 66    | 60-101 | 8   | 40  |       |
| 2,6-Dinitrotoluene           | ug/L     | 0.90 U       | 51.5                | 49.6  | 32.8    | 29.5   | 64    | 59    | 55-100 | 11  | 40  |       |
| 2-Chloronaphthalene          | ug/L     | 0.35 U       | 51.5                | 49.6  | 21.3    | 18.6   | 41    | 37    | 42-95  | 14  | 40  | J(M1) |
| 2-Chlorophenol               | ug/L     | 1.4 U        | 51.5                | 49.6  | 15.9    | 13.5   | 31    | 27    | 41-83  | 16  | 40  | J(M1) |
| 2-Methylnaphthalene          | ug/L     | 0.29 U       | 51.5                | 49.6  | 18.9    | 16.9   | 37    | 34    | 42-91  | 11  | 40  | J(M1) |
| 2-Methylphenol(o-Cresol)     | ug/L     | 0.31 U       | 51.5                | 49.6  | 17.0    | 14.1   | 33    | 28    | 39-78  | 18  | 40  | J(M1) |
| 2-Nitroaniline               | ug/L     | 1.3 U        | 51.5                | 49.6  | 33.1    | 29.9   | 64    | 60    | 53-103 | 10  | 40  |       |
| 2-Nitrophenol                | ug/L     | 1.4 U        | 51.5                | 49.6  | 19.9    | 17.5   | 39    | 35    | 45-93  | 12  | 40  | J(M1) |
| 3&4-Methylphenol(m&p         | ug/L     | 0.23 U       | 51.5                | 49.6  | 16.7    | 14.0   | 33    | 28    | 37-75  | 18  | 40  | J(M1) |
| Cresol)                      |          |              |                     |       |         |        |       |       |        |     |     |       |
| 3,3'-Dichlorobenzidine       | ug/L     | 1.1 U        | 51.5                | 49.6  | 35.6    | 32.9   | 69    | 66    | 64-106 | 8   |     |       |
| 3-Nitroaniline               | ug/L     | 1.3 U        | 51.5                | 49.6  | 34.8    | 31.3   | 68    | 63    | 52-105 | 10  |     |       |
| 4,6-Dinitro-2-methylphenol   | ug/L     | 4.7 U        | 51.5                | 49.6  | 37.9    | 34.4   | 74    | 69    | 54-115 | 10  |     |       |
| 4-Bromophenylphenyl ether    | ug/L     | 1.7 U        | 51.5                | 49.6  | 30.0    | 26.8   | 58    | 54    | 48-103 | 12  |     |       |
| 4-Chloro-3-methylphenol      | ug/L     | 5.5 U        | 51.5                | 49.6  | 28.4    | 24.9   | 55    | 50    | 51-95  | 13  |     | J(M1) |
| 4-Chloroaniline              | ug/L     | 1.4 U        | 51.5                | 49.6  | 26.5    | 23.4   | 52    | 47    | 52-92  | 12  |     | J(M1) |
| 4-Chlorophenylphenyl ether   | ug/L     | 1.5 U        | 51.5                | 49.6  | 28.8    | 25.1   | 56    | 51    | 50-97  | 14  |     |       |
| 4-Nitroaniline               | ug/L     | 0.89 U       | 51.5                | 49.6  | 36.2    | 33.9   | 70    | 68    | 57-104 | 7   |     |       |
| 4-Nitrophenol                | ug/L     | 2.0 U        | 51.5                | 49.6  | 16.2 I  | 14.5 I | 31    | 29    | 20-51  |     | 40  |       |
| Acenaphthene                 | ug/L     | 0.37 U       | 51.5                | 49.6  | 27.3    | 23.9   | 53    | 48    | 47-96  | 13  |     |       |
| Acenaphthylene               | ug/L     | 0.31 U       | 51.5                | 49.6  | 25.8    | 22.8   | 50    | 46    | 46-99  | 12  |     |       |
| Aniline                      | ug/L     | 0.96 U       | 51.5                | 49.6  | 21.2    | 19.4   | 41    | 39    | 43-84  | 9   |     | J(M1) |
| Anthracene                   | ug/L     | 0.23 U       | 51.5                | 49.6  | 33.6    | 30.4   | 65    | 61    | 58-98  | 10  |     |       |
| Benzidine                    | ug/L     | 0.89 U       | 51.5                | 49.6  | 16.5 I  | 11.0 I | 32    | 22    | 10-103 |     | 40  |       |
| Benzo(a)anthracene           | ug/L     | 0.20 U       | 51.5                | 49.6  | 38.2    | 35.4   | 74    | 71    | 61-101 | 8   |     |       |
| Benzo(a)pyrene               | ug/L     | 0.17 U       | 51.5                | 49.6  | 36.8    | 33.7   | 71    | 68    | 59-103 | 9   |     |       |
| Benzo(b)fluoranthene         | ug/L     | 0.28 U       | 51.5                | 49.6  | 37.6    | 35.0   | 73    | 70    | 37-118 | 7   | 40  |       |
| Benzo(g,h,i)perylene         | ug/L     | 0.17 U       | 51.5                | 49.6  | 36.8    | 34.6   | 71    | 69    | 58-107 | 6   |     |       |
| Benzo(k)fluoranthene         | ug/L     | 0.18 U       | 51.5                | 49.6  | 38.3    | 35.6   | 74    | 72    | 61-106 | 7   |     |       |
| Benzyl alcohol               | ug/L     | 1.3 U        | 51.5                | 49.6  | 17.9    | 15.4   | 35    | 31    | 40-82  | 15  |     | J(M1) |
| bis(2-                       | ug/L     | 1.7 U        | 51.5                | 49.6  | 19.5    | 17.1   | 38    | 34    | 44-91  | 13  | 40  | J(M1) |
| Chloroethoxy)methane         |          |              | <b>F</b> 4 <b>F</b> | 40.0  | 40.0    |        | 20    | 00    | 27.04  |     | 40  | 1/1/4 |
| bis(2-Chloroethyl) ether     | ug/L     | 0.35 U       | 51.5                | 49.6  | 16.6    | 14.4   | 32    | 29    | 37-91  | 14  |     | J(M1) |
| bis(2-Chloroisopropyl) ether | ug/L     | 1.8 U        | 51.5                | 49.6  | 16.1    | 13.9   | 31    | 28    | 31-97  | 14  |     | J(M1) |
| bis(2-Ethylhexyl)phthalate   | ug/L     | 1.4 U        | 51.5                | 49.6  | 39.5    | 35.6   | 77    | 71    | 52-113 | 11  |     |       |
| Butylbenzylphthalate         | ug/L     | 1.1 U        | 51.5                | 49.6  | 41.0    | 38.4   | 80    | 77    | 60-111 | 7   | 40  |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: Safety Kleen Facility

Pace Project No.: 35711376

| MATRIX SPIKE & MATRIX SP   | IKE DUPI | _ICATE: 4494 | 709   |       | 4494710 |        |       |       |        |     |     |       |
|----------------------------|----------|--------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|-------|
|                            |          |              | MS    | MSD   |         |        |       |       |        |     |     |       |
|                            |          | 35711711073  | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |       |
| Parameter                  | Units    | Result       | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual  |
| Caprolactam                | ug/L     | 0.87 U       | 51.5  | 49.6  | 9.8     | 8.5    | 19    | 17    | 15-32  | 13  | 40  | N2    |
| Carbazole                  | ug/L     | 1.1 U        | 51.5  | 49.6  | 36.5    | 33.1   | 71    | 67    | 61-101 | 10  | 40  |       |
| Chrysene                   | ug/L     | 0.20 U       | 51.5  | 49.6  | 38.9    | 35.9   | 75    | 72    | 62-102 | 8   | 40  |       |
| Di-n-butylphthalate        | ug/L     | 3.7 U        | 51.5  | 49.6  | 36.9    | 33.5   | 71    | 67    | 60-105 | 10  | 40  |       |
| Di-n-octylphthalate        | ug/L     | 0.94 U       | 51.5  | 49.6  | 37.9    | 34.3   | 73    | 69    | 53-112 | 10  | 40  |       |
| Dibenz(a,h)anthracene      | ug/L     | 0.18 U       | 51.5  | 49.6  | 37.1    | 34.5   | 72    | 69    | 58-107 | 7   | 40  |       |
| Dibenzofuran               | ug/L     | 1.5 U        | 51.5  | 49.6  | 27.5    | 24.6   | 53    | 50    | 50-95  | 11  | 40  |       |
| Diethylphthalate           | ug/L     | 1.4 U        | 51.5  | 49.6  | 33.3    | 30.6   | 65    | 62    | 57-98  | 8   | 40  |       |
| Dimethylphthalate          | ug/L     | 1.5 U        | 51.5  | 49.6  | 31.5    | 28.4   | 61    | 57    | 53-99  | 10  | 40  |       |
| Fluoranthene               | ug/L     | 0.22 U       | 51.5  | 49.6  | 36.2    | 32.8   | 70    | 66    | 61-102 | 10  | 40  |       |
| Fluorene                   | ug/L     | 0.35 U       | 51.5  | 49.6  | 29.7    | 26.2   | 58    | 53    | 51-96  | 13  | 40  |       |
| Hexachloro-1,3-butadiene   | ug/L     | 0.36 U       | 51.5  | 49.6  | 12.0    | 10.9   | 23    | 22    | 36-90  | 10  | 40  | J(M1) |
| Hexachlorobenzene          | ug/L     | 0.30 U       | 51.5  | 49.6  | 31.9    | 28.8   | 62    | 58    | 57-97  | 10  | 40  |       |
| Hexachlorocyclopentadiene  | ug/L     | 3.5 U        | 51.5  | 49.6  | 14.1    | 11.9   | 27    | 24    | 13-100 | 17  | 40  |       |
| Hexachloroethane           | ug/L     | 1.4 U        | 51.5  | 49.6  | 10.8    | 9.7    | 21    | 20    | 33-84  | 10  | 40  | J(M1) |
| Indeno(1,2,3-cd)pyrene     | ug/L     | 0.17 U       | 51.5  | 49.6  | 35.9    | 33.6   | 70    | 67    | 58-106 | 7   | 40  |       |
| Isophorone                 | ug/L     | 1.7 U        | 51.5  | 49.6  | 21.0    | 18.3   | 41    | 37    | 44-93  | 14  | 40  | J(M1) |
| N-Nitroso-di-n-propylamine | ug/L     | 0.34 U       | 51.5  | 49.6  | 18.7    | 16.5   | 36    | 33    | 41-96  | 13  | 40  | J(M1) |
| N-Nitrosodimethylamine     | ug/L     | 0.20 U       | 51.5  | 49.6  | 12.2    | 10.7   | 24    | 22    | 25-63  | 13  | 40  | J(M1) |
| N-Nitrosodiphenylamine     | ug/L     | 1.2 U        | 51.5  | 49.6  | 32.7    | 29.6   | 64    | 60    | 56-97  | 10  | 40  |       |
| Naphthalene                | ug/L     | 0.40 U       | 51.5  | 49.6  | 16.6    | 14.8   | 32    | 30    | 41-87  | 11  | 40  | J(M1) |
| Nitrobenzene               | ug/L     | 0.38 U       | 51.5  | 49.6  | 18.2    | 16.2   | 35    | 33    | 41-91  | 12  | 40  | J(M1) |
| Pentachlorophenol          | ug/L     | 1.7 U        | 51.5  | 49.6  | 40.0    | 36.5   | 78    | 73    | 48-112 | 9   | 40  |       |
| Phenanthrene               | ug/L     | 0.24 U       | 51.5  | 49.6  | 34.1    | 30.7   | 66    | 62    | 58-98  | 10  | 40  |       |
| Phenol                     | ug/L     | 0.65 U       | 51.5  | 49.6  | 7.8     | 6.3    | 15    | 13    | 17-40  | 20  | 40  | J(M1) |
| Pyrene                     | ug/L     | 0.22 U       | 51.5  | 49.6  | 38.1    | 35.1   | 74    | 70    | 61-104 | 8   | 40  |       |
| Pyridine                   | ug/L     | 1.1 U        | 51.5  | 49.6  | 11.4    | 10.6   | 22    | 21    | 14-60  | 7   | 40  |       |
| 2,4,6-Tribromophenol (S)   | %        |              |       |       |         |        | 66    | 64    | 28-114 |     |     |       |
| 2-Fluorobiphenyl (S)       | %        |              |       |       |         |        | 39    | 36    | 22-101 |     |     |       |
| 2-Fluorophenol (S)         | %        |              |       |       |         |        | 17    | 15    | 10-57  |     |     |       |
| Nitrobenzene-d5 (S)        | %        |              |       |       |         |        | 34    | 31    | 10-188 |     |     |       |
| p-Terphenyl-d14 (S)        | %        |              |       |       |         |        | 71    | 68    | 48-124 |     |     |       |
| Phenol-d6 (S)              | /0       |              |       |       |         |        | 11    | 00    | 40-124 |     |     |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



|                                 | Safety K<br>3571137 | leen Facilit<br>6 | у                |              |            |               |               |             |               |                  |           |     |      |
|---------------------------------|---------------------|-------------------|------------------|--------------|------------|---------------|---------------|-------------|---------------|------------------|-----------|-----|------|
| QC Batch:                       | 81773               | 5                 |                  | Analy        | sis Metho  | d: F          | L-PRO         |             |               |                  |           |     |      |
| QC Batch Method:                | EPA 35              | 510               |                  | Analy        | sis Descri | iption: F     | L-PRO Wa      | ater Low    | Volume        |                  |           |     |      |
|                                 |                     |                   |                  | Labo         | ratory:    | F             | Pace Analy    | tical Serv  | vices - Ormor | nd Beach         |           |     |      |
| Associated Lab Sam              | ples:               | 357113760         | 01               |              |            |               |               |             |               |                  |           |     |      |
| METHOD BLANK:                   | 4490248             | 3                 |                  |              | Matrix: W  | /ater         |               |             |               |                  |           |     |      |
| Associated Lab Sam              | ples:               | 357113760         | 01               |              |            |               |               |             |               |                  |           |     |      |
|                                 |                     |                   |                  | Blar         | ık         | Reporting     |               |             |               |                  |           |     |      |
| Param                           | eter                |                   | Units            | Res          | ult        | Limit         | MD            | L           | Analyzed      | l Qı             | alifiers  | ;   |      |
| Petroleum Range Or              | ganics              |                   | mg/L             | (            | .80 U      | 1.0           | 5             | 0.80        | 04/21/22 12   | :53              |           |     |      |
| N-Pentatriacontane (            | (S)                 |                   | %                |              | 109        | 42-159        | 9             |             | 04/21/22 12   | :53              |           |     |      |
| o-Terphenyl (S)                 |                     |                   | %                |              | 89         | 66-139        | 9             |             | 04/21/22 12   | :53              |           |     |      |
| LABORATORY CON                  | TROL S              | AMPLE:            | 4490249          |              |            |               |               |             |               |                  |           |     |      |
|                                 |                     |                   |                  | Spike        | LC         | CS            | LCS           | %           | Rec           |                  |           |     |      |
| Param                           | eter                |                   | Units            | Conc.        | Re         | sult          | % Rec         | Li          | mits          | Qualifiers       |           |     |      |
| Petroleum Range Or              | ganics              |                   | mg/L             |              | 5          | 5.1           | 10            | 2           | 66-119        |                  | _         |     |      |
| N-Pentatriacontane (            | (S)                 |                   | %                |              |            |               | 11            | 2           | 42-159        |                  |           |     |      |
| o-Terphenyl (S)                 |                     |                   | %                |              |            |               | 9             | 6           | 66-139        |                  |           |     |      |
| MATRIX SPIKE & M                | ATRIX S             | PIKE DUPL         | _ICATE: 4490     | 250          |            | 4490251       |               |             |               |                  |           |     |      |
|                                 |                     |                   |                  | MS           | MSD        |               |               |             |               |                  |           |     |      |
|                                 |                     |                   | 35711419004      | Spike        | Spike      | MS            | MSD           | MS          | MSD           | % Rec            |           | Max |      |
|                                 |                     |                   |                  |              | ~          |               | <b>–</b>      | 0/ <b>D</b> | 0/ 0          |                  |           |     | ~ .  |
| Parameter                       |                     | Units             | Result           | Conc.        | Conc.      | Result        | Result        | % Rec       | % Rec         | Limits           | RPD       | RPD | Qual |
| Parameter<br>Petroleum Range Or | ganics              | Units<br>         | Result<br>0.75 U | Conc.<br>4.7 | 4.6        | Result<br>4.2 | Result<br>3.6 |             | 3 72          |                  | RPD<br>15 |     | Qual |
|                                 |                     |                   |                  |              |            |               |               | ٤<br>10     | 33 72         | 65-123<br>42-159 |           |     | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### QUALIFIERS

#### Project: Safety Kleen Facility

Pace Project No.: 35711376

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J(v1) The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

### **REPORT OF LABORATORY ANALYSIS**



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Safety Kleen FacilityPace Project No.:35711376

| Lab ID      | Sample ID      | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|----------------|-----------------|----------|-------------------|---------------------|
| 35711376001 | MW-2R-04182022 | EPA 3510        | 817735   | FL-PRO            | 817883              |
| 35711376001 | MW-2R-04182022 | EPA 200.8       | 817116   | EPA 200.8         | 817246              |
| 35711376002 | MW-1-04182022  | EPA 200.8       | 817116   | EPA 200.8         | 817246              |
| 35711376003 | MW-3-04182022  | EPA 200.8       | 817116   | EPA 200.8         | 817246              |
| 35711376001 | MW-2R-04182022 | EPA 3510        | 817483   | EPA 8270 by SIM   | 817758              |
| 35711376001 | MW-2R-04182022 | EPA 3510        | 818452   | EPA 8270          | 818692              |
| 35711376001 | MW-2R-04182022 | EPA 8260        | 817412   |                   |                     |
| 35711376004 | Trip Blank     | EPA 8260        | 817586   |                   |                     |

### **REPORT OF LABORATORY ANALYSIS**

| -6  | -        | 19  | -  |      |
|-----|----------|-----|----|------|
| 1   | <u>،</u> | 1   | -  | 253  |
|     | 1        | 10  | C  | 0    |
| ani | 2        | 100 | 20 | 1000 |

CHAIN-OF-CUSTODY / Analytical Request Dc 5-minoron fr

|              | consult work in Submitting a sample via this<br>the consult of the second s | Section B  | tion G                     |             | 1.0              |          |           |                   | Section                                             | on C                 |                     |             |         | 1                | 10 (D.F. |                         | 5                        | - Charles                       |                  | 35       | 113             | 76     |       |           |                         | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|-------------|------------------|----------|-----------|-------------------|-----------------------------------------------------|----------------------|---------------------|-------------|---------|------------------|----------|-------------------------|--------------------------|---------------------------------|------------------|----------|-----------------|--------|-------|-----------|-------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| npany        |                                                                                                                                                                 |            |                            | formation:  |                  |          | -         | _                 | Invoice Information:<br>Attention:<br>Company Name: |                      |                     |             |         |                  |          |                         | the                      |                                 |                  |          |                 |        |       |           |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              | 1408 North Westshore Bllvd                                                                                                                                      |            | Keith I                    |             |                  |          | _         | -                 |                                                     |                      |                     |             |         |                  |          |                         | No                       |                                 |                  |          |                 |        |       |           |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              | , Tampa, FL 33607                                                                                                                                               | 1          |                            | - 191       | A                |          |           | -                 | Address:                                            |                      |                     |             |         |                  |          |                         | 1.1411                   | 1200                            | 01-345           | (Carlos) | Regula          | _      |       |           |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              | kmorrison@ectinc.com                                                                                                                                            | Purchase   | Order#                     | 210         | 212-             | 0201     | 0         | - 1               | Pace Quote:                                         |                      |                     |             |         |                  |          |                         | Regulatory Agency        |                                 |                  |          |                 |        |       |           |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| ne:          | 813-493-0383 Fax:                                                                                                                                               | Project Na | me: S                      | afety Kleer |                  |          |           | -                 | Pace                                                | Projec               | ct Mana             | ager:       | lori    | palme            | r@pad    | elabs                   | com.                     | -                               | - 11             | -        |                 | 1820   | 213   | 1.450     | State                   | / Locati   | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - S 1180 S    |
| ueste        | d Due Date                                                                                                                                                      | Project #: |                            | 102         |                  | 07 01    | 50        |                   | _                                                   | Profile              |                     | 9321 li     |         |                  | 0        |                         |                          | 1.1.1.1                         | 2.36             | 1.40     |                 |        |       |           |                         | FL         | Jr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|              |                                                                                                                                                                 |            | 0                          |             | 1                |          |           |                   |                                                     |                      |                     |             |         |                  | 10       | Mr. C                   | 243 g                    | Requ                            | ested .          | Analys   | is Filte        | ered ( | 7N)   | 303       | T                       | 4-4-53     | 0.2322771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17. JEL 1     |
|              | MATR<br>Drinkin                                                                                                                                                 | Water DW   | codes to left)             |             | COLL             | LECTED   |           | TION              |                                                     | 1                    | Pre                 | serva       | tives   | 1 1              | NIN      | No. of Concession, Name |                          |                                 |                  |          |                 |        |       |           | - Second                | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              | Water<br>Wate<br>Produc<br>Soli55<br>One Character per box.<br>(A-Z, 0-9 /, -)<br>New Character<br>(A-Z, 0-9 /, -)                                              | P          | (see valid<br>(G=GRA       | -           | ART              | E        | ND        | EMP AT COLLECTION | TAINERS                                             | ved                  |                     |             |         |                  | see Test | List                    | 8270 Full list plus PAHs | FL Pro Low Volume for<br>Waters | 00 8 Ag,Cd,Cr,Pb | /MSD     | Blank           |        |       |           | Residual Chlorine (Y/N) | Sal<br>Man | non for the participants of the participants o | -             |
|              | Sample lds must be unique Tissue                                                                                                                                | TS         | MATRIX CODE<br>SAMPLE TYPE | DATE        | TIME             | DATE     | SCM       | 10 million (1997) |                                                     | Unpreserved<br>H2SO4 | HNO3                | HCI<br>NaOH | Na2S203 | Methanol         | Other    | 8260 Full               | 8270 Full                | FL Pro Lo<br>Waters             | Metals 200 8     | MS/MSD   | 8260 Trip Blank |        |       |           | Residual                | TIN        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m]+<br>333-21 |
|              | MW-2R - 04182022                                                                                                                                                |            | wт                         | -           | ~                | 4-18-22  |           | W                 | 8)                                                  | ×7                   | 4                   | X           | _       |                  |          | X                       | x                        | X                               | X                | XV       | <               |        |       | $\square$ |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              | MW-2R - 04192022<br>MW-1 - 04182022<br>MW-3 - 04182022                                                                                                          |            | wт                         | -           |                  | 4.19.2   |           |                   | 1                                                   |                      | ×                   | _           |         |                  |          | L                       |                          |                                 | ×                |          |                 |        |       | $\square$ | _                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              | MW-3 -04 18 2022                                                                                                                                                |            | WT                         | -           |                  | 4-18-2   | 4939      | 1                 | 1                                                   | _                    | F                   | _           | -       |                  | _        |                         |                          |                                 | X                | _        |                 |        |       | $\square$ | 4                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              | Trip Blank                                                                                                                                                      | _          | WT                         | -           | -                | -        | -         |                   | 4                                                   |                      | ×                   | -           | -       |                  | _        | ╞                       |                          | _                               | $\left  \right $ | -        | X               | -      | 1     | $\square$ |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              |                                                                                                                                                                 |            | ++                         |             |                  | <u> </u> |           |                   | +                                                   | -                    | +                   | +           | +       | $\vdash$         | _        | ┝                       |                          | _                               | $\left  \right $ | _        | +               |        | -     | $\vdash$  | -                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              |                                                                                                                                                                 | _          | ++                         |             |                  |          |           | $\left  \right $  | +                                                   | +                    | +                   | -           | +       |                  | -        | ╞                       | $\left  \right $         |                                 | $\vdash$         | -        |                 |        | -     | $\vdash$  | -                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| ES AU        |                                                                                                                                                                 |            |                            | <u> </u>    |                  | <u>,</u> |           | $\left  \right $  | +                                                   | +                    | +                   | -           | +       | $\vdash$         | -        | ŀ                       | $\left  \right $         | _                               | +                |          | +               | -      | -     | $\vdash$  | -                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 110<br>201   |                                                                                                                                                                 | á.         |                            | 1           |                  |          |           |                   | +                                                   | +                    |                     | +           | -       | $\left  \right $ | -        | -                       | $\vdash$                 | _                               | $\left  \right $ | +        | -               |        | +     | $\vdash$  | -                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              |                                                                                                                                                                 |            | ++                         |             |                  |          |           | $\left  \right $  | +                                                   | +                    | +                   | +           |         |                  | -        | ⊢                       |                          |                                 | +                | +        | +               |        |       | $\vdash$  | -                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              |                                                                                                                                                                 |            |                            |             |                  |          |           |                   | T                                                   |                      | +                   |             |         |                  |          | F                       |                          |                                 |                  |          | +               |        |       | H         |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 2            |                                                                                                                                                                 |            |                            |             |                  |          |           |                   | +                                                   |                      | $\uparrow \uparrow$ |             |         |                  |          | F                       |                          | -                               |                  |          |                 | -      |       |           | 1                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|              | ADDITIONAL COMMENTS                                                                                                                                             | 10         | RELINQUI                   | SHED BY /   | AFFILIATIO       | N        | DATE      |                   | TIR                                                 | ME                   |                     | 573         | AC      | CEPTE            | D BY /   | AFFILI                  |                          | Lo.                             |                  |          | DATE            | 100    | TIME  |           | 35                      | SAMPLE     | CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NS            |
|              | Bottle K                                                                                                                                                        | + the      | that                       | Shall       | In P             | que      | 4-7-2     | Z                 | 111                                                 | 2                    | 17                  | leu         | ta.     | 11               | 20       | pn                      | m                        | 10                              | ्य               | 1        | 1-18-           | 22     | 140   | 207       | TOC                     |            | 40.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 - 01       |
|              |                                                                                                                                                                 | Ke         | 141                        | nen         |                  | G        | 4-18      | -22               |                                                     |                      |                     | m           | 1.1.1   |                  | X        | ar                      | a                        | 21                              |                  |          |                 |        | 150   |           | 14                      | Y          | PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 y           |
| -            |                                                                                                                                                                 |            |                            | 1.1         |                  |          | 111       | _                 | -                                                   | 22                   | 14                  |             |         |                  | 1        |                         | 0                        |                                 |                  |          | 4               |        |       | 12        | 6                       |            | 1361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0             |
| <b>#</b> 001 | 07181                                                                                                                                                           | SICHADURE  |                            |             | SAMPLE           | R NAME   |           | JATU              | 2E                                                  | 1-1-1                | 1                   | 1           | alcone  | 2015             | 1        | 1                       | 1                        |                                 | 1203             | 1        |                 | -      | Ser 1 |           | 100                     |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 「作支           |
| 1            | and the second                                                |            |                            |             | HOUSE CONTRACTOR | NT Name  | the third | 10-21             | 1/                                                  | -20                  | 10.5                | 1           | N       |                  | NS       |                         | -                        | 1.7                             | A                | - de l   | -               | 14     |       | 1         | u C                     | ed on      | Custody<br>Sealed<br>Gooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8             |

5 of 36 in in

Line on

WO#:35711376

DC#\_Title: ENV-FRM-ORB1-0093 Sample Condition Upon Receipt Form Version: 3 | Effective Date: 12/29/2021 | Issued by: Ormond Beach

| Version: 3   Effective Date: 12                        | 2/29/2021   Issued by: O | rmond Beach    | 1                              | Daga                                                    |
|--------------------------------------------------------|--------------------------|----------------|--------------------------------|---------------------------------------------------------|
|                                                        | WO#:357                  | 7113           | 76                             | UR)                                                     |
| Project #                                              | PM: LAP                  | Due Date       | : 04/25/22                     | Data and Initials of normany D                          |
| Project Manager:                                       | CLIENT: 37-ECT           | TAM            |                                | Date and Initials of person; DH<br>Examining contents:  |
| Client:                                                |                          |                |                                | Label:                                                  |
|                                                        |                          |                |                                | pH:                                                     |
| Thermometer Used: T2                                   | 202 Date:                | 4-18-2         | 7 Time: 5                      | $5/5$ Initials: $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $S$ $_{}$ |
| 10                                                     | FL                       |                | projects, all containers verit | fied to ≤6 °C                                           |
| Cooler #1 Temp."C 01 2 (Visu                           |                          |                |                                | Samples on ice, cooling process has begun               |
| Cooler #2 Temp."C(Visu                                 |                          |                |                                | Samples on ice, cooling process has begun               |
| Cooler #3 Temp.°C(Visu                                 |                          |                |                                | Samples on ice, cooling process has begun               |
| Cooler #4 Temp."C(Visu                                 |                          |                |                                | Samples on ice, cooling process has begun               |
| Cooler #5 Temp.°C(Visu                                 |                          |                |                                | Samples on ice, cooling process has begun               |
| Cooler #6 Temp.°C(Visu                                 |                          |                |                                | Samples on ice, cooling process has begun               |
| Recheck for OOT °C(Vis                                 | sual)(Correc             | tion Factor) _ | (Actual) Tir                   | ne: Initials:                                           |
| Courier: Ged Ex G                                      | UPS USPS                 | lient 🗆 C      | ommercial                      | Other                                                   |
| Shipping Method:                                       |                          |                |                                |                                                         |
| □ Other                                                |                          |                |                                |                                                         |
| Billing:   Recipient                                   | □ Sender □ ٦             | hird Party     | Credit Card                    | Unknown                                                 |
| Tracking #                                             | 1                        |                |                                | $\frown$                                                |
| Custody Seal on Cooler/Box Prese                       | nt: 🗆 Yes 🗖 No           | Seals i        | ntact: 🗌 Yes 🗌 No              | Ice: Wet Blue Melted None                               |
| Packing Material: Bubble Wrap                          | 1                        |                | Dther                          |                                                         |
| Samples shorted to lab (If Yes, con                    | 1                        |                | A                              | ted Time: Qty:                                          |
|                                                        |                          |                | Comments:                      | ted Time: Qty:                                          |
| Chain of Custody Present                               | Yes                      | □ No □N/A      | comments.                      | 10                                                      |
| Chain of Custody Filled Out                            |                          |                | 1                              |                                                         |
| Relinguished Signature & Sampler Na                    | 11                       |                |                                |                                                         |
| Samples Arrived within Hold Time                       |                          | □ No □N/A      |                                |                                                         |
| Rush TAT requested on COC                              | □Yes                     |                |                                |                                                         |
| Sufficient Volume                                      | Yes                      |                |                                |                                                         |
| Correct Containers Used                                | Pres                     | □ No □N/A      |                                |                                                         |
| Containers Intact                                      |                          | □ No □N/A      |                                |                                                         |
| Sample Labels match COC (sample I<br>collection)       | 200                      | □ No □N/A      |                                | 1                                                       |
| All containers needing acid/base pres                  | servation have           |                | Preservation Information       | n:                                                      |
| been checked.<br>All Containers needing preservation a | Yes                      | □ No □N/A      | Preservative:                  |                                                         |
| compliance with EPA recommendatio                      |                          | □ No □N/A      | Lot #/Trace #:<br>Date:        | _Time:                                                  |
|                                                        | licrobiology, O&G, PFAS  | - 1            | Initials:                      | 14                                                      |
| Headspace In VOA Vlals? ( >6mm):                       |                          |                |                                |                                                         |
| Trip Blank Present:                                    | □Yes                     | No DN/A        |                                | ×                                                       |
| Comments/ Resolution (use back f                       | or additional comments): | /              |                                |                                                         |
|                                                        |                          |                |                                |                                                         |
|                                                        |                          |                |                                |                                                         |

Tab 11

Part II.S Subpart BB and CC

# Part II

# S. AIR EMISSION STANDARDS

# AIR EMISSION STANDARDS FOR EQUIPMENT LEAKS

The requirements of 40 CFR 264 Subpart BB – Air Emission Standards for Equipment Leaks apply to the RCRA-Permitted Hazardous Waste Tank (Used Solvent), miscellaneous unit, and ancillary equipment. The regulations in this subpart apply to owners and operators of facilities that treat, store, dispose, or recycle hazardous wastes (except as provided in 264.1) and apply to equipment that contains or contacts hazardous wastes with organic concentrations of at least 10% by weight that are managed in units that are subject to the permitting requirements of Part 270.

"Equipment" is defined in 40 CFR 264.1031 as each valve, pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, or flange or other connector, and any control devices or systems required by Subpart BB. Each piece of equipment at the Safety-Kleen Medley facility is marked in such a manner that it can be distinguished readily from other pieces of equipment (see figures 11.1-1/11.1-2 at the end of this section).

The information contained here are specific procedures for the Safety-Kleen Medley branch to implement the Leak Detection and Repair Program. Appendix D of this permit application, Procedures for Compliance with RCRA Subparts BB and CC, is a Branch Operating Guideline overview and training document used at all Safety-Kleen branches to guide personnel on compliance with Subparts BB/CC.

### Implementation Schedule

Implementation of the Leak Detection and Repair Program is the responsibility of the Safety-Kleen Branch Manager and facility personnel he/she designates

# Equipment Standards

# Pumps in Light Liquid Service (40 CFR 264.1052)

The facility has no pumps that contain or contact hazardous waste in light service.

# Compressors (40 CFR 264.1053)

The facility has no compressors that contain or contact hazardous waste.

### Pressure Relief Devices in Gas/Vapor Service (40 CFR 264.1054)

The facility does not maintain any pressure relief devices that contain or contact hazardous waste in gas/vapor service or closed vent systems or control devices.

### Sampling Connecting Systems (40 CFR 264.1055)

The facility does not have any sampling connecting or in situ sampling systems. Recurring sampling of waste in contact with this equipment is not necessary since Safety-Kleen has determined that all liquid hazardous wastes in the equipment regulated by Subpart BB is presumed to be greater than 10% organic concentration and all equipment at the facility is to be managed in heavy liquid service as defined in 264.1031. Documentation of the actual vapor pressure for the hazardous wastes in contact with this equipment is maintained in the operating record at the facility. The vapor pressure of the used parts washer solvent at 20°C is approximately 0.11 kPa (2 mm-Hg).

### **Open-Ended Valves or Lines (40 CFR 264.1056)**

Each open-ended valve or line will be equipped with a cap, blind flange, plug, or a second valve. The cap, blind flange, plug, or second valve will seal the open end at all times except during operations requiring hazardous waste stream flow through the open-ended valve or line. Each open-ended valve or line equipped with a second valve will be operated in a manner such that the valve on the hazardous waste stream end is closed before the second valve is closed. When a double block and bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but will comply with paragraph (a) of 40 CFR 264.1056 at all other times.

# Pumps and Valves in Heavy Liquid Service, Pressure Relief Devices in Light Liquid or Heavy Liquid Service, and Flanges and Other Connectors (40 CFR 264.1058)

Pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid service, and flanges and other connectors will be monitored within 5 days by the method specified in 264.1063(b) if evidence of a potential leak is found by visual, audible, olfactory, or any other detection method.

The RCRA-Permitted Hazardous Waste Tank (Used Solvent) is provided with a pressure relief device as indicated in Part II.C of the permit application. The device is a Morrison Brothers UL listed 8" Flanged Emergency Pressure Relief Vent, which is located on top of the 24" diameter

long-bolted manway on the fixed tank roof. The emergency vent is designed to relieve excessive internal pressure in the event of fire or adverse chemical reaction. Should there be an event causing the pressure relief vent to be activated, the device will be visually inspected to ensure it is in good working condition.

At the present time, the pumps, valves, flanges, and other connectors at the Medley facility are used for heavy liquid service. As defined in 40 CFR 264.1031, the used parts washer solvents managed at the facility are considered to be heavy liquid because the solvents have a vapor pressure less than 0.3 kilopascals at 20° C. Furthermore, no single contaminant is present in the wastes that has vapor pressure greater than 0.3 kilopascals in concentrations in excess of 20% by weight. In addition, the wastes presently managed in the equipment at the Medley facility have a maximum of 2,000 ppm concentration in the vapor phase. Therefore, a portable organic vapor analyzer will not be used for leak detection because leaks cannot result in concentrations of more than 10,000 ppm. Equipment leaks will be monitored based on visual inspection/observation. If a leak is detected, the piece of equipment is tagged and identified with the equipment number and date of actual leak detection. When a leak is detected, it will be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in 264.1059. The first attempt at repair will be made no later than 5 calendar days after any leak is detected. First attempts at repair include, but are not limited to, the best practices under 264.1057(e), such as tightening or replacement of bonnet bolts, tightening of packing gland nuts, injection of lubricant into lubricated packing, etc. Repair tags identifying leaking or damaged equipment, except those tags on valves, will be removed after repair of the equipment.

Difficult to monitor equipment will be visually inspected on an annual basis due to the safety hazards inherent to inspecting these items.

# Delay of Repair (40 CFR 264.1059)

The facility may delay repair of equipment for which leaks have been detected if the repair is technically infeasible without a hazardous waste unit shutdown. In such a case, repair of this equipment will occur before the end of the next hazardous waste management unit shutdown. Delay of repair of equipment for which leaks have been detected will be allowed for equipment that is isolated from the hazardous waste management unit and that does not continue to contain or contact hazardous waste with organic concentrations at least 10% by weight. Delay of repair for valves will be allowed if:

- 1. The facility determines that emissions of purged material resulting from immediate repair are greater than the emissions likely to result from delay of repair.
- 2. When repair procedures are affected, the purged material will be collected and destroyed or recovered in a control device complying with 254.1060.

The Facility may delay repair beyond a hazardous waste management unit shut down for a valve if valve assembly replacement is necessary during the hazardous waste management unit shutdown, valve assembly supplies have been depleted, and valve assembly supplies had been sufficiently stocked before the supplies were depleted. Delay of repair beyond the next hazardous waste management unit shutdown will not be allowed unless the next hazardous waste management unit shutdown.

### Testing

The facility will comply with the following test methods and procedures:

- A. The facility will determine, for each piece of equipment, whether the equipment contains or contacts a hazardous waste with organic concentration that equals or exceeds 10% by weight using the following:
  - Methods described in ASTM Methods D 2267-88, E 169-87, E 168-88, E 260-85 (incorporated by reference under 260.11); or
  - 2. Method 9060A of SW-846 (incorporated by reference under 260.11); or
  - 3. Application of the knowledge of the nature of the hazardous waste stream or the process by which it was produced. Documentation of a waste determination by knowledge is required. Examples of documentation that will be used to support a determination under this provision include production process information that the waste is generated by a process that is identical to a process at the same or another facility that has previously been demonstrated by direct measurement to have total organic content less than 10%, or prior speciation analysis results on the same waste stream where it can also be documented that no process changes have occurred since that analysis that could affect the waste total organic content results.
  - 4. All liquid hazardous waste in the equipment regulated by Subpart BB at this facility is presumed to be greater than 10% organic concentration and all equipment is to be managed in heavy liquid service as defined in 264.1031.

Documentation of the actual vapor pressure is maintained in the operating record at the facility, and the vapor pressure of the used parts washer solvent at 20°C is approximately 0.11 kPa (2 mm-Hg).

- B. If the facility determines that a piece of equipment contains or contacts a hazardous waste with organic concentrations at least 10% by weigh, the determination can be revised only after following the procedures in items A(1) or A(2) above.
- C. Samples used in determining the percent of organic content will be representative of the highest total organic content hazardous waste that is expected to be contained in or contact the equipment. Sampling methods for obtaining representative samples of hazardous waste for analysis under this section are the same as those found in the Waste Analysis Plan (Part II Waste Analysis Plan WAP).

## Recordkeeping Requirements (40 CFR 264.1064)

The facility will maintain the recordkeeping requirements for all hazardous waste management Units subject to the provisions of Subpart BB in one recordkeeping system. The following Information will be recorded in the facility operating record and maintained on-site for a minimum of three (3) years:

- 1. For each piece of equipment to which Subpart BB applies:
  - a. Equipment identification number and hazardous waste management unit identity.
  - b. Approximate locations within the facility (identify the hazardous waste management units on a facility site plan).
  - c. Type of equipment (e.g., pump or pipeline valve).
  - d. Percentage of total organics in the hazardous waste stream which contacts equipment subject to this regulation is 100% by weight.
  - e. Hazardous waste state at the equipment (e.g., gas/vapor or liquid).
  - f. Method of compliance with the standard (e.g., daily inspections, leak detection and repair).
- 2. When each leak is detected as specified in 264.1052, 264.1053, 264.1057, and 264.1058, the following applicable requirements apply:
  - a. A weatherproof and readily visible identification, marked with the equipment identification number, date of evidence of a potential leak was found in accordance with 264.1058(a), and date the leak was detected, will be attached to the leaking equipment.

- b. The identification on equipment, except on a valve, may be removed after it has been repaired.
- c. The identification on a valve may be removed after it has been monitored for 2 successive months as specified in 264.1057(c) and no leak has been detected during those 2 months.
- 3. When each leak is detected as specified in 264.1052, 264.1053, 264.1057, and 264.1058, the following information will be recorded in an inspection log and will be kept in the facility operating record:
  - a. The instrument and operator identification numbers and the equipment identification number.
  - b. The date of evidence of a potential leak was found in accordance with 264.1058(a).
  - c. The date the leak was detected and the dates of each attempt to repair the leak.
  - d. Repair methods applied in each attempt to repair the leak.
  - e. "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.
  - f. Documentation supporting the delay of repair of a valve in compliance with 264.1059(c).
  - g. The signature of the owner or operator (or designee) whose decision it was that the repair could not be affected without a hazardous waste management unit shutdown.
  - h. The expected date of successful repair of the leak, if a leak is not repaired within 15 calendar days.
  - i. The date of successful repair of the leak.
- 4. The following information pertaining to all applicable equipment subject to the requirements in 264.1052 through 264.1060 will be recorded in a log that is kept in the facility operating record:
  - a. A list of identification numbers for equipment (except welded fittings) subject to the requirements of Subpart BB.
  - A list of identification numbers for equipment that the facility elects to designate for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, under the provisions of 264.1052(e), 264.1053(i), and 264.1057(f).

- c. The designation of this equipment as subject to the requirements of 264.1052(e), 264.1053(i), or 264.1057(f) will be signed by the owner or operator.
- d. A list of equipment identification numbers for pressure relief devices required to comply with 264.1054(a).
- e. The dates of each compliance test required in 264.1052(e), 264.1053(i) 264.1054, and 264.1057(f), as applicable.
- f. The background level measured during each compliance test.
- g. The maximum instrument reading measured at the equipment during each compliance test.
- h. A list of identification numbers for equipment in vacuum service.
- 5. The following information will be recorded in the facility operating record for use in determining exemptions as provided in the applicability section of this subpart and other specific subparts.
  - a. An analysis determining the design capacity of the hazardous waste management unit.
  - A statement listing the hazardous waste influent to and the effluent from each hazardous waste management unit subject to the requirements in 264.1052 through 264.1060 and an analysis determining whether these hazardous wastes are heavy liquids.
  - c. An up-to-date analysis and the supporting information and data used to determine whether equipment is subject to the requirements in 264.1052 through 264.1060. The record will include supporting documentation as required by 264.1063(d((3) when application of the knowledge of the nature of the hazardous waste stream or the process by which it was produced is used. If the facility takes any action (e.g., changing the process that produced the waste) that could result in an increase in the total organic content of the waste contained in or contacted by the equipment determined not to be subject to the requirements in 264.1052 through 264.1060, then a new determination is required.
- 6. Records of the equipment leak information and the operating information required by paragraph (d) and (e) of 264.1064 need only be kept for three (3) years. The Leak Detection and Repair Record used by the Safety-Kleen Medley facility is found at the end of this section (Figure 11.1-3). Each piece of equipment which will be in hazardous waste service has been described by type and assigned a unique identification number. The location of the equipment within the hazardous waste management unit will be

identified and placed in the Operating Record. Pursuant to Subpart BB of 40 CFR Part 264 and 40 CFR 270.25, Safety-Kleen inspects all regulated units for leaks each business day. Inspections are completed electronically (Form CO Tank Sys BB Equipment Inspection, found at the end of this section), and a list of equipment inspected is found on Figure 11.1-2, found at the end of this section. If an issue arises with the electronic inspection system, they will be completed on paper using Figure 11.1-2. All valves, pumps, and flanges are visually inspected. The inspection items have been properly tagged in accordance with 40 CFR 264.1050(d) and are inventoried on the environmental piping schematic diagrams included in Figure 11.1-1, found at the end of this section.

Due to the inherent properties of the waste parts washer solvent stored in the tank, the use of a screening device such as a photoionization detector (PID) is impractical. The liquids are heavy and have low vapor pressures, therefore a release would be visible in a liquid phase rather than a vapor. The used parts washer solvent has a maximum of 2,000 ppm concentration in the vapor phase.

## Reporting Requirements (40 CFR 264.1065)

Safety-Kleen will submit reports as required by 40 CFR Part 264.1065 to the Regional Administrator.

### AIR EMISSION STANDARDS FOR TANKS, AND CONTAINERS

Safety-Kleen's Medley facility manages wastes that range in Volatile Organic concentrations up to 100%. Therefore, all wastes managed in containers and in storage tanks are handled as being subject to 40 CFR 264 Subpart CC requirements based on the knowledge of the wastes managed at the facility. Therefore, no analytical waste determination is required.

### EXEMPTIONS FROM 40 CFR 264.1084 - 264.1087 STANDARDS

Not applicable – The hazardous waste management units at this facility that are subject to Subpart CC requirements do not qualify for these stipulated exemptions.

### Subpart CC Tank Standards (40 CFR 265.1084)

The Safety-Kleen Medley facility manages hazardous wastes in a tank system that consists of one 20,000-gallon storage tank and ancillary equipment. The tank in this system is subject to Subpart CC requirements as a Level 1 Tank based on tank dimensions and maximum vapor pressure of

volatile organic materials managed in this tank (see following table for criteria). A list of tank dimensions and maximum vapor pressure of volatile organics managed in tanks subject to Level 1 Tank controls is provided in the following table.

| Tank Capacity                       | Maximum Vapor Pressure |
|-------------------------------------|------------------------|
| > 151 cubic meters (39,800 gallons) | < 5.2 kPa (0.76 psia)  |
| > 19800 gallons < 39,800 gallons    | 27.6 kPa (4.05 psia)   |
| < 19,800 gallons                    | 76.6 kPa (11.26 psia)  |

**Applicability of Standards Level 1 Tanks** 

Tanks that meet the above size and vapor pressure limits and that are not heated to a temperature that would increase the vapor pressure of the materials above these limits are required to meet Level 1 Tank Standards. The storage tank at this facility is not heated to temperature greater than the temperature at which maximum organic vapor pressure of the waste is determined for purposes of compliance with this standard. See Table 11.2-1, found at the end of this section, for a summary of the tank at the Medley facility subject to the requirements of Subpart CC, and the applicable controls.

# Level 1 Tank Requirements (40 CFR 264.1084(c))

Safety-Kleen used parts washer solvent has a vapor pressure of less than 0.3 kilopascals at 20° C. The tank used for storing this waste has a capacity of 20,000 gallons. A complete description of the tank system is found in Part II C. Waste material stored in this tank is used Safety-Kleen Premium 150 Solvent. The waste managed in this tank is not being treated using a stabilization process, as defined in 40 CFR 265.1081. The storage tank meeting Level 1 requirements are equipped with fixed roofs with the following specifications:

- The fixed roof and its closure devices form a continuous barrier over the entire surface area of the hazardous waste in the tank.
- There are no visible cracks, holes, gaps, or other open spaces between roof section and the tank wall.
- Each opening in the fixed roof is equipped with a closure device designed to operate such that when the closure device is secured in closed position, there are no visible cracks, holes, gap, or other open spaces in the closure device or between the perimeter of the opening and the closure device or connected to a control device (control is not required for Level 1 Tanks).

### Inspection Requirements for Level 1 Tanks are as follows:

The fixed roof and its closure devices are visually inspected to check for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes or gaps in the roof sections; broken, cracked, or damaged seals or gaskets on closure devices; broken or missing hatches, access covers, caps, or other closure devices. A description of inspections and example logs for tank system can be found in Part II C.

### Level 2 Tanks (40 CFR 265..1084(d))

There are no level 2 tanks at this facility.

### MISCELLANEOUS UNITS

### Description and Applicability of Miscellaneous Units (Subpart X)

The drum washer/wet dumpster unit at the facility are managed under the Subpart X – Miscellaneous Units Standards of 40 CFR 264.600. This unit is located, designed, constructed, operated and maintained in a manner to protect human health and the environment. The unit is located within an area provided with secondary containment, as described in Part II.C, to prevent any potential releases from migrating to the surrounding subsurface or groundwater.

The drum washer/wet dumpster unit is designed to allow employees to empty drums of used parts washer solvent into the unit, rinse/clean the drums via a spray system with used solvent pumped within the unit by a recirculation pump. These drums are then refilled with clean recycled or virgin parts washer solvent. As designed and utilized, this unit is simply a device used to effectively convey the contents of the used parts washer solvent drums to the on-site RCRA-Permitted Hazardous Waste Tank (Used Solvent). The drum washer/wet dumpster unit is not designed or intended to treat, store, or accumulate hazardous waste.

When not actively being used to receive used parts washer solvent, or clean drums, the unit will be maintained in a closed position. The internal sump at the bottom of the wet dumpster will be emptied at the end of each day's operating shift.

The unit will be inspected for leaks or malfunctions each operating day in accordance with the inspection procedures outlined in Part II.C. The physical and chemical characteristics of the used parts washer solvent transferred through this unit can be found in Part II.A.5.

# Subpart CC Container Standards (40 CFR 264.1086)

This section is applicable to containers that are greater than 26 gallons that are used to manage hazardous wastes with greater than 500 ppm volatile organic contents. Hazardous waste containers that are filled (generated) at the facility as well as hazardous waste containers that are received from off site are subject to this rule. Part II.B of the permit application provides a summary of types of containers managed for which subpart CC is applicable. In addition, Table 11.2-2 (found at the end of this section) provides a summary of the areas, and types of containers managed, at the Medley facility for which Subpart CC is applicable.

## Level 1 Containers (40 CFR 265.1086(c))

Containers greater than 26 gallons but less than 119 gallons and containers greater than 119 gallons used in heavy material service (<0.038 psia) are to be controlled in accordance with one of the following Level 1 container standards as follows:

- Containers that meet DOT standards are in compliance with Subpart CC Level 1 container design standards. Safety-Kleen drums meet DOT standards; or
- A container equipped with cover and closure devices that form a continuous barrier over the container openings such that when the cover and closure devices are secured in the closed position there are no visible holes, gaps, or other open spaces into the interior of the container. The cover may be a separate cover installed on the container such as a lid on a drum or a tarp on a roll-off box; or
- An open-top container in which an organic-vapor-suppressing barrier is placed on or over the hazardous waste in the container such that no hazardous waste is exposed to the atmosphere.

# Level 1 Container Operating Requirements (40 CFR 264.1086(c)(3))

Whenever a hazardous waste is in a container using Level 1 controls, the covers shall be Maintained in a closed position except as follows:

- Adding hazardous waste or other materials to the container: if the container is filled in one continuous operation, the container is closed upon conclusion of the filling operation. In the case of discrete or batch filling the container is to be closed:
  - a) upon filling the container to the intended final level;

- b) the completion of a batch loading after which no additional waste will be added within 15 minutes;
- c) the person performing the loading operation leaving the immediate vicinity of the container; or
- d) the shutdown of the process generating waste being added to the container.
- Removing hazardous waste from the container: When discrete quantities of hazardous waste are removed from the container, covers shall be promptly secured upon completion of a batch removal after which no additional material will be removed from the container within 15 minutes or the person performing the unloading operation leaves the immediate vicinity of the container, whichever occurs first. RCRA empty containers may be open to the atmosphere at any time.

Containers may be opened when sampling and/or measuring hazardous wastes, as well as adding or removing hazardous wastes from them. Covers must be replaced and secured on containers once such activities are completed.

### Level 1 Container Inspection Requirements

All Level 1 Containers that are not emptied upon receipt at the facility, are inspected upon arrival and each day thereafter until the container is transferred to a recycle center. Each Level 1 Container and its cover and closure devices are inspected for visible cracks, holes, gaps, or other open spaces. No container remains at the facility over 1 year. If a defect is detected for a container, cover, or closure devices, a repair shall be attempted within 24 hours after detection, and repair shall be completed as soon as possible, but no later than 5 calendar days. The container will be over-packed in a DOT approved container as a means of repair. A description of the types of inspections and example logs for containers can be found in Part II B.

### Level 2 Containers (264.1086(d))

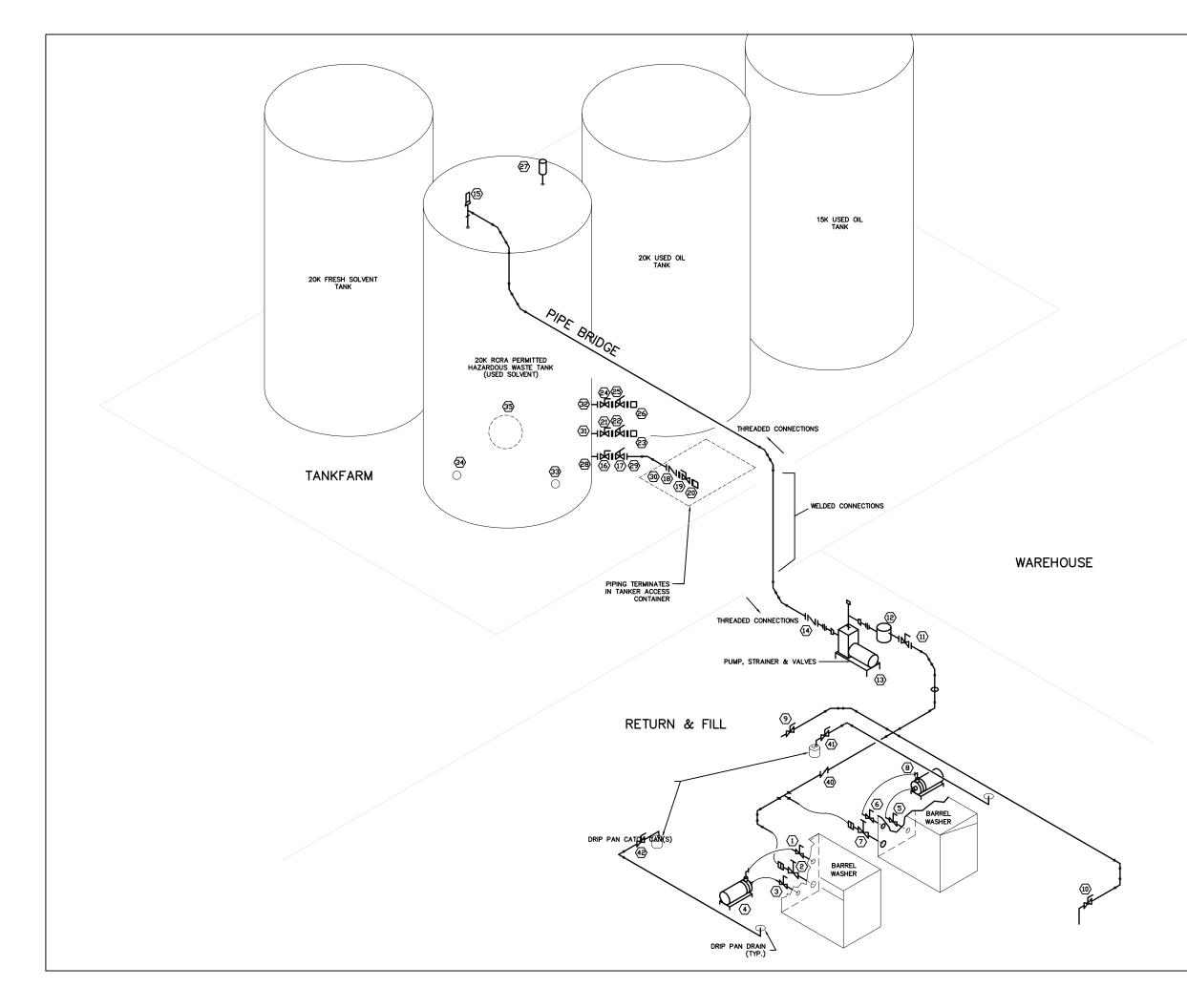
Hazardous waste containers with design capacity greater than 119 gallons, and that are in light material service, are subject to Level 2 container standards. These include totes, roll-off boxes that are greater than 119 gallons in capacity, and bulk tankers and rail car tankers. Level 2 containers are not stored at this facility, therefore 40 CFR 264.1087(d) does not apply at this location. However, these types of containers may undergo 10-day transfer at the facility, but since they will be considered "still in the course of

transportation" Subpart CC will not be applicable.

# Miscellaneous Units

If a leak is detected from the drum washer/wet dumpster unit during the daily visual inspection, the defect will be repaired no later than 45 days from the date of the detection, unless the standards associated with delay of repair (40 CFR 264.1084(k)(2) apply. First attempts to repair the equipment will occur within 5 days after the leak confirmation. Additional information concerning procedures for the inspection and detection of leaks from the equipment associated with the drum washer/wet dumpster unit can be found in Part II.C of this application.

Safety-Kleen has performed emissions monitoring of these units at numerous of its' facilities across the U.S. and this data has consistently shown that VOC emission levels are considerably below the 10,000 ppm leak detection threshold.


Based on the above information there would not be any tangible environmental benefit to adding pollution controls to the drum washer/wet dumpster unit. In addition, developing pollution controls would be very difficult since processing containers of used parts washer solvent requires that the lids to the unit remain open during active operation and are located over an open grated working surface provided with a concrete secondary containment system. It should be noted that the drum washer/wet dumpster unit is drained and closed during those times of the operating day when no trucks are delivering used parts washer solvent to be processed. Also, at the end of each operating day, which typically consists of 2.5 - 4 hours of processing, the drum washer/wet dumpster units are emptied, cleaned, closed and prepared for the next day's operation. These procedures provide an additional amount of risk reduction.

# **Recording and Reporting**

For demonstration of compliance with Subpart CC, as stipulated in 40 CFR 264.1089, Safety-Kleen Medley branch maintains the required information described in this permit application.

- Documentation of Waste Determination is provided in Part II Waste Analysis Plan of this permit application.
- Documentation of Container design and closure is provided in Part II.B of this permit application.
- Documentation of Container and Tank inspections are provided in Part II.B and Part II.C of this permit application.

Records for required inspections are maintained at the facility for a minimum of three (3) years. Any written reports, as required by 40 CFR 264.1090, particularly 40 CFR 264.1090(b), will be prepared and submitted to the Regional Administrator as applicable within 15-calendar days of the time Safety-Kleen becomes aware of any occurrence of non-compliance under this standard.



# EQUIPMENT SCHEDULE

|            | EQUIPMENT SCHEDULE                       |
|------------|------------------------------------------|
| MARK       | DESCRIPTION                              |
|            | 1 1/4" BALL VALVE (BARREL WASHER)        |
| 2          | 2" GATE VALVE                            |
| 3          | 1 1/2" BALL VALVE (BARREL WASHER)        |
| 4          | RECIRCULATING PUMP (BARREL WASHER)       |
| 5          | 1 1/2" BALL VALVE (BARREL WASHER)        |
| 6          | 1 1/4" BALL VALVE (BARREL WASHER)        |
| $\bigcirc$ | 2" GATE VALVE                            |
| 8          | RECIRCULATING PUMP (BARREL WASHER)       |
| 9          | 2" FLANGED BALL VALVE                    |
| 10         | 2" FLANGED BALL VALVE                    |
|            | 2" FLANGED BALL VALVE                    |
| (12)       | STRAINER ASSY.                           |
| (13)       | USED SOLVENT PUMP                        |
| 14         | 2" FLANGED CHECK VALVE                   |
| (15)       | 3/8" AUTOMATIC VACUM BREAKER             |
| (16)       | 3" FLANGED BALL VALVE                    |
| $\Box$     | 3" FLANGED EXTERNAL EMERGENCY GATE VALVE |
| (18)       | 3" FLANGED CHECK VALVE                   |
| (19)       | 3" FLANGED BALL VALVE                    |
| 2          | 3" FLANGED CAM LOCK                      |
| 2          | 3" FLANGED BALL VALVE                    |
| 2          | 3" FLANGED EXTERNAL EMERGENCY GATE VALVE |
| 23         | 3" FLANGED CAM LOCK                      |
| 24         | 3" FLANGED BALL VALVE                    |
| 25         | 3" FLANGED EXTERNAL EMERGENCY GATE VALVE |
| 26         | 3" FLANGED CAM LOCK                      |
| 2          | 3" PRESSURE VACUM BREAKER                |
| 28         | 3" TANK FLANGE ADJACENT TO "16"          |
| 29         | 3" PIPE FLANGE ADJACENT TO "17"          |
| 3          | 3" PIPE FLANGE ADJACENT TO "18"          |
| 3          | 3" TANK FLANGE ADJACENT TO "21"          |
| 32         | 3" TANK FLANGE ADJACENT TO "24"          |
| 3          | 3" BLIND TANK FLANGE                     |
| 34         | 3" BLIND TANK FLANGE                     |
| 35         | 3' MANWAY                                |
| 36         | NOT USED                                 |
| 3          | NOT USED                                 |
| 38         | NOT USED                                 |
| 39         | NOT USED                                 |
| <b>40</b>  | 2" CHECK VALVE                           |
| (41)       | 1" BALL VALVE                            |
| 42         | 1" BALL VALVE                            |

| A                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                               | ISSUED F  | OR PERM    | IT             | JEK  | JZ      | JZ | 092022        |  |  |  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----------------|------|---------|----|---------------|--|--|--|
| NO.                                                                                         | IO. DESCRIPTION BY CHK APPR DATE                                                                                                                                                                                                                                                                                                                                                                                              |           |            |                |      |         |    | DATE          |  |  |  |
|                                                                                             | REVISIONS                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                |      |         |    |               |  |  |  |
|                                                                                             | PROPRIETARY STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                         |           |            |                |      |         |    |               |  |  |  |
| CORP<br>THIS<br>NOT<br>DISCL<br>PURP<br>SAFE                                                | THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN<br>CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION.<br>THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST<br>NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED,<br>DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY<br>PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY<br>SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED<br>PROWPTLY UPON REQUEST. |           |            |                |      |         |    |               |  |  |  |
| TITLE                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                               | F         | IGUF       | RE 11          | .1–  | 1       |    |               |  |  |  |
|                                                                                             | Е                                                                                                                                                                                                                                                                                                                                                                                                                             | NVIR      | ONM        | ΕΝΤΑ           | LΡ   | IPIN    | IG |               |  |  |  |
|                                                                                             | SCHEMATIC - EXISTING                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |                |      |         |    |               |  |  |  |
| SAFETY-KLEEN SYSTEMS, INC.<br>42 LONGWATER DRIVE, NORWELL, MA. 02061<br>PHONE: 761-792-5000 |                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                |      |         |    |               |  |  |  |
| SCALE<br>NC                                                                                 | NE                                                                                                                                                                                                                                                                                                                                                                                                                            | BY<br>JEK | CHKD<br>JZ | APPROVED<br>JZ | ) OF | PERATIO |    | ATE<br>/20/22 |  |  |  |
| SERVIC                                                                                      | e centi                                                                                                                                                                                                                                                                                                                                                                                                                       | ER LOCATI | ON         | SC-DWG I       |      | EV. NO. |    |               |  |  |  |
|                                                                                             | MEDLEY, FL. 7096-5600-300 A                                                                                                                                                                                                                                                                                                                                                                                                   |           |            |                |      |         |    |               |  |  |  |

| TAG NUMBER | EQUIPMENT DESCRIPTION                                   |  |  |  |  |  |  |
|------------|---------------------------------------------------------|--|--|--|--|--|--|
| 1          | 1 ¼" Ball Valve-drum washer                             |  |  |  |  |  |  |
| 2          | 2" Gate Valve                                           |  |  |  |  |  |  |
| 3          | 1' <sup>1</sup> / <sub>2</sub> " Ball Valve-drum washer |  |  |  |  |  |  |
| 4          | Waste Mineral Spirits Rec. Pump                         |  |  |  |  |  |  |
| 5          | 1 <sup>1</sup> / <sub>2</sub> " Ball Valve-drum washer  |  |  |  |  |  |  |
| 6          | 1' ¼" Ball Valve-drum washer                            |  |  |  |  |  |  |
| 7          | 2" Gate Valve                                           |  |  |  |  |  |  |
| 8          | Waste Mineral Spirits Rec. Pump                         |  |  |  |  |  |  |
| 9          | 2" Flanged Ball Valve                                   |  |  |  |  |  |  |
| 10         | 2" Flanged Ball Valve                                   |  |  |  |  |  |  |
| 11         | 2" Flanged Ball Valve                                   |  |  |  |  |  |  |
| 12         | Strainer Assy.                                          |  |  |  |  |  |  |
| 13         | Used Solvent Pump                                       |  |  |  |  |  |  |
| 14         | 2" Flanged Check Valve                                  |  |  |  |  |  |  |
| 15         | 3/8" Vacuum Breaker                                     |  |  |  |  |  |  |
| 16         | 3" Flanged Ball Valve                                   |  |  |  |  |  |  |
| 17         | 3" Fl. External Emerg. Gate Valve                       |  |  |  |  |  |  |
| 18         | 3" Flanged Check Valve                                  |  |  |  |  |  |  |
| 19         | 3" Flanged Ball Valve                                   |  |  |  |  |  |  |
| 20         | 3" Flanged Cam Lock                                     |  |  |  |  |  |  |
| 21         | 3" Flanged Ball Valve                                   |  |  |  |  |  |  |
| 22         | 3" Fl. Extern. Emer. Gate Valve                         |  |  |  |  |  |  |
| 23         | 3" Flanged Cam Lock                                     |  |  |  |  |  |  |
| 24         | 3" Flanged Ball Valve                                   |  |  |  |  |  |  |
| 25         | 3" Fl. Extern. Emerg. Gate Valve                        |  |  |  |  |  |  |
| 26         | 3" Flanged Cam Lock                                     |  |  |  |  |  |  |
| 20         | 3" Pressure Vacuum Breaker                              |  |  |  |  |  |  |
| 28         | 3" Tank Flange                                          |  |  |  |  |  |  |
| 29         | 3" Pipe Flange                                          |  |  |  |  |  |  |
| 30         | 3" Pipe Flange                                          |  |  |  |  |  |  |
| 31         | 3" Tank Flange                                          |  |  |  |  |  |  |
| 32         | 3" Tank Flange                                          |  |  |  |  |  |  |
| 33         | 3" Blind Tank Flange                                    |  |  |  |  |  |  |
| 34         | 3" Blind Tank Flange                                    |  |  |  |  |  |  |
|            |                                                         |  |  |  |  |  |  |
| 35         | <u>3" Long Bolt Manway</u>                              |  |  |  |  |  |  |
| 36         | No longer in use                                        |  |  |  |  |  |  |
| 37         | No longer in use                                        |  |  |  |  |  |  |
| 38         | No longer in use                                        |  |  |  |  |  |  |
| 39         | No Longer in use                                        |  |  |  |  |  |  |
| 40         | 2" Check Valve                                          |  |  |  |  |  |  |
| 41         | 1" Ball Valve                                           |  |  |  |  |  |  |
| 42         | 1" Ball Valve                                           |  |  |  |  |  |  |

Figure 11.1-2 Safety-Kleen Medley, Florida Hazardous Waste Solvent Tank/Piping Equipment Subpart BB Tags

# Revision 0 – 09/20/22

# Figure 11.1-3

Leak Detection and Repair Record (Example)

Safety-Kleen Medley, Florida

| Equipment ID #                                         |         |        |          | <u> </u> |          |        |      |                      |
|--------------------------------------------------------|---------|--------|----------|----------|----------|--------|------|----------------------|
| Description:                                           |         |        |          | Other:   |          |        |      |                      |
| How was potential or act                               | ual lea | k dete | cted?    |          |          | _      | Date | Inspectors Signature |
| Describe the potential or                              | actual  | leak:  |          |          |          | _      |      |                      |
| (1.) Instrument Mor<br>Results:                        | -       |        | -        |          |          | _      |      |                      |
| (2.) Repair Attempt<br>Method:                         |         |        |          |          |          |        |      |                      |
| Results:<br>(3.) Repair Attempt<br>Method:<br>Results: |         |        |          |          |          | _      |      |                      |
| (4.) Date of Success<br>Method:<br>Results:            | ful Rep | •      |          |          |          |        |      |                      |
| Follow up Mont<br>(5.) Results:<br>(6.) Results:       | hly Val | ve Moi | nitoring | 8        |          |        |      |                      |
| Monitoring Summary                                     |         | (Rej   | ference  | Numb     | er – See | above) |      |                      |
|                                                        | (1)     | (2)    | (3)      | (4)      | (5)      | (6)    |      |                      |
| Instrument # / Operator                                |         |        |          |          |          |        |      |                      |
| Calibration                                            |         |        |          |          |          |        |      |                      |
| Background Reading                                     |         |        |          |          |          |        |      |                      |
| Reading at Equipment                                   |         |        |          |          |          |        |      |                      |
| Leak Detected                                          |         |        |          |          |          |        |      |                      |

Attach any documentation prepared by consultant(s).



# CO Tank Sys BB Equipment

# Form Code: 42

| Compliance Header        |  |
|--------------------------|--|
| Inspector Name           |  |
| Area of Inspection       |  |
| Inspection Date and Time |  |
|                          |  |

# CO Tank System BB Equipment Instruction

Note condition of inspection items. Inspect all tagged and non-tagged points per area plan or system drawing specification. All unsatisfactory findings must be explained. Include any repairs, changes or corrective actions.

| CO Tank System BB Equipment Inspection Item                                                                                                                                                                                                                                                                                                     | S |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Inspect all tagged and non-tagged tank system<br>identified BB equipment points per area plan -<br>Check for evidence of failure. (e.g., all inclusive<br>review of all equipment pumps, valves, flanges,<br>connections, unions, couplings or caps for<br>potential leaks, active leaks, sticking, wear,<br>does not operate smoothly, other). |   |

Each open-ended valve or line is equipped with a cap, blind flange, plug, or a second valve, which seals the open end at all times except when hazardous waste flows through the open ended valve or line. [264.1056/ 265.1056]

Pieces of equipment found to be leaking, usually by visual means, are repaired within 15 calendar days and the first attempt to repair is made within 5 calendar days. [264.1058(c)/ 265.1058(c)]

When a leak is detected, a weatherproof identification tag is attached to the leaking equipment with ID # and the date leak was detected. The identification may be removed after repair. [264.1064(c)/265.1064(c)]

The liquids in use are heavy liquids. It should be assumed that all hazardous liquids managed in storage tanks contain between 80% and 100% organics.

Subpart BB equipment tags that are "Difficult to Monitor" will be inspected on an annual basis (i.e. those that are located on top of tanks

**Compliance Footer** 

Inspector Signature

| Attach Photo                  |  |
|-------------------------------|--|
| Inspection Overall Assessment |  |

# **TABLE 11.2-1**

# SUMMARY OF TANK MANAGEMENT UNITS SUBJECTED TO SUBPART CC SAFETY-KLEEN SYSTEMS, INC. MEDLEY, FL EPA ID NUMBER: FLD 984 171 694

| Hazardous Waste     | Location of | EPA             | Brief Waste    | Average       | Subpart | Control |
|---------------------|-------------|-----------------|----------------|---------------|---------|---------|
| Management Unit     | Hazardous   | Hazardous       | Description    | Volatile      | СС      | Option  |
|                     | Waste       | Waste Codes     |                | Organic       | Status  | (See    |
|                     | Management  | Managed         |                | Concentration |         | Table   |
|                     | Unit        |                 |                | of            |         | 11.2-3) |
|                     |             |                 |                | Hazardous     |         |         |
|                     |             |                 |                | Waste         |         |         |
| RCRA- Permitted     | See Figure  | D001, and       | Waste Parts    | > 500         | Level 1 | 1       |
| Hazardous Waste     | 2.1-1       | codes listed in | Washer Solvent |               | Control |         |
| Tank (Used Solvent) |             | Note 1 below    | (Petroleum     |               |         |         |
| (20,000 g)          |             |                 | Naphtha)       |               |         |         |

NOTE: D018, D039, D040

# **TABLE 11.2-2**

# SUMMARY OF CONTAINER MANAGEMENT UNITS SUBJECTED TO SUBPART CC SAFETY-KLEEN SYSTEMS, INC. MEDLEY, FL EPA ID NUMBER: FLD 984 171 694

| Hazardous    | Location   | EPA          | Brief Waste | Average       | Container | Subpart      | Control |
|--------------|------------|--------------|-------------|---------------|-----------|--------------|---------|
| Waste        | of         | Hazardous    | Description | Volatile      | Туре      | CC Status    | Option  |
| Management   | Hazardous  | Waste        |             | Organic       |           |              | (See    |
| Unit         | Waste      | Codes        |             | Concentration |           |              | Table   |
|              | Unit       | Managed      |             | of            |           |              | 11.2-3) |
|              |            |              |             | Hazardous     |           |              |         |
|              |            |              |             | Waste         |           |              |         |
| Container    | See Figure | D001,        | Waste Parts | > 500         | Type A    | Container    | 11      |
| Storage Area | 2.1-1      | F001, F002,  | Washer      |               |           | Level 1      |         |
|              |            | F003, F005   | Solvent     |               |           | Controls per |         |
|              |            | and codes    | (Petroleum  |               |           | 264.1086(c)  |         |
|              |            | listed in    | Naphtha),   |               |           |              |         |
|              |            | Note 1       | Dry Cleaner |               |           |              |         |
|              |            | below        | Wastes      |               |           |              |         |
| Return and   | See Figure | D001 and     | Waste Parts | > 500         | Type A    | Container    | 11      |
| Fill Area    | 2.1-1      | codes listed | Washer      |               |           | Level 1      |         |
|              |            | in Note      | Solvent     |               |           | Controls per |         |
|              |            | below        | (Petroleum  |               |           | 264.1086(c)  |         |
|              |            |              | Naphtha)    |               |           |              |         |

Note: D004 thru D011, D018, D019, D021 thru D030, and D032 thru D043

# Table 11.2-3

# **Subpart CC Control Options**

## Tanks

- These tanks shall comply with Tank Level 1 controls which require tanks to have a fixed roof with no visible cracks, holes, gaps, or other spaces in accordance with 40 CFR 264.1084(c). The tank shall be visually inspected for defects prior to the tank becoming subject to these requirements and at least once a year thereafter [40 CFR 264.1084(c)].
- 2. These tanks are fixed roof tanks equipped with an internal floating roof and shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(e). The internal floating roof shall be visually inspected for defects at least once every twelve months after initial fill unless complying with the alternative inspection procedures in 40 CFR 264.1084(e)(3)(iii). [40 CFR 264.1084.(d)(1)]
- 3. These tanks are equipped with an internal floating roof and shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(f). The external roof seal gaps shall be measured in accordance with procedures contained in 40 CFR 264.1084(f)(3)(I) within 60 days and at least once every 5 years thereafter. The external floating roof shall be visually inspected for defects at least once every 12 months after initial fill. [40 CFR 264.1084(d)(2)]
- 4. These tanks are vented through a closed-vent system to control device and shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(g). The tank shall be equipped with a fixed roof and closure devices which shall be visually inspected for defects initially and at least once every year. The closed-vent system and control device shall be inspected and monitored in accordance with 40 CFR 264.1087. [40 CFR 264.1084(d)(3)]
- 5. These tanks are pressure tanks which shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(h). [40 CFR 264.1084(d)(4)]
- 6. These tanks are located inside an enclosure that is vented through a closed-vent system to an enclosed combustion control device and shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(l). The closed-vent system and control device shall be inspected and monitored in accordance with 40 CFR 264.1087 [40 CFR 264.1084(d)(5)]
- These tanks have covers which have been specified as "unsafe to inspect and monitor" and shall comply with the requirements of 40 CFR 264.1084(l)(1) [40 CFR 264.1084(f) & (g)]

# Table 11.2-3

## Subpart CC Control Options

## Containers

- 8. These containers have a design capacity greater than 0.1 m<sup>3</sup> and less than or equal to 0.46 m<sup>3</sup> and meet the applicable US DOT regulations under the Container Level 1 standards. The container shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1) & (c)(1)(i)]
- 9. These containers have a design capacity greater than 0/1 m<sup>3</sup> and less than or equal to 0.46 m<sup>3</sup> and are equipped with a cover and closure devices which form a continuous barrier over container openings. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(i) & (c)(1)(i)]
- 10. These containers have a design capacity greater than 0/1 m<sup>3</sup> and less than or equal to 0.46 m<sup>3</sup> and are open-top containers in which an organic-vapor surpressing is placed on or over the hazardous waste in a container. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(i) & (c)(1)(iii)]
- 11. These containers have a design capacity greater than 0.46 m<sup>3</sup>, are not in light material service and meet the applicable US DOT regulations under Container Level 1 standards. The container shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(ii) & (c)(1)(i)]
- 12. These containers have a design capacity greater than 0.46 m<sup>3</sup>, are not in light material service and are equipped with a cover and closure devices which form a continuous barrier over container openings. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(ii) & (c)(1)(ii)]
- 13. These containers have a design capacity greater than 0.46 m<sup>3</sup>, are not in light material service and are open-top containers in which an organic-vapor surpressing is placed on or over the hazardous waste in a container. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(ii & (c)(1)(iii)]
- 14. These containers have a design capacity greater than 0.46 m<sup>3</sup>, are in light material service and meet the applicable US DOT regulations under Container Level 2 standards. The container shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(iii) & (d)(1)(i)]

# Table 11.2-3

## **Subpart CC Control Options**

- 15. These containers have a design capacity greater than 0.46 m<sup>3</sup>, are in light material service and operate with no detectable organic emissions as defined in 40 CFR 265.1081. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1088(b)(1)(iii) & (d)(1)(ii)]
- 16. These containers have a design capacity greater than 0.46 m<sup>3</sup>, are in light material service and that have been demonstrated within the preceding 12 months to be vapor tight using 40 CFR Part 60, Appendix A, Method 27. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1088(b)(1)(ii) & (c)(1)(i)]
- 17. These containers have a design capacity greater than 0.1 m<sup>3</sup> that are used for treatment of a hazardous waste by a waste stabilization process and are vented directly through a closed-vent system to a control device in accordance with 40 CFR 264.1086(e)(2)(ii). The closed-vent system and control devices shall be inspected and monitored as specified in 40 CFR 264.1087. [40 CFR 264.1088(b)(2) & (e)(1)(i)]
- 18. These containers have a design capacity greater than 0.1 m<sup>3</sup> that are used for treatment of a hazardous waste by a waste stabilization process and are vented inside an enclosure which is exhausted through a closed-vent system to a control device in accordance with 40 CFR 264.1086(a)(2)(i) & (ii). ). The closed-vent system and control devices shall be inspected and monitored as specified in 40 CFR 264.1087. [40 CFR 264.1088(b)(2) & (e)(1)(ii)]

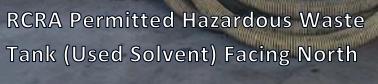
Appendix A Site Photographs



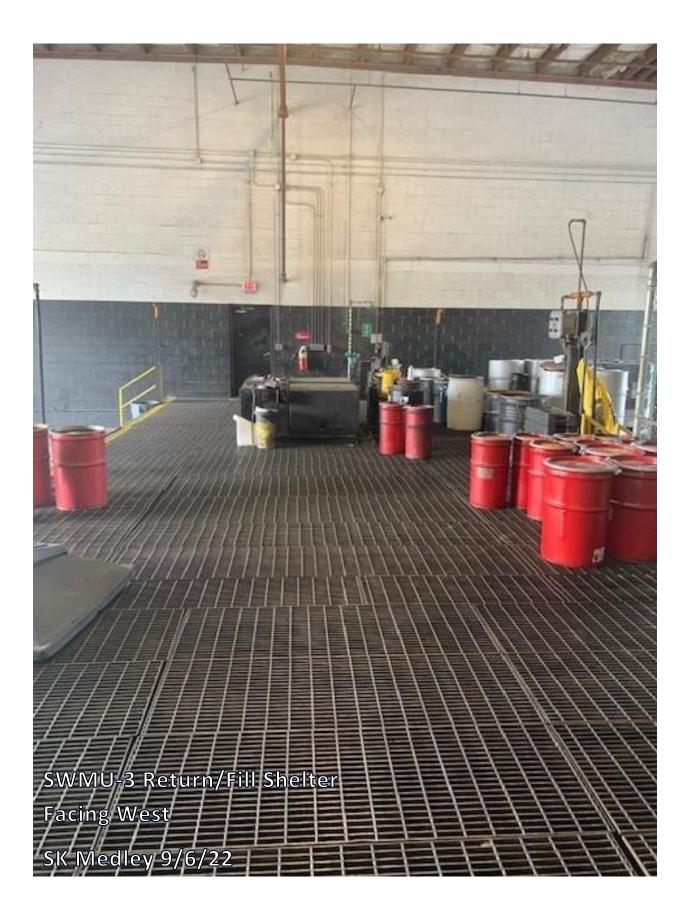
SWMU-1 Container Storage Area Inside Service Center Facing South

SK Medley 9/6/22

0


四张,

SALV


Shipping

ENT

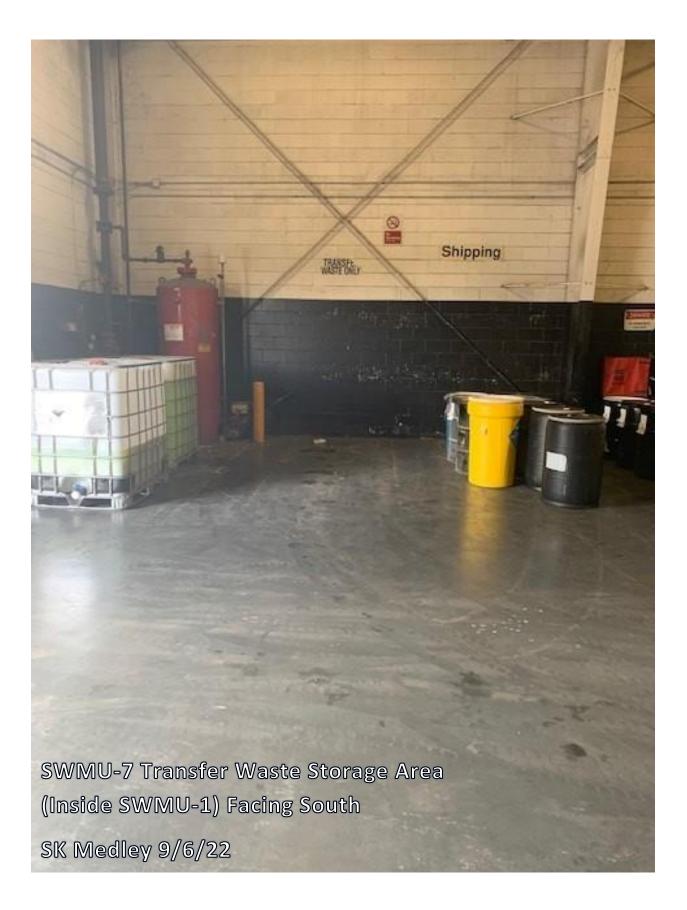




SK Medley 9/6/22





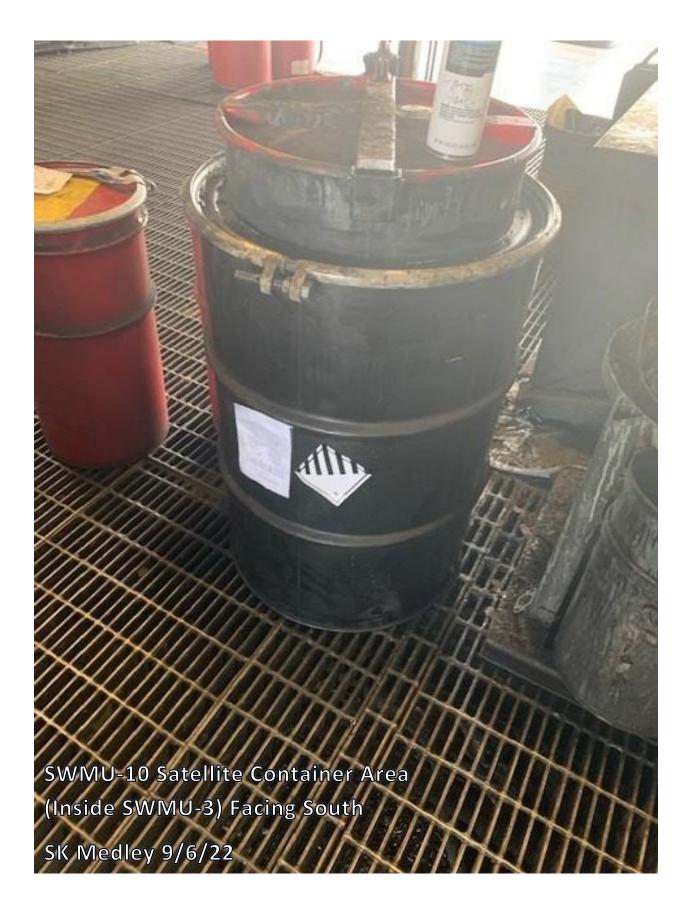

SWMU-4 Mercury Lamps Storage Area (Inside SWMU-1) Facing Southeast

ISTE D

MASTELAT

SK Medley 9/6/22






SWMU-7 Transfer Waste Storage Area (Inside SWMU-1) Facing East

SK Medley 9/6/22











Appendix B Chemical Analysis Reports Annual Re-Characterization

## 2022 AR Codes and SKDOTS - National

| Waste Stream                                            | Description Subcategory                                               | Changes from<br>2021 to 2022 | 2022 National Waste Codes                                                                                                                                                                                                             | 2022 NATIONAL Profile      |  |
|---------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| Branch Contaminated Debris (Solid would not carry D001) | N/A                                                                   | No Change                    | F002, F003, F005, D001, D004, D005, D006,<br>D007, D008, D009, D010, D011, D018, D019,<br>D021, D022, D023, D024, D025, D026, D027,<br>D028, D029, D030, D032, D033, D034, D035,<br>D036, D037, D038, D039, D040, D041, D042,<br>D043 | Refer to CH Outbound       |  |
| Immersion Cleaner                                       | N/A                                                                   | Remove D006, D018,<br>D027   | D039, D040                                                                                                                                                                                                                            | 153634                     |  |
| Parts Washer Solvent 105 Virgin                         | under 100 lbs<br>over 100 lbs (RQ)<br>Non-RQ DF container (no DOT SP) | No Change                    | D001, D018, D039, D040                                                                                                                                                                                                                | 150045<br>150085<br>157045 |  |
| Bulk MS Solvent                                         | N/Á                                                                   | No Change                    | D001, D018, D039, D040                                                                                                                                                                                                                | Refer to CH Outbound       |  |
| Parts Washer Solvent Sludge/Dumpster Mud                | N/A                                                                   | No Change                    | D001, D018, D039, D040                                                                                                                                                                                                                | Refer to CH Outbound       |  |
| Parts Washer Solvent Tank Bottoms (bulk)                | N/A                                                                   | No Change                    | D001, D018, D039, D040                                                                                                                                                                                                                | Refer to CH Outbound       |  |
| Premium (150) / PRF / PDF Mil Spec Solvent              | N/A<br>DF container (no DOT SP)                                       | No Change                    | D039                                                                                                                                                                                                                                  | 150055<br>157055           |  |
| Paint Gun Cleaner                                       | under 100 lbs<br>over 100 lbs (RQ)                                    | No Change                    | F003, F005, D001, D018, D035, D039, D040                                                                                                                                                                                              | 150380<br>150425           |  |
| Paint Gun Cleaner (Premium Thinner)                     | under 100 lbs<br>over 100 lbs (RQ)                                    | NO Change                    | F003, F005, D001, D018, D035, D039, D040                                                                                                                                                                                              | 158380<br>158381           |  |
| Clear Choice Paint Gun Cleaner                          | under 100 lbs<br>over 100 lbs (RQ)                                    | No Change                    | F003, D001, D018, D035, D039, D040                                                                                                                                                                                                    | 150426<br>150427           |  |
| Paint Waste Other                                       | Any size container                                                    | No Change                    | F003, F005, D001, D018, D035, D039, D040                                                                                                                                                                                              | 150375                     |  |
| Universal Paint Gun Cleaner                             | N/A                                                                   | No Change                    | D001, D018, D035, D039, D040                                                                                                                                                                                                          | 403901294                  |  |
| Dry Cleaner (Perc) Bottoms                              | N/A                                                                   | Remove D029                  | F002, D007, D039, D040                                                                                                                                                                                                                | 150589                     |  |
| Dry Cleaner (Perc) Filters                              | N/A                                                                   | Remove D029                  | F002, D007, D039, D040                                                                                                                                                                                                                | 150621                     |  |
| Dry Cleaner (Perc) Separator Water                      | N/A                                                                   | Remove D029                  | F002, D039, D040                                                                                                                                                                                                                      | 150520                     |  |
| Dry Cleaning Naphtha Bottoms                            | N/A                                                                   | No Change                    | D001, D007, D039, D040                                                                                                                                                                                                                | 150422                     |  |
| Dry Cleaning Naphtha Filters                            | N/A                                                                   | No Change                    | D001, D007, D039, D040                                                                                                                                                                                                                | 150424                     |  |
| Dry Cleaning Naphtha Separator Water                    | N/A                                                                   | No Change                    | D001, D039, D040                                                                                                                                                                                                                      | 150423                     |  |

Appendix C Containment Calculations

# **Professional Engineers Certification Report**

of

Construction of the Safety-Kleen Medley, Florida

**Branch Service Center** 

By W. O. Heyn P.E. Florida Certificate No. 45516

### CERTIFICATION

# Florida Dept. of Environmental Regulation

Facility Name SAFETY-KLEEN CORP., MEDLEY, FLORIDA FDER Site Code FLD984167791 Construction Permit Requiring Certification HC-13-175466 Permit Issuance Date March 1, 1991

The Hazardous Waste Facilities have been constructed and tested in accordance with the specifications in the Part B construction permit with the exceptions noted in the attached report. Documentation that the construction was in accordance with the permit is contained in the enclosed report.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of imprisonment for knowing violations.

Signature of Owner/Operator

Glenn R. Casbourne, Vice-President, Engineering Name and Title

Signature of Registered P.E.

William O. Heyn, 45516

Name of Registered P.E. and Florida P.E. No.

1-7-92 Date

(P.E. Seal)

Construction Documentation Report for Construction of Hazardous Waste Facilities at the Safety-Kleen Corp. Branch Service Center Located at 8755 N.W. 95th Street, Medley, Florida

#### Introduction

Safety-Kleen Corp. constructed an office, warehouse building and tank farm with ancillary equipment in Medley, Florida in accordance with the requirements of the Part B construction permit that was issued by the Florida DER on March 1, 1991 and amended on December 9, 1991 and May 15, 1992 with deviations from the permit indicated in this report. Figure 11A.4(b)-3 indicates Sanford whereas it should be Medley. Also the tank farm as-built is in the "Future" location which is consistent with the rest of the permit.

**Regulatory Requirements:** 

#### 40CFR264.192(a)

The tanks for storage of hazardous waste were constructed in accordance with Underwriters Laboratories Inc., "Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids." The tank shell thickness is 1/4" from 0 to 18 feet, and 3/16" from 18 to 24 feet. The tank bottom is 1/4" thick and the tank top is 3/16" thick steel. The waste ethylene glycol and waste mineral spirits tanks are identical.

All tanks are coated with white acrylic base paint. All pipes and threads are painted to protect them from corrosion. Each tank is protected by a high level alarm which will sound and activate an alarm and a strobe light when the tank level reaches 95% of capacity. The alarm on the waste solvent tank will also deactivate the waste solvent pump at the return and fill. The high level alarm system was changed from a float activated switch to a sonar based tank gauge and high level alarm system called "Level Devil" provided by Electronic Sensors, Inc. of Wichita, Kansas.

All connections to the tanks are equipped with a spring loaded safety valve held in the open position by a fusible link that will melt and allow the valve to close in the event of a fire.

### 40CFR 264.192(b)

Each tank was inspected after installation for weld breaks, punctures, scrapes of protective coatings, cracks, corrosion and other structural damage or inadequate construction/installation.

All discrepancies found were corrected and the tanks are suitable for use.

#### 40CFR264.192(c) Not applicable

### 40CFR264.192(d)

The tanks, after installation, were filled over 95% of full with water and observed for 5 hours for leaks. No leaks were observed and the tanks are certified tight. All ancillary equipment was tested in conjunction with the tank tests and certified tight.

### 40CFR264.192(e)

All ancillary equipment has been properly mounted and installed. All lengths of piping are supported no less than every eight running feet.

40CFR264.192(f) Not applicable

40CFR264.192(g) See Certification Statement

#### 40CFR264.193(a-e)

Tank secondary containment in the form of an open concrete dike vault has been constructed in accordance with prints No. 316301-5002-00 Sheet No. 8 and 316301-5015-00 Sheet No. 9. The floor and dike walls of the tank containment system contain no cracks. The slab has been sloped to drain all liquids that accumulate inside the containment system to a

stainless steel sump which can be readily pumped out to a holding tank to remove the accumulated liquids. The sump is located adjacent to the south wall of the vault per Figure II C2-1.

The interior of the dike walls and slab are coated with an epoxy material (Semstone 140) to prevent permeation through the concrete.

#### 40CFR264.193(f)

Some piping inside the dike vault is threaded. Secondary containment for this piping is provided by the vault. All piping outside the concrete dike vault has fully welded connections. The clean solvent pump has been installed inside the concrete dike vault as is the spill container for hookup to tank trucks. Note: Although the permit specified that six tanks would be installed in the tank farm, only 3 tanks have been installed: one dirty mineral spirits tank, one clean mineral spirits tank and one waste glycol tank. The two waste oil tanks and the perchloroethylene tank were not installed but may be at a later date. Also the permit showed the tank truck connections outside the diked area and a change was made to move them inside the diked area. Refer to print No. 316301-2000-00 sheet No. 45.

With reference to Fig. II C.2-1 Tank Farm; The location of the tanks was changed to accommodate the use of one truck connection container. As-built, the used mineral spirits tank is located in the southwest corner of the vault whereas the permit shows it in the southeast corner of the vault. The fresh mineral spirits tank as-built is located in the northwest corner of the vault vs. the northeast location per the permit. The used ethylene glycol tank as-built is located in the south central position of the tank farm vs. the permit location in the northwest position. The tanks were mounted on stainless steel sheets, 13 ft. 8 in. by 13 ft. 8 in. which were bolted to the concrete housekeeping pads.

The dimensions of the vault, as-built, varies from the permit dimensions as follows; length 58 ft. 0 in. vs. 56 ft. 0 in. in the permit, width 40 ft. 0 in. vs. 40 ft. 0 in. in the permit. The height of the dike wall varies from 36-1/4 in. to 38 in. due to the sloped floor of the vault

vs. 36 in. in the permit. Three monitoring wells have been installed about 10 ft. from the north, east and west sides of the vault.

#### Tank Truck Loading Area

The permit application shows an 80 ft. by 25 ft. tank truck loading area constructed of 6 in. thick reinforced concrete sloping 2 inches to a 2 ft. diameter by 2 ft. deep stainless steel sump with no outlet. A change was made to increase the slope to 9 inches to increase the containment capacity of the pad to 2917 gallons. Refer to print No. 316301-5003-00 sheet No. 10. The containment volume of the truck loading area was measured by filling with water. The actual volume measured was 2432 gallons which is significantly less than the design volume.

### **Tank Farm Shelter**

Provisions were made during construction to provide foundations for a proposed tank farm shelter which will be installed at a later date. This proposed shelter will cover the entire tank farm and tank truck loading pad with an overhang of 10 ft. at each end of the tank farm (east and west) and a 2 ft. overhang on the front and rear (south and north) of the tank farm and tank truck loading slab. This shelter will prevent a major portion of rainfall from entering the containment areas. No side walls will be installed so that access for fire fighting is not impaired. Refer to print Sheet No. ST-1 Tank Farm Canopy.

## Warehouse Containment Area

The Warehouse containment area was constructed in accordance with print 316301-7005-00Sheet No. 26. The sloped floor containment area is free of cracks and has been sealed with an epoxy sealant (Semstone 245) that is chemically resistant to the products to be stored in the warehouse. The sloped floors of the warehouse drain into a 12 ft. x 2 ft. stainless steel sump that has no outlet. Any spills collected in the sump will be pumped out and properly disposed. The containment volume of the warehouse was measured by filling with water. The actual

volumetric measure was 2996 gallons which is equal to or greater than the design volume of 2940 gallons.

With reference to Fig. II B.1-1 Container Storage Location; The rollup door and personnel door in the northeast location in the east wall of the warehouse were moved to a southeast location in the east wall. A personnel door was added to the north wall. The security fence in the warehouse was relocated and two 6 ft. wide by 8 ft. high sliding gates were added to the fence.

The truck loading dock will contain one dock leveler and provisions for a second leveler and is covered by a metal roof. Any spills that occur on the loading dock will be collected in a 24 ft. x 2 ft. stainless steel trench located at the foot of the dock. This trench, covered by a steel grating, has no outlet and any spills must be pumped out by use of a portable pump.

Rainwater which falls on the outside truck loading pad is collected in a sump which drains  $\mathcal{CURB}$ into the stormwater system. A small bren separates this sump from the stainless steel spill collecting sump at the foot of the dock to prevent rainwater from entering the stainless steel sump. Return and Fill

The return and fill containment is made up of concrete floors sloped to two 2 ft. diameter by 2 ft. deep stainless steel sumps that have no outlets. The concrete containment areas are sealed by an epoxy sealant (Semstone 140) that is compatible with and resistant to the solvents that will be handled in the facility. The steel loading dock, sized to handle 8 trucks, is covered by heavy duty grating that can support all anticipated loads including forklifts. Openings in the gratings contain two drum washers for dumping and washing solvent drums. The dock is equipped with dock plates to provide safe access to the trucks. Hose trees are located at the edge of the dock to provide valves and hose mountings for filling drums.

Two as-built, wet dumpster/barrel washers were installed adjacent to each other near the positions indicated in Fig. II C.7-3 Return and Fill Shelter.

The containment volume of the return and fill area was measured by filling with water that was used in the hydrostatic test of the tanks. The actual volume measured was 3693 gallons which compares favorably with the design volume of 3680 gallons. After the test the

water was pumped into the storm sewer.

The permit application showed a single 20 ft. by 2 ft. rectangular stainless steel sump in the return and fill. A change was made to two round sumps with changes in the floor slopes to accommodate them and to achieve the same overall containment volume. Refer to print no. 316301-7004-00 sheet No. 24.

#### **Fire Suppression System**

The fire sprinkler system for the warehouse, Return and Fill area and the office area has been designed and installed by Kannapolis Fire Sprinklers. The piping system with sprinkler heads for the warehouse and Return and Fill areas have been completed and are operational. The available water flow has been tested by the City of Medley. The available flow has been found to be inadequate as required by NFPA for a water system. Flow *is* adequate for a foam system which has been installed. The foam bladder tank has been installed in the southeast corner of the warehouse with the required controls. The foam sprinkler system has been tested by the installer and approved by the Medley Fire Department prior to issuance of the Certificate of Occupancy.

### **Other Emergency Equipment**

Fire Extinguishers - The warehouse and Return and Fill are equipped with eight 20 lb. ABC fire extinguishers wall bracket mounted and labeled in accordance with the approved design.

Eye Washer/Showers - one eyewash/shower is located on the west wall of the warehouse adjacent to the doorway to the Return and Fill. A second eyewash/shower is located on the west side of the steel loading dock in the Return and Fill area. A third eyewash/shower is located adjacent to the tank farm.

Exit Signs - All doorways opening to the outside are identified by a lighted "Exit" sign. Personal Protective Equipment - All employees working in the Warehouse and the Return and Fill will be required to wear safety glasses with side shields, hard hats and safety shoes.

#### **Branch Security**

The working areas of the Medley facility are enclosed by a 6 foot high chain link fence with a one foot extension containing 3 strands of barbed wire. Access and exit is through two 30 ft. sliding gates which are motor operated. Entrance is achieved by a keypunch pad located adjacent to the entrance drive. The gate opening can also be achieved by a push button located in the office. Gate closing is controlled by a timer and an electric eye. All gates are required to be kept closed at all times except for passage of vehicles.

Access into the office is controlled by a door equipped with an electrically operated lock activated from inside the office. Two doors exiting from the office area will be equipped with an emergency bar on the inside. These doors can only be opened from inside the building.

Signs designating "no smoking", "fire extinguisher", etc. have been mounted in locations shown on drawing No. 316301-9000-00 Sheet No. 28.

## Site Storm Water Control

The City of Medley has no stormwater drainage system available for this site. In order to provide for stormwater control and disposal, the areas to be paved have been equipped with 6 catch basins each of which are connected to an underground collection system. The collection system consists of 15 in. diameter perforated corrugated metal pipes laid horizontally 3 ft. underground in 15 ft. deep by 36 in. wide trenches filled with pervious material. The capacity of these structures is adequate to store a rainfall of 6.7 inches over a 1 hour period. The water collected in the structure will drain by seepage into the surrounding soil.

#### Electrical

All electrically operated equipment was tested with a temporary electrical supply. Florida Power and Light will hook up permanent power after the Certificate of Occupancy is issued by the City of Medley.

Strategy for measuring volume of Containment Areas and Testing Tanks and Piping Systems

Since the tanks are to be tested by filling with water and observing for leaks, 20,000 gallons of water will be available for filling the various containment systems, i.e. Return and Fill (3680 gal. reqd.) and the warehouse (2940 gal. reqd.) and the tank truck loading/unloading pad (2917 gal. reqd.)

One option to determine volumes is to measure the physical dimensions of each containment area and calculate the actual volume each would contain.

A second option would be to fill each containment volume with water from the tank test and measure the amount of water used by means of the tank gauge after the tanks are tested.

The high level alarms for the tanks should be operational when the tanks are filled to provide a test of the high level alarm system for each tank.

At the completion of the tests the water will be drained into the stormwater drainage system onsite.

#### Procedure

1. Fill used Mineral Spirits tank with water from the domestic supply until the high level alarm sounds. Record the number of gallons indicated by the tank gauge. Continue to fill an additional 500 gal. taking care *not* to overfill the tank. Observe the tank system for 5 hours for leaks. Note any leakage that must be repaired before placing tank in service.

2. Hook up an auxiliary pump to the drain line of the used Mineral Spirits tank and connect the discharge to the fill line of the Used Glycol Tank. Transfer the water to the Used Glycol tank. Note: The residual water in the bottom of the used Mineral Spirits tank is not available for this part of the test. Add additional water to the Used Ethylene Glycol of 500 gallons over the point at which the high level alarm sounds. Record the tank gauge reading when the high level alarm sounds. After the tank is filled observe the tank system for 5 hours and note any points of leakage. Repair all leaks before terminating the tests on both tanks.

3. Fill out certification forms indicating tanks and ancillary piping are tight.

4. Drain water from the filled tank into the truck loading area. Note gauge readings on the tank gauge before filling and at the point that the loading area is completely filled. Record gallons. Pump the water from the truck loading area into the storm drain.

5. Drain water from the filled tank into the warehouse containment area. Note tank gauge readings before and at the point the containment area is completely filled. Record gallons. Pump the water from the containment area into the storm drain.

6. Repeat the above procedure for the return and fill containment area.

7. Fill out certification forms for all 3 areas.

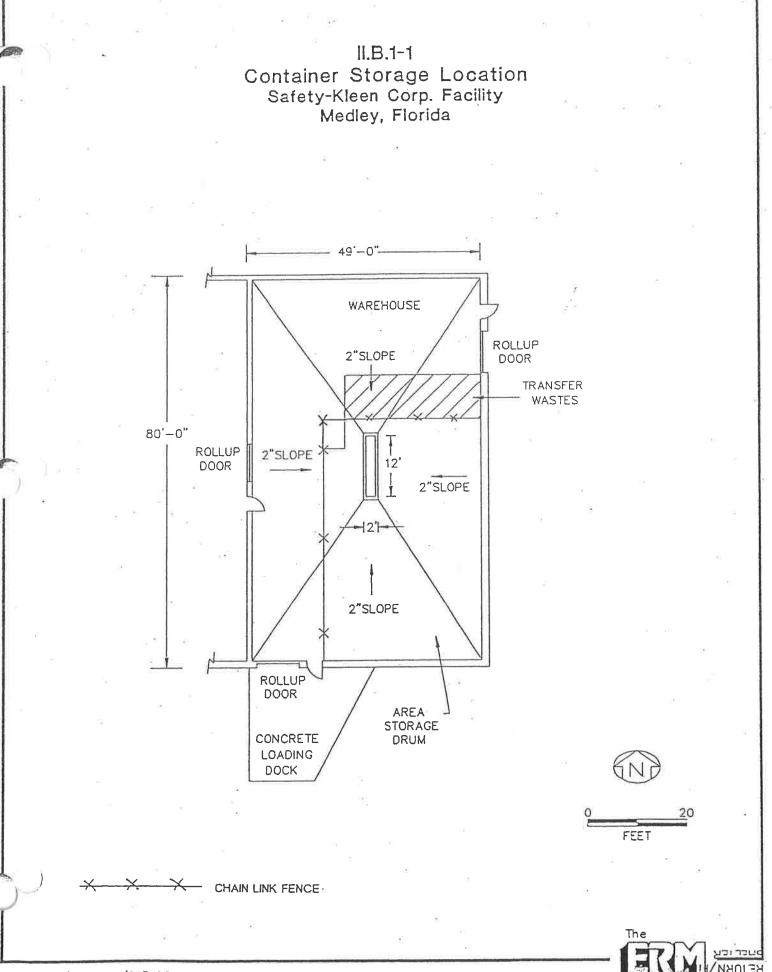
8. Drain remaining water from the filled tank into the storm drain. Note: each tank tested will contain several hundred gallons of water in the bottom of the dish that cannot be pumped out through the discharge ports. To remove this residual water, remove one 4" plug at the bottom of the tank and siphon or pump the residual water from the bottom of the dish. After draining replace plug using approved thread sealer.

#### W. O. Heyn 2010 Imperial G.C. Boulevard Naples, FL 33942 813-566-2326

# TEST CERTIFICATION FORM

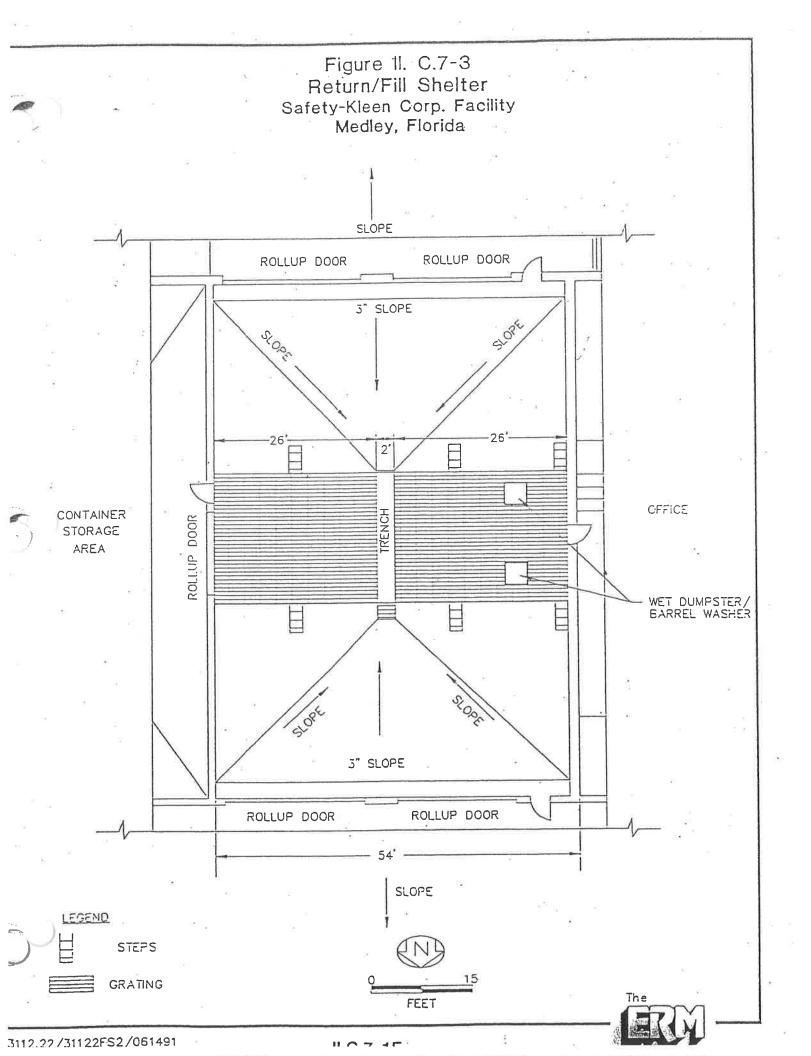
| Date 6-6-92                    | 2               |
|--------------------------------|-----------------|
| Project SAFETY-KLEEN (         | ORP             |
| Location MEDLEY, FLORIDA       |                 |
|                                |                 |
| System TANK #1 WASTEN          | MINERAL SPIRITS |
| Na l                           | 0<br>20         |
| Type of Test                   | Hydrostatic     |
|                                | Air             |
|                                | Other           |
| Test Pressure ATMOS PHERIC     |                 |
| Duration of Test 5 HOURS       | а<br>Л          |
| Test Witnessed By Joshie Marie | 3<br>3          |
| Test Supervised By U.O. HEYN   | /               |
|                                |                 |

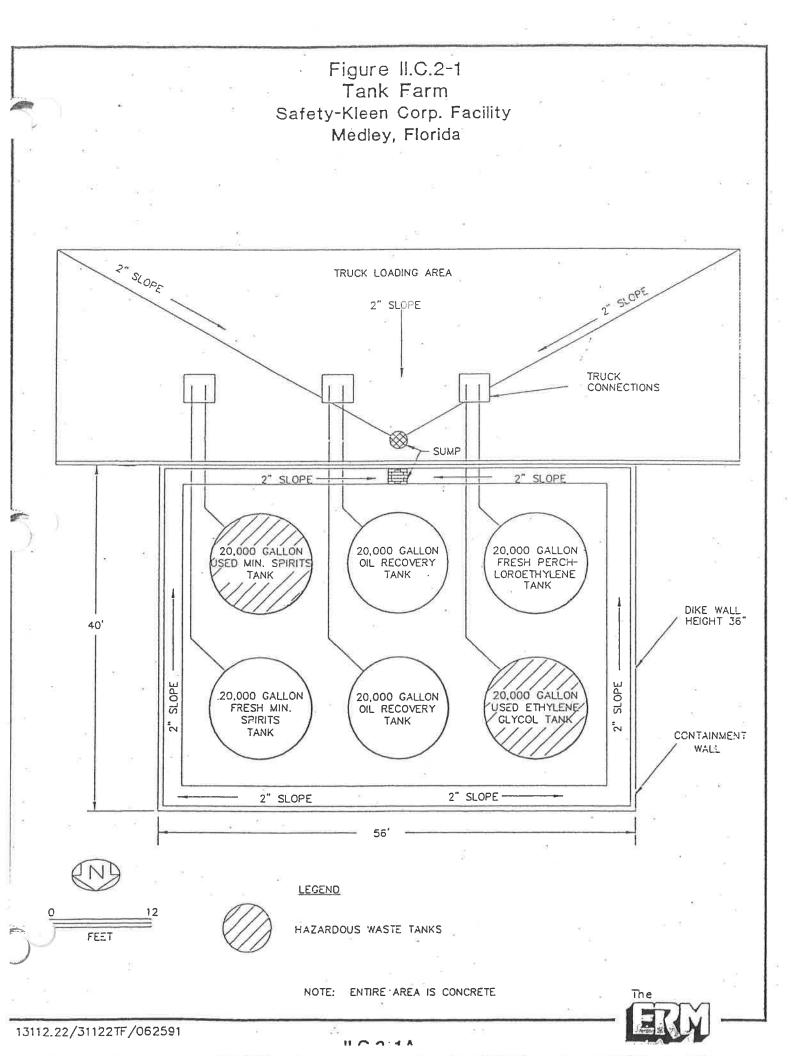
RESULTS - TANK AND ANCILLARY EQUIPMENT TIGHT

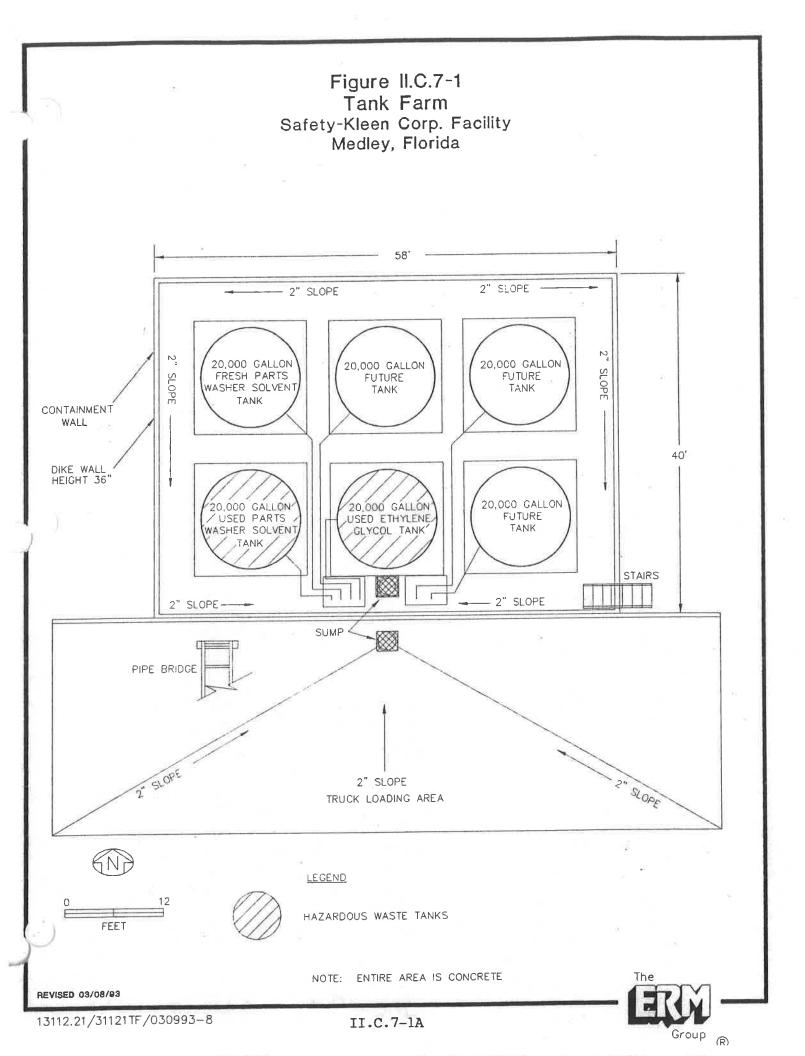

By: x Title: PE FLORIDA CERT. 45516 6-6-92 Date:

#### W. O. Heyn 2010 Imperial G.C. Boulevard Naples, FL 33942 813-565-2326

| TEST | CERTIFICATION | FORM |
|------|---------------|------|


| 2                                                             |         |          |          |                |
|---------------------------------------------------------------|---------|----------|----------|----------------|
| Date 6-6-92                                                   |         | Siz .    | - EX     | 2              |
| Project SAFETY-KLEEN C                                        |         | 13<br>12 | S2       | *              |
| Location MEDLEY, FLORIDA                                      | 9       | 2        | ÷        | ^ <sub>E</sub> |
| * * *                                                         |         |          | 5 ×      | 18             |
| System TANIC # 3 WASTE ET.                                    | HYLENE  | Giyco    | 26       | e)             |
| 2<br>                                                         |         |          |          |                |
| Type of Test                                                  | Hydrost | atie     | ×.       | 20             |
|                                                               | Air     | 8        |          |                |
|                                                               | Other   | 5        |          | *<br>*         |
| Test Pressure ATMOSPHERIC                                     | *       |          |          |                |
| Duration of Test 5 HOURS                                      | 4       | 10<br>10 |          | 1.             |
| Test Witnessed By Jackie Jooce<br>Test Supervised By W.O. HE? |         | at       |          |                |
| Test Supervised By W.O. HE:                                   | ~~~     |          |          | · ·            |
| 28 C                                                          |         |          |          |                |
| RESULTS - TANK AND                                            | ANCIL   | LAKY L   | COUIPMEN | T TICHT        |


By: Title: PE FLORIDA CERT 45516 Date: 6-6-92




13112.21/31121CL/013192-2

II.B.1-1A







| Environmental Resources Mana |                                              | W.O. No           | 21_ Sheet of2           |
|------------------------------|----------------------------------------------|-------------------|-------------------------|
| bject <u>Lusitable Hask</u>  | Capacity U                                   | ByS<br>Chkd by//# | Date7/16/92             |
|                              |                                              |                   |                         |
| 53                           |                                              |                   |                         |
|                              | 8                                            |                   |                         |
| TENK FARML (Fin              | re I. C.7-1)                                 |                   |                         |
| Total Val =                  | Vol + V                                      | ol - Vol TANK -   | - Vol PAD - UL BAINFOLD |
|                              |                                              | e np              |                         |
| 1. Confirment sec            |                                              |                   |                         |
| V = (58'-1                   |                                              | 36+38 ")          |                         |
| V = (58 -/<br>               | 6)(40 -16')(<br>7')(38:67')                  | (308')            |                         |
|                              | 60 A 3 (7.48                                 | •                 |                         |
| = 50,48                      |                                              |                   | -                       |
|                              | Ŭ                                            | 8                 |                         |
|                              |                                              |                   | ×                       |
| 2, 30mp (9+g=1)              | 2                                            |                   | 5.                      |
|                              |                                              |                   | (24'8) T Z"             |
| $V_{S} = (77  4^{2})$        | -                                            | 2                 | ✓ +                     |
| $=\pi$                       | $\frac{2}{4} \left( \frac{22}{12} \right) =$ | 5.76 Ft 3         | Circular Sump           |
| = 5.76                       | F13 (7.48 3°                                 | e/F+3)            |                         |
| = 43.1                       | gal                                          |                   |                         |
|                              |                                              |                   |                         |
|                              |                                              |                   |                         |
|                              |                                              |                   |                         |
|                              |                                              |                   |                         |
|                              |                                              |                   |                         |
|                              |                                              |                   |                         |
|                              |                                              |                   |                         |
|                              |                                              |                   |                         |

| FIGURE II.C.7-2 (CONT.)                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental Resources Management       W.O. No. 13/12.21       Sheet 2 of 2         Project       5K - Medic       By DS       Date 7-16-92         Subject       Available       Storage Capacity       By DS       Date 7-16-92         TEALK FARM       Child by VH       Date 7/16/92 |
|                                                                                                                                                                                                                                                                                             |
| 3. Tank $(q_{t} = 6, w/1 \text{ ruptured } = 5 \text{ in fact})$<br>(a) $V_{T} = 5(\pi \frac{(12)^{2}}{4})(\frac{28+30^{''}}{2(12)})$ Support TANK (28-30'')                                                                                                                                |
| = 1366.59 ft 3 (7,483al/ft 3) POD<br>= 10,222.1 gal VORTICAL TINK & SUPPORT                                                                                                                                                                                                                 |
| (b) $V_{p} = 6(14)(14)(8/12)$<br>= 784 A <sup>3</sup> (7.48 <sup>gal</sup> /A <sup>3</sup> ) = 5864.3 gal                                                                                                                                                                                   |
| 4. Rainfall:<br>Based on 254e-24Hr rainfall of 10 inches                                                                                                                                                                                                                                    |
| $V_{R} = (Containment Lirea)(Rainfall)$<br>= (5667' x 38.67')(10/12)                                                                                                                                                                                                                        |
| = (30007 + 3000 + 100)<br>= $1826.2.7^{2} (7.48 \frac{9^{2}}{4^{2}}) = 13,659.932$                                                                                                                                                                                                          |
| Total Available Stronge Val. = $V_c + V_s - V_T - V_P - V_R$<br>$V_{ol} = (50, 487.0 + 43.1 - 10,222.1 - 5864.3 - 13,659.9)gl$<br>$V_{ol} = 20,783.8$ gal                                                                                                                                   |
| : Total sur lable storage volume (20,783.9gel)<br>exceeds single tank volume (20,000 gal),                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                             |

Appendix D Subpart BB/CC Information



#### **OPERATIONS**

Division/Department: Operations Contact: Jane Spetalnick Jane.spetalnick@safety-kleen.com Procedure: O220-005 Revision: 3 Revision Date: **October 10, 2017** Supercedes: April 25, 2012 Issue Date: November 3, 2004 Page: 1 of 12 Approved: Bill Ross

### Purpose:

The purpose of this Branch Operating Guideline is to provide general guidelines for complying with the requirements for controlling emissions from equipment leaks (Subpart BB) and controlling emissions from containers, tanks, surface impoundments and miscellaneous units (Subpart CC).

### Scope:

This procedure applies to all U.S. Safety-Kleen Branches that are permitted Treatment, Storage, and Disposal Facilities (TSDFs).

### **Responsibilities:**

| Branch General<br>Manager (BGM)                               | Branch General Managers are responsible for following these procedures.<br>BGMs also assist the EHS Manager in all compliance issues as they<br>relate to the branch.                                                                                                                           |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environment<br>Health and<br>Safety Managers<br>(EHS Manager) | EHS Managers are responsible for understanding all federal, state, and local regulatory issues pertaining to maintaining branch compliance with the control of emissions. EHS Managers conduct routine inspections and training to ensure branch compliance with Subparts BB and CC compliance. |

### **Definitions:**

| Average Volatile Organic<br>Concentration or average<br>VOC | Means the mass-weighted average volatile organic concentration of a hazardous waste as determined in accordance with the requirements of 40 CFR 265.1084.                                                                   |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Closed-vent system                                          | A system that is not open to the atmosphere and that is<br>composed of piping, connections, and necessary, flow-inducing<br>devices that transport gas or vapor from a piece or pieces of<br>equipment to a control device. |

| Closure device                       | Means a cap, hatch, lid, plug, seal, valve, or other type of fittings that<br>blocks an opening in a cover such that when the device is secured in the<br>closed position it prevents or reduces air pollutant emissions to the<br>atmosphere (Example: a hinged access lid or hatch)                                                                                                                                                                              |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connector                            | Any flanged, screwed, welded, or other joined fittings used to connect<br>two pipelines or a pipeline and a piece of equipment. For the purposes of<br>reporting and recordkeeping, connector means flanged fittings that are<br>not covered by insulation or other materials that prevent location of the<br>fittings.                                                                                                                                            |
| Equipment                            | Each valve, pump, compressor, pressure relief device, sampling connection system, opened-ended valve or line, or flange, or any control devices or systems required by Subpart BB.                                                                                                                                                                                                                                                                                 |
| In heavy liquid<br>service           | Means that the piece of equipment is not in gas/vapor service or in light liquid service (Example: mineral spirits is a heavy liquid)                                                                                                                                                                                                                                                                                                                              |
| In light liquid<br>service           | Means that the piece of equipment containers or contacts a waste stream<br>where the vapor pressure of one or more of the components in the<br>stream is greater than 0.3 kilopascals (kPa) at 20°C, the total<br>concentration of the pure components having a vapor pressure greater<br>than 0.3 kPa at 20°C is equal to or greater than 20 percent by weight and<br>the fluid is a liquid at operating conditions (Example: paint thinner is a<br>light liquid) |
| Level 1 Container                    | ≤ 122 gallons, Storage of any hazardous; no waste stabilization or<br>>122 gallons, "Not in light material service" (See Subpart BB section of<br>this BOG for Light Material Service definition); no waste stabilization                                                                                                                                                                                                                                          |
| Level 2 Container                    | >122 gallons, "In light material service," no waste stabilization                                                                                                                                                                                                                                                                                                                                                                                                  |
| Level 3 Container                    | >26.4 gallons, Stabilization of hazardous waste                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Malfunction                          | Means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or unusual manner. <b>Note:</b> Failures that are caused in part by poor maintenance or careless operation are not malfunctions.                                                                                                                                                                   |
| Maximum<br>Organic Vapor<br>Pressure | Means the sum of the individual organic constituent partial pressure<br>exerted by the material contained in a tank, at the maximum vapor<br>pressure-causing conditions (i.e., temperature, agitation, pH effects of<br>combining wastes, etc.) reasonably expected to occur in the tank.                                                                                                                                                                         |
| Open-ended<br>valve or line          | Any valve, except pressure relief valves, have one side of the valve seat in contact with the process fluid and one side open to the atmosphere, either directly or through open piping.                                                                                                                                                                                                                                                                           |

| origination              | <ol> <li>When the facility owner or operator is the generator of the<br/>hazardous waste, point of waste origination means the point<br/>where a solid waste is produced by a system, process, or waste<br/>management unit is determined to be a hazardous waste as<br/>defined by 40 CFR Part 261.</li> <li>When the facility owner and operator is not the generator of the<br/>hazardous waste, point of the waste origination means the point<br/>where the owner or operator accepts delivery or takes possession<br/>of the hazardous waste.</li> </ol> |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Related Documents</b> | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Attachment A             | Example daily Subpart BB Inspection Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Attachment B             | Example Leak Detection and Repair Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Attachment C             | Example Branch Daily Inspection Form (tanks and containers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Attachment D | Example Subpart CC Annual Tank Inspection (including    |  |  |  |
|--------------|---------------------------------------------------------|--|--|--|
|              | difficult Subpart BB tagged fittings at tops of tanks). |  |  |  |

### **Overview:**

Procedures for compliance with both Subparts BB and CC are covered in the BOG.

Standards have been promulgated limiting organic emissions resulting from equipment leaks at new and existing hazardous waste treatment, storage and disposal facilities (TSDFs) requiring RCRA permit under RCRA Subtitle C.

These emission standards, set forth under 40 CFR Parts 264 and 265, Subpart BB, apply to any "leaks" from valves, pumps, compressors, pressure relief devices, sampling connection systems, flanges or other pipe connectors, control devices, and open-ended valves or lines that may result in organic emissions. Controls for these sources are required at TSDFs where the equipment contains or comes in contact with hazardous waste streams with 10 percent or greater organics content (by weight).

Subpart CC regulations require owners and operators of tanks, container, surface impoundments, and miscellaneous units to limit VOC emissions from these units by providing covers and emission control devices.

**Tanks Subject to Subpart CC:** Any tank that is used to store or treat hazardous waste with a VOC 100 ppm or greater.

**Containers Subject to Subpart CC:** Containers with design volume of greater than 0.1 m<sup>3</sup> (about 26 gallons) that are used to store or treat hazardous waste with a VOC 100 ppm or greater.

Generators storing hazardous waste in containers and in tanks for up to 90 days are also subject to the Subpart CC regulations. Satellite accumulation drums of less than 55 gallons are not subject to Subpart CC.

## **Procedures:**

### Subpart BB

• Each piece of equipment in waste service, such as pumps, valves, flanges (includes flanges located at either end of a valve), compressors, other connectors (any threaded fitting), open-ended lines, and flanged manway covers must be marked (tagged) such that they are easily distinguished from other pieces of equipment (numbered).

**Note:** Zip ties (nylock ties) are <u>not</u> acceptable for attaching Subpart BB ID tags to equipment. Subpart BB ID tags **must** be attached to equipment using a stainless steel wire which can be ordered from MSC (**MSC #93536928**). All Subpart BB equipment ID tags currently attached to equipment by something other than a stainless steel wire need to be replaced immediately.

- Each open-ended valve or line must be equipped with a cap, blind flange, plug, or a second valve which seals the open end at all times except when hazardous waste flows through the open-ended valve or line. **Note:** Any cover to an open-ended valve must be marked (tagged/number).
- Drawings to show location of each piece of equipment and corresponding tag/number must be current and maintained in the EHS file. **Note:** Notify EHS Manager if tags or equipment are added or removed.
- List numbers for valves (threaded fittings) that are designated as unsafe-to monitor or difficult-to-monitor. Provide an explanation of why these threaded fittings are unsafe or difficult to monitor on a daily basis and when they are inspected. (Example: Tagged equipment on top of vertical tank(s) is inspected annually in conjunction with the Subpart CC inspection. See Subpart CC section of this BOG)
- Each tagged piece of equipment must be visually inspected during daily inspections. If a leak is noticed, it must be noted on the daily inspection log for that day.
- If pieces of equipment are found to be leaking:
  - Note the leaking equipment on the daily inspection form (circle "N" and note the tag number at the bottom of the inspection sheet)
  - $\circ$  Tag the leaking equipment with a weatherproof tag.
  - Complete the Leak Detection and Repair form with the required information. Record the status of repairs on this form.
  - The first attempt to repair the leak must be done in 5 calendar days from the time the leak was noted on the daily inspection sheet.

- The leak must be repaired with 15 calendar days of detecting a leak or the equipment must be taken out of service. **Note:** Contact BGM and EHS Manager if it appears that repairs cannot be made within the 15 days.
- If repairs are not made within 15 calendar days or taken out of service, the EHS Manager must submit a semi-annual report to the Regional Administrator describing the situation.
- Remove the weatherproof tag when repairs are finished.
- All activities to repair a leak must be recorded on a Leak Detection and Repair form.
- The actual vapor pressure must be maintained in the operating record (EHS 999 file cabinet) to show that the equipment is in heavy liquid service. **Note:** EHS Manager will make sure this information is current, in the EHS 999 file, and available for inspection.

### Subpart CC

• The facility operating record must identify all hazardous waste storage tanks for Subpart CC compliance (including 90 day tanks), drum storage areas and transfer operations, such as drum emptying and truck stations, as applicable units.

**Note:** This information can be found in Part B Permit Application, but must be in EHS 999 file and available for inspection

• Hazardous waste storage tanks must be classified as Level 1 or Level 2 tanks based on the above referenced definitions.

**Note:** Most branch storage tanks are classified as Level 1 tanks. Therefore, the following procedures address Level 1 tanks.

- Vapor pressure of the waste in the tank(s) must be available for inspection (see EHS 999 files).
- Tanks must be equipped with covers, and all cover openings are kept closed except when sampling, adding or removing waste materials.

**Note:** Due to SK policy which requires the use of 55-gallon drums for accumulation of site generated wastes, all satellite accumulation containers of return and fill/dock wastes are subject to this requirement.

**Note:** In states that consider the drum washer(s) as Level 1 tanks, the drum washer(s) lid must be closed when drum washing operations are being conducted and when not in use if materials are present in the unit (exception being when wastes are being added or removed from the equipment), and be equipped with proper seals on the lid to control emissions.

 Annual inspections must be conducted on all tanks' covers and all tank openings, such as manhole covers, pressure relief devices, conservation vents and long bolted manways. **Note:** If visible holes or gaps are noted in the inspection: Repair documentation must indicate the first attempt at repair was performed within 5 days and repairs must be completed within 45 days of discovery unless repair cannot be conducted without emptying the tank or taking it out of service and no alternative tank capacity is available. In such instances, a tank must be repaired the next time it stops operation and the repair must be completed before placing the tank back into service (Note: see EHS Manager for additional guidance if repair cannot be completed within 45 days of detecting a leak. Some permits or other regulatory requirements may not allow the continued operation of a tank beyond 45 days after discovering a defect. Severe leaks will require immediate action and may require the tank to be removed from service immediately, and repair certified by an independent Professional Engineer).

• An inspection of the top of the tank(s) must be conducted annually. The findings must be documented.

**Branches with vertical waste tank(s):** Due to the difficult location of the Subpart BB tags for the threaded fittings at the top of these tank(s), daily inspection of these fittings is not possible. Therefore, in conjunction with the annual Subpart CC inspection, these tagged fittings will be inspected. The documentation of the Subpart CC annual tank inspection will also reference the tag numbers for the fittings located at the top of the tank and whether leaks were noted or not.

#### ATTACHEMENT A – Example Subpart BB Inspection Form

| PECTOR'S NAME/TITLE           |      |       |         |        |     |        |    |      |        |     |
|-------------------------------|------|-------|---------|--------|-----|--------|----|------|--------|-----|
|                               |      | NSPEC | TOR'S S | GNATUR | RE: |        |    |      |        |     |
| MONDAY TUESDA                 |      |       | VEDNES  |        |     | THURSD | AY |      | FRIDA  | Y   |
|                               |      |       |         |        |     |        |    |      |        |     |
|                               |      |       | ,       | ,      |     | ,      | ,  |      | ,      |     |
| DATE: (M / D / Y)             |      |       |         |        |     |        |    |      |        |     |
| ТІМЕ                          |      | -     |         |        |     |        |    | -    | *****  |     |
| Pump, Flange, or Valve Number | M    | ON.   | TI      | JES.   | w   | ED.    | TH | URS. | F      | BL. |
| 1                             | ' A" | N     | А       | N      | A   | N      | A  |      |        |     |
| 2                             | A    | N     | A       | N      | A   | N      | A  | N    | A      | 1   |
| 3                             | . A  | N     | A       | N      | Â   | N      | A  | N    | A      | 1   |
| 4                             | . A  | N     | A       | N      | A   | N      | A  | N    | Â      | 1   |
| 5                             | . A  | N     | A       | N      | A   | N      | A  | N    | Â      | i   |
| 6                             | . A  | N     | A       | N      | Α   | N      | A  | N    | A      | 1   |
| 7                             | . Α  | N     | A       | N      | A   | N      | A  | N    | A      | 1   |
| 8                             | A    | N     | A       | N      | А   | N      | Α  | Ν    | А      | 1   |
| 9                             | A    | N     | A       | N      | A   | N      | Α  | N    | A      | 1   |
| 10                            |      | N     | Α       | N      | A   | N      | Α  | N    | A      | 1   |
| 11                            |      | N     | A       | N      | A   | N      | A  | N    | A      | 1   |
| 12                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | 1   |
| 13                            | A    | N     | A       | N      | A   | N      | А  | N    | A      | 1   |
| 15                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | 1   |
| 16                            | A    | N     | A       | N      | A   | Ν.     | A  | N    | A      | 1   |
| 17                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | 1   |
| 18                            | Â    | N     | A       | NN     | A   | N      | A  | N    | A      | P   |
| 19                            | Â    | N     | Â       | N      | A   | N      | A  | N    | A      | P   |
| 20                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | P.  |
| 21                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | N   |
| 22                            | A    | N     | A       | N      | Å   | N      | A  | N    | A<br>A | N   |
| 23                            | A    | N     | A       | N      | A   | N      | Â  | N    | Å      | N   |
| 24                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | N   |
| 25                            | Α    | N     | A       | N      | A   | N      | A  | N    | Â      | N   |
| 26                            | Α    | N     | A       | N      | A   | N      | A  | N    | Â      | N   |
| 27                            | A    | N     | Α       | N      | A   | N      | A  | N    | Ä      | N   |
| 28                            | A    | N     | Α       | N      | А   | N      | A  | N    | A      | N   |
| 29                            | A    | N     | A       | N      | А   | N      | Α  | Ν    | A      | N   |
| 30                            | A    | N     | A       | N      | A   | N      | Α  | N    | А      | N   |
| 31                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | N   |
| 33                            | A    | N     | A       | N      | A   | N      | A  | N    | Α      | N   |
| 34                            | A    | NN    | A       | N      | A   | N      | A  | N    | A      | N   |
| 35                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | N   |
| 36                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | N   |
| 37                            | A    | N     | A       | N      | A   | N      | A  | N    | A      | N   |
| 38                            | A    | N     | Ă       | N      | A   | NN     | A  | N    | A      | N   |
| 39                            | Â    | N     | Â       | N      | A   | N      | A  | N    | A      | N   |
| 40                            | Â    | N     | Â       | N      | A   | N      | A  | N    | A      | N   |

For all leaks and potential leaks, the Leak Detection and Repair Record must be completed. \*Add short descriptions of unit being inspected (e.g. gate valve, dumpster flange, dumpster pump, etc.) \*\*A = Acceptable N = Not Acceptable

Draw a line through valve and pump I.D. numbers which do not apply. FORM 1100-08-09

#### ATTACHMENT B – Example Subpart BB Leak Detection and Repair Form

LEAK DETECTION AND REPAIR RECORD

| EQUIPMENT<br>DESCRIPTI<br>TANK SYST | I.D. #                                   |           | BRANCH#                                                            | -           |
|-------------------------------------|------------------------------------------|-----------|--------------------------------------------------------------------|-------------|
|                                     |                                          |           | DATE                                                               | INSPECTOR'S |
|                                     | OTENTIAL OR ACTUAL                       |           |                                                                    | SIGNATURE   |
| DESCRIBE<br>ACTUAL LE               | THE POTENTIAL OR AK:                     |           |                                                                    |             |
| INSTRUMEN<br>FIVE DAYS              | T MONITORING WITHIN                      |           |                                                                    |             |
| (1.)                                | RESULTS                                  |           |                                                                    |             |
|                                     | ATTEMPT<br>METHOD<br>RESULTS             |           |                                                                    |             |
| REPAIR                              | ATTEMPT                                  |           |                                                                    | -           |
| (3.)                                | METHOD<br>RESULTS                        |           |                                                                    |             |
|                                     | UCCESSFUL REPAIR<br>completed w/in 15 da | ys)       |                                                                    |             |
| (4.)                                | METHOD<br>RESULTS                        |           |                                                                    |             |
| FOLLOWUP 1                          | MONTHLY MONITORING F                     | OR VALVES |                                                                    |             |
| (5.)                                | RESULTS                                  |           |                                                                    |             |
| (6.)                                | RESULTS                                  |           |                                                                    |             |
| MONITORING                          | G SUMMARY                                |           |                                                                    |             |
| CALIBRATIC                          | C READING<br>C EQUIPMENT                 |           | NUMBER         -         SEE           (3)         (4)         (5) |             |

ATTACH ANY DOCUMENTATION PREPARED BY THE CONSULTANT

# ATTACHMENT C – Example Subpart CC Daily Inspection Form Page 1 of 3

|                                                                                                                                                                    | E                         |                       | ioncor/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | GNATUR                      |                       |                       |                      |                |          |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|-----------------------|-----------------------|----------------------|----------------|----------|-----|
| MONDAY                                                                                                                                                             | TUESDAY                   | III                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EDNESD                              | a sub-special second second |                       | HURSDA                | Y                    |                | FRIDAY   | _   |
|                                                                                                                                                                    |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                             |                       |                       |                      |                |          |     |
|                                                                                                                                                                    |                           | MO                    | DN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ти                                  | ES.                         | w                     | ED.                   | THU                  | JRS.           | F        | RI. |
| PANSFER PUMPS AND P<br>Pump Seals:                                                                                                                                 | OSES                      | ٨^                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A                                   | N                           | A                     | N                     | A                    | N              | A        | N   |
| If 'N', circle appropriate                                                                                                                                         | e problem: leaks, othe    | ər:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                             |                       |                       |                      |                |          |     |
| Actors:                                                                                                                                                            |                           | Α                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Α                                   | N                           | Α                     | Ν                     | A                    | N              | Α        | N   |
| If 'N', circle appropriat                                                                                                                                          | e problem: overheatin     | ıg, oti               | her:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                             |                       |                       |                      |                |          |     |
| ittings:                                                                                                                                                           |                           | А                     | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | А                                   | N                           | A                     | N                     | A                    | Ν              | Α        | N   |
| If 'N', circle appropriat                                                                                                                                          | e problem: leaks, othe    | er:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                             |                       |                       |                      |                |          |     |
| /alves:                                                                                                                                                            |                           | А                     | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A                                   | Ν                           | A                     | Ν                     | А                    | N              | A        | Ν   |
| tf 'N', circle appropriat                                                                                                                                          | e problem: leaks, stic    | king,                 | other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                             |                       |                       |                      |                |          |     |
| lose Connections and Fittin                                                                                                                                        | iga:                      | А                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A                                   | N                           | А                     | Ν                     | А                    | Ν              | А        | Ν   |
| If 'N', circle appropriat                                                                                                                                          | e problem: cracked, k     | oose,                 | leaks, oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | her:                                |                             |                       |                       |                      |                |          |     |
|                                                                                                                                                                    | Hose Body:                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                             |                       |                       |                      |                |          |     |
| lose Body:<br>If 'N', circle appropriat                                                                                                                            | e problem: crushed, t     | A<br>hin sp           | N<br>oots, leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A<br>s, other: .                    | N                           | A                     | N                     | A                    | N              | Α        | N   |
| If 'N', circle appropriat                                                                                                                                          |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                             | A<br>                 | N                     | A<br>                | N              | A<br>    | N   |
| Hose Body:<br>If 'N', circle appropriat<br>RETURN AND FILL STATIO<br>Ver Dumpster:<br>If 'N', circle appropriat<br>other:                                          | DN                        | hin sp                | oots, leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s, other: .<br>A                    | N                           | A                     | N                     | A                    | N              |          |     |
| If 'N', circle appropriat<br>RETURN AND FILL STATIO<br>Vet Dumpater:<br>If 'N', circle appropriat                                                                  | DN                        | hin sp                | oots, leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s, other: .<br>A                    | N                           | A                     | N                     | A                    | N              |          |     |
| If 'N', circle appropriat<br>RETURN AND FILL STATIO<br>Vet Dumpater:<br>If 'N', circle appropriat<br>other:                                                        | DN<br>e problem: sediment | A<br>A<br>buildu<br>A | N<br>In In International Internat | s, other: .<br>A<br>rust, spli<br>A | N<br>t seams, d<br>N        | A<br>distortion,<br>A | N<br>, deteriora<br>N | A<br>ation, exc<br>A | N<br>ess debri | A<br>is, | N   |
| If 'N', circle appropriat<br>RETURN AND FILL STATIO<br>Vet Dumpater:<br>If 'N', circle appropriat<br>other:<br>Secondary Containment:<br>If 'N', circle appropriat | DN<br>e problem: sediment | A<br>A<br>buildu<br>A | N<br>In In International Internat | s, other: .<br>A<br>rust, spli<br>A | N<br>t seams, d<br>N        | A<br>distortion,<br>A | N<br>, deteriora<br>N | A<br>ation, exc<br>A | N<br>ess debri | A<br>is, | N   |

### ATTACHMENT C – Example Subpart CC Daily Inspection Form Page 2 of 3

|                                                    |                         | INS          | PECTO     | R'S SIGN     | ATURE     |             |           |             |            |            |       |
|----------------------------------------------------|-------------------------|--------------|-----------|--------------|-----------|-------------|-----------|-------------|------------|------------|-------|
| MONDAY                                             | TUESDAY                 |              | WE        | DNESDAY      |           | THURSDA     |           | Y           |            | FRIDAY     |       |
| //<br>DATE (M/D/M)                                 | <i>L L</i>              |              |           | ·            |           | /           |           |             |            |            | ;     |
| TIME<br>ORAGE TANKS:<br>NKS MUST NEVER BE MOR      | RE THAN 95% FULU)       | MON.         | _         | TUES         |           | WED         |           | THUR        | <br>s.     | FF         | સા.   |
| ^Tank                                              | din.(                   | /            |           | 1            |           | /           |           | /           |            | /          |       |
| Tani                                               | k (in./gal.)            | 1            |           | /            |           | 1           |           | /           |            | /          |       |
| nk Exterior:                                       |                         | A**          | N         | A            | N         | А           | N         | А           | N          | A          | N     |
| If 'N', circle appropria other:                    | ite problem: rusty or l | cose anch    | noring, l | ack of gro   | unding, s | wet spots.  | discolor  | ation, leak | s, distor  | tion,      |       |
| gh Level Alarms:                                   |                         | Α            | N         | А            | N         | А           | N         | А           | N          | А          | N     |
| If 'N', circle appropria other:                    | ile problem: malfunct   | ioning "Po   | wer On    | " light, ma  | Munction  | ning siren/ | strobe li | ght,        |            |            |       |
| lume Gauges:                                       |                         | А            | N         | А            | N         | A           | N         | A           | N          | A          | N     |
| If 'N', circle appropria                           | te problem: disconne    | ected, stick | king, col | ndensation   | n, other: |             |           |             |            |            | _     |
| NTAINMENT AREA (T                                  | ank Dike)               |              |           |              |           |             |           |             |            |            |       |
| y material which spills, le                        | eaks or otherwise acc   | cumulates    | in the d  | like, includ | ing rain  | water, mus  | it be cor | npietely re | moved      | within 24  | 1 hou |
| ttom and Walls                                     |                         | Α            | N         | Α            | N         | А           | N         | Α           | N          | Α          | Ν     |
| If 'N', circle appropria<br>chipped, deterioration |                         |              | ike, ope  | in drums ir  | n diko, p | onding/we   | st spots, | stains, se  | alant is i | pitted, cr | acke  |
| id Piping and Supports                             |                         | А            | N         | A            | N         | А           | N         | А           | N          | Α          | N     |
| If 'N', circle appropria                           | le problem: dislortion  | , corrosio   | n, paint  | failure, lea | ks, othe  | e           |           |             |            |            |       |
| SERVATIONS, COMME                                  | NTS, DATE AND NA        | TURE OF      | REPA      | RS OF AN     | IY ITEM   | IS INDICA   | TED AS    | "NOT AC     | CEPTA      | BLE":      |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |           |           |              |             |             |             |             |             | _         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|-----------|--------------|-------------|-------------|-------------|-------------|-------------|-----------|------|
| RMITTED STORAGE VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DLUME                      |           |           |              |             |             |             |             |             |           |      |
| SPECTOR'S NAME/TITL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E                          |           |           |              |             |             |             |             |             |           |      |
| and a set of the set o |                            |           |           | OR'S SM      |             |             |             |             |             |           |      |
| MONDAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TUESDAY                    |           | W         | VEDNESD      | YAY         | Т           | HURSDA      | VY          | r           | FRIDAY    |      |
| and the sport of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |           |           |              |             | 1           |             |             |             |           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |           | -         | .1           |             |             | 11          |             |             | 1         |      |
| DATE: (M / D / Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |           |           |              |             |             |             |             |             |           |      |
| TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | -         | -         |              |             |             |             |             |             |           |      |
| ONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | MC        | ON.       | TU           | IES.        | WE          | D.          | THU         | RS.         | FRI.      |      |
| stal Volume* of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * waste:                   |           |           | T            |             | 1           |             | Γ           |             | -         |      |
| tai Volume of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |           |           |              |             |             |             |             |             |           |      |
| tal Volume of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | waste:                     |           |           |              |             |             |             |             |             |           |      |
| tal Volume of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ** waste:                  |           |           |              |             |             |             |             |             |           |      |
| tal Volume of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |           |           |              |             |             |             |             |             |           |      |
| TAL VOLUME (IN GALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ONSI                       |           |           |              |             | 1           |             |             |             |           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | A*        | ** N      | А            | N           | А           | N           | ٨           | N           | А         | N    |
| If 'N', circle appropria<br>other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |           | xceeds    | the amour    | nt for whic | ch the faci | lity is per | mitled,     |             |           |      |
| andition of Containers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | A         | N         | A            | N           | А           | N           | А           | N           | A         | N    |
| If 'N', circle appropriat other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |           | e lids, n | hissing, ind | correct or  | incomple    | te labels,  | rust, leak  | s, distorti | ion,      |      |
| acking/Placement/Aisle \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | A         |           |              |             | А           |             |             | Ν           | A         | N    |
| If 'N', circle approprial<br>pallets, other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | nt from P |           | oor Plan, e  | containers  | s not on p  | allets, un  | stable star | sks, brok   | en or dar | nage |
| ONTAINMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |           |           |              |             |             |             |             |             |           |      |
| irbing, Floor and Sump(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |           | Ν         | Α            |             |             |             | A           |             |           |      |
| ny material which spills, i<br>it being discovered.)<br>If 'N', circle appropriat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |           |           |              |             |             |             |             |             |           |      |
| other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |           |           |              |             |             |             |             |             |           |      |
| ading/Un/oading Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | A         | N         | А            | N           | А           | N           | А           | N           | А         | N    |
| If 'N', circle appropria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | te problem: cracks         | deterio   | ration, p | onding/we    | et spots, o | ther:       |             |             |             |           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTS DATE AND N             | IATURE    | OF RE     | PAIRS OF     | ANY ITE     | MS INDIC    | ATED A      | S "NOT A    | CCEPT       | ABLE":    |      |
| BSERVATIONS, COMME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and set the set of the set |           |           |              |             |             |             |             |             |           |      |

#### ATTACHMENT D- Example Subpart CC Annual Tank Inspection

ANNUAL INSPECTION LOG SHEET FOR EQUIPMENT THAT IS 'DIFFICULT TO MONITOR

| INSPECTOR'S NAME:           |                     |   |   |
|-----------------------------|---------------------|---|---|
| INSPECTOR' S TITLE:         |                     |   |   |
| INSPECTOR'S SIGNATURE:      |                     |   |   |
| DATE (M/D/Y):               |                     |   |   |
| ID #39 – NORMAL CONSERVATIO | ON VENTING          | A | N |
| ID #40 - LONG BOLTED MANWAY | Y EMERGENCY VENTING | Α | Ν |
|                             |                     |   |   |

If "N", circle appropriate problem: potential leak, actual leak, sticking, wear, does not operate smoothly, unusual odor, or \_\_\_\_\_\_

For all leaks and potential leaks, the Leak Detection and Repair Record must be completed.

A = Acceptable

N = Not Acceptable