

PERMIT APPLICATION

RCRA OPERATING PERMIT RENEWAL APPLICATION

Safety-Kleen Systems, Inc. Medley Service Center 8755 Northwest 95th St. Medley, FL 33178 FLD 984 171 694

Revision 0

September 20, 2022

Prepared by:

Safety-Kleen Systems, Inc. 42 Longwater Drive Norwell, MA 02061

Safety-Kleen Medley, FL RCRA Operating Permit Renewal 2022

Table of Contents

Permit Application Certification Signature Form 62-730.900(2)(d)	1-4
8700-12FL – Florida Notification of Regulated Activity Form	1-7
(Tab #1) Part I	Page(s)
Part I Application Form 62-730.900(2)(a)	1-4
Part I.B.3 Facility Layout and Traffic Patterns	1-2
Part I.B.4 Site Topography & Surrounding Land Use	2
Part I.B.5 100-Year Floodplain Area	2-3
Part I.D.3 Operating Information Process-Codes & Design Capacities	3-4
Part I.D.4 Description of the Facility	4-11
Part I.D.5 Operating Information/Hazardous Debris	11
Personal Protective Equipment (PPE) Requirements at the Facility Figure 2.1-1 Facility Layout and Access Control Features Figure 2.1-2 Truck Traffic Patterns Figure 2.2-1 Topographic Map Figure 2.2-2 Site Location Map Figure 2.2-3 Surrounding Land Use Map Figure 2.2-4 Legal Boundaries Figure 2.2-5 Stormwater Drainage Plan Figure 2.2-6 Locations of Hazardous Waste Storage Areas Figure 2.2-7 Wind Rose Table 2.2-1 Well Search Map	12
(Tab #2) Part II	
Part II.A.1 General	1-4
Part II.A.2 Financial Responsibility Information	4
Part II.A.4 Facility Security Information Closure Cost Estimate Worksheet Hazardous Waste Facility Certificate of Liability Insurance	4-5
Part II.A.4.e Training – Introductory and Continuing Table 6.1-1 Typical Outline of Initial Training Topics Table 6.1-2 Job Description Branch General Manager Table 6.1-3 Job Description Customer Service Manager	6-12

Table 6.1-4 Job Description Account Manager Table 6.1-5 Job Description Branch Administrator	
Table 6.1-6 Job Description Material Handler	
Table 6.1-7 Job Description Sales and Service Associate	
Table 6.1-8 Job Description Sales and Service Representative	
Table 6.1-9 Job Description Oil Sales and Service Representative	
Table 6.1-10 Job Description Oil/VAC Sales and Service Representative	
Table 6.1-11 Job Description Vacuum Sales and Service Representative Table 6.1-12 Continuing Training Topics for Branch Employees	
Part II.A.5 Waste Characteristics	13-22
Part II.A.6 Waste Analysis Plan (WAP)	22
Part II.A.7 Required Notices, Manifest System, Recordkeeping/Reporting	22-26
Part II.A.8	26
(Tab #3) Part II PPP-CP (Has its Own Table of Contents)	
Emergency Contact List	
Contingency Plan Quick Reference Guide	
Figure 5.1-3 Evacuation Routes	
Figure 5.6-1 Locations of Emergency Equipment	
Table 5.2-1 Inspection Schedule	
Table 5.6-1 Emergency Response Equipment	
Table 5.8-1 Description and Uses of Emergency Equipment	
CO Safety Security Inspection	
Appendix A Example Letters to Local Authorities	
(Tab #4) Part II WAP	1-11
Exhibit C-1 Statistical Model (Gibbons)	
Exhibit C-3 California Annual Recharacterization Sampling Analysis	
Exhibit C-4 Sample Testing Protocol	
Exhibit C-5 Sampling Procedures	
(Tab #5) Part II.B	1-7
Figure 8.1-1 Container Storage Area	
Form Branch Generated Hazardous Waste Container Inspection Log Form CO CSA Inspection	
(Tab #6) Part II.C	1-7
Moorman Analog Automatic Tank Gauge Info.	- /
Figure 9.1-1 Piping System Details	
Figure 9.2-1 Tank Storage Area	
Figure 9.3-1 Return/Fill Shelter	

	Form CO Return and Fill Area	
	Form CO Tank Systems Inspection	
l	RCRA-Permitted Hazardous Waste Tank (Used Solvent) Tank Inspection reរុ	port
1) Part II.I Miscellaneous Units Dolton Return and Fill IH Study Routine Branch IH Sampling Event Drum Washer/Wet Dumpster Drawings	1-4
-) Part II.K Closure Plan Figure 10.3-1 Typical Closure Schedule	1-8
(Tab #9) Part II.P Form 62-730.900(2)(c)	1-2
Part II.P	2.2 Information Requirements Regarding Solid Waste Management Units	1-2
Part II.P	P.3 Prior/Current Releases	1-3
1	0) Part II.Q Information Requirements for SWMUs Figure Part II-Q Appendix A 2018-2022 Annual Groundwater Reports	1-2
	1) Part II.S Subpart BB and CC Figure 11.1-1 Environmental Piping Isometric Figure 11.1-2 HW Tank/Piping Equipment Subpart BB Tags Figure 11.1-3 Leak Detection and Repair Record Example Form CO Tank System BB Equipment Table 11.2-1 Summary of Tank Management Units Subjected to Subpart C Table 11.2-2 Summary of Container Management Units Subjected to Subp	
Append	lix A Site Photographs	
Append	lix B Annual Recharacterization Chemical Analysis Reports	

Appendix C Secondary Containment Calculations

Appendix D Subpart BB/CC Information Branch Overview Training Guidelines

Revis	ion Number	0	
	9/20/2022		
Page	1 of	3	

APPLICATION FOR A HAZARDOUS WASTE FACILITY PERMIT CERTIFICATION TO BE COMPLETED BY ALL APPLICANTS

Signature and Certification

Facility Name Safety-Kleen	Systems, Inc.	
EPA/DEP I.D. No. FLD 984 17	71 694	
a general partner of a partnership president of a corporation or bus person. If the same person is a faci can cross out and initial the signat	tions must be signed; or by a principal iness association, facility operator, facility the blocks under	the submittal of an application for a hazardous ed by the owner of a sole proprietorship; or by I executive officer of at least the level of vice or by a duly authorized representative of that ity owner, and real property owner, that person il. Facility Operator" and "2. Facility Owner," at the line "Signature of the Land Owner or
1. Facility Operator		
properly gathered and evaluated the persons who manage the system information, the information submand complete. I am aware that the including the possibility of fine a comply with the provisions of Chenvironmental Protection. It is uncomplyed to the Chapter 62-730, Florida Administration Environmental Protection will be a Maggie Tenant Digital Dates	he information sub m, or those pers nitted is, to the bes here are significan and imprisonment hapter 403, Florida derstood that the p rative Code (F.A.C notified prior to the tally signed by Maggie e: 2022.09.09 18:40:01	
Signature of the Operator or Author	-	ve*
Maggie Tenant, VP Environmenta Name and Title (Please type or prin	al Compliance nt)	
Date 9/9/2022	_ E-mail address_	maggie.tenant@safety-kleen.com
Telephone (_734) _516-0291		
* Attach a letter of authorization		

Revis	ion l	Numb	er	0
Date	9/2	0/2022	2	
Page	2	of	3	

2. Facility Owner

This is to certify that I understand this application is submitted for the purpose of obtaining a permit to construct, operate, or conduct remedial activities at a hazardous waste management facility on the property as described. As owner of the facility, I understand fully that the facility operator and I are jointly responsible for compliance with the provisions of Chapter 403, Florida Statutes, and all rules of the Department of Environmental Protection.

Maggie Tenant Digitally signed by Maggie Tenant Date: 2022.09.09 18:40:35 -04'00'

Maggie Tenant, VP Environme		
Name and Title (Please type or p	print)	
Date 9/9/2022	E-mail address _	maggie.tenant@safety-kleen.com
Telephone (<u>734</u>) <u>516-0291</u>		
* Attach a letter of authorization	on	
3. Land Owner		
hazardous waste management far that close with waste in place, I for the deed to the property require Chapter 62-730, F.A.C.	construction, operation of the property on the property or their understand that d by 40 CFR 264.11	this application is submitted for the purpose on, postclosure or corrective actions of a as described. For hazardous waste facilities I am responsible for providing the notice in 9 and 265.119, as adopted by reference in
Maggie Tenan	Digitally signed by Date: 2022.09.09 18	Maggie Tenant :42:50 -04'00'
Signature of the Land Owner or A		
Maggie Tenant, VP Environmen	ntal Compliance	
Name and Title (Please type or pr	rint)	
Date 9/9/2022	E-mail address	maggie.tenant@safety-kleen.com
Telephone (734) 516-0291		
* Attach a letter of authorizatio	n	

SAFETY-KLEEN SYSTEMS, INC.

Consent Resolution of the Directors

June 18, 2014

The undersigned, being all of the Directors of Safety-Kleen Systems, Inc., a Wisconsin corporation (the "Company"), hereby consent to and adopt the following resolutions effective as of the above date.

Resolved:

That each individual with the title of President, Senior Vice President, Vice President, Director, Manager or Member of the Company, or any of its subsidiaries, shall have the power and authority to sign, certify, and deliver on behalf of the Company or any subsidiary, any necessary or desirable environmental documents, including, without limitation, any permit applications or amendments and any environmental reports in any way related to the operations of the Company or its subsidiaries. In addition to the foregoing, to the extent that the Company operates any facility with more than 250 people or having gross annual sales or expenditures in excess of the \$25,000,000, the General Manager of such facility shall have all of the foregoing authority with respect to the operations of any such facility.

Resolved:

That the President, and any Senior Vice President, Vice President or Secretary or Assistant Secretary of the Company may designate an employee of an affiliated company to sign and certify, on behalf of the Company or any subsidiary, any necessary or desirable environmental documents, including, without limitation, any permit applications, transportation related documents and environmental reports in any way related to the operations of the Company or one of its subsidiaries.

Resolved:

That the Secretary or any Assistant Secretary of the Company is hereby authorized on behalf of the Company to certify as to who are the officers of the Company and to the due authority of any officer or other person executing any of the foregoing documents or any other documents on behalf of the Company, and any governmental official or other third party shall be entitled to fully rely on any such certification.

WITNESS the execution hereof under seal as of the date first above written.

James/M. Rutledge, Dir¢ctør

Eric Gerstenberg, Direc

Revis	ion i	Numb	er	0	
Date	9/2	0/202	2		
Page	3	of	3		

4. Professional Engineer Registered in Florida

Complete this certification when required to do so by Chapter 471, F.S., or when not exempted by Rule 62-730.220(9), F.A.C.

This is to certify that the engineering features of this hazardous waste management facility have been designed or examined by me and found to conform to engineering principles applicable to such facilities. In my professional judgement, this facility, when properly constructed, maintained and operated, or closed, will comply with all applicable statutes of the State of Florida and rules of the Department of Environmental Protection.

NDEG			
Signature			
N.D. Eryou, PhD, P.F	E		
Name (please type)	ANY DESCRIPTION	The English	
Florida Registration Nu	mber46888		
Mailing Address5	051 Castell Drive, Suite 244		
	Street or P.O	O. Box	
	Naples	FL	34103
	City	State	Zip
Date 9/15/2022	E-mail address	dennis@eryouer	ngineering.com
Telephone (<u>516</u>) <u>449</u> -	5814		
(PLEASE AFFIX SEA	Normal No	d by an is Eryou,	
	2022.(19:40:		

-04'00'

8700-12FL - FLORIDA NOTIFICATION OF REGULATED WASTE ACTIVITY

DEP Waste Management Division–HWRS, MS4560 2600 Blair Stone Rd. Tallahassee, FL 32399-2400 (850) 245-8707 Date Received (for FDEP Official Use Only)

EPA ID: F I	D 9	8	4 1	7	1	6 9	4				the instruction fields	ons do	cument to complete this form
1. Reason for Subm	ittal: (all	submitte	ers must c	omplete	e pages	l and 2 a	md sig	n pa	ge 7. Page	es 3 th	rough 6 - com	plete as a	applicable)
Mark 'X' in the correct box*:	4120			_	-								or PCW activities).
(must choose one if a notification)													tification information).
	B.Dales												st complete pages 1, 2, 3, 7)
	To obtain new or updating an EPA ID number for conducting Electronic Manifest Broker activities:									oker activities.			
	Subi	mitting	new or r	evised	notifica	ation fo	r Part	A fo	or permi	tted fa	acilities.		
FL Registration(s)		UW Me	ercury (s	ee pag	e 4)		<u></u>	-IW	Transpor	rter (s	see page 5)	[Used Oil (see page 6)
2. Facility or Business	Name:*												
					Safet	y-Kle	en S	Syst	ems, I	lnc.			
3. Facility Physical Lo	cation Inf	iormati	on: (No I	P.O. Bo	xes)								
Physical Street Address	i i												Vessel
City or Town:					87	55 N	W 9	5th	Street	Sta	te:	Zip C	nde:
City of Town.		Ν	Medley	'		.,.				Jua	FL FL	Zip C	33178
County*:	Mia	ami-D)ade			Co	untry	(if no	ot USA)*				
4. Facility or Business	Mailing A	Address	;:										
Same address as #_	3 above o	r*:											
City or Town*:						State*:		_	Zip/Pos	stal C	ode*:	Co	ountry (if not USA):
5. Facility North Amer	ican Indu	astry C		tion Sy	stem (1	NAICS) Cod	le(s)	*: (at le	east 5	digits)	_	
A. 5 6 2			quired)		`		В.					_[
c							D.						
6. Facility or Business	RCRA C	ontact	Person:	X Sar	me addı	ress as	4 <u>3</u> 2	ibovo	e or:				
First Name*:	eff			ist Nan	ne":	Curti				Title		nmer	ntal Compliance
Phone Number*:	61-523-	 -4719	Ex	ctension	n * :					Fax*	i i	56	1-731-1696
E-Mail*:					je	ff.curl	is@	saf	ety-kle	een.	com		
Street or P.O. Box (or same address box is checked)*:													
City or Town*:						Sta	te*:			Zip (Code*:		Country (if not USA):

RCRA Hazardous Waste Status Notification or Out of E	Business Notification	n EPA ID No.*	FLD984171694			
7 Deal Property (El Land) Owney of the Tacilitade Physical I	7. Real Property (FL Land) Owner of the Facility's Physical Location (List additional own					
7. Real Property (FL Land) Owner of the Facility's Physical I	Location (List additiona	owners in the comments sect	1011.)			
Name of Owner*	6	Date became Owner*:	ate became Owner*: 7 / 30 / 91			
Safety-Kleen Systems, Inc.		New Owner mi	n dd yy			
Street or P.O. Box (or same address box is checked)*: 42 Lo	ngwater Drive	Phone Number*	781-792-5000			
City or Town*: Norwell	State*: MA	Zip Code*: 2061	Country (if not USA):			
E-Mail*: jeff.	curtis@safety-kle	en.com				
Owner Type*: Private Federal Municipal S	State County C	ther				
Comments:						
8. Facility Operator (List additional Operators in the comments section	on), Same address as #_					
Name of Operator*		Date became Operator*:				
Safety-Kleen Systems, Inc.		New Operator	mm dd yy			
Street or P.O. Box (or same address box is checked)*:		Phone Number*:				
City or Town*:	State*:	Zip Code*:	Country (if not USA):			
E-Maii*:						
Operator Type*: X Private Federal Municipal	State County	Other	_			
Comments:						
9. RCRA Hazardous Waste Activities at this Facil	lity: (Mark 'X' in	all that apply):				
(1) Generator of Hazardous Waste						
Yes No (This does not include Universal Waste or Used	d Oil)					
If YES, Choose only one of the following three categories.						
a. Large Quantity Generator (LQG):						
 Generates in any calendar month (includes quant (2,200 lbs/mo.) of non-acute hazardous waste; or 		rter site) 1,000 kilograms o	or greater per month (kg/mo)			
- Generates in any calendar month, or accumulates	s at any time, more than					
- Generates in any calendar month, or accumulates	s at any time, more than	1 100 kg/mo‱20 lb/mo) o	facute hazardous spill cleanup			
b. Small Quantity Generator (SQG):		nf -				
- Generates in any calendar month greater than 100	0kg/mo but less than 1	,000 kg/mo (>220 to <2,20	0 lbs.) of non-acute hazardous			
waste and/or kg (2.2 lbs) or less of acute hazar	dous waste and/or no r	nore than 100 kg (220 lbs)	of any acute hazardous spill			
cleanup material. c. Very Small Quantity Generator (VSQG):						
- Generates in any calendar month 100 kg/mo or le	ess (220 lbs.) of non-ac	cute hazardous waste and/o	τ 1 kg (2.2 lbs) or less of acute			
hazardous waste. In addition, indicate other generator activities that apply.						
d. Short-Term Generator (one-time, not on-going) e. Mixed Waste (hazardous and radioactive) Generator						
f. United States Importer of hazardous waste						
g. LQG notifying of VSQG Hazardous Waste Under-Cor	ntrol of the Same Perso	on pursuant to 40 CFR 262	.17(f). (Addendum A Required)			
h. Episodic: Not lasting more than 60 days: SQG LQ)G (Addendum B Requ	uired)				
i. Electronic Manifest Broker, as defined in 40 CFR 260			em to obtain, complete, and			
transmit an electronic manifest under a contractual re	lationship with a hazar	dous waste generator.				

RCRA Hazardous Waste Status Notification or C	out of Business Notification	on	EPA ID No.* FLD984	171694
9. RCRA Hazardous Waste Activities at th	is Facility continued:	(Mark 'X' in all the	at apply):	
For Items 3 through 9, mark 'X' in all that apply.	KC.		¥	
(2) Treater, Storer, or Disposer of Hazardous W required for this activity.	aste (at your facility—Choose	e Only One) Note: A l	nazardous waste permi	t may be
a. Operating Commercial TSD				
b. Operating Non-Commercial TSD				
c. Non-Operating: Postclosure or Correct	ive Action Permit or Order (H	SWA, etc.)		
(3) Recycler of Hazardous Waste (at your factors) Specify: Commercial Non-Commercial Specify: Stores prior to recycling Note: A permit maybe required	mercial Does not store prior to recyc	ling.		
(4) Exempt Boiler and/or Industrial Furnac	e			
a. Small Quantity On-site Burner Exer b. Smelting, Melting, and Refining Fu	•			
(5) Person Authorized to Manage Very Smal Choose this management activity ONLY i EITHER a copy of your application for su	ll Quantity Waste Generated f you attach		from FDEP	
(6) Receives Hazardous Waste from Off-Site		mzation you received	HOIII I DEI	
(7) Underground Injection Control				
(8) Recognized Trader—Mark all that apply a. Importer				
b. Exporter				
(9) Importer/ Exporter of Spent Lead-Acid	Batteries (SLABs) under 40	CFR subpart G— M	ark all that apply	
a. Importer				
b. Exporter	Y		72 1 . 1 h = l	
 Waste Codes for Federally Regulated I your facility. List them in the order they are present 				vastes nandied at
Hazardous waste transporters must list codes routinel	0 (0)			ces are needed.
D001 2 D002 3 D003	B 0004	D005	D006	D007
⁸ D008 D009 D010	D011	D012	D018	D019
D021 0022 17 D023		D025	D026 _ 2	D027
11. Other Status Changes (If no longer handling	ng waste or closed, items 9 ar	nd 10 should be left bla	ank and items 12-16 sl	ripped):
(A) Central Accumulation Area (CAA) or Facility	Closed:			
Central Accumulation Area (CAA)				
Facility Closed (Complete this section only	f all business activities at this	facility have ceased.)		
(B) Closure Dates:	(data in			
(1) Expected closure date				
(3) Date of closure:				
a. In compliance with the closure per				
b. Not in compliance with the closure per				
(C) Property Tax Default	•	n for Bankruptcy Pro	otection	

Universal Waste Notification and Mercury Transporter/Handler Registration EPA ID No.*	D984171694				
12. Universal Waste (UW) Activities (Mark 'X' and complete all that apply):					
A. Federal Notification	14				
Federally Defined Large Quantity Handler (LQH) = Generate/Accumulate: 5,000 kg (11,000 lb) or more of of UW accumulated (at any one time)	any combination				
Accumulates: a. UW Batteries b. Pesticides c. Pharmaceuticals					
d. Mercury Containing Devices e. Mercury Containing Lamps					
Destination Facility for UW Note: For this activity, a facility must treat, dispose, or recycle a UW. A permit is required for storage prior to recycling.					
B. Florida Universal Pharmaceutical Waste (UPW): one-time notification					
Pharmaceuticals LQH = 5,000 kg or more of Universal Pharmaceutical Waste (UPW) accumulated (at any one time)				
Pharmaceuticals Acute LQH = more than 1 kg (2.2 lb) of acutely hazardous ("P-listed") pharmaceutical waste (UPV one time)	V) accumulated (at any				
Reverse Distributor of Universal Pharmaceutical Waste (UPW) (must be permitted with the Florida Department of Bus Regulation [DBPR])	iness and Professional				
Florida Universal Pharmaceutical Waste (UPW) Transporter					
C. Florida Annual Mercury Handler Registration:					
For-hire transporters, transfer facilities, handlers, reclamation and recovery facilities of Mercury-Contain Devices operating in the State of Florida are required to register annually with the Department using this [Chapter 62-737, F.A.C.]. A one-time fee of \$1,000 is required for first time registration as a Large Quantity for-Mercury-Containing Lamps and Devices as detailed in 62-737.400(3)(a)3.,F.A.C. (please contact FDEP first).	section of the form				
If you only generate lamps and/or devices or manage pharmaceuticals, do not register or complete the in	formation below.				
(1) This form is being submitted as a Florida Registration of Universal Waste Mercury Transporter/H2	ındler <u>for-hire</u>				
Activities					
1st Annual Registration Annual Renewal One-time \$1,000 fee for Mercury for-hire first time LQH r	egistration is attached				
For-hire Transporter of Universal Waste Mercury-Containing Lamps or Devices					
For-hire Transfer Facility of Universal Waste Mercury-Containing Lamps or Devices	Annual Registration				
Mercury-Containing Devices (thermostats, etc.) SQH = less than 100 kg accumulated by for-hire handler	Required				
Mercury-Containing Lamps SQH = less than 2,000 kg (8,000 lamps) accumulated by for-hire handler					
Mercury-Containing Devices LQH = 100 kg (220 lb) or more accumulated at any one time by for-hire handler	Annual Registration + one-time \$1,000 fee+				
Mercury-Containing Lamps LQH = 2,000 kg (4400 lbs/8,000 lamps) or more accumulated by for-hire handler	More Requirements (contact FDEP)				
(2) Manage Design of the Facility (4)	Marine Principal				
(2) Mercury Recovery and/or Reclamation Facility (A hazardous waste permit is required for this activity) Annual Registration Required					
Briefly Describe your Universal Waste Activities We use Drum	Top Bulb Crusher(s).				
13. Other State Regulated Waste Activities: Petroleum Contact Water (PCW) Recovery Transp	oort [62-740 F.A.C.]				
Note: A water facility permit may be required for this activity. An annual report is required for a recovery facility pursuant to Rule [6]					

Hazardous Waste Transporter and Academic Laboratories	EPA ID No.*	FLD984171694			
4. HW Transporter Activities: (Mark 'X' and complete all that apply if you need to register your HW Transporter activities)					
Transporters of and Transfer Facilities for Hazardous Waste in the State of Florida are required to register and annually renew their registration. Evidence of casualty/liability insurance pursuant to 62-730.170(2)(a) is required as part of this registration. Transporters and transfer facilities may only begin operations after receiving approval from the Department.					
Generators who transport waste only within the boundaries of their facility sl	nould NOT registe	er in box 14.A below.			
A. HW Transporter Registration Information (must be completed annuall	y and when this inf	ormation changes)			
This form is: Initial Registration Renewal Notification of	changes Canc	el Registration			
1. For own waste only					
2. For commercial purposes					
3. Both commercial and own waste					
4. Transportation Mode Air Rail Highway Water Ot	her - specify				
B. HW Transfer Facility Registration Information (must be completed a	nnually and when t	his information changes)			
☐ This facility is a Hazardous Waste Transfer Facility: (as listed in I	tem 3) Storage Volu	ime			
This form is: I Initial Registration Renewal Notification of	changes Canc	el Registration			
Note: Hazardous Waste transfer facilities must comply with the requirements of Ru	ıle 62-730.171, F.A.G	C., and Rule 62-730.182, F.A.C.			
The Transfer Facility records required under the provisions of Rule 62-730.17		pt at (check one):			
Our mailing (business) address The site (facility):					
Please enter the EPA ID Number of the HW Transporter who carries the insurance for this Transfer Facility:					
Please see 14.C for additional items to be submitted for registration of a Hazardous	Waste Transfer Fac	cility [Rule 62-730.171(3),			
Florida Administrative Code (F.A.C.)]:					
C. The following items are required to be submitted with the initial notification for a transubmitted with any subsequent submission [Rule 62-730.171(3), Florida Administration of the contraction of the		/ changed items must be			
Certification by a responsible corporate officer of the transporter facility that the pro-	posed location satisfie	es the criteria of			
Section 403.7211(2), Florida Statutes (F.S.) [Rule 62-730.171(3)(a)1., F.A.C.]					
_Evidence of the transporter facility's financial responsibility [Rule 62-730,171(3)(a):	3., F.A.C.]				
_A brief general description of the transfer facility operations [Rule 62-730.171(3)(a)4	4., F.A.C.]				
_A copy of the facility closure plan [Rule 62-730.171(3)(a)5., F.A.C.]					
_A copy of the contingency and emergency plan [Rule 62-730.171(3)(a)6., F.A.C.]					
_A map or maps of the transfer facility [Rule 62-730.171(3)(a)7., F.A.C.]					
15. Eligible Academic Entities with Laboratories—Notification for optilaboratory hazardous wastes pursuant to 40 CFR Part 262 Subpart K	ing into or witho	rawing from managing			
1. Opting into or currently operating under 40 CFR Part 262 Subpart K for the ma	nagement of hazard	ous wastes in laboratories			
See the item-by-item instructions for definitions of types of eligible acade	emic entities. Mark a	all that apply:			
a. College or University					
b. Teaching Hospital that is owned by or has a formal written affiliation a					
c. Non-profit Institute that is owned by or has a formal written affiliation a	greement with a col	lege or university			
2. Withdrawing from 40 CFR Part 262 Subpart K for the management of hazardot	is wastes in laborate	ories			

Used Oil and Hazardous Secondary Material	EPA ID No.* FLD9841716	694		
16. Used Oil and Used Oil Filter Activities: (Mark 'X' and complete all that apply)				
Transporters (exemptions in 40 CFR 279.40(a)(1-4)), transfer facilities, processors, off-sannually register with the Department using this form. An annual \$100 registration fee is recollection centers.				
This form is: Initial Registration Renewal Notification of c	hanges			
If applicable, a check or money order, in the amount of \$100, payable to Florida De UO Collection Centers must check 16.(2) of this form (not as a registration).	partment of Environmental Protection is o	enclosed.		
(1) Used Oil Transporter - mark 'X' in all that apply: (occurring in Florida)				
a. Transporter (off-site) and noncontiguous locations				
b. Transfer Facility				
(2) Collection Center (From businesses, no more than 55 gal per shipment)				
(3) Used Oil Processor (A permit is required.)				
(4) Used Oil Re-refiner (A permit is required.)				
(5) Off-Specification Used Oil Burner Utility Boiler Industrial Boiler Industrial Furnace				
(6) Used Oil Fuel Marketer On-Spec Off-Spec				
(7) Used Oil Filter Management (must annually register)				
a. Transporter b. Transfer Facility				
c. Processor (Annual Report Required)				
d. End User (see instructions for definition) (8) The records required under the provisions of Rule 62-710.510, FAC, are kept at (check	one):			
Our mailing (business) address (as listed in Item 4)				
The site (facility) address (as listed in Item 3)				
(9) Used Oil Transporters: (Exemptions in 40 CFR 279.40(a)(1-4))				
 AST registered UO transporters must submit an annual report except generator within their own company. 	s transparting UO from nonconfiguous of	perations		
UC transporters transporting off-site over public highways only within their own.				
 UO transporters transporting more than 500 gallons/year must submit proof of submission as a certified used oil transporter in section 19 (except those exemp 	•	rtiry this		
The used oil annual report is attached	ant to 62-710.600(2)(e)., F.A.C. is attach	ed.		
17. Notification of Hazardous Secondary Material (HSM) Activity				
(1) Notifying under 40 CFR 260.42 that you will begin managing, are managing, or wunder 40 CFR 260.30, 40 CFR 261.4(a)(23), (24), or (27). (Addendum C Required		naterial		
(2) Notifying under 40 CFR 260.43(a)(4)(iii) that the product of your recycling process comparable to or unable to be compared to a legitimate product or intermediate but (Addendum C Required)		nt are not		

Required signature page		EPA ID No.*	FLD984171694
18. Comments (attach a page if more space is needed):			
#10 Continued: D028, D029, D030, D031, D032, D040, D041, D042, D043, F001, F002, F003, F004 U056, U058, U069, U122, U159			
19. Certification: I certify under penalty of law that this document and accordance with a system designed to assure that qualified personnel p submitted is, to the best of my knowledge and belief, true, accurate, an false information, including the possibility of fine and imprisonment for	properly gather and or or complete. I am av	evaluate the information ware that there are si	tion submitted. The information
I certify as a Used Oil Transporter that I am familiar with the ar tation and have an annual and new employee training program in place bility is demonstrated by the Used Oil Transporter Certificate of Liabi	covering the applic	cable used oil rules.	Evidence of financial responsi-
Signature of owner, operator, or an authorized representative:	Date Signed (mn	n-dd-yyyy):	
The state of the s	*	9181-	1022
Print Name (First, Middle Initial, Last):	Title:		
Jeffrey S. Curtis	Sr. En	vironmental C	Compliance Mgr.
Organization:	Used Oil		
Safety-Kleen Systems, Inc.			
Email:			
jeff.curtis@safe	etv-kleen.com		He's
Signature of owner, operator, or an authorized representative:	Date Signed (mn		
*			sq ²
Print Name (First, Middle Initial, Last):	Title:		- V
Organization:	Used Oil		
Email:			
If the person that filled in this form is not the Facility Contact or Open	rator, please comp	lete the information	ı below:
(Name of person completing this form) (Phone Number)		(E-mail Address)	

Tab 1

Part I

Revision Nun	iber 0
Date 09/20/20	22
Page 1 of	f 4

APPLICATION FOR A HAZARDOUS WASTE PERMIT PART I – GENERAL TO BE COMPLETED BY ALL APPLICANTS

Please Type or Print

A.	General Information [40 CFR Part 270.13 (a)]		
1.	Type of Facility in accordance with Part 270.13(a TREATMENT	n)	
	☐ Tanks ☐ Piles ☐ Surface Impoundme	ent	
	☐ Incineration ☐ Containme	ent Building	
	☐ Boiler / Industrial Furnace Typ	e of Unit	
	☐ Boiler / Industrial Furnace☐ Miscellaneous UnitTyp	e of Unit	
	✓ STORAGE		
	\checkmark Containers \checkmark Tanks \square P		
	☐ Surface Impoundment ☐ Containme		
		e of Unit	
	□ DISPOSAL		
	□ Landfill□ Land Treatment□ Miscellaneous UnitsType of Unit	☐ Surface Impoundm	
2.	Type of application [40 CFR Part 270.13 (a)]: □ Construction Permit □ Operation Permit □ Construction & Operation Permit □ Research, Development & Demonstration (RD □ Postclosure Permit □ Clean Closure Plan □ Subpart H Remedial Action Plan □ Corrective Action	&D) Permit	
3.	Revision Number: <u>0 - 09/20/22</u>		
4.	Date Current Operation Began, or is expected to	begin: <u>07 / 16 / 1992</u>	_
5.	Facility Name [40 CFR Part 270.13 (b)] Safety	-Kleen Systems, Inc.	
6.	EPA/DEP I.D. No. FLD 984 171 694		
7.	Facility Location or Street Address [40 CFR Part		vest 95th St, Medley, FL 3317
8.	Facility Mailing Address 8755 Northwest 95tl	Street	
		Street or P.O. Box	22150
	Medley	FL	33178
	City	State	Zip
9.	Contact Person Jeff Curtis	Telephone (_561_) _5	23-4719
	Title Sr. Environmental Compliance Manager	:	
	Mailing Address 5610 Alpha Drive	G	
	Da4 D1-	Street or P.O. Box	22426
	Boynton Beach	FL	33426 7in
	City	State	Zip

Revision Number	0
Date 09/20/2022	
Page 2 of 4	

Contact E-mail	jeff.curtis@safety-kleen.	com		
Operator Name	[40 CFR Part 270.13 (d)] _	Safety-Kleen Systen	ns, Inc.	
Telephone (_78	1) 792-5000			
Mailing Addres	s 42 Longwate	r Dr		
	Norwell	Street or F	P.O. Box MA	02061
Operator E-mai	City 1	S	state	Zip
Facility owner's	s name [40 CFR Part 270.1]	3 (e)] Safety-Kleen	Systems, Inc.	
Telephone (781	792 - 5000			
Mailing address	s 42 Longwat	er Dr		
	Norwell	Street or F	P.O. Box MA	02061
	City		state	Zip
E-mail address				
Legal structure	[40 CFR Part 270.13 (d)]			
and state where	, partnership, or business is the name is registered.			
	cture is a corporation, indicate			
State of Incorpo	oration Wisconsin	n		
	cture is an individual or par		ers.	
Name		N/A		
Address				
	Street or P.O. Box	City	State	Zip
Name				
Address				
	Street or P.O. Box	City	State	Zip
Site Ownership	Status			
	pe purchased To be least the expiration date of the l			

Revision Number			0
Date	09/	20/2022	
Page	3	of 4	

	If leased, ind	icate land owner's nar	ne			
	Address	Street or P.O. Bo	x	City	State	Zip
	E-mail addre	SS				
17.	Name of Eng	ineer N.D Eryou, Ph	D, PE	1	Registration No	46888
	Address	5051 Castell Drive	Suite 244	Naples	s FL	34103
		Street or P.O. Bo		City	State	Zip
	Associated w	rith:Eryou Consult	ing Engineers			
18.	Is the facility	located on Tribal land	d [40 CFR Par	t 270.13 (f)]?	✓ No
19.	Existing or p [40 CFR Part	ending environmental (270.13 (k)]	permits (attac	h a separa	ate sheet, if necessar	y):
NAM PERM	ME OF IIT	AGENCY	PERMIT NUMBER		DATE ISSUED	EXPIRATION DATE
HW	Permit	FDEP	56019-01	1-НО	5/21/2018	3/19/2023
Indu	strial Waste	DERM	IW-00033		6/1/2022	5/31/2023
LW	Transporter	DERM	LW-00004	46	4/1/2022	3/31/2023
Air		DERM	AP-00152	1	7/1/2022	6/30/2023
В.	Site Informa	ntion [40 CFR Part 27	0.13 (b)]			
1.	The facility i	s located inMiam	i-Dade		county.	
	The nearest of	community to the facil	ity is	Medle	y	<u>_</u> .
	Latitude 2	5.860192	Long	gitude8	0.340385	
	Method and	datum Google Ma	nps			
2.	The area of the	he facility site is	1.5 a	cres.		
3.	Attach a scale drawing and photographs of the facility showing the location of all past, present, and future treatment, storage and disposal areas. Include photographs and the locations of all So Waste Management Units and Areas of Concern. Also, show the hazardous wastes traffic patter including estimated volume and control [40 CFR Part 270.13 (h)].					ocations of all Solid
4.	Attach a topo	ographic map which sh	nows all the fea	atures ind	icated in the instruc	tions for this part.
5.	Is the facility	located in a 100-year	flood plain?	□ Ye	es ⊈ No	
6.	The facility of	complies with the well	head protection	n requirer	ments of Chapter 62	-521, F.A.C.
				✓ Ye	es 🗆 No	
	т.	2 64				

Revision N	lumbe	er 0	
Date 9/20/	2022	2	
Page 4	of	4	

C.	Land Use Inform	ation			
1.	The present zoning	g of the site isLight Ind	ustrial		
2.	If a zoning change	is needed, what should the	new zoning be?	N/A .	
D.	Operating Inform	nation			
1.	Is waste generated	on-site? ✓ Yes	\square No		
2.	List the NAICS co	odes (5 to 6 digits) [40 CFR	Part 270.13 (c)]56211	2	
3.	CFR Part 270.13 (•		
		cess used for treating, storing) at the facility, and;	g or disposing of hazard	ous waste (including des	ign
		rdous waste(s) listed or desi			
	PROCESS CODE	PROCESS DESIGN CAPACITY AND UNITS OF MEASURE	HAZARDOUS WASTE CODE	ANNUAL QUAN OF HAZARDO WASTE AND UN OF MEASURI	US NITS
	See Part I.D.3				
4.	A brief description	of the facility [40 CFR Par	t 270.13 (m)]:		
	Please see Part I	.D.4			
5.		ris, a description of the debrisposed of at the facility [40]		taminant category(ies) to	be

Please see Part I.D.5

Part I B. Site Information (40 CFR Part 270.13(b))

3. FACILITY LAYOUT AND TRAFFIC PATTERNS (40 CFR Part 270.13(b))

Figure 2.1-1, found at the end of Part I, is a scale drawing showing the facility layout. Site photographs are provided in Appendix A at the end of the permit application. The non-building areas of the facility are paved with asphalt or concrete as noted on Figure 2.1-1. Other minor unpaved areas are vegetated with grass.

Figure 2.1-2, found at the end of Part I, shows the site traffic patterns. Estimated annual volumes of hazardous wastes moving through the facility are found on page 3 (Process – Codes and Design Capabilities). The majority of the vehicular traffic enters and exits the facility through a mechanically operated gate at the Southwest corner of the facility. One additional manually operated gate is located at the Northwest corner of the facility. Loading/unloading operations of containerized waste occurs at the concrete dock area (Area B), and the South side of the Return/Fill Shelter (Area A). Approximately once per week a tractor trailer removes containerized waste for transfer to a Safety-Kleen or Clean Harbors TSDF. This truck backs up to the concrete dock, located on the Southeastern corner the building in Area B, to load waste containers and unload product. Local facility route trucks may also unload containerized waste inside the Return/Fill Shelter (Area A), and at the dock (Area B). The trucks dispatched from the recycle center to deliver parts washer solvent and pick up used parts washer solvent will perform these activities at the above-ground tank truck loading area (Area D) approximately once every 20 days. Used oil loading/unloading also occurs in Area D. Truck-to-building transfer of Fluid Recover Service (FRS) wastes will occur on asphalt or concrete surfaces within the compound (Areas A, B and E).

U.S. 27, Okeechobee Road is the major access road to the facility. This access road is designed in accordance with engineering criteria appropriate for sustaining the traffic volume and loading for the industrial activities in this area. The facility route trucks that travel the routes between the branch and customers use the two-lane road within the industrial park.

Traffic from this facility is not expected to have a major effect on local traffic conditions. The facility and adjacent facilities have been in operation since at least 1992. The roads have been able to sustain the loads being transported over them since operations began.

Part I

B. Site Information

4. SITE TOPOGRAPHY AND SURROUNDING LAND USE

Figure 2.2-1 is a USGS topographic map showing the facility. Due to the small size of the site, all of the information requested in FDEP's application form cannot be placed on one map. Therefore, additional maps are provided here to present the additional information requested in the application form.

5. 100-Year Floodplain Area

Based on information available (Figure 2.2-2), the majority of the facility is located in Zone X. This area has been classified as "areas outside of 100-year floodplains". There is a small portion of the eastern facility property that lies in Zone AH. This area has been classified as "areas of 100-year shallow flooding with a constant water-surface elevation (usually areas of ponding) where average depths are between 1 and 3 feet". There are also areas surrounding the property that fall into Zone AH. No special flood management procedures are necessary.

Surface Water Bodies Within One-Quarter Mile of the Facility Property Boundary (e.g., Intermittent Streams and Springs)

Surface water bodies located within one-quarter mile of the facility property boundary include unnamed lakes to the northeast and southeast.

Surrounding Land Uses

Surrounding land uses are shown in Figure 2.2-3.

Legal Boundaries of the Facility

Figure 2.2-4 shows the property boundaries.

Ground Water Monitoring Wells Onsite

There are three (3) monitoring wells located onsite, see Figure 2.1-1: MW-1 on the west side of the tank farm, MW-2 on the east side of the tank farm, and MW-3 on the north side of the tank farm. These wells are sampled, and analyzed, annually per requirements of the facilities Industrial Waste Operating Permit (IW-333), issued by the Miami-Dade County Regulatory and Economic Resources Department.

Part I

D. Operating Information

3. Process – Codes and Design Capacities (40 CFR Part 270.13(i)(j))

Waste Type	Process Design	Process	Estimated	Waste Codes
	Capacity	Code(s)	Annual	
	(Gallons)		Amt. (Tons)	
Spent Parts Washer	20,000	S01*	542	D001 and D-codes listed in
Solvent		S02**		Note below
Branch-Generated Liquids	6,912	S01*	6	D001 and D-codes listed in
Solids (Debris)				Note below; F002, F003, F005
Dumpster Sediment	6,912	S01*	Included	D001 and D-codes listed in note
			above	below
Tank Bottoms	6,912	S01*	Included	D001 and D-codes listed in note
			above	below
Used Immersion Cleaner	6,912	S01*	21	D-codes listed in note below
(IC 699)				
Dry Cleaning Waste	6,912	S01*	234	F002 and D-codes listed in note
(Perchloroethylene)				below
Dry Cleaning Waste	6,912	S01*	Included	D001 and D-codes listed in note
(Non-perchloroethylene)			above	below
Paint Wastes	6,912	S01*	46	D001, F003, F005 and D-codes
				listed in note below
Retain Samples From	6,912	S01*	3	D008, D018, D039, D040
Used Oil Operations				
Spent Aerosol Cans	6,912	S01*	< 1	D001, D035
Fluid Recovery Service	11,880	S01***	167	Transfer wastes-waste codes
(FRS) Transfer Wastes				assigned by generator ****
Aqueous Brake Cleaner	11,880	S01***	14	Transfer wastes – none, unless
				assigned by generator.
Mercury-Containing	N/A	N/A***	Less than	N/A-handled as non-hazardous
Lamps/Devices			2.2	transfer wastes

NOTES:

D-Codes: D004, D005, D006, D007, D008, D009, D010, D011, D018, D019, D021, D022, D023, D024, D025, D026, D027, D028, D029, D030, D032, D033, D034, D035, D036, D037, D038, D039, D040, D041, D042, D043

^{*} This waste will be stored in containers in the warehouse container storage area. The maximum capacity in the warehouse container storage area for hazardous waste and Product is 29,400 gallons, with 6,912 gallons being hazardous waste.

- ** The RCRA-Permitted Hazardous Waste Tank (Used Solvent) has a capacity of 20,000 gallons and may be filled to 19,000 gallons
- *** This waste will be held for transfer in containers in the transfer waste area(s). There is one transfer waste area located inside the warehouse adjacent to the container storage area
- ****Various D-Codes, F-Codes, K-Codes, P-Codes, U-Codes may be accepted for 10-day storage and transfer

Part I

D. Operating Information

4. Description of the Facility/Nature of the Business (40 CFR Part 270.13(m))

Safety-Kleen Systems, Inc. of Norwell, MA is an international, service-oriented company whose customers are primarily engaged in automotive repair and industrial maintenance. Since 1968, Safety-Kleen has been offering a leasing service for petroleum-based hydrocarbon solvents and small parts washing equipment.

Safety-Kleen's solvent cycle is essentially a closed loop, moving from the Branch to the customer, from the customer to the Branch, from the Branch to the recycle facility, and then from the recycle center back to the Branch for redistribution to customers. This closed loop supplies Safety-Kleen with most of its solvent requirements (nearly two-thirds of the clean solvent delivered to the field has been previously used by its customers). Ownership of the solvent remains with Safety-Kleen. Solvent containers (product and waste) are transported in specially-equipped, enclosed route trucks. Five aboveground tanks are located at the Safety-Kleen Medley facility. These tanks are used for the storage of: one (20,000-gallon) hazardous waste (used parts washer solvent), one (20,000-gallon) clean product 150 premium parts washer solvent, one (20,000-gallon) used oil, one (15,000-gallon) used oil, and one (10,000-gallon) oily water. These tanks are located inside the permitted tank storage unit. See figure 2.1-1.

The Safety-Kleen parts washing equipment, together with the solvents, are leased to customers; the leasing charge includes regularly scheduled solvent changes and machine maintenance. The business is conducted from local Branches (sales branches) located in 45 states. The Branches warehouse the products and equipment required to service the customers in their sales areas. On a contractual basis, service representatives furnish clean solvent to the customers, pick up the used solvent, and ensure that the leased equipment is in good working order. In 1979, Safety-Kleen expanded their scope of

operations to make their solvent leasing service available to owners of parts cleaning equipment, regardless of manufacturer, using Safety-Kleen's solvents.

Basically, Safety-Kleen handles two types of parts washers. The original service offered by the company in 1968 was the parts cleaner service and it remains the primary business activity. This service involves the leasing of a small parts degreasing unit which consists of a sink affixed to a container of parts washer solvent. On a regularly scheduled basis, a Safety-Kleen sales representative cleans and inspects the parts washer machine and replaces the container of used solvent with one of clean product. Safety-Kleen has also established a parts cleaner service for users who own their machines. This service provides a solvent reclamation service to these customers regardless of machine model. All clean parts washer solvents are delivered to customers in containers. All spent parts washer solvents are transported from the customer to the Branch in containers.

Upon return of the used parts washer solvent to the branch, the material is transferred from the containers to a wet dumpster located inside the Return/Fill Shelter. Most of the 150 premium parts washer solvent used by customers will be utilized by the Branch for the washing of used parts washer containers. After used parts washer containers have been washed, the spent solvent is pumped from the wet dumpsters via piping to the RCRA-Permitted Hazardous Waste Tank (Used Solvent). Cleaned containers are filled with product 150 premium parts washer solvent in preparation for the next day's services in the Return/Fill Shelter. Periodically (approximately every 20 days), a tanker truck is dispatched from one of the Safety-Kleen TSDF's to deliver a load of clean solvent and collect the used parts washer solvent (hazardous waste) at the Branch. Containers of clean solvent may be stored at the return/fill shelter or in the permitted storage areas. Containers of used parts washer solvent are normally transferred and dumped into the wet dumpsters each day after trucks return from services but may be stored in the permitted container storage area in the event they are not dumped after return to the branch on a specific day.

A second type of parts washer, the immersion cleaner, is available for the removal of varnish and gum from such things as carburetors and transmissions. This machine consists of an immersible basket with an agitator affixed to a container of the immersion cleaner. The spent immersion cleaner solvent remains in the container after delivery to the Branch, where it may be stored in the 10-day transfer area, or permitted container

storage area, of the warehouse. Weekly, a tractor trailer truck is dispatched from a Clean Harbors/Safety-Kleen TSDF to deliver clean immersion cleaner solvent and collect the containers of spent immersion cleaner solvent for reclamation. Warehouse space is dedicated for the storage of clean immersion cleaner. The immersion cleaner remains in the original covered containers during transfer between the Branch and the TSDF's.

Safety-Kleen provides a dry-cleaning waste reclamation service where containers of dry-cleaning wastes are collected and stored temporarily at the Branch before shipment to the permitted TSDF's for reclamation and processing. Dry cleaning wastes may be managed as permitted or 10-day transfer wastes. All dry-cleaning wastes remain in their original containers while at the Medley facility.

Safety-Kleen also provides a paint waste reclamation service. Wastes containing various thinners and paints are collected in containers and stored temporarily at the Branch before shipment to permitted Safety-Kleen/Clean Harbors TSDF for reclamation and processing. Paint wastes may be managed as permitted or 10-day transfer wastes. All paint wastes remain in their original containers while at the Medley facility.

Fluid Recovery Services (FRS) is a containerized waste service (CWS) program managed by the Safety-Kleen Medley Branch to collect and transfer various other containerized hazardous, and non-hazardous wastes to the appropriate Clean Harbors/Safety-Kleen TSDFs for processing. Hazardous wastes managed under this program are managed as 10-day transfer wastes. Examples of the types of waste that may be received from FRS customers include, but are not limited to:

- Spent hydrocarbon distillates, such as waste fuel, oil, petroleum, naphtha, etc.;
- Lubricating oils, hydraulic oils, synthetic oils, used antifreeze, and machine oils;
- Industrial halogenated solvents such as 1,1,1-trichloroethane, tetrachloroethylene, Freon, and trichloroethane;
- Photographic and x-ray related wastes, acids;
- Paint and lacquer thinners, acids/bases;
- Various returned/damaged/expired products from national retail chains. These are typical household products that may carry U-Codes due to being unused commercial chemical products;
- Other hazardous and nonhazardous halogenated and nonhalogenated wastes.

Note: All waste containers are unloaded within 72 hrs. of arrival at the facility and are shipped outbound within 72 hrs. of being loaded for shipment.

10-Day Transfer Storage Areas

10-day transfer container storage takes place in the main warehouse to the east of the container storage area (this area is approximately 18' x 19'4") (see figure 8.1-1 in section Part II.B). Signage clearly marks this area as 10-day transfer storage and it is separated from the permitted container storage area. If additional space is needed, transfer wastes may be stored in the permitted container storage area for short periods of time. All hazardous waste containers located in the 10-day transfer area(s) are manifested and intransit to other permitted facilities. Safety-Kleen Medley is not the designated facility for wastes located in the 10-day transfer area(s). Safety-Kleen tracks the 10-day transfer limit through its' WINWeb (Waste Information Network) system. Transfer wastes delivered to the facility are documented into a "virtual hub" which shows the manifest number, designated facility, number of containers, and hub receipt date. In the case of Safety-Kleen Medley's transfer waste activities, the virtual hub is MFLH. All personnel have access to this database and can track the number of days each container has been at the facility. In addition, the facility waste tracking information can be accessed by running a "Hub Waste Transfer Report", and this report can be run for any time period. This report will show the generator name, EPA ID number if applicable, address, hub (transfer facility) receive date, hub (transfer facility) outbound ship date, and manifest number.

Safety-Kleen offers a service for the collection of bulk used oil commonly referred to as Safety-Kleen Oil Services (SKOS). Straight tanker trucks are used to collect and transport bulk used oil. After collection, the used oil is transported to the branch and offloaded into one of the used oil storage tanks. From there, the used oil is typically transported to the Safety-Kleen Systems, Inc. Pompano Beach/Ocala oil terminal for storage until being loaded onto railcars. The used oil is then typically transported via rail to the Safety-Kleen East Chicago, IN re-refinery for processing. Used oil is subject to specific acceptance criteria prior to collection and divided into three (3) groups.

Group 1 used oils are derived from automotive sources (auto maintenance, auto retail, dealerships, fleet rental & leasing, quick lubes, marine transportation, mechanical & equipment service, taxi/bus/other local transportation, airlines, railroads, trucking & transportation companies, utilities – natural gas & propane distribution,

telecommunications/cable, and water/sewer, etc.) Prior to collection, used oil at these sites is field tested using a TIF Halogen Leak Detector. Used oil failing the TIF test for SQG/LQG generators will then be tested using the Dexsil Clor-D-Tect kit. Used oil passing this test may be collected, and used oil failing this test may not be collected. It may be collected at a later date, provided a sample of the used oil has passed the rebuttable presumption for used oil using an analytical method from SW-846.

Group 2 used oils are derived from non-automotive sources and may be acceptable if they receive approval from the Central Profile Group (CPG). Examples of group 2 oil sources are: (utility – electrical distribution/power generation, agricultural production, chemical manufacturing/distribution, electrical equipment & computer manufacturers, exploration - drilling/seismic, fabricated metal products, manufacturers furniture/millwork/cabinets, fixtures/machine (including medical)/miscellaneous, mining/minerals, primary metal manufacturing, natural gas pipeline/processing, manufacturers – plastic/rubber/glass, oil & gas producers, oilsands mines/SAGD facilities, food & kindred products, manufacturers – asphalt/paper products & packaging materials/shoe/leather/textiles & apparel, printing, lumber/wood products, lumber mills, pulp & paper mills, biotechnology, pharmaceutical, refineries, ship builders, steel mills, asphalt terminal, liquid/petroleum, pipeline, liquid/petroleum terminal, manufacturers – transportation equipment, etc.) Group 2 used oils require a pre-qualification sample to be taken and submitted for analysis (Flash point, PCB's, Halogens, Silicone, and VOC's). Pre-qualification results must be approved prior to initial collection. If the generating process changes, or if no oil is picked up for over one year, a pre-qualification sample must be submitted for approval again. Field testing procedures are the same as the above group 1.

Group 3 are any oils not falling into the Group 1/2 categories and will not be accepted into the SKOS program. Examples of Group 3 oils are, but not limited to: (electrical insulating oil/transformer oil, gasoline, form release oil, rust preventatives, silicone heat transfer fluid, hydraulic oil dye, diesel fuel treatment, motor flushes, penetrating oil, kerosene, cooking oil, crude oil, distillate fuels, animal fats, TSCA regulated oils, urethane coating, etc.)

In 1990, Safety-Kleen began offering a service for the collection of spent antifreeze (ethylene glycol) from automobile service stations. All antifreeze is collected by Safety-

Kleen with the intent of it being recycled. At the customer's location, Safety-Kleen pumps waste ethylene glycol (antifreeze) into a Safety-Kleen used oil tanker truck. This truck transports the used antifreeze (glycol) to the Medley branch, for off-loading into dedicated storage tanks. The comingled material (used antifreeze/used oil) is sent to the SK East Chicago re-refinery where the ethylene glycol is separated by distillation. The glycol is then sent to a recycler for processing into a pure product which is then sold on the open market. This procedure is in accordance with FDEP's the Best Management Practices for Managing Used Antifreeze at Vehicle Repair Facilities, dated May 22, 2012. The Florida Department of Environmental Protection (FDEP) has determined this waste stream can be handled as non-hazardous as long as it is destined for recycling. If used antifreeze collected by the Safety-Kleen Medley facility is sent to a facility other than the East Chicago re-refinery it will be managed as follows. The material will be segregated and off-loaded into a separate storage container/tote, then sampled and analyzed for glycol percentage. If the glycol percentage is acceptable it is sent to a recycler. If the glycol percentage is not acceptable a representative sample will be taken and sent for TCLP analysis to determine if it is a hazardous waste. It will be managed properly according to the TCLP analysis result. In addition, Safety-Kleen sells its' own private label antifreeze in 55-gallon containers. Customers will then place used antifreeze in these containers to be shipped back to the branch. This material is then shipped to SK distribution centers, and then shipped to a recycler.

In 1996, the Branch became registered in Florida as a transporter and storage facility for mercury-containing lamps and devices destined for recycling. This registration includes a commitment to comply with the requirements of Florida Administrative Code (FAC) 62-737.400. As a registered small quantity handler of universal waste lamps/mercury devices, the Branch can store up to 2,000 kg of lamps or 100 kg of mercury devices at any one time. Safety-Kleen provides customers with empty four-foot and eight-foot boxes which hold up to 39 lamps. Boxes containing lamps are picked up from customers and are handled at the Branch as non-hazardous transfer wastes. The boxes are stored at the Branch in a designated area. All containers (boxes) are labeled in accordance with FAC 62-737.400(5)(b) and are partially isolated from other transfer wastes to avoid potential for accidental breakage. The boxes are periodically shipped to a permitted mercury recovery or reclamation facility. Prior to shipment out of the Branch, the boxes are placed on pallets and shrink-wrapped with plastic. Safety-Kleen also manages universal waste batteries. All applicable batteries, per 40 CFR Part 273.2 & 273.9, are

managed in accordance with the Standards For Universal Waste Management found in 40 CFR Part 273. Batteries not meeting these standards may be managed as 10-day transfer hazardous waste. Universal waste lamps, mercury devices & batteries are stored inside the transfer waste areas.

Safety-Kleen offers a Vacuum Services Program. This program is for the collection of non-hazardous waste streams, both liquid and solids/sludges. The Medley branch operates this program with straight tanker trucks that hold approximately 3,500 gallons of material. The primary services offered under this program are:

- Clean-out of oil/water separators, sumps, pits, and trench drains;
- Pumping of open-top drums and other containers of material already removed from oil/water separators, sumps, pits, and trench drains;
- Pumping of other containers of material as approved on a case-by-case basis;
- Transfer of approved pre-qualified non-hazardous materials from one point to another (ex: from pit to containers). Materials collected under this program are shipped to a permitted wastewater treatment facility for processing.

Containers of hazardous waste are picked up at customer locations and transported back to the Branch in route trucks. All hazardous materials collected and transported to the Safety-Kleen Medley branch are properly packaged in USDOT authorized packages. The types of container will depend on the material, and requirements found in 49 CFR Part 173 for authorized packaging. For example:

- Used parts washer solvent 5, 15, 30, 55-gallon containers (metal drums DM)
- Dry-cleaning wastes (Perchloroethylene) 15, 30-gallon containers (plastic/poly drums DF)
- Dry-cleaning wastes (Petroleum-Naphtha) 15,30-gallon containers (metal drums DM)
- Paint Related wastes 5, 15, 30, 55-gallon containers (metal drums DM)
- Immersion Cleaner wastes 15-gallon containers (metal drums DM)
- Used Antifreeze 55-gallon containers (metal drums DM, or poly drums DF)

Transfer wastes are containerized and transported after identifying the proper shipping name and consultation with authorized packaging requirements found in 49 CFR Part 173.

Each route truck is equipped with a hand-truck and electric lift gate for movement of containers. Upon arrival at the Branch, containers are off-loaded at the docks (Areas A&B, figure 2.1-1) from route trucks and placed on pallets. Containers of used parts washer solvent are unloaded at Area A, then staged on the Return/Fill Shelter dock awaiting dumping by hand into the wet dumpster, then drum washing. As used parts washer drums are dumped into the wet dumpster the used parts washer solvent is transferred via piping to the RCRA-Permitted Hazardous Waste Tank (Used Solvent). All other containerized wastes are moved from the unloading areas on pallets to the appropriate permitted storage area(s) or 10-day transfer waste area(s). Forklifts are used for loading containerized hazardous/non-hazardous wastes onto the weekly tractor trailer truck for transfer to Clean Harbors/Safety-Kleen TSDF's. These containers will be moved directly onto the truck, which will be parked at the concrete loading dock on the southeastern corner of the warehouse building (Area B, figure 2.1-2).

Part 1

- D. Operating Information
- 5. Hazardous Debris (40 CFR Part 270.13(n))

The Safety-Kleen Medley branch does not treat, store, or dispose of any hazardous debris, as defined in 40 CFR Part 268.2(g), at the facility.

Personal Protective Equipment (PPE) Requirements at the Branch

The following PPE is required for all persons working at or visiting the branch.

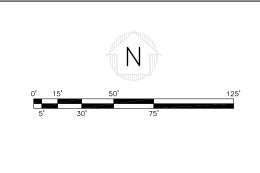
Task	Gloves	Uniform	Apron	Foot Wear	Safety Glasses	Hard Hat	Hearing	Respirator
Material handling- containers (bulk/non-bulk)	Yes (Cr)*	Yes		ST w/M	Yes	Yes		
Return/Fill Operations	Yes (Np)	Yes	Yes	ST w/M	Yes	Yes	Yes w/pneumatic tools	
Tank Truck Load/Unload	Yes (Np)	Yes		ST w/SR	Yes	Yes		
Spill Response (incidental)	Yes (Np)	Yes	Yes	ST w/SR	Yes	Yes		APR- HF/FF/Org. vapor/acid gas
Visitor in Operational areas				Closed toe	Yes	Yes		

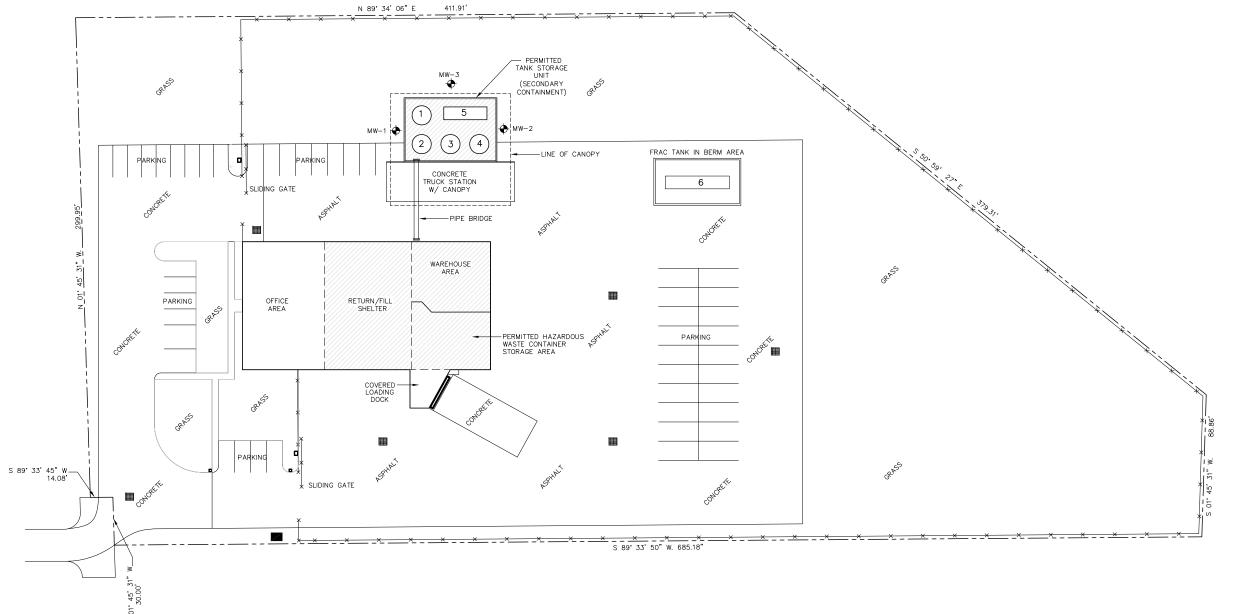
Gloves: Cr = cut resistant, $(Cr)^* = cut resistant$ (if chemical present – supported Neoprene glove,

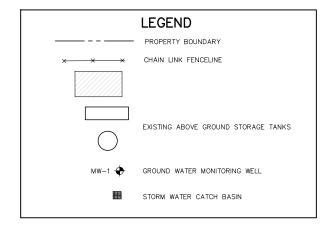
Np = Supported Neoprene Glove (outer)

Hard Hat: hard hats to be available at all times, and used when in operational areas

Apron: Tychem QC apron


Footwear: ST w/M = steel toes with metatarsal guard, ST w/SR = steel toes with slip


resistant soles


Respirator/Cartridge Type: APR (air purifying respirator) HF (half face) FF (full face)

Organic vapor/acid gas - cartridge type

Safety-Kleen constructed the Medley Branch with the intent that it will be a long-term facility for the distribution of Safety-Kleen products. No on-site disposal activity occurs at the facility and, hence no disposal capacity will be exhausted that will necessitate closure of the facility.

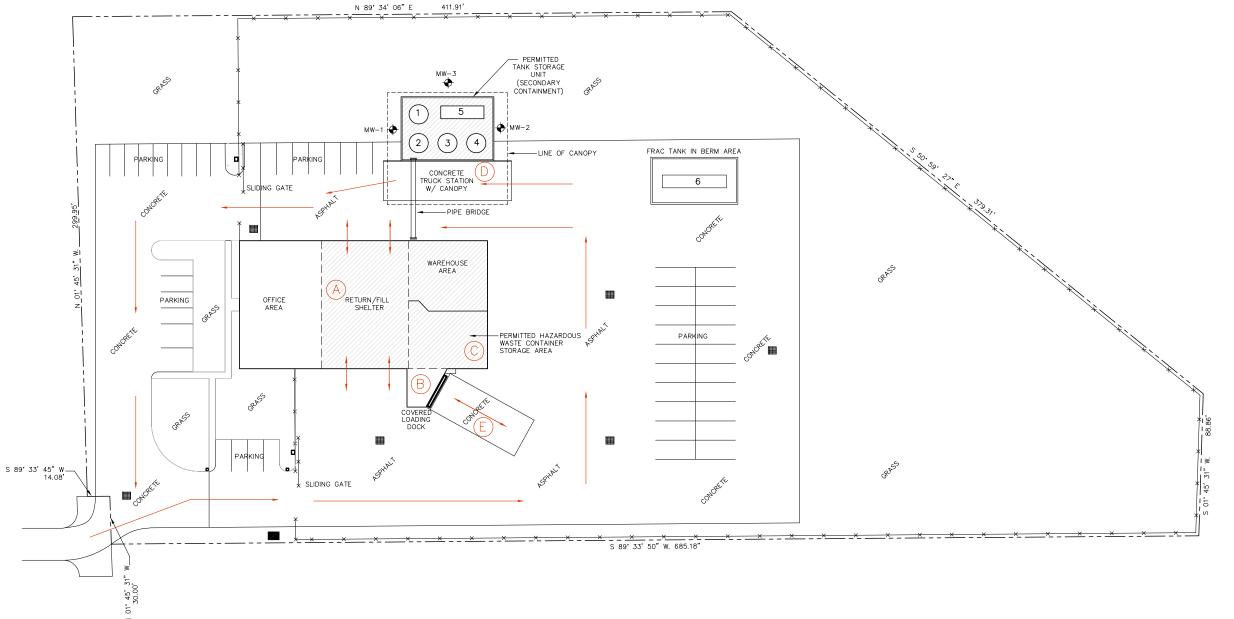
GENERAL NOTES

		TANK	LEGEND
TANK NO.	TANK VOLUME	TANK CONTENTS	REMARKS
1	20,000 USG	FRESH SOLVENT	
2	20,000 USG	USED SOLVENT	
3	20,000 USG	USED OIL	
4	15,000 USG	USED OIL	
5	10,000 USG	OILY WATER	
6	18,000 USG	OILY WATER	

REVISIONS DESCRIPTION

PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVILGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.


FIGURE 2.1-1 FACILITY LAYOUT & ACCESS CONTROL FEATURES

SAFETY-KLEEN SYSTEMS, INC. 42 LONGWATER DRIVE, NORWELL, MA. 02061 PHONE: 781-792-5000

SCALE 1"=30'	BY JEK	CHKD JZ	APPROVED JZ	OPERATIONS JZ	DATE 9/20/22
SERVICE CENTER LOCATION			SC-DWG NUMB	REV. NO.	
MEDLEY, FL			7096-SP00-001		Α

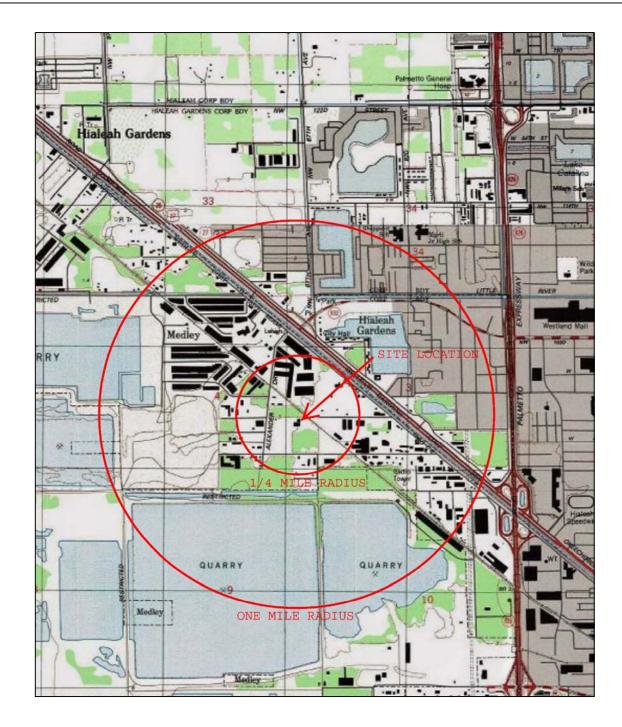
LEGEND PROPERTY BOUNDARY CHAIN LINK FENCELINE HAZARDOUS WASTE MANAGEMENT AREAS EXISTING ABOVE GROUND STORAGE TANKS GROUND WATER MONITORING WELL STORM WATER CATCH BASIN APARTS WASHER SOLVENT DRUM DUMP/BARREL WASH/REFILL (TRUCKS DO NOT DRIVE THROUGH BLDG. CHAIN LINK FENCELINE WASH/REFILL (TRUCKS DO NOT DRIVE THROUGH BLDG. WASH/REFILL (TRUCKS DO NOT DRIVE THROUGH BLDG. CHAIN LINK FENCELINE COADING AND UNLOADING OF DRUMS CONTAINING SOLVENTS AND WASTE FROM LOCAL AREA VANS AND TRUCKS D LOADING AND UNLOADING OF PARTS WASHER SOLVENT (COVERED DRIVEWAY) USED OIL AND OILY WASTEWATER ELOADING CONTAINERIZED WASTE FROM TRUCKS FOR SHIPMENT TO RECYCLE CENTERS

GENERAL NOTES

		TANK	LEGEND
TANK NO.	TANK VOLUME	TANK CONTENTS	REMARKS
1	20,000 USG	FRESH SOLVENT	
2	20,000 USG	USED SOLVENT	
3	20,000 USG	USED OIL	
4	15,000 USG	USED OIL	
5	10,000 USG	OILY WATER	
6	18,000 USG	OILY WATER	

REVISIONS NO. DESCRIPTION BY CHK APPR DATE A ISSUED FOR PERMIT JEK JZ JZ 092022

PROPRIETARY STATEMENT

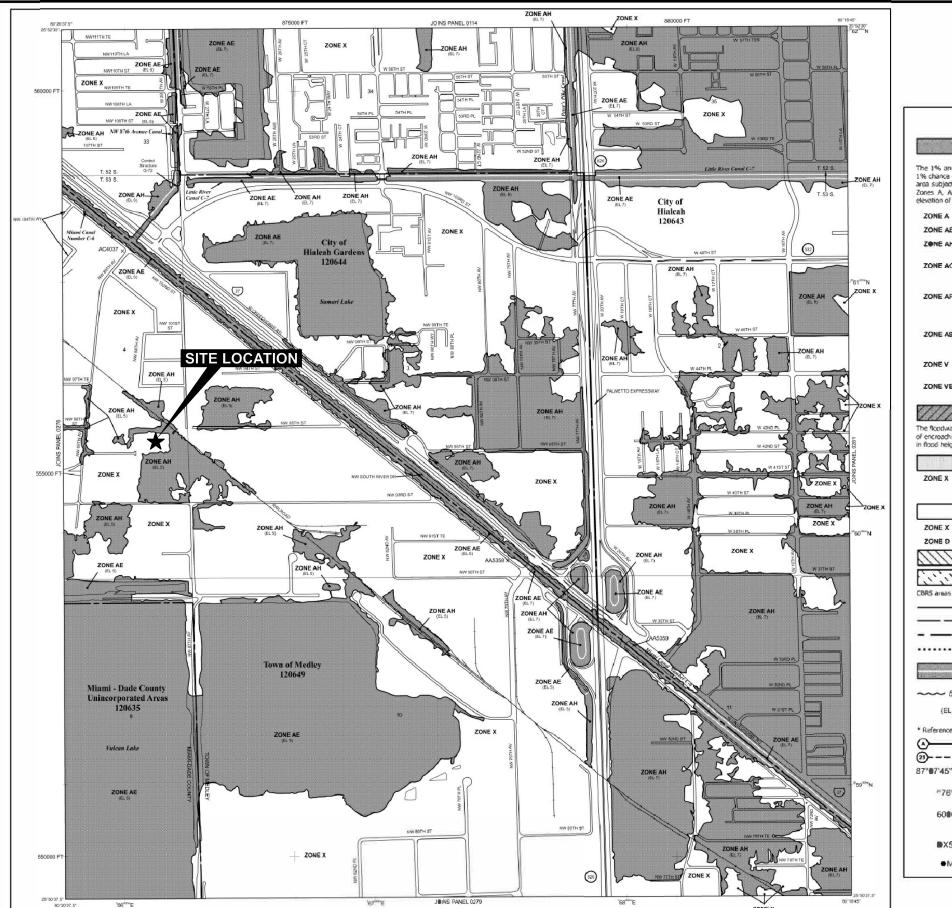

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVULED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

TITLE

FIGURE 2.1-2 TRUCK TRAFFIC PATTERNS

SCALE	BY	CHKD	APPROVED	OPERATIONS	DATE
1"=30'	JEK	JZ	JZ	JZ	9/20/22
SERVICE CENTER LOCATION			SC-DWG NUMB	REV. NO.	
MEDLEY, FL			7096-SI	P00-001	Α

HIALEAH QUADRANGLE FLORIDA-DADE COUNTY 7.5 MINUTE SERIES TOPOGRAPHIC 1998


PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

FIGURE 2.2-1 TOPO MAP

SAFETY-KLEEN SISIEMS, 2600 N. CENT EXPRESSWAY STE 400 RICHARDSON, TX. 75080 PHONE 800-669-5740 SAFETY-KLEEN SYSTEMS, INC.

111112 000 000 0110						
SCALE	BY	CHKD	APPR	OP. APPR	DATE	
NONE	JEK	JZ	JZ	JZ	9/20/22	
SERVICE CENTER LOCATION			SC-DWG NUMB	REV. NO.		
MEDLEY, FL.			7096-SF	P00-026	Α	

REVISION 0 - 09/20/22

FIGURE 2.2-2 SITE LOCATION MAP SAFETY-KLEEN SYSTEMS, INC. FACILITY MEDLEY, FLORIDA

PROGRAM

NAVITIONAMAL

LEGEND

SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface

ZONE A No Base Flood Elevations determined. ZONE AE Base Flood Elevations determined.

ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also

Special Flood Hazard Area formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined.

ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encreachment so that the 1% annual channel flood can be carried without substantial increases in flood heights.

Areas of 0.2% annual change flood; areas of 1% annual change flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance fleed.

ZONE X Areas determined to be outside the 0.2% annual chance floodplain. ZONE D Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBAS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas Floodplain boundary

Floodway boundary Boundary dividing Special Flood Hazard Area zones and boundary dividing Special Flood Hazard Areas of different Base

Flood Elevations, flood depths or flood velocities. ---- 513 ----Base Flood Elevation line and value: elevation in feet*

Base Flood Elevation value where uniform within zone; elevation (EL 987)

Referenced to the National Geodetic Vertical Datum of 1929

(A) Cross section Line 23-----23 87°07'45", 32"22'30" Geographic coordinates referenced to the North American

Datum of 1983 (NAD 83), Western Hemisphere **76***N 1000-meter Universal Transverse Mercator grid values, zone

600000 FT 5000-foot grid ticks; Florida State Plane goordinate system.

Bench mark (see explanation in Notes to Users section of this ■X5510 × FIRM panel)

●M1.5

PANEL 0277L

FIRM

FLOOD INSURANCE RATE MAP

MIAMI-DADE COUNTY. FLORIDA AND INCORPORATED AREAS

PANEL 277 OF 1031

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

COMMUNITY	NUMBER	PANEL	SUFFIX
HIALEAH GARDENS, CITY OF	120644	0277	1
HIALEAH, CITY OF	120643	0277	1
MEDLEY, TOWN OF	120849	0277	
MAMI - DADE COUNTY	120635	0277	1

Notice to User: The Map Number shown below should be used when pleaning map orders, the Community Number shown above should be used on insurance applications for the

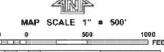
MAP NUMBER 12086C0277L

MAP REVISED **SEPTEMBER 11, 2009**

Federal Emergency Management Agency

MAP REPOSITORY Refer to listing of Map Repositories on Map Index

EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP January 20, 1993


EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL March 2, 1994 - May 16, 1994 - July 17, 1995 - for description of revision, see Notice to Users

nearor 2, 1994 - May 10, 1994 - July 17, 1995 - Not rescription of revision, see nearest to sees page in the Frood Insurance Study report.

September 11, 2009 - to reflect revised shorekine, to incorporate previously issued Letters of Map Revision, to reflect updefed lopographic information, to update corporate limits, to drift and change Bease Flood Elevations, to change zone designations, to add reads and road names, and te add and change Special Rickod Houzed Areas.

For community map revision history prior to countywide mapping, refer to the Community

To determine if flood insurance is available in this community, contact your Insurance igent or call the National Flood Insurance Program at 1-800-638-6620.

FEET

ADJACENT PROPERTY OWNERS

- 1. FLORIDA WOOD/MEDLEY METAL RECYCLING
- 2. EAGLE METAL PROCESSING
- 3. FLORIDA EAST COAST RR CO.
- 4. US FOUNDRY
- 5. US FOUNDRY
- 6. PEPSICO
- 7. TROPICAL TRAILER LEASING
- 8. SANTAFE TILE

LAND USE

WOOD/METAL RECYCLING FACILITY

METAL PROCESSING & RECYCLING

RAILROAD ASSESSMENT

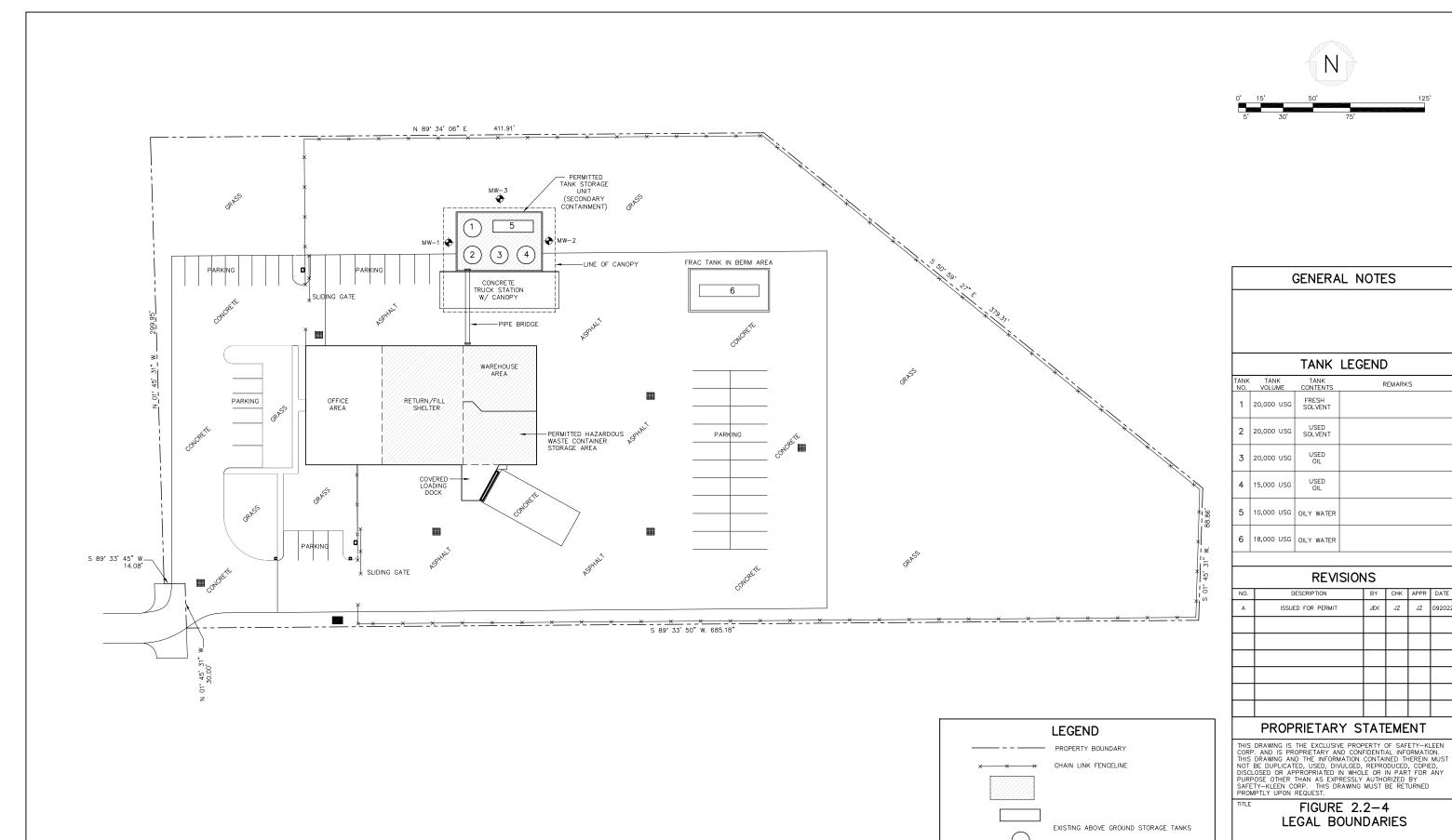
HEAVY INDUSTRIAL

VACANT LAND/PARKING

FOOD/BEVERAGE MANUFACTURING

TRAILER LEASE/STORAGE FACILITY

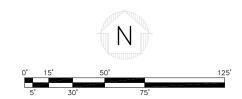
TILE COMPANY WAREHOUSE

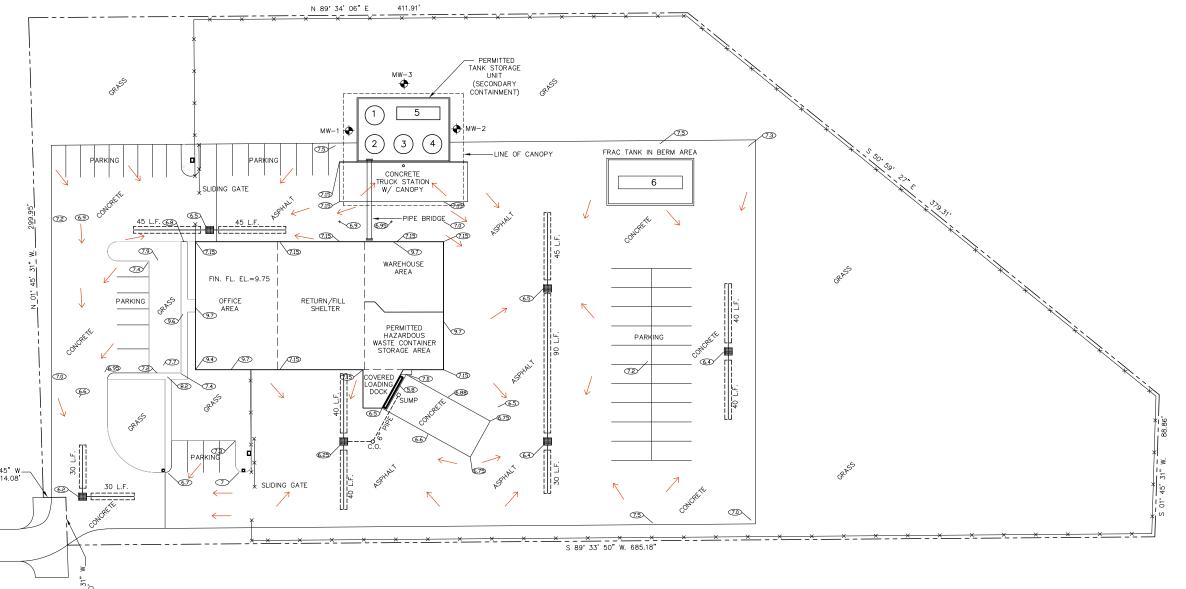

PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

FIGURE 2.2-3 SURROUNDING LAND USE MAP

SCALE	BY	CHKD	APPR	OP. APPR	DATE
NONE	JEK	JZ	JZ	JZ	9/20/22
SERVICE CENTER LOCATION			SC-DWG NUMB	REV. NO.	
MEDLEY, FL.			7096-SF	А	




GROUND WATER MONITORING WELL

STORM WATER CATCH BASIN

SAFETY-KLEEN SYSTEMS, INC. 42 LONGWATER DRIVE, NORWELL, MA. 02061 PHONE: 781-792-5000

SCALE BY CHKD
1"=30' JEK JZ SERVICE CENTER LOCATION SC-DWG NUMBER MEDLEY, FL 7096-SP00-001

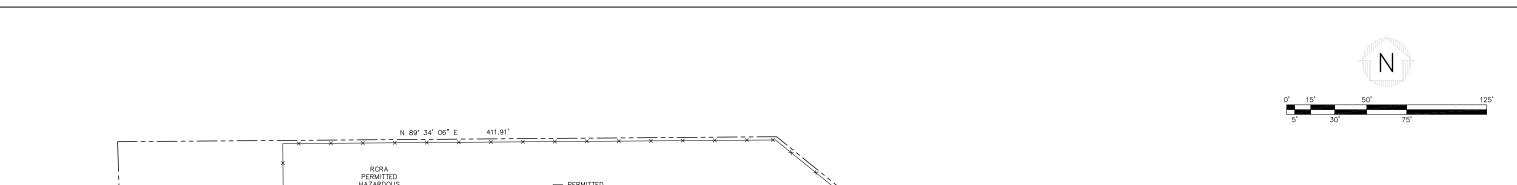
LEGEND PROPERTY BOUNDARY CHAIN LINK FENCELINE EXISTING ABOVE GROUND STORAGE TANKS MW-1 GROUND WATER MONITORING WELL STORM WATER CATCH BASIN FRENCH DRAIN TRENCH CONNECTED TO STORM WATER CATCH BASINS EXISTING ELEVATION STORM WATER FLOW

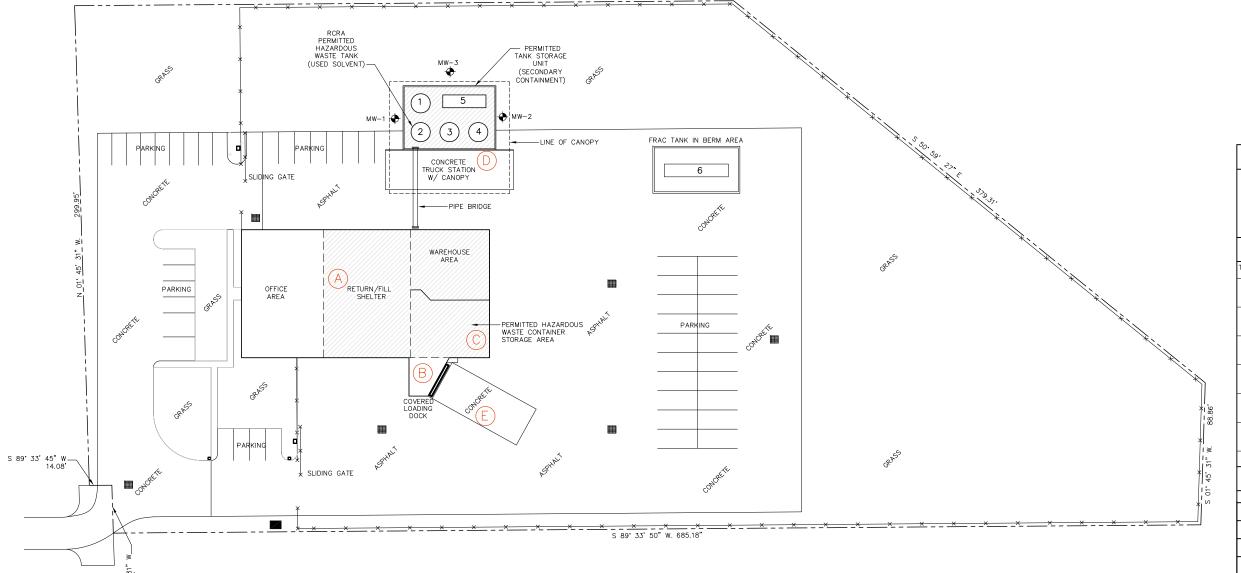
GENERAL NOTES

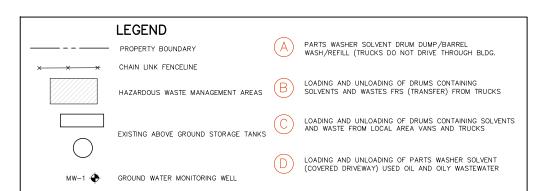
1. FRENCH DRAIN STRUCTURES ARE A 16" PERFORATED CMP PIPE AT ELEVATION 6.0. BOTTOM OF TRENCH IS 15" DEEP AND 36" WIDE. MASONRY PLUG AT END OF TRENCH.

		TANK	LEGEND
TANK NO.	TANK VOLUME	TANK CONTENTS	REMARKS
1	20,000 USG	FRESH SOLVENT	
2	20,000 USG	USED SOLVENT	
3	20,000 USG	USED OIL	
4	15,000 USG	USED OIL	
5	10,000 USG	OILY WATER	
6	18,000 USG	OILY WATER	

	REVISIONS								
NO.	DESCRIPTION	BY	CHK	APPR	DATE				
Α	ISSUED FOR PERMIT	JEK	JZ	JZ	092022				


PROPRIETARY STATEMENT


THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVILGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAIN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.


FIGURE 2.2-5
SITE STORM WATER DRAINAGE

1"=30' JEK JZ JZ JZ 9/20/22 SERVICE CENTER LOCATION SC-DWG NUMBER REV. NO. MEDLEY, FL 7096—SP00—001 A	SCALE	BY	CHKD	APPROVED	OPERATIONS	DATE	
	1"=30'	JEK	JZ	JZ	JZ	9/20/22	ı
MEDLEY, FL 7096-SP00-001 A	SERVICE CENTE	ER LOCATI	ON	SC-DWG NUMB	ER	REV. NO.	
	MEDLEY, FL		7096-SP00-001		Α		

STORM WATER CATCH BASIN

E LOADING CONTAINERIZED WASTE FROM TRUCKS FOR SHIPMENT TO RECYCLE CENTERS

GENERAL NOTES

		TANK	LEGEND
TANK NO.	TANK VOLUME	TANK CONTENTS	REMARKS
1	20,000 USG	FRESH SOLVENT	
2	20,000 USG	USED SOLVENT	
3	20,000 USG	USED OIL	
4	15,000 USG	USED OIL	
5	10,000 USG	OILY WATER	
6	18,000 USG	OILY WATER	

	REVISIONS							
NO.	DESCRIPTION	BY	CHK	APPR	DATE			
А	ISSUED FOR PERMIT	JEK	JZ	JZ	092022			

PROPRIETARY STATEMENT

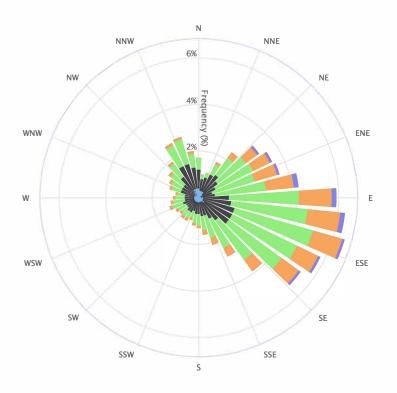
THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

FIGURE 2.2-6 LOCATIONS OF HAZARDOUS WASTE STORAGE AREAS

SAFETY-KLEEN SYSTEMS, INC. 42 LONGWATER DRIVE, NORWELL, MA. 02061 PHONE: 781-792-5000

SCALE	BY	CHKD	APPROVED	OPERATIONS	DATE
1"=30"	JEK	JZ	JZ	JZ	9/20/22
SERVICE CENTER LOCATION			SC-DWG NUMBER		REV. NO.
MEDLEY, FL			7096-S	P00-001	Α

FIGURE 2.2-7
WIND ROSE
SAFETY-KLEEN SYSTEMS, INC. FACILITY
MEDLEY, FLORIDA
WIND ROSE OBTAINED FROM CLIMATE GOV WEBSITE



Privacy Policy

WIND ROSE OBTAINED FROM CLIMATE.GOV WEBSITE WIND ROSE BASED ON PERIOD FROM 1/1/1991 TO 9/1/22 WIND ROSE GENERATED ON 9/1/22

MIAMI INTL AP (FL) Wind Rose

Jan. 1, 1991 – Sep. 1, 2022 Sub-Interval: Jan. 1 – Dec. 31, 0 – 23

Wind Speed (mph)

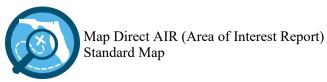
39 - 47 47 -

Click and drag to zoom

MIAMI INTL AP (FL) - Wind Frequency Table (percentage)

Latitude : 25.7906 Longitude : -80.3164

Elevation: 29 ft. Element: Mean Wind Speed Start Date : Jan. 1, 1991 End Date : Sep. 1, 2022 # of Days : 11567 of 11567 # obs : poss : 263354 of 277608 Sub Interval Windows Start End Date Jan. 1 Dec. 31


Hour 0 23

(Greater than or equal to initial interval value and Less than ending interval value.)

Range (mph) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Total

7/14/22, 11:44 AM Map Direct AIR

Point of Interest:

25°51'37.9457" x -80°20'24.8363"

25.860540474048182 x -80.34023230911245

Search Radius: 1 mile

Report Created on Thu Jul 14 2022 at 11:43:37

Map Direct v7.220630

Township/Range/Section: 53S40E4 Medley, Miami-Dade County 33178

FDEP Regulatory District: Southeast District Water Management District: SFWMD

FL House District 103 :: FL Senate District 36

US Congressional District 25

HUC Basin Area: Florida Southeast Coast

Waterbody ID: 3290

State Land DM ID: 139211

Search Result Summary

Features Found	Data Layer	Metadata	Spreadsheet
1	Wastewater Facility Regulation (WAFR) - Wastewater Facilities	<u>Layer</u> <u>Information</u>	Download as Spreadsheet
0	Wastewater Facility Regulation (WAFR) - Wastewater Sites	<u>Layer</u> <u>Information</u>	
5	Underground Injection Control (UIC) Class V Non-ASR Wells	<u>Layer</u> <u>Information</u>	Download as Spreadsheet
0	Underground Injection Control (UIC) Class V ASR Wells	<u>Layer</u> <u>Information</u>	
1	Underground Injection Control (UIC) Class I Wells	<u>Layer</u> <u>Information</u>	Download as Spreadsheet
0	Source Water Assessment and Protection Program (SWAPP) Ground Water Areas (Non Federal)	<u>Layer</u> <u>Information</u>	
0	Ground Water Contamination Areas	<u>Layer</u> <u>Information</u>	
0	Public Water Supply (PWS) Plants (Non-Federal)	<u>Layer</u> <u>Information</u>	

7/14/22, 11:44 AM Map Direct AIR

0	Public Water Supply (PWS) Wells (Non-Federal)	<u>Layer</u> <u>Information</u>	
0	Private Wells from Generalized Well Information System (GWIS)	<u>Layer</u> <u>Information</u>	

Search Result Details

Wastewater Facility Regulation (WAFR) - Wastewater Facilities: 1 Found.

Wastewater Facility Regulation (WAFR) - Wastewater Faci					
#1 of 1 from	Wastewater Facility Regulation (WAFR) -				
Wastewater Facilities					
LOCATIONAL ID	25305				
WAFR FACILITY ID	36546				
FACILITY ID	FLG110614				
FACILITY NAME	Quickcrete Ready Mix				
ENVIRONMENTAL INTEREST	Industrial Wastewater Program				
MANAGED ENTITY TYPE	Wastewater Facility				
FACILITY TYPE	СВР				
FACILITY STATUS	A				
NPDES	Υ				
DESIGN CAPACITY					
PERMITTED CAPACITY					
PRETREAT REQ	N				
OFFICE NAME	Southeast District				
DISTRICT NAME	SED				
COUNTY	13				
COUNTY NAME	Miami-Dade				
QA STATUS	REVIEWED				
LAT DD	25				
LAT MM	51				
LAT SS	24.7219				
LONG DD	80				
LONG MM	20				
LONG SS	22.2212				
DCD DATUM ID	HARN				
DETERMINATION DATE	02/27/2007				
CMCD COORDINATE METHOD ID	DPHO				
COLLECTOR USERNAME	LAKHAN_S				
CAC1 COORDINATE ACCURACY ID	4				
OOIC OBJECT OF	Facility				
VERIFICATION DATE	02/27/2007				
VERIFY CMCD METHOD ID	DPHO				
VERIFIER USERNAME	LAKHAN_S				
PPC POINT PROXIMITY ID	CENTR				

	Open Web Page (https://prodenv.dep.state.fl.us/DepNexus/public/electronic-documents/FLG110614/gis-facility!search)	
OBJECTID	1658	il

Underground Injection Control (UIC) Class V Non-ASR Wells: 5 Found.

#1 of 5 from Unde		#2 of 5 from Underground Injection			
Control (UIC) Clas	ss V Non-ASR Wells	Control (UIC) Class V Non-ASR Wells			
FACILITY ID	104003	FACILITY ID	62709		
FACILITY NAME	SHELL OIL PRODUCTS COMPANY	FACILITY NAME	PALMS SPRINGS GDN. CONDOMINIUM APTS		
FACILITY TYPE	CLASS V INJECTION WELLS	FACILITY TYPE	CLASS V INJECTION WELLS		
FACILITY STATUS	ACTIVE	FACILITY STATUS			
ADDRESS	F&Z II CORPARATION-SHELL SERVICE STATION	ADDRESS	NW 103RD ST. & 80TH AVE.		
CITY	HIALEAH	CITY	MIAMI		
ZIP5	33016	ZIP5			
ZIP4		ZIP4			
WELL NUMBER	SWD1	WELL NUMBER	1		
WELL STATUS	ACTIVE	WELL STATUS	ACTIVE		
INJECTION WELL TYPE	STORMWATER DRAINAGE WELL	INJECTION WELL TYPE	SWIMMING POOL DRAINAGE WELL		
TOTAL WELL DEPTH		TOTAL WELL DEDTIL			
TOTAL CASING DEPTH		TOTAL WELL DEPTH	85		
CONSTRUCTION		TOTAL CASING DEPTH	0		
COMPLETED DATE		CONSTRUCTION COMPLETED DATE	10/18/1984		
DISTRICT	SED	DISTRICT	SED		
OFFICE		OFFICE			
COUNTY	13	COUNTY	13		
COUNTY NAME	MIAMI-DADE	COUNTY NAME	MIAMI-DADE		
OBJECT OF INTEREST	Non-ASR Class V Injection Well	OBJECT OF INTEREST			
PROXIMITY ID	APPRX	PROXIMITY ID	Non-ASR Class V Injection Well APPRX		
LAT DD	25				
LAT MM	52	LAT DD	25		
LAT SS	6	LAT MM	52		
LONG DD	80	LAT SS	6.0839		
LONG MM	20	LONG DD	80		
LONG SS	36	LONG MM	19		
DATUM ID	NAD83	LONG SS	37.6315		
COORDINATE METHOD	DMAP	DATUM ID	NAD83		
ID	DIVIA	COORDINATE METHOD ID	DPHO		
ACCURACY LEVEL	6	ACCURACY LEVEL	4		
ACCURACY	50 - 999.99 meters	ACCURACY	11 - 20 meters		
QA STATUS	NOT REVIEWED	QA STATUS	REVIEWED		
OBJECTID	18459	OBJECTID	9456		
#3 of 5 from Unde	rground Injection	#4 of 5 from Under	ground Injection		

#3 of 5 from Underground Injection Control (UIC) Class V Non-ASR Wells

FACILITY ID	60453
FACILITY NAME	AL CRAFT INDUSTRIES
FACILITY TYPE	CLASS V INJECTION WELLS
FACILITY STATUS	ACTIVE
ADDRESS	9869 NW 79TH AVE.
CITY	HIALEAH
ZIP5	
ZIP4	
WELL NUMBER	1
WELL STATUS	ACTIVE
INJECTION WELL TYPE	A/C RETURN-FLOW WELL (CLOSED- LOOP,NO ADDITIVES)
TOTAL WELL DEPTH	0

#4 of 5 from Underground Injection Control (UIC) Class V Non-ASR Wells

FACILITY ID	104323
FACILITY NAME	MIGUEL GONZOLEZ
FACILITY TYPE	CLASS V INJECTION WELLS
FACILITY STATUS	ACTIVE
ADDRESS	1110 BRICKELL AVENUE
CITY	MIAMI
ZIP5	33131
ZIP4	
WELL NUMBER	SWD1
WELL STATUS	ACTIVE
INJECTION WELL TYPE	SWIMMING POOL DRAINAGE WELL
TOTAL WELL DEPTH	

4/22, 11:44 AM	
TOTAL CASING DEPTH	0
CONSTRUCTION COMPLETED DATE	07/20/1984
DISTRICT	SED
OFFICE	
COUNTY	13
COUNTY NAME	MIAMI-DADE
OBJECT OF INTEREST	Non-ASR Class V Injection Well
PROXIMITY ID	APPRX
LAT DD	25
LAT MM	51
LAT SS	46.2494
LONG DD	80
LONG MM	19
LONG SS	30.4812
DATUM ID	NAD83
COORDINATE METHOD ID	DPHO
ACCURACY LEVEL	4
ACCURACY	11 - 20 meters
QA STATUS	REVIEWED
OBJECTID	6935

TOTAL CASING DEPTH	
CONSTRUCTION COMPLETED DATE	
DISTRICT	SED
OFFICE	
COUNTY	13
COUNTY NAME	MIAMI-DADE
OBJECT OF INTEREST	Non-ASR Class V Injection Well
PROXIMITY ID	APPRX
LAT DD	25
LAT MM	51
LAT SS	47
LONG DD	80
LONG MM	19
LONG SS	42
DATUM ID	NAD83
COORDINATE METHOD ID	DMAP
ACCURACY LEVEL	6
ACCURACY	50 - 999.99 meters
QA STATUS	NOT REVIEWED
OBJECTID	18605

#5 of 5 from Underground Injection Control (UIC) Class V Non-ASR Wells

	lass V Non-ASR Wells
FACILITY ID	62880
FACILITY NAME	RAINBOW STUDIO
FACILITY TYPE	CLASS V INJECTION WELLS
FACILITY STATUS	ACTIVE
ADDRESS	5850 LEVATE
CITY	CORAL GABLES
ZIP5	
ZIP4	
WELL NUMBER	1
WELL STATUS	ACTIVE
INJECTION WELL TYPE	A/C RETURN-FLOW WELL (CLOSED- LOOP,NO ADDITIVES)
TOTAL WELL DEPTH	0
TOTAL CASING DEPTH	0
CONSTRUCTION COMPLETED DATE	11/15/1984
DISTRICT	SED
OFFICE	
COUNTY	13
COUNTY NAME	MIAMI-DADE
OBJECT OF INTEREST	Non-ASR Class V Injection Well
PROXIMITY ID	APPRX
LAT DD	25
LAT MM	51
LAT SS	48.334
LONG DD	80
LONG MM	19
LONG SS	35.2207
DATUM ID	NAD83
COORDINATE METHOD ID	DMAP
ACCURACY LEVEL	6
ACCURACY	50 - 999.99 meters
QA STATUS	REVIEWED

OBJECTID 10016

Underground Injection Control (UIC) Class I Wells: 1 Found.

#1 of 1 from Underground Injection				
Control (UIC) Class I Wells				
FACILITY ID	101022			
FACILITY NAME	MEDLEY LANDFILL - WASTE MANAGEMENT INC.			
FACILITY TYPE	CLASS I INJECTION WELLS			
FACILITY STATUS	ACTIVE			
ADDRESS	9350 NW 89TH AVE			
CITY	MEDLEY			
ZIP5	33178			
ZIP4	1402			
WELL NUMBER	IW-1			
WELL STATUS	ACTIVE			
INJECTION WELL TYPE	INDUSTRIAL WASTEWATER WELL			
TOTAL WELL DEPTH	3512			
TOTAL CASING DEPTH	2778			
CONSTRUCTION COMPLETED DATE	05/08/2014			
DISTRICT	SED			
OFFICE				
COUNTY	13			
COUNTY NAME	MIAMI-DADE			
OBJECT OF INTEREST	Class I Injection Well			
PROXIMITY ID	APPRX			
LAT DD	25			
LAT MM	51			
LAT SS	33			
LONG DD	80			
LONG MM	20			
LONG SS	36.5136			
DATUM ID	NAD83			
COORDINATE METHOD	ZIP4			
ACCURACY LEVEL	6			
ACCURACY	50 - 999.99 meters			
QA STATUS	REVIEWED			
OBJECTID	373			

No Results Found:

Ground Water Contamination Areas

Private Wells from Generalized Well Information System (GWIS)

Public Water Supply (PWS) Plants (Non-Federal)

Public Water Supply (PWS) Wells (Non-Federal)

Source Water Assessment and Protection Program (SWAPP) Ground Water Areas (Non Federal)

Underground Injection Control (UIC) Class V ASR Wells

Wastewater Facility Regulation (WAFR) - Wastewater Sites

^{***} END OF REPORT ***

Tab 2

Part II

Part II

A. General

1. Topographic Map

Figure 2.2-1, found at the end of Part I, is a USGS topographic map showing the facility location, per 40 CFR Part 270.14(b)(19). Due to the small size of the site, all of the information requested in FDEP's application form cannot be placed on one map. Therefore, additional maps are provided here to present the additional information requested in the application form. Specific information requested in the permit application is provided below.

Contours Sufficient to Show Surface Water Flow

Figure 2.2-5, found at the end of Part I, shows surface elevations at the facility. The site is nearly flat, with surface elevations in unpaved areas ranging from 4.7 to 5.1 feet above mean sea level. Paved areas are at slightly higher elevations. Anticipated surface water flow directions are shown on Figure 2.2-5.

100-Year Floodplain Area

Based on information available (Figure 2.2-2), the facility does not lie within the 100-year shallow flooding where depths are between one and three feet. Base flood elevations are shown, but no flood hazard factors are determined. No special flood management procedures are necessary.

Access Control (fences, gates, etc.)

Figure 2.1-1, found at the end of Part I, shows access control features (e.g., fences, gates, doors, roll-up doors, etc.).

On-site and off-site Injection and Withdrawal Wells

There are no injection or withdrawal wells on site. Results of an inventory of wells within one-quarter mile of the site are presented in Table 2.2-1.

Drinking Water Wells Listed In Public Records or Otherwise Known to the Applicant Within One-Quarter Mile of the Facility Property Boundary

Information from FDEP's GIS application Map Direct at http://ca.dep.state.fl.us/mapdirect/?focus=none is found on Table 2.2-1, is found at the end of Part I.

Surface Water Bodies Within One-Quarter Mile of the Facility Property Boundary (e.g., Intermittent Streams and Springs)

Surface water bodies located within one-quarter mile of the facility property boundary include unnamed lakes to the northeast and southeast. These surface water bodies are depicted in Figure 2.2-1.

Buildings and Other Structures

Figure 2.1-1, found at the end of Part I, shows on-site buildings and other structures.

Loading and Unloading Areas

Figure 2.1-2, found at the end of Part I, shows loading and unloading areas in relation to the waste management areas.

Hazardous Waste Units

Figure 2.2-6, found at the end of Part I, shows hazardous waste management units. Figure Part II-Q, found at the end of Part II Q, shows the location of SWMUs.

Run-Off Control System

Stormwater run-off controls are illustrated in Figure 2.2-5. Stormwater drainage from the paved portion of the facility is routed by sloped pavement to a series of six catch basins connected to separate French drain systems. As shown in Figure 2.2-5, French drain

piping exists at strategic locations within the facility pavement. Stormwater drainage from unpaved portions of the facility follow natural drainage patterns leading off site. Various other surface water management features are shown in Figure 2.2-5 as well.

1.b Wind Rose

A wind rose for Miami, Florida is shown in Figure 2.2-7 found at the end of Part I.

1.c Traffic Information

Site traffic patterns are illustrated in Figure 2.1-2, found at the end of Part I. The majority of the vehicular traffic and loading/unloading operation occurs at the loading areas (Areas A, B, D and E), which are paved with asphalt and concrete. Area D is used for the loading/unloading of clean parts washer solvent and hazardous waste parts washer solvent from tanker trucks, and also loading/unloading of used oil from bulk used oil collection trucks. Approximately once per week a tractor trailer removes containerized waste for transfer to a Safety-Kleen or Clean Harbors TSDF. This truck backs up to the concrete dock, located on the southeastern side of the facility in Area B, to load waste containers and unload product for the Safety-Kleen branch.

Currently, the Safety-Kleen branch actively operates with three (3) route box trucks, two (2) bulk used oil collection tanker trucks, one (1) vacuum services tanker truck and two (2) sales vans. Clean Harbors Technical Services operates with one (1) route box trucks.

Access to, and exit from, the facility is only provided by two gates that are both on the western side of the facility, as shown on Figure 2.1-2. There are no traffic control signals, designated traffic lanes, or stacking lanes within the site. The site road surface is asphalt as shown on Figure 2.1-2

U.S. 27, Okeechobee Road, is the major access road to the facility. This access road is designed in accordance with engineering criteria appropriate for sustaining the traffic volume and loading for the industrial activities in this area. The facility route trucks that travel the routes between the branch and customers use the two-lane road within the industrial park.

Traffic from this facility is not expected to have a major effect on local traffic conditions. The facility and adjacent facilities have been in operation since at least 1992. The roads have been able to sustain the loads being transported over them since operations began.

Part II

A. General

2. FINANCIAL RESPONSIBILITY INFORMATION

- **A.2.a** Per 40 CFR Part 264.142, the most recent closure cost estimates are provided at the end of this section. Financial assurance is provided through the use of a financial test specified in Subpart H of 40 CFR Part 264.143.
- **A.2.d** A copy of the document to demonstrate liability coverage, per 40 CFR Part 264.147, is provided at the end of this section.

A.3 Flood Map

This information is provided in Part I, Figure 2.2-2.

A.4 Facility Security Information

- **A.4a** In accordance with 40 CFR Part 264.14, access to the facility is controlled through the following methods:
 - 1. A chain link fence topped with barbed wire completely surrounds the active portion of the facility. Entry to the facility is provided by two (2) gates that are both on the western side of the site, and one (1) front door that leads into the office area. The gates are kept locked at all times unless there are authorized vehicles entering/leaving the facility. The front door leads to a small lobby, which contains a second door for entry into the office area.
 - Signs are posted at the entrance of the facility and along the fence line so that they are
 visible from any approach at 25 feet. Signs are marked "DANGER UNAUTHORIZED
 PERSONNEL KEEP OUT".

	Revision 0 - 09/20/2022
3.	The combination of signage and controlled access entrances prevents unknowing entry and minimizes the potential for unauthorized entry of persons, or livestock, into the facility. See Figure 2.1-1 at the end of Part I for detail.

	Activity	Category	Hourly Rate or Unit Charge	Hours or Unit Estimate	Subtotal Cost
1.	INVENTORY REMOVAL	<u> </u>	<u> </u>		
	Assumptions - Waste mineral spirits tank(s) is full		Сар	pacity (gallons)	
	-Tank Two (IF APPLICABLE)			20000 0	
		Total Tank Capacity		20000	
	- Return/Fill station is full -Maximum capacity of drum washers added to waste mineral spirits tank quantity			1008	
	- Container storage area(s) full				
	-CSA 1 -CSA 2 (IF APPLICABLE)			6912 0	
		Total CSA Capacity	•	6912	
	Subcontractor Costs				
	- Transfer tank contents to tankers			2422	
	Tank Capacity (total gallons) Work Rate to Unload Tank Capacity (hours per gallon)			21008 0.0003	
	Total Hours to Unload			6.3	
	Labor and equipment rate to unload (PPE Level D) and cost Labor/equi	pment	\$175.95	6.3	\$1,109
	- Transport waste mineral spirits to a TSD for treatment/disposal				
	Number of tanker trailers required (6,000 gallons max each load) Cost per mile =\$5.64/mile			4	
	Mileage = 500 miles (Number in second column is 500 miles x number trucks) Transport =	= 500 miles each	\$5.64	2000	\$11,280
	Disposal/treatment cost (per gallon - low cost based on suitability for fuel) TSD @\$0.	45/gallon	\$0.450	21008	\$9,454
	- Transfer drums from CSA(s) to trucks				
	Labor/Equipment (PPE Level D) (Number in second column is number of drums determined from total CSA capacity)	pment per drum	\$3.57	126	\$450
	- Transport drums to TSD for Treatment/Disposal				
	Total Number of Drums (Number is total of CSA drums and Flam Shed drums) Total Number of Trucks Required to Transport Drums (84 per truck max) Cost per mile =\$5.64/mile			126 2	
	·	railer(s) x 500 miles	\$5.64	1000	\$5,640
	Disposal/treatment cost (per drum - low cost based on suitability for fuel) TSD @ \$9	` '	\$90	63	\$5,670
	Disposal/treatment cost (per drum - not suitable for fuel) TSD @ \$1	79/drum	\$179	63	\$11,277
	Activity 1. Subtotal				\$44,879

\$17,831

Hourly Rate Hours or Subtotal or Unit Cost

Activity Category Unit Charge Estimate

2. STORAGE TANK DECONTAMINATION

Assumptions:

- The tanks, piping and appurtenant equipment are decontaminated and remain in place
- Rinsate sampling necessary because the tank will remain in place. Assumes 1 rinsate sample per tank.
- Includes decontamination of the containment area
- Assumes containment area to remain in place following decontamination
- Assumes 1 rinsate sample required to leave containment in place
- Assumes 2 soil samples required from beneath containment area. Actual number of samples will be based on engineer's inspection

 Assumes 2 soil samples required from beneath containment area. Actual number of samples will be based on e Tank Interior Square Footage (based on tank volume) 	engineer's inspection.	;	Square Footage	
- Tank 1			1206	
- Tank 2 (IF APPLICABLE)			0	
	Total Tank Interior Square Footage		1206	
- Tank Farm Containment Square Footage (includes floor and walls)			2908	
Prime Contractor Costs				
-Costs for oversight and engineers inspection included in Closure Certification Activity below				
- Collect Rinsate Sample(s) (1 per tank and 1 per containment)				
Work Rate for Sampling (hours per sample)			0.5000	
Number of Samples			1	
Labor and equipment per work hour (PPE Level D)	Labor/equipment	\$91.88	0.50	\$46
- Drilling for Soil Samples (2.5 in boring to 1 ft each)				
Work Rate for Drilling (hours per foot)			0.3050	
Number of Feet (subslab sample depth = 1 foot each)			2	
Labor and equipment per work hour (PPE Level D)	Labor/equipment	\$146.29	0.61	\$89
- Collect 2 Soil Samples				
Work Rate for Sampling (hours per sample)			0.5000	
Number of Samples			2	
Labor and equipment per work hour (PPE Level D)	Labor/equipment	\$91.88	1.00	\$92
Subcontractor Costs				
- Decontaminate waste AST, piping and appurtenant equipment				
Work Rate to Pressure Wash (hours per square foot)			0.0405	
Area of Tanks to be decontaminated			1206	
Labor and equipment for tank decon (PPE Level C)	Labor/equipment	\$97.23	49	\$4,749
- Decontaminate Tank Containment Area				
Work Rate to Pressure Wash 1 sq ft (hours per square foot)			0.0405	
Total Area of Containment (includes walls and floor)			3591	
Labor and equipment for CSA decon (PPE Level D)	Labor/equipment	\$65.77	145	\$9,565
Laboratory Subcontractor Costs				
- Analyze rinsate sample(s) from tank(s) and containment area for VOCs, SVOCs and RCRA metals	VOCs @ \$189/sample SVOCs @ \$359/sample 8 RCRA Metals @ \$110/sample			
	Total per sample cost	\$658	1	\$658
- Analyze soil sample(s) from containment area for VOCs, SVOCs and RCRA metals	VOCs @ \$189/sample SVOCs @ \$359/sample 8 RCRA Metals @ \$110/sample			
	Total per sample cost	\$658	4	\$2,632

Activity 2. Subtotal

\$658

Total per sample cost

2

\$1,316

\$20,231

Hourly Rate Hours or Subtotal Unit Cost or Unit Charge Estimate Activity Category

DECONTAMINATE THE RETURN/FILL STATION

Assumptions:

- Decontamination shall consist of washing with detergent/water solution and rinsing with high-pressure spray
- Return/Fill structure and dock area will remain in place following decontamination
- Drum washers to remain in place or sent offsite for reuse following decontamination
- Rinsate sampling required from each drum washer to remain in place or sent offsite for reuse, and from containment

- Assumes 2 soil samples required from beneath containment area. Actual number of samples w	ill be based on engineer's inspection
- Square footage used for decontamination includes containment, dock and drum washer units	

quare footage used for decontamination includes containment, dock and drum washer units		Square Footage 4400			
Prime Contractor Costs					
-Costs for oversight and engineers inspection included in Closure Certification Activity below					
- Collect Rinsate Samples (1 per drum washer plus containment)					
Work Rate for Sampling (hours per sample)			0.5000		
Number of Samples			2		
Labor and equipment per work hour (PPE Level D)	Labor/equipment	\$91.88	1.00	\$92	
- Drilling for Soil Samples (2.5 in boring to 1 ft each)					
Work Rate for Drilling (hours per foot)			0.3050		
Number of Feet (subslab sample depth = 1 foot each)			2		
Labor and equipment per work hour (PPE Level D)	Labor/equipment	\$146.29	0.61	\$89	
- Collect Soil Samples					
Work Rate for Sampling (per sample)			0.5000		
Number of Samples			2		
Labor and equipment per work hour (PPE Level D)	Labor/equipment	\$91.88	1.00	\$92	
Subcontractor Costs					
- Decontaminate waste AST, piping and appurtenant equipment					
Work Rate to Pressure Wash (hours per square foot)			0.0405		
Area of Returen/Fill to be decontaminated			4400		
Labor and equipment for tank decon (PPE Level C)	Labor/equipment	\$97.23	178	\$17,326	
Laboratory Subcontractor Costs					
- Analyze 1 rinsate sample per drum washer and containment for VOCs, SVOCs and RCRA metals	VOCs @ \$189/sample SVOCs @ \$359/sample 8 RCRA Metals @ \$110/sample				
	Total per sample cost	\$658	2	\$1,316	
- Analyze soil sample(s) from containment area for VOCs, SVOCs and RCRA metals	VOCs @ \$189/sample SVOCs @ \$359/sample 8 RCRA Metals @ \$110/sample				

Activity 3. Subtotal

Hourly Rate Hours or Subtotal or Unit Cost

Activity Category Unit Charge Estimate

. DECONTAMINATE CONTAINER STORAGE AREA(S)

Assumptions:

- Decontamination shall consist of washing with a detergent water solution and rinsing with a high-pressure spray

- Analyze 2 soil sample(s) from each CSA for VOCs, SVOCs and RCRA metals

- CSA(s) to remain in-place following closure

 CSA(s) to remain in-place following closure Decontamination of CSA includes floor, curbing and containment trenches 				
- Assumes 1 rinsate and 2 soil samples required per CSA. Actual number of soil samples will be based on eng	gineer's inspection.			
- CSA Containment Square Footage		S	quare Footage	
- CSA 1 - CSA 2 (IF APPLICABLE)			3920	
- OOA 2 (II ALL LIOADLE)	Total CSA Square Footage		3920	
Prime Contractor Costs				
-Costs for oversight and engineers inspection included in Closure Certification Activity below				
- Collect Rinsate Samples (1 per CSA)				
Work Rate for Sampling (hours per sample)			0.5000	
Number of Samples			1	
Labor and equipment per work hour (PPE Level D)	Labor/equipment	\$91.88	0.50	\$46
- Drilling for Soil Samples (2.5 in boring to 1 ft each)				
Work Rate for Drilling (hours per foot)			0.3050	
Number of Feet (subslab sample depth = 1 foot each x number of samples)			2	
Labor and equipment per work hour (PPE Level D)	Labor/equipment	\$146.29	0.61	\$89
- Collect Soil Samples				
Work Rate for Sampling (hours per sample)			0.5000	
Number of Samples			2	
Labor and equipment per work hour (PPE Level D)	Labor/equipment	\$91.88	1.00	\$92
Subcontractor Costs				
- Decontaminate CSA(s)				
Work Rate to Pressure Wash (hours per sqaure foot)			0.0405	
Total Area of Permitted CSA(s) to be decontaminated			3920	
Labor and equipment for CSA decon (PPE Level D)	Labor/equipment	\$65.77	159	\$10,442
Laboratory Subcontractor Costs				
- Analyze rinsate sample(s) from each CSA for VOCs, SVOCs and RCRA metals	VOCs @ \$189/sample SVOCs @ \$359/sample 8 RCRA Metals @ \$110/sample			
	Total per sample cost	\$658	1	\$658

Activity 4. Subtotal

\$658

2

\$1,316

\$12,643

VOCs @ \$189/sample

Total per sample cost

SVOCs @ \$359/sample

8 RCRA Metals @ \$110/sample

Hourly Rate Hours or Subtotal or Unit Cost

Activity Category Unit Charge Estimate

5. CONTAINERIZE, STAGE, TRANSPORT AND DISPOSE OF DECONTAMINATION WASTES

Assumptions:

- Amount of decon wash water generated derived from previous closure experience. Quantity based on approximately 0.8 gal/ sq ft for tank systems and 0.1 gal/sq ft for containment area floors

Unit Description STORAGE TANK DECONTAMINATION DECONTAMINATE TANK CONTAINMENT DECONTAMINATE THE RETURN/FILL STATION DECONTAMINATE CONTAINER STORAGE AREA(S) PPE, CONSUMABLES, DEBRIS	Square Footage 1,206 2,908 4,400 3,920 NA	Number Gallo 965 291 3520 392 NA		Number Drums 18 6 64 8 5
- Purchase 55-gallon drums to containerize wash water	Drums @ \$83 each	\$83	101	\$9,221
Subcontractor Costs				
- Transfer drums to trucks Labor/Equipment (PPE Level D)	Labor/equipment per drum	\$3.57	101	\$361
- Transport drums to TSD for Treatment/Disposal Total Number of Trucks Required to Transport Drums (84 per truck max)			2	
Cost per mile =\$5.64/mile Mileage = 500 miles (Number in second column is 500 miles x number trucks) Disposal/treatment cost (per drum - low cost based on lack of hazardous constituents) Disposal/treatment cost for PPE drums (assumed haz to landfill)	Transport trailer(s) x 500 miles TSD @ \$90/drum TSD @\$250/drum	\$5.64 \$90 \$250	1000 96 5	\$5,640 \$8,640 \$1,250
Activity 5. Sub	ototal			\$25,112

0	11	2	12	n	2	2
\sim	, ,	_	_		_	_

6.	Activity CLOSURE CERTIFICATION	Category	Hourly Rate or Unit Charge	Unit	Subtotal Cost
	Assumptions: - Cost Pro unit rate per unit to be closed is \$4,118 - Unit rate includes engineer inspection and decontamination oversight of each unit				
	Prime Contractor Costs - Oversee and certify closure per unit times number of units	Project Manager/Engineer	\$4,118	3	\$12,354
	Activ	vity 6. Subtotal		_	\$12,354

A aki; iik c	Catagoni	Hourly Rate or	Hours or Unit	Subtotal Cost
Activity	Category	Unit Charge	Estimate	
COST ESTIMATE ACTIVITIES SUMMARY				
1. INVENTORY REMOVAL				\$44,879
2. STORAGE TANK DECONTAMINATION				\$17,831
3. DECONTAMINATE THE RETURN/FILL STATION				\$20,231
4. DECONTAMINATE CONTAINER STORAGE AREA(S)				\$12,643
5. CONTAINERIZE, STAGE, TRANSPORT AND DISPOSE OF DECONTAMINATION WASTES				\$25,112
6. CLOSURE CERTIFICATION				\$12,354
TOTAL CLOSURE COST ESTIMATE				\$133,051
Add Inflation factors from 2010 to most recent (updated for inflation from the latest version of CostPro	0 (6.0)			
2010			1.01	\$134,381
2011			1.01	\$135,725
2012			1.02	\$138,439
2013			1.017	\$140,793
2014			1.015	\$142,905
2015			1.014	\$144,905
2016			1.009	\$146,210
2017			1.013	\$148,110
2018			1.018	\$150,776
2019			1.022	\$154,093
2020			1.017	\$156,713
2021			1.012	\$158,594
###			1.041	\$165,096
TOTAL CLOSURE COST ESTIMATE WITH INFLATION				\$165,096
CONTINGENCY				15%
TOTAL CLOSURE COST WITH CONTINGENCY				\$189,860

Notes:

- Estimate assumes that waste management units are at permitted capacity at time of closure, which is the most expensive in the facility's operating life.
- All unit rates obtained from Cost Pro version 6.0, which is designed to be representative of 3rd party costs and includes the following:
- Transportation @ \$5.64/mile and 300 mile trip
- -Disposal for bulk liquids \$0.45/gallon based on suitability of waste mineral spirits as fuel
- -Disposal for CSA liquids \$90/drum based on suitability of drummed waste streams as fuel
- Disposal of decon wash water \$90/drum based on lack of hazardous constituents in waste (soapy water)
- -Subcontractor Decontamination Rate for tanks and return/fill based on PPE Level C
- -Subcontractor decontamination rates for tank containment, CSAs and Flam Shed (if applicable) based on PPE Level D
- -Prime Contractor Rates based on hourly rate for rinsate sampling, drilling and soil sample collection
- -Lab subcontractor rates for analysis of rinsate and soil samples (Assumes VOCs, SVOCs and metals)
- -Closure Certification Activity includes contractor oversight, PE integrity inspections and reporting/Certification

DEP F	orm # 62-730/900(4)(k)
Form 1	libe HW Certificate of Liability Insurance
	ve Date January 5, 1995
DEP A	nolication No.

STATE OF FLORIDA HAZARDOUS WASTE FACILITY CERTIFICATE OF LIABILITY INSURANCE

(Primary Policy)

1	Great	American Insurance Company	
of	30	Name of Insurer 1 E 4th St, Cincinnati, OH 45202	
hereby o	Safety-l	Address of Insurer ty insurance covering bodily injury a Kleen Systems, Inc. Name of Insured Longwater Drive, Norwell, MA 02061	and property damage to(the "Insured"), of
in conne	ection with the incured's obligat	Address of Insured ion to demonstrate financial respon	oibility under 40 CED 204 447
265.147, applies a	as adopted by reference in Sec	tion 62-730.180, Florida Administrati	ive Code (F.A.C.). The coverage
EPA	DEP I.D. No.	<u>Name</u>	Address
-	SEE ATTACHED LIST		
			3
			
for:	sudden accidental occurre nonsudden accidental occurre sudden and nonsudden accretage is for multiple facilities and the coveral lental occurrences, which are insured for non	urrences	facility(jes) are insured for sudden red for both.
		each occurrence and \$2,00	
	603235 02 issued on 11/1	sts. The coverage is provided unde 1/2022 The effective date of said	r policy number d policy is
2. Th	ne Insurer further certifies the fo	ollowing with respect to the insurance	ce described in Paragraph 1:
(a)	Bankruptcy or insolvency of t policy.	he insured shall not relieve the Insu	rer of its obligations under the
(b	a right of reimbursement by the does not apply with respect to	ryment of amounts within any deduction ne insured for any such payment ma o that amount of any deductible for v or 265.147(f), as adopted by referen	nde by the Insurer. This provision which coverage is demonstrated as
(c)	Whenever requested by the Se (FDEP), the Insurer agrees to tall endorsements.	ecretary of the Florida Department o furnish to the Secretary a signed du	f Environmental Protection plicate original of the policy and

- (d) Cancellation of the insurance, whether by the Insurer or the Insured, will be effective only upon written notice and only after the expiration of sixty (60) days after a copy of such written notice is received by the Secretary of the FDEP.
- (e) Any other termination of the insurance (e.g., expiration, non-renewal) will be effective only upon written notice and only after the expiration of thirty (30) days after a copy of such written notice is received by the Secretary of the FDEP.

I hereby certify that the wording of this instrument is substantially identical to the wording specified in 40 CFR 264.151(j), as adopted by reference in Section 62-730.180, F.A.C., as such regulation was constituted on the date first above written, and that the Insurer is licensed to transact the business of insurance, or eligible to provide insurance as an excess or surplus lines insurer, in one or more States including Florida.

Signature of Authorized Representative of Insurer

Heather Boyd

Type name

Assist Vice President, Enviornmental Division

Titte

Authorized Representative of

Great American Insurance Company

Name of Insurer

31 St. James Ave., Suite 830, Boston, MA 02116

Address of Representative

SAFETY-KLEEN SYSTEMS, INC.

STATE OF FLORIDA

505 Plumosa Drive Altamonte Springs, FL 32701

FLD097837983

5610 Alpha Drive Boynton Beach, FL 33426

FLD984167791

Georgia Street Delray Beach, FL 33444

1855 S.W. 4th Avenue B-11 Delray Beach, FL 33444

FLD000776757

8755 NW 95th Street Medley, FL 33178

FLD984171694

161 Industrial Loop South Orange Park, FL 32073

FLD980847214

79200 Peachland Blvd. Units 1-6 Port Charlotte, FL 33948-2166

FLD000776716

23375 Janice Avenue Port Charlotte, FL 33948

FLD000776716

600 Central Park Drive Sanford, FL 32771

FLD984171165

4426 Entreport Boulevard Tallahassee, FL 32310 FLD982133159

5309 24th Avenue South Tampa, FL 33619

FLD980847271

Manhattan Avenue Tampa, FL 33614

FLD049557408

359 Cypress Road Ocala, FL 34472

FLR000060301

2930 63rd Avenue Bradenton, FL 34203

FLR000120618

8985 Columbia Road Cape Canaveral, FL 32920

1400 NW 13th Avenue Pompano Beach, FL 33069 Part II

A. General

A.4.b-d Contingency Plan

See Part II PPP-CP section.

A. General

A.4.e Training – Introductory and Continuing

PERSONNEL TRAINING

This section of the permit application describes Safety-Kleen's training program. All position descriptions referenced may not be present at this facility. Training plan outlines, job descriptions, training content, frequency and techniques are described as well as the implementation of the training program. The information presented in this section is a representative example of employee training at Safety-Kleen. Variations in individual training may occur.

The purpose of Safety-Kleen's training program is to familiarize employees with environmental, health & safety, and transportation regulations, records, and emergency procedures so they will perform their activities in the safest and most efficient manner possible.

DESCRIPTION OF TRAINING PROGRAM

Each employee is trained to operate and maintain the branch service center safely, and to understand hazards unique to job assignments. Before starting work in their new positions at the Branch, each employee is required to complete initial regulatory training. Regulatory training for new employees may be given at the local branch where they will be assigned. This regulatory training is given via web-based classes (Webex instructor led & online learning modules). Introductory training will include an overview of the history of Clean Harbors/Safety-Kleen, products and services provided by the company, policies and benefits, HAZWOPER 24-hr., and USDOT Regulations Regarding the Safe and Legal Transport of Materials Designated as Hazardous. Branch Managers, Customer Service Managers, and

Account Managers will attend a Training class which provides an overview of RCRA regulations. Branch Managers, Customer Service Managers, Drivers (Sales and Service Representatives, Vacuum Sales and Service Representatives, Oil Sales and Service Representatives) will attend USDOT Federal Motor Carrier Safety Regulations Regarding Entry Level Driver Training. All new employees that may operate a company vehicle will attend a defensive driving training class. Upon completion of these introductory training classes, each employee will attend a RCRA Site Specific training class which covers RCRA regulations as they pertain to the Safety-Kleen Branch, overview of the hazardous waste operating permit, and contingency plan training review. New branch managers must complete a formal introductory training program before starting their job. This training involves working with an experienced Field Operations Manager at their respective branch, and possible travel to another Safety-Kleen branch to work with an experienced branch manager. New Sales and Service Representatives and all other hazardous waste employees must undergo a combination of classroom, online, and on-the-job training prior to working with hazardous waste. Material Handlers will undergo a combination of classroom, online, and on-the-job training prior to working with hazardous waste. Personnel involved in direct handling of hazardous waste do not work unsupervised until they have completed the entire initial hazardous waste training course. If and employee changes position, they will receive all training that pertains to that new position within 6 months before working unsupervised. All employees that handle and/or manage hazardous wastes will normally complete the introductory training program within the first month of employment. In addition, all employees will be trained to effectively respond to emergencies within 6 months after beginning employment, assignment to a facility, or to a new position, whichever is later, in accordance with 40 CFR Part 264.16(b).

Outline of Training Program

An outline of the training program given initially to employees who manage or handle Hazardous Waste at the Branch is presented in Table 6.1-1, found at the end of this section.

Job Title/Job Description

Job descriptions for employees who would be expected to manage or handle hazardous wastes are provided in Tables 6.1-2 through 6.1-11, found at the end of this section.

Training Content, Frequency, and Techniques

Employee training is accomplished using classroom, online, videotape, written, and on-the-job methods. All new employees whose responsibilities require 24-Hour Hazardous Waste Operations and Emergency Response (Hazwoper) training will receive this via web-based modules and will be required to review completion of these modules with their respective Health & Safety Manager. This training program provides a consistent and quality hazardous waste operations training program.

The training that a new operations employee will receive is divided into two parts.

- The first two weeks of employment will be spent attending web-based regulatory and company specific orientation training at the local branch they will be assigned to. The new employee will receive a company orientation, including a review of company benefits, and hazardous waste operations training (HAZWOPER 24-hr.), USDOT Regulations Regarding the Safe and Legal Transport of Materials Designated as Hazardous, Branch Technical Training (if applicable to position), Entry Level Driver Training (if applicable to position), and Defensive Driver Training (if operating a company vehicle).
- The second part of new employee training is site specific training. When the new employee completed their initial regulatory training and orientation, qualified individuals delegated by Branch management will complete facility specific training. This will include such things as permit requirements, emergency contingency plan training, location of emergency equipment, forklift training, operating manual pallet jacks/hand trucks for container movement, return/fill operations (if applicable to job position), etc. Sales and Service Representatives will receive additional online, and on-the-job training for servicing all types of parts washers, containerized waste service, manifest preparation, etc. Vacuum Sales and Service Representatives will receive additional online, and on-the-job training for vacuum service operations including truck operation while onloading materials and off-loading at the branch. Oil Sales and Service Representatives will receive additional online, and on-the-job training for collection of used oil, used antifreeze, truck operation while onloading materials and off-loading at the branch.

The job tasks a person performs will dictate the type of instruction required. The following presents the specific training requirements for new Safety-Kleen employees who will manage or handle hazardous waste.

<u>Training of New Branch General Managers:</u> New Branch Managers are trained for several weeks before they begin their new positions. This training is given on-the-job by Field Operations Managers, and experienced branch managers. During this training, the new manager reviews environmental records and learns the recordkeeping requirements. These records include: manifests, personnel records, training records, service center inspection records, and spill reports. At least eight hours of this initial training consists of an introduction to environmental regulations, and a review of the Part B, including the Waste Analysis Plan, Preparedness and Prevention Plan, Contingency Plan, Training Plan, and Closure Plan.

Training of New Customer Service Manager: The Customer Service Manager is responsible for administrative operations at the Branch and managing the Sales and Service Representatives. Training is on location in the form of periodic training topics. This training includes an introduction to environmental regulations (including the Resource Conservation and Recovery Act), health and safety issues, emergency response and inventory (including waste) reconciliation methods. Additional time is spent reviewing past environmental compliance at the facility. Also, while being trained at the Branch where they will be stationed, a new Customer Service Manager will review environmental records and learn the recordkeeping and inspection requirements. These records include: manifests, personnel records, training records, service center inspection records, and spill reports.

<u>Training of New Administrative Assistants (Secretaries):</u> Secretaries are trained in the proper recordkeeping procedures as soon as they begin working for Safety-Kleen. While they are not usually responsible for preparing the documentation, they must check it for accuracy and completeness and then process or file it as required. Additional training is overseen by Branch Manager and is done within six months of starting. This training is often presented in periodic training topics on emergency response, shipping documents (including manifests), drum labels, and other safety and environmental compliance issues.

<u>Training of New Sales and Service Representatives (SSR), Account Managers (AM):</u> These personnel are trained on-the-job by an experienced employee for two weeks, or more if needed.

Sales and Service Representatives will ride along with experienced SSR's during which they are introduced to parts washer services, containerized waste services, proper container labeling, container inspections, container movement, manifests/bill of ladings, load securement, and overall driving ability. Account Managers will work with experienced AM's visiting current, and potential customers to sell Safety-Kleen products and services, account set up, waste profiling, etc. Additional training is in the form of periodic health & safety training topics, environmental regulations and a review of the Contingency Plan.

Training of New Material Handlers: Material Handlers (MH) are trained on-the-job to maintain the branch in compliance with hazardous waste operating permit conditions, environmental regulations, and assist the other Branch employees in their tasks. They will be the primary personnel for loading trucks with products for delivery to customers, off-loading containerized wastes from tucks arriving at the branch, and moving this material into the proper storage areas. MH's will also be the primary personnel for the Return/Fill operations, and normally will be a designee to perform Branch inspections and must be trained by the Branch Manager or Environmental Compliance Manager for this task.

Continuing and Annual Training: On a continuing basis, employees are trained using the programs prepared and updated Health & Safety, Environmental Compliance, Transportation Compliance, and Training Departments which contain the topics in Table 6.1-12, found at the end of this section. This training includes: Hazwoper 8 hr. annual refresher, RCRA annual refresher, updates on environmental regulations, review of the Contingency Plan and a review of RCRA inspection criteria. This review is in the form of classroom instruction, videotapes, and a review and discussion of the Branch hazardous waste operating permit conditions. Training on USDOT Regulations Regarding the Safe and Legal Transport of Materials Designated as Hazardous will be conducted virtually every 3 years for employees requiring this class. In addition, periodic sessions on changes in environmental regulations are issued by the Environmental Compliance and Health and Safety Departments and must be attended by all Branch personnel.

Training Director

The training is directed by Clean Harbors/Safety-Kleen's Training Department. There are specific Environmental Compliance Managers, Health & Safety Managers, and Transportation

Compliance Managers responsible for compliance of the service centers in a given geographic area of the country. These compliance departments, in coordination with the facility, must:

- Provide a training program which addresses the requirements of all regulations and corporate policy.
- Notify the proper authorities, oversee remedial actions, and submit a written report to the state after an emergency situation has occurred;
- Assure that permits are submitted and updated as required;
- Manage any compliance issues which exceed the resources available at the service center level; and
- Participate in training new Branch employees and conducting annual refresher training.

Qualifications for individual staff members of the compliance departments who conduct training at the Branch are available upon request.

Relevance of Training to Job Position

Each employee is trained to operate and maintain the service center safely and to understand hazards unique to their job assignment. Safety-Kleen's training programs are designed to give employees appropriate instruction regarding the hazardous waste management procedures they will encounter in performing their respective duties. Since the handling of hazardous materials is a large part of the operations of the service center, all employees are given training in health & safety, transportation regulations, environmental regulations, and the Preparedness and Prevention, and the Contingency plans.

Training for Hazardous Waste Management

As described previously, all employees are trained in the aspects of hazardous waste management which are relevant to their position. This includes job-specific hazards, necessary precautions, emergency response, and proper recordkeeping. This training is given initially and updated annually.

Training for Contingency Plan Implementation

All employees are trained in Contingency Plan implementation, through initial training, and at yearly RCRA refresher courses. Employees are trained on the contents of the Contingency Plan as well as criteria for implementation.

Training for Hazardous Waste Operations and Emergency Response

All employees are trained in emergency response procedures through both initial Hazwoper 24-hr. training and Hazwoper 8-hr. annual refresher courses. The emergency training involves spill and fire prevention as well as remedial action procedures. Employees are also trained to recognize when evacuation and outside assistance may be necessary.

Training for Handling Mercury-Containing Lamps and Devices

As a registered transporter and storage facility for mercury-containing lamps and devices destined for recycling, the Branch has certified it has employee training procedure in place for the proper handling, emergency response, and containment/clean-up of its spent universal waste lamps, or devices. This training is given during the annual RCRA refresher.

Personnel Training Records

All personnel training is documented, and the documentation is kept on file at the Branch until closure for active employees, and three years for employees that have terminated their employment with Safety-Kleen. Documentation includes the training received, employee name, and the date of training.

TABLE 6.1-1

TYPICAL OUTLINE OF INITIAL TRAINING TOPICS

Day	Topic	SK Course Name
Monday	Welcome / Introductions/Ground Rules	Driver Training Essentials
•	Driver Qualifications	
	Driver Wellness	
	Whistleblower Protection	
	Hours of Service Regulations	
	Exempt Log Training	
	Pre & Post Trip Inspections	
	Load Securement	
	Vehicle Cone Program	
Tuesday	Welcome / Introductions/Ground Rules	HAZWOPER
	Regulatory Compliance	
	Hazard Recognition	
	Hazard Communication	
	Respiratory Protection	
Wednesday	Walking & Working Surfaces	HAZWOPER
	Patriot Act for Employees	
	Personal Protective Equipment	
	Decontamination	
	Toxicology	
	Medical Surveillance	
	Hearing Protection	
		III. GIVIODED
Thursday	Ergonomics Fire Prevention & Protection	HAZWOPER
	Lockout/Tagout Awareness Electrical Safety	
	Confined Space Awareness	
	Container Handling	
	Container Handring	
Friday	Introduction	Hazardous Materials Transportation Skills (HMTS)
	Definitions	
	D.O.T. Regulations	
	Hazard Classes	
	Hazardous Materials Table	
	Shipping Papers	
	Marking	
	Labeling	
	Placarding	
	Hazardous Materials Segregation	
	Packaging	
	Incidents	

Revision 0 - 09/20/2022

Day	Topic	SK Course Name
Friday (cont'd)	Load Securement	HMTS (cont'd)
Saturday	RCRA Regulations	Branch Technical Training
	Waste Material Profiling	
	Sampling Hazardous Materials	
	Shipping HazMat Samples via ground	

Job Description

Job Title: Branch General Manager
Department: Branch Sales & Service

Reports To: District Manager

FLSA Status: Exempt Approved By: SVP HR Approved Date: 01/29/07

Summary: The Branch General Manager is responsible for financial and operational management including: financial performance against quota or budget (P & L), EH&S compliance through the Environmental Management System (EMS), and operational management of the facilities and of the human resources.

Essential Duties and Responsibilities include but are not limited to the following.

- Manage the branch operations including hiring, training, and supervision of the staff.
- Manage sales and service staff in achieving customer retention, on-time service performance, and accounts receivable goals by: observing corporate operating guidelines, training and reinforcing critical service skills, and working to prevent and resolve customer service issues.
- Conduct inspections and ride-alongs with sales and service staff to ensure timely and effective servicing of customers' equipment.
- Profit or loss of the facility(ies) by focusing on building new business relationships and maintaining existing customer bases and satisfaction.
- Prepare branch sales/service forecast and budget.
- Knowledge of, and compliance with hazardous waste regulations, and RCRA permit
 conditions. Monitoring/supervising daily operations to assure performance is within regulatory
 guidelines. Health & Safety leadership to ensure compliance with OSHA regulations.
- Maintenance of branch fleet to company standards, assistance with branch incident alert and spill response systems, and control of branch inventory.
- Maximize collection of money at the time of service, collect on overdue accounts, and determine when to pull an account.
- Ensure that all branch customer service practices are conducted consistent with high ethical standards.

Supervisory Responsibility:

The Branch General Manager recommends hiring, training, scheduling, performance appraisal, promoting, compensation, corrective action and termination.

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required. Reasonable accommodations may be made to enable individuals with disabilities to perform the essential functions.

Education and/Or Experience: Minimum of High School diploma or (GED). Bachelor's degree preferred. At least 5 years experience in a sales and service organization.

Certificates, Licenses, Registrations: Class B CDL, Haz Mat, Air Brakes and Tankers endorsement.

Physical Demands: While performing the duties of this job, the employee must frequently sit for long periods of time, use the computer, as well as occasionally lift up to 25 pounds. There will also be some occasional need for bending, kneeling, or reaching.

Work Environment: While performing the duties of this job, the employee has some exposure to warehouse as well as outside weather conditions. The employee is occasionally exposed to wet and/or humid conditions; extreme cold; extreme heat.

Job Description

Job Title: Customer Service Manager

Department: Branch Services

Reports To: Branch General Manager

FLSA Status: Exempt Approved By: SVP HR Approved Date: 01/29/07

Summary: The Customer Service Manager is responsible for ensuring optimum customer service leading to retention and expansion of the branch business. Key responsibilities include supervising customer service staff, ensuring services are completed in a timely manner, and managing customer relationships.

Essential Duties and Responsibilities include but are not limited to the following.

- Manage the branch customer service functions including hiring, training and supervision of the sales and service representatives (SSR).
- Manage sales and service staff in achieving customer retention, on-time service performance, and accounts receivable goals by: observing corporate operating guidelines, training and reinforcing critical service skills, and working to prevent and resolve customer service issues.
- Conduct inspections and ride-alongs with sales and service staff to ensure timely and effective servicing of customers' equipment.
- Direct branch service scheduling and logistics to ensure on-time performance for all customers by aligning territories, defining routes, and managing associated paperwork.
- Exhibit knowledge of hazardous waste regulations and RCRA permit conditions. Monitor daily operations with respect to drivers to assure performance is within regulatory guidelines.
- Work with Branch General Manager (BGM) to ensure effective operation of the branch including maintenance and operation of branch fleet to company standards, assistance with branch incident alert and spill response systems, and control of branch inventory.
- Administer branch accounts receivable program to maximize collection of money at the time
 of service, collect on overdue accounts, and determine when to pull an account.
- Ensure that all branch customer service practices are conducted consistent with high ethical standards.

Supervisory Responsibility:

The Customer Service Manager recommends hiring, training, scheduling, performance appraisal, promoting, compensation, and termination.

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

Education and/Or Experience: High school diploma or (GED). 3-5 years experience and/or related training.

Certificates, Licenses, Registrations: Class B CDL, Haz Mat, Air Brakes and Tankers endorsement.

Physical Demands: While performing the duties of this job, the employee must frequently stand, walk, bend, use the computer, reach, squat, stoop and twist. The employee must frequently carry, lift, pull or push up to 50 pounds. The employee will occasionally drive a large truck.

Work Environment: While performing the duties of this job, the employee is frequently exposed to warehouse and outside weather conditions. The employee is occasionally exposed to wet and/or humid conditions; extreme cold; extreme heat.

Job Description

Job Title: Account Manager

Department: Sales

Reports To: District Sales Manager

FLSA Status: Exempt Approved By: SVP HR Approved Date: 01/29/07

Summary: The MSS will continually manage an account base outside of the ordinary service schedule. This position will also grow business internally and externally. The MSS will act as the primary point of contact for customers with questions / concerns / new business. This should be a motivated person who possesses consultative selling abilities and who is skilled at building long-term business relationships within the assigned sales territory.

Essential Duties and Responsibilities include but are not limited to the following.

- Completion of necessary paperwork (waste profiling, quotations etc).
- Communication with service, office, and warehouse staff.
- Build relationships with key buyers in territory.
- Assess current/potential business in existing accounts and create strategy to grow business.
- Analyze customer needs and design sales, customer service and account management processes to acquire and retain accounts.
- Prepare and deliver customer quotes and identify new solutions for customers
- Provide technical and sales assistance to customers.
- Serve as interface between customers and company by ensuring that customer needs are met and by handling customer complaints.
- Prepare sales plans and future period forecasts.
- Monitor and track sales plan to ensure sales quota is met; prepare regular status reports.
- Keep abreast of products, market conditions and competitive activities.

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

Education and/or Experience: Two years of college or specialized training (business or environmental) is required plus 1-3 years experience. Bachelor's degree plus coursework and certification is preferred. Alternative combinations of education and experience may be accepted in lieu of degree.

Competencies and Skills: Analytical, prioritization, organization, computer and leadership skills. Must be proficient working with spreadsheets as well as CRM software tools.

Physical Demands: While performing the duties of this job, the employee must frequently drive a car.

Job Description

Job Title: Branch Administrator
Department: Branch Services

Reports To: Branch General Manager

FLSA Status: Exempt Approved By: SVP HR Approved Date: 03/26/07

Summary: The Branch Administrator is an administrative position responsible for maintaining detailed and accurate company, branch, and customer files.

Essential Duties and Responsibilities include but are not limited to the following.

- Assembles packages of documents for Sales Representatives.
- Check Sales or Hazardous Waste documents turned in by Sales Representatives.
- Ensure proper completion of paperwork including manifests, and alert manager of errors.
- Provide customer service functions by responding to customer inquiries and/or complaints, handling or routing service questions, and solving problem accounts.
- Prepare Manual Forms, Manifests and LDR forms, as required.
- Distribute copies of service documents and manifests to customers, various Safety-Kleen locations, and to governmental agencies, as required.
- Contact customers delinquent in payment and coordinates pick-up of payments.
- Log wastes, adjusts service scheduling, prepares reports, completes MMVR reports and checks manifests for assigned territories.
- Provide other clerical support duties as requested.
- Exhibit knowledge of hazardous waste regulations with regard to daily branch responsibilities

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

Education and/Or Experience: High school diploma and six months+ related experience, and/or training.

Competencies and Skills: Customer Service, Attention to Detail, Recognize the importance of Safety, Time Management, Product Knowledge, Sense of Direction, and Organization skills.

Physical Demands: While performing the duties of this job, the employee must frequently sit at a work station using the computer.

Job Description

Job Title: Material Handler
Department: Branch Services

Reports To: Branch General Manager

FLSA Status: Exempt Approved By: SVP HR Approved Date: 03/26/07

Summary: The Material Handler works in the warehouse handling hazardous waste material using a forklift or other equipment.

Essential Duties and Responsibilities include but are not limited to the following.

- Loads finished product bulk shipments, and completes paperwork.
- Samples inbound bulk shipments and completes paperwork.
- Inventory and maintain loading and unloading areas.
- Prepares bulk wastes for shipment to other Safety-Kleen locations.
- Empties bulk into holding vessel.
- · Washes "used parts washer" drums in drum washer and fills clean drums with solvent.
- Shrink wraps containerized wastes, arranging the waste on the pallet so all labels are showing, and prepares the shipment for transportation to other Safety-Kleen locations.
- Checks all trucks for proper strapping of drums and that cargo doors are closed.
- Disassembles returned parts washing machines and prepares them for shipment to the DC.
- Completes daily/weekly facility inspection required by Part B Permit or by Safety-Kleen, as assigned by the Branch Manager.
- Monitors waste quantity and storage limits and notifies the Branch Manager if limits will be exceeded within 24-48 hours so action can be taken.
- Oversees retained sample program.
- Ensure dock, warehouse and return & fill areas are cleaned and organized at all times.
- Exhibit knowledge of hazardous waste regulations with regard to warehouse operations and permit conditions.

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

Education and/Or Experience: High school diploma and six months+ related experience, and/or training. Familiar with H.S.E. and M.S.D.S. for all product used and stored at the facility. Certified forklift operator. Certified in hazardous waste operations and emergency response.

Competencies and Skills: Customer Service, Attention to Detail, Recognize the importance of Safety, Time Management, Product Knowledge, Sense of Direction, and Organization skills.

Physical Demands: Exert up to 50 pounds of force occasionally, and/or up to 20 pounds of force frequently, and/or up to 10 pounds of force constantly to move objects. Stands and/or walks more than 4 hours a day. Hand Tools & Small Power Tools; Hand Truck/Dolly; Large Power Tools & Equipment, Forklift, Truck, Wench; Personal Protective Equipment.

Job Description

Job Title: Sales & Service Associate

Department: Branch Services

Reports To: Branch General Manager

FLSA Status: Exempt Approved By: SVP HR Approved Date: 01/29/07

Summary: The SSA is an entry level position responsible for learning how to service our parts cleaning machines and selling related products to customers on route.

Essential Duties and Responsibilities include but are not limited to the following.

- Receive manifests, labels, route schedule from office staff.
- Select, pull, and load needed inventory (empty drums, pig products, new machines, etc) for the day's customer visits as per route schedule.
- Perform daily truck check & complete truck check list form.
- Perform routine route.
- Properly label, scan, and document waste picked up from customer site.
- Present receipt to customer, as well as address any customer service issues or sales opportunities.
- Complete end of day paperwork.
- Perform equipment repair activities as needed.

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

Education and/Or Experience: High school diploma or (GED) and six months+ related experience, and/or training.

Certificates, Licenses, Registrations: Class C CDL and Haz Mat endorsement (or the ability to obtain)

Competencies and Skills: Mechanically Inclined, Customer Service, Attention to Detail, Recognize the importance of Safety, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

Physical Demands: While performing the duties of this job, the employee must frequently stand or walk and occasionally drive a large truck. The employee must frequently carry, lift, pull or push up to 50 pounds. The employee is occasionally required to reach, bend, kneel, squat, climb, stoop or twist; and talk or hear.

Job Description

Job Title: Sales and Service Representative

Department: Branch Services

Reports To: Branch Service Manager

FLSA Status: Exempt SVP HR Approved Date: 01/29/07

Summary: Services SK machines at customer sites, sells new products to existing customers, removes waste from customer sites and provides on-site customer service.

Essential Duties and Responsibilities include but are not limited to the following.

- Receive manifests, labels, route schedule from office staff.
- Select, pull, and load needed inventory (empty drums, pig products, new machines, etc) per route schedule.
- Perform daily truck check & complete truck check list form.
- Perform routine route
- Properly label, scan, and document waste picked up from customer site.
- · Present receipt to customer as well as address any customer service issues or sales opportunities.
- Complete end of day paperwork.

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

Education and/Or Experience: High school diploma or (GED) and six months+ related experience, and/or training.

Certificates, Licenses, Registrations: Class C CDL and hazmat certifications.

Competencies and Skills: Customer Service, Attention to Detail, Recognize the importance of Safety, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

Physical Demands: While performing the duties of this job, the employee must frequently sit, walk, stand, crawl or drive a truck. The employee must frequently carry, lift, pull or push 50 pounds or more. The employee is constantly required to reach, bend, kneel, squat, climb, stoop or twist; and talk or hear. The employee must constantly drive a large truck and/or move heavy equipment.

Job Description

Job Title: Oil Sales and Service Representative

Department: Branch Services

Reports To: Branch General Manager **FLSA Status:** Exempt/Non-Exempt

Approved By: SVP HR **Approved Date:** 01/29/07

Summary: The OSSR is responsible for safely and efficiently removing, transporting and delivering waste oil from customer facilities to Safety-Kleen oil recycling and refining centers.

Essential Duties and Responsibilities include but are not limited to the following.

- Receive manifests, labels & route schedule from office staff
- Perform Pre & Post Trip Inspection Report
- · Perform routine route.
- Properly label, scan and document waste oil removed from customer site into handheld.
 Present receipt to customer, obtain authorized signature, as well as address any customer service issues and sales opportunities.
- Complete end of day paperwork (any manifests, orders etc. that were not already in the handheld). Dock handheld for overnight upload.
- Ensure environmental compliance and operate vehicles in accordance with DOT, local, state and federal requirements

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

Education and/Or Experience: High school diploma or (GED) and six months+ related experience, and/or training.

Certificates, Licenses, Registrations: Class C CDL and Haz Mat endorsement and Tanker.

Competencies and Skills: Customer Service, Attention to Detail, Recognize the importance of, and adherence to, Safety regulations and policies, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

Physical Demands: While performing the duties of this job, the employee must frequently sit, walk, stand, crawl or drive a truck with reasonable accommodations. The employee must frequently carry, lift, pull or push 50 pounds or more. The employee is constantly required to reach, bend, kneel, squat, climb, stoop or twist; and talk or hear. The employee must constantly drive a large truck.

Job Description

Job Title: OIL/VAC Sales and Service Rep.

Department: Branch Sales & Service **Reports To:** Branch General Manager

FLSA Status: Exempt SVP HR Approved Date: 10/2/06

Summary: This position combines the Oil & Vac routes and depending on the service will require the employee to remove waste fluid our customers (VSSR Route). This involves using vacuum equipment to pump waste materials and liquid from oil-water separator pits, as well as transporting & delivering the waste material to Safety-Kleen disposal sites. Or, it will require the employee to remove, transport and deliver waste oil from customer facilities to Safety-Kleen oil recycling and refining centers (Oil Route). Reports to CSM or BGM.

Essential Duties and Responsibilities include the following. Other duties may be assigned.

- Receive manifests, labels & route schedule from office staff
- Perform Pre & Post Trip Inspection Report
- Perform route: (drive to customer location, ensure each service meets the used oil or vac waste qualifications, take sample of each oil or vac service & place in retain sample storage area, pump waste oil or waste materials & liquid from oil-water separator pits from customer facilities to Safety-Kleen oil recycling & refining centers or Safety-Kleen disposal site).
- Properly label, scan and document waste oil (oil service) or waste materials & liquids (vac service) removed from customer site into handheld. Present receipt to customer, obtain authorized signature, as well as answer any customer service issues.
- Complete end of day paperwork (any manifests, orders etc. that were not already in the handheld). Dock handheld for overnight upload.
- Ensure environmental compliance and operate vehicles in accordance with DOT, local, state and federal requirements.

Sales Responsibilities:

Focus is all customer types within a particular region or territory for new and existing accounts.

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required. Reasonable accommodations may be made to enable individuals with disabilities to perform the essential functions.

Education and/Or Experience: High school diploma or (GED). No experience necessary. **Certificates, Licenses, Registrations:** CDL and Haz Mat endorsement and Tanker. **Competencies and Skills:** Customer Service, Attention to Detail, Recognize the importance of, and adherence to, Safety regulations and policies, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

Physical Demands: While performing the duties of this job, the employee must frequently kneel and stoop and constantly bend, climb, reach and twist. The employee must constantly carry, lift and pull up to 50 pounds. The employee must constantly drive a large truck and occasionally move equipment. Job will use right and left hands for repetitive movement such as Simple Grasping and Pushing/Pulling. Job will use right hand for repetitive movement such as Fine Manipulation. Job will use feet for repetitive movement such as foot controls.

Job Description

Job Title: Vacuum Sales and Service Representative

Department: Branch Services

Reports To: Branch General Manager FLSA Status: Exempt/Non-Exempt

Approved By: SVP HR **Approved Date:** 01/29/07

Summary: The VSSR provides waste fluid removal services to our customers. This involves using vacuum equipment to pump waste materials and liquid from oil-water separator pits, as well as transporting & delivering the waste material to Safety-Kleen disposal sites.

Essential Duties and Responsibilities include but are not limited to the following.

- Receive manifests, labels & route schedule from office staff
- Perform Pre & Post Trip Inspection Report
- Perform routine route and associated daily activities.
- Properly label, scan and document waste materials & liquids removed from customer site.
- Present receipt to customer, obtain authorized signature, as well as answer any customer service issues.
- Complete end of day paperwork.
- Ensure environmental compliance and operate vehicles in accordance with DOT, local, state and federal requirements.
- Ensure strict compliance to Branch SOP's.
- Exhibit knowledge of used oil regulations with respect to responsibilities

Qualifications: To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required.

Education and/Or Experience: High school diploma or (GED) and six months+ related experience, and/or training.

Certificates, Licenses, Registrations: Class C CDL and Haz Mat endorsement and Tanker.

Competencies and Skills: Customer Service, Attention to Detail, Recognize the importance of, and adherence to, Safety regulations and policies, Time Management, Product Knowledge, Sense of Direction, Knowledge of Hazardous Waste, and Organization skills.

Physical Demands: While performing the duties of this job, the employee must frequently sit, walk, stand, crawl or drive a truck with reasonable accommodations. The employee must frequently carry, lift, pull or push 50 pounds or more. The employee is constantly required to reach, bend, kneel, squat, climb, stoop or twist; and talk or hear. The employee must constantly drive a large truck.

TABLE 6.1-12

CONTINUING TRAINING TOPICS FOR BRANCH EMPLOYEES

- Hazard Communication Safety Training
- Hazard Communication regarding SDSs
- Preventing Injury and Illness
- Hazardous Materials Regulations
- Waste Analysis Plan
- Preparedness, Prevention, and Contingency Plan
- Respirator Fit Testing, and Training
- Generator Requirements
- Hazardous Waste Paperwork Manifests, BOL, Labeling, etc.
- Initial RCRA training & annual RCRA refresher training hazardous waste permit conditions, container and storage tank regulations, used oil training, universal waste training, manifest requirements, recordkeeping, and hazardous waste determination are included in the initial and annual RCRA training.

Part II, A. General

5. WASTE CHARACTERISTICS

Waste analysis requirements mandate that before an owner or operator transfers, treats, stores, or disposes of any hazardous waste, he must obtain a detailed chemical and physical analysis of a representative sample of wastes. This analysis, at a minimum, must contain all of the information that must be known to treat, store, or dispose of the waste. The analysis may include data developed under 40 CFR 261 of the regulations and existing published or documented data on the hazardous waste or on hazardous waste generated from similar processes. The Waste Analysis Plan for the Safety-Kleen Medley Branch, found in Part II.WAP, has been developed to meet the requirements described above and as found in 40 CFR 270.14(b) and 264.13.

Permitted/Site Generated Waste Streams

Waste Type	Process Code(s)	Estimated Annual Amounts (Tons)	Waste Codes
Spent Parts Washer Solvent	S01* S02**	542	D001 and D-Codes Listed in Note Below
Branch Generated Liquids/Solids (Debris)	S01*	6	D001 and D-Codes Listed In Note Below; F002, F003, F005
Dumpster Sediment	S01*	Included Above	D001 and D-Codes Listed in Note Below
Tank Bottoms	S01*	Included Above	D001 and D-Codes Listed in Note Below
Used Immersion Cleaner (#699)	S01*	21	D-Codes Listed in Note Below
Dry Cleaning Waste (Perchloroethylene)	S01*	234	F002 and D-Codes Listed in Note Below
Dry Cleaning Waste (Naphtha-Based)	S01*	Included above	D001 and D-Codes Listed in Note Below
Paint Wastes	S01*	46	D001, F003, F005 and D- Codes Listed in Note Below
Retain Samples From Used Oil Operations	S01*	3	D008, D018, D039, D040
Spent Aerosol Cans	S01*	< 1	D001, D035
Fluid Recovery Service (FRS) Transfer Wastes	S01***	167	Transfer wastes – waste codes assigned by generator ****
Aqueous Brake Cleaner	S01***	14	Transfer wastes – none, unless assigned by generator
Mercury-Containing Lamps/devices	N/A***	Less than 2.2	N/A – handled as non- hazardous transfer wastes

NOTES:

D-Codes: D004, D005, D006, D007, D008, D009, D010, D011, D018, D019, D021, D022, D023, D024, D025, D026, D027, D028, D029, D030, D032, D033, D034, D035, D036, D037, D038, D039, D040, D041, D042, D043

- * This waste will be stored in containers in the warehouse container storage area. The maximum capacity in the warehouse container storage area is 29,400 gallons, with 6,912 gallons being hazardous waste..
- ** The RCRA-Permitted Hazardous Waste Tank (Used Solvent) has a capacity of 20,000 gallons and may be filled up to 19,000 gallons.
- *** This waste will be held for transfer in containers in the transfer area(s). There is one transfer waste area Located inside the warehouse adjacent to the container storage area
- **** Various D-Codes, F-Codes, K-Codes, P-Codes, U-Codes may be accepted for 10-day storage and transfer

CHEMICAL AND PHYSICAL ANALYSIS

270.14(b)(2)

264.13(a)

Used materials generated by Safety-Kleen customers are the primary feedstock for the generation of Safety-Kleen recycled solvent products. As a result, quality control of the used materials is necessary to monitor product quality and regulatory consistency. The Medley facility collects used materials from numerous customers, many of whom are Very Small and Small Quantity Generators (VSQGs and SQGs).

Most of the materials collected at the Service Center are managed in a closed-loop system and are collected from companies with a single process (i.e., washing oily parts, dry-cleaning, or painting). The composition and quality of these materials are known, and Safety-Kleen's operating experiences have shown that the collected materials rarely deviate from company specifications.

Analysis of Safety-Kleen's core/permitted waste streams is undertaken each year through the Annual Recharacterization Program (AR). The AR program involves representative samples being taken from customer core waste streams, randomly selected after being returned to the branches, at approximately 30-35 Safety-Kleen branches across the country. Representative samples of common waste streams generated at Safety-Kleen branches are also taken and submitted for analysis as part of the AR program. Samples are sent to an independent laboratory for analysis (TCLP metals, volatiles, semi-volatiles, flash point, and pH). The results of the analyses are then tabulated for all participating Safety-Kleen Branches to provide a cross-sectional view of the waste characteristics associated with the closed-loop or industry-specific waste streams. Then the results are subjected to a statistical review to determine applicable EPA hazardous waste codes for the upcoming year. A summary and explanation of the statistical analysis and methodology utilized to evaluate the analytical data obtained through the AR program each year is included in Part II WAP section. A summary of the analyses for the AR program is found in Appendix B.

Descriptions of Permitted Waste Streams Wastes Resulting from Solvent-Based Parts Washer Service

Used parts washer solvent from parts washer services at Safety-Kleen customers is accumulated in a 20,000-gallon aboveground storage tank (RCRA-Permitted Hazardous Waste Tank (Used Solvent) via the wet dumpster in the Return and Fill Shelter (R/F). Containers of used solvent are poured into a drum washer unit (wet dumpster) at the R/F which in turn empties into the tank. The appropriate waste codes will be based on Safety-Kleen's Annual Recharacterization (AR) study. This waste handling method results in three types of parts washer solvent-based waste:

- 1. <u>Used Parts Washer Solvent</u> which may include any of Safety-Kleen's petroleum-naphtha based products, is removed from the RCRA-Permitted Hazardous Waste Tank (Used Solvent) by a tanker approximately every 20 working days. For appropriate waste codes, see the Table above in this section. The Medley facility will ship used parts washer solvent to a permitted Safety-Kleen/Clean Harbors TSDF or other facility appropriately permitted to accept the waste for reclamation. The used parts washer solvent removed from the bulk tank is a homogeneous material as no other waste streams are placed in the bulk tank.
- 2. <u>Solvent Tank Bottoms</u> includes sediment and other heavy material that has accumulated at bottom of the RCRA-Permitted Hazardous Waste Tank (Used Solvent). Periodically it is necessary to remove this material when the accumulation impacts or may impact the ability to pump liquid solvent from the bottom outlet of the tank. The frequency of removal of the tank bottoms varies, dependent on the amount of suspended solids in the used solvent that settle during tank storage. Bottoms are typically removed by suction/vacuum truck and transported for offsite disposal. Typically, removal may be required every three-five years. For appropriate waste codes, see the Table above in this section.
- 3. Branch Generated Liquids/Solids/Dumpster Sediment In the course of day-to day operations, the Branch generates waste associated with sampling customers' waste and branch activities. Such wastes may include wipes, gloves, etc. In addition, liquid wastes may be generated as a result of decontaminating sampling equipment. The dumpster sediment chemical composition is analogous to that of the solvent tank bottoms. These containers are stored in the container storage area. The facility ultimately ships these materials to a permitted Safety-Kleen/Clean Harbors TSDF or other permitted facility for disposal. This waste stream is not sampled/analyzed, a "worst case scenario" is assumed. For appropriate waste codes, see the Table above in this section.

4. System One Type Parts Washers (recycling units) – These types of parts washers build up oil/sludge in the distillation unit of the machine while in use at the customer's location. This material is not sampled/analyzed as part of SK's annual re-characterization program and is managed according to the customer/generator waste determination. If a generator is a VSQG, SK recommends that they place this material in their used oil, if they are a generator of used oil.

Immersion Cleaner (IC) is another type of parts washer solvent. This product is a heavy aromatic naphtha, N-methyl-2-pyrrolidinone, dipropylene glycol methyl ether, monoethanolamine and oleic acid, and may contain a maximum of 1 percent chlorinated compounds. Containers of used IC are stored in the container storage area or transfer area. The Immersion Cleaner remains in the container in which it was originally delivered to the customer in until it is received at a permitted SK/Clean Harbors TSDF for reclamation/disposal. For appropriate waste codes, see the Table above in this section.

Wastes Resulting From the Dry Cleaner Service

Safety-Kleen manages naphtha-based, and perchloroethylene-type of hazardous dry cleaner waste in the container storage area or transfer waste area. This waste can have three forms: bottoms, filters, and separator waters. These wastes are packaged on the customers' premises in containers meeting U.S. DOT specifications. When received at the facility, the perchloroethylene, and naphtha-based non-perchloroethylene dry cleaning containers are placed in the container storage area or transfer waste area. Dry cleaning wastes remain in the containers received from the customer until received at the designated, permitted Safety-Kleen/Clean Harbors TSDF, or other appropriately permitted facility.

The dry-cleaning process may produce three waste streams:

1. <u>Filter Cartridges</u> are generated as waste when they can no longer effectively filter the solvent in the chamber. In addition to the filter materials of construction consisting of steel, paper, clay, and carbon, the used cartridge retains solvent, oil and grease, lint, hair, and soil. Solvent retained in the filter cartridge generally amounts to less than 50 percent of the total cartridge weight. Dry cleaner filters are given the same waste codes as the associated dry cleaner bottoms because both streams are derived from the same source.

- Designating the same codes for the filters as were used for the bottoms is a conservative approach. A representative filter sample is difficult to obtain because of the make-up of the filter (metal core) and obtaining the sample would involve dismantling of the filter and undue exposure to the dismantler.
- 2/3. Still Bottom Residue and Separator Water are generated after filtration and distillation at the generator to remove the dissolved materials from the used solvent. The dissolved materials (still bottom residues) are in liquid form and consist primarily of solvent, oil, grease, hair, dirt, and water. In some cases, the dry cleaner will separate the water condensate from the still residue. Water condensate, generated during the distillation process, may contain dry cleaning solvent, oil, grease, and dirt as well. The dry-cleaning separator water will be given the same waste codes as the associated bottoms with the omission of D007 because chromium is not expected to carry over into the separator water during the distillation process (i.e., the boiling point of chromium is much greater than the operating temperature of the distillation unit). For appropriate waste codes see the Table above in this section.

Wastes Resulting From Paint and Thinner Services

Paint wastes consist Safety-Kleen lacquer thinner and paint residues resulting from cleaning of the paint guns by the generator. There are primarily three waste streams from this service: Paint Gun Cleaner, Clear Choice® Paint Gun Cleaner, and paint waste-other. Safety-Kleen thinners are used during the generation of the first two waste streams.

- 1. Paint Gun Cleaner is a paint gun cleaning lacquer thinner containing a blend of solvents such as acetone, alcohols, ketones, toluene, xylene, and acetate compounds. These have primary waste codes of D001, F003 and F005. These are contaminated with lower levels of waste paint, as the gun cleaning machine is removing it from the paint sprayer during the cleaning operation. Safety-Kleen's core paint waste is typically recycled and fuel blended. Reference the table above in this section for other applicable waste codes.
- 2. Clear Choice Paint Gun Cleaner is acetone, so the F005 waste code does not apply to this waste stream. Other applicable waste codes are D001 and F003. The two Paint Gun Cleaner streams share the same AR data because the waste streams are similar due to the identical process generating the wastes. Reference the table above in this section for

other applicable waste codes.

3. Paint Waste Other consists of the same material as the Paint Gun Cleaner, but has a higher level of paint solids, as this comes from the dumping of left-over paint from paint cups and guns when all the paint in a paint gun is not used. During the process creating this waste, typically smaller volumes of thinner are in the waste so these drums are fuel blended or incinerated rather than recycled for their solvent value. The primary waste codes are D001, F003 and F005. Reference the table above in this section for other applicable waste codes.

The paint wastes described above are collected in containers from the customer's location meeting U.S. DOT specifications. The wastes are containerized by the generator at their place of business. The paint wastes remain in these containers and are stored in the container storage area while at the SK Medley branch. Paint wastes are then shipped to a permitted Safety-Kleen/Clean Harbors TSDF, or other properly permitted facility for disposal.

Branch Generated Retain Samples From Used Oil Operations

Used Oil/Oily Water Retain Samples are taken and maintained for every used oil/oily water service SK performs. This is to ensure that we can identify any customers who introduce contaminants (halogenated solvents or PCBs) into our used oil/oily water loads. At the time the retain sample is taken at the customer location, the driver is able to check the material for appearance (used oil mixed with fuels may cause the material to have a thinner/lighter appearance), unusual odors, and viscosity (used oil mixed with fuels would have a noticeably lower viscosity and flow more easily into the sample jar). These retain samples are kept for a minimum of 90 days at the branch in metal cabinets in the warehouse, and then disposed of as hazardous waste. The samples are typically 4-oz. plastic/glass jars. They are manually placed into 55-gallon containers, and properly labeled for disposal. These containers are stored in the container storage area until being sent to a permitted Safety-Kleen/Clean Harbors TSDF, or other properly permitted facility for disposal. Waste codes for this material are found in the table above in this section.

Branch Generated Aerosol Cans

Spent Aerosol Cans: From time to time the facility generates spent aerosol cans during operations. These cans are accumulated in a satellite accumulation container (30 or 55 gallon) at the facility. Once this container is full it is moved to the container storage area until being sent to a permitted Safety-Kleen/Clean Harbors TSDF, or other properly permitted facility for disposal. Waste codes (D001/D035) for this material are found in the table above in this section.

Used Antifreeze

The spent antifreeze (ethylene glycol) is collected from automobile service stations. All antifreeze is collected by Safety-Kleen with the intent of it being recycled. At the customer's location, Safety-Kleen pumps waste ethylene glycol (antifreeze) into a Safety-Kleen used oil tanker truck. This truck transports the used antifreeze (glycol) to the Medley branch, for off-loading into dedicated storage tanks. The comingled material (used antifreeze/used oil) is sent to the SK East Chicago re-refinery where the ethylene glycol is separated by distillation. The glycol is then sent to a recycler for processing into a pure product which is then sold on the open market. This procedure is in accordance with FDEP's the Best Management Practices for Managing Used Antifreeze at Vehicle Repair Facilies, dated May 22, 2012. The Florida Department of Environmental Protection (FDEP) has determined this waste stream can be handled as nonhazardous as long as it is destined for recycling. If used antifreeze collected by the Safety-Kleen Medley facility is sent to a facility other than the East Chicago re-refinery it will be managed as follows. The material will be segregated and off-loaded into a separate storage container/tote, then sampled and analyzed for glycol percentage. If the glycol percentage is acceptable it is sent to a recycler. If the glycol percentage is not acceptable a representative sample will be taken and sent for TCLP analysis to determine if it is a hazardous waste. It will be managed properly according to the TCLP analysis result. In addition, Safety-Kleen sells its' own private label antifreeze in 55-gallon containers. Customers will then place used antifreeze in these containers to be shipped back to the branch. This material is then shipped to SK distribution centers, and then shipped to a recycler.

Aqueous Brake Cleaner

The Aqueous Brake Cleaner (ABC) is an aqueous, alkaline concentrated cleaner diluted with water (4¾ gallons of water is mixed with ¼-gallon of concentrated aqueous cleaner). The ABC parts cleaner has a 5-gallon reservoir under the cleaning vat that provides the aqueous solution for cleaning. The spent ABC is transported from the customers in 5-gallon suitcase type containers. Spent aqueous brake cleaner that is non-hazardous is sent to a waste-water treatment facility for processing. If a customer (generator) assigns any hazardous waste code to the spent ABC, the material is managed as a 10-day transfer waste and sent to an appropriate Safety-Kleen/Clean Harbors TSDF for processing.

Fluid Recovery Services (FRS) 10-Day Transfer Wastes

Fluid Recovery Services (FRS) is a program managed by the Safety-Kleen Branch to collect and transfer various other hazardous wastes to the appropriate Safety-Kleen/Clean Harbors TSDF's for processing. Non-hazardous Containerized Waste Services (CWS) are also performed under this program. FRS wastes that are RCRA hazardous wastes are managed as 10-day transfer wastes. Examples of types of wastes that may be received under this program include:

- Spent hydrocarbon distillates, such as waste fuel, oil, petroleum-naphtha, etc.;
- Lubricating oils, hydraulic oils, synthetic oils, and machine oils, used antifreeze;
- Industrial halogenated solvents such as 1,1,1-trichloroethane, tetrachloroethylene, Freon, trichloroethylene, carbon tetrachloride, etc;
- Non-halogenated solvents such as cresols, nitrobenzene;
- Photographic and x-ray related wastes;
- Paint and lacquer thinners, acids/bases;
- Various returned/damaged/expired products from national retail chains. These are typical household products that may care U codes due to being unused commercial chemical products;
- Other hazardous and non-hazardous halogenated and non-halogenated wastes.

Mercury Containing Lamps and Devices & Batteries

Mercury-containing lamps and devices are another type of waste handled by the Branch. All mercury-containing lamps/devices are managed in accordance with the Standards for Universal Waste Management found in 40 CFR Part 273. As part of its protocol for handling mercury-containing lamps and devices, the Branch provides customers with four-foot and eight-foot boxes which hold up to 39 lamps. The boxes are picked up at customer locations and are stored at the Branch in the transfer waste storage areas. These containers are labeled in accordance with 62-737.400 (5)(b), Florida Administrative Code (FAC). The boxes are periodically shipped to a permitted mercury recovery or reclamation facility.

Safety-Kleen handles all types of batteries. All applicable batteries, per 40 CFR Part 273.2 & 273.9, are managed in accordance with the Standards For Universal Waste Management found in 40 CFR Part 273. Batteries not meeting those standards may be managed as 10-day transfer waste.

270.15(b)(1) Waste Compatibility with Containers 264.172

It is Safety-Kleen's standard operating procedure to use containers made of, or lined with, materials that will not react with, and are otherwise compatible with, the hazardous waste to be stored so that the ability of the container to contain the waste is not impaired.

Safety-Kleen manages a limited number of permitted waste streams, most are liquid, and most originate from new products that are supplied to its customers in the original DOT approved containers. Safety-Kleen has evaluated the chemical composition of these products and wastes and has determined that the wastes are compatible with the containers in which they are stored.

Note: None of the permitted waste streams carry the D002 waste code for corrosivity. In most cases where a container is not available from a Safety-Kleen-supplied product, Safety-Kleen supplies the customer with a DOT approved container for that waste type (e.g., when Safety-Kleen collects Dry Cleaning wastes).

270.16(a), 264.190(a) Waste Compatibility with Tank System 264.191(b)(2), 264.192(a)(2)

The only hazardous waste stored in the RCRA-Permitted Hazardous Waste Tank (Used Solvent) is used parts washer solvent. This material has been analyzed and found to be compatible with the steel tank in which it is stored.

Waste in Piles, Waste on Drip Pads

Safety-Kleen's Medley facility does not have any of these processes on site. Therefore; these sections do not apply.

Part II

- A. General
- 6. Waste Analysis Plan (WAP)

The waste analysis plan (WAP) for the Safety-Kleen Medley facility is found in the Part II WAP section.

Part II

- A. General
- 7. 264.12 Required Notices, 264 Subpart E Manifest System, Recordkeeping, and Reporting Waste Manifests

Appropriate shipping papers/manifests are used, based on the monthly quantity of hazardous waste generated by the customer. Safety-Kleen services all three categories of generators in Florida – Very Small Quantity Generators (VSQGs), SQGs, and LQGs. VSQG's used parts washer solvent is removed via a service document/bill of lading and no manifest or Land Disposal Restrictions (LDR) form is required. Appropriate records are kept by the Branch as to the date of waste pick-up, quantity, and other data on the service document. A hazardous waste manifest and LDR form is completed for each SQG. LQGs' used parts washer solvent is always manifested (if hazardous) and an LDR form completed.

Used parts washer solvent (from each Safety-Kleen customer, regardless of generator status) is brought back to the Branch and dumped into the wet dumpster at return/fill shelter and pumped to

the RCRA-Permitted Hazardous Waste Tank (Used Solvent). This tank contains the used parts washer solvent of many customers and is managed as hazardous waste. The contents are regularly sent via tanker truck to the recycle center in Lexington, SC. These loads are always manifested and accompanied by an LDR form. Shipments of parts washer solvent dumpster mud are also manifested accordingly. Required records are kept at the Branch and the recycle center in accordance with regulatory timeframes.

In accordance with 40 CFR 264.71 through 77, Safety-Kleen will ensure that:

- 1. Customers who are required to provide a manifest do so;
- 2. The manifests are prepared and signed properly; and
- 3. Copies are distributed and kept on file, as required.

In addition, discrepancies must be remediated in accordance with 40 CFR 264.72 and unmanifested wastes will be reported as described under 40 CFR 264.76.

Required Notices

If Safety-Kleen arranges to receive hazardous waste from a foreign source, the Regional Administrator must be notified in writing at least four weeks in advance of the date the waste is expected to arrive at the facility. Notice of subsequent shipments of the same waste from the same foreign source is not required. Safety-Kleen informs its customers in writing (i.e., on each service document) that the facility has the appropriate permit(s) for, and, will accept the waste the generator is shipping. Safety-Kleen keeps a copy of this written notice as part of the operating record.

Before transferring ownership or operation of this facility during its operating life, Safety-Kleen will notify the new owner or operator in writing of the requirements of Part 264 and Part 270 of Chapter 40 in the Code of Federal Regulations.

Biennial reports required by Chapter 62-730.180(4) FAC, will be prepared and submitted by Safety-Kleen, and these records will also be available at the facility for review. The biennial report will be submitted to the Regional Administrator and/or FDEP by March 1 during each even year (1990 being the first year) on EPA form 8700-13B. The report will cover facility activities during the previous calendar years and will include:

• The EPA identification number, and address of the facility;

- The calendar years covered by the report;
- The method of treatment, storage, and disposal for each hazardous waste; and
- A certification signed by the owner or operator of the facility or the authorized representative.

Operating Record

An operating record which contains the information required under 40 CFR 264.73 is maintained and all records and logs are available at the facility, in accordance with 40 CFR 264.74. An electronic copy of the operating record is retained at the facility to comply with 40 CFR 264.73(b).

The following information will be maintained in writing in the operation record for the facility:

- A description and quantity of each hazardous waste received;
- The date and storage method for such hazardous waste;
- The location of each hazardous waste stored within the facility;
- Records and results of waste analyses performed;
- Summary reports and details of all incidents that require implementation of the contingency plan;
- Monitoring, testing, or analytical data, and corrective action where required by Subpart F and other applicable sections of 40 CFR 264;
- All closure cost estimates under 40 CFR 264.142 and all contingent post-closure cost estimates under 40 CFR 264.144;
- Records of quantities and date of placement for each shipment of hazardous waste placed in land disposal units under an extension to the effective date of any land disposal restriction granted;
- For any restricted waste generated that can be land disposed without further
 treatment, and is sent to a land disposal facility, a notice and certification will be
 sent to the treatment, storage, or land disposal facility with the waste. The notice
 will state that the waste meets the applicable treatment standards set forth in
 Subpart D of 40 CFR 268 and applicable prohibitions set forth in 40 CFR 268.32
 or RCRA section 3004(d). The notice will include the following information:
 - 1. EPA Hazardous Waste Number; and

- 2. The corresponding treatment standards and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d).
- Training records, inspection reports, waste minimization certifications, closure plan, and Corrective Action Documents.

Further, the LDR certification will be signed by an authorized representative and will state the following:

I certify under penalty of law that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d). I believe that the information I submitted is true, accurate, and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.

Section 264.74 requires that all records, including plans, must be furnished upon request to duly designated representative of the Regional Administrator, and this requirement will be honored. A copy of all records of waste disposal locations and quantities will be submitted to the Regional Administrator and/or FDEP upon closure of the facility, if applicable.

As a registered transporter and storage facility for mercury-containing lamps and devices destined for recycling, the Branch complies with the record keeping requirements of FAC 62-737.

Land Ban Notification/Certification Forms

In accordance with 40 CFR 268.7, Safety-Kleen will provide notification/certification for wastes banned from landfills as follows:

- 1. Special forms for each regularly handled wastes types (e.g., parts washer solvent, immersion cleaner, and percholoroethylene); or
- 2. A general form that must be completed for unique or nonstandard waste streams.

The notice is required paperwork for the streams handled by Safety-Kleen. When a shipment with the notice is received, the notice is kept in the files of the receiving facility with the manifest or with the pre-print if a manifest is not used.

The facility will comply with the RCRA permitting conditions found in 40 CFR Part 270.30(I)(1) 270.30(I)(2), and 270.30(I)(6). The facility will comply with the recordkeeping requirements found in 40 CFR Part 264.1064 and 264.1089.

Part II

A. General

8. 40 CFR Part 270.3

The Federal laws found in 40 CFR Part 270.3 do apply to Safety-Kleen although they do not appear to be applicable at this time.

Tab 3

Part II

Preparedness, Prevention, Contingency Plan, and Emergency Procedures for Daily Business Operations

SAFETY-KLEEN SYSTEMS, INC. MEDLEY FACILITY

PREPAREDNESS, PREVENTION, CONTINGENCY PLAN, AND EMERGENCY PROCEDURES FOR DAILY BUSINESS OPERATIONS

TABLE OF CONTENTS

EMERGENCY CONTACT LIST	iii
QUICK REFERENCE GUIDE	QRG 1-QRG 8
GENERAL INFORMATION	3
DESCRIPTION OF ACTIVITIES	3-6
INSPECTION PROCEDURES	7-9
EMERGENCY NOTIFICATION	9
ACTIONS OF THE EMERGENCY COORDINATOR	9-12
POTENTIAL SPILL SOURCES (ACTIONS/PROCEDURES)	13-19
DECONTAMINATION	19-20
EMERGENCY RESPONSE EQUIPMENT/COMMUNICATION	20-21
FIRE CONTROL PROCEDURES	21-23
EXTERNAL EMERGENCY FACTORS	23-25
EVACUATION PLAN	25
AVAILABILITY/REVISION OF THE PLAN	26
ARRANGEMENT WITH LOCAL AUTHORITIES	26-27

Revision Date: 9/20/2022

Safety-Kleen Medley, FL Emergency Coordinator Phone Numbers

Primary: Daniel Vilarchao Alternate: Bo Adams

14356 SW 159th St.

Miami, FL 33177

Office (305) 507-5499

Cell (305) 613-5230

2120 NW 30th Way

Ft. Lauderdale, FL 33324

Office (305) 507-5499

Cell (786) 778-6375

Emergency Notification Numbers

Safety-Kleen's 24 Hour Emergency Response Reporting System: (800) 468-1760

Florida DEP- Southeast District: (561) 681-6600 (Monday-Friday, 8:00 am to 5:00 pm except Holidays)

After Hours, please call FDEP Office of Emergency Response (561) 681-6767 or State Watch Office (800) 320-0519

If you are unable to contact the DEP at the above, please call: National Response Center 1-800-424-8802

Poison Control Center: (800) 222-1222 or (800) 833-3505

Emergency Teams to be Notified:

Miami-Dade Fire Rescue 9300 NW 41st Street Doral, FL 33178 (786) 331-5000 or 911

Medley Police Department 7777 NW 72nd Avenue Medley, FL 33166 (305) 883-2047 or 911

Palmetto General Hospital 2001 West 68th Street Hialeah, FL 33016 (305) 823-5000

Contingency Plan Quick Reference Guide

Safety-Kleen Systems, Inc. 8755 NW 95th Street Medley, FL 33178

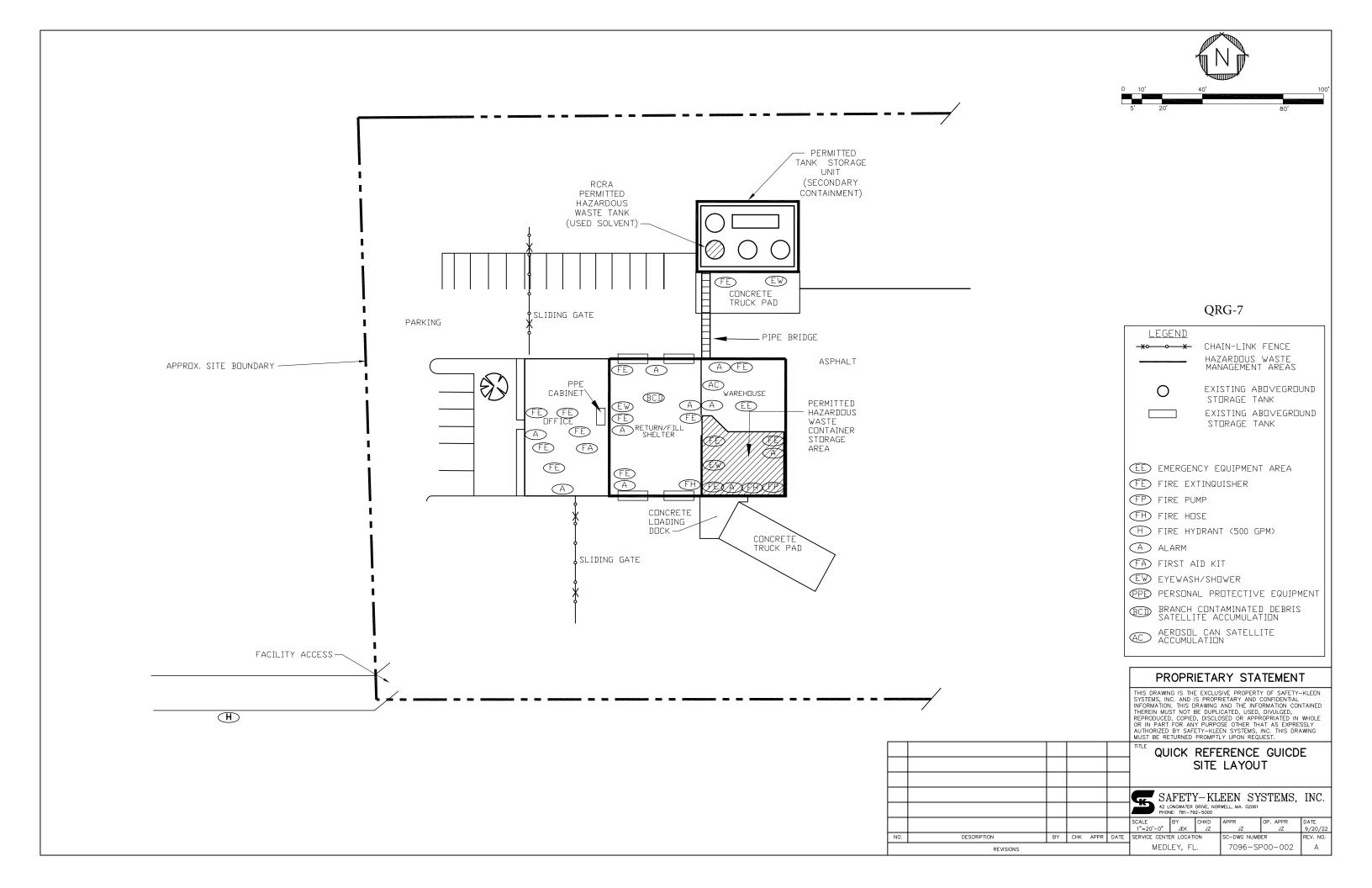
Facility Contacts:

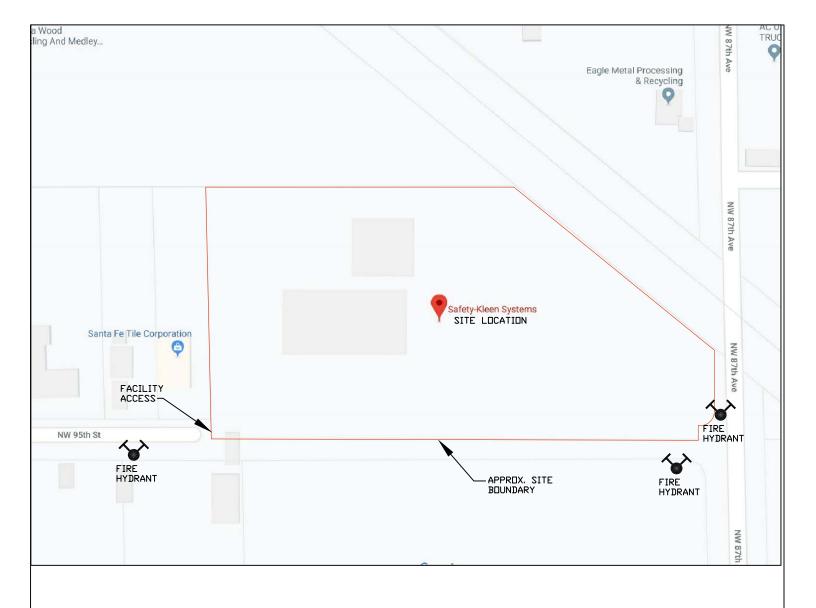
Primary Emergency Coordinator: Daniel Vilarchao Mobile Number (24/7): (305) 613-5230 Secondary Emergency Coordinator: Bo Adams Mobile Number (24/7): (786) 778-6375 Safety-Kleen Emergency Response Number: (24/7): (800) 468-1760

Note: Safety-Kleen operates Monday-Friday 7:00 am – 6:00 pm. The Safety-Kleen Emergency Response Number is available 24/7 for response to emergency situations at all Safety-Kleen facilities.

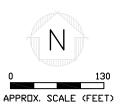
Hazardous Waste Information: (I=ignitable, C=corrosive, R=reactive, T=toxic)

Name of Waste	Waste codes/hazards	Location	Maximum Amounts	Response Notes	Special Notes to
		Accumulated	Present		Hospital/Treatment
					Personnel
Branch Contaminated	D001 (I, flash point <140 °F),	North side of	Four, 55-gallon	If personnel come into direct	None
Debris	D004, D005 (T); F002, F003,	warehouse,	drums (1,600 lbs.)	contact with material,	
	F005 (tetrachloroethylene,	container storage		decontamination at the	
	trichloroethylene, acetone,	area		hospital may be required	
	methyl ethyl ketone, T)			prior to treatment.	
Branch Contaminated	D001 (I, flash point <140 °F),	Two Satellite	One, 55-gallon drum	If personnel come into direct	None
Debris	D004, D005, F002, F003, F005	accumulation areas	at each location (400	contact with material,	
	(T) (tetrachloroethylene,	as noted with (BCD)	lbs.)	decontamination at the	
	trichloroethylene, acetone,	facility figure		hospital may be required	
	methyl ethyl ketone)			prior to treatment.	
Waste Flammable	D001 (I, flash point <140 °F),	Central Warehouse,	Two, 30-gallon drums	Use water spray, alcohol-	Treat symptomatically
Liquids/Toxic	D035, U002 (T), (Acetone)	Transfer waste	(200 lbs.)	resistant foam, dry chemical	
		storage area		or carbon dioxide.	


Name of Waste	Waste codes/hazards	Location	Maximum Amounts	Response Notes	Special Notes to
		Accumulated	Present		Hospital/Treatment
					personnel
Spent aerosol cans	D001 (I, flash point <140 °F),	North side of	One, 30-gallon drum	In the event of excessive	None
	D035 (T) (methyl ethyl	warehouse,	(100 lbs.)	temperatures (fire) cans may	
	ketone)	container storage		depressurize and possibly	
		area		explode in severe cases.	
Spent aerosol cans	D001 (I, flash point <140 °F),	One Satellite	One, 30-gallon drum	In the event of excessive	None
	D035 (T) (methyl ethyl	Accumulation	(100 lbs.)	temperatures (fire) cans may	
	ketone)	Area Warehouse		depressurize and possibly	
		noted by (AC)		explode in severe cases.	
		on figure			
Paint Gun Cleaner	D001 (I, flash point <140 °F),	Central	Fifteen, 5-gallon drums	In case of fire use carbon	If inhaled remove
	D018, D035, F003, F005 (T)	Warehouse –	(600 lbs.)	dioxide, regular foam,	person to fresh air, if in
		Transfer waste		regular dry chemical, water	eyes rinse cautiously
		storage area		spray and water fog for	with water for several
				extinction. Use PPE to	minutes, if on skin
				prevent contact with	remove immediately all
				skin/eyes/respiratory	clothing and rinse skin
				system. Prevent sources of	with water, if
				ignition and open flames.	swallowed immediately
					call poison center, do
					not induce vomiting.
Waste Flammable Liquids	D001 (I, flash point <140 °F),	Central	Five, 5-gallon drums	Use water spray, alcohol-	Treat symptomatically
	D018, U002, U019, U154,	Warehouse -	(50 lbs.)	resistant foam, dry chemical	
	U159 (T) (Acetone,	Transfer waste		or carbon dioxide.	
	Methanol)	storage area			


Name of Waste	Waste codes/hazards	Location Accumulated	Maximum Amounts Present	Response Notes	Special Notes to Hospital/Treatment personnel
Paint Related Wastes	D001 (I, flash point <140 °F), D018, D035, F003, F005 (Benzene, Methyl Ethyl Ketone, Toluene, T)	Central Warehouse - Transfer waste storage area	Eight, 55-gallon drums (3,600 lbs.)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment.	None
Dry Cleaning Waste (Perc) Bottoms	D007, D039, D040, F002 (T)	Central warehouse - Transfer waste storage area	Four, 15-gallon drums (640 lbs.)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment. Use PPE to avoid absorption into the respiratory tract.	Evaluate and support the airways, breathing and circulation. Establish intravenous access in seriously ill patients. Continuously monitor cardiac rhythm.
Dry Cleaning Waste (Perc) Filters	D007, D039, D040, F002 (T)	Central warehouse - Transfer waste storage area	Two, 30-gallon drums (178 lbs.)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment. Use PPE to avoid absorption into the respiratory tract.	Evaluate and support the airways, breathing and circulation. Establish intravenous access in seriously ill patients. Continuously monitor cardiac rhythm.
Waste Toxic Liquids, Organic	U035, U036, U043, U044, U052, U058 (T) (Barium, Phenol)	Central warehouse - Transfer waste storage area	Ten, 5-gallon drums (400 lbs.)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment.	Treat symptomatically

Name of Waste	Waste codes/hazards	Location Accumulated	Maximum Amounts Present	Response Notes	Special Notes to Hospital/Treatment personnel
Dry Cleaning Waste (Naphtha) Bottoms	D001 (I, flash point <140 °F), D007, D039, D040 (T)	Central warehouse - Transfer waste storage area	One, 16-gallon drum (162 lbs.)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment.	None
Dry Cleaning Waste (Naphtha) Filters	D001 (I, flash point <140 °F), D007, D039, D040 (T)	Central warehouse - Transfer waste storage area	One, 16-gallon drum (120 lbs.)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment.	None
Immersion Cleaner	D027, D039, D040 (T)	Central warehouse - Transfer storage area	Four, 16-gallon drums (280 lbs.)	Fire response: use carbon dioxide/dry chemical/alcohol resistant foam/water spray or water fog.	None
Hydrochloric Acid	D002 (C)	Central Warehouse, Transfer Trailer -Transfer waste storage areas	One, 55-gallon drums (400 lbs.)	Suitable extinguishing agents: water, dry chemical, chemical foam, carbon dioxide or alcohol-resistant foam. Combustion products may include carbon oxides or other toxic vapors. Use PPE to protect eyes, skin, and respiratory tract.	Move exposed persons to fresh air, wash affected areas with soap/water, rinse affected areas with water for at least 15 minutes. Seek medical attention immediately.
Waste Toxic Solids, Organic	U002, U010, U024, U025, U056 (T) (Selenium)	Central Warehouse - Transfer waste storage area	Eight, 15-gallon drums (400 Lbs.)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment.	Treat symptomatically


Name of Waste	Waste codes/hazards	Location Accumulated	Maximum Amounts Present	Response Notes	Special Notes to Hospital/Treatment personnel
Sulfuric Acid	D002 (C)	Central Warehouse - Transfer waste storage area	One, 55-gallon drums (400 lbs.)	Suitable extinguishing agents: water, dry chemical, chemical foam, carbon dioxide or alcohol-resistant foam. Thermal decomposition can lead to release of irritating gases & vapors. Use PPE to protect eyes, skin, and respiratory tract.	Move exposed persons to fresh air, wash affected areas with soap/water, rinse affected areas with water for at least 15 minutes. Seek medical attention immediately.
Waste Gasoline	D001 (I, flash point <140 °F), D008, D018 (T)	Central Warehouse - Transfer waste storage area	Two, 55-gallon drums (800 lbs.)	Use dry chemical, CO2, water spray or fire-fighting foam to extinguish. In the event of fire responders should use approved pressure-demand self-contained breathing apparatus with full-face piece and full protective clothing.	Do not induce vomiting if swallowed, rinse mouth, remove any contaminated clothing, rinse affected eye/skin areas with water. Seek immediate medical attention.
Waste Xylene	D001 (I, flash point <140°F), F003	Central Warehouse - Transfer waste storage area	Two, 30-gallon drum (230 lbs.)	Use water spray, alcohol- resistant foam, dry chemical or carbon dioxide. Cool closed containers exposed to fire with water spray.	Inhaled – remove to fresh air, seek medical attention. Skin – remove clothing, rinse with water/shower. Do not induce vomiting if swallowed – call poison center.
Waste Mercury	D009, U151 (T) (Mercury)	Central Warehouse - Transfer waste storage area	Two, 5-gallon drums (20 lbs.)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment.	Treat symptomatically

Name of Waste	Waste codes/hazards	Location Accumulated	Maximum Amounts Present	Response Notes	Special Notes to Hospital/Treatment personnel
Ethanol Solutions	D001 (I, flash point <140 °F)	Central Warehouse - Transfer waste storage areas	Seven, 55-gallon drums (2,800 lbs.)	Prevent sources of ignition and open flames.	None
Waste Acetone	D001 (I, flash point <140°F), F003	Central Warehouse - Transfer waste storage areas	Four, 55-gallon drums (1,600 lbs.)	Use water spray, alcohol- resistant foam, dry chemical or carbon dioxide. Cool closed containers exposed to fire with water spray.	Treat symptomatically
Paint Related Waste	D001 (I, flash point <140 °F), D018, D035, F003, F005 (T) (Benzene, Methyl Ethyl Ketone, Toluene)	Central Warehouse - Transfer waste storage areas	Twelve, 55-gallon drums (5,400 lbs.)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment.	None
Used Parts Washer Solvent	D001 (I, flash point <140 °F), D018, D039, D040 (T)	North central side of the Facility – Tank Storage Area (Used Parts Washer Solvent Tank 15,000- gallon capacity)	Fifteen thousand gallons. (Note: Normal operating capacity is approximately 7,000 gallons)	If personnel come into direct contact with material, decontamination at the hospital may be required prior to treatment.	None
Waste Flammable Liquids, Toxic	D001 (I, flash point <140 °F), F003, U055, U113 T) (Ethyl Acrylate, Cumene)	Central Warehouse - Transfer waste storage areas	Six, 5-gallon drums (180 lbs.)	Use water spray, alcohol- resistant foam, dry chemical or carbon dioxide.	Treat symptomatically

PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

QUICK REFERENCE GUIDE STREET MAP

QRG-8

	SCALE	BY	CHKD	APPR	OP. APPR	DATE
	AS SHOWN	JEK	JZ	JZ	JZ	9/20/22
SERVICE CENTER LOCATION			SC-DWG NUMB	ER	REV. NO.	
MEDLEY, FL.			7096-SF	P00-027	Α	

PREPAREDNESS, PREVENTION, CONTINGENCY PLAN, AND EMERGENCY PROCEDURES FOR DAILY BUSINESS OPERATIONS

GENERAL INFORMATION

Purpose

The preparedness, prevention, and contingency plan and emergency procedures are designed to comply with 40 CFR Part 264.30-56. In addition, the procedures in the plan ensure that Safety-Kleen reduces the possibility of emergency situations and, should they occur, respond in a manner to prevent or minimize hazards to human health or the environment from fire, explosion, or any unplanned sudden or non-sudden release of hazardous material constituents to the air, soil, surface water, or ground water at the facility.

The provisions of the plan are to be carried out immediately if there is a fire, explosion, or release of hazardous materials that could threaten human health or the environment. All responses must conform to the procedures contained in this plan.

General Description of Activities

The business activities conducted at the Medley Branch relate to the leasing and servicing of Safety-Kleen Parts Cleaning Equipment, including the provisions of a solvent leasing service for the customers. Clean solvents are distributed from, and the used solvents returned to, the Branch, where separate storage tanks are utilized for the storage of clean and used parts washer solvent. One 20,000-gallon fresh parts washer solvent storage tank currently is utilized at the facility. In addition, a 20,000-gallon tank is used to store hazardous waste parts washer solvent (RCRA-Permitted Hazardous Waste Tank (Used Solvent)), and one 15,000-gallon tank and one 20,000 gallon tank are used for storage of Used Oil. One 10,000 gallon tank is for oily water. Warehouse space is designated for the storage of containers of both clean and used immersion cleaner, parts washer solvent, paint waste, Fluid Recovery Services (FRS) wastes, and drycleaning wastes. Over-pack containers are used for the management of containers whose integrity has been compromised.

Parts washer solvents are transported in covered containers between the Branch and customers. Upon returning to the Branch, the used parts washer solvent is transferred from the containers into a wet dumpster (solvent return receptacle) at the Return/Fill Shelter. There is a screen at the bottom of the wet dumpster in which coarse solids in the parts washer solvents are retained. These solids are removed at the end of each day after all used parts washer solvent is dumped. Used parts washer solvent from the wet dumpster flows via 2-inch piping into the RCRA-Permitted Hazardous Waste Tank (Used Solvent). This piping runs east under the return/fill dock, turns north, and runs overhead to the tank farm building. The piping is connected by threaded connectors from the wet dumpsters to the end of the return/fill (inside secondary containment) and once leaving the return/fill it is connected by welded connectors until it reaches the permitted tank storage unit. Bulk hazardous waste parts washer solvent is picked up approximately every 20 days by a tanker truck from a Safety-Kleen TSDF, which at the same time delivers clean parts washer solvent. Solids/sludges removed from the wet dumpster are placed in a satellite accumulation container located next to the wet dumpster. When full, this container is stored as Branch generated waste in the container storage area for later shipment to a permitted Safety-Kleen or Clean Harbors TSDF for reclamation or disposal.

The immersion cleaner remains in a covered container at all times during transportation and storage. The solvent is not transferred to another container while being used by the customers or while in storage at the Branch. This waste will be stored in the permitted container storage or 10-day transfer area.

Dry cleaning wastes are picked up at commercial dry cleaning establishments in containers. Dry cleaning wastes handled by Safety-Kleen consist of spent filter cartridges, powder residue from diatomaceous or other powder filter systems, and still bottoms, all of which fall into the categories of either perchloroethylene-based waste or naphtha-based waste. The dry cleaning wastes are packaged on the customer's premises in containers. Dry cleaning wastes are located in the permitted container storage or 10-day transfer area.

Used antifreeze collected and managed by Safety-Kleen within Florida is done so with the intent of it being recycled. The trucks used to collect and transport waste ethylene glycol are the same trucks used for collection and transportation of used oil. At the customer's location, Safety-Kleen pumps used antifreeze and transports the material to the branch for off-loading into a dedicated tank for storage. The comingled material (used antifreeze/used oil) is sent to the SK East

Chicago re-refinery where the ethylene glycol is separated by distillation. The glycol is then sent to a recycler for processing into a pure product which is then sold on the open market. This procedure is in accordance with FDEP's the Best Management Practices for Managing Used Antifreeze at Vehicle Repair Facilities, dated May 22, 2012. The Florida Department of Environmental Protection (FDEP) has determined this waste stream can be handled as non-hazardous as long as it is destined for recycling. If used antifreeze collected by the Safety-Kleen Medley facility is sent to a facility other than the East Chicago re-refinery it will be managed as follows. The material will be segregated and off-loaded into a separate storage container/tote, then sampled and analyzed for glycol percentage. If the glycol percentage is acceptable it is sent to a recycler. If the glycol percentage is not acceptable a representative sample will be taken and sent for TCLP analysis to determine if it is a hazardous waste. It will be managed properly according to the TCLP analysis result. In addition, Safety-Kleen sells its' own private label antifreeze in 55-gallon containers. Customers will then place used antifreeze in these containers to be shipped back to the branch. This material is then shipped to SK distribution centers, and then shipped to a recycler.

Used antifreeze containers will be stored in the container storage area, or transfer area.

Safety-Kleen offers a used oil collection service commonly referred to as Safety-Kleen Oil Services (SKOS). Used oil is collected by straight tanker trucks and transported to the Medley branch for storage in the 15,000/20,000 gallon above ground storage tanks. The used oil is then typically transported to the SK Pompano Beach/Ocala facility where it is shipped via railcar to the Safety-Kleen East Chicago, IN re-refinery for processing. The branch is registered in Florida as a used oil transporter, and transfer facility.

Safety-Kleen also provides a paint waste reclamation service. Wastes containing various thinners and paints are collected in containers and are stored in the permitted container storage or 10-day transfer area.

The Fluid Recovery Service(FRS) is a program in which the facility manages containerized wastes as transfer wastes. These wastes are packaged in USDOT authorized packaging which are not opened until they reach a permitted Safety-Kleen/Clean Harbors TSDF. The FRS wastes are managed as transfer wastes. FRS hazardous wastes are managed as 10-day transfer wastes. While in storage at the branch, these wastes will be located in their respective transfer waste areas. The

FRS wastes may also undergo branch-to-branch or truck-to-truck transfer. This transfer will occur at the return/fill shelter inside secondary containment.

The waste products exhibit essentially the same biological, physical, and chemical properties as the fresh product. Used products are basically fresh products with impurities of dirt and metals. Safety Data Sheets (SDSs) for each hazardous material are available at the Branch and on the Safety-Kleen website.

The Branch is registered in Florida as a transporter and storage facility for mercury-containing lamps and devices destined for recycling. This registration includes a commitment to comply with the requirements of Florida Administrative Code (FAC) 62-737.400, including all training requirements. As a registered small quantity handler of universal waste lamps/mercury devices, the Branch can only store up to 2,000 kilograms of lamps or 100 kg of mercury-containing devices at any one time. Safety-Kleen provides customers with empty four-foot and eight-foot boxes which hold up to 39 lamps. Boxes containing lamps are picked up from customers and are handled at the Branch as non-hazardous transfer wastes. The boxes/lamps are stored at the Branch in a designated area within the transfer waste storage area and labeled according to FAC 62-737.400(5)(b). This storage area is partially isolated from other transfer wastes to avoid potential for accidental breakage. The boxes are periodically shipped to a permitted mercury recovery or reclamation facility. Prior to shipment out of the Branch, the boxes are placed on pallets and shrink-wrapped with plastic. Figures 2.1-1 and 2.1-2 show the basic site and floor plans and the locations of waste management facilities and facility storage. Part I D.3 provides information regarding permitted/transfer/site generated wastes handled at the facility.

Safety-Kleen handles all types of batteries. All applicable batteries, per 40 CFR Part 273.2 & 273.9, are managed in accordance with the Standards For Universal Waste Management found in 40 CFR Part 273. Batteries not meeting these standards may be managed as 10-day transfer hazardous waste.

Note: All waste containers are unloaded within 72 hrs. of arrival at the facility and all waste containers are shipped outbound within 72 hrs. of being loaded for shipment.

INSPECTION PROCEDURES

Inspection of Safety Equipment

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of emergency and spill control equipment to ensure proper operation, and to maintain compliance. Table 5.2 1 is an Inspection Schedule. Inspections of Safety/Security equipment are completed electronically (CO Safety Security Inspection), or on paper using this same form if the electronic system is not available. A copy of the inspection form is found at the end of this plan. The Branch Manager, or designee, is responsible for carrying out the inspection in accordance with the following procedure and schedule.

- A weekly inspection of fire extinguishers must be performed to ensure that the tag date
 has not expired and the units are properly charged and accessible.
- A weekly inspection of eyewash stands must be performed to assure accessibility, and proper operation of this equipment. Inventory of the first-aid kit must be checked on a weekly basis.
- A weekly check of the supply of spill control equipment (absorbent material) must be performed.
- A weekly check of the conditions and inventory of other emergency equipment will be made. This includes gloves, aprons, goggles, respirators, and other personal protective equipment.
- A weekly check of the condition and inventory of communication devices will be made.
 This includes telephones, intercom, and emergency alarms.

Inspection of Security Equipment

Security equipment inspections are completed weekly on the CO Safety Security Inspection form. Security features include: gates and locks—looking for any evidence of sticking, corrosion, or unusual activity. The facility perimeter fence will be checked weekly for deterioration, gaps, and broken wire ties. Facility signage will be inspected for clarity. The container storage area security alarm system will be checked for operational status.

Inspection of Waste Management Facilities

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation and maintain compliance. Table 5.2-1 provides an Inspection Schedule. The Branch Manager, or designee, is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule.

Daily inspections of aboveground tanks will include the following:

- Note volume in tank.
- Observe tank exterior for loose anchoring, wet spots, and leaks.
- Check the automatic high level alarm. In addition, check the gauge level for each of the
 tanks to confirm the proper functioning of the automatic alarm system and to determine
 unexpected deviations in tank measuring data, or a sudden drop in liquid level, which
 may indicate leakage.
- Inspect secondary containment walls and piping/piping supports from the return/fill to the tank farm.
- Inspect transfer pumps for leaking seals and overheated motors.
- Inspect the solvent dispensing hose, fittings, and valve for any leaks, damage, or wear that could cause a leak to develop.
- Inspect the valves for proper seal. Stem leaks from worn glands and warped valve bodies should be repaired. If the valve cannot be repaired, replace the unit.

Also, the tanks will be visually inspected and tested periodically. Daily inspection of the solvent return receptacles (wet dumpsters) will consist of an inspection for leaks and excess dumpster sludge/solid build-up.

Daily inspections of the container storage area include the following:

- Verify that total volume is within permitted limits.
- Physically examine the condition of containers to verify that leaks have not occurred since the last inspection.
- Verify that all container identification, dates, and hazardous waste labels are attached and current.
- Inspect container placement and stacking such as aisle space, height, and stability of stacks.
- Examine containment areas to detect signs of deterioration and failure of the containment system such as cracks, breakage, settlement, and spillage.

Corrective Action

Any discrepancies or deficiencies found during routine inspections will be recorded in the Corporate Work Ticket Workbench. At this time an evaluation of the seriousness of the problem will be conducted and a decision made if the situation requires immediate action or the problem can be handled as routine maintenance. If the problem poses a threat to human health or the environment, action will be taken immediately. The Branch Manager has the overall responsibility for resolving any discrepancies found during the routine inspection.

EMERGENCY NOTIFICATION

Emergency Coordinator

The Branch Manager or designee is the emergency coordinator. Page iii at the beginning of the plan includes the names, home addresses, and both office and home phone numbers of the primary emergency coordinator and alternate. At least one employee will be either present on the facility premises or on call with responsibility for coordinating all emergency response measures at all times. This primary emergency coordinator and alternate emergency coordinator are thoroughly familiar with all aspects of the facility's contingency plan, all operations and activities at the facility, the location and characteristics of materials handled, the location of all records within the facility, and the facility layout. In addition, these coordinators have the authority to commit the resources needed to carry out the contingency plan.

EMERGENCY RESPONSE AGENCIES AND TEAM MEMBERS

The agencies and response team members to be notified whenever an imminent or actual emergency occurs are presented on page iii, located at the beginning of this plan.

ACTIONS OF THE EMERGENCY COORDINATOR

Whenever there is an imminent or actual emergency situation, the emergency coordinator (or the designee when the emergency coordinator is on call) must immediately:

a. Notify all facility personnel present of the emergency. The relatively small size of this facility makes direct verbal communication the most expedient form of emergency

notification. The emergency coordinator may also elect to proceed to the front of the building and repeatedly sound a car horn with three (3) loud bursts to notify building occupants of an emergency. A head count will be performed by the emergency coordinator in the event of evacuation.

- b. Notify appropriate state or local agencies with designated response roles if their help is needed.
- c. Summon the primary emergency coordinator, if that person is absent.

Whenever a release, fire, or explosion occurs, the emergency coordinator must immediately identify the character, exact source, amount, and areal extent of any released materials. Because of the limited types of chemicals in storage, the identification processes can easily be performed visually.

Procedure for Assessing Possible Hazard to the Environment and Human Health

- After identification of the character, source, amount, and extent of a release, fire, or
 explosion, the emergency coordinator must decide whether the situation can be contained
 or cleaned up by plant personnel and equipment.
- If a fire or explosion is determined uncontrollable by plant personnel or threatening neighboring establishments or population, assistance from a local emergency response agency shall be summoned immediately and an evacuation order issued.
- In case of a release outside of the containment area that is deemed immediately uncontainable or unrecoverable, Safety-Kleen's 24 hr. emergency response system (800) 468-1760) and/or local emergency response agency shall be called in.
- After termination of a fire or explosion or containment and preliminary cleanup of a spill, evaluate whether residues in the form of gas or liquid have become airborne, seeped into ground water, and/or flowed into surface water bodies.
- Expert assistance should be requested to determine whether the escaped materials are potentially harmful and whether the receiving medium ultimately will be a populated area, public water supply source, a private well, or an environmentally sensitive area.
- Additional steps shall then be taken to mitigate the potential impact on the environment and human health, in accordance with expert recommendations.

If the emergency coordinator determines that the facility has had a release, fire, or explosion or other emergency that could threaten human health, or the environment outside the facility, the coordinator must report those findings, as follows:

- If the assessment indicates that evacuation of local areas may be advisable, the
 coordinator must immediately notify appropriate authorities. The coordinator must be
 available to help appropriate officials decide whether local areas should be evacuated.
- The coordinator must immediately notify the State Warning Point at (800) 320-0519 (24 hours-7 days a week availability).
- The coordinator must immediately notify the Southeast District of the FDEP, (561) 681-6600 during regular business hours, and if a release equals or exceeds the Reportable Quantity (RQ) the National Response Center (800) 424-8802 must immediately (within 15 minutes) be contacted.

The report must include:

- (1) Name and telephone number of notifier;
- (2) Name and address of facility;
- (3) Time and type of incident (e.g., release, fire);
- (4) Name and quantity of material(s) involved, to the extent known;
- (5) The extent of injuries, if any; and
- (6) The possible hazards to human health, or the environment outside the facility.

The facility will comply with reporting requirements outlined within the permit conditions of the operating permit.

Immediate assistance in assessing and responding to an emergency is obtained by the emergency coordinator by calling the 24-hour Safety-Kleen emergency number ((800) 468-1760). The 24 hour emergency number is used by Safety-Kleen to respond to all reports of spills or chemical emergencies. All Safety-Kleen facilities in the state use this 24-hour emergency number. This allows Safety-Kleen to respond to any emergency with a maximum of effort, thereby reducing the threat to human health or the environment.

During an emergency, the emergency coordinator must take all reasonable measures necessary to ensure that fires, explosions, and releases do not occur, recur, or spread to other hazardous waste

at the facility. These measures must include, where applicable, stopping processes and operations, collecting and containing released waste, and removing or isolating containers. If the facility stops operations in response to a fire, explosion, or release, the emergency coordinator must monitor for leaks, pressure build-up, gas generation, or ruptures in valves, pipes, or other equipment, wherever this is appropriate. Immediately after an emergency, the emergency coordinator must provide for treating, storing, or disposing of recovered waste, contaminated soil or surface water, or any other material that results from a release, fire, or explosion at the facility.

The emergency coordinator must ensure that, in the affected area(s) of the facility:

- No waste that may be incompatible with the released material is treated or stored until cleanup procedures are completed; and
- All emergency equipment listed in the contingency plan is cleaned and fit for its intended use before operations are resumed.

The owner or operator must notify the appropriate state and local authorities that the facility is in compliance with the requirements of the preceding paragraph, before operations are resumed in the affected area(s) of the facility.

The owner or operator must note in the operating record the time, date, and details of any incident that requires implementing the contingency plan. Within 15 days after the incident, the owner must submit a written report on the incident to the Southeast District of the FDEP, at 3301 Gun Club Road, MSC 7210-1, West Palm Beach, FL 33406. The report must include:

- 1. Name, address, and telephone number of the owner or operator;
- 2. Name, address, and telephone number of the facility;
- 3. Date, time, and type of incident (e.g., fire, explosion);
- 4. Name and quantity of material(s) involved;
- 5. The extent of injuries, if any;
- 6. An assessment of actual or potential hazards to human health or the environment, where this is applicable; and
- 7. Estimated quantity and disposition of recovered material that resulted from the incident.

POTENTIAL SPILL SOURCES

The following is a list of activities that have the potential for a spill equal to, or less than 55 gallons of waste:

- 1. Moving of containers.
 - Every time a container is moved, the possibility exists that it could tip over or be dropped. To minimize the possibility of spillage of solvent under those conditions, all container lids must be confirmed to be secure before movement.
- 2. Delivery truck container transfers.
 - a. Individual delivery containers hold from 5 to 55 gallons of waste, a quantity which can be contained by oil sorbent clay or pads, if accidentally spilled.
 - b. Each vehicle is equipped with a hoist and hand cart for ease of moving clean product containers off the truck and into the customer's facility and returning the waste containers to the truck.
 - c. Lids are secured on containers prior to movement to prevent a spill.
 - d. Each truck contains a complete spill kit, shovel, and a quantity of sorbent material to contain spills equal to, or less than 55-gallons.
 - e. The cargo must be secured in the route vehicle before transit.

Spills Inside Buildings

In the event of a spill indoors, the doors and windows should be opened to improve the ventilation in the confined area. Following the instructions of the Safety Data Sheet (SDS), a worker would enter the area wearing appropriate protective equipment (PPE). Safety-Kleen spill response PPE requirements are: uniform (company issued), gloves (if chemical present use supported Neoprene as an outer glove), boots (steel toe with slip resistant soles), apron (if chemical present and SDS requirement). Dependent on the amount of the material spilled, clean-up will take place with absorbent material, or wet vacuum. Spills inside the building will be contained by the existing secondary containment structures, or by using available absorbent material and booms. Proper characterization, treatment, and disposal of the material and decontamination solution used to clean the affected area will be done on a case by case basis depending on the material released. All material will be disposed of per federal, state, and local

regulations. The cleanup is completed only when the workers have cleaned themselves and the emergency equipment with soap and water.

Spills on Concrete Pads

Concrete pads in loading and unloading areas are, in most cases, equipped with secondary containment. Under most spill conditions, product can be totally contained on the concrete surface and in the containment system. Upon containment, arrangements must be immediately undertaken to recover the material. Any soil that may be involved must be removed and handled in the same manner as the material spilled.

Tank Spills or Leakage

Aboveground tanks within the Permitted Tank Storage Unit (Secondary Containment) are underlain by a concrete slab and surrounded by a concrete dike to contain any leaked, spilled or released material. The containment system has been sized in accordance with the applicable regulations, and the material will be totally contained under most leak, spill or release conditions. Should a leak, spill or release occur, arrangements must be immediately undertaken to recover the material. In the event of leak, spill, or release that involves a maintenance or integrity issue, tank repair or replacement will be initiated, whenever is deemed necessary. Any soil that may be involved must be removed and handled in the same manner as the material spilled.

40 CFR Part 264.196(d)(2) exempts notification/reports for leaks, spills, or releases equal to or less than one pound, and that are immediately contained and cleaned up.

Spill Control Procedures

If a solid or hazardous waste, or hazardous material discharge occurs:

- 1. Stop the discharge, if possible, by immediately transferring the liquid to a good container. If the discharge involves a tank, immediately close all valves to the tank.
- 2. Retain, contain, or slow the flow of the material, if possible, by diking with sorbent pad or dirt. Based on the seriousness of the incident, the emergency coordinator will select the level of personal protective equipment required to address the incident. Pump and mop up the liquid from the floor into a good container and return the container to storage for subsequent shipment to a Safety-Kleen/Clean Harbors recycle center for reclamation/disposal. The area and equipment that comes in contact with the spill must

- be decontaminated with soap and water. All residues resulting from containment and decontamination will be collected for proper characterization.
- 3. If the material escapes the containment efforts, immediately call the 24-hour Safety-Kleen emergency number with response time less than two hours (page iii). Record the date, time, and name of person taking the message. The State Watch Office ((800) 320 -0519) is to be contacted as soon as possible, but no later than within one working day of discovery of the release. If a release equals or exceeds the Reportable Quantity (RQ) the National Response Center ((800) 424-8802) is to be contacted within 15 minutes.
- 4. Immediately recover spilled solvent to reduce property and environmental damage using the emergency and safety equipment stored onsite for such situations (Figure 5.6-1 and Table 5.6-1) or call in emergency response contractors (page iii). Start recovery operations immediately. After recovery of spilled solvent, wash all contaminated impervious surfaces and equipment with soap and water. The residue of spill- or fire-contaminated soils and waste waters must be removed and disposed of at a Safety-Kleen/Clean Harbors recycle center. In addition, the recovered solvent will be sent to a Safety-Kleen/Clean Harbors recycle center for reclamation.
- 5. The person reporting a spill should be prepared to give their name, position, company name, address, and telephone number. The person reporting also should give the nature of the material spilled (e.g., immersion cleaner, etc.) and, if possible, some estimate of the amount, and whether it is near a stream or could enter a stream by flowing through ditches or storm sewers. If assistance is needed, the emergency coordinator should describe the containment status and specify any additional equipment needed. When reporting a spill, record the date and time of the call and the name of the person answering the call at the above number. Spill prevention plans are reviewed with facility personnel every year, and records of the training are kept by the facility.

Spill/Release Response to Solid (Physical State) Waste(s)

Response to a non-liquid waste (solid physical state) will require the use of a shovel to place the material into a new container. If the material is powder-like/particulate matter care should be taken so as not to create dust or cause the material to become airborne. After the bulk of the material is recovered a damp absorbent pad may be used to clean up residual material that cannot be captured with the shovel.

Information on every spill will be recorded through an internal database. A notification of each spill will be sent to the Corporate Environmental Compliance and Health and Safety Departments.

Reports of emergency incidents will be transmitted to the Secretary of the FDEP or designee within 15 days of occurrence. This report shall include:

- 1. Name, address, and telephone number of the owner of operator;
- 2. Name, address, and telephone number of the facility;
- 3. Date, time, and type of incident (e.g., fire, explosion);
- 4. Name and quantity of materials involved;
- 5. The extent of injuries, if any;
- 6. An assessment of actual or potential hazards to human health or the environment, where this is applicable; and
- 7. Estimated quantity and disposition of recovered material that resulted from the incident.

The facility will complete all permit condition spill reporting as required, and follow the requirements of Chapter 62-150, F.A.C. Hazardous Substance Release Notification.

Containment Systems

Containerized Wastes

Hazardous waste container storage takes place inside the warehouse building and is depicted on Figure 8.1-1. The containment system is sealed with an impermeable coating and is free of cracks. Containers are stored on pallets whenever possible, and double stacked. The warehouse has concrete floors, and collection trenches to form spill containment systems within the area. The container storage area is approximately 49¼ x 80′ ft. area with a total containment capacity of 2,996-gallons. The maximum storage capacity is 29,400-gallons with 6,912-gallons of hazardous waste container storage. Wastes stored in this area may include used oil filters, paint wastes, branch generated debris, dry cleaning waste, spent immersion cleaner, and any overflow transfer waste if necessary. The types and numbers of containers may vary, however, the storage capacities will not be exceeded.

In the container storage area, containers are handled with a fork-lift and/or a hand-truck free of sharp points and stacked by hand. Every time a container is moved, the possibility exists that it

will be tipped over, dropped, or punctured. To minimize the possibility of spillage, container lids are secured and containers are kept in an upright position. A small portable electric pump is available to quickly transfer the liquid from any leaking container into a safe container. Each route truck is equipped with a lift gate or an electric hoist. The appropriate device is used in the loading/unloading operation to minimize chances for spillage and/or employee injury. Containerized wastes at the Medley facility are loaded/unloaded in the vicinity of the contained concrete dock on the southeast side of the building (Figure 2.1-2) and return/fill dock. Because these areas are fully enclosed, spills originating in these areas should not come in to contact with stormwater.

FRS Wastes/10-Day Transfer Wastes

Transfer wastes will be located in the areas depicted in Figure 8.1-1. The containment system in the warehouse is coated, free of cracks, and is sufficiently impervious to prevent seepage into or through the concrete. FRS hazardous wastes are 10-day transfer only. They are not required to have containment, though they are stored in areas with containment. These areas are fully enclosed within the building. Spills in these areas should not come into contact with stormwater.

All containers are sealed during movement and are located within diked, concrete floored areas to contain any potential spill. Spills with quantities equal to, or less than 55-gallons at any time can be cleaned up immediately through the use of hand-held electric pumps, mops, wet/dry vacuums, or sorbent materials, should a spill occur. Any spilled waste is contained and packaged for offsite recycling/reclamation. All containerized waste movement is performed manually, by a pallet jack, or propane fueled forklift truck. Therefore, power outages are not expected to threaten employee safety.

Return/Fill Shelter

The return/fill shelter (Figure 9.3-1) is part of the enclosed building and sits between the Office Building and the Warehouse Container Storage Building. Sloping of the containment area is visually non-detectable. However, there is a slight slope toward the sumps (blind) built into the concrete floor surface in the center of the area. The entire width of the return/fill shelter has a 20-foot wide elevated steel grate, which is positioned approximately 33 inches above the concrete floor. There is drive over curbing at the north and south sides so that trucks can be positioned

within containment during loading/unloading. The approximate containment capacity of the return/fill shelter is 3,693 gallons, as shown in the calculations in Appendix C, found at the end of the application. Two wet dumpsters are positioned on the steel grated area that each hold approximately 504-gallons of used parts washer solvent (though they are not intended for storage). Any spill that may occur on the concrete floor is directed by gravity into the sump. Any residual material remaining can be cleaned up with mops, wet/dry vacuums, or sorbent material, should a spill occur. Spilled used or clean parts washer solvent will be collected and placed into the wet dumpsters.

Doors in this area include four overhead roll-up doors (two to the north side and two to the south side) and two personnel doorways (one at the north side and one at the south side of the return/fill shelter and one next to the roll-up door leading from the return/fill shelter to the warehouse for employees). The floors of the office building and warehouse building are flush with the steel grated dock of the return/fill shelter (which is approximately 33 inches above the floor of the shelter). Therefore, spills originating on the steel grated area will be contained by the concrete floor and drive over curbing in the return/fill bays. Based on the capacity of the return/fill containment, it is extremely unlikely that a spill would escape the area. The return/fill shelter is covered by a fixed roof and areas directly outside the bays are asphalt covered, thus preventing direct contact with soils and ground water.

Tank Area

The permitted tank storage unit (secondary containment) (Figure 9.2-1) has a capacity for six above-ground storage tanks but currently houses five above-ground storage tanks (one-RCRA-permitted Hazardous Waste Tank (Used Solvent), one clean 150 premium solvent tank, two Used Oil tanks and one oily water tank) under a metal canopy. This unit is provided with 20,784 gallons of secondary containment, which is in excess of the single largest tank (20,000 gallons). The foundation slab is essentially flat but has a slight slope directed to a sump located in the center of the south side of the tank farm. Tank loading/unloading connections are located within the containment system on the south side of the tank farm. A drip pan is present under these connections. Any tank leaks or unloading spills will be controlled by the containment system, or the drip pan. This material may be readily removed by pumping from the containment system, sump, or drip pan by wet vacuum or sorbent material. The permitted tank storage unit has a metal canopy to prevent rainwater from entering the containment area. Should rain water enter the

containment area it will be verified visually that no iridescent sheen exists before discharging to the ground outside. Only the Branch Manager or someone operating under his/her direct orders may discharge to the ground surface. If a spill has occurred from the used oil tanks, this material will be collected and pumped back into a used oil tank if the volume of the spill warrants. If it is a minor spill, it may just be cleaned up with absorbent material and placed into a branch generated container for disposal. A spill originated from the RCRA-Permitted Hazardous Waste Tank (Used Solvent) will be collected and pumped back into the tank if the volume warrants. Minor spills of this material may be cleaned up with absorbent material and placed into a branch generated container for disposal. If any rainwater exhibits an iridescent sheen indicating a mixture with solvent, then the rainwater will be pumped in to the used parts washer solvent tank via the wet dumpster at the return/fill shelter. Any spills which occur on the loading/unloading area will be cleaned up and the area decontaminated. Decontamination methods are discussed later in this Plan. This decontamination will result in de minimis residue.

Employee training emphasizes the importance of inspection, maintenance, personal safety, and reporting of conditions with pollution incident potential. This training, coupled with the Safety-Kleen's containment system and immediate cleanup of any spills, eliminates or greatly minimizes the chance of contamination of ground water and/or surface water in the vicinity of the site. In addition, surface run-off at the site does not come in contact with stored products in the waste management area.

DECONTAMINATION

Once the spilled material has been cleaned up, the spill area and equipment used during the spill clean-up must be decontaminated and/or disposed, as described below.

Concrete Surfaces/Containment Area

- Concrete surfaces/containment areas will be cleaned with a detergent solution and then
 rinsed with hot water. The rinsate will be collected via wet vacuums and placed in
 containers. Visual inspection will be used to determine the success of the
 decontamination procedure.
- The intent of the surface decontamination is to prevent current or future releases of materials to the environment. Vigorous cleaning with detergent is sufficient to prevent

releases to the environment during normal operations. Potential for hazards from residual materials to future occupants of the facility are addressed in the closure plans for the facility and the decontamination procedures incorporated therein.

Equipment

The equipment used to clean the area includes mops, pails, scrub brushes, and a wet/dry vacuum. Equipment which is considered reusable (i.e., pails, wet/dry vacuum, hoses) will be washed with detergent, and wash water and rinsate will be collected for proper disposal. All non-reusable equipment and/or equipment which is not capable of being decontaminated will be containerized and disposed of as hazardous waste. Equipment used in a response will be deemed fit for use after being used in any response.

Wash Water and Rinsate

If the rinsate or other wastes generated in the clean-up process is determined to be hazardous, it will be properly disposed of as a hazardous waste; otherwise, the material will be disposed of as an industrial waste. It should be noted that wash water and rinsate will not be allowed to drain to soil or surface waters.

EMERGENCY RESPONSE EQUIPMENT AND COMMUNICATION

Due to the small size of the facility, routine communication will be accomplished by voice communication. Emergency alarms are available at the return/fill shelter, permitted tank storage unit and the warehouse— these alarms can be activated manually and sound off in the office to indicate an emergency situation. High level alarms are available at the permitted tank storage unit. Telephones are used in case of a spill or fire emergency to summon assistance. Emergency numbers are posted by phones throughout the facility. Included with these phone numbers is the 24-hour Safety-Kleen spill response number. Figure 5.6-1 provides the locations of fire extinguishers, first-aid kits, emergency eyewashes, alarms, and spill equipment. Other emergency response equipment (Table 5.6-1) is kept in a small storage area inside the warehouse near the return/fill dock. This equipment includes mops and buckets, soap, shovels, and spill sorbent pads. Rubber gloves, boots, pumps, and a wet/dry vacuum cleaner are stored in an emergency supply area near the container storage area. Descriptions and uses of the equipment

are provided in Table 5.8-1. Adequate aisle space is provided in the container storage area for movement in an emergency situation. The City of Medley supplies water for domestic use, decontamination, and fire-fighting. The water pressure supplied by the City of Medley was inadequate for fire-fighting purposes, so a booster pump has been installed at the facility. The fire protection system was installed and certified by the installation contractor in accordance with applicable fire codes.

Pails, hoses, and detergents are the primary equipment that will be used for decontamination. The equipment available at the facility for emergency situations is adequate for most cases. Large or serious emergency situations will be remediated by local emergency response teams or special emergency response or cleanup contractors. The facility is constructed and operates in accordance with National Fire Protection Association (NFPA) standards and applicable local ordinances. Applicable health and safety standards are also observed at the facility.

All facility communications or alarm systems, fire protection equipment, spill control equipment, and decontamination equipment will be tested and maintained as necessary to assure its proper operation in time of emergency.

FIRE CONTROL PROCEDURES

In the event of a fire at the facility, the following activities will be executed.

Call the Fire Department (page iii). [Note: Center aisles are available in container storage areas to permit fire department personnel to pass with fire-fighting equipment.]

Act quickly with the fire extinguisher to put out the fire before it spreads.

Call the Police Department (page iii) to maintain traffic and on-lookers, and local hospital (page iii) to notify the type and extent of injuries, if any.

Ignitable Wastes

All wastes and products are kept away from ignition sources—Personnel must confine smoking and open flames to remote areas, separate from any solvent (e.g., outside front of facility). The

parts washer solvent and paint waste handling areas are separated from the office area to minimize the potential for a fire to spread or injury to personnel to occur.

The permitted tank storage unit is more than 20 feet from the property line as required in 40 CFR Part 264.198(b). Likewise, the flammable storage area is 50 feet or more from the property line per 40 CFR Part 264.176. Both of these distances meet the NFPA code for storage of ignitable materials.

Ignitable wastes are handled so that they do not:

- 1. Become subject to extreme heat or pressure, fire or explosion, or a violent reaction--The parts washer solvents and paint wastes are stored in a tank or in containers, none of which are near sources of extreme heat, fire, potential explosion sources or subject to violent reactions. The tanks are vented, and the containers kept at room temperature to minimize the potential for pressure build-up. The tanks are painted white to reflect sunlight and are vented to prevent pressure build-up.
- 2. Produce uncontrolled toxic mists, fumes, dusts, or gases in quantities sufficient to threaten human health--The vapor pressure of petroleum based parts washer solvent is low (2 mm-Hg) and it and the paint waste may react with strong oxidizers and reactive metals only. Toxic mists, fumes, and dusts do not form in quantities sufficient to threaten human health since strong oxidizers are not handled at this facility and the solvent vaporization is minimal under normal working conditions.

[Note: Dry-cleaning wastes are initially not flammable but may produce toxic gases and hydrochloric acid at elevated temperatures (about 1,200°F).]

- 3. Produce uncontrolled fires or gases in quantities sufficient to pose a risk of fire or explosion--See "1" above and "4" below.
- 4. Damage the structural integrity of the Safety-Kleen facility--The parts washer solvent and paint wastes do not cause deterioration of the tank, drums, or other structural components of the facility.

Incompatible Wastes

Incompatible wastes are segregated in an appropriate manner in accordance with industry standards. All waste or products are kept away from ignition sources. Employees must confine smoking or open flames to designated safe areas (ONLY out in front of the facility).

Materials are handled so they do not:

- a. Generate extreme heat or pressure, fire or explosion, or violent reaction.
- b. Produce uncontrolled toxic mists, fumes, dusts, or gases in sufficient quantities to threaten human health.
- c. Produce uncontrolled fires or gases in sufficient quantities to pose a risk of fire or explosion.
- d. Damage the structural integrity of the Safety-Kleen facility.

Adequate aisle space, at least 2 ft., is maintained to allow unobstructed movement of personnel, fire protection equipment, and decontamination equipment to any area of the facility operation in an emergency.

External Emergency Factors

The design of the facility is such that a harmful spill is highly unlikely to occur from most external factors. The storage tanks are inaccessible to non-Safety-Kleen personnel. Also, the container storage areas are in buildings which are inaccessible to unauthorized personnel.

- 1. Vandalism Only extreme vandalism would result in a solvent spill or fire. Responses to spills and fires are described in a previous section of this Plan.
- 2. Employee Strikes A strike would not result in a solvent spill or fire.
- 3. Power Failure A power failure would not result in a spill or fire. Should a power failure occur, all activities requiring electricity will cease.
- 4. Flooding The waste management facility elevation is above the projected 100-year flood plain; therefore, a 100-year flood will not affect the facility.

- 5. Storms or Cold Weather The solvent return/fill shelter, tank storage, and the container storage areas are roofed to eliminate the possibility of rain entering the waste management areas. Neither snow, cold weather, nor stormwater is expected to affect the facility.
- 6. Hurricanes Safety-Kleen will adhere to the following procedures in the event of an approaching hurricane:

Hurricane Watch

- Compile a list of employees with telephone numbers. Give each a call-in number for the branch (Branch Manager cell phone or branch number) in the event operations are interrupted.
- Prepare battery-operated radio (if the facility has one) and other equipment in the case of power outage.
- Complete cleanup of facility property all empty drums, containers, trash containers, chairs, spill kits, etc. should be brought inside the facility structure.
- Facility services should be restricted to local routes (no more than 30-45 minutes from the facility) in case weather conditions deteriorate.
- Ensure any areas which may be exposed to rainwater are clean and secure filling nozzles.
- Route trucks should be re-fueled prior to the storm, emptied of all wastes and product, secure lift gates and side compartments.
- Ensure all bulk collection trucks have off-loaded into the facility storage tank or Bulk
 Intermodal Distribution Services (BIDS) terminal.
- Move trucks inside building as possible and park the remaining trucks as close to the building as possible (preferably at the bay doors).
- Secure computers, monitors, etc. and wrap in plastic with tape.
- If possible schedule solvent tanker in a manner, which would allow the maximum volume
 of liquid to remain in the storage tanks as the structural integrity of a tank increases with
 content volume. Cam-lock all ends of hose fittings and turn off valves at the storage
 tanks.
- After all preparation has concluded, all employees should be sent home and the facility secured. Turn off main breaker.

Hurricane Warning

- All employees are excused from work if their county of residence is put under a hurricane warning. However, the branch manager or other key personnel may be available to perform some last minute activities if weather permits.
- Notification, via incident alert system or telephone, that a hurricane warning has been posted.
- Walk-around of facility to ensure all preparation work conducted under the hurricane watch has been completed.
- Completion of any remaining items that were not finished.

Following Hurricane

- Depending on the intensity of the storm, the following actions should be carried out as soon as conditions permit.
- Employees should phone-in, following local government employee guidelines, for returning to work.
- Branch manager and/or the emergency coordinator should be the first people to enter the
 facility. Perform a complete walk-around of the facility checking for security of
 premises, waste management areas, determine if there are any safety issues that pose risk
 for employees, inspect for any damage, looting, or theft and generate a list of items to
 report.

EVACUATION PLAN

In an uncontrolled emergency, all persons are to be evacuated from the area by means of a verbal cry, use of the public address system, or by sounding a car horn with 3 long bursts and are to assemble across the street from the entrance drive to the facility evacuation routes and the gathering point are noted on Figure 5.1-3 in this plan. A head count will be performed by the emergency coordinator at the gathering point to ensure all personnel, and any contractors or visitors are accounted for.

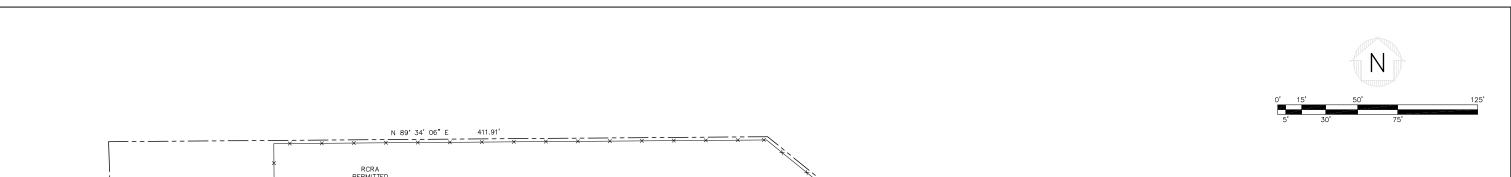
The Fire Department must be notified at the time of evacuation either from a safe onsite building or neighboring facilities. Clearly marked exits exist in warehouse and office area.

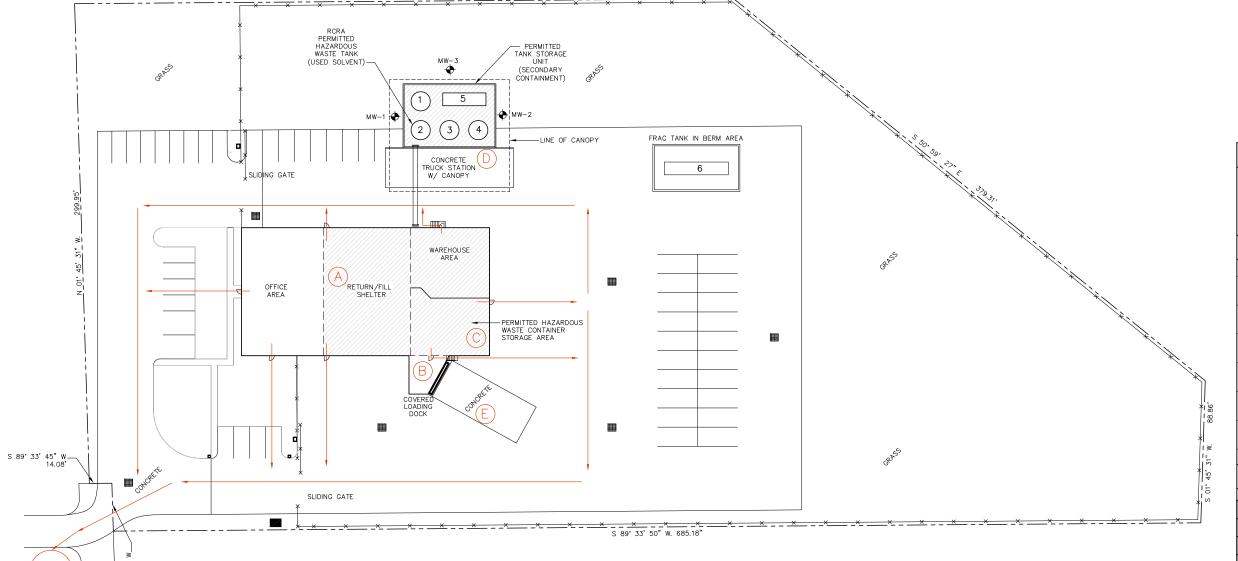
AVAILABILITY AND REVISION OF THE PREPAREDNESS, PREVENTION, AND CONTINGENCY PLAN

This Plan and all revisions to the Plan are kept at the facility and regularly updated throughout the operating life of the facility. Copies of this document are provided to local authorities and organizations listed under the Preparedness and Prevention Plan, which may be called upon to provide emergency services. This Plan and all revisions to the Plan are made readily available to employees working at the facility.

This Plan is reviewed and updated, if necessary, whenever:

- 1. The facility permit is modified to allow new process wastes to be stored or treated, or applicable regulations are revised;
- 2. The list or location of emergency equipment changes;
- 3. The facility changes in its design, construction, operation, maintenance, or other circumstances in a way that:
 - Materially increase the potential for fires, explosions, or releases of hazardous waste or hazardous waste constituents, or
 - b. Changes in response necessary in an emergency.
- 4. The names, addresses, or phone numbers of emergency coordinators change;
- 5. The employee assigned to each emergency task changes, or
- 6. The plan fails when implemented in an emergency.


ARRANGEMENTS WITH LOCAL AUTHORITIES


Arrangements have been made to familiarize the Police Department, Fire Department, and local emergency response teams with the layout of the facility, properties of hazardous materials handled (Safety Data Sheets) at the facility and associated hazards, places where facility personnel would normally be working, entrances to and roads inside the facility, and possible evacuation routes. The local fire department also conducts periodic fire inspections to ensure the Branch is in compliance, and this also gives the Department an opportunity to familiarize themselves with the layout of the facility in person.

Arrangements have been made to familiarize the local hospital with the properties of hazardous waste handled at the facility and the types of injuries or illnesses which would result from fires, explosions, or releases at the facility.

Copies of this plan are submitted to the local authorities above via certified mail. In addition, Safety-Kleen attempts to obtain e-mail addresses so that electronic copies may be delivered. These local authorities receive paper/electronic copies of any changes/revisions to this plan when there are made, including changes to facility emergency contacts. If no response is received from these local authorities, Safety-Kleen will follow up by contacting the specific authority by telephone.

Appendix A of this Plan (located at the end of this section) includes copies of example distribution letters for transmittal. Copies of updated transmittal letters are kept on file at the facility.

GENERAL NOTES

		TANK	LEGEND
TANK NO.	TANK VOLUME	TANK CONTENTS	REMARKS
1	20,000 USG	FRESH SOLVENT	
2	20,000 USG	USED SOLVENT	
3	20,000 USG	USED OIL	
4	15,000 USG	USED OIL	
5	10,000 USG	OILY WATER	
6	18,000 USG	OILY WATER	

REVISIONS					
NO.	DESCRIPTION	BY	CHK	APPR	DATE
А	ISSUED FOR PERMIT	JEK	JZ	JZ	09202

PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THERRIN MUST NOT BE DUPLICATED, USED, DIVINGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

FIGURE 5.1-3
EVACUATION ROUTES

SAFETY-KLEEN SYSTEMS, INC. 42 LONGWATER DRIVE, NORWELL, MA. 02061 PHONE: 781-792-5000

SCALE 1"=30' JEK JZ APPROVED OPERATIONS DATE 9/20/22

SERVICE CENTER LOCATION SC-DWG NUMBER REV. NO.

MEDLEY, FL 7096—SP00—001 A

GATHERING POINT

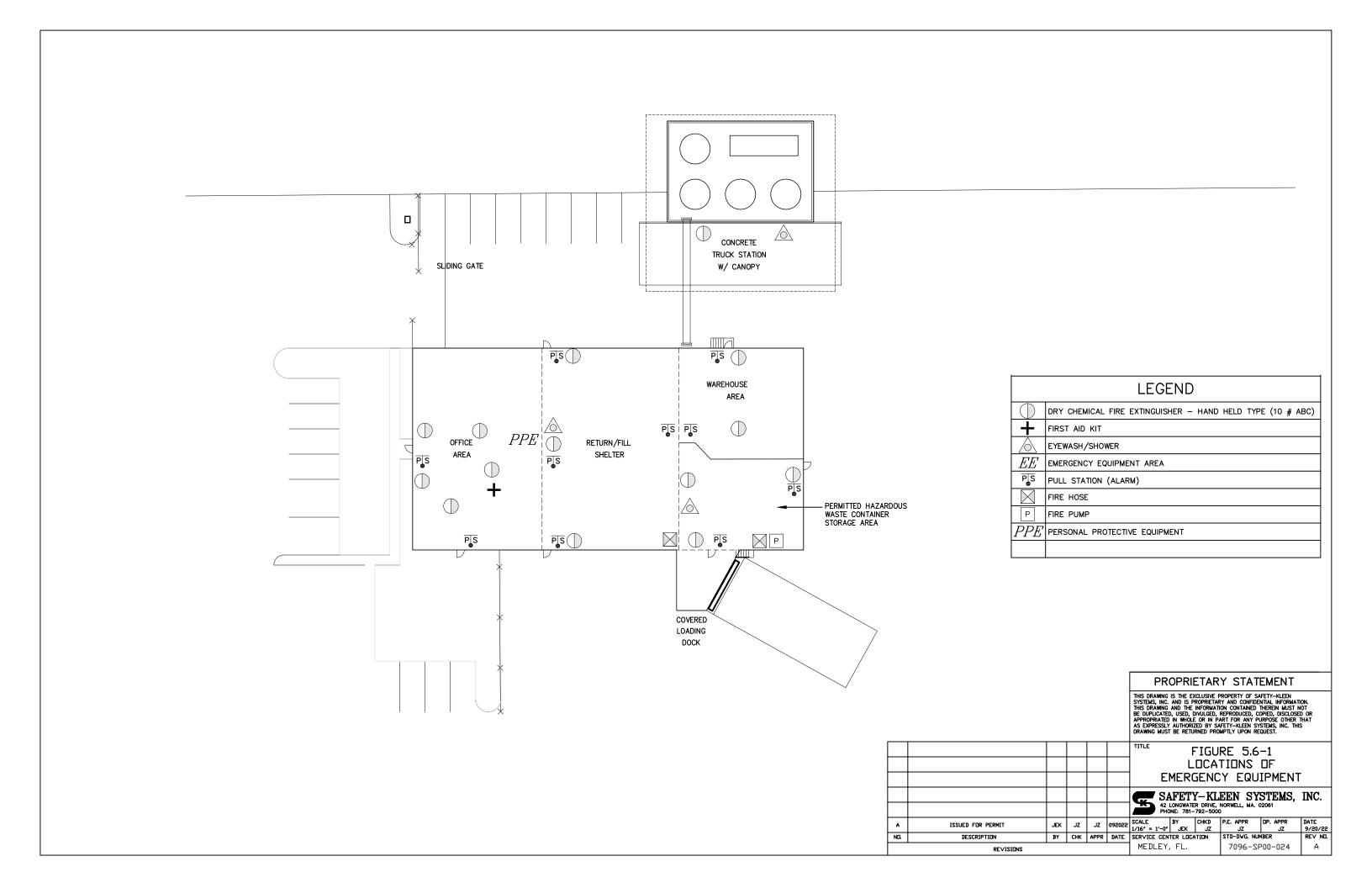


TABLE 5.2-1
INSPECTION SCHEDULE

Area/Equipment	Specific Item	Types of Problems	Frequency of Inspection
Safety Equipment	Fire Extinguishers	Overdue inspection Inadequate charge Inaccessible	Weekly
	Eyewash	Disconnected/malfunctioning valves Pressure Inaccessible	Weekly
	First-Aid Kit	Inadequate inventory	Weekly
	Spill Cleanup Equip	Inadequate supply	Weekly
	PPE	Inadequate supply Inadequate supply	Weekly
	Communication	Equipment failures	Weekly
	Devices	Equipment failures	Weekly
Security Equipment	Gates and Locks	Sticking, corrosion, lack of warning signs	Weekly
	Fence	Broken ties, corrosion, holes	Weekly
Storage Tanks	Volume in Tank	Never more than 95% full	Daily
	Tank Exterior	Rusty, loose anchoring, grounding, wet spots, leaks, discoloration	Daily
	High Level Alarms	Malfunctioning siren/light	Daily
	Volume Gauges	Disconnected/ sticking, condensation	Daily
Secondary Containment	Bottom and Walls	Cracks, debris, ponding, wet spots, stains, deterioration, displacement, leaks	Daily
	Rigid Piping and Supports	Distortion, corrosion, paint failures, leaks	Daily
Transfer Pumps and	Pump Seals	Leaks	Daily
Hoses	Motors	Overheating	Daily
	Fittings	Leaks	Daily
	Valves	Leaks, sticking	Daily
	Hose Connections and Fittings	Cracks, loose, leaks	Daily
	Hose Body	Crushed, cracked, thin spots, leaks	Daily

TABLE 5.2-1
INSPECTION SCHEDULE

Area/Equipment	Specific Item	Types of Problems	Frequency of
			Inspection
Return/Fill	Wet Dumpster	Excess sediment build-up,	Daily
Shelter		leaks, rust, split seams,	
		distortion, deterioration,	
		excess debris	
Container Storage	Total Volume in Storage	Exceeds permitted limit	Daily
Area	Condition of Drums	Missing or loose lids, labels	Daily
		missing, incomplete or	
		incorrect, rust, leaks, distortion	
	Stacking/Placement/Aisle	Containers not on pallets,	Daily
	Space	unstable stacks, inadequate	
		aisle space	
Secondary	Curbing, Floor and Sump	Ponding/wet spots,	Daily
Containment		deterioration, displacement,	
		leaks, other	

TABLE 5.6-1
EMERGENCY RESPONSE EQUIPMENT

Description	Type/Capacity	Location	Quantity
Fire Extinguisher	ABC (10 lb)	Warehouse	4
_		Return/Fill Area	4
		Office Area	5
		Tank Storage Area	1
Eyewash	Fountain	Warehouse	1
		Return/Fill Area	1
		Drum Return/Fill Area	1
First-Aid	OSHA Compliant	Office Area	1
Telephones	Standard	Managers Office	1
Telephones	Standard	Secretary's Desk	1
Telephones	Standard	Warehouse	1
Intercom	Explosion Proof	All Buildings	N/A
Gloves	Rubber	PPE Cabinet	Min. 3
Boots (Optional)	Rubber	Emergency Equip Area	Min. 3
Protective Clothing	Apron	PPE Cabinet	Min. 3
Eye Protection	Goggles/Safety Glasses	PPE Cabinet	Min. 3
Sorbent Material	Oil Absorbing	Emergency Equip Area	Min. 1 bag
Shovel	Standard	Emergency Equip Area	Min. 1
Mop and Bucket	Standard	Emergency Equip Area	Min. 1
Respirator	Air Purifiers	PPE Cabinet	Min. 1
Pump	Hand-held, Electric	Emergency Equip Area	Min. 1
Wet/Dry Vacuum	Portable, Electric	Emergency Equip Area	1
Empty Drums for Overpack	30, 55, 85 gal.	Container Storage Area	9
Fire Sprinkler System	Foam	Container Storage Area	1

TABLE 5.8-1
DESCRIPTION AND USES OF EMERGENCY EQUIPMENT

Item	Location	Use/Description
Gloves	PPE Cabinet	The rubber plastisol gloves sold by Safety-Kleen
		are to be used when handling the solvents.
Safety Glasses or	PPE Cabinet	To be worn when loading or unloading solvent.
Face Mask		
Plastic Aprons	PPE Cabinet	For situations where a solvent may get on the
		workers clothing.
Eyewash Stand	Container storage area	Employees should operate the stand and
	Return/Fill Area	become familiar with its operation
	Tank Farm	
Showers	Office Area/Locker room	These are used for emergency and routine
		cleaning of employees
Fire Extinguisher	See Figure 5.6-1 (locations of	An ABC extinguisher is a universal system used on paper,
	emergency equipment)	wood, and electrical, as well as solvent fires. The
		extinguishers must be full and carry an inspection tag.
Absorbent	Loading/Unloading	An adequate supply will be on hand to handle small spills. A
Material	Area/Warehouse	50 lb bag will also be kept in the warehouse to remediate and
		prevent spread of large spills
Air Purifying	Employee Lockers/Extra	Worn by any person entering an area or performing work
Respirator	respirator is kept in the	where potentially harmful fumes are present or suspected to
	Emergency Equipment Area	be present but not considered to be immediately dangerous to
		life and health
Portable Pumps	Warehouse	For use in picking up liquid spills in the container
Wet/Dry Vac		containment area, or other paved areas, and transfer materials
		associated with spills
Recovery	Warehouse	Emergency storage of spilled product, cleaning fluids, or
Containers		other materials associated with spills
Plastic	Warehouse	Used for containment of decontamination zones
Duct Tape	Warehouse	Taping of protective clothing, plastic, and other uses
First-aid	Office Area	Minor first-aid needs and health problems
Shovels/Mops	Warehouse	Used to collect spills and residue
Communication	Facility Wide	Phones with intercom systems in office/warehouse for
Equip		internal and external communications
Decon. Equip.	Warehouse	2 brushes, box of detergent, rags, available for decon of clean
		up equip.
Fire Sprinkler	Warehouse	An automatic sprinkler system that is activated in case of fire
System		in the building

CO Safety Security Inspection

Form Code: 29

Compliance Header	
Inspector Name	
Area of Inspection	
Inspection Date and Time	
CO Safety Security Inspection Instructions	
Note condition of inspection items. If item does number findings must be explained below. Include any required or performed.	• • •
CO Safety Security Inspection Items	
Perimeter fences - check for evidence of failure (e.g., broken ties, corrosion, holes, distortion, other)	
Gates/External Warehouse Doors - Check for evidence of failure (e.g., locking mechanism, broken ties, corrosion, holes, distortion, direct access doors working properly, other).	
Warning signs - check for evidence of failure (e.g. missing, faded, other).	
Exit Signs - Check for evidence of failure (e.g., missing sign, illumination, lamp bulbs, battery backup, other).	
Exits/Firelanes/Evacuation Routes - Check that all routes are clear or unobstucted.	
Lighting System - Check for evidence of failure (e.g. expired lamps, effectiveness, location, other).	
Emergency Lighting System - Check for evidence of failure (e.g., expired lamps, battery backup, effectiveness, other).	
Accessibility of Safety Equipment/Protective Gear - Check for evidence of availability (e.g.,	

hardhats, faceshields, goggles, safety glasses, boots, gloves, aprons, uniforms, duct tape, absorbents, other).	
Adequate Supply of Safety Equipment/Protective Gear - Check for evidence of availability (e.g., cleanliness, inventory available is adequate, in the correct location, correct type of equipment, other).	
Condition of Safety Equipment - Check for evidence of failure (e.g., review PPE for damage or excessive wear, other).	
Breathing Apparatus Accessibility - Check for evidence of availability (e.g. SCBA respirators, equipment, other).	
Breathing Apparatus Adequate Supply/Full Charge - Check for evidence of availability (e.g., SCBA tanks, charged, other).	
Breathing Apparatus Condition - Check for evidence of failure (e.g., SCBA damage, other).	
First Aid Kits - Check for evidence of availability (e.g., adequate inventory, correct location, other).	
Bloodborne Pathogen Kits - Check for evidence of availability (e.g., adequate inventory, correct location, correct type, other).	
Emergency Eyewashes - Check for evidence of failure (e.g., disconnected or malfunctioning valves, inadequate pressure, inaccessible, malfunctioning drain, leaking, correct location, adequate type and inventory, other).	
Emergency Showers - Check for evidence of failure (e.g., disconnected or malfunctioning valves, inadequate pressure, inaccessible, leaking, correct location, adequate type, adequate inventory, other).	
Internal/External Communication - Check for evidence of failure (e.g., inadequate supply of phones or radios, malfunctioning intercom,	

telephones not working properly, emergency alarm does not work, phone moved from proper location, other).	
Fire Extinguishers - Check for evidence of failure (e.g., overdue inspection, correct location, correct type, not charged, inaccessible, adequate inventory, other).	
Absorbent Supply - Check for evidence of availability (e.g., adequate inventory, correct location, correct type, other).	
Recovery Drum Supply - Check for evidence of availability (e.g., adequate inventory, correct location, correct type, other).	
Respirators and Cartridges - Check for evidence of availability (e.g., adequate APR inventory, correct location, correct type, other).	
Fire Suppression System Accessibility - Check for evidence of failure (e.g., monitors, pull stations, alarms, other).	
Fire Suppression System Operable - Check for evidence of failure (e.g., test, other).	
Water Lines/Hydrants - Check for evidence of failure (e.g., blocked, broken, other).	
Alarm Systems - Check for evidence of failure (e.g., test, other).	
Fire Blankets - Check for evidence of availability (e.g., adequate inventory, correct location, other).	
Strainer on Fire Suppression System - Check for evidence of failure (e.g., functioning as intended, other).	
Surveillance System/Guard Service - Check for evidence of failure (e.g., equipment or service provided and functioning properly, other).	
Supplied Air Delivery System and Reserve - Check for evidence of failure (e.g., system operational, epuipment functioning, other).	

Decontamination Equipment/Spill Clean-up Equipment - Check for evidence of availability (e.g., adequate supply of shovels, mops, cleaning solvents, available inventory, correct location, correct type, other).	
Portable Sump Pumps - Check for evidence of availability (e.g., adequate inventory, functioning properly, correct location, correct type, other).	
Gasoline Pumps - Check for evidence of failure (e.g., broken parts, leaks, other).	
Loud Speakers - Check for evidence of failure (e.g., test, other).	
Chocked Wheels on Parked Vehicles - Check for evidence of failure (e.g., chocks not used, missing, deteriorated, other).	
Cylinders Secure - Check for evidence of failure (e.g., properly stored, secured, chained, other).	
Ventilation Operable - Check for evidence of failure (e.g., system working as intended, other).	
Fall Protection - Check for evidence of availability (e.g., adequate inventory, integrity of equipment, other).	
Electrical Boxes - Check for evidence of failure (e.g., closed, not blocked, marked properly, other).	
Emergency Contact Info Posted - Check for evidence of availability (e.g., up-to-date postings, location requirement, other).	
Hearing Protection Available - Check for evidence of availability (e.g., type appropriate per location, other).	
Housekeeping - Check for evidence of failure (e.g., blocked egress, proper storage, procedure followed, other).	
Portable Compressor - Check for evidence of availability (e.g., adequate inventory,	

functioning properly, other).	
Lime Supply - Check for evidence of availability (e.g., adequate inventory, other).	
QC Lab Hood - Check for evidence of failure (e.g., functioning properly, other).	
Rolloff Parking Area - Check for evidence of failure (e.g., housekeeping, staging, other).	
Dumpster/Outside Containers - Check for evidence of failure (e.g., housekeeping, condition, appropriate use and storage, other)	
Stormwater Collection System - Check for evidence of failure (e.g., functioning properly, damaged equipment, integrity, other).	
Rally Point - Check for evidence of failure (e.g., location identified, communication, other).	
Visitor Log - Check for evidence of failure (e.g., available, communication, proper use, other).	
Contingency Plan - Check for evidence of failure (e.g., available, up-to-date, communication, other).	
Wind Instrument/Wind Sock - Check for evidence of failure (e.g., operational, functioning properly, not broken, other).	
Compliance Footer	
Inspector Signature	
Attach Photo	
Inspection Overall Assessment	

Appendix A

Example Letters to Local Authorities

(Date)	

Certified Mail

Metro Dade Fire Rescue 9300 NW 41st Street Miami, FL 33178

RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95th Street, Medley, FL 33178

Dear Sir/Madam:

Under terms of the Environmental Protection Agency (EPA) regulations 40 CFR 264, Subpart D, Safety-Kleen Systems, Inc. (SK) must provide local police, fire departments, hospitals, and state or local emergency response teams with a copy of the contingency plan for the above-referenced facility, and any revisions to the plan. A copy of the updated contingency plan is enclosed for your files. Please review this updated contingency plan. Also enclosed are Safety Data Sheets (SDSs) for materials handled at the facility.

EPA regulations 40 CFR 264, Subpart C, require that SK attempt to make arrangements for the provision of emergency assistance. Emergency assistance for this facility may be needed from the police and fire departments, state emergency response teams, and hospitals. The completion and return of the enclosed form will acknowledge receipt of this update to the contingency plan and provides your agreement to be available for emergency assistance.

Thank you for your cooperation in this matter. Should you have any questions or desire to visit our facility, please contact me at (305) 884-0123.

Sincerely,

Branch Manager Safety-Kleen - Medley

Enclosures

(Date)
Miami-Dade Fire Rescue 9300 NW 41 st Street Miami, FL 33178
Branch Manger Safety-Kleen Systems, Inc. 8755 NW 95 th Street Medley, FL 33178
RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95 th Street, Medley, FL 33178
Dear Branch Manager:
This is to acknowledge that the Miami-Dade Fire Rescue has been made aware of the potential need for emergency assistance associated with the operation of the Safety-Kleen Systems, Inc. (SK) facility at 8755 NW 95 th Street, Medley, FL 33178. The Miami-Dade Fire Rescue understands that the emergency coordinator is available to provide additional information on the nature of assistance that may potentially be required, type of physical and chemical hazards that may potentially be encountered, and the type of injury or illness that may potentially occur.
This is to acknowledge receipt of the updated contingency plan information for the Medley, Florida facility.
The Miami-Dade Fire Rescue (agrees/declines) to be available to provide emergency assistance for the Safety-Kleen Systems, Inc. facility at 8755 NW 95 th Street, Medley, FL 33178.
Sincerely,
(Signature)

(Title)

(Date)

Certified Mail

Medley Police Department 7777 NW 72nd Ave Medley, FL 33166

RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95th Street, Medley, FL 33178

Dear Sir/Madam:

Under terms of Environmental Protection Agency (EPA) regulations 40 CFR 264, Subpart D, Safety-Kleen Systems, Inc. (SK) must provide local police, fire departments, hospitals, and state or local emergency response teams with a copy of the contingency plan for the above-referenced facility, and any revisions to the plan. A copy of the updated contingency plan is enclosed for your files. Please review this updated contingency plan. Also, enclosed are Safety Data Sheets (SDSs) for materials handled at the facility.

EPA regulations 40 CFR 264, Subpart C, require that SK attempt to make arrangements for the provision of emergency assistance. Emergency assistance for this facility may be needed from the police and fire departments, state emergency response teams, and hospitals. The completion and return of the enclosed form will acknowledge receipt of this update to the contingency plan and provides your agreement to be available for emergency assistance.

Thank you for your cooperation in this matter. Should you have any questions or desire to visit our facility, please contact me at (305) 884-0123.

Sincerely,

Branch Manager Safety-Kleen – Medley

Enclosures

(Date)
Medley Police Department 7777 NW 72 nd Ave Medley, FL 33166
Branch Manager Safety-Kleen Systems, Inc. 8755 NW 95 th Street Medley, FL 33178
RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95 th Street, Medley, FL 33178
Dear Branch Manager:
This is to acknowledge that the Medley Police Department has been made aware of the potential need for emergency assistance associated with the operation of the Safety-Kleen Systems, Inc. (SK) facility at 8755 NW 95 th Street, Medley, FL 33178. The Medley Police Department understands that the emergency coordinator is available to provide additional information on the nature of assistance that may potentially be required, type of physical and chemical hazards that may potentially be encountered, and the type of injury or illness that may potentially occur.
This is to acknowledge receipt of the updated contingency plan information for the Medley, Florida facility.
The Medley Police Department (agrees/declines) to be available to provide emergency assistance for the Safety-Kleen Systems, Inc. facility at 8755 NW 95 th Street, Medley, FL 33178.
Sincerely,
(Signature)

(Title)

(Date)

Certified Mail

Hospital Administrator Palmetto General Hospital 2001 W. 68th Street Hialeah, FL 33016

RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95th Street, Medley, FL 33178

Dear Sir/Madam:

Under terms of Environmental Protection Agency (EPA) regulations 40 CFR 264, Subpart D, Safety-Kleen Systems, Inc. (SK) must provide local police, fire departments, hospitals, and state or local emergency response teams with a copy of the contingency plan for the above-referenced facility, and any revisions to the plan. A copy of the updated contingency plan is enclosed for your files. Please review this updated contingency plan. Also enclosed are Safety Data Sheets (SDSs) for materials handled at the facility.

EPA regulations 40 CFR 264, subpart C, require that SK attempt to make arrangements for the provision of emergency assistance. Emergency assistance for this facility may be needed from the police, fire departments, state emergency response teams, and hospitals. The completion and return of the enclosed form will acknowledge receipt of this update to the contingency plan and provides your agreement to be available for emergency assistance.

Thank you for your cooperation in this matter. Should you have any questions or desire to visit our facility, please contact me at (305) 884-0123.

Sincerely,

Branch Manager Safety-Kleen – Medley

Enclosures

(Date)
Hospital Administrator Palmetto General Hospital 2001 W. 68 th Street Hialeah, FL 33016
Branch Manager Safety-Kleen Systems, Inc. 8755 NW 95 th Street Medley, FL 33178
RE: Safety-Kleen Systems, Inc. (309702), 8755 NW 95 th Street, Medley, FL 33178
Dear Branch Manager:
This is to acknowledge that the Hospital Administrator, Palmetto General Hospital, has been made aware of the potential need for emergency assistance associated with the operation of the Safety-Kleen Systems, Inc. (SK) facility at 8755 NW 95 th Street, Medley, FL 33178. The Hospital Administrator, Palmetto General Hospital understands that the emergency coordinator is available to provide additional information on the nature of assistance that may potentially be required, type of physical and chemical hazards that may potentially be encountered, and the type of injury or illness that may potentially occur.
This is to acknowledge receipt of the updated contingency plan information for the Medley, Florida facility.
The Hospital Administrator, Palmetto General Hospital (agrees/declines) to be available to provide emergency assistance for the Safety-Kleen Systems, Inc. facility at 8755 NW 95 th Street, Medley, FL 33178.
Sincerely,
(Signature)
(Dignature)

(Title)

Tab 4 Part II Waste Analysis Plan

Part II

Waste Analysis Plan (WAP)

270.14(b)(3), 264.13(b)-(c)

Waste analysis at the Safety-Kleen Medley Service Center is a three-step process that includes:

- Prescreening of customers
- · Qualitative/visual analysis and
- Quantitative analysis (lab analysis)

Prescreening of Customers

Safety-Kleen performs a customer prescreening for all parts washer and immersion cleaner service customers. The other permitted waste streams (dry cleaning wastes and paint wastes) are generated from facilities where there is typically one process generating hazardous waste and the possibility of cross-contamination from other chemicals or wastes is minimal. These wastes remain in the container they were originally packaged from the time they are collected at the customer location, while in storage at the SK Medley Branch, and until received at a permitted Safety-Kleen/Clean Harbors TSDF, or other properly permitted disposal facility. These waste containers remain closed from customer to final disposition.

Prior to leasing a SK parts cleaning machine or placing a Customer Owned Machine (COM) service, the customer's business is reviewed. Where the possibility exists for contamination of the parts cleaner solvent (e.g., pesticide, herbicide, or pharmaceutical operations), operations are reviewed to ensure that the solvent is protected from the sources of contamination. In reviewing a customer's business, the Safety-Kleen representative provides customers with written and verbal information on use of the equipment. When a new service is placed with a new, or existing customer, the customer must agree to certify that they "will not introduce any substance into the parts washer solvent or aqueous cleaning solution, including without limitation any hazardous waste or hazardous waste constituent, except to the extent such introduction is incidental to the normal use of the machine". The customer further agrees that they will not clean parts/paint guns that have been contaminated with or otherwise introduce PCBs, herbicides, pesticides, dioxins, or listed hazardous wastes into the parts washer solvent or aqueous cleaning solution or said waste would not be accepted by Safety-Kleen as a core waste. In addition, the Safety-Kleen machine label provides operating and safety information which includes a statement that the addition of any other chemical or cleaner to the parts washer solvent is prohibited.

Information supplies to the customer will contain at a minimum:

- Proper usage and management of the unit
- Information on the reasons to not add materials to the unit, and
- Examples of what not to add to the unit

Qualitative/Visual Analysis

Safety-Kleen conducts qualitative/visual analysis as a part of all parts washer and immersion cleaner services. Qualitative/visual analysis is not conducted on the dry-cleaning and paint waste streams as these containers are not opened by the Safety-Kleen service representative and the likelihood of contamination is remote. Safety-Kleen representatives are instructed to visually examine the used solvent (parts washer and immersion cleaner) for each waste pickup when the machines are serviced, noting the quantity, odor, and appearance of the material recovered as follows:

- 1. The quantity of used parts washer solvent in the drum. Safety-Kleen knows the volumes of solvent provided for each parts washer model and customer owned machines. These clean volumes are listed on all Safety-Kleen service documents. When the amount of parts cleaner solvent or immersion cleaner fluid is more than 10% greater than originally supplied, the container will not be immediately accepted by the service representative. Contingent on the customer's responses to Safety-Kleen's inquiry regarding the customer's operation and handling practices, the solvent is accepted or left with the customer until an analysis is completed to determine its acceptability.
- 2. The odor of the liquid in the container. Personnel must never make an effort to "sniff" the parts washer solvents. However, if in the normal course of servicing the parts washer machine, the odor of the fluid in the container is noticed to be different from that of parts washer solvent or immersion cleaner, the container will not be immediately accepted by the service representative. The SK representative will inquire with the customer regarding operation and handling practices of the parts washer machine and based on the response received from the customer the container will either be left at the site or accepted.
- 3. The appearance of the liquid in the drum. The used parts cleaner solvents have a normally brown or black appearance. Certain contaminants containing dyes and color pigments (such as transmission fluid, soy-based printers' ink, and water-based paints) may change the color of the used parts cleaner solvent to other colors. Used immersion cleaner should have a dark brown to almost black appearance. Unused immersion cleaner is amber in color. As the solvent is used, the darker it becomes. Therefore, if the spent immersion cleaner does not appear to be amber, brown, or black, the service representative will not accept the container. Safety-Kleen will

inquire with the customer regarding operation and handling practices of the material. Based on the response from the customer, Safety-Kleen will either accept the container, or reject until analysis has been completed.

If the material passes the three qualitative/visual analyses shown above the material is noted as having passed the field qualitative analysis in our service document (typically a handheld computer printout).

As indicated in each of the qualitative/visual analysis, if the answers provided by the customer as to why the test (quantity, odor and appearance) were not acceptable, the material is left behind for further testing. An Account Sales Manager will return to the site to sample the material should the generator request Safety-Kleen to assist in managing the material. The sample will be sent to a certified laboratory for testing. A Waste Material Profile Sheet will be completed and once approved the waste will be managed as containerized transfer waste for disposal if not acceptable as solvent.

At the Safety-Kleen Branch Service Center, the Safety-Kleen Representative or Material Handler is responsible for either accepting or rejecting the waste upon completing the following procedure:

- Review the manifest or shipping document for accuracy and completeness;
- Check the container label for completeness and consistency with the manifest or shipping document;
- Check the condition of each container and verify that it is USDOT approved;
- Verify that each container type is consistent with the information on the manifest or shipping document;
- Observe quantity, odor, and appearance prior to accepting used parts washer solvent and dumping
 into the wet dumpster. Dry-cleaning, paint waste, and immersion cleaner waste containers are not
 opened and inspected at the branch.

If a container with questionable contents is returned to the facility, a sample will be taken and analysis performed. The container will be held at the facility pending completion of analysis. If analysis indicates the waste to be different than what was manifested to the facility, it will be returned to the generator, or managed at the facility in accordance with the generator's direction. Records of all sampled and/or rejected wastes will be kept on file at the Medley branch.

In addition, receipt analysis is performed by the Safety-Kleen Recycle Centers on all inbound bulk solvent waste deliveries from the Branch Service Centers. Receipt analysis typically includes a screen for atypical flash point, Polychlorinated Biphenyls (PCBs), and halogenated organics.

Quantitative Analysis (Lab Analysis)

After 50 years of servicing over 250,000 parts washer customers each year, Safety-Kleen has determined that the wastes generated by its customers are relatively homogeneous. The homogeneity of these wastes is evaluated annually through the Safety-Kleen Annual Recharacterization (AR) program (Quantitative Analysis).

Analytical data from the Annual Re-characterization sampling is subjected to an EPA SW846 approved statistical model (Exhibit C-1, found at the end of the WAP). The waste samples analyzed come from a variety of Safety-Kleen facilities across the country and is representative of the facility.

Samples included in the AR process are selected from random customers serviced by Safety-Kleen facilities. Randomness is overseen by the Safety-Kleen Technical Center, which manages the AR program, selecting the month that the samples will be taken. A list of waste streams included in the AR is found below. The analytical results or the AR are communicated to customers to assist them in making a waste determination, while they also consider their specific generation process. In the case parts washer solvent, if a customer determines specific waste codes apply to their used parts washer solvent then these codes will be used when servicing the parts washers. Generator services are typically scheduled months in advance and those clients whose waste happens to be on hand on the month selected by the Technical Center will be the wastes that will be sampled.

The waste streams collected by Safety-Kleen are relatively uniform across business types and geographical locations. This is demonstrated by the minimal changes in the codes assigned to each stream through the AR statistical evaluation each year via the Non-parametric Upper Confidence Interval Approach. If waste code(s) are removed from any of the waste streams evaluated by the AR program, and SK has a current, or potential, customer generating this waste stream that they believe include the removed waste code(s), the customer may complete a separate waste profile based on process knowledge, or TCLP analytical data, and the waste may be managed as permitted or 10-day transfer waste.

When subjecting AR sample data to the Non-parametric Upper Confidence Interval Approach, the last 3 years of analytical data for a given waste stream is used from samples pulled from across the country (in most cases). For example, statistically based waste codes assigned to a particular core waste stream in 2022 are based on samples analyzed in 2019, 2020, and 2021. Ideally 50 data points are used but at least 30 data points are required. If 30 data points are not available from samples pulled in 2019/2020/2021, samples

from 2018 will also be incorporated into the population.

In reviewing with Dr. Gibbons how the number of data points was derived he wrote in an email ... "This is a nonparametric upper confidence limit (see Gibbons, Bhaumik and Aryal, 2010 section 18.7) which is defined by an order statistic (i.e. a rank) of the data. There is nothing magical about 30 or 50, but 50 is good because the median is the average of the 25th and 26th highest values and the UCL is the 31st largest value, which provides a reasonably tight confidence limit (i.e. not an extreme value)."

Homogeneity of the streams was further confirmed in 2004 when Safety-Kleen conducted an Annual Recharacterization using California-only customer data. Safety-Kleen conducted a statistical comparison of the 'California only' Annual Re-characterization result with the results from the National AR (Exhibit C-3, found at the end of the WAP). Note the conclusion that California customer wastes are no different than the streams generated by Safety-Kleen customers in the rest of the country.

The waste streams included in the Safety-Kleen AR process are by their nature consistent and predictable. The process includes streams generated by Safety-Kleen customers and terminated as permitted streams at Safety-Kleen facilities as well as streams generated by Safety-Kleen facilities.

Waste streams included in the Re-characterization process for 2021 (for 2022 waste codes) were:

CUSTOMER GENERATED SAFETY-KLEEN GENERATED

Immersion CleanerBulk SolventParts Washer SolventDumpster SludgePaint Gun Cleaner/Paint WastesTank BottomsDry Cleaner (Perchloroethylene and Naphtha, filters,Branch Debris

bottoms and separator water)

Aqueous Brake Cleaner

Aqueous Parts Washer Solvent

AR Sample Testing Protocol is located in Exhibit C-4, found at the end of the WAP. Procedures used for obtaining the samples is included in Exhibit C-5, found at the end of the WAP. Final AR (National) Waste Code Assignments are included in Appendix B. A copy of Safety-Kleen's current Annual Recharacterization Data is included in Appendix B. All AR Samples are analyzed by an independent NELAP accredited environmental laboratory

Waste Determination for Subpart BB and CC Compliance

For purposes of waste determination, this facility utilizes knowledge of the wastes described in this section. The used parts washer solvent managed in the tank system is presumed to contain hazardous waste with an organic concentration of at least 10-percent by weight, so Subpart BB regulations apply. For those hazardous wastes that are managed on a transfer basis, the Subpart CC regulation does not apply. However, the owner/operator may use knowledge of the waste based on information included in manifests, shipping papers or waste certification notices to confirm waste determination for the generator or the ultimate receiving facility.

Based upon this knowledge, it has been determined that most waste solvents managed in tanks and containers at this facility may display an average volatile organic concentration of greater than 500 ppm at the point of waste origination. Therefore, no exemption allowed in 40 CFR 264.13(b)(8) from Subpart CC regulations is requested and hazardous wastes managed in tanks and containers at this facility shall be managed in accordance with applicable Subpart CC standards.

270.14(b)(3), 264.13(b)(1) Parameters and Rationale

Safety-Kleen's permitted waste streams which are all received in containers are broken into five types:

- Used parts washer solvent (petroleum naphtha/mineral spirits)
- Aqueous Parts Waste Solvent
- Solvent immersion cleaner
- Paint waste
- Dry Cleaner Perchloroethylene

The product provided, or in the case of dry cleaner solvents that are purchased by the generator, makes up the majority of the waste. As such the analytical testing includes the regulated constituents in these products and the regulated metals and volatile solvents that may come in contact with the products. This, combined with a known process that the waste streams are being derived from, form the basis for testing.

The purpose of the Re-characterization is to determine the waste codes applicable to core waste streams managed and generated by Safety-Kleen facilities. As such, a waste stream may be excluded from Re-characterization once it has consistently been designated as non-hazardous. A stream may also be excluded from Re-characterization when it has been determined that the codes assigned to the stream are stable and marginal changes in trace constituents will not affect the management of the stream. Lastly, a set of analytes may be omitted if they are not expected or are demonstrated to not be present in a waste stream. Pesticides and herbicides have never been included in the Re-characterization process as these constituents are not allowed in wastes picked up by Safety-Kleen. Analysis for semi-volatiles is in the process of being phased out as codes for semi-volatiles have never been assigned.

270.14(b)(3), 264.13(b)(2) Test Methods

Exhibit C-4, found at the end of the WAP, details the AR sample testing protocol.

270.14(b)(3), 264.13(b)(3) Sampling Methods

AR Sampling Method Requirements are outlined in Exhibit C-5, found at the end of the WAP.

270.14(b)(3), 264.13(b)(4) Frequency of Analysis

As described previously, a Qualitative/Visual analysis of the parts washer wastes managed at the Service Center is conducted for each waste pickup. Safety-Kleen's Re-characterization is conducted annually.

270.14(b)(3), 264.13(b)(5)(c) Additional Requirements for Wastes Generated Off-Site

Generators are informed of the results of the AR each year. No action is required by the generator if they agree to the waste code(s) for Safety-Kleen's core waste streams. However, if a generator chooses to use knowledge of its process to identify which waste codes are attached to the waste, approval by Safety-Kleen's Central Waste Profiling group is required. In most cases, laboratory analytical data will be required to remove codes determined by the AR process. If additional waste codes are identified by the generator, Safety-Kleen will set up a specific profile for that generators waste stream identifying those waste codes provided.

270.14(b)(3), 264.13(b)(6)(c), 264.17 Additional Requirements for Ignitable, Reactive or Incompatible Wastes

Waste received at the facility is analyzed according to the procedures described in the Waste Analysis Plan. All ignitable wastes terminated at the facility are compatible with each other and the containers in which they are stored. Therefore, additional analyses to evaluate compatibility are not necessary.

The permitted container storage area, located inside the warehouse, is where ignitable waste is stored are designed for this material. All electric components in the Return and Fill area are intrinsically safe. Hot work permits are required for any work that may involve excess heat, sparks or open flames in these storage areas and are conducted only when ignitable materials are not present. No Smoking signs are posted in all areas where ignitable waste is stored and smoking is not allowed within the office, warehouse or fenced areas of the facility.

The only permitted hazardous waste containers opened at the facility are the used parts washer solvent wastes, which are eventually consolidated into the RCRA-Permitted Hazardous Waste Tank (Used Solvent)

within the Permitted Tank Storage Unit. Used Parts Washer Solvent in this tank is considered ignitable. No other waste streams are added to the tank.

270.14(b)(3), 264.13, 268 Waste Analysis Requirements Pertaining to Land Disposal Restrictions
All of the permitted waste streams received and stored at the Medley facility are treated or recycled at an approved Safety-Kleen/Clean Harbors TSDF, contract reclaimer, or other properly permitted facility.

The drum washer sediment generated at the facility is containerized and shipped offsite for reclamation. The Branch Service Center does not dispose of any hazardous wastes onsite and does not send any permitted wastes to land disposal facilities. Therefore, the Medley Service Center is not required to certify that hazardous wastes that are restricted from land disposal are below treatment standards. The following sections discuss how Safety-Kleen determines appropriate Land Disposal Restriction (LDR) classification and treatment standards and how LDR notification requirements are met.

270.14(a), 264.13(a)(1), 268.1, 268.7, 268.9, 268.32-37, 268.41-43 Waste Analysis

Due to the nature of its business, Safety-Kleen receives wastes that are untreated and that are assumed to exceed the LDR treatment standards. For the Safety-Kleen parts washer solvent, immersion cleaner, dry cleaner wastes and paint wastes, the hazardous constituents are known. The rationale for the selection of LDR treatment standards are provided below.

270.14(a), 264.13(a)(1), 268.2(d), 268.2(f), 268.7, 268.30, 268.31 Spent Solvent and Dioxin Containing Waste

Safety-Kleen will manage F-solvent wastes. The spent dry cleaning perchloroethylene is F-Solvent non-wastewater waste with the following treatment standard: tetrachloroethylene (6.0 mg/kg). The perchloroethylene treatment standard for wastewaters is 0.056 mg/l. None of the permitted wastes Safety-Kleen handles contain dioxins.

270.14(a), 264.13(a)(1), 268.7, 268.32, 268.42(a) California List Wastes

California list wastes are a distinct category of RCRA hazardous wastes that are restricted under the land disposal restrictions (LDRs). These restrictions only apply to liquid wastes, with the exception of Halogenated Organic Compounds (HOCs), which may be liquid or non-liquid. In Safety-Kleen's case, all of our permitted waste streams are liquid, with the possible exception of the Dry-Cleaning Filters, which can be dry although they may have low levels of free liquids at times. In either case the California List Waste rules apply as the Perc Filters contain HOCs. The Safety-Kleen permitted waste streams do not

contain PCBs over 50 ppm, free cyanides >1000 mg/l, nor do they have a pH of <2, so these categories do not apply.

Safety-Kleen permitted wastes are either recycled, fuel blended or incinerated. If any of the residues are landfilled, the prohibition levels for the California listed metals and HOC's will apply. Should liquid residues be landfilled they will have less than the metal prohibition limits prior to land disposal, and liquids and non-liquids will have less 1000 mg/kg of HOCs.

270.14(a), 264.13(a)(1), 268.7, 268.33-36, 268.41-43 Listed Wastes

Safety-Kleen does not handle non-solvent F-listed, K-listed, or P-listed waste in its' permitted areas. Any transfer waste having these codes will have the appropriate LDR paperwork accompany the manifest, so the designated facility can treat the material appropriately.

270.14(a), 264.13(a)(1), 268.7, 268.9, Part 268, Appendix I, IX Characteristic Wastes

Safety-Kleen may generate or store D001 wastes, including parts washer solvent. Since this waste contains high levels of organics, Safety-Kleen assumes that all D001 wastes will contain \geq 10 percent total organic carbon (TOC). The technology-based standards for these non-wastewaters are "RORGS", (recovery of organics) or CMBST (high temperature organic destruction).

Safety-Kleen may also generate or store wastes that may be classified as D006, D007 (example: immersion cleaner, dry cleaner waste). The non-wastewater treatment standards for land disposal of these wastes are 0.11 mg/L TCLP, and 0.60 mg/L TCLP respectively. The wastewaters treatment standards for D006 (cadmium) and D007 (chromium) are 0.69 mg/l, and 2.77 mg/l respectively.

270.14(a), 268.3 Dilution and Aggregation of Wastes

Safety-Kleen's parts washer solvent is the only permitted waste consolidated at the site. All solvent is either recycled or destroyed via combustion; so, this section does not apply.

270.14(a), 264.13, 264.73, 268.7, 268.9(d) Notification, Certification, and Recordkeeping Requirement

For all waste streams terminated at this facility, in accordance with the regulations listed above Safety-Kleen will provide to the TSDFs, or authorized treatment/disposal facility, and require from its' regulated customers, notification/certification which provided the treatment standards for the wastes banned from landfills. These will be updated any time the waste should change, or the waste is delivered to a new final

permitted site. A copy of this notification/certification shall be available (via electronic storage) at the Medley facility.

270.14(a), 264.13, 268.7(a) Notification, Certification, and Recordkeeping Requirement

The notice is required paperwork for all Safety-Kleen permitted waste types. The notices and certifications provided by regulated customers must be reviewed for correctness and be kept on file (electronically) at the Service Center for at least three years as part of the operating record.

270.14(a), 264.13, 268.7(b) Notification and Certification Requirements for Treatment Facilities

This Safety-Kleen Medley Branch is not a treatment facility; therefore, this section does not apply.

270.14(a), 264.13, 268.7(b) Notification and Certification for Land Disposal Facilities

The Safety-Kleen Medley Branch is not a Land Disposal facility; therefore, this section does not apply.

270.14(a), 264.13, 268.7(a)-(b)(6) Waste Shipped to Subtitle C Facilities

All of Safety-Kleen Medley Branch permitted wastes are shipped to a RCRA Subtitle C permitted facility.

270.14(a), 264.13, 268.7(d), 268.9(d) Waste Shipped to Subtitle D Facilities

None of Safety-Kleen Medley permitted wastes are shipped to a Subtitle D facility. Therefore, this section does not apply.

270.14(a), 264.13, 268.7(b)(6) Recyclable Materials

Safety-Kleen Medley permitted wastes are not shipped as recyclable materials used in a manner constituting disposal subject to the provisions of 40 CFR 266.20(b). Therefore, this section does not apply.

270.14(a), 264.13, 264.73, 268.7(a)(5)(6)(7)(d) Recordkeeping

Safety-Kleen Medley does no recycling onsite. Therefore, this section does not apply.

270.14(a), 264.73, 268.50 Requirement Pertaining to Storage of Restricted Wastes

270.14(a), 264.73, 268.50(a)(2)(i) Restricted Waste Stored in Containers

270.14(a), 264.73, 268.50(a)(2)(ii) Restricted Waste Stored in Tanks

Safety-Kleen Medley stores restricted wastes in the RCRA-Permitted Hazardous Waste Tank (Used Solvent), and in containers solely for accumulation of such quantities of hazardous waste as necessary to

facilitate proper recovery, treatment, or disposal. Containers are marked with their contents and the accumulation start date. The hazardous waste tank is marked with its' contents and the waste movements are maintained in the operating record. The facility complies with the requirements in 40 CFR 262.34 and Part 264 as wastes are stored for no more than one year, typically much less.

270.14(a), 264.73, 268.50(f) Storage of Liquid PCB Wastes

Safety-Kleen Medley does not store liquid PCB waste on site. Therefore, this section does not apply.

270.14(b)(21), 268.6 Exemption from Prohibition

Safety-Kleen Medley does not seek an exemption to this prohibition. Therefore, this section does not apply.

270.14(a), 264.73, 268.7, 268.44 Variance from a Treatment Standard

Safety-Kleen Medley does not seek an exemption to a treatment standard. Therefore, this section does not apply.

270.14(a), 264.13(b)(7), 268.4, 268.14	Requirements for Surface Impoundments Exempted
	from Land Disposal Restrictions
270.14(a), 268.13, 268.14	Exemption for Newly Identified of Listed Wastes
270.14(a), 264.13, 268.4(a)(1)(b)	Treatment of Wastes
270.14(a),264.13(b)(6),268.4(a)(2)(i)(iv)	Sampling and Testing
270.14(a), 264.13(b)(7)(iii), 268.4(a)(2)(ii)	Annual Removal of Wastes
270.14(a), 264.13, 268.4(a)(3), (4)(b), 268.14	Design Requirements

Safety-Kleen Medley does not have a surface impoundment. Therefore, these sections do not apply.

Exhibit C-1

Statistical Model (Dr. Gibbons)

DEPARTMENTS OF MEDICINE, PUBLIC SCIENCES, PSYCHIATRY, COMPARATIVE HUMAN DEVELOPMENT

5841 S. Maryland Ave., MC 2007 office W260, Chicago, IL 60637 Phone 773-834-8692; Fax 773-702-1979

Robert D. Gibbons, PhD

Blum-Riese Professor of Biostatistics Committee on Quantitative Methods in Social, Behavioral and Health Sciences Director, Center for Health Statistics rdg@uchicago.edu

August 7, 2018

A Review of the Safety Kleen Statistical Waste Characterization Plan

In 1998, I prepared an annual statistical waste characterization plan for Safety Kleen based on a fully nonparametric approach to computing the 90% upper confidence limit for the 50th percentile of the distribution of analytic measurements. The motivation for the nonparametric approach was based on the non-normality of the distribution of analytic measurements observed at that time and even more importantly, the large proportion of measurements that did not detect the analyte in the sample; so called "non-detects." Motivation for this methodology was laid out in U.S. EPA SW846 (1986) and more recently in the U.S. EPA Unified Statistical Guidance Document (2009) see section 21.2. As noted in the Unified Guidance, "The advantage of a nonparametric interval around the median is its greater flexibility to define confidence intervals on non-normal data sets."

Recently, IL EPA has suggested that based on the OSWER 2002 Guidance, the nonparametric UCL that has been in use over the past 20 years should be replaced by the Chebyshev Inequality Method, which is a distribution free method. Using this method, the computed UCL for tetrachloroethylene (PCE) exceeded the regulatory standard whereas the nonparametric UCL did not. In the following, I try to shed light on this discrepancy.

To begin, nonparametric UCLs and distribution-free UCLs are in fact quite different. While neither method assumes a specific parametric form for the analyte distribution, the distribution free methods (e.g., Chebyshev Inequality Method) rely upon having a known population variance or standard deviation. Of course we never know the true standard deviation for the population, so practitioners typically substitute the observed standard deviation. As such, they are incorrect from the start. As noted in this guidance document, these distribution free methods break down when the detection frequency is low as is the case here. For PCE, only 8 of 31 measurements were detected (25.8%), and the largest measurement is an order of magnitude larger than the second largest measurement (51.72 vs. 5.8) suggesting the possibility that it is an outlier. As noted in the OSWER guidance, "If the proportion of non-detects is high (75%) or the number of samples is small (n<5), no method will work well." This is true for the parametric or distribution free methods described in the document, but this is not true for the nonparametric methods (with n>20) that have been used by Safety Kleen for the past 20 years. In fact, the nonparametric methods are based only on the rank ordering of the data and do not require either known or estimated values of the mean and variance as the distribution-free methods do and which break down in the presence of large numbers of non-detects and/or extreme skewness "As skewness increases further, the Chebyshev method is not recommended". The skewness of the PCE data produced by the large number of non-detects for which IEPA imputed DL/2 and the presence of a single extreme value is an example of extreme skewness. Non-detects and skewness have no effect on the nonparametric UCL used by Safety Kleen for the past 20 years and there are no distributional assumptions or summary statistics required to compute the UCL.

Sincerely yours,

Robert D. Gibbons Ph.D.

Statistical Analysis of Annual Waste Characterization Data

Prepared by Robert D. Gibbons Ph.D.

for

Safety Kleen July 23, 1998

1 Introduction

Since 1990, Safety-Kleen has undertaken a major analytical study each year to document the contaminants in some of its most common waste streams to determine which TCLP waste codes should appear on the manifest for that waste. This Annual Waste Recharacterization Program is both expensive and extensive. Upon review, it appeared that regulatory agency instructions for how to interpret the data might not have been in line with current policy, as reflected in SW846. The general approach is based on development of an upper 90% confidence limit for the true concentration of each constituent, which can in turn be directly compared to regulatory standards to determine if the waste code should or should not be added to a particular waste stream (e.g., Premium Gold Parts Washer Solvent 150). The regulatory basis for this type of comparison stems from U.S. EPA SW846 Chapter 9 (September 1986) guidance on determining if a waste stream is hazardous.² The primary complicating feature is the presence of large numbers of nondetects which raises serious question regarding the use of the parametric approach. In light of this concern, nonparametric methods are used throughout.³ Specifically, following U.S. EPA SW846, we construct a nonparametric 90% upper confidence limit (UCL) for the 50th percentile of the distribution (i.e., median), which is equivalent to the 90% UCL for the mean in the case of a symmetric distribution such as the normal distribution.

¹"Consequently, the CI employed to evaluate solid wastes is, for all practical purposes, a 90% interval." U.S. EPA SW846 (1986) chapter 9 page 6.

 $^{^2}$ "The upper limit of the CI for μ is compared with the applicable regulatory threshold (RT) to determine if a solid waste contains the variable (chemical contaminant) of concern at a hazardous level. The contaminant of concern is not considered to be present in the waste at a hazardous level if the upper limit of the CI is less than the applicable RT. Otherwise the opposite conclusion is reached. "U.S. EPA SW846 (1986) chapter 9 page 3

³"If the data do not adequately follow the normal distribution even after logarithm transformation, a nonparametric confidence interval can be constructed. This interval is for the median concentration (which equals the mean if the distribution is symmetric)." U.S. EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, April 1989, page 6-8

2 Method

Following Chapter 9 of SW846, the 90% UCL for the mean concentration obtained from a series of *n* representative samples is to be compared to the appropriate regulatory standard to determine if the waste stream is hazardous. If the UCL exceeds the standard, the waste stream is considered hazardous. The applicant must compute the UCL that is appropriate for the specific distributional form of the data. Given the large number of nondetects for many of the constituents, it is difficult if not impossible to clearly identify the underlying distributional form of the data. In this case, the U.S. EPA guidance indicates that a nonparametric alternative should be used.⁴

Nonparametric confidence limits are derived as follows. Given an unknown $P \times 100$ th percentile of interest (e.g. the 50th percentile or median), where P is between 0 and 1, and n concentration measurements, the probability that any randomly selected concentration measurements being less than the $P \times 100$ th percentile is simply P and the probability of exceeding the $P \times 100$ th percentile is 1 - P. In light of this, the number of sample values falling below the $P \times 100$ th percentile out of a set of $P \times 100$ th percentile out of $P \times 100$ th perc

The connection with the Binomial distribution can be used to determine an interval formed by a given pair of order statistics (i.e. ranked values) that will contain the percentile of interest, in this case the 50th percentile. Similarly, the Binomial distribution can also be used in constructing an upper limit (i.e. one-sided) for the percentile (e.g. a 90% upper confidence limit for the 50th percentile of the distribution). The computational formula for the cumulative binomial distribution B(x;n,p), representing the probability of getting x or fewer successes in n trials with success probability p is given by

$$Bin(x; n, p) \equiv \sum_{i=0}^{x} \binom{n}{i} p^{i} (1-p)^{n-i}$$

To draw inference regarding the P = 50th percentile, we set p = .5 in the previous equation. For a one-sided UCL we compute

$$1 - \alpha = 1 - Bin(U - 1; n...5)$$

beginning from the sample median. We then increase U by one until in this case $1 - \alpha$ is equal to at least .90. The smallest value of U that provides $1 - \alpha \ge .9$ is then the order statistic (i.e., ranked value) that is the nonparametric 90% UCL for the 50th percentile of the distribution.

⁴ "If the data do not adequately follow the normal distribution even after logarithm transformation, a nonparametric confidence interval can be constructed." U.S. EPA, 1989

⁵ "This interval is for the median concentration (which equals the mean if the distribution is symmetric)." U.S. EPA (1989), page 6-8

3 Illustration

Consider the following most recent 50 data values for PCE (D039) obtained from Premium Gold Parts Washer Solvent-150.

Table 1
Premium Gold Parts Washer Solvent - 150
50 most recent samples in order of increasing concentration in ppm

< 50.000	<1.000	< 0.100	< 0.100	< 0.100
< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
< 0.100	0.110	0.200	0.200	0.220
0.230	0.260	0.510	0.870	0.880
1.000	1.300	1.500	1.800	2.000
2.700	2.700	3.300	5.400	7.000
7.100	12.000	12.300	17.200	19.700
20.000	20.000	21.200	23.600	32.300
51.100	52.500	136.000	211.000	286.000
508.000	635.000	771.000	940.000	2810.000

For n =50, p =.5 and 1 - α = .9, we find that U = 31 is the smallest order statistic that provides 90% confidence or more (1 - α = .941). As such, we select the 31st largest value in Table 1 which is 7.1 ppm as our UCL. Since 7.1 ppm is larger than the standard of 0.7 ppm, then the D039 waste code is required for this waste stream.

4 Conclusion

The data in the following package have been interpreted using the methodology described. The waste codes for each stream were determined as those parameters for which the 90% UCL for the median concentration was above the regulatory limit, based on review of the last two years of samples or the most recent 50 samples, whichever yielded the larger number of samples to consider.

Exhibit C-3

California Annual Recharacterization Sampling Analysis

Statistical Comparison of Annual Recharacterization Data from California to the Rest of the Nation

Prepared by Robert D. Gibbons Ph.D. for Safety Kleen March 2004

1 Introduction

Since 1990, Safety-Kleen has undertaken a major analytical study each year to document the contaminants in some of its most common waste streams to determine which TCLP waste codes should appear on the manifest for that waste. This Annual Waste Recharacterization Program is both expensive and extensive. The general approach is based on development of an upper 90% confidence limit for the true concentration of each constituent, which can in turn be directly compared to regulatory standards to determine if the waste code should or should not be added to a particular waste stream (e.g., Premium Gold Parts Washer Solvent 150). The regulatory basis for this type of comparison stems from U.S. EPA SW846 Chapter 9 (September 1986) guidance on determining if a waste stream is hazardous. As stated by U.S. EPA, "The upper limit of the CI for μ is compared with the applicable regulatory threshold (RT) to determine if a solid waste contains the variable (chemical contaminant) of concern at a hazardous level. The chemical contaminant of concern is not considered to be present in the waste at a hazardous level if the upper limit of the CI is less than the applicable RT. Otherwise the opposite conclusion is reached" (U.S. EPA SW846 (1986) chapter 9 page 3). The primary complicating feature is the presence of large numbers of nondetects which raises serious question regarding the use of the parametric approach. In light of this concern, nonparametric methods are used throughout this analysis. Again, as stated by U.S. EPA, "If the data do not adequately follow the normal distribution even after logarithm transformation, a nonparametric confidence interval can be constructed. This interval is for the median concentration (which equals the mean if the distribution is symmetric)" (U.S. EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, April 1989, page 6-8). Specifically, following U.S. EPA SW846, Safety Kleen constructs a nonparametric 90% upper confidence limit (UCL) for the 50th percentile of the distribution (i.e., median), which is equivalent to the 90% UCL for the mean in the case of a symmetric distribution such as the normal distribution.

In review of this work, the State of California (DTSC/HML) has requested evidence that the data collected by Safety Kleen (SK) from California generators are representative of the data from the rest of the nation. Note that this involves a large number of statistical comparisons. There are as many as 11 waste streams and 33 constituents per waste stream (metals, volatile organics, semivolatile compounds, pH and flash point). In all, there are as many as 11*33=363 comparisons to be made. Using 95% confidence, there will be as many as 363*.05=18 comparisons that are significantly different by chance alone. In the following sections, a statistical methodology is described that will detect real differences when they are present (i.e., have a low false negative rate) and not identify differences that are consistent with chance expectations (i.e., have a low false positive rate).

2 Method

To compare the California data to the rest of the nation, data from all states except California will be used to construct a statistical prediction interval for the mean (or median in the nonparametric case) concentration obtained from the California generator samples. If the actual mean concentration for the California samples is within the prediction interval, then we can conclude with 95% confidence that the California concentrations are consistent with the concentrations observed across the nation. By contrast, if the California mean concentration is outside of the prediction interval, then we can conclude with 95% confidence that the California samples contain concentrations that are either higher or lower than those found in the rest of the country (for a particular waste stream and constituent). A two-sided interval will be used to determine if additional waste codes should be added or if some waste codes should be deleted from the California list.

In the following sections, statistical details of normal, lognormal, and non-parametric forms of these prediction intervals are provided.

2.1 Normal Prediction Intervals for the Mean of m Future Measurements

In certain cases, we may be interested in comparing an average concentration from a small group to a much larger control population. For example, we may wish to compare the mean concentration for generators in California, to the concentration distribution for the rest of the country. One approach to solving this problem is to compute a normal prediction interval for the mean of m new samples, based on a background data set of n samples. For example, the m samples may be from all generators in California, and the n samples may be from a large number of generators across the nation (excluding California). The $(1-\alpha)100$ percent normal prediction interval for a single future mean of m samples is:

$$\bar{x} \pm t_{[n-1,1-\alpha/(2k)]} s \sqrt{1/m + 1/n}$$
, (1)

where t is an upper percentage point of Student's t-distribution on n-1 degrees of freedom, s is the standard deviation of the n background samples, \tilde{x} is the mean of the n background samples, and k is the number of statistical comparisons being performed.

3 Lognormal Prediction Intervals for the Median of m Future Measurements

When the distribution of the n background measurements is shown to be log-normal, the $(1-\alpha)100\%$ lognormal prediction interval for the median of the next m measurements is:

$$exp\left(\bar{y} \pm t_{[n-1,1-\alpha/(2k)]}s_y\sqrt{1/m+1/n}\right). \tag{2}$$

where \bar{y} and s_y are the mean and standard deviation of the natural log transformed data. While in the normal case, the analogous prediction interval is for the mean, in the lognormal case, the exponentiated limit is for the median value.

4 Lognormal Prediction Intervals for the Mean of m Future Measurements

When the data are lognormally distributed and the comparison of interest is in reference to a future mean, we can use Land's coefficients to obtain an approximate $(1 - \alpha)100\%$ lognormal prediction interval for the mean of m future measurements. The lower prediction limit is

$$exp\left(\bar{y} + .5s_y^2 + H_{\alpha/(2k)}s_y\sqrt{\frac{1}{m} + \frac{1}{n}}\right) , \qquad (3)$$

and the upper prediction limit is

$$exp\left(\bar{y} + .5s_y^2 + H_{1-\alpha/(2k)}s_y\sqrt{\frac{1}{m} + \frac{1}{n}}\right)$$
, (4)

where H_{α} and $H_{1-\alpha}$ are factors for deriving lognormal confidence intervals given by Land (1971, 1975).

5 Nonparametric Prediction Intervals for the Median of m Future Measurements

In the nonparametric case, we can also construct a prediction interval for the median of m measurements based on a background of n samples. The idea is to identify a pair of upper and lower order statistics of the n background measurements that will provide $(1-\alpha)100\%$ confidence of including the median California measurement. Note that for nonparametric intervals, the mean is not defined, so we must construct an interval for a future median. Fligner and Wolfe (1979), Guilbaud (1983) and Hahn and Meeker (1991) illustrate how the inverse hypergeometric distribution (Guenther, 1975) can be used to identify the appropriate order statistic of the n background measurements that will provide the desired level of confidence $1-\alpha$, for given values of n and m. The inverse hypergeometric distribution is computed as the function

$$G(l, u, r, m, n) = \sum_{i=1}^{u} g(i, r+i, m, n)$$
 (5)

where

$$g(i, r+i, m, n) = \frac{\binom{r-1}{i} \binom{n-r}{n-i}}{\binom{n}{m}}$$
(6)

and l is the lowest and u is the highest order statistic in the current interval, r is the median rank of the m new samples and n is the number of background measurements. To obtain a two-sided upper prediction limit (UPL), we iteratively solve for

$$G(l, u - 1, r, m, n) \ge 1 - \alpha/(2k)$$
, (7)

for l and u.

6 Summary of Statistical Approach

In summary, depending on detection frequency, and distributional form, normal, lognormal, or nonparametric prediction intervals were computed to compare the mean(median) concentration in California for each waste stream, and for each monitored constituent to the national database (excluding California). For normal and lognormally distributed constituents, we constructed a prediction interval for a future mean. If distributional testing for the national database (excluding California) did not support normality or lognormality, or if the detection frequency was less than 50%, we computed a nonparametric prediction interval for a future median concentration. Given the large numbers of constituents, we adjusted the individual comparison false positive rate (for each waste stream) to provide an overall false positive rate of 5% (i.e., 95% confidence) for each waste stream.

In those cases in which the actual mean(median) for the California data exceeded the UPL, a normal 90% upper confidence limit was computed for that waste, stream, and constituent, and that state-specific limit will be used to determine whether a specific waste-code should be associated with that waste stream in California.

7 Results

The previously described statistical methodology was applied to the following constituents:

Constituents used in the Analysis

Constituent

1,1-dichloroethylene

1,2-dichloroethane

1,4-dichlorobenzene

2,4,5-trichlorophenol

2,4,6-trichlorophenol

2,4-dinitrotoluene

2-methylphenol

Arsenic

Barium

Benzene

Cadmium

Carbon tetrachloride

Chlorobenzene

Chloroform

Chromium

Flash point

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Lead

M+p-cresol

Mercury

Methyl ethyl ketone

Nitrobenzene

Pentachlorophenol

pH

Pyridine

Selenium

Silver

Tetrachloroethylene

Trichloroethylene

Vinyl chloride

in the following waste streams:

Waste Streams used in the Analysis

Waste	Stres	m

Antifreeze

Auto Oil

Dry Cleaner Bottoms (DCB)

Aqueous Parts Washer (APW)

Immersion Cleaner

Industrial Oil

Paint Waste

Parts Washer Solvent (PWS) 105+150

Parts Washer Solvent 105R

Parts Washer Solvent 150

Parts Washer Solvent Sludge/Dumpster Mud (SDM)

Parts Washer Solvent Tank Bottoms (TB)

Overall, the majority of California data were consistent with the rest of the United States. 1,4DCB was less than the immersion cleaner LPL, whereas pH exceeded the UPL. For paint waste, TCE was less than the national LPL. For PWS 105+150, 1,4-DCB, 2-methylphenol, and benzene all exceeded the corresponding national UPLs. For PWS-SDM, pH exceeded the UPL. For PWS-TB, flash point was less than the national LPL.

For these waste streams and constituents, the California 90% normal UCLs (which can be used in place of the national values) were

Constituents used in the Analysis

Waste Stream	Constituent	CA UCL in mg/L	Nat'l UCL in mg/L	Reg Limit in mg/L
Antifreeze	PCE	272	NA	0.7
Auto Oil	PCE	696	NA	0.7
Auto Oil	Benzene	21	NA	0.5
Immersion Cleaner	1,4-DCB	80	140	7.5
Immersion Cleaner	pH	10.5	10	2-12.5
Paint Waste	TCE	64	27.1	0.5
Parts Washer Solvent 105+150	1,4-DCB	.54	< 2.0	7.5
Parts Washer Solvent 105+150	2-methylphenol	.44	1.8	200
Parts Washer Solvent 105+150	Benzene	8.7	2.2	0.5
Parts Washer Solvent SDM	pH	8.7	8.2	2-12.5
Parts Washer Solvent TB	Flash Point	Too Few (n=2)	. 145	140

These UCLs can be used in place of the national UCLs; however, I do not recommend use of the California UCLs for PCE in antifreeze and auto oil, because they are elevated due to a single outlying value. All analytical Tables are presented in the Appendices.

References

- Fligner, M.A. and Wolfe, D.A. (1979). Nonparametric prediction limits for a future sample median. *Journal of the American Statistical Association*, 30, 78-85.
- [2] Guenther, W.C. (1975). The inverse hypergeometric a useful model. Statistica Neerlandica, 29, 129-144. Note: A statistical foundational paper useful in deriving nonparametric prediction intervals.
- [3] Guilbaud, O. (1983). Nonparametric prediction intervals for sample medians in the general case. *Journal of the American Statistical Association*, 78, 937-941.
- [4] Hahn, G.J. and Meeker, W.Q. (1991). Statistical Intervals: A Guide for Practitioners. Wiley, New York. Note: An excellent text on statistical prediction, tolerance, and confidence intervals.
- [5] Land, C.E. (1971), "Confidence intervals for linear functions of the normal mean and variance," Ann. Math. Stat., 42, 1187-1205.
- [6] Land, C.E. (1975) Tables of confidence limits for linear functions of the normal mean and variance. In, Selected Tables in Mathematical Statistics, Vol. III, American Mathematical Society, Providence R.I., pp 385-419.
- [7] Wilk, M.B., and Shapiro, S.S. (1968). The joint assessment of normality of several independent samples. *Technometrics*, 10, no 4. 825-839.

Exhibit C-4

Sample Testing Protocol

Annual Re-Characterization Sample Testing Protocol

Spent Material	Test Parameters	Test Methods
Parts Washer Solvent	Flash Point by Pensky-Martens Closed Cup Tester	EPA SW846 1010
	pН	EPA SW846 9045
	Apparent Specific Gravity and Bulk Density of Waste	ASTM D5057
	TCLP Metals	EPA SW846 1311, 6010, 7470, 7471
	TCLP Semi-Volatiles	EPA SW846 1311, 8270
	TCLP Volatiles	EPA SW846 1311, 8260
Bottom Sediment from the Spent Parts Washer Solvent Tank and Return & Fill	Same As Above	
Immersion Cleaner	Same As Above	
Paint and Paint Gun Cleaner Waste	Same As Above	
Aqueous Brake Cleaner	Same As Above	
Dry Cleaner Waste	Same As Above	

Based on the process generating the waste streams outlined in the above table, 40 CFR 261.24 regulated herbicides and pesticides are not expected to be present; and are therefore, not included in the parameters tested under the Annual Re-Characterization Program.

Analysis is performed on a representative grab sample obtained from a single customer's waste container using a COLIWASA (Composite Liquid Waste Sampler) unless compositing is required by a facility-specific waste analysis plan.

Exhibit C-5

Sampling Procedures

Annual Re-characterization Sampling Instructions

Good sampling practices are <u>critical</u> to the success of the Annual Re-characterization program. Please take your time when pulling samples, ensuring that all of the following requirements are fulfilled.

Training Requirements and Supporting Documentation

- ✓ Personal Protective Equipment (PPE) Follow requirements in attached PPE Matrix
- ✓ Prior to shipping samples by FedEx Air, you must complete the following:
 - IATA Dangerous Goods Regulations Training.
 - Sample shipping requirements are outlined in <u>BOG O310-005</u> (US) and <u>OC310-005/OC310-005 FC</u> (Canada) and Clean Harbors TC 8.0 Handling, Packaging, and Transporting Samples policy

Supply Checklist

NOTE: To minimize opportunity for contamination, all AR sampling supplies are to be stored in facility office building until needed for actual sampling.

- ✓ Disposable COLIWASA (SK P/N 8941)
- ✓ Disposable plastic scoop
- ✓ Disposable plastic bucket if composite required (e.g., 6 gallon SK P/N 706)
- ✓ Sample Kits
 - SK P/N 3419 Required for all dry cleaning related materials
 - SK P/N 82260 Required for all other samples
- ✓ Housekeeping Supplies
 - PIG® Universal Heavy-Weight Mat
 - PIG® Heavy-Duty Maintenance Wipes
 - Plastic garbage bags
- ✓ Non sparking tools
- ✓ Grounding and bonding equipment
- ✓ Paperwork and Packaging Supplies
 - Chain of Custody form
 - Pen and Sharpie Marker
 - Packaging Tape

Pre-sampling Preparation

- ✓ Time allow 15 minutes per sample
- ✓ **IMPORTANT** Make arrangements with warehouse workers/material handlers to set aside containers from different customers. Each container sampled must be from a different customer.
- ✓ Place sample kit freezer packs in the freezer 24 hrs prior to sampling event.
- ✓ Purchase bags of ice to supplement the freezer packs if shipping samples in warmer weather
- ✓ Fill out Chain of Custody (COC) forms completely

How to fill out the Chain of Custody (COC) Form

- 1. Complete all fields in the COLLECTION INFORMATION section
- 2. **IMPORTANT** Both the Customer Name(s) and Customer Number(s) associated with the container(s) being sampled must be documented on the COC.

In the event the analytical report shows atypical waste codes, we'll be able to track the sample back to the generator to discuss their specific process and possible source for contamination. Decision will need to be made regarding whether or not the generator's waste should remain as CORE, or is better handled through CWS.

- 3. A unique identification number must be assigned to each sample using the format **AR2017_89DH ID_sample description** (e.g., AR2017_77WIB_Premium Solvent, etc.).
- 4. The same number must be written on the associated sample jar custody label so that the lab can match-up paperwork with samples upon receipt.
- 5. The sample collector must sign the RELINQUISHED BY section and enter the date and time of shipment.
- 6. Enter the air bill number on the COC form and make a copy of the form for your records.

Sampling

The majority of facilities' WAPs require "grab samples". A select few, however, require composite samples. See section below on how to obtain a composite sample.

The following table summarizes how samples are typically taken. Keep in mind, the waste streams required for sampling are permit specific (i.e., not every facility will be required to sample every stream outlined in the below table).

- Sampling Methods/Practices to be used
 - o ASTM D5495 Standard Practice for Sampling with a Composite Liquid Waste Sampler (COLIWASA)
 - o ASTM D5633 Standard Practice for Sampling with a Scoop

Sample Type	Sampling Location	Sample Size/Kit	Homogenization Technique	Sampling Device
Aqueous Brake Cleaner	5 gallon poly carboy	1 quart TCLP kit	Grab sample using multiple COLIWASA pulls or pour contents into a new bucket Stir/mix contents before sampling.	COLIWASA
Dry Cleaner Naphtha/PERC Bottoms/Filters	Drum	1 quart DOT SP-9168 Exemption Packaging	Grab sample Stir/mix content of drum with COLIWASA before sampling	COLIWASA or Scoop
Immersion Cleaner	Drum	1 quart TCLP kit	Grab sample Stir/mix content of drum with COLIWASA before sampling	COLIWASA
Paint Gun Cleaner Paint Waste	Drum	1 quart TCLP kit	Grab sample Stir/mix content of drum with COLIWASA before sampling	COLIWASA
Parts Washer Solvent Bulk Tank	Tank	1 quart TCLP kit	Grab sample	Tank valve or from tanker using a COLIWASA during annual draw down
Dumpster Sludge (APW and PWS)	Return and Fill	1 quart TCLP kit	Grab sample Stir/mix up Return and Fill bottoms with scoop before sampling	Scoop

Revised 3/1/2017 Rick Haskins

Sample Type	Sampling Location	Sample Size/Kit	Homogenization Technique	Sampling Device
Tank Bottoms (APW and PWS)	Tank	1 quart TCLP kit	Grab sample during tank clean out Stir/mix up tank bottoms with scoop before sampling	Scoop
PWS 105	Drum	1 quart TCLP kit	Grab sample Stir/mix content of drum with COLIWASA before sampling	COLIWASA
PWS Premium	Drum	1 quart TCLP kit	Grab sample Stir/mix content of drum with COLIWASA before sampling	COLIWASA
APW	Drum	1 quart TCLP kit	Grab sample Stir/mix content of drum with COLIWASA before sampling	COLIWASA
Antifreeze	Drum	1 quart TCLP kit	Grab sample Stir/mix content of drum with COLIWASA before sampling	COLIWASA
Used Oil	Drum	1 quart TCLP kit	Grab sample Stir/mix content of drum with COLIWASA before sampling	COLIWASA

- 1. Bring all items in the *Equipment Checklist*, including frozen sample kit freezer packs/ice, with you to the sampling location.
- 2. Wear required PPE
- 3. Obtain a representative sample using a disposable plastic scoop or disposable COLIWASA

IMPORTANT – a new scoop or COLIWASA must be used for each sample pulled

- 4. Place all sampling debris in plastic garbage bag(s) and dispose of as Branch Generated Debris
- 5. Ensure the sample jar lid is tight. Seal the lid to the jar by wrapping with packaging tape.
- 6. Attach *Custody Seal* across the lid of the jar in such a way that the seal must be broken to open the jar. The *Custody Seal* must be signed by the sampler and contain the date, time the sample was pulled, and unique sample ID (ID must follow required format and match the ID written on the accompanying COC).
- 7. Place the sample jar(s) into a "Samples Only" refrigerator until ready to ship.
- 8. When ready to ship, place the quart sample jar into the TCLP kit with **frozen freezer packs**. Use additional bagged ice if shipping during warm temperatures. Close up the Styrofoam cooler and place the COC paperwork on top before sealing up the cardboard shipping box using shipping tape.

IMPORTANT - Ship samples Monday thru Wednesday via *FedEx Priority Overnight* to ensure they arrive Thursday or Friday when lab personnel are available to unpack and place in a refrigerator.

TestAmerica Laboratory
Attention: Debra Bowen (412.963.2445)
301 Alpha Drive, RIDC Park
Pittsburgh, PA 15238

CRITICAL - SAMPLE(S) MUST ARRIVE COLD AND LAB MUST ANALYZE WITHIN 14 CALENDAR DAYS FROM THE DATE YOU PULLED THE SAMPLE(S). IF SAMPLES ARRIVE WARM OR EXCEED 14 DAYS, YOU WILL NEED TO RESAMPLE.

Sampling using a COLIWASA

- Ensure the COLIWASA is functioning properly before use. Confirm that the stopper is securely attached to the plastic rod and provides a good seal when in the closed position.
- **OPEN** the COLIWASA and **SLOWLY** lower into the container until it touches the bottom. The COLIWASA must not be lowered with the stopper in the closed position. Opening the stopper after the tube is submerged will cause material to flow in from the bottom layer only, resulting in gross over-representation of that layer. If lowered too fast, a non-representative sample will result.
- When the COLIWASA touches the bottom of the container, pull up on the stopper mechanism to close the COLIWASA.
- Slowly withdraw the COLIWASA from the container while wiping the outside of the COLIWASA with a disposable wipe.
- Place the end of the COLIWASA into the 32-oz sample jar and discharge contents by slowly opening the stopper mechanism.

Obtaining a Composite Sample (Only those branches that require a composite per permit)

- Use a new disposable plastic bucket
- Use a new COLIWASA for each customer container sampled
- For each customer container sampled, you'll actually need to pull the following two samples
 - o Place one COLIWASA volume into the compositing bucket
 - Using the same COLIWASA, fill a <u>new</u> quart glass jar (SK P/N 8895). This sample jar needs to be labeled with the customer name and number associated with the container that is being sampled. This sample will serve as a retain in the event analytical on the composite shows atypical results and we need to analyze all associated customer samples. These retains need to be stored until analytical on the composite sample is reported.
- After sampling all customer containers, mix the contents of the bucket.
- Use a COLIWASA to pull a sample of the mixture from the bucket and submit this sample to TestAmerica following instructions above.

Rick Haskins VP Product Dev and Technical Support | Safety-Kleen | A Clean Harbors Company | Elgin, IL|rick.haskins@safety-kleen.com

847.468.6766 (o) | 630.347.1093 (c) | 847.468.6770 (f) | safety-kleen.com

Safety-kieen. PROTECTION-CHOICES-PEOPLE

BRANCH PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

WORKPLACE HAZARD ASSESSMENT SUMMARY 2015

TASK			1	S. Miller		~~		
AQUEOUS BLENDING (MANUAL)	Yes (Np)	Yes	Yes*		S.T w/M	Goggles	Yes, w/pneumatic	
AQUEOUS SERVICE - COLD	Yes (Np)	Yes		Yes	S.T w/M	Yes		
AQUEOUS SERVICE - HEATED	Yes (Np)	Yes		Yes	S.T w/M	Yes		
AQUEOUS TEST ANALYSIS	Yes (Nr or Cp)	Yes		Yes	S.T w/SR	Yes		
BRAKE CLEANING (ABC)	Yes (Np	Yes		Yes	S.T w/M	Yes		
COOLANT SERVICE	Yes (Np)	Yes		Yes	S.T w/M	Yes		
CONTAINERIZED WASTE (CWS)	Yes (Np)	Yes		Yes	S.T w/M	Yes		
DRY CLEANER SERVICE	Yes (Np)*	Yes		Yes	S.T w/M	Yes		
GUN CLEANERS - UNVENTED	Yes (Np/ Cp)*	Yes		Yes	S.T w/M	Yes		APR=HF or FF/Organic vapor
GUN CLEANERS - VENTED	Yes (Np/ Cp)*	Yes		Yes	S.T w/M	Yes		
IMAGING SERVICE	Yes (Np)	Yes		Yes	S.T w/M	Yes		
IMMERSION CLEANER SERVICE	Yes (Np)	Yes		Yes	S.T w/M	Yes		
LIGHT BULB SERVICE	Yes (Np)	Yes		Yes	S.T w/M	Yes		
MATERIAL HANDLING	Yes (Np)	Yes		Yes	S.T w/M	Yes		
OIL SERVICE	Yes (PVC or Np)	Yes		Yes	S.T w/SR	Yes		
PARTS WASHER SERVICE	Yes (Np)	Yes		Yes	S.T w/M	Yes		
RETURN/FILL OPERATIONS	Yes (Np)	Yes	Yes*	Yes	S.T w/SR	Yes	Yes, w/pneumatic	

BRANCH PERSONAL PROTECTIVE **EQUIPMENT REQUIREMENTS**

WORKPLACE HAZARD ASSESSMENT SUMMARY 2015

TASK	*		1	Supper		-61		
RETURN PRODUCT SERVICE	Yes (Np)	Yes		Yes	S.T w/M	Yes		
SAMPLING - FIELD	Yes (Nc)	Yes	Yes*	Yes	S.T w/SR	Yes		APR=FF/ ORG. vapor/acid gas
SPILL RESPONSE (INCIDENTAL)	Yes (Np)	Yes	Yes*	Yes	S.T w/SR	Yes		APR=HF or FF/ ORG. vapor/acid gas
TANK TRUCK LOAD/UNLOAD	Yes (PVC or Np)	Yes		Yes	S.T w/SR	Yes		
TANK TRUCK TOP SAMPLING	Yes (PVC or Np)	Yes		Yes	S.T w/SR	Yes		
VAC SERVICE	Yes (PVC or Np)	Yes		Yes	S.T w/SR	Yes	Yes, w/pump on	
VISITOR IN OPS AREAS				Yes	Closed toe	Yes		
WWF SERVICE	Yes (Nc)*	Yes		Yes	S.T w/SR	Yes		

Service Reps - must have Safety Vest available

GLOVES

Cr = Cut Resistant glove (work glove)

Np = Supported Neoprene Glove (Outer Glove)

Cp = Chloroprene (5ml) (Inner Glove)

PVC = Poly Vinyl Chloride (Insulated option)

Nc = Nitrile Coated (work glove)

Cr* = Cut Resistant glove (if chemical present – Supported Neoprene)

Nr = Nitrile (8ml) glove

(Np)* = discard if show signs of breakthrough (breakthrough = discoloration, swelling, stiffness, etc.)

PVC = Poly Vinyl Chloride (Insulated option)

(Nc/Cp)* = discard if show signs of breakthrough (breakthrough = discoloration, swelling, stiffness, etc.)

Tychem QC apron w/ sleeves*= discard if show signs of breakthrough (breakthrough = discoloration, loss of coating, stain on inside of apron, etc.)

S.T. w/M = Steel Toes with Metatarsal Guard

RESPIRATOR / CARTRIDGE TYPE

APR = half face (HF) or full face (FF) air purifying respirator S.T. w/SR=Steel Toes with Slip Resistant Soles (facial hair shall not come in contact with the face piece seal)

Parts Number - Arbill

Gloves - Cr - Kevlar Shell Nitrile Palm A14240, Np-SK 612, CP-151433, PVC - A141360, Nc-14056, Nr -151943. Respirator/Cartridge Type - HF-A500603, FF -A505820, Organic Vapor/Acid Gas- A500710, Organic Vapor - A500730,

Apron - Tychem QC apron w/sleeves - Medium - QC275BYLMD002500, Large - QC275BYLLG002500, Ex. Large - QC275BYLXL002500. Hard Hat - 475360-BL27128 - BL6400. Safety Vest - A209283. Goggles - A303630. Hearing Protection - Muffs - A401800, Plugs - A403770.

Parts Number - Century Vallen

Gloves - Cr - Kevlar Shell Nitrile Palm EDM 11-500, Np-SK 612, Cp - GLONPG888-M, PVC-EDM 4-412, Nc-EDM 37-145, Nr-BST 8005PF-L Respirator/Cartridge Type - HF-3MS 6200, FF-3MS 6800, Organic Vapor/Acid Gas/HEPA-3MS 60923, Organic Vapor/HEPA-3MS 60921, HEPA - 3MS 2096, Dusk Mask - 3MS8511.

Apron - Tychem QC apron w/sleeves - LAK 527. Hard Hat - DSI HP542R -02 - SK Logo. Safety Vest - NORTV52B4/(SIZE). Goggles - UVXS700C. Hearing Protection - Muffs - PLT H10A. Plugs - EAR 312 - 1201.

Tab 5

Part II.B

Part II

B. CONTAINERS

CONTAINMENT SYSTEM

The container storage areas are shown in Figure 8.1-1 occupies the southern portion of the warehouse building area which has a sloped concrete floor, and collection trench to form a spill containment system. The system is maintained. Spills are removed by a hand-held portable electric pump (the coms pump), wet-dry vacuum cleaner, or sorbent materials. The capacity of the containment system is designed to be greater than 10 percent of the total liquid storage capacity in the drum storage area. Since the characteristics of the stored wastes are known, no analyses are performed for the materials collected from the containment area. All collected materials are sent to a permitted recycling or reclamation facility.

Only in the event that a spill was to exceed the containment capacity would spilled wastes be to extend beyond the containment area. Only six openings (doorways) exist in the container storage area. Four of these lead to other containment areas (i.e., the return/fill station and the enclosed concrete dock (Figure 8.1-1)). The other two doorways are located on the east side of the container storage area. Due to the volume of containment available and the configuration of the container storage area, it is highly unlikely that any spill would extend beyond this area.

The containment volume is composed of the warehouse sloped concrete floor and the collection trench. The total containment volume is 2,996 gallons. The types and number of each container may vary; however, total volume of product and waste stored will not exceed the maximum volume of 29,400 gallons. The estimated maximum storage volume of hazardous waste is 6,912 gallons. Containment calculations along with a container storage area integrity assessment are provided in Appendix C.

The containment areas have been coated with Sikaguard® 62 or equivalent. Other coatings may be used in the future and will be evaluated by Safety-Kleen to ensure, when properly applied, they are capable of withstanding the products handled by Safety-Kleen. Inspections of the sealant in the containment areas will be conducted as part of the facility inspection plan. If the sealant is found to be worn or deteriorated such that repairs are warranted, the sealant will be repaired in accordance with the manufacturer's specifications.

Container Movement

In the container storage area, containers are handled with a hand-truck or forklift that is free of sharp points. Every time a drum is moved, a chance exists that it will be tipped over, dropped, or punctured. To minimize the possibility of spillage, containers are tightly covered and kept in an upright position. A small portable electric pump is available to quickly transfer the liquid from any leaking container into another safe container. Each route truck is equipped with a lift-gate or an electric hoist. These devices are used in the loading/unloading operation to minimize chances for spillage and/or employee injury. Drummed waste containers are loaded for transport to a Safety-Kleen/Clean Harbors TSDF at the enclosed concrete dock at the southeast corner of the building. Incoming waste containers are unloaded on the dock at the return/fill station, and also at the bay door on the east side of the building. Parts washer solvent containers are unloaded at the return/fill station dock, and then dumped into the return/fill dumpsters within 24 hours of arrival at the facility. Other containerized waste is moved to the appropriate storage area via hand truck/forklift within 24 hours of arrival at the facility.

All containers are transported, moved, and stored carefully in an upright position. Containers are palletized whenever possible to facilitate shipping and storage. Pallets may be stacked up to seven feet, or two high (whichever is higher), while in storage. This will prevent the containers from contacting any standing liquid while they are in storage. The containers will be arranged so that at least two-foot aisle space exists between all rows of pallets such that all containers can be readily visible for inspection and handling.

INCOMPATIBLE, IGNITABLE, AND REACTIVE WASTE MANAGEMENT

All materials are managed in accordance with the local fire protection code and fire department recommendations. All ignitable wastes are stored at least 50 feet from the property line. Per 40 CFR Part 264.177(a), incompatible wastes, or incompatible wastes and materials, must not be placed in the same container, unless 40 CFR Part 264.17(b) is complied with. The facility does not routinely manage unwashed containers that may previously have held materials that would be incompatible with wastes stored at the facility. Also, the used parts washer solvents and used aqueous parts washer solvents consist of materials that are compatible and suitable for bulking.

Procedure for Managing Waste Types

The solvents stored at this facility are typically compatible with each other and with other materials handled at this facility. In some isolated instances, special waste segregation

procedures may be necessary at this facility. The USDOT segregation table, found in 49 CFR Part 177.848 is used as a guideline for storage of hazardous materials at the facility. Wastes are stored primarily in polyethylene and steel containers. Immersion cleaner, dry cleaner, paint waste, and FRS (transfer) waste containers are never opened at the branch. Overpack containers are used for the management of containers whose integrity has been compromised. For ease of inventory control and product integrity, separation and grouping of both used and unused solvents is a standard practice at the branch. All containers are designed and constructed to be compatible with the stored material and to minimize the possibility of breakage and leaking, in accordance with USDOT shipping container specifications.

Potential Fire Sources

The following is a list of fire prevention and minimization measures:

- 1. All wastes and products are kept away from ignitable sources Personnel must confine smoking and open flames to the Branch designated area which is located outside the front door of the office area. No other smoking areas are designated. The parts washer solvent handling area and the aboveground storage tanks are separate from the warehouse area to minimize the potential for a fire to spread or injury to personnel to occur.
- 2. *Ignitable wastes are handled so that they do not:*
 - Become subject to extreme heat or pressure, fire, explosion, or a violent reaction

 The parts washer solvent waste is stored in a tank or in containers, none of which are near sources of extreme heat, fire, potential explosion sources, or subject to violent reactions. The tanks are vented and the containers kept at room temperature to minimize the potential for pressure build-up.
 - Produce uncontrolled toxic mists, fumes, dusts or gases in quantities sufficient to threaten human health – The vapor pressure of petroleum-based parts washer solvent is low (2 mm-Hg) and it is reactive with strong oxidizers only. Toxic mists, fumes, dusts, or gases will not form in quantities sufficient to threaten human health since strong oxidizers are carefully segregated at this facility and the solvent vaporization will be minimal under normal working conditions.
 - Produce uncontrolled fire or gases in quantities sufficient to pose a risk of fire or explosion – See above and below.
 - Damage the structural integrity of the Safety-Kleen facility The solvents stored
 at this facility will not cause deterioration of the tank, containers, or other
 structural components of the facility.

- 3. Adequate aisle spacing is maintained to allow the unobstructed movement of personnel, fire protection equipment, and decontamination equipment to any area of the facility operation in an emergency.
- 4. "NO SMOKING" signs are posted in areas where solvents are handled or stored.
- 5. Fire extinguishers are inspected weekly by Branch personnel.

External Factors

The design of the facility is such that a harmful spill is highly unlikely to occur from most external factors. The storage tanks are inaccessible to non-Safety-Kleen personnel and the pump switches are located inside. Also, the container storage area is in a building which is inaccessible to unauthorized personnel.

- 1. *Vandalism* Only extreme vandalism would result in a solvent spill or fire. Responses to spills and fires are described in the Contingency Plan (Section 5)
- 2. *Employee Strikes* A strike would not result in a solvent spill or fire.
- 3. *Power Failure* A power failure would not result in a spill or fire. Should a power failure occur, all activities requiring electricity will cease.
- 4. Flooding The site elevation is above the projected 100-year floodplain.
- 5. *Storms or Cold Weather* The solvent return/fill station is covered to eliminate the possibility of rain or snow entering the dumpsters. No opportunity is foreseen to affect the facility with snow, cold weather, or storm weather.
- 6. Hurricanes Facility will follow the procedures within the contingency plan.

CONTAINER MANAGEMENT

General Protocols

Container management is of paramount importance to Safety-Kleen. All containers are routinely inspected to ensure that the containers are in good condition. If rusting or structural defects are visible, or if the container begins to leak, the contents of the container are immediately transferred to a new sound container. Overpack containers are commonly used for the management of containers whose integrity has been compromised.

Hazardous waste containers are always kept closed during storage except when adding or removing waste. Containers are not handled or stored in a manner that could potentially cause a rupture or leak.

Specific Waste Stream Containers

Parts washer solvent is collected in containers and generally emptied into the wet dumpster at the return/fill station (which is piped to the tank farm). The containers are designed and constructed to be compatible with the stored material and to minimize the possibility of breakage and leaking, in accordance with DOT shipping container specifications.

The immersion cleaner is always contained in partially filled covered containers before, during, and after its use. Until received at the recycle center, the immersion cleaner is never transferred to another container. The containers of used immersion cleaner are returned to the facility and stored in the designated container storage area before shipment to a permitted Safety-Kleen/Clean Harbors TSDF.

Dry cleaning waste is stored in steel or polyethylene containers and consists of perchloroethylene-based waste and naphtha-based waste. The contents of the dry-cleaning waste containers are not removed or processed at the Medley Branch. It is stored as permitted or transfer waste prior to shipment to a permitted Safety-Kleen/Clean Harbors TSDF.

Paint wastes consist of various lacquer thinner and paints. The waste is collected in containers at the customer's location and the containers are then stored in the container storage area or transfer area of the warehouse. The paint wastes are sent to a permitted Safety-Kleen/Clean Harbors TSDF.

FRS/Transfer wastes are stored in steel, polyethylene, and fiberboard containers that are compatible with the material in them. FRS wastes are managed as transfer wastes.

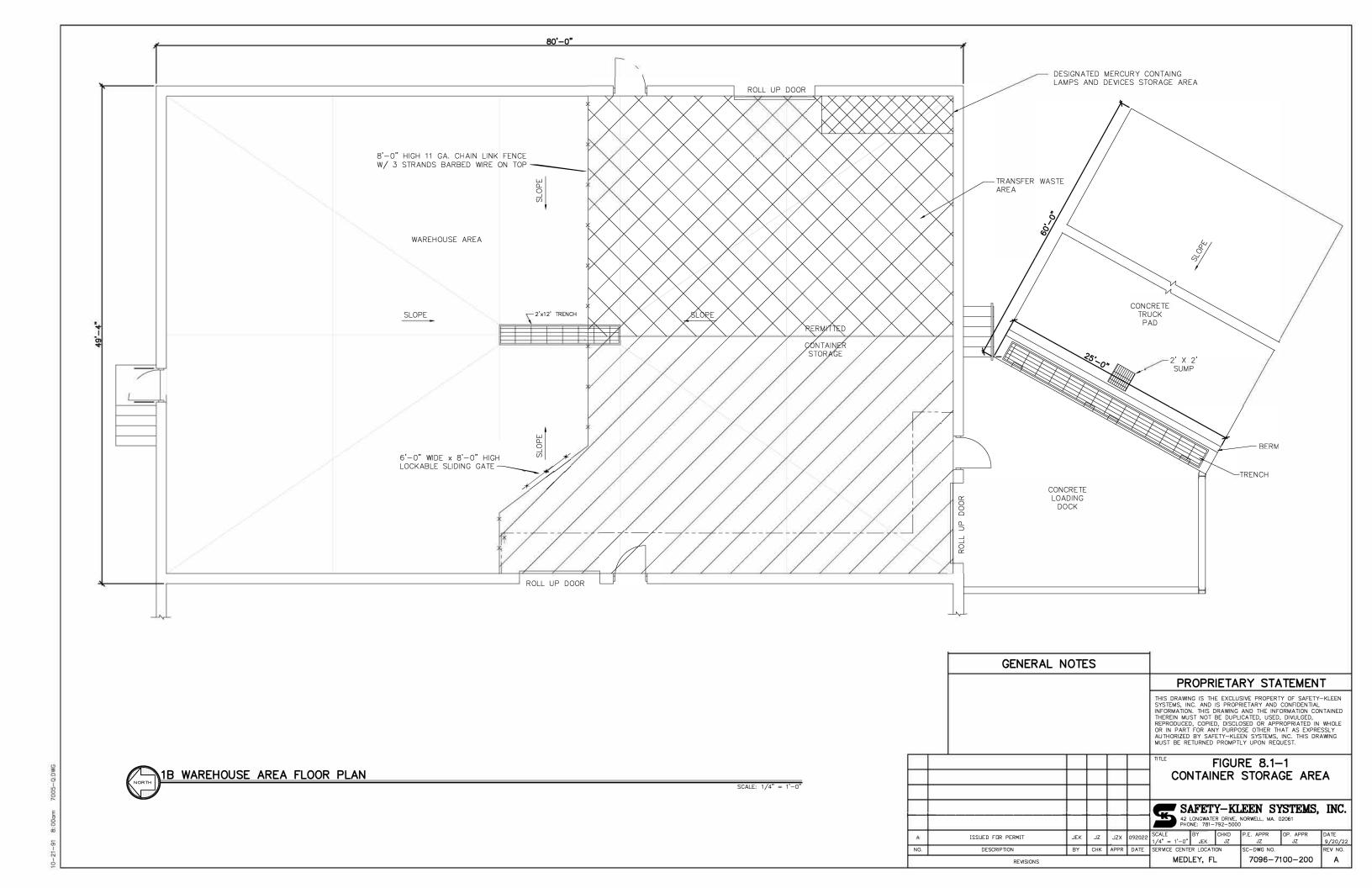
As part of its protocol for handling mercury-containing lamps and devices destined for recycling, the Branch provides customers with four-foot and eight-foot boxes which hold up to 39 lamps. Other DOT approved containers are used for mercury devices. Boxes are inspected prior to transport from the customer to the Branch. Boxes containing broken lamps are not accepted by Safety-Kleen. If the lamps are broken while in transit or the custody of Safety-Kleen, the entire contents of the box are sealed in plastic shrink wrap or transferred to another container and closed. The boxes are picked up at customer locations and are stored at the Branch in the transfer waste areas. The boxes used to store mercury-containing lamps and devices are labeled

in accordance with Florida Administrative Code (FAC) 62-737.400(5)(b). The boxes are periodically shipped to a permitted mercury recovery or reclamation facility.

CONTAINER INSPECTION

The purpose of the container inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation, maintain compliance, and prevent the release of hazardous wastes to the environment. The Branch Manager or designee is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule.

Inspections are completed electronically (CO CSA Inspection). In the event the electronic inspection system is unavailable they may be completed on paper. Examples of the Inspection Logs for the container storage area, transfer areas, and associated loading/unloading areas are presented at the end of Part II.B. Daily container storage area inspections include the following:


- Verify that total volume is within the permitted limits;
- Physically examine the condition of containers to verify that leaks have not occurred since the last inspection;
- Verify that all container identification, dates, and hazardous waste labels are attached and current;
- Inspect container placement and stacking such as aisle space, height, and stability of stacks; and
- Examine containment areas to detect signs of deterioration and failure of the containment system such as cracks, breakage, settlement, and spillage.

As deficiencies are detected, the Branch Manager will ensure that they are remedied promptly. Any deficiencies which could create an environmental or human health hazard will be rectified immediately.

Other inspections at the facility include those performed on a weekly basis for the security systems. These inspections are described in the contingency plan.

CONTAINER STORAGE AREA CLOSURE PLAN

The container storage area closure plan and closure cost estimates are provided as part of the overall closure plan for the facility in Part II K.

CO Branch Generated Hazardous Waste Container Inspection Log

Form Code: 1423

Compliance Header						
Inspector Name						
Area of Inspection						
Inspection Date and Time						
CO Branch Generated Hazardous Waste Inspec	tion Instruction					
Note the condition of inspection items. Note the number and capacity of branch generated hazardous waste containers ony (10-day transfer containers collected from customers do not apply). All unsatisfactoryf findings must be explained below. Include any repairs, changes, or other remedial actions required or performed.						
CO Branch Generated Hazardous Waste Contai	ner Inspection Log Items					
Number of branch generated hazardous waste containers in storage area:						
Capacity of branch generated hazardous waste containers in storage area (16, 30, 55, 85, etc.):						
Notation of observations made (acceptable/not acceptable condition, correct labels, leaking, etc.)						
Compliance Footer						
Inspector Signature						
Attach Photo						
Inspection Overall Assessment						

CO CSA Inspection

Form Code: 28

Compliance Header	
Inspector Name	
Area of Inspection	
Inspection Date and Time	
CO CSA Inspection Instructions	
Note condition of inspection items. If item does need findings must be explained below. Include any required or performed.	
CO CSA Inspection Items	
Container Placement and Stacking - Check for evidence of failure (e.g., containers on pallets, pallets too high, unstable, other).	
Sealing of Containers - Check for evidence of failure (e.g., containers not closed or sealed, open).	
Labeling of Containers - Check for evidence of failure (e.g., no label, improper label, content, other).	
Container Integrity - Check for evidence of failure (e.g., condition, bulging, leaks, rust, corrosion, other). Containers do not have waste/staining on the outside which would require cleaning or overpacking.	
Pallets - Check for evidence of failure (e.g., broken, loose, condition).	
Doors - Check for evidence of failure (e.g., indoor area, broken or not working as intended).	
Base/ Foundation/ Roof - Check for evidence of failure (e.g., cracked, gaps, other).	
Berms/ Racks - Check for evidence of failure (e.g., cracks, gaps, broken, other).	

Site Generated Waste - debris, used absorbents, used PPE, aerosols, etc Check for evidence of failure (e.g., waste not containerized, proper storage location, container type, container label, other).	
Exit Signs - Check for evidence of failure (e.g. missing, lamps, battery backup, other).	
Aisle Space - Check for evidence of failure (e.g., minimum 2 ft required, other).	
Containment Area - Check for evidence of failure (e.g., secondary containment, curbing, floor, cracks, deterioration, ponding or wet spots, other).	
Sumps - Check for evidence of failure (e.g., cracks, ponding or wet spots, pitting or deterioration, other).	
Loading/ Unloading Areas - Check condition of area (e.g., no free liquid, ponding or wet spots, available spill equipment, spill equipment location, spill kit supply and inventory is adequate, containment deterioration, leaks, pad condition, valve access box, housekeeping, other).	
Communication and Alarm System - Check for evidence of failure (e.g., test function, siren, strobe, other).	
Storage Capacity - Check for acceptable limit (e.g., area or permit retrictions, type restriction, volume limit, other).	
Bonding and Grounding - Check for evidence of failure (e.g., loose, broken, corrosion or deterioration, other).	
Pumps - Check for evidence of failure (e.g., deterioration or broken, leaks, other).	
Inventory Age - Check for acceptable limit (e.g., within area limits, permit restrictions, other).	
Satellite Accumulation Containers - Check for evidence of failure (e.g., container open, >55	

gallons, label, other).	
Spill Equipment - Check that spill equipment is available, clean, and ready for use. Spill equipment is placed in the correct location. Spill equipment includes the correct types of	
equipment in sufficient quantities.	
Additional Comments or Notes	
Comments	
Compliance Footer	
Inspector Signature	
Attach Photo	
Inspection Overall Assessment	

Tab 6 Part II.C

Part II

C. TANK SYSTEM

ENGINEERING ASSESSMENT OF TANK SYSTEM

A formal tank integrity inspection of the 20,000-gallon RCRA Permitted Hazardous Waste Tank (Used Solvent) was performed on July 21, 2022. A copy of that inspection report is included at the end of Part II C.

TANK SYSTEM SPECIFICATIONS

There are five aboveground steel tanks at the facility located inside the permitted tank storage unit (Figure 9.2-1). Four of these tanks are all vertical and the oily water tank is horizontal. Hazardous waste used parts washer solvent is returned from Safety-Kleen's customers in containers and the solvent is transferred via the wet dumpsters into the 20,000-gallon RCRA Permitted Hazardous Waste Tank (Used Solvent), prior to bulk shipment to permitted Safety-Kleen TSDF. The other four tanks; include one 20,000-gallon tank (Clean 150 Solvent), one 20,000 and one 15,000-gallon Used Oil tank, and one 10,000-gallon oily water tank. Of the five AST's located within the Permitted Tank Storage Unit, the only hazardous waste permitted tank is the RCRA Permitted Hazardous Waste Tank (Used Solvent). The other four AST's, while not RCRA regulated, are registered per Chapter 62-762, F.A.C. with the Facility ID No. 9300106 All of the tanks are grounded.

Material Compatibility

Waste stored in the RCRA tank at this facility is used parts washer solvent. The parts washer solvent is compatible with the mild steel tank structure. As with all petroleum storage vessels, water will accumulate over time due to condensation and the water will accumulate in the bottom of the tank.

Tank Operation Procedures and Design

Used parts washer solvent is returned from customers via containers and poured into the wet dumpsters which have barrel washers enclosed within them. The container is then placed on roller brushes within the barrel washer. As the machine is turned on, the container rotates on the brush and the outside of the container is cleaned. A nozzle in the barrel washer sprays a stream of solvent into the bottom of the container to flush the inside of the container. The machine is then

turned off and the container is allowed to sit for a few seconds so residual solvent drops to the bottom of the wet dumpster, then removed. This process takes several seconds per container. The container is then refilled with clean solvent using a pump and nozzle assembly similar to a gasoline dispenser. The waste is transferred from the wet dumpster to the RCRA Permitted Hazardous Waste Tank (Used Solvent) via piping and a pump.

The used parts washer solvent is fed to a sump in the bottom of the wet dumpster and automatically pumped to the RCRA Permitted Hazardous Waste Tank (Used Solvent). A basket within the sump collects sludge from the cleaning operations. This sludge is removed daily at the end of the drum cleaning operations and placed into a satellite accumulation container next to the wet dumpsters. The wet dumpsters are located in the return/fill station, which is underlain by a secondary containment structure.

The RCRA Permitted Hazardous Waste Tank (Used Solvent) is designed and constructed to be compatible with the materials stored. The tank has an 8-inch Flanged Emergency Pressure Relief Vent and pressure/vacuum vent that were installed in accordance with National Fire Protection Association (NFPA) standards and is equipped with a high-level alarm. A 3" emergency gate valve is located at the base of the tank where the outgoing piping is threaded into the tank. The tank seams are lapped with full fillet welds. The weld was performed with an E70 electrode and can withstand a 4-psi air pressure test (which is performed by the manufacturer). The RCRA Permitted Hazardous Waste Tank (Used Solvent) was installed new in 1992. The tank is aboveground, supported by an 8-inch skid placed on the 8-inch concrete foundation slab. Therefore, no surface run-on will contact the wastes stored at the site and no run-off collection system is required. To minimize the amount of precipitation that may collect inside the containment area, a metal canopy has been installed over the Permitted Tank Storage Unit. If rainwater does accumulate in the containment area and it has been verified that no spill has occurred, the rainwater will be discharged to the ground surface. Only the Branch Manager or someone operating under his/her direct orders may discharge to the ground surface. If it is not possible to verify that a spill has occurred, the rainwater will be disposed of in the wet dumpsters.

Controls and Spill Prevention

The permitted tank storage unit and the return/fill station have been sealed with a chemical resistant coating. The RCRA Permitted Hazardous Waste Tank (Used Solvent) has been fitted with a Moormann Analog Automatic Tank Gauge (information on the gauge is provided at the

end of this section). Level gauges are used to measure liquid levels in tanks. Float switch-activated automatic high level alarms (which consist of a strobe light and siren) signal the tanks being 95% full. This alarm allows an operator more than two minutes to stop operations and avoid overfilling the tank. The gauges of the tank are read before filling the tank with additional material. Tank level readings are also taken prior to the filling of a tanker truck to prevent overfilling of the truck or tank. A tanker truck provided with a suction pump is used to withdraw used parts washer solvent from the tank. No other equipment or standby equipment is used in the operation of the above-ground tanks. The tank should be operated at a maximum volume of 19,000 gallons (95% of capacity). The secondary containment under the tanks and return/fill shelter is cleaned within 24 hours of a spill, or in as timely a manner as possible, to prevent harm to human health and the environment.

2" single-walled steel piping from the wet dumpsters in the return/fill shelter to the top of the RCRA Permitted Hazardous Waste Tank (Used Solvent) is connected by threaded connectors. This piping runs under the dock and leaves the Return/Fill shelter on the north side of the building. At that point, the piping system continues north towards the permitted tank storage unit and is outside secondary containment (this part of the system has welded connectors). Once it reaches permitted tank storage unit secondary containment the piping, with threaded connectors, runs vertical to the top of the tank.

The piping system leaving the tank is constructed of 3" single-walled steel and is inside secondary containment. Figure 9.1-1 found in at the end of this section details the system.

Leak Detection System

The Safety-Kleen Medley branch has installed an automatic leak detection system at the permitted tank storage unit for the RCRA Permitted Hazardous Waste Tank (Used Solvent). This system will enable detection of leaks, or releases, to the secondary containment 24-hours a day. The system consists of an Intellipoint sensor, which is placed on the wall of the permitted tank storage unit secondary containment just above the floor. The sensor detects the presence or absence of liquids. It will be monitored 24-hours a day, seven days a week, by a 3rd party (Protection One). If the sensor detects liquid it will immediately send a warning notice to Protection One, who will then immediately call the emergency coordinator for the Medley branch. This system will allow continuous leak detection monitoring when the facility is not occupied.

IGNITABLE OR REACTIVE WASTE REQUIREMENT (40 CFR PART 264.198(b))

The owner or operator of a facility where ignitable or reactive waste is stored or treated in a tank must comply with the requirements for the maintenance of protective distances between the waste management area and any public ways, streets, alleys, or an adjoining property line that can be built upon as required in Tables 2-1 through 2-6 of the National Fire Protection Association's "Flammable and Combustible Liquids Code," (1977 or 1981), (incorporated by reference, see Sec. 260.11) (264.198(b)).

TANK SYSTEM SECONDARY CONTAINMENT

Tank Containment

All tanks are aboveground, underlain by a 58' x 40' concrete slab, surrounded by a 364" to 38" concrete dike and are covered by a metal canopy. No surface run-on or precipitation will come into contact with the wastes stored in the permitted tank storage unit and no run-off collection and management system is deemed necessary. The layout of the permitted tank storage unit is shown in Figure 9.2-1, found at the end of this section. Permitted tank storage unit and Return/Fill Shelter containment calculations are shown in Appendix C. The containment system in the permitted tank storage unit has been coated with Sikaguard® 62 or its equivalent, and is free of cracks. It is sufficiently impervious to prevent seepage into and through the concrete. Concrete is fully compatible with the waste stored. Inspections of the sealant will be conducted as described in the Tank System Inspections. If the sealant if found to be worn or deteriorated such that repairs are warranted, the sealant will be repaired in accordance with the manufacturer's specifications.

Return/Fill Containment

The return/fill shelter (Figure 9.3-1) is located between the office and warehouse. The floor is sloped to a containment trench located in the center of the return/fill shelter. The entire floor is coated with a chemical resistant coating. Two wet dumpsters are located on a raised grating, which measures 54½ x 80°. These wet dumpsters handle the flow of used parts washer solvent to the RCRA Permitted Hazardous Waste Tank (Used Solvent). These dumpsters are not intended for storage but can hold a maximum of 504 gallons per dumpster.

The area is designed such that the route trucks can be backed into the return/fill shelter and up to the grated dock. The roof extends over the truck unloading area so that no precipitation can get into the return/fill shelter containment area. Return/Fill Shelter containment calculations are found in Appendix C. This area is mainly used to load/off-load containers, dump used solvent, clean parts washer drums and store clean parts washer solvent containers. Waste container storage does not take place at the Return/Fill Shelter. Any waste containers off-loaded in this area are moved to their proper storage location within 24 hours.

TANK SYSTEMS INSPECTIONS

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation and maintain compliance. The Branch Manager or that person's designee is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule. Inspections are completed electronically (CO Tank Systems Inspection, CO Return and Fill Area). Examples of the Daily Inspection Logs are found at the end of Part II.C. Daily inspections of the tank and dumpsters will consist of the following:

- Check volume (liquid level) in tank.
- Observe tank exterior for loose anchoring, wet spots, leaks.
- Check the automatic high-level alarm. In addition, measure the depth of used solvent in
 the tanks to confirm the proper functioning of the automatic alarm system and to
 determine unexpected deviations in tank measuring data, or a sudden drop in liquid level,
 which may indicate leakage.
- Inspect secondary containment coating, walls, and piping (All piping is above ground).
- Inspect transfer pumps for leaking seals and overheated motors.
- Inspect the solvent dispensing hose, fittings, and valve for any leaks, damage, or wear that could cause a leak to develop.
- Inspect the valves for evidence of leaking. Stem leaks from worn glands and warped valve bodies should be repaired. If the valve cannot be repaired, replace the unit.

Also, the tanks will be visually inspected and tested periodically. The period of time between tank integrity inspections for the RCRA Permitted Hazardous Waste Tank (Used Solvent), including shell thickness testing, will not exceed ten years. This time frame for tank inspection is

adequate based on Safety-Kleen's experience at its other facilities in Florida. Daily inspection of the solvent return receptacle (wet dumpster) will consist of an inspection for leaks and excess dumpster mud build-up.

TANK SYSTEM CLOSURE AND CONTINGENT POST-CLOSURE PLAN

The tank system closure plan is provided as part of the overall closure plan for the facility in Part II K. As discussed below, a contingent post-closure plan for the tank is not required.

TANK SYSTEM CONTIGENT POST-CLOSURE PLAN

The tank system at the Medley facility meets the secondary containment requirements of 40 CFR 264.193, and is, therefore, not required to have a contingent post-closure plan under 40 CFR 264.197(c). In addition, Safety-Kleen intends to remove or decontaminate all tank system components, associated containment systems, and contaminated soils, if any, at the time of closure. However, should future conditions indicate that all contaminated soils and tank system components cannot practicably be decontaminated or removed, then a plan to perform post-closure care in accordance with the post-closure care requirements that apply to landfill (40 CFR 264.310) will be prepared for implementation upon FDEP approval.

RESPONSE TO LEAKS AND DISPOSITION OF UNFIT-FOR-USE TANK SYSTEMS

In the event that a leak or spill were to occur from a tank system or secondary containment system, the actions identified herein will be undertaken.

Immediate Response

All waste flow to the tank system in question will be ceased immediately. An inspection will be undertaken to identify the cause of the release. Waste flow to the tank system will not resume until the tank system has been inspected, repaired, and declared fit for use. In order to prevent further releases, or to allow inspection and a repair of the system, it may be necessary to remove the waste from the tank system. This waste removal will occur within 24 hours after detection of the leak, or at the earliest practicable time.

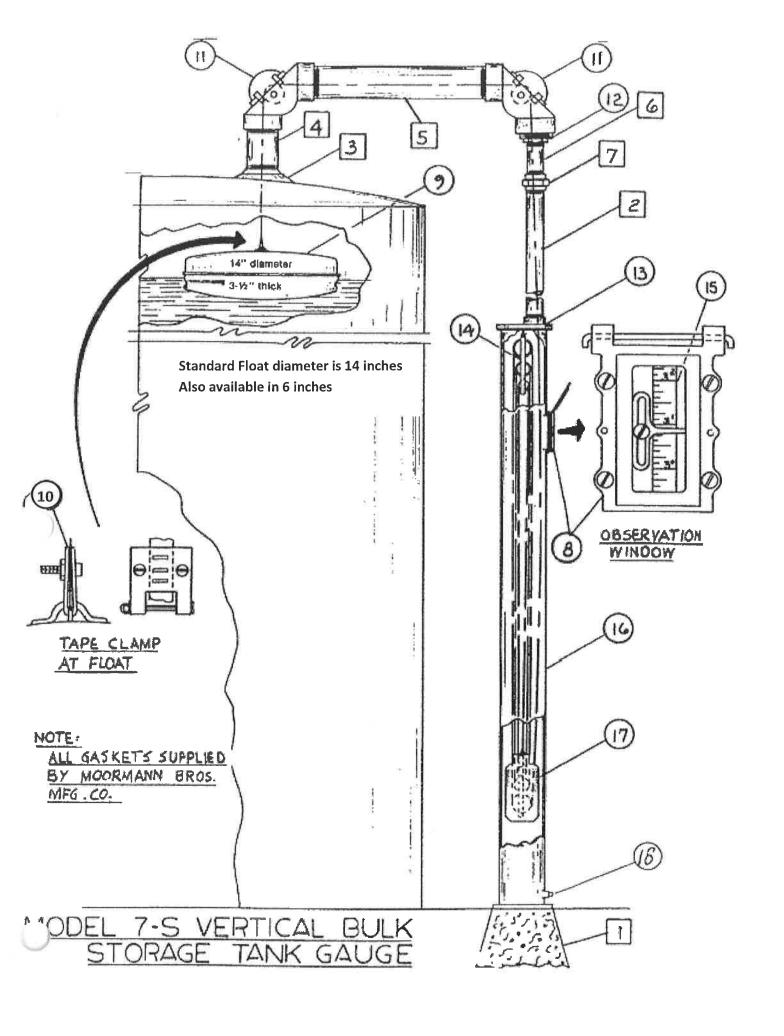
All material released to the secondary containment area will be removed within 24 hours, or in as timely a manner as possible, to prevent harm to human health and the environment. Every reasonable effort will be made to prevent migration of the release to soils or surface water. If

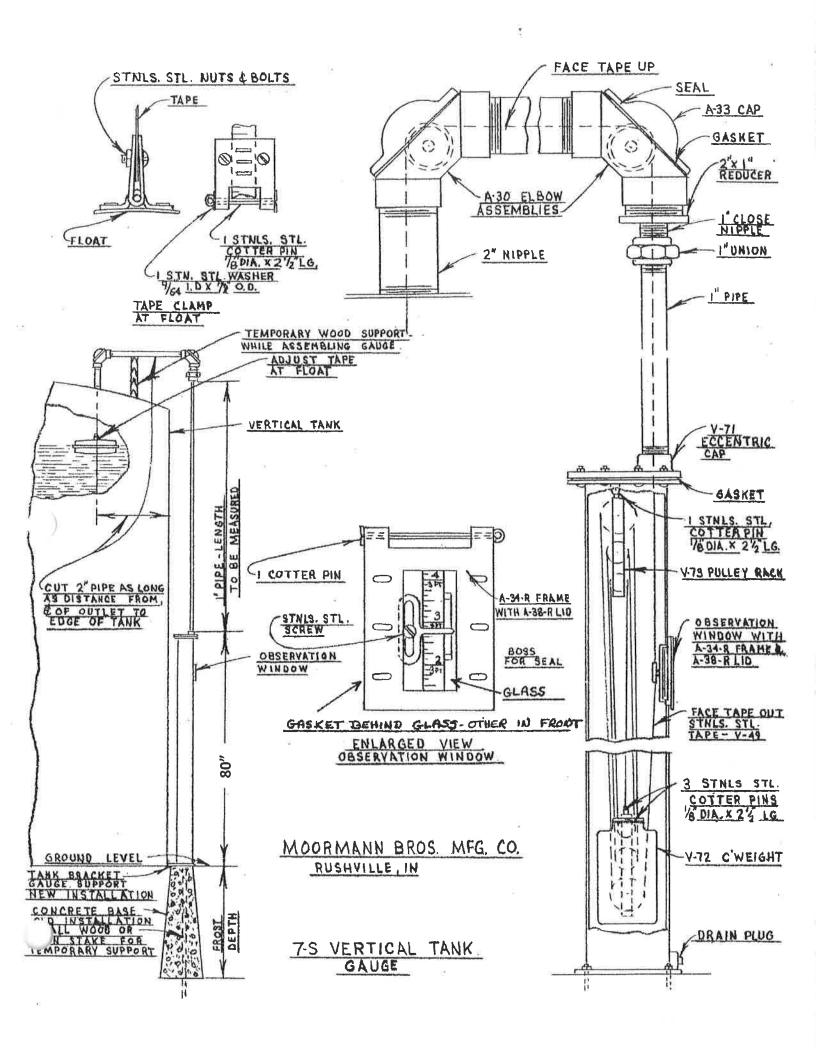
necessary, visible contamination of surface water and soil will be removed and properly disposed of.

Notifications

Spills less than or equal to one pound and immediately contained and cleaned up are exempt from reporting requirements per 40 CFR Part 264.196(d)(2). All other releases require notification as described in the Contingency Plan.

Subsequent Reporting

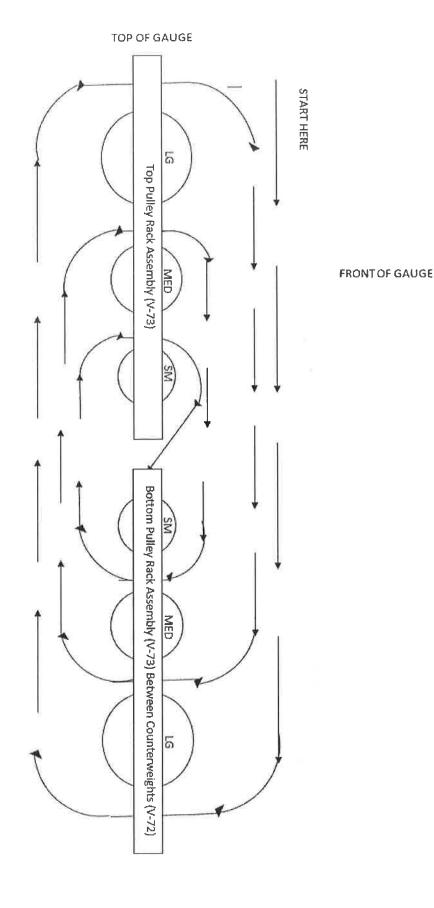

Subsequent reporting will be completed as referenced in the facility Contingency Plan.


Repair or Closure

If the integrity of the containment system has not been damaged, the system may be returned to service as soon as the released waste is removed and repairs, if necessary, are made. If the tank was the source of the release, the tank must be repaired prior to returning the tank system to service. If the release was from a tank system component which did not have secondary containment, then secondary containment must be provided for this component before the system can be returned to service. The exception to this is if the component can be visually inspected. In this instance, the component may be repaired and returned to service. If a component is replaced, the component must satisfy the requirements for new tank systems and components.

All major repairs must be certified by an independent, registered, professional engineer in accordance with 40 CFR 264.196(f). The engineer must certify, in accordance with 40 CFR 270.11(d), that the repaired system is capable of handling hazardous wastes without release for the intended life of the system. This certification must be placed in the operating record and maintained until closure of the facility.

If repairs that meet these requirements cannot be performed, the tank system must be closed in accordance with the closure plan.



TART TAPE, CLIP END FIRST WITH NUMBERS ON TAPE FACING FRONT OF GAUGE HOUSING, AROUND LARGE BOTTOM PULLEY, UP TO LARGE TOP PULLEY, DOWN TO MEDIUM BOTTOM PULLEY, UP TO SMALL BOTTOM PULLEY, UP TO SMALL TOP PULLEY AND THEN SECURE CLIP END OF TAPE WITH A COTTER PIN TO THE TOP OF THE BOTTOM PULLEY RACK (V-73) ASSEMBLY.

INSTALL THE TAPE WITH THE NUMBERS FACING OUT TOWARDS YOU FROM THE WINDOW OF THE HOUSING.

BE CAREFUL NOT TO THREAD THE APE OVER THE BAR AT THE END OF THE PULLEY RACK. MUST PLACE THE TAPE ON THE PULLEY WHEEL.

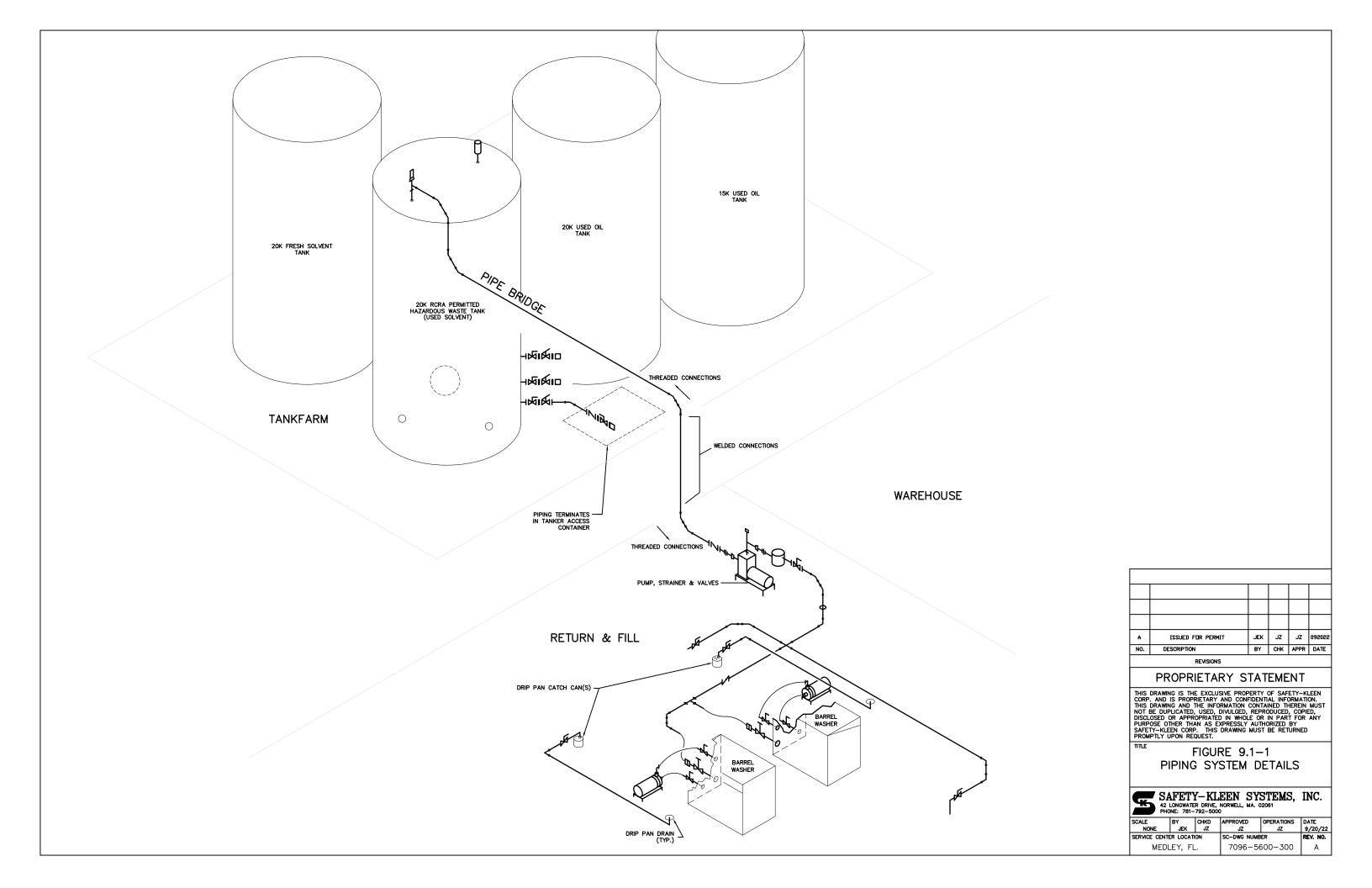
ENLARGED DETAIL SHOWING HOW TAPE IS WOUND ON PULLEY RACK ASSEMBLIES OF MOORMANN MODEL #7-S.

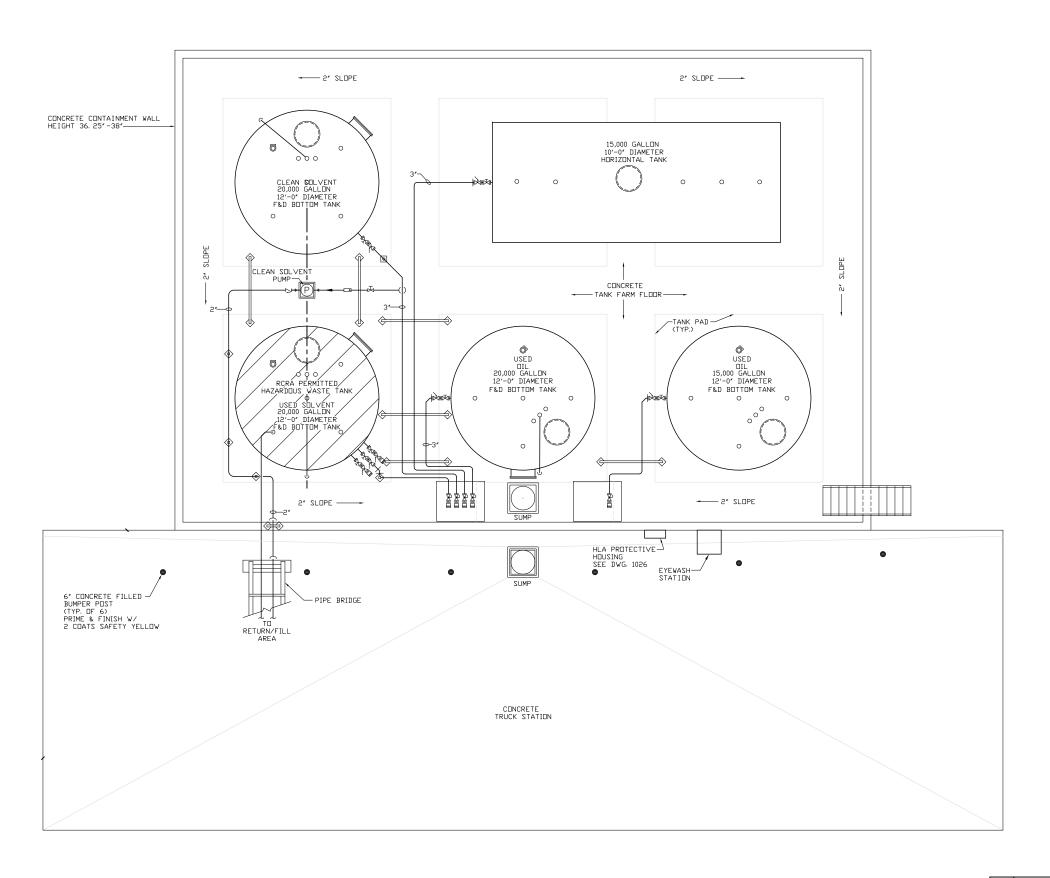
MATERIAL LIST

MODEL 7-S

For All Vertical Tanks Up to & Including 35'

- Material Supplied by Customer (see diagram to match square with number)
 - 1. Gauge Housing Base Support
 - 2. 1" Galvanized Pipe (cut to length)
 - 3. Tank Roof Flange
 - 4. 2" Tank Opening Pipe
 - 5. 2" Galvanized Pipe (cut to length)
 - 6. 1" Galvanized Nipple (any length)
 - 7. 1" Galvanized Union




(see diagram to match circle with number)

	Part Name	Part No.	Quantity per Unit
8.	Observation Window Assembly (Frame & Lid)	A-34 / A-38	1
9.	Float – Aluminum or Stainless Steel	V-75	1
	7-S comes with aluminum float (V-75)		
	7-S-SS comes with stainless steel (V-75-S)		
10.	Stainless Steel Tape Clamp & Screws	V-93	1
11.	Elbow Assembly Complete	A-30, A-33	2
12.	2" to 1" Reducing Bushing	B-15	1
13.	Eccentric Cap Complete with Nuts & Bolts	V-71	1
14.	Pulley Rack Assembly	V-73	2
15 .	Lufkin Stainless Steel High Visibility Tape	V-49	1
16.	Painted Steel Gauge Housing	V-77	1
17.	Counterweight	V-72	2
18.	Condensation Drain Plug	D-16	1
19.	PE -7 Parts Envelope to include the following:		
	(not shown on diagram)		
	 Gaskets – Set for Observation Window 	V-81, V-82	1
	 Gasket – Elbow Cap 	V-83	2
	 Gasket – V-71 Eccentric Cap 	V-84	1
	 Glass – Window 	V-86	1
	 Stainless Steel Indicator Finger for 	V-94	1
	Observation Window		
	 Cotter Pin – Stainless Steel 	V-96	4

INSTALLATION INSTRUCTIONS - MODEL 7-S

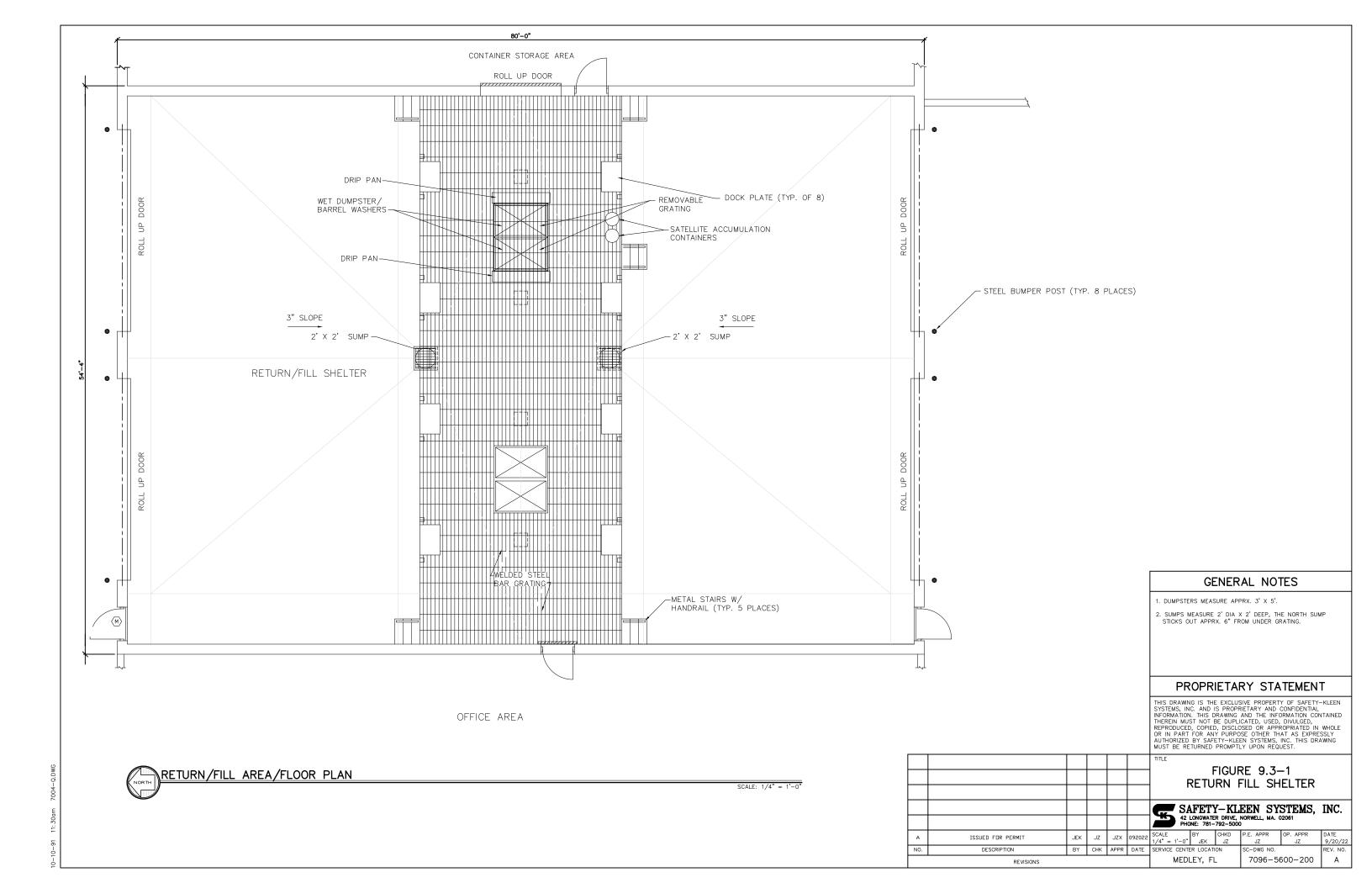
- 1. Locate gauge position on ground mark top edge of tank directly above ground location.
- 2. Measure, cut and thread 2" pipe (as marked on print).
- 3. Use pipe dope on all connections.
- 4. Assemble both A-30 elbows and 2" pipe as shown on print.
- 5. Screw (1) elbow A-30 onto 2" pipe with reducing bushing, close nipple and union as shown on print; other A-30 elbow into 2" nipple in tank then screw other end of 2" pipe into tank elbow, make straight with tank marking.
- 6. Level 2" pipe, use temporary wood brace, if necessary.
- 7. Set gauge housing with eccentric cap assembled on ground directly below overhanging elbow.
- 8. Measure for 1" pipe (reducing bushing in elbow to eccentric cap V-71 on gauge housing) allow for threads, cut and thread 1" pipe.
- 9. Screw 1" pipe into elbow, then remove V-71 eccentric cap from housing and put on 1" pipe. CAUTION Be sure eccentric cap is straight and 1" outlet is farthest away from tank.
- 10. Fasten pulley rack with large pulley up to eccentric cap using stainless steel cotter pin.
- 11. Assemble other pulley rack in counterweights with large pulley down.
- 12. Place counterweight on ground directly beneath eccentric cap pulley rack.
- 13. Remove A-33 caps from both elbows.
- 14. Thread tape from tank elbow with <u>numbers up</u> and clip end first through 2" pipe and over elbow pulleys, down through 1"pipe and out eccentric cap, straight down and around bottom pulley in counterweight and up and over top pulley in eccentric cap, down to medium pulley, up and over medium pulley, down and around small pulley on counterweight and up and around small pulley on eccentric cap, down and fasten to lug on counterweight pulley rack use stainless steel cotter pin. CAUTION –Do not thread tape over or under cross bars in pulley rack. Use caution do not kink or bend tape. SEE DIAGRAM FOR TAPE ROUTING.
- 15. Fasten tape to float with tape clamp (as per print). CAUTION Do not fasten tape clamp too tight as this may damage tape.
- 16. Place eccentric cap gasket on housing top and insert counterweight assembly into housing. CAUTION Do not allow counterweight to drop or jerk as this may cause damage to bearings, also be sure the tape is in groove of pulleys and not on the edge.
- 17. Fasten housing to eccentric cap with observation window directly below 1" pipe.
- 18. Place outside strand of tape over tape guide in observation window, CAUTION Do not bend or kink tape, and put only one strand of tape over tape guide.
- 19. If tank is empty, adjust tape reading at 1-3/8" (float draft), if it is partially full, set reading exactly with stick, make major tape reading adjustments with the float by slipping tape through tape clamp. Minor adjustments (within 1" make the observation finger). DO NOT CUT TAPE UNTIL FINAL CALIBRATION IS ACCURATE.
- 20. In setting the reading on the gauge, $\frac{1}{2}$ " or even $\frac{1}{8}$ " is not close enough, be particular, set gauge to the exact amount of liquid in tank.
- 21. CAUTION Let float down in tank easily. Do not let it drop.
- 22. Assemble observation frame and lid A-34/ A-38 place on housing, tighten for vapor-proofing.
- 23. Replace A-33 elbow caps with gaskets tighten for vapor-proofing.
- 24. Fix base for housing either, concrete, wood post, or steel plate welded to tank, CAUTION Do not weld gauge housing to tank.
- 25. In most climates, condensation forms inside the tank and gauge. A drain plug has been provided for draining at the bottom of housing. In most climates, this is necessary 2 times a year (spring & fall). However, in extreme cases, draining is required more often.

SCALE: 1/4" = 1'-0"

LEGEND

RCRA PERMITTED HAZARDPUS WASTE TANK (USED SOLVENT)

GENERAL NOTES


PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN SYSTEMS, INC. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVULGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAT AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN SYSTEMS, INC. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

FIGURE 9.2-1 TANK STORAGE AREA

						SAFETY-KLEEN SYSTEMS, IN	C.
						42 LONGWATER DRIVE, NORWELL, MA. 02061 PHONE: 781-792-5000	
Α	ISSUED FOR PERMIT	JEK	JZ	JZX	092022	SCALE BY CHKD P.E. APPR OP. APPR DATE D	TE 20/22
NO.	DESCRIPTION	BY	CHK	APPR	DATE	SERVICE CENTER LOCATION SC-DWG, NUMBER REV.	/. NO.
	REVISIONS					MEDLEY, FL 7096-4100-200	Α

CO Return and Fill Area

Form Code: 36

Compliance Header	
Inspector Name	
Area of Inspection	
Inspection Date and Time	
CO Return and Fill Area Instructions	
Note condition of inspection items. If item does refindings must be explained. Include any repairs of	,
CO Return and Fill Area Inspection Items	
Pump Seals - Check for evidence of failure (e.g., leaks, other).	
Pump Motors - Check for evidence of failure (e.g., overheating, other).	
Fittings - Check for evidence of failure (e.g., leaks, other).	
Valves - Check for evidence of failure (e.g., leaks, sticking, other).	
Hose Connections and Fittings - Check for evidence of failure (e.g., cracked, loose, leaks, sticking, other).	
Hose Body - Check for evidence of failure (e.g., crushed, cracked, thin spots, leaks, other).	
Clam Shell Unit Type - Lid Fusible Link - Check for evidence of failure (e.g., broken, spring missing, other).	
Clam Shell Unit Type - Lid Hinge Assembly - Check for evidence of failure (e.g., broken pivot arm, damaged lid arm, missing pins, other).	
Sliding Lid Unit Type - Gaskets - Check for evidence of failure (e.g., broken, cracked distorted, other).	
Sliding Lid Unit Type - Lid/ Slide Assembly -	

Check for evidence of failure (e.g., damaged lid, rollers, slide rail, temperature gauge, limit switches, other).	
Roll-up Door Unit Type - Seals - Check for evidence of failure (e.g., broken cracked, distorted, other).	
Roll-up Door Unit Type - Door/ Roll-up Assembly - Check for evidence of failure (e.g., damaged lid, rollers, slide rail, temperature gauge, limit switch, other).	
Wet Dumpster/Drum Washer - Check for evidence of failure (e.g., leaks, rust, split seems, distortion, deterioration, excess debris, sediment accumulation, other).	
Secondary Containment - Check for evidence of failure (e.g., excess sediment, leaks, distortion, deterioration, excess debris, other).	
Loading/Unloading Area - Check for evidence of failure (e.g., cracks, ponding or wet spots, deterioration, other).	
Satellite Accumulation Containers - Check for evidence of failure (e.g., container open, > 55 gallons, label, other).	
Ventilation Fan - Check for evidence of failure (e.g., inoperative, shutters jammed, other).	
Site Generated Waste - debris, used absorbent, used PPE, aerosols, etc Check for evidence of failure. (e.g. waste not containerized, proper storage location, container type, container label, other)	
Compliance Footer	
Inspector Signature	
Attach Photo	
Inspection Overall Assessment	

CO Tank Systems Inspection

Form Code: 27

Compliance Header	
Inspector Name	
Area of Inspection	
Inspection Date and Time	
CO Tank Systems Inspection Instructions	
Note condition of inspection items. If item does need findings must be explained below. Include any required or performed.	
CO Tank Systems Inspection Items	
Tanks - Check for evidence of failure (e.g., leaks, rusty or loose anchoring, distortion, cleanliness, paint failure, other). Insulation - check for any damage or deterioration that may allow moisture intrusion.	
Pipes/Piping Supports - Check for evidence of failure (e.g., leaks, distortion, corrosion, paint failure, other).	
Valves - Check for evidence of failure (e.g., disconnected, corrosion, sticking, leaks, other).	
Fittings/Hose Connections - Check for evidence of failure (e.g., leaks, loose, disconnected, corrosion, other).	
Liquid Level - Check for acceptable level and level guages working correctly. (e.g., high level max, permitted volume, level guage legible, other).	
Secondary Containment - Check for interior and exterior for evidence of failure (e.g., cracks, ponding or wet spots, pitting or deterioration, corrosion, erosion, other and excess liquid or debris, fire hazards, or other issues).	
Dike drain valves - Are valves closed and in	

good working condition?
For double-wall tanks is interstitital monitoring equipment in good working condition and is the interstitial space free of liquid?
Sumps - Check for evidence of failure (e.g., cracks, ponding or wet spots, pitting or deterioration, other).
Bonding and Grounding - Check for evidence of failure (e.g., loose, broken, corrosion or deterioration, other).
Transfer Equipment/Pump and Pump Motors - Check for availability and condition (e.g., pumps, filters, strainers, hoses, leaks, overheating, other).
Communication and Alarm System - Check for evidence of failure (e.g., test function, siren, strobe, other).
Satellite Accumulation Containers - Check for evidence of failure (e.g., container open, >55 gallons, label, other).
Manways, Hatches, Nipples, Other Openings, Ladders - Check for evidence of failure (e.g., leaks, condition, corrosion, closure, other).
Pressure Relief Valves (PRV)/ Flame Arrestors - Check for evidence of failure (e.g., condition, corrosion, other).
Tanks marked with the words "Hazardous Waste" - Check for appropriate markings.
Tanks not used marked as "Out of Service" - Check for appropriate markings.
Tanks marked as to the contents - Check for appropriate markings (e.g., "Used Oil", "Non-Haz Only").
Monitoring Equipment/Level Indicators/Overfill Prevention Equipment - Check that equipment is in good working condition or for evidence of failure (e.g., actuate equipment/alarms to confirm operation, pressure and temperature

gauges, level indicators, sticking, condensation, disconnected, other).	
Loading/ Unloading Areas - Check condition of area (e.g., no free liquid, ponding or wet spots, available spill equipment, spill equipment location, spill kit supply and inventory is adequate, containment deterioration, leaks, pad condition, valve access box, housekeeping, other).	
Tank System Safety - Is the system free of any conditions that need to be addressed for continued safe operation?	
Connection Box/Drip Trays and Buckets - Are the connection box and all drip trays and buckets free of liquids or saturated absorbents, and all material properly collected and disposed?	
Site Generated Waste - debris, used absorbents, used PPE, aerosols, etc Check for evidence of failure (waste not containerized, proper storage location, container type, container label, other).	
Spill Equipment - Check that spill equipment is available, at the correct location, equipment supply and inventory is adequate, equipment is in good condition clean and ready for use.	
Ladders/platforms/walkways/egress pathways on or within tank or containment - Check for evidence of damage, corrosions, proper opration, pathways clear, doors/gates operable.	
Compliance Footer	
Inspector Signature	
Attach Photo	
Inspection Overall Assessment	

Safety-Kleen Systems Medley, FL

STI SP001 Formal Internal Inspection

T-6

Inspection Date: 7/21/2022

Tank Data						
Design Standard:	UL	Nominal Diameter:	12'			
Build Date:	No Data Available	Nominal Height:	26'			
Manufactured By:	No Data Available	Material:	Steel			
Orientation:	Vertical	Continuous Release Detection Method (CRDM):	RPB			
Release Prevention Barrier:	Concrete	Spill Control:	Dike/Berm			

CI	ΙN	ΛN	1	١R	V

Conclusion:

As determined by the condition found during the inspection of T-6, the tank appears to be in suitable condition at the time of this inspection.

Recommendations:

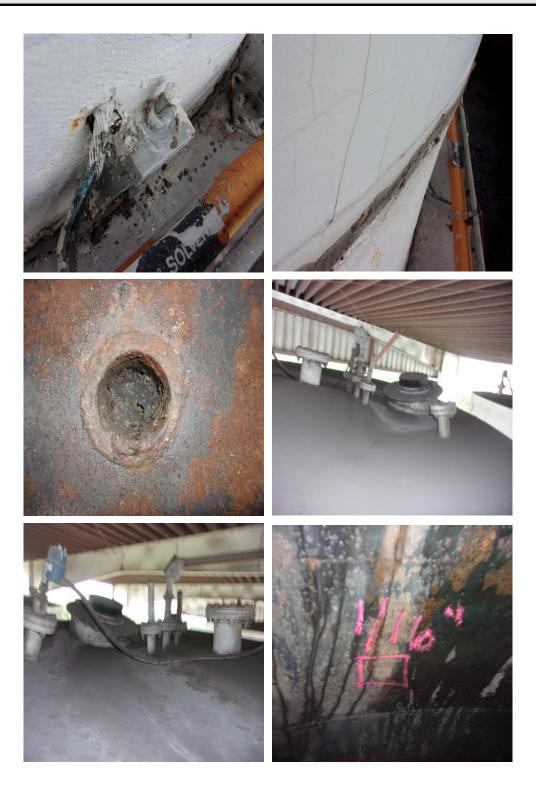
Areas with coating failure should be cleaned, properly prepped and re-coated.

Monitor tank roof periodically.

EXTERNAL VISUAL INSPECTION						
Foundation General Condition						
Item	Acc	Fin	N/I	N/A	Comments	
Coating condition		\boxtimes			Coating Failure	
Concrete condition	\boxtimes					
Containment / Dike walls	\boxtimes					
Elastomeric Liner				\boxtimes		
Site Drainage	\boxtimes					
Equipment Support					General Condition	
Item	Acc	Fin	N/I	N/A	Comments	
Base Support Type					Skirt	
Coating	\boxtimes					
Concrete Pad	\boxtimes					
Corrosion	\boxtimes					
Fireproofing	\boxtimes					
Outer Shell					General Condition	
Item	Acc	Fin	N/I	N/A	Comments	
Attachments						
Bottom Projection Plate				\boxtimes		
Coating Condition		\boxtimes			Coating Failure	
Corrosion	\boxtimes					
Deformation	\boxtimes					
Insulation				\boxtimes		
Insulation Support Bands				\boxtimes		
Lifting Lugs		\boxtimes			Bent	
Atmospheric Venting						
Overfill Protection	\boxtimes					
Attached Piping	\boxtimes					
Repair(s)				\boxtimes		
Vegetation				\boxtimes		
Weather Jacket				\boxtimes		
Manways / Nozzles	General Condition					
Item	Acc	Fin	N/I	N/A	Comments	
Bolting Condition	\boxtimes					
Coating Condition	\boxtimes					
Corrosion	\boxtimes					
Flange Condition						
Reinforcement Pad Condition	\boxtimes					

EXTERNAL VISUAL INSPECTION CONTINUED							
Roof	General Condition						
Items	Acc Fin N/I N/A Comments				Comments		
Coating Condition	\boxtimes						
Corrosion	\boxtimes						
Deformation		\boxtimes			Severe Dent		
Proper Drainage		\boxtimes			Tank roof is bent but the tank is under a metal canopy.		
Weather Jacket				\boxtimes			
Roof Appurtenances	General Condition				General Condition		
Items	Acc	Fin	N/I	N/A	Comments		
Bolting Condition	\boxtimes						
Condition of Hatch(s), Manway(s)	\boxtimes						
Condition of Pressure/Vacuum Vent(s)	\boxtimes						
Condition of Vent Screen(s)	\boxtimes						
Emergency Venting	\boxtimes						
Mixer / Agitator				\boxtimes			
Normal Venting	\boxtimes						
Appurtenances					General Condition		
Items	Acc	Fin	N/I	N/A	Comments		
Anchors	\boxtimes						
Gauges, Sight Glass (damage)	\boxtimes						
Grounding (tightness & corrosion)	\boxtimes						
Liquid Level Gauge	\boxtimes						
Data Plate		\boxtimes			Not Attached		

INTERNAL VISUAL INSPECTION							
Floor	General Condition						
Item	Acc	Fin	N/I	N/A	Comments		
Annular Ring				\boxtimes			
Cleanliness	\boxtimes						
Corrosion/Pitting	\boxtimes				Scattered pitting measuring 1/6" in depth, 1 pit measured 1/8".		
Liner				\boxtimes			
Magnetic Flux Leakage Exam				\boxtimes			
Repair(s)				\boxtimes			
Sump(s)				\boxtimes			
Vacuum Box Bubble Exam				\boxtimes			
Void(s), Low Spots				\boxtimes			
Floor to Shell Weld (MP only)				\boxtimes			
Shell					General Condition		
Item	Acc	Fin	N/I	N/A	Comments		
Cleanliness	\boxtimes						
Corrosion / Pitting	\boxtimes						
Liner				\boxtimes			
Roof		General Condition					
Item	Acc	Fin	N/I	N/A	Comments		
Liner				\boxtimes			
Corrosion / Pitting			\boxtimes		Visual from ground only.		
Nozzles, Man Ways and Attachments					General Condition		
Item	Acc	Fin	N/I	N/A	Comments		
Baffles							
Corrosion/Pitting							
Down comer(s)	\boxtimes						
Internal coils				\boxtimes			
Mixers, agitators				\boxtimes			
Thermowell(s)				\boxtimes			
Roof Support(s)	General Condition						
Item	Acc	Fin	N/I	N/A	Comments		
Colum(s)							
Restraining clip(s)				\boxtimes			
Reinforcing pads				\boxtimes			
Rafters				\boxtimes			


Thickness Data:

	0°	90°	180°	270°
First Course	0.253''	0.254''	0.252''	0.252"
	0.255''	0.253''	0.253''	0.254''
	0.252''	0.252"	0.256''	0.255''
Second Course	0.243''	0.245"	0.246''	0.245"
	0.245"	0.247"	0.247''	0.246"
	0.245''	0.246''	0.247''	0.246''
Third Course	0.250"	0.252"	0.250''	0.250"
min d course	0.248''	0.257"	0.251''	0.250''
Fourth Course	0.250'' 0.182''	0.250'' 0.185''	0.249'' 0.184''	0.249'' 0.185''
Tourtif Course				
	0.176"	0.185''	0.185"	0.183''
	0.170''	0.186''	0.185''	0.183''
	Course 1		Course 2	
	Minimum	0.252"	Minimum	0.243''
	Average	0.253''	Average	0.246''
	Maximum	0.256''	Maximum	0.247''
	Standard Deviation	0.001"	Standard Deviation	0.001''
	Course 3		Course 4	
	Minimum	0.248''	Minimum	0.170''
	Average	0.251''	Average	0.182''
	Maximum	0.257''	Maximum	0.186''
	Standard Deviation	0.002''	Standard Deviation	0.005''
	00	000	4000	0700
Doof	0°	90°	180°	270°
Roof	0.174'' 0.250''	0.167'' 0.247''	0.183"	0.187'' 0.245''
Bottom	0.250	0.247	0.246''	0.245
	12 o' clock	6 o' clock		
Manway	0.225"	0.226''		
3" Nozzle	0.284''	0.264''		
3" Nozzle	0.277''	0.275"		
3" Nozzle	0.270"	0.286''		
3" Nozzle	0.281"	0.279''		
3" Nozzle	0.281''	0.273''		

Photographs

Photographs

Photographs

Inspection Certification Certificate

Tony Gutierrez under direct supervision of Taylor Sudol (Certified Inspector) has performed a STI SP001 Formal Internal Inspection on T-6 on July 21, 2022. The tank is located at the Safety-Kleen facility in Medley, FL. As determined by the condition found during the inspection of T-6, the tank appears to be in suitable condition at the time of this inspection. Facility personnel should perform periodic inspections in accordance with STI SP001.

The services performed, documentation of inspection, identification of deterioration, and the generation of a report was performed within the generally accepted principles and practices of STI SP001 (current version), Clean Harbors' Written Practice and Inspection procedures.

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of the individuals immediately responsible for obtaining the information, I believe that the information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fines and imprisonment.

Taylor Sudol STI SP001# AC44096

Taylor Sudal

WARRANTY

Clean Harbors Inspection Services, USA. ("Company") has performed inspection services on equipment designated by Safety-Kleen Systems (owner/operator) and has evaluated its condition based on observations and measurements made by Company's inspectors. While our evaluation accurately describes the condition of the equipment at the time of inspection, the owner/operator must independently assess the inspection information/report provided by Company and any conclusions reached by owner/operator and any action taken or omitted to be taken are the sole responsibility of the owner/operator. With respect to inspection and testing, Company warrants only that the services have been performed in accordance with accepted industry practice. If any such services fail to meet the foregoing warranty, Company shall re-perform the service to the same extent and on the same conditions as the original service.

Company makes no warranty, express or implied, regarding goods or services provided by Company other than those warranties set forth herein. The preceding paragraph sets forth the exclusive remedy for claims based on failure or of defect in materials or services, whether such claim is made in contract or tort (including negligence) and however instituted, and, upon expiration of the warranty period, all such liability shall terminate. The foregoing warranty is exclusive and in lieu of all other warranties, whether written, oral, implied or statutory. NO IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE SHALL APPLY, nor shall Company be liable for any loss or damage whatsoever by reason of its failure to discover, report, repair or modify latent defects or defects inherent in the design of any equipment inspected. In no event, whether a result of breach of contract, warranty or tort (including negligence) shall Company be liable for any consequential or incidental damages including, but not limited to, loss of profit or revenues, loss of use of equipment tested or services by Company or any associated damage to facilities, down-time costs or claims of other damages.

CERTIFICATION

Steel Tank Institute

Taylor Sudol

STI Inspector No: AC 44096

Expires: September 1, 2025

The person whose name appears on this certificate has met all of the requirements to attain the STI SP001 Adjunct Certification for API 653 Inspectors.

This certification is dependent on an active API 653 certification.

Joseph Mentzer, P.E. Steel Tank Institute

STITSPFA

The official status of this certificate can be verified at www.steeltank.com.

Issue Date: 09/01/2020

Tab 7 Part II.I Miscellaneous Units

Part II

I. Miscellaneous Units

1. Description of Miscellaneous Unit

The wet dumpster/drum washer unit at the facility is managed under the Subpart X – Miscellaneous Units Standards of 40 CFR Part 264.600. The unit is located, designed, constructed, operated and maintained in a manner to protect human health and the environment. The unit is specifically located within the Return/Fill Shelter and sits on top of the raised steel grated dock, and area provided with secondary containment, as described in Part II.C, to prevent any potential releases from migrating to the surrounding subsurface or groundwater. Safety-Kleen has performed emissions monitoring of these units at other facilities and the data has shown that VOC emissions are below the 10,000 ppmw leak detection threshold.

- I.a The unit is constructed of steel and the dimensions are approximately: H 5' 7", L 5' 6", W 3'. Engineering drawings providing detailed information for the unit are found at the end of this section. It is basically a large rectangular steel box with a clam shell type lid that is manually opened upward when in use.
- 1.b The wet dumpster/drum washer unit is designed to allow employees to manually empty used parts washer solvent containers into the dumpster, then place the containers on roller brushes contained within the unit for rinsing. An internal spray system is turned on, and the containers rotate on the brushes where used parts washer solvent is recirculated for cleaning the inside and outside of the containers. This process takes approximately five (5) seconds per container. The containers sit in the unit for a short period of time so any residual solvent is allowed to drop back into the unit. During the dumping process the used parts washer solvent is transferred to the RCRA-Permitted Hazardous Waste Tank (Used Solvent) via an automatic float switch pump which is activated as the used parts washer solvent fills at the bottom of the unit. Once cleaned, the containers are filled with clean recycled parts washer solvent. As designed and utilized, this unit is simply a device used to effectively convey the contents of a used parts washer solvent container to the on-site RCRA-Permitted Hazardous Waste Tank (Used Solvent). The wet dumpster/drum washer unit is not designed or intended to contain an accumulation of hazardous waste. The unit operates at

ambient pressure and temperature. When not actively being used to received used parts washer solvent and wash containers, the unit will be maintained in a closed position. The internal sump at the bottom of the unit will be emptied at the end of each day's operating shift.

The unit will be inspected each operating day using Form CO Return and Fill Area, which is found in Part II.C of this permit application. Items for inspection are:

- Pump seals & pump motors
- Fittings, valves, hose connections, & hose body
- Clam Shell Unit Type check fusible link for failure (e.g., broken, spring missing, other), lid hinge assembly (e.g., broken pivot arm, damaged lid arm, missing pins, other).
- Wet Dumpster/Drum Washer check for evidence of failure (e.g., leaks, rust, split seams, distortion, deterioration, excess debris, sediment accumulation, etc.)
- Secondary Containment check for excess sediment, standing liquid that may indicate leak(s), distortion, deterioration, excess debris, damage, etc.).
- Loading/Unloading Area check for cracks, ponding or wet spots, deterioration, etc.)
- Satellite Accumulation Container check for container integrity, placement, proper labeling/marking, closed when not adding or removing waste material, etc.

If a leak is detected from the wet dumpster/drum washer unit, the defect causing the leak will be repaired no later than 45 days from the date of detection, unless the standards associated with delay of repair (40 CFR 264.1084(k)(2)) apply. First attempts to repair the unit will occur within five (5) days after leak detection.

Closure information for this unit and the Return/Fill Shelter is found in Part II.K of this permit application.

The physical properties and chemical characteristics of the used parts washer solvent transferred through this unit, and waste materials generated in the drum cleaning operation are found in Part II.A.5 of this permit application.

1.c The wet dumpster/drum washer unit is not a disposal unit, however; if future conditions show that contaminated soils cannot be completely removed or decontaminated during closure, the unit will meet the requirements of 264.601 during post-closure care. A plan to perform post-closure care in accordance with 264.118 will be prepared for implementation upon FDEP approval.

2. Environmental Performance Standards for Miscellaneous Units

The wet dumpster/drum washer unit operated by the Safety-Kleen Medley branch are not equipped with active emission control systems. As part of the company's overall emission inventory and assessment program, emission sources at the branch facilities, including the wet dumpster/drum washer units have been evaluated to determine whether the facilities should be considered sources requiring air permits. Based on this evaluation they should be considered minor sources and not require emission control permits. The reasons for the low emission levels are fourfold. First, the solvent managed at the facility, especially in those areas of maximum potential emission (i.e., wet dumpster/drum washer and bulk storage tanks, have a relatively low vapor pressure of 0.2mmHg at 68° F or 0.6mm Hg at 100° F). Secondly, the wet dumpster/drum washer unit is operated in such a manner as to minimize the potential for emissions to greatest extent practicable during unloading the used parts washer solvent into the unit. Third, the volume of the used parts washer solvent present in the wet dumpster/drum washer unit between unloading operations, approximately 2-3 gallons, is minimized and lids of the unit remains closed when used parts washer solvent is not being added or when empty drums are not being cleaned. Finally, containers are filled with clean solvent using a gasoline type dispenser that extends to the bottom of the container. This minimizes any splashing that may occur during the filling operation.

Safety-Kleen has conducted Industrial Hygiene Hazard Assessments of the emissions produced by the operation of the wet dumpster/drum washer and other sources located at a typical branch. These assessments were conducted for a number of reasons. The most important is to determine the presence of any unacceptable work place exposure regarding the protection of company employees who work directly over the process area as containers are being emptied, cleaned and refilled with clean solvent. Based on Industrial Hygiene studies performed at various Safety-Kleen branches/facilities, results do not indicate any unacceptable work place exposure. As would be expected, solvents and related compounds have been detected during sampling events, but in concentrations will below American Conference of Governmental Industrial Hygienist (ACGIH) threshold limit values (TLV) and the Occupational Safety and Health Administration's (OSHA) Permissible Exposure Limits (PEL) for the various chemical compounds encountered. A sample of the data collected by the company's Certified Industrial Hygienist is included at the end of this section.

Based on the above information there would not be any tangible environmental benefit to adding pollution controls to the wet dumpster/drum washer units. In addition, developing pollution controls would be very difficult since processing containers of used parts washer solvent requires that the lids to the unit remain open during active operation, and the unit is located over an open grated working surface provided with a concrete secondary containment system. It should also be noted that the wet dumpster/drum washer unit is drained and closed during those times of the operating day when no trucks are delivering used parts washer solvent to be processed. Also, at the end of each operating day, which typically consists of 2.5-4 hours of processing, the wet dumpster/drum washer unit is emptied, cleaned and closed to prepare for the next day's operation. These procedures provide an additional amount of risk reduction.

- 3. The potential pathways of exposure of humans to hazardous waste or hazardous waste constituents from the wet dumpster/drum washer would be through skin contact (absorption), or inhalation. Employees operating the unit are required to use the following Personal Protective Equipment (PPE) at all times to reduce and/or eliminate exposure:
 - Gloves cut resistant (outside), and supported neoprene (inside)
 - Hearing protection required when using pneumatic tools for drum closure or opening
 - Footwear steel toed boots with metatarsals and slip resistant soles
 - Tychem QC apron with sleeves
 - Hard Hat
 - Safety glasses with side shields
 - Safety-Kleen issued work uniform
 - In addition, all material handlers are issued respirators and fit tested annually. It is not a requirement to use respiratory protection during operation of the unit, but any employee may choose to do so.

The potential pathways of exposure of environmental receptors to hazardous waste or hazardous waste constituents would through emissions or release of material from the unit. Emissions from the unit have been discussed above. In addition, release protection has been discussed. The unit is located inside an enclosed building with sufficient secondary containment to mitigate a release of material. In addition, the capacity of the unit is minimal compared to the secondary containment capacity in the Return/Fill Shelter, the unit is inspected each operating day for leaks, deterioration, or damage, and employees are trained to respond to any spill or release from this unit immediately

To:

Kevin Knippschild

From:

Gavin Burdge

Subject:

Dec 6, 2000 Personal Air Sample Obtained at the Dolton, IL Return and Fill

Date:

Jan 27, 2001

Executive Summary

Air sampling at the return and fill indicated negligible health risk (additive exposure index < 0.1) from the inhalation route of exposure. Skin contact from splashes was a more likely route of exposure.

Discussion

A personal air sample was obtained December 6, 2000 on Tony Alvarez who worked on the 3 pm to 11 pm shift at the return and fill. A full shift sample was obtained to determine the 8-hour time-weighted average solvent concentrations. The actual dumping of drums containing 105 and 150 solvent takes about 3 to 4-hours. The air sample was obtained following standard NIOSH methods and analyzed by the AIHA accredited Safety-Kleen Lambton Occupational Hygiene Lab.

The results showed trace concentrations of several airborne solvents. All concentrations were significantly below the occupational exposure limits. A trace concentration of 0.013 ppm of benzene was detected. The TLV for benzene is 0.5 ppm. The concentration of methylene chloride detected was 0.1 ppm. The methylene chloride OSHA "action level" is 12.5 ppm. Other substances detected in trace concentrations less than 1 ppm were hexane, isopropanol, 1,1,1-trichloroethane, trichloroethylene, perchloroethylene, ethyl benzene, toluene, xylene and 1,3,5-trimethyl benzene.

This air sample did not demonstrate the need for respirators. Toluene and benzene are absorbed through the skin and all skin contact must be avoided.

The additive exposure index = conca/TLVa + concb/TLV b + ... concn/TLVn = < 0.1 (negligible inhalation risk).

Recommendations

- Full-face respirators are worn for eye and face protection. Possible alternatives are wraparound-lens type safety glasses (e..g., Uvex "Genesis" or AO Safety "GoggleGear"), and face-shield without a respirator. Chemical resistant aprons with sleeves are also recommended because of the potential for chemical splashes when drum moving, tilting, opening and dumping the drum contents.
- Chemical resistant safety boots should be worn instead of leather shoes.
- Change out of work clothes after dumping drums.

Results

Tony Alvarez, dumping drums at the Return and fill, 450 minutes, December 6, 2000						
Substance	Concentration	PEL/TLV				
/Isopropanol	0.1 ppm	400 ppm				
Methylene Chloride	0.1 ppm	25 ppm PEL				
Hexane	0.3 ppm	50 ppm				
Benzene	0.013 ppm	0.5 ppm (Skin), Confirmed Human Carcinogen				
1,1,1-Trichloroethane	0.01 ppm	350 ppm				
Trichloroethylene	0.05 ppm	50 ppm				
Toluene	0.1 ppm	50 ppm (Skin)				
Ethyl Benzene	0.02 ppm	100 ppm				
Perchloroethylene	0.1 ppm	25 ppm				
Xylene	0.2 ppm	100 ppm				
1,3,5-Trimethylbenzene	0.2 ppm	25 ppm				

Benzene is listed by ACGIH as a confirmed human carcinogen. The "skin" notation indicates that the material is absorbed through the skin.

Cc: Dan Mansueto

Safety-Kleen Lambton Laboratory Analytical Report

Reference Numbers:	C2072572		97Nov 1433
	Safety-Kleen (Client (PO or Project #)
Client:		Safety-Kleen, Columbia, SC	C
Dates:	December 7, 2000	January 31, 2001	January 31, 2001
	Sampled	Submitted	Analyzed
Sample Description:		Air Monitoring	
	<u> </u>	g:\lab\analysis\rec	xorts\contract\2001\ih\gavin\[c2072572.xls]h

Industrial Hygiene Analysis Information

(Analytical Results Attached)

Analysis De	tails	Type of Analysis						
		Dust by Gravimetry	Metals	Solvent Extractable Hydrocarbons*				
Sampling	Date: Sampled By: Date Submitted:			December 7, 2000 Gavin Burdge January 31, 2001				
Medium Analyzed	Type: Supplier: Lot Number:			activated charcoal SKC 2000				
Digestion / Extraction	Method: Date: Analyst:			NIOSH 1500 January 31, 2001 Larry Core				
Analysis	Instrument: Date: Instrumentation Analyst: Blank Corrected Analytes: Sample Discard Date:		(digests consumed during analysis)	GC/MS January 31, 2001 Larry Core None February 14, 2001 (expires 2 days after extraction)				
Report	Date Reported:			February 7, 2001				

^{*}Results are not corrected for desorption efficiencies within NIOSH criteria for method accuracy. [NIOSH; "Development and Evaluation Methods", NMAM 4th ed. (DHHS/NIOSH Pub. No. 94-113) Sect. I, Part E, pp.40 (1996)]

NA = Not Applicable

ND = Not Detected

PQL = Practical Quantitation Limit

Sample submitted to laboratory violated NIOSH protocols for sample hold times.

Lab Approval:

Monique Durr, B/Sc., C.Chem.

Analytical Specialist

Tilo. 7/01

Page 1 of 2

Şâfctų-kleen ® Safety-Kleen Lambton Laboratory Analytical Report

Reference Numbers:	C2072572		97Nov 1433				
	Safety-Kleen	<u> </u>		Client (PO or Project #)			
Client:		Safety-Kleen, (Columbia, SC	C			
Dates:	December 7, 2000	January 31	, 2001	January 31, 2001			
	Sampled	Submitte	ed	Analyzed			
Sample Description:	Air Monitoring						
			g:\lab\analysis\rep	orts\contract\2001\ih\gavin\[c2072572.xls]header			

Industrial Hygiene Organics Analysis													
Parameters: Air Volume (L)			12072 4	2									
Units:	PQL μg	back charcoal μg	front charcoal μg	per air volume mg/m³	per air volume ppm*	back charcoal μg	front charcoal μg	per air volume mg/m³	per air volume ppm*	back charcoal μg	front charcoal μg	per air volume mg/m³	per air volume ppm*
Blank Correction:		none	none		corrected	none	none		corrected	Te.51 1 1/1/1/14	none		corrected
Isopropanol	0.7	ND	8.5	0.202	0.082	N C N DE DESTRUCTION CONT.				portional in the to the last	in Stranger of the	1514, 114 14, 1294000	
Acrylonitrile	0.5	<0.7	<0.7	<0.017	<0.008								
Dichloromethane	0.3	1.1	8.5	0.229	0.066								
Methyl Ethyl Ketone	0.5	ND	ND	ND	ND								
Hexane	0.2	9.9	32	0.986	0.280	Alliante Statille d'Alliante, a				Aug Walter State of the			
Ethyl Acetate	0.2	ND	ND	ND	ND								
Chloroform	0.2	ND	ND	ND	ND			11.00 to 10.00 to 10		10.000.000			
1,2-Dichloroethane	0.3	ND	ND	ND	ND								
1,1,1-Trichloroethane	0.3	ND	2.4	0.057	0.010	\$190, \$40, \$17,60, \$10,000.				aaroon Alkarara Tuudo			Andria State (Chebria)
Benzene	0.5	ND	1.7	0.040	0.013								
Carbon Tetrachloride	0.5	ND	ND	ND	ND			vivosune, i visitri		Printing to service.	de salauridi kasala, ala		
p-Dioxane	0.2	ND	ND	ND	ND								
Trichloroethylene	0.2	ND	11	0.255	0.047		SCROTO SOLVE BURGE VALLE	diwedws/Ales		#STAMESHWEEELE A		HEALTER SATEMAN	
Methyl Isobutyl Ketone	0.2	ND	ND	ND	ND								
1,1,2-Trichloroethane	0.2	ND	ND	ND	ND		556 - 900 h S. Pan Pari Electro			S 28865 (14.4 A 14.4 A 1			
Toluene	0.5	ND	18	0.429	0.114					ASSES IN			
n-Butyl Acetate	0.2	ND	ND	ND	ND	0.5000 8000 30000 152				SARSHARANA ANA	a BODA BARANA		93. WESTERWING START
Tetrachloroethylene	0.2	ND	37	0.879	0.130								
Chlorobenzene	0.2	ND	ND	ND	ND				WG-479840-11	Marin da			
Ethylbenzene	0.2	ND	2.7	0.064	0.015								
p- & m- Xylene	0.2	ND	14	0.340	0.078	un satisficación del				1000			
Styrene	0.3	ND	ND	ND	ND					\$180 m			
o-Xylene	0.3	ND	17	0.398	0.092	kas, Vistigan je sasi, O				\$ ttp//////			
1,1,2,2-Tetrachloroethane	0.2	ND	ND	ND	ND								
1,3,5-Trimethylbenzene	0.3	ND	37	0.888	0.181	santitidi. Yakujin		itan yang Patha 		finacedalli ci			2679.8824
1,3-Dichlorobenzene	0.2	ND	ND	ND	ND			J. 11	ALPA				
1,4-Dichlorobenzene	0.2	ND	ND	ND	ND	produktivište boli	Z	ير المعالم الم	AL PAO				
1,2-Dichlorobenzene	0.2	ND	ND	ND	ND	k 3530 3	13	Lour	TERED	1.8 V			154,800
1,3,5-Trichlorobenzene	0.2	ND	ND	ND	ND		14	CHAR			.NU.VENV		
1,2,4-Trichlorobenzene	0.2	ND	ND	ND	ND			Monique	Durr, B.S				
1,2,3-Trichlorobenzene	0.2	ND	ND	ND	ND	Industrial desires	15	. utt talkaliyat		1 17 1			
Naphthalene	0.2	ND	ND	ND	ND		ATION OF THE	/ CH	EMIST	\\$\/ \$\/			
GC/FID Low Boiling Hydrod	carbons		ND	ND	ND		$\overline{}$	ॐ ∕	ON			i de la desa Distribuita	
Medium boiling Hydroc		 A construction of a contract 	ND	ND	ND	12.750 5 7 3 7 7	15 3141	OSS 4	0,	Y			
High Boiling Hydroc		1 .	ND	ND	ND				ga Hijjay	138336			

ppm*- volume, assuming compounds are an ideal gas at normal tempurature,25°C(298K), and pressure,760mm Hg (101.33kPa).(NTP)

Monique Durr, B.Sc., C.Chem.

Analytical Specialist
LAMBTON FACILITY 4090 TELFER RD.

RR # 1 CORUNNA, ONTARIO NON 1G0

519/864-1021

Page 2 of 2 FAX 519/864-1437

FIELD FOI	RM AND CALIBRA	TION DOCUMENTA	TION								
Sample Number	Facility #	Facility Location									
12-6 2000 63		Dolton, IL									
Month Day Yr Initials No. EMPLOYEE INFORMATION											
Employee Name Last: Alvare	First: Tony										
Sample Obtained for: BZ	Location/Area		SHIFT	Start time 2/500							
Job Title: Material Handler	Device '	Type: Badge of Pump	222	Stop time 2300							
Job Task: Dolton IL Retur	n + Fill Dun	Jain 105 + 150	Kineral	Spirits							
@ Dollon Location R/C		c.5-7,2000°	Dolton R	-C TH							
- X	nitially Sent	t-to LAB									
	SAMPLING INE										
Precalibration Date: 12/6/2000 Flow	wrate: 090 lpm F	Postcalibration Date: / 2	17/200 F	Flowrate: 0.09 Jpm							
	egrees Centigrade) I	Pressure: Styl.	mmHg (Mil	limeters of Mercury)							
Sample Duration: 470 min	ns Start time:	1600	Stop time:	2330							
Collection Media booms CT	Sample Type Taken (Code BZ A	nalytical Met	hod GC/MS							
Lab: LAMBION Oc. Hipiere	LAB Date Se	nt: V	entilation:	Local Dilution							
Total Shift Length: mins	Full Shift: YES	NO R	emainder of I	Exp. Time: mins							
,	ONAL PROTEC	TIVE EQUIPME	NT								
Respiratory: YES NO	1112 0000	√ Cartridge									
	1 C	utures code:									
BODY codet Full-Free tests		HAND cod	e: Best	Nedpiene							
HEAD code: NA	OTHER codes:										
	COMM		T AL C	ela Ahr							
450 Mins @ 95	1100 11	2330 Cox	on 100 10	ch laite t							
fra-forgran Parts	m 1600, alt	2330 Yest	ofer NM	Cen Reds (an)							
Rop Wor when Durping	Drums										
SAMPLING PERFORMED BY:	5 Budge										

Request For Laboratory Analytical Services

4090 Telfer Rd. R.R. #1 Corunna, Ontario N0N 1G0

Telephone: (519) 864-1021 (519) 864-3816 (Laboratory) LambtLab@LESCorp.com (519) 864-3914 (Customer Service)

Client Reference Number 97Nov 1433

For Lab Use Only

LES No: C

Received: Time Date By:

Logged In: Time Date By:

To:

Corporate IH File

From: Chris Bachman

Date: 4/22/05

Re:

Routine Branch IH sampling event

On January 11th, 13th and January 18th, 2005 Safety-Kleen was provided with professional IH monitoring services through AIG Insurance. The objective of the surveys was to monitor (1) CSRs for solvent exposure during parts washer services, unvented gun cleaners, dry cleaning services and (2) monitor Material Handlers for solvent and noise exposure during dump/fill operations.

All results were below 50% of the applicable OSHA and ACGIH values except for the Short Term (STEL) sample for Toluene (67% of OSHA Ceiling) during the unvented gun cleaner service and the ACGIH 80-db average for Noise (88.0 db). Results will not effect the current branch PPE hazard assessments (9/2004) for servicing unvented gun cleaners, parts washers and dump/fill operations (while using pneumatic gun).

Sound Level Measurements for Dumping and Filling Operation January 18, 2005

Location	Sound Level (dBA)*
Moving drums with forklift onto rack	87.5
Drums banging on floor	91.4 – 98.3
Two drums banging together	92.4
Metal lids thrown into drums	103.5
Unscrewing nut on drum with pneumatic drill	103 – 105.8
Using pneumatic drills	95.3 - 102.2
Drum rolling in washer without spray	82
Drum rolling in washer with solvent spray	95
Scraping labels off of drums	78 to 81

Bolded results indicate sound level readings above the OSHA action level and/or PEL

Noise Monitoring Results for Dumping and Filling Operation January 18, 2005

Employee/ Location	Time (hh:mm) On/Off	Dose ^a , % 80-db Threshold	Lavg ^b , dBA 80-db Threshold	Dose ^a , % 90-db Threshold	Lavg ^b , dBA 90-db Threshold	ACGIH Dose ^a , % 80-db Threshold	ACGIH Lavg ^b , dBA 80-db Threshold
Material Handler	3:31 (9:46 – 1:18)	22.08	85.1	11,61	80.4	86.75	88.0
			OSHA AL= 85 dBA		OSHA PEL= 90 dBA		ACGIH TLV® = 85 dBA

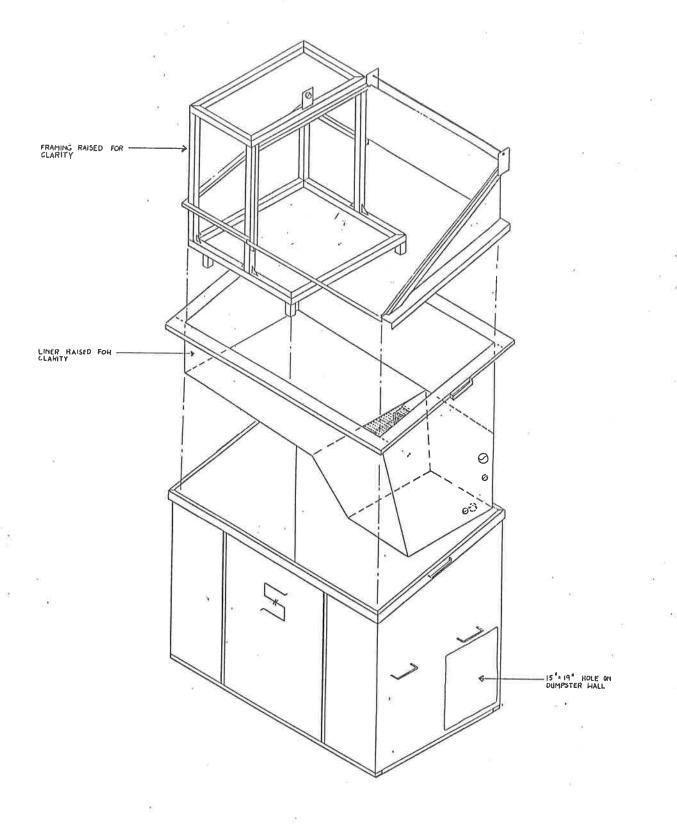
Bolded results indicate above the OSHA action level / ACGIH TLV

Field Service Short-Term (STEL) Sampling Solvent Results (1/13/05)

Employee	Time (min)* (Start/Stop)	Sample No.	Analyte	Result (ppm)	OSHA PEL Ceiling/STEL (ppm)	ACGIH TLV® Ceiling/STEL (ppm)
CSR - Servicing unvented gun cleaner.	10 (9:24 –9:35)	13-3T 13-4M	Acetone Toluene Methanol	46 200 21	NE 300 C NE	750 NE 250

Bolded results indicate above the OSHA action level / Ceiling Limit

Time-Weighted Average Sampling (1/11/05)

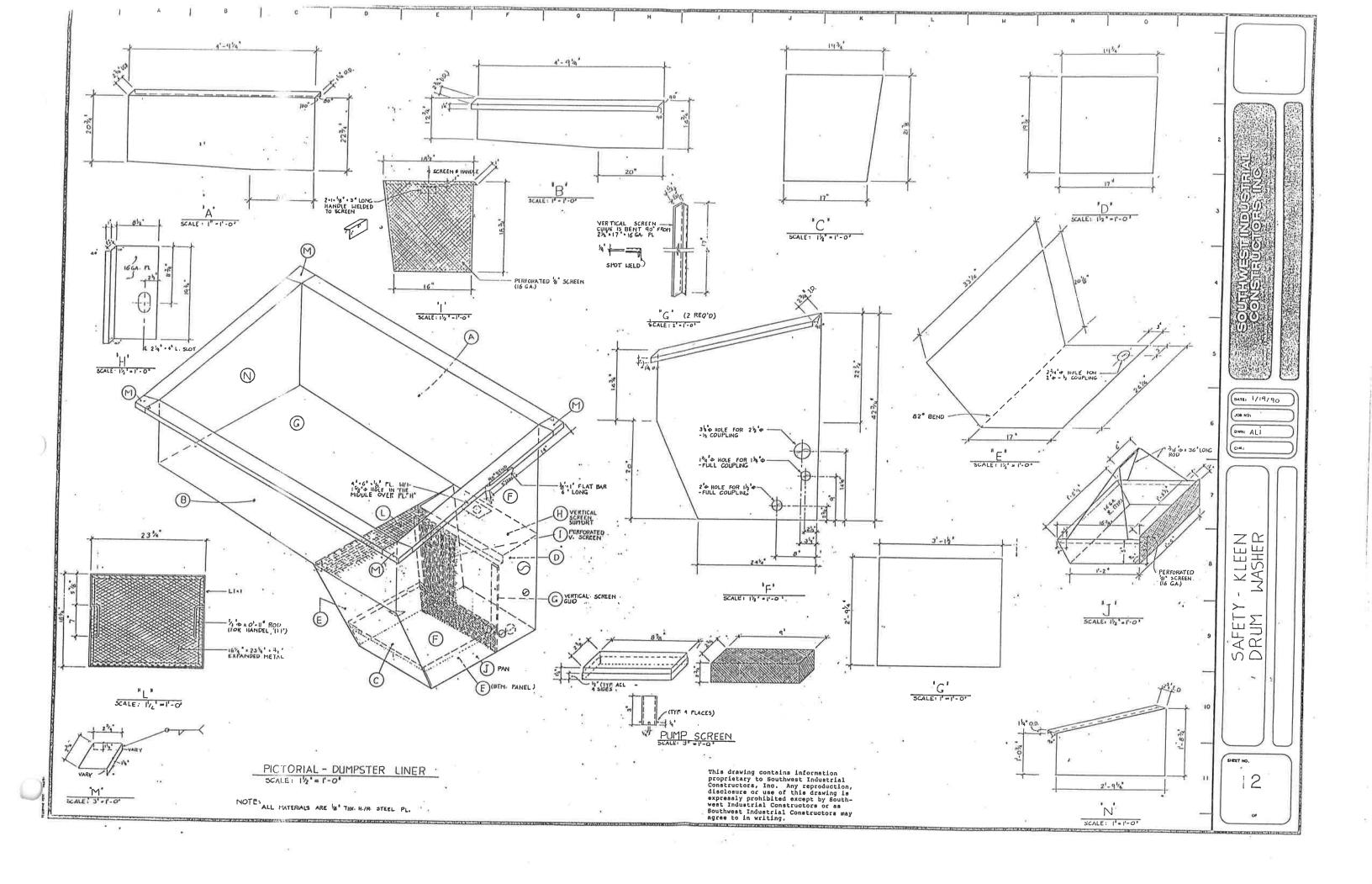

Employee	Sample No.	Time (min)* (Start/Stop)	Analyte	Result (ppm)	OSHA PEL (ppm)	ACGIH TLV [®] (ppm)
CSR	A-1	286	Total Hydrocarbons	≤ 2.4	500	100
Servicing Parts		(8:57 –	(as Stoddard			
Cleaner that uses		3:41)	solvent) ^a	0.13	100	25
150 Gold			Tetrachloroethylene	< 0.09	350	350
			1,1,1-			
			Trichloroethane			

Short-Term (STEL) Sampling Solvent Results (1/11/05)

Employee	Sample No.	Time (min)* (Start/Stop)	Analyte	Result (ppm)	OSHA PEL Ceiling/STEL (ppm)	ACGIH TLV® Ceiling/STEL (ppm)
CSR- Servicing Model 81 Agitating Parts Cleaner that uses 150 Gold.	S-1	32 (10:05 – 10:37)	Total Hydrocarbons (as Stoddard solvent) ^a Tetrachloroethylene	2.4 < 0.1	NE 200 C	NE 100
CSR Servicing Parts Cleaner that uses 150 Gold.	S-2	23 (11:09 – 11:32)	Total Hydrocarbons (as Stoddard solvent) ^a Tetrachloroethylene	≤2.4 <0.2	NE 200 C	NE 100
CSR- Removing 2 sealed perc containers from dry cleaning store	S-3	10 (1:43 – 1:53)	Tetrachloroethylene 1,1,1- Trichloroethane	< 0.4	200 C NE	100 450
CSR- Removing 2 perc containers from dry cleaning store. One container not sealed properly.	S-4	13 (2:40 – 2:53)	Tetrachloroethylene 1,1,1- Trichloroethane	3.7 < 0.4	200 C NE	100 450

Table IV: Dumping and Filling Time-Weighted Average Sampling (1/18/05)

Employee	Time (min)* (Start/Stop)	Sample No.	Analyte	Result (ppm)	OSHA PEL (ppm)	ACGIH TLV [®] (ppm)
George Huggins Dumped about fifteen 30-gallon	175 (9:38 – 12:34)	18-1	Total Hydrocarbons (as Stoddard solvent) ^a	1.7	500	100
drums of 150 solvent and nine 16-gallon drums of 105 solvent; cleaned a filter and worked with a mechanic.			Tetrachloroethylene	0.20	100	25


SAFETY - KLEEN DRUM WASHER

DATE: 1/19/90

JOB NO:

OWN: AL!

This drawing contains information proprietary to Southwest Industrial Constructors, Inc. Any reproduction, disclosure or use of this drawing is expressly prohibited except by Southwest Industrial Constructors or as Southwest Industrial Constructors may agree to in writing.

Tab 8
Part II.K
Closure Plan

Part II

K. CLOSURE PLAN

Safety-Kleen constructed the Medley Branch with the intent that it will be a long-term facility for the distribution of Safety-Kleen products. No on-site disposal activity occurs at the facility and, hence no disposal capacity will be exhausted that will necessitate closure of the facility. Based on current business and facility conditions, the Medley facility will remain in operation for many years to come. In the event that some presently unforeseen circumstance(s) would result in the discontinuance of operations and permanent closure or sale of the facility, this closure plan identifies the steps necessary to close the facility at any point during its intended life. This plan should be applied to the tanks system, container storage areas, and equipment used by the facility for hazardous waste management to accomplish the closure performance standard of 40 CFR 264.111. It is intended that all closures will be complete and final with removal of waste and decontamination of the facility and associated equipment. This will eliminate the need for maintenance after closure and the possibility of escape of hazardous waste constituents into the environment. Because closure is not anticipated for some time Safety-Kleen agrees to notify the Department when this decision is made to work with FDEP to update the closure plan using the most current requirements and FDEP guidance documents.

FACILITY DATA

- 1. Waste Management Facility Descriptions
 - a. RCRA-Permitted Hazardous Waste Tank (Used Solvent): The tank is a 20,000-gallon steel tank. This tank is located within a containment system consisting of a 58' x 40' foundation slab with 36½" to 38" perimeter walls as the floor slopes toward the south.

b.

- c. Solvent Return/Fill Shelter: The shelter is a 54½' x 80' structure, located between the office area and main warehouse. It contains two wet dumpsters. The two active dumpsters are used to receive returned solvent from containers and pump it to the used parts washer solvent tank. These dumpsters are not intended for storage but can hold a max. of 505 gals (each).
- d. Container Storage Area: The container storage area is a 49¼ x 80 ft. area with a sloped floor and secondary containment collection sump. The maximum storage capacity is 29,4000 gallons with 6,912 gallons of hazardous

waste container storage. Containerized waste to be stored in this area will consist of used oil filters, paint wastes, branch generated debris, dry cleaning waste, spent immersion cleaner, and any overflow transfer waste if necessary.

2. Maximum Inventory of Wastes

- a. Used Parts Washer Solvent: 20,000 gallons
- b. Wet Dumpsters: 1,008 gallons
- c. Containerized Waste: 6,912 gallons. (Note: This includes any combination of 5, 16, 30, 55, 85-gallon containers, and 330-gallon totes used for various management purposes).

All wastes will be disposed offsite in accordance with appropriate hazardous waste regulations.

CLOSURE PROCEDURES

Container Storage Areas

- At closure, all containers present at the facility will be sent to a Safety-Kleen or Clean Harbors TSDF or permitted third party facility where the contents in the containers will be reclaimed and the containers cleaned for reuse. The containers will be removed and transported with proper packaging, labeling, and manifesting.
- The concrete floor, spill containment area, and walls will be scrubbed with a detergent solution and rinsed with clean water to remove waste residuals from the surface. Final rinsate samples will be collected and analyzed to determine the effectiveness of decontamination. Unless otherwise designated in the formal closure plan, rinsate samples will be collected from the container storage area. The rinsate samples will be analyzed by EPA method 6010 for the eight RCRA metals and nickel, and for volatile and semi-volatile organics by EPA methods 8015, 8260, and 8270. The area will be decontaminated to meet FDEP's guidance at the time of closure. Decontamination of the mercury-containing lamps and devices storage area will be conducted at the time of closure as part of the overall decontamination of the container storage areas.

- Decontamination (i.e., detergent wash and clean rinse) fluids will be collected
 and contained for proper management. One representative sample of the
 contained fluids will be collected to determine whether the water is hazardous.
 This determination will be made by laboratory analysis of the sample for the
 metals and organics (excluding pesticides/herbicides) on the TCLP list. (Note:
 This wash water will be from all areas undergoing decontamination, not just from
 the container storage areas.)
- If the wash water or other wastes generated in the closure process are determined to be hazardous, they will be disposed of properly as a hazardous waste.

 Otherwise, the material will be disposed of as an industrial waste. Assumptions of wash water generation are based on Safety-Kleen's past experience from other facility closures. The generated wash water is expected to be non-hazardous based on Safety-Kleen's experience from other facility closures.
- Equipment to be used to clean this area includes mops, pails, scrub brushes, a wet/dry vacuum, and containers. The mops, pails, and scrub brushes will be containerized and disposed of as hazardous waste. The wet/dry vacuum and containers used will be washed with a detergent solution and rinsed to decontaminate them.

Solvent Return/Fill Station

- At closure, any sludge in the wet dumpsters ("dumpster mud") will be cleaned out and containerized, labeled, and manifested for proper disposal.
- The metal superstructure components of the station (i.e., the wet dumpsters and the dock grating) will be cleaned by appropriate means to remove visible contamination. Safety-Kleen intends to recycle these components as scrap metal in accordance with 40 CFR 261.6(a)(3)(ii), or to reuse them at another Safety-Kleen facility. Accordingly, decontamination of the components is required only to the extent necessary for safe demolition, storage, and transportation of the scrap.
- The concrete floor in the return/fill station will be scrubbed with a detergent solution and rinsed with clean water to remove waste residuals from the surface.
 A final rinsate sample will be collected and analyzed to determine the effectiveness of decontamination. Unless otherwise designated in the formal closure plan, the rinsate sample will be analyzed for the same constituents as the

container storage area rinsate sample. The area will be decontaminated to meet FDEP's guidance at the time of closure.

Aboveground Storage Tank System

Note: The product solvent & used oil tanks will be closed in accordance with Chapter 62-762, F.A.C.

Metal Components of the Tank Storage System

- At closure, the contents of the tank will be removed to a tanker truck using
 existing unloading equipment and subsequently transported to a Safety-Kleen
 recycle center, or 3rd party facility.
- Once the contents have been drained, the tank will be opened by removing the
 manways and vented by supplying fresh air to the interior space of the tank. Any
 residual wastes will be removed via vacuum for recycling with the previously
 drained wastes.
- The interior of the tank as well as all associated piping and appurtenant equipment will then be cleaned by appropriate means to remove visible contamination. Safety-Kleen intends to recycle the tank, piping, and appurtenant equipment as scrap metal in accordance with 40 CFR 261.6(a)(3)(ii), or to reuse them at another Safety-Kleen facility. Accordingly, decontamination of the metal components is required only to the extent necessary for the safe demolition, storage, and transportation of the scrap.

Concrete Containment System

- Final disposition of the concrete containment system where the RCRA-Permitted Hazardous Waste Tank (Used Solvent) is located will depend in part upon the presence or absence of underlying soil contamination. To make that determination, the upper six inches of soil immediately below the concrete slab will be sampled at the following locations, as follows:
 - 1. Under the RCRA-Permitted Hazardous Waste Tank (Used Solvent), and at the containment system sumps;

- 2. Beneath the most prominent of any cracks observed in the slab, and under the tanker connections.
- 3. The rainwater discharge area in the stormwater retention area.
- Sampling locations, and the number of samples required will ultimately be determined after consultation with the Department
- These sample locations may be adjusted as actual field conditions warrant, but a
 minimum of two samples will be retrieved. These samples will be analyzed for
 petroleum constituents, and by EPA Method 6010 for the eight RCRA metals and
 nickel, and for volatile and semi-volatile organics by EPA Methods 8015, 8260,
 and 8270.
- The perimeter walls and foundation slab of the secondary containment area will be scrubbed with a detergent solution and rinsed with clean water to remove waste residuals from the surface. A final rinsate sample will be collected and analyzed to determine the effectiveness of decontamination. Unless otherwise designated in the formal closure plan, the rinsate sample will be analyzed for the same constituents as the container storage area rinsate sample. The area will be decontaminated to meet FDEP's guidance at the time of closure. Safety-Kleen anticipates that proper maintenance of the concrete containment system will allow the slab to remain in place at closure.
- If required, Safety-Kleen will proceed with demolition of the perimeter walls. If it is determined that soil contamination exists beneath the foundation slab, Safety-Kleen will demolish the entire concrete structure and complete a further delineation of the extent of soil contamination to be removed to complete closure. Any site assessment, interim measures, or corrective action that may be required will be conducted in accordance with Chapter 62-780, F.A.C. and permit requirements.
- Prior to demolition of the perimeter walls, one representative composite sample of the construction materials will be collected and submitted for analyses (by TCLP) of metals and organics (excluding pesticides and herbicides) unless an alternate analytical protocol is required by the selected disposal facility. The representative composite sample will include biased grab samples collected from areas of staining. If no stained areas are evident, the grab sample locations will be randomly selected. If the construction materials are classified as non-hazardous using TCLP, then they will be disposed of as construction debris in an

- appropriately permitted disposal facility. In the event the construction materials are identified as hazardous using TCLP, the construction materials will be disposed of as a hazardous waste in accordance with RCRA regulations.
- If the foundation slab must be removed, it will be demolished and the
 construction materials tested using TCLP in the same manner as that described
 above for the walls of the secondary containment system.
- If soil removal becomes necessary, Safety-Kleen will backfill the excavated area with clean, compacted general fill material graded to match existing surfaces and to preclude ponding of water. To ensure backfill is clean (i.e., is not contaminated with constituents at concentrations above Florida soil cleanup goals or site background (whichever is higher)), one representative composite sample of the backfill sample will be analyzed by EPA Method 6010 for the eight RCRA metals and nickel, and by EPA Methods 8015, 8260, and 8270.

All sampling and analyses will be done in accordance with FDEP Standard Operating Procedures (SOPs).

FACILITY CLOSURE SCHEDULE AND CERTIFICATION

- Safety-Kleen may amend the closure plan at any time during the active life of the facility. The active life of the facility is that period from initial receipt of hazardous waste to certification of final closure. Safety-Kleen will amend the plan any time changes in operating plans or facility design affect the closure plan or whenever a change occurs in the expected year of closure of the facility. The plan will be amended within 60 days of the changes.
- Safety-Kleen will notify the FDEP of its intent to close the facility in accordance with Chapter 62-730.240, F.A.C.
- Safety-Kleen will remove from the site all hazardous wastes in accordance with the approved closure plan. The Regional Administrator may approve a longer period if Safety-Kleen demonstrates that:

The activities required to comply with this paragraph will, of necessity, take longer than 90 days to complete; or

1. The following requirements are met:

- a) The facility has the capacity to receive additional wastes;
- b) There is a reasonable likelihood that a person other than Safety-Kleen will recommence operation of the site;
- c) Closure of the facility would be incompatible with continued operation of the site; and
- d) Safety-Kleen has taken and will continue to take all steps to prevent threats to human health and the environment.
- Safety-Kleen will complete closure activities in accordance with the approved closure plan within 180 days after receiving the final volume of wastes or 180 days after approval of the closure plan, whichever is later. When closure is completed, all facility equipment and structures shall have been properly disposed of or decontaminated by removing all hazardous waste and residues.
- Within 60 days of closure completion, Safety-Kleen will submit certification by an independent registered professional engineer that the facility has been closed in accordance with the specifications in the approved closure plan.

Figure 10.3-1 presents a typical closure schedule anticipated for the Medley facility.

CONTINGENT POST-CLOSURE PLAN

The tank system at the Medley facility meets the secondary containment requirements of 40 CFR 264.193, and is, therefore, not required to have a contingent post-closure plan under 40 CFR 264.197(c). In addition, Safety-Kleen intends to remove or decontaminate all tank system components, associated containment systems, and contaminated soils (if any) at the time of closure. However, should future conditions indicate that all contaminated soils and tank system components cannot practicably be decontaminated or removed, then a plan to perform post-closure care in accordance with the post-closure care requirements that apply to landfills (40 CFR 264.310) will be prepared for implementation upon FDEP approval.

CLOSURE COST ESTIMATE

The cost for closure of the facility is estimated in the CCE worksheets and summarized as follows:

•	Inventory Removal	\$44,879
•	Storage Tank Decontamination	\$17,831
•	Decontaminate the Return/Fill Station	\$20,231
•	Decontaminate Container Storage Area	\$12,643
•	Containerize, Stage, Transport and Dispose of Decon Wastes	\$25,112
•	Closure Certification Report	\$12,354
	Subtotal	\$133,051
	2022 Total CCE with Inflation	\$165,096
	15% contingency	\$24,764
	2022 Total CCR with Inflation and Contingency	\$189,860

Figure 10.3-1

Typical Closure Schedule

Safety-Kleen Medley

Closure Activity	0	30	60	90	12	0	150	180
End operation of Facility; Commence Closure								
Remove/Dispose of Final Waste Inventory								
Decontaminate Container Storage Area and Return/Fill Station, and Dispose of Wash Water								
Decontaminate Storage Tanks, Piping, Appurtenal Equipment (Including Containment) and Dispose of Wash Water and Contaminated Material								
Remove Tanks, appurtenant Piping and Equipmen and Contaminated Materials; Backfill Excavation if Necessary					_			
Dismantle, Decontaminate and Scrap or Sell Storage Tanks, Appurtenant Equipment and Piping	ge							
Compile Closure Certification and Notify Regulato Agency of Closure Completion	ory							

Tab 9

Part II.P

Revision Number 0					
Date 09/20/2022					
Page 1 of 2					

P.	Information Regarding Potential Releases from Solid Waste Management Units
	(SWMUs) and Areas of Concern (AOCs)

Facility NameS	afety-Kleen Systems, Inc.	
EPA/DEP I.D. No.	FLD 984 171 694	
Facility location	Medley	Florida
-	City	State

1. Are any of the following (SWMUs or AOCs), existing or closed at your facility?

A SWMU is a discernible unit at which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of solid or hazardous waste. Such units include all areas at a facility where solid wastes have been routinely and systematically released, as described in the July 27,1990 Federal Register (55 FR 30798). The SWMU list in this form does not include all types of SWMUs. These are examples of the more common types of units. If you have a different type of SWMU, mark "yes" under "other".

AOCs are indiscernible units at which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of solid or hazardous waste. Examples of AOCs include areas where loading and unloading of chemicals may have occurred or an area of contamination with no known source.

Do not include hazardous waste units that are currently being permitted in your Part B Application.

□ Yes	∨ No
\square Yes	✓ No
□ Yes	✓ No
□ Yes	✓ No
□ Yes	✓ No
✓ Yes	\square No
✓ Yes	\square No
□ Yes	✓ No
□ Yes	✓ No
✓ Yes	\square No
✓ Yes	□ No
□ Yes	✓ No
□ Yes	✓ No
✓ Yes	\square No
□ Yes	y No
□ Yes	✓ No
□ Yes	∨ No
✓ Yes	\square No
□ Yes	✓ No
□ Yes	✓ No
✓ Yes	\square No
	☐ Yes

Page 1 of 2

Revision Number	0
Date 09/20/2022	
Page 1 of 2	

- 2. For each "yes" answer in one (1.) above, on separate sheet(s) of paper:
 - a. Describe the wastes that were stored, treated or disposed of in each unit, and whether the wastes would be considered hazardous wastes or hazardous constituents under RCRA. (Hazardous wastes are those identified in 40 CFR Part 261. Hazardous constituents are those listed in Appendix VIII of 40 CFR Part 261.) Include any available data on quantities or volumes of wastes disposed of and the dates of disposal.
 - b. Describe each unit, type of unit including construction details, capacity, dimensions (supply any available drawings), and location at the facility on the topographic map provided under 40 CFR 270.14(b)(19). Provide a site plan, if available, and the dates of operation of the unit [40 CFR 270.14(d)(1)]. If the information has previously been submitted formally to the Department, references to the documents and or summary tables may be submitted to meet this requirement.
 - c. Include a copy of federal, state and local permits or authorizations for SWMUs that may be permitted under other environmental programs.
- 3. For each unit described in two (2.) above, and for each hazardous waste unit in your Part B application [40 CFR 270.14(d)(2)], on separate sheet(s) of paper, provide available data on all prior or current releases of hazardous wastes or constituents to the environment that may have occurred in the past or may still be occurring. If the data has previously been submitted formally to the Department, references to the documents and or summary tables may be submitted to meet this requirement. Provide the following information for each SWMU/AOC:
 - a. Date of release
 - b. Estimated or known quantity or volume of waste released
 - c. Location of the release
 - d. Describe the nature of the release (i.e., spill, overflow, ruptured pipe or tank, etc.).
- 4. Provide, for each unit, all available analytical data that describes the nature and extent of the environmental contamination due to the releases described in three (3.) above, on separate sheet(s) of paper. Focus on the concentrations of hazardous wastes or constituents present in contaminated media (e.g., soil, sediment, surface water and groundwater) [40 CFR 270.14(d)(3)]. If the information has previously been submitted formally to the Department, references to the documents and or summary tables may be submitted to meet this requirement.

Part II

P. #2 INFORMATION REQUIREMENTS REGARDING SOLID WASTE MANAGEMENT UNITS

SWMU-1(Container Storage Area Inside Service Center) is described within the permit application in section Part II B.

SWMU-2 (Above Ground Storage Tank Area) is described within the permit application in section Part II C.

SWMU-3 (Return/Fill Area) is described within the permit application in section Part II C.

SWMU-4 (Mercury Lamp Storage Area (Inside SWMU-1)) is designated for storage of mercury bulbs & devices. It is situated in the southeast corner of the container storage area. The area is approximately 4' x 19' 4". Mercury bulbs are stored in 4 ft. and 8ft. boxes and devices are stored in 5-gallon poly containers.

SWMU-5 (Used Antifreeze Tanker) was located in the parking lot of the facility in the southeastern corner of the lot. This SWMU consisted of a 8,000 gallon tanker trailer that had been used for the storage of Used Antifreeze. Sometime in 2009 this tanker trailer was removed from service and in July 2012 was removed from the site.

SWMU-6 (Used Oil Filter Storage Area (Inside SWMU-3)) is located within SWMU-3 and is used for storage or Used Oil Filters in 30, and 55-gallons steel or poly containers. Any overflow of Used Oil Filter containers will be stored in the container storage area. Prior to 2009 Used Oil Filters were stored in 350-gallon bins on the tank farm pad (south side of tank farm). In late 2010 the storage of filters changed to this current location.

SWMU-7 (Transfer Waste Storage Area (Inside SWMU-1)) is described within the permit application in section Part I D, page #3.

SWMU-8 (Municipal Dumpster) is a municipal dumpster located in the northeast portion of the parking lot. This dumpster was moved to the parking lot area to the left of the south entrance gate in September 2017.

SWMU-9 (Containerized Waste Loading/Unloading Dock) is the containerized waste loading/unloading dock and is located on the southeast corner of the facility building. In this area waste containers are loaded for shipment to permitted TSDF's for reclamation/disposal and product is unloaded into the branch for storage. In addition, this area may also be used for unloading of waste containers from branch route trucks.

SWMU-10 (Satellite Container Storage Area (Inside SWMU-3)) is for Satellite container used for branch debris (sludge from wet dumpsters, used PPE, sampling equipment, etc.). This is inside SWMU-3 and is located adjacent to the northern most wet dumpster. Satellite containers are mostly 55-gallon steel containers, but 30-gallons steel containers may be used if no 55 gallon containers are available.

SWMU-11(Tank Farm Discharge Area) is an area located immediately west of the above ground tank farm. This area receives sheen-less stormwater that is pumped out of the secondary containment of the tank farm and tank farm pad after rain events provided that no sheen exists. In June 2009, as part of SK Medley's Miami-Dade DERM Industrial Waste Operating Permit, samples were taken from monitoring well-1 (MW-1). Analysis from this event detected three volatile organic compounds (VOCs). A summary of the event can be found in Part II Q of this renewal application. In addition, a copy of the current Miami-Dade DERM Industrial Waste Operating Permit is included in this Section.

SWMU-12 (French Drain) is the French Drain System for the facility. This system provides stormwater drainage off the paved areas of the facility. There are six catch basins located on the property. Figure 2.2-5 Drainage Plan provides information on the system. These catch basins are identified on Figure Part II Q.

SWMU-13 (Oily Water Frac Tank) is a 18,000 gallon Frac tank located at the northeast corner of the facility parking lot. It is used for storage of non-hazardous Vacuum Services material collected from customer sites.

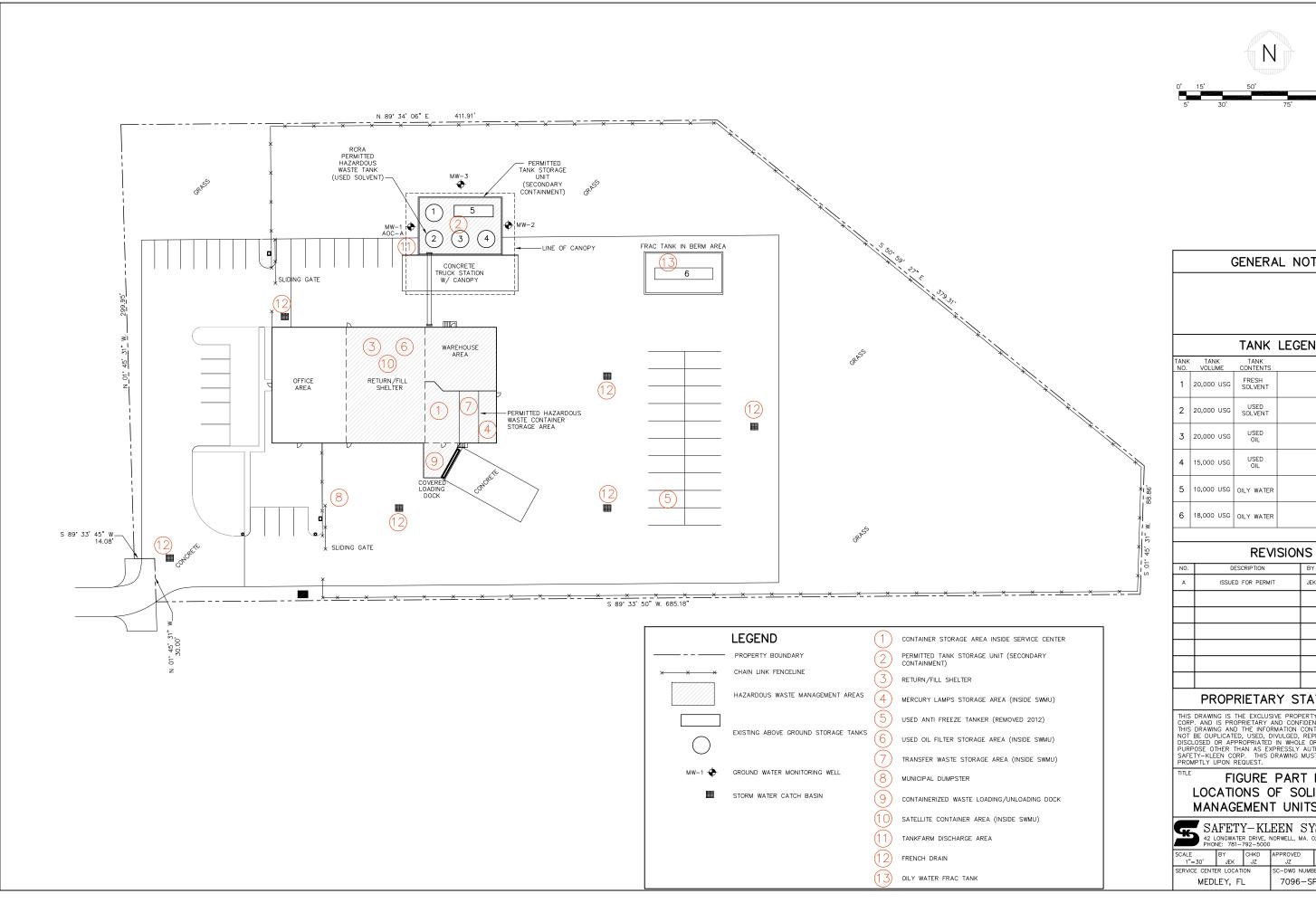
Part II P.3 Prior Releases at SK Medley Facility

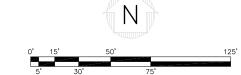
Date	Material	Amt. (gallons)	Explanation
5/15/06	Oily Water	60	Pump seal broke – causing contained spill at tank farm pad
9/20/06	Used Oil	60	Hose failed – causing spill in tank farm secondary containment and on tank farm pad
5/4/07	Hydraulic Oil	20	Hose on Vac truck failed – causing contained spill on tank farm pad
11/21/09	Used Oil	50	Tanker overflow – causing contained spill on tank farm pad
7/9/10	Latex Paint	1	5-gallon paint container fell – causing spill on the back loading/unloading dock
4/20/12	Used Oil	10	Hose came loose during off-load – caused contained spill on the tank farm pad
7/27/15	Oily Water	3	Hose came loose while off-loading oily water at tank farm pad. Release onto tank farm pad in containment.
4/4/17	Oily Water	140	Driver moved truck while still hooked up to oily water tank. Hose disconnected from tank releasing approximately 140 gallons of oily water into tank farm secondary containment.
10/20/20	Oily Water	8	While removing waste from the frac tank, a third-party driver was switching between tanks and the valve leaked 5-8 gallons of oily water onto the asphalt surrounding the frac tank.
6/30/21	Used Motor Oil	20	The gasket on the access hatch of the Used Motor Oil tank ruptured releasing approximately 20 gallons of used motor oil in the tank farm secondary containment.

Tab 10 Part II.Q Information Requirements for SWMUs

Part II

Q. INFORMATION REQUIREMENTS FOR SOLID WASTE MANAGEMENT UNITS


Part II.Q. of the Florida Department of Environmental Protection's (FDEP's) Application for a Hazardous Waste Permit outlines the information requirements for solid waste management units (SWMU's) at the facility. This section provides the required information.


On February 12, 1993, the facility was issued a HSWA permit from Region 4 of the United States Environmental Protection Agency (USEPA). The HSWA permit (Permit No. FLD 984171694) expired on February 12, 2003 and all HSWA corrective action conditions were incorporated into the state permit issued on June 24, 2002.

Thirteen (13) SWMU's have been identified at the facility along with one Area of Concern (AOC). The Thirteen SWMU's and one AOC are listed below:

SWMU NUMBER	DESCRIPTION
1	Container Storage Area
2	Permitted Tank Storage Unit (Secondary
	Containment)
3	Return/Fill Shelter
4	Mercury Lamp Storage Area (Inside SWMU-1)
5	Used Antifreeze Tanker (removed 2012)
6	Used Oil Filter Storage Area (Inside SWMU-3)
7	Transfer Waste Storage (Inside SWMU-1)
8	Municipal Dumpster
9	Containerized Waste Loading/Unloading Dock
10	Satellite Container Area (Inside SWMU-3)
11	Secondary Containment Stormwater Discharge
	Area
12	French Drain System
13	Oily Water Frac Tank
AOC-A	Vicinity of monitoring well 1 (No further action at
	this time according to 4/5/2013 SRCO)

Appendix A, at the end of this section, includes the annual groundwater reports required by the SK Medley facility as part of its' Miami-Dade County Industrial Waste Operating Permit (IW-000333).

GENERAL NOTES

		TANK	LEGEND
TANK NO.	TANK VOLUME	TANK CONTENTS	REMARKS
1	20,000 USG	FRESH SOLVENT	
2	20,000 USG	USED SOLVENT	
3	20,000 USG	USED OIL	
4	15,000 USG	USED OIL	
5	10,000 USG	OILY WATER	
6	18,000 USG	OILY WATER	

INE VISIONS					
NO.	DESCRIPTION	BY	CHK	APPR	DATE
A ISSUED FOR PERMIT		JEK	JZ	JZ	092022
		-			

PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THERRIN MUST NOT BE DUPLICATED, USED, DIVINGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

FIGURE PART II-Q LOCATIONS OF SOLID WASTE MANAGEMENT UNITS (SWMU)

SAFETY-KLEEN SYSTEMS, INC. 42 LONGWATER DRIVE, NORWELL, MA. 02061 PHONE: 781-792-5000

ı	SCALE	BY	CHKD	APPROVED	OPERATIONS	DATE	
	1"=30' JEK JZ JZ		JZ	9/20/22			
ı	SERVICE CENTER LOCATION			SC-DWG NUMB	REV. NO.		
	MEDLEY, FL			7096-SI	200-001	Α	

PART II.Q Appendix A Annual Groundwater Monitoring Reports 2018-2022

Industrial Waste Operating Report Form (IWORF)

Reports must be mailed to: Permit Year: 2017 IW-333 Department of Regulatory and Economic Resources Permit #: Environmental Resources Management SAFETY-KLEEN SYSTEMS, INC. 701 NW 1st Ct, Suite #700 **Facility Name:** Miami, FL 33136-3912 8755 NW 95 ST Facility Address: MEDLEY, FL 33178 Contact Name: Mr. Larry Rodriguez Instructions: Indicate which report is being provided by checking off the applicable "Source Type" box(es) from the listing below. In addition, indicate the period being reported and attach the applicable information (e.g. waste manifests, analytical results, etc.) as required by each Source Type. Refer to the operating permit document for more information on reporting and sampling requirements, including analytical methodologies, applicable to the referenced facility. Reporting Requirements: Reporting Period: Reporting Frequency: Quarterly Source Type: RR-1 Description: Copies of manifests and/or receipts of all hazardous waste, industrial waste, industrial wastewater, sludge and/or ash disposed of Information shall include name of hauler, volume and final destination. Records shall also be maintained on-site for review. Sampling Requirements: Reporting Period: 6115118

Reporting Period: 6115118 Reporting Frequency: Annually Source Type: SMP-1 Description: Groundwater from the facility monitoring well(s). Parameters: Cadmium (Total), Chromium (Total), Lead (Total), Silver (Total) Source Type: SMP-2 Reporting Frequency: Annually Description: Groundwater from monitoring well nearest the containment area stormwater discharge point. Parameters: EPA Series 8260, EPA Series 8270, TRPH Gallons Per Day (GPD)

I hereby certify that, to the best of my knowledge, this document and all attachments are true, accurate and complete.

Authorized Representative or Corporate Officer

Sewers:

Average Daily Waste Water Flow Discharge to Sanitary

Report Completion Date

118118

May 18, 2018 180212-1801

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources**Environmental Resources Management
701 NW 1st Court, Suite #700
Miami, Florida 33136-3192

Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2017/2018 (File # 10139) Annual Report of Groundwater Quality

Dear Mr. Montano:

On behalf of Safety-Kleen Systems, Inc. (S-K), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for S-K's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On April 13, 2018, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by U.S. EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FLPRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed Figure 2.1-1.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in Attachment B.

The laboratory report indicated that concentrations for three of the four metals (i.e., silver, cadmium, and lead) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.52I micrograms per liter (μ g/L) at monitoring wells MW-1, 0.62I μ g/L at MW-2R; and 0.68I μ g/L at MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are far below the groundwater clean-up target level (GCTL) of 100 μ g/L for chromium as specified in the permit.

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

- 1. FLPRO concentrations were below the MDL; that is, none was detected.
- 2. No SVOC was detected (i.e., EPA Series 8270 parameters), with two exceptions. Specifically, naphthalene and 1-methylnaphthalene were detected at estimated

1408 N Westshore Blvd, Suite 115 Tampa, FL 33607

(813) 289-9338

FAX (813) 289-9388 Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources**May 18, 2018
Page 2

concentrations of 0.078I $\mu g/L$ and 0.0.53I $\mu g/L$. However, those concentrations were detected between the laboratory MDL and the laboratory PQL and are far below their GCTLs of 14 $\mu g/L$ for naphthalene and 28 $\mu g/L$ for 1-methylnaphthalene as specified in the permit.

3. No VOC was detected (i.e., EPA Series 8260 parameters).

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of S-K at (561) 523-4719. Thank you.

Sincerely,

ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.

Keith F. Morrison Project Manager Gregory B. Page, P.E. Senior Engineer III

for 8. 7 -

SAFETY-KLEEN SYSTEMS, INC.

There of morison

Jeff Curtis

EHS Manager, Florida Safety-Kleen Systems, Inc.

5610 Alpha Drive

Boynton Beach, Florida 33426

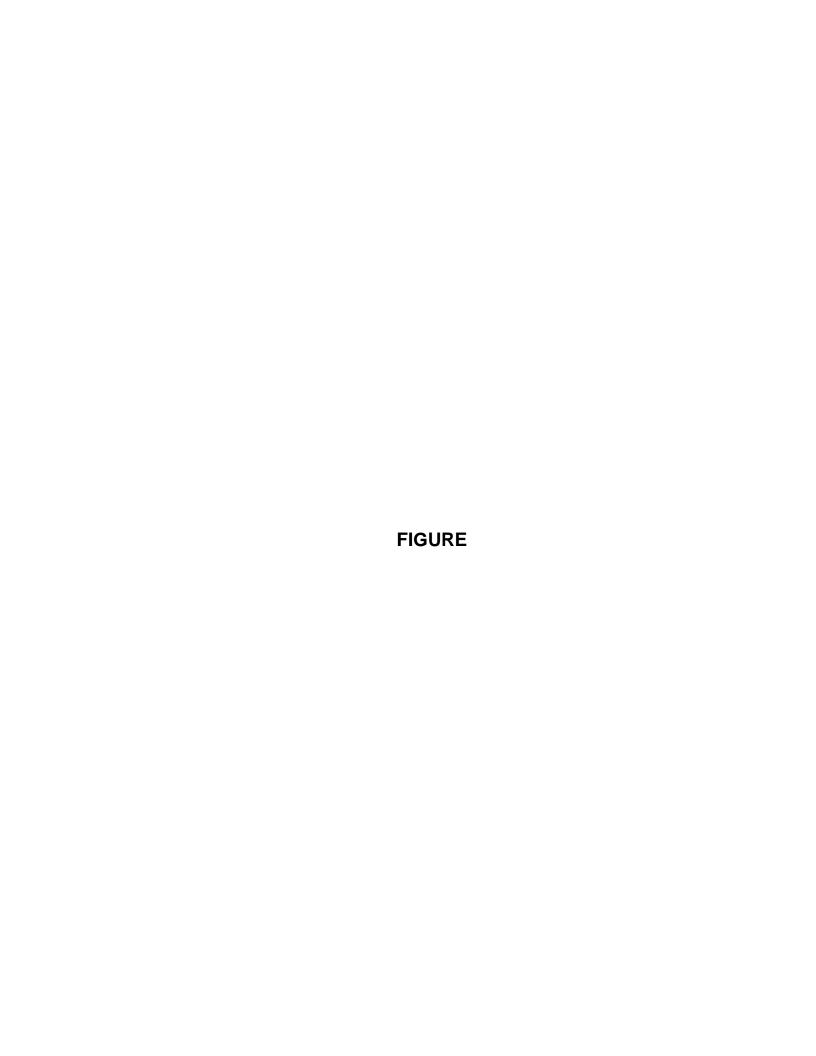
jeff.curtis@safety-kleen.com

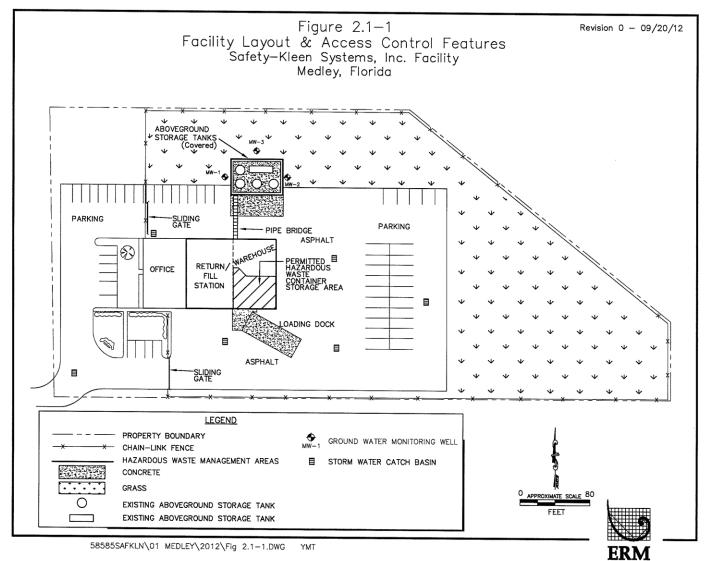
Enclosures:

Figure 2.1-1

Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration

Attachment B - Laboratory Reports


cc: Robert Schoepke – S-K (electronic only)


Greg Page – ECT (electronic only)

Keith Morrison – ECT (electronic only)

Facility 999 File #1760, % S-K Medley facility Branch General Manager

ATTACHMENT A

FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

ection	A Client Information:	Section B	roject	Infon	mation:					ectic wolc	on C e Info	rmati	ion:										_			Pa	ge :	1		Of	1
ompan		Report To:	-RIO	KST	BNICKY	Leim	Morn	511		ttenti																					
ddress	1408 N. Westshore Blvd.	Copy To				-			C	Company Name:										_		- Ten 11		0.7579							
	i, Tampa, FL 33607			-		1.3			A	Address:										Regulatory Agency						-					
mail:	Kmprison econne. com	Purchase ()rder#	18	3024	2 18	0 /		_	Pace Quote:									_	_		1-2000	18A2								
hone.	(813) 289-9338 FEED 3-284-4355	Project Na	ne:	Safe	ty Kleen i	acility in	Medley			Pace Project Manager: lori.palmer@pacelabs.com,									State / Location												
	ed Due Dale:	Project#: 1802\2-190\						Р	Pace Profile #: 9321 line 1								FL COURT														
									-	_	_	_	_		_	_	-	-	Re	ques	ed A	nery o	R CHIE	sted C	1/10/	1	- 100				- 11
	MATRIX Drinking Weber Waste W	WT	valid codes to left)	(G=GRAB C=COMP)		COLLE	CTED		NULECTION O	-	T	Pn	esen	ative	es	I	st Y/N		1	AHS	9	AHS MS/		+	-		(N/A)	As	re	4014	4 67
**	SAMPLE ID One Character per box. (A-Z, 0-9 /) Sample Ids must be unique	SL OL WP AR at ts	MATRIX CODE (see v	ā	STA	RT	E	ND	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved				SO3		Analyses Test	Trip BLANK	8260 Full List	8270 Full list plus PAHs	Metals 200.8 Ag.Cd.Cr.Pb	8270 Full list plus PAHs MS	FL PRO MS/MSD				Residual Chlorine (Y/N)	An	nua Limi	Horiste Hope tope	rostin
ITEM	Salithia (13 linear no oringe)		MATRD	SAMPL	DATE	SIN'Y WHATE	DATE	TIME	SAMPL	9	Unpres	HNOS	-	NaOH	Methand	Other	Åŗ	Trip B	8260	8270	Metal	8270	교	1	+	Ц	Resid	In	J - 00	0033	3-20
1	Trip Blank		w	т	4-13-18	_	-	-	-	2	1	1	X	-	1	-		х	-	1	+	1		1	+	H	-	V			-
2	MW-2R - 041318		w	т	4-13-18	1033	4-13-18	1049	25	9	X	4	X	4	1	1	1		x .	x)	(X	X	×	1	-	H	-		_		-
3	MW-1 -041318		w		4-13-18						1	X	Ш	-	+	1		Н	1		×	1	Н	+	+	\vdash	-		_		-
4	MW-3 -041318		w	т	4-1348	957	4-1311	1000	211	1	1	×	4	1	1	1		Н	4	-	×	-		4	+	H	-	-		_	-
5	0					-	1	1.0	\Box		1	1		-	1	-	1	Ц	4	4	-	+	Н	+	+	H	-	-	_		
6							1 _		11	-	1	1		1	1	1		Ц		1	+	-		4	+	Н	4	-	_		\rightarrow
7	F2									1	1	1			1	1	1	Ц		1	1	+	\sqcup	-	+	H	4	_			_
8			1												1		1	Ц	4	4	+	1	Н	-	1	\sqcup	4	-			_
9									Ц						1		1			4	-		Н		+	\sqcup					_
10											1	1				1	1			4		1	\Box	1	+	H	4		_		-
11												1	1	_	4	1	1				+	+		Ц		+	-	-			_
12									Ц			-					1	267.5	200		1		1000	100			E CONTRACTOR OF THE PARTY OF TH	-	WE COL	enimolis.	A 1780
33	ADDITIONAL COMMENTS	100	A SEL	NOUS	SHED BY!	AFFILIATI	OŃ	DA	0000	,	THE	#		-		TED E		L-COM	CO. No.			+	DATE		HA.	25,560	200	- Andrew	T	T	
	Empty Conta	iners /	5	K	-11	_			lu		835		76	al	7	No	w	1	E	U			24	12	140			+	-	-	_
		1/2	A	91	Non	m/E	ct	13	7-18	16	Z	+	1	~		fo	16	_				4-	13-1	21	70	أمر		+	+	1	
-			400	-		VII		12	, ,			1																			
						SAMPL	ER NAME	AND S	GNATU		100					1											U	8			
							INT Name			H	Ke	tv	1FI	M	10	M	300	VI.	Εľ	T	- ad-			10	3		TEMP in	Received on Ice	(N)	Sested	Samples Intact (Y/N)
						SIC	NATURE	: 01 SAM	PLER:		1	eu	M	7	VV	0 .,	-		JA1	_ აჟ	.164.	4-	13-	16	,		F	2 3	2 0	805	ぶだと

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE NAME: Safe	SITE NAME: Safety Kleen Systems, Inc. SITE LOCATION: 8755 NW 95th Street, Medley, FL														
	WELL NO: MW-2R SAMPLE ID: MW-2(04)3)8 DATE: 4/13/18														
PURGING DATA															
WELL DIAMETER (inches): 2	TUBING	ED /inches):1	I/8-ID DE	PTH: 2 fee	N INTERVAL It to 12 feet	,	TO W		(feet): 5,			GE PUMP TY BAILER:	PE PP	
		1 WELL VOL	UME = (TO)	AL WELL DE	PTH - ST	TATIC DEPTI	H TO W	ATER)	X V	WELL CAP	ACITY				
(only fill out it			= (11.4	feet -	3,95	fee	t) X	TUB).16		ons/foc	ot = 1,19 LL VOLUME	ga	llons
(only fill out it	r volume Pt f applicable)	JAGE: 1 EQU	IPMENT VOL		gallons + (alions/fo	••	100		ieet) +	** OLL	gallons =	galle	ons
INITIAL PUN	MP OR TUBING	5.0	PURGING INITIATED AT:				PURGING ENDED AT: 1032			TOTAL VOLUME PURGED (gallons): 1-7					
TIME VOLUME VOLUME PURGED TO PURGED (gallons) (gallons) (gpm) (feet)						TEMP.	CON (circle of prints) or (µS	ID units) s/m	DISSOLVED OXYGEN (circle units) mg/L x/ % saturation		TURBIDITY (NTUs)		COLOR (describe)	ODOR (describe)	ORP
1026	1.2	1.2	0.08	419	7.34	25.65	.52	2	٥.	Γο	6.00	' I	Clear	Chilcola 2.12m	-272
1029	0,24	1,44		419	7.32			_	D.	07	5,2	2	11	- 11	-267
1032	10 0 1 1 1 0					25.51	52	21	U.	67	4.5	6_	U	ч	-263
	1											N.S.			
-						123									
	4000			1.25" =	0.00. 97 -	الان) 0.16;	3" = 0	127	4 ⁿ = 0.65	5" = 1.	<u>n2·</u>	6" = 1.47;	12" = 5.88		
WELL CAP	ACITY (Gallor SIDE DIA. CA	ns Per Foot): PACITY (Gal./	0.75" = 0.02; Ft.); <u>1/8" = (</u>	1" = 0.04; 0.0006; <u>3/1</u>	6" = 0.0014	1/4" = 0.	0026;	5/16	= 0.00	0,4; 3/8	" = 0.006;_	1/2'	= 0.010;	5/8" = 0.016	
PURGING 1	EQUIPMENT (CODES: B	l = Bailer;	BP = Bladde		ESP = Elec			e Pum	p; <u>P</u> P	= Peristalti	C Pum	p;U = 01	her (Specify)	
SAMBLED	BY (PRINT)	AFFILIATION:	ECT	SAMPLE <u>R</u>	S) SIGNATI	PERM	100	_		SAMPLI	DATE	33	SAMPLIN ENDED A		1
PUMP OR	TUBING	5,0		TUBING	cone: 1-	FIELD-F					ED: Y C	N	FILTER	R SIZE:	_រ៉្ពាញ
	WELL (feet): ONTAMINATI		AP Y	N N	TUBIN	G V	replac	ced)		DUPLIC		Υ	Ñ		
	MPLE CONTAIN	ER SPECIFICAT	ION			RVATION (incl			VAL	INTENDED ANALYSIS AND/OR METHOD			SAMPLING EQUIPMENT CODE	FLOV	E PUMP / RATE
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE	VOLUME 40 ml	PRESERVA USED HCI+ I	/	ODED IN FIEL	D (mL)	<u> </u>	:2		60-Volatile		APP		r minute) 100
128-04131	3	CG	401111	TIOIT I		HOHE				Organi	c Compou	ınds			
	2	AG	250 ml	Ice		NONE				Organi	emi-Volat c Compou Method (nds	APP	At pu	rge rate
	1	PE	250 ml	HNO3 +	Ice	NONE		· ·	<2	Cd, Cr, Method	Pb, Ag by E 200.8	PA	APP	At pu	rge rate
	+ Ice	NONE		^	<2 TRP		ls by FL-P Method	RO	APP	At pu	rge rate				
· ·										1				مان الم	21
REMARKS	0=0	13gal	60 See	=0.09	gpm					ל איזא אר איזא אר	10 10 10 50 5 p	endel	ac semple 1 solids-1	h scaple	bettley
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify)															
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)														

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

PH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 1, 2014

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	SITE NAME: Safety Kleen Systems, Inc. SITE LOCATION: 8755 NW 95th Street, Medley, FL																	
WELL NO:		Cystems,	1110.	SAMPLI	E 1D: M\								4/13/	18				
PURGING DATA																		
WELL		TUBING		7 00	LL SCRI				STAT	IC DEF	PTH (feet): 3	5)		RGE PUMP TY BAILER:	PE PP			
DIAMETER WELL VOL	WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY																	
	(only fill out if applicable) = (11.2 feet - 3.5) feet) x 0.16 gallons/foot = 1.23 gallons																	
		URGE: 1 EQU	IPMENT VO	L. = PUMP VC	LUME +	(TUBING	3 CAPA	CITY	X			STH) + F	LOW CE	LL VOLUME				
only fill out	if applicable)			= (gallons +	(ga	allons/fo	ot X			feet) +	_	gallons		ons		
	MP OR TUBIN WELL (feet):	1G 7.0		MP OR TUBIN WELL (feet):	G 7	.O	PURG	ING TED AT	90		PURGIN ENDED	AT:	25	PURGED (g		<u> </u>		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standa units	ין וסונ	EMP. (°C)	CON (circle of pmho or (µS	inits) s/m	OX'	OLVED YGEN de units) o/L or aturation		BIDITY (Us)	COLOR (describe)	ODOR (describe)	ORP		
918	=1,4	<i>II</i>).4	0.08	3.65	7.20	7 2	२,०१	53	3	U,	10	0.4	7	clow	Stight Wgenc	-246		
921	20.25	≈1.65	1	3.65	7.2		2/12	53	4	0.1	09	0.5		3X3	13	-242		
924	×0-25	71.9	1	3.65	7,2		1.16	53			.58	0.5		i,	11	-244		
								PFV										
WELL CAI	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gall/Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016																	
	EQUIPMENT		= Bailer;	BP = Bladde			= Elec	_		e Pum	p; PP	= Peris	taltic Pun	np;	ther (Specify)			
SAMPLED	BY (PRINT)	AFFILIATION:	1	SAMPLER(SAMF STURF(S		G DA	IA		SAMPLI	NG .	915	SAMPLIN)		
PUMP OR		AFFILIATION:	(ECT	TUBING	WC 4	- /Vla	} ~~	<u> </u>		FIEL	SAMPLI INITIATE D-FILTER	ED AT: ED: Y	(N	ENDED #	AT: / <u>4 /</u> R SIZE:			
DEPTH IN	WELL (feet):	7.0		MATERIAL			Y (N	replac	- all		Filtration Equipment Type: DUPLICATE: Y N							
	CONTAMINAT			<u>N) </u>				_			DOPLIC	AIE.		SAMPLING	SAMPI	E PUMP		
SAMPLE ID	MPLE CONTAIN	IER SPECIFICAT	VOLUME	PRESËRVA	IPLE PRE	TC	TAL VO	L	FIN	NAL.		DED ANA OR MET		EQUIPMENT CODE	FLOV	V RATE or minute)		
CODE - W/) -04	CONTAINERS 1	PE	250 ml	USED HNO3+	Ice	_	NONE	(mL) د	-	H		Pb, Ag		APP	At pu	rge rate		
~	ipig										IVIE	MIQU EU	y.U					
													_	1				
		1						\geq	-	=				_				
	-														7	OM.		
-						120	2											
REMARKS	S: (Y_=	0.1390	er 1m	- 0.0	9 5pa	^												
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)																	
SAMPLIN	S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)																	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	f - t - 121	Customs	l=o			ITE	 8755 NW	V osth	Street A	/ledlev. FL		_			
	NAME: Safety Kleen Systems, Inc. LOCATION: 8755 NW 95 th Street, Medley, FL WELL NO: MW-3 SAMPLE ID: MW-3- 041318 DATE: 4/13/18														
WELL NO:	IAIAA-O			OAIIII EI		RGING									
WELL DIAMETER WELL VOL	UME PURGE:	TUBING DIAMET	FER (inches):	I/B-ID DE	LL SCREEN PTH: 2 feet	INTERVAL to 12 feet	ST		R (feet): 2	99 OA	RGE PUMP TY BAILER:	PE PP			
	if applicable)	IPCE: 1 FOL	= (11.6	leet –	99 BING CAPA	feet)_	X C TUE	0.16 BING LENG	gallons/fo	oot = 1.39 ELL VOLUME	ga ga	illons		
	t if applicable)			= !	gallons + (9	allons/foot X	<u> </u>		feet) +	gallons =				
	IMP OR TUBIN WELL (feet):	G 7.0		MP OR TUBIN WELL (feet):	1G 7_0	PURC INITI/	ATED AT:	<u> 132</u>	PURGIN		TOTAL VOL PURGED (g	allons): ~2	~O		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units µmbos/m or µS/cm		SOLVED XYGEN rele units) no/L or saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)	ORP		
950	1,44	1,44	0.08	3,20	7.27	23.98	510	U.	06	1.74	Clear	Granic Granic	-249		
953	0,24	1.68	1_1_	3,20	7,26	23.94	510	0	05_	1.54	- 11	11 -	253		
956	2 4 12 - 4					23.96	510	0	1.4		12	11 -	255		
								_							
							Mana								
WELL CA	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016														
PURGING	EQUIPMENT	CODES: I	B = Bailer;	BP = Bladde		MPLIN	tric Submer	_	пр; ег	= Peristaltic Pur	пр, 0 2 0	that (Opcomy)			
SAMPLED	PX (PRINT)	AFFILIATION:	Son/EUT	Kei	S) SIGNATU	PER	n		SAMPLI	ED AT: 45	SAMPLIN ENDED A	<u>т: (О</u> (
	TUBING WELL (feet): CONTAMINAT	7 <i>D</i>	MP Y	MATERIAL N	CODE: HI	DPE	N (replaced)	Filtr	LD-FILTER ration Equip	ment Type:	N)	FILTER SIZE: µm			
	AMPLE CONTAIN			SAI	MPLE PRESER	IVATION (incl	uding wet ice))		DED ANALYSIS	SAMPLING EQUIPMENT	FLOV	E PUMP V RATE		
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE PE	VOLUME 250 ml	PRESERVA USED HNO3+		TOTAL VO DDED IN FIEL NONE	D (mL)	FINAL pH <2	Cd, Cr,	Pb, Ag by EPA	APP		r minute)		
W-3-0412	- Q														
											 				
		<u> </u>	-			—									
									 						
-				<u> </u>		kin									
REMARK	(S:	0-13-7	Jee x 6	1 Sec	0.68 9	pm		7 50	indu 5	spended of	Hee pom	nout be	allows and		
MATERIA	AL CODES:	AG = Ambe S = Silicone		G = Clear Glas n; O = Othe	s; HDPE or (Specify)	= High Den			LDPE = L	ow Density Polye	ethylene; PF	P = Polypropy	lene; offer		
SAMPLII	SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)														

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Sofety Klein Medley 2018 Annual Groundur	ater Muni	forms Ex	ব						
2019 Annua	Instr	ument Ca	libration	and Field	l Verifica	tion Log			
Instrument Make: InSitu / YSI		Troll / 556 MP	S	אָרָכ :Identification	020 m	709 AA			
Sampler's Name / Signature:	Keith F.	Marrison	Kesth 7	nom		Date: (mm/dd	W) 4/13	118	
Procedure Type: ICV, CCV, Cal	icv, ccv, cal	icv, 🕳, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cai
Standard Values Time	645	1620							
pH 4.01 S.U.	4,04	leoy							
pH 7.00 S.U.	702	7,03							
pH 10.00 S.U.	9,98	995							
Within 0.2 S.U ?	Pass / Fail	Hase / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail
Calibration Required?	Yes/No	Yes /(Np	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No
Sampler's Initials	10m	Ken							
Conductivity SOO µS/cm Cal	502	503							
Conductivity <u>) ಕರಿರಿ</u> μS/cm Ver	992	989							,
Within 5% ?	Fass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail
Calibration Required?	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No
Sampler's Initials	1200	125							
Temperature During D.O.	22 °C	24 ℃	<u>`</u> °C	°C	°C		°C	°C	°C
D.O. mg/L @ Saturation (0/1)	87(49.8%	18,7(99,6%							
Within 0.3 mg/L ?	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail
Calibration Required?	Yes (No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No
Sampler's Initials	102-	m		137					
Temperature During ORP	22 °C	24 ℃	°C	°C	°C	°C	°C	°C	°C
ORP in mV	235	233							
Within 10 mV ?	Pass / Fail	Pass/ Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail
Calibration Required?	Yes / No	Yes / 🕪	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No
Sampler's Initials	WA	1000							
Calibration Solutions		Manufacturer			Lot Number		i	Expiration Date	9
pH 4.01 S.U.	180214	1A		02 /2019					
pH 7.00 S.U.	17080	2A		02/2019					
рН 10.00 S.U.	170	222B		09/2018					
Conductivity <u>500</u> μS/cm Cal		1802	140		02/2019				
Conductivity 1δδ δ μS/cm Ver		180	214B		02/2019				
ORP: mV@°C per mfr. specs.					100270		071	24/2019	
Notes Cal - Calibration			70.0	oto or evenes	1 11 1				

Cal = Calibration Notes

This form meets or exceeds the requirements of FDEP Form FD 9000-8

ICV = Initial Calibration Verification

CCV = Continued Calibration Verification

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKE/MODEL#) HACH ZIUOQ INSTRUMENT # JUH 16110C53546 PARAMETER: [check only one] ☐ TEMPERATURE ☐ CONDUCTIVITY ☐ SALINITY □pH ☐ ORP TURBIDITY ☐ RESIDUAL CI OTHER STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Sofett-Klein medlet Standard A 10 NNS Lott A6348/2961801 Stanford D: 800 NTVS / Lott A6355 Standard B 20 NTVS 6+ & A 6351/C+# 2684801 2018
Annual tel
Grundwick
Grundwick
Mindorn

Plent Standard C IN WAVS WHA 6355 Cot N. 2684901 DATE (yy/mm/dd) STD TIME (hr:min) STD INSTRUMENT RESPONSE CALIBRATED (YES, NO) TYPE (INIT, CONT) SAMPLER. (A, B, C) % DEV INITIALS 4/13/18 650 A 16,000 1U.Z 1/0% 1101 1/Fm INIT 651 B 19.9 1/s ナック 200 " WPM 1WIT 652 94,8 C [10 ± 6.5% W INIT Vin 653 b Sas 892 15% Į. 7v 1941T KPW 1621 10 M 1001 210% WM Ves 1622 20 19.9 14 IB% fal 11m 623 <u>C</u> 11 F6.5% W 90-7 Sin Y 91 D 1624 25% Bur 994 Yor 122

Page 9 of 10

Revision Date: February 1, 2004

ATTACHMENT B LABORATORY REPORTS

May 10, 2018

Keith Morrison Environmental Consulting & Techlology 1408 North Westshore Bllvd Suite 115 Tampa, FL 33607

RE: Project: Safety Kleen Facility Pace Project No.: 35386065

Dear Keith Morrison:

Enclosed are the analytical results for sample(s) received by the laboratory on April 13, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

This report has been revised to include missing results for FL-PRO. This replaces the report submitted on 4/26/2018.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Palmer

lori.palmer@pacelabs.com

(813)881-9401 Project Manager

Enclosures

cc: Pat Ines, Environmental Consulting & Technology

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: Safety Kleen Facility

Pace Project No.: 35386065

Ormond Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174

Alabama Certification #: 41320 Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity

Louisiana Environmental Certificate #: 05007

Maryland Certification: #346 Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236 Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14

Nevada Certification: FL NELAC Reciprocity

New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710
Oklahoma Certification #: D9947
Pennsylvania Certification #: 68-00547
Puerto Rico Certification #: FL01264
South Carolina Certification: #96042001
Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity Virginia Environmental Certification #: 460165

Wyoming Certification: FL NELAC Reciprocity West Virginia Certification #: 9962C

Wisconsin Certification #: 399079670
Wyoming (EPA Region 8): FL NELAC Reciprocity

REPORT OF LABORATORY ANALYSIS

(813)881-9401

SAMPLE SUMMARY

Project: Safety Kleen Facility

Pace Project No.: 35386065

Lab ID	Sample ID	Matrix	Date Collected	Date Received
35386065001	MW-2R-041318	Water	04/13/18 10:49	04/13/18 18:25
35386065002	MW-1-041318	Water	04/13/18 09:28	04/13/18 18:25
35386065003	MW-3-041318	Water	04/13/18 10:00	04/13/18 18:25
35386065004	Trip Blank	Water	04/13/18 09:28	04/13/18 18:25

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: Safety Kleen Facility

Pace Project No.: 35386065

Lab ID	Sample ID	Method	Analysts	Analytes Reported
35386065001	MW-2R-041318	FL-PRO	BP2	3
		EPA 200.8	CRT	4
		EPA 8270 by SIM	CB1	20
		EPA 8260	SK1	57
35386065002	MW-1-041318	EPA 200.8	CRT	4
35386065003	MW-3-041318	EPA 200.8	KPP	4
35386065004	Trip Blank	EPA 8260	SK1	57

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

Sample: MW-2R-041318	Lab ID:	35386065001	Collecte	d: 04/13/18	3 10:49	Received: 04/13/18 18:25 Matrix: Water				
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
FL-PRO Water, Low Volume	Analytical	Method: FL-PR	O Prepara	tion Method	d: EPA (3510				
Petroleum Range Organics Surrogates	0.80 U	mg/L	1.0	0.80	1	04/18/18 22:40	04/20/18 03:20			
o-Terphenyl (S)	68	%	82-142		1	04/18/18 22:40	04/20/18 03:20	84-15-1	J(S1), P2	
N-Pentatriacontane (S)	85	%	42-159		1	04/18/18 22:40	04/20/18 03:20	630-07-09	_	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	nod: EP	A 200.8				
Cadmium	0.050 U	ug/L	0.10	0.050	1	04/16/18 09:20	04/16/18 15:09	7440-43-9		
Chromium	0.62 I	ug/L	1.0	0.50	1	04/16/18 09:20	04/16/18 15:09	7440-47-3		
Lead	0.50 U	ug/L	1.0	0.50	1	04/16/18 09:20	04/16/18 15:09	7439-92-1		
Silver	0.050 U	ug/L	0.10	0.050	1	04/16/18 09:20	04/16/18 15:09	7440-22-4		
8270 MSSV PAHLV by SIM	Analytical	Method: EPA 8	270 by SIM	l Preparation	on Meth	od: EPA 3510				
Acenaphthene	0.013 U	ug/L	0.50	0.013	1	04/18/18 08:52	04/20/18 01:37	83-32-9		
Acenaphthylene	0.012 U	ug/L	0.50	0.012	1	04/18/18 08:52	04/20/18 01:37	208-96-8		
Anthracene	0.012 U	ug/L	0.50	0.012	1	04/18/18 08:52	04/20/18 01:37	120-12-7		
Benzo(a)anthracene	0.055 U	ug/L	0.10	0.055	1	04/18/18 08:52	04/20/18 01:37	56-55-3	J(L1)	
Benzo(a)pyrene	0.020 U	ug/L	0.10	0.020	1	04/18/18 08:52	04/20/18 01:37	50-32-8	J(L1)	
Benzo(b)fluoranthene	0.027 U	ug/L	0.10	0.027	1		04/20/18 01:37		-()	
Benzo(g,h,i)perylene	0.042 U	ug/L	0.50	0.042	1		04/20/18 01:37			
Benzo(k)fluoranthene	0.023 U	ug/L	0.50	0.023	1		04/20/18 01:37		J(L1)	
Chrysene	0.026 U	ug/L	0.50	0.026	1		04/20/18 01:37		0(21)	
Dibenz(a,h)anthracene	0.13 U	ug/L	0.15	0.13	1		04/20/18 01:37			
Fluoranthene	0.018 U	ug/L	0.50	0.018	1		04/20/18 01:37			
Fluorene	0.016 U	ug/L	0.50	0.016	1		04/20/18 01:37			
Indeno(1,2,3-cd)pyrene	0.12 U	ug/L	0.15	0.12	1		04/20/18 01:37			
1-Methylnaphthalene	0.053 I	ug/L ug/L	2.0	0.12	1		04/20/18 01:37			
2-Methylnaphthalene	0.033 T	ug/L	2.0	0.032	1		04/20/18 01:37			
Naphthalene	0.11 U	ug/L ug/L	2.0	0.11	1		04/20/18 01:37			
Phenanthrene	0.018 U	_	0.50	0.048	1		04/20/18 01:37			
Pyrene	0.018 U	ug/L	0.50	0.018	1		04/20/18 01:37			
Surrogates	0.019 0	ug/L	0.50	0.019	'	04/10/10 00.52	04/20/16 01.3/	129-00-0		
2-Fluorobiphenyl (S)	61	%	33-101		1	04/18/18 08:52	04/20/18 01:37	321-60-8		
p-Terphenyl-d14 (S)	81	%	38-115		1		04/20/18 01:37			
, , ,					•	04/10/10 00:52	04/20/10 01.07	17 10-31-0		
8260 MSV		Method: EPA 8		40.0	4		04/40/40 00:04	67.64.4		
Acetone	10.0 U	ug/L	20.0	10.0	1		04/18/18 02:04			
Acetonitrile	5.0 U	ug/L	40.0	5.0	1		04/18/18 02:04			
Benzene	0.10 U	ug/L	1.0	0.10	1		04/18/18 02:04			
Bromochloromethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04			
Bromodichloromethane	0.27 U	ug/L	0.60	0.27	1		04/18/18 02:04			
Bromoform	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04			
Bromomethane	0.50 U	ug/L	5.0	0.50	1		04/18/18 02:04			
2-Butanone (MEK)	5.0 U	ug/L	10.0	5.0	1		04/18/18 02:04			
Carbon disulfide	5.0 U	ug/L	10.0	5.0	1		04/18/18 02:04			
Carbon tetrachloride	0.50 U	ug/L	3.0	0.50	1		04/18/18 02:04	56-23-5		

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

Sample: MW-2R-041318 Lab ID: 35386065001 Collected: 04/13/18 10:49 Received: 04/13/18 18:25 Matrix: Water

Parameters	Results	Units	PQL	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical	Method: EPA	8260						
Chlorobenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	108-90-7	
Chloroethane	0.50 U	ug/L	10.0	0.50	1		04/18/18 02:04	75-00-3	
Chloroform	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	67-66-3	
Chloromethane	0.62 U	ug/L	1.0	0.62	1		04/18/18 02:04	74-87-3	
1,2-Dibromo-3-chloropropane	1.0 U	ug/L	5.0	1.0	1		04/18/18 02:04	96-12-8	
Dibromochloromethane	0.26 U	ug/L	2.0	0.26	1		04/18/18 02:04	124-48-1	
I,2-Dibromoethane (EDB)	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	106-93-4	
Dibromomethane	0.50 U	ug/L	2.0	0.50	1		04/18/18 02:04		
,2-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
,4-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
rans-1,4-Dichloro-2-butene	5.0 U	ug/L	10.0	5.0	1		04/18/18 02:04		
1,1-Dichloroethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
1,2-Dichloroethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
,2-Dichloroethene (Total)	0.50 U	ug/L ug/L	1.0	0.50	1		04/18/18 02:04		N2
1,1-Dichloroethene	0.50 U	ug/L ug/L	1.0	0.50	1		04/18/18 02:04		112
cis-1,2-Dichloroethene	0.50 U	-	1.0	0.50	1		04/18/18 02:04		
•	0.50 U	ug/L					04/18/18 02:04		
rans-1,2-Dichloroethene		ug/L	1.0	0.50	1				
,2-Dichloropropane	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
sis-1,3-Dichloropropene	0.25 U	ug/L	0.50	0.25	1		04/18/18 02:04		
rans-1,3-Dichloropropene	0.25 U	ug/L	0.50	0.25	1		04/18/18 02:04		
Ethylbenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
2-Hexanone	5.0 U	ug/L	10.0	5.0	1		04/18/18 02:04		
odomethane	0.50 U	ug/L	10.0	0.50	1		04/18/18 02:04		
sopropylbenzene (Cumene)	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
Methylene Chloride	2.5 U	ug/L	5.0	2.5	1		04/18/18 02:04		
I-Methyl-2-pentanone (MIBK)	5.0 U	ug/L	10.0	5.0	1		04/18/18 02:04		
Methyl-tert-butyl ether	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	1634-04-4	
Styrene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	100-42-5	
,1,1,2-Tetrachloroethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	630-20-6	
,1,2,2-Tetrachloroethane	0.12 U	ug/L	0.50	0.12	1		04/18/18 02:04	79-34-5	
Tetrachloroethene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	127-18-4	
Toluene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	108-88-3	
,1,1-Trichloroethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	71-55-6	
,1,2-Trichloroethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	79-00-5	
richloroethene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	79-01-6	
richlorofluoromethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04	75-69-4	
,2,3-Trichloropropane	0.59 U	ug/L	2.0	0.59	1		04/18/18 02:04	96-18-4	
,2,4-Trimethylbenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
,3,5-Trimethylbenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
/inyl acetate	1.0 U	ug/L	10.0	1.0	1		04/18/18 02:04		
/inyl chloride	0.50 U	ug/L	1.0	0.50	1		04/18/18 02:04		
(ylene (Total)	1.5 U	ug/L	3.0	1.5	1		04/18/18 02:04		
n&p-Xylene	1.0 U	ug/L ug/L	2.0	1.0	1		04/18/18 02:04		
o-Xylene	0.50 U	ug/L ug/L	1.0	0.50	1		04/18/18 02:04		
Surrogates	0.50 0	ug/L	1.0	0.50	'		04/10/10 02.04	3J-41-U	
4-Bromofluorobenzene (S)	98	%	89-111		1		04/18/18 02:04	460 00 4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

Sample: MW-2R-041318	Lab ID:	Collecte	d: 04/13/1	18 10:49	Received: 04/13/18 18:25 Matrix: Water				
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Surrogates 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	107 99	% %	75-135 89-112		1		04/18/18 02:04 04/18/18 02:04		

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

Sample: MW-1-041318	Lab ID:	Collected: 04/13/18 09:28			Received: 04/13/18 18:25 Matrix: Water				
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	04/16/18 09:20	04/16/18 15:11	7440-43-9	
Chromium	0.52 I	ug/L	1.0	0.50	1	04/16/18 09:20	04/16/18 15:11	7440-47-3	
Lead	0.50 U	ug/L	1.0	0.50	1	04/16/18 09:20	04/16/18 15:11	7439-92-1	
Silver	0.050 U	ua/l	0.10	0.050	1	04/16/18 09:20	04/16/18 15:11	7440-22-4	

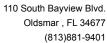
Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

Sample: MW-3-041318	Lab ID:	Lab ID: 35386065003			3 10:00	Received: 04/			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	04/17/18 01:34	04/18/18 09:46	7440-43-9	
Chromium	0.68 I	ug/L	1.0	0.50	1	04/17/18 01:34	04/18/18 09:46	7440-47-3	
Lead	0.50 U	ug/L	1.0	0.50	1	04/17/18 01:34	04/18/18 09:46	7439-92-1	
Silver	0.050 U	ua/L	0.10	0.050	1	04/17/18 01:34	04/18/18 09:46	7440-22-4	

ANALYTICAL RESULTS


Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

Sample: Trip Blank Lab ID: 35386065004 Collected: 04/13/18 09:28 Received: 04/13/18 18:25 Matrix: Water

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	A 8260						
Acetone	10.0 U	ug/L	20.0	10.0	1		04/18/18 01:16	67-64-1	
Acetonitrile	5.0 U	ug/L	40.0	5.0	1		04/18/18 01:16	75-05-8	
Benzene	0.10 U	ug/L	1.0	0.10	1		04/18/18 01:16		
Bromochloromethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
Bromodichloromethane	0.27 U	ug/L	0.60	0.27	1		04/18/18 01:16		
Bromoform	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
Bromomethane	0.50 U	ug/L	5.0	0.50	1		04/18/18 01:16		
2-Butanone (MEK)	5.0 U	ug/L	10.0	5.0	1		04/18/18 01:16		
Carbon disulfide	5.0 U	ug/L	10.0	5.0	1		04/18/18 01:16		
Carbon tetrachloride	0.50 U	ug/L	3.0	0.50	1		04/18/18 01:16		
Chlorobenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
Chloroethane	0.50 U	ug/L	10.0	0.50	1		04/18/18 01:16		
Chloroform	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
Chloromethane	0.62 U	ug/L	1.0	0.62	1		04/18/18 01:16		
1,2-Dibromo-3-chloropropane	1.0 U	ug/L	5.0	1.0	1		04/18/18 01:16		
Dibromochloromethane	0.26 U	ug/L	2.0	0.26	1		04/18/18 01:16		
1,2-Dibromoethane (EDB)	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
Dibromomethane	0.50 U	ug/L	2.0	0.50	1		04/18/18 01:16		
1,2-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
1,4-Dichlorobenzene	0.50 U	-	1.0	0.50	1		04/18/18 01:16		
trans-1,4-Dichloro-2-butene	5.0 U	ug/L	10.0	5.0	1		04/18/18 01:16		
1,1-Dichloroethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
1,2-Dichloroethane	0.50 U	ug/L ug/L	1.0	0.50	1		04/18/18 01:16		
1,2-Dichloroethene (Total)	0.50 U	ug/L ug/L	1.0	0.50	1		04/18/18 01:16		N2
1,1-Dichloroethene	0.50 U	-	1.0	0.50	1		04/18/18 01:16		INZ
cis-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
trans-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
•	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
1,2-Dichloropropane		ug/L			1				
cis-1,3-Dichloropropene	0.25 U	ug/L	0.50	0.25			04/18/18 01:16		
trans-1,3-Dichloropropene	0.25 U	ug/L	0.50	0.25	1		04/18/18 01:16		
Ethylbenzene	0.50 U	ug/L	1.0	0.50 5.0	1		04/18/18 01:16		
2-Hexanone	5.0 U	ug/L	10.0		1 1		04/18/18 01:16		
lodomethane	0.50 U	ug/L	10.0	0.50			04/18/18 01:16 04/18/18 01:16		
Isopropylbenzene (Cumene)	0.50 U 2.5 U	ug/L	1.0	0.50 2.5	1 1				
Methylene Chloride		ug/L	5.0				04/18/18 01:16		
4-Methyl-2-pentanone (MIBK)	5.0 U	ug/L	10.0	5.0	1		04/18/18 01:16		
Methyl-tert-butyl ether	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
Styrene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
1,1,1,2-Tetrachloroethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
1,1,2,2-Tetrachloroethane	0.12 U	ug/L	0.50	0.12	1		04/18/18 01:16		
Tetrachloroethene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
Toluene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
1,1,1-Trichloroethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
1,1,2-Trichloroethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
Trichloroethene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16		
Trichlorofluoromethane	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16	<i>/</i> 5-69-4	

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

Sample: Trip Blank	Lab ID:	35386065004	04 Collected: 04/13/18 09:28 Recei			Received: 04			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,2,3-Trichloropropane	0.59 U	ug/L	2.0	0.59	1		04/18/18 01:16	96-18-4	
1,2,4-Trimethylbenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16	95-63-6	
1,3,5-Trimethylbenzene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16	108-67-8	
Vinyl acetate	1.0 U	ug/L	10.0	1.0	1		04/18/18 01:16	108-05-4	
Vinyl chloride	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16	75-01-4	
Xylene (Total)	1.5 U	ug/L	3.0	1.5	1		04/18/18 01:16	1330-20-7	
m&p-Xylene	1.0 U	ug/L	2.0	1.0	1		04/18/18 01:16	179601-23-1	
o-Xylene	0.50 U	ug/L	1.0	0.50	1		04/18/18 01:16	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	99	%	89-111		1		04/18/18 01:16	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	75-135		1		04/18/18 01:16	17060-07-0	
Toluene-d8 (S)	97	%	89-112		1		04/18/18 01:16	2037-26-5	

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

QC Batch: 440341 Analysis Method: EPA 200.8 QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 35386065001, 35386065002

METHOD BLANK: 2390467 Matrix: Water

Associated Lab Samples: 35386065001, 35386065002


		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Cadmium	ug/L	0.050 U	0.10	0.050	04/16/18 14:14	
Chromium	ug/L	0.50 U	1.0	0.50	04/16/18 14:14	
Lead	ug/L	0.50 U	1.0	0.50	04/16/18 14:14	
Silver	ug/L	0.050 U	0.10	0.050	04/16/18 14:14	

LABORATORY CONTROL SAMPLE:	2390468					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L		5.1	103	85-115	
Chromium	ug/L	50	53.9	108	85-115	
Lead	ug/L	50	50.0	100	85-115	
Silver	ug/L	5	5.2	105	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2390469 2390470												
		5004044004	MS	MSD		1400		1405	0/ 5			
	3	35384811001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.050 U	5	5	4.9	5.1	98	101	70-130	3	20	
Chromium	ug/L	0.50 U	50	50	52.2	52.6	104	105	70-130	1	20	
Lead	ug/L	0.50 U	50	50	49.2	49.3	98	98	70-130	0	20	
Silver	ug/L	0.050 U	5	5	5.0	5.1	101	103	70-130	2	20	

MATRIX SPIKE & MATRIX SPI	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2390471 2390472											
			MS	MSD								
	3	5385374003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.000050 U mg/L	5	5	4.9	5.1	98	103	70-130	4	20	
Chromium	ug/L	0.0032 mg/L	50	50	54.1	56.0	102	106	70-130	3	20	
Lead	ug/L	0.00050 U mg/L	50	50	48.3	50.3	96	100	70-130	4	20	
Silver	ug/L	0.050 U	5	5	5.0	5.2	101	104	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

QC Batch: 440594 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 35386065003

METHOD BLANK: 2391628 Matrix: Water

Associated Lab Samples: 35386065003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Cadmium	ug/L	0.050 U	0.10	0.050	04/17/18 11:22	
Chromium	ug/L	0.50 U	1.0	0.50	04/17/18 11:22	
Lead	ug/L	0.50 U	1.0	0.50	04/17/18 11:22	
Silver	ug/L	0.050 U	0.10	0.050	04/17/18 11:22	

LABORATORY CONTROL SAMPLE:	2391629					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L		4.9	98	85-115	
Chromium	ug/L	50	49.0	98	85-115	
Lead	ug/L	50	49.5	99	85-115	
Silver	ug/L	5	4.8	95	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA		2391631									
			MS	MSD								
	3	5385207001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.000050 U mg/L	5	5	4.9	4.9	98	98	70-130	0	20	
Chromium	ug/L	0.00050 U mg/L	50	50	50.2	50.0	100	99	70-130	0	20	
Lead	ug/L	0.00050 U mg/L	50	50	49.0	48.4	98	97	70-130	1	20	
Silver	ug/L	0.000050 U mg/L	5	5	4.7	4.7	94	94	70-130	0	20	

MATRIX SPIKE & MATRIX SPIR	32		2391633									
			MS	MSD								
	3	5385999002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.050 U	5	5	5.0	5.0	99	99	70-130	0	20	
Chromium	ug/L	0.50 U	50	50	50.2	50.9	100	101	70-130	1	20	
Lead	ug/L	152	50	50	200	202	96	100	70-130	1	20	
Silver	ug/L	0.050 U	5	5	4.9	4.9	98	98	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

QC Batch: 440900 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 35386065001, 35386065004

METHOD BLANK: 2393177 Matrix: Water

Associated Lab Samples: 35386065001, 35386065004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
1,1,1,2-retraction detriane 1,1,1-Trichloroethane	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
1,1,2,2-Tetrachloroethane	ug/L	0.12 U	0.50	0.30	04/18/18 00:04	
1,1,2-Trichloroethane	ug/L	0.50 U	1.0	0.12	04/18/18 00:04	
1,1-Dichloroethane	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
1,1-Dichloroethene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
1,2,3-Trichloropropane	ug/L	0.59 U	2.0	0.59	04/18/18 00:04	
1,2,4-Trimethylbenzene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
1,2-Dibromo-3-chloropropane	ug/L	1.0 U	5.0	1.0	04/18/18 00:04	
1,2-Dibromoethane (EDB)	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
1,2-Dichlorobenzene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
1,2-Dichloroethane	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
1,2-Dichloroethane 1,2-Dichloroethene (Total)	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	N2
1,2-Dichloropropane	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	142
1,3,5-Trimethylbenzene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
1,4-Dichlorobenzene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
2-Butanone (MEK)	ug/L	5.0 U	10.0	5.0	04/18/18 00:04	
2-Hexanone	ug/L	5.0 U	10.0	5.0	04/18/18 00:04	
4-Methyl-2-pentanone (MIBK)	ug/L	5.0 U	10.0	5.0	04/18/18 00:04	
Acetone	ug/L	10.0 U	20.0	10.0	04/18/18 00:04	
Acetonitrile	ug/L	5.0 U	40.0	5.0	04/18/18 00:04	
Benzene	ug/L	0.10 U	1.0	0.10	04/18/18 00:04	
Bromochloromethane	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Bromodichloromethane	ug/L	0.27 U	0.60	0.27	04/18/18 00:04	
Bromoform	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Bromomethane	ug/L	0.50 U	5.0	0.50	04/18/18 00:04	
Carbon disulfide	ug/L	5.0 U	10.0	5.0	04/18/18 00:04	
Carbon tetrachloride	ug/L	0.50 U	3.0	0.50	04/18/18 00:04	
Chlorobenzene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Chloroethane	ug/L	0.50 U	10.0	0.50	04/18/18 00:04	
Chloroform	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Chloromethane	ug/L	0.62 U	1.0	0.62	04/18/18 00:04	
cis-1,2-Dichloroethene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
cis-1,3-Dichloropropene	ug/L	0.25 U	0.50	0.25	04/18/18 00:04	
Dibromochloromethane	ug/L	0.26 U	2.0	0.26	04/18/18 00:04	
Dibromomethane	ug/L	0.50 U	2.0	0.50	04/18/18 00:04	
Ethylbenzene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Iodomethane	ug/L	0.50 U	10.0	0.50	04/18/18 00:04	
Isopropylbenzene (Cumene)	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
m&p-Xylene	ug/L	1.0 U	2.0	1.0	04/18/18 00:04	
Methyl-tert-butyl ether	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

METHOD BLANK: 2393177 Matrix: Water

Associated Lab Samples: 35386065001, 35386065004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Methylene Chloride	ug/L	2.5 U	5.0	2.5	04/18/18 00:04	
o-Xylene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Styrene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Tetrachloroethene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Toluene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
trans-1,2-Dichloroethene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
trans-1,3-Dichloropropene	ug/L	0.25 U	0.50	0.25	04/18/18 00:04	
trans-1,4-Dichloro-2-butene	ug/L	5.0 U	10.0	5.0	04/18/18 00:04	
Trichloroethene	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Trichlorofluoromethane	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Vinyl acetate	ug/L	1.0 U	10.0	1.0	04/18/18 00:04	
Vinyl chloride	ug/L	0.50 U	1.0	0.50	04/18/18 00:04	
Xylene (Total)	ug/L	1.5 U	3.0	1.5	04/18/18 00:04	
1,2-Dichloroethane-d4 (S)	%	97	75-135		04/18/18 00:04	
4-Bromofluorobenzene (S)	%	96	89-111		04/18/18 00:04	
Toluene-d8 (S)	%	99	89-112		04/18/18 00:04	

LABORATORY CONTROL SAMPLE	E: 2393178					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	19.9	99	70-130	
1,1,1-Trichloroethane	ug/L	20	20.6	103	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	19.6	98	70-130	
1,1,2-Trichloroethane	ug/L	20	20.3	101	70-130	
1,1-Dichloroethane	ug/L	20	21.7	108	70-130	
1,1-Dichloroethene	ug/L	20	22.6	113	65-134	
1,2,3-Trichloropropane	ug/L	20	18.5	93	65-135	
1,2,4-Trimethylbenzene	ug/L	20	19.5	98	70-130	
1,2-Dibromo-3-chloropropane	ug/L	20	17.9	89	62-133	
1,2-Dibromoethane (EDB)	ug/L	20	21.2	106	70-130	
1,2-Dichlorobenzene	ug/L	20	21.1	106	70-130	
1,2-Dichloroethane	ug/L	20	18.6	93	70-130	
1,2-Dichloroethene (Total)	ug/L	40	42.7	107	70-130 N	2
1,2-Dichloropropane	ug/L	20	21.5	107	70-130	
1,3,5-Trimethylbenzene	ug/L	20	19.8	99	70-130	
1,4-Dichlorobenzene	ug/L	20	20.1	100	70-130	
2-Butanone (MEK)	ug/L	40	35.7	89	61-129	
2-Hexanone	ug/L	40	39.6	99	68-131	
4-Methyl-2-pentanone (MIBK)	ug/L	40	36.1	90	70-130	
Acetone	ug/L	40	41.6	104	44-155	
Acetonitrile	ug/L	200	273	136	46-153	
Benzene	ug/L	20	22.2	111	70-130	
Bromochloromethane	ug/L	20	20.6	103	70-130	
Bromodichloromethane	ug/L	20	19.5	98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35386065

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethene

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

Date: 05/10/2018 06:56 PM

LABORATORY CONTROL SAMPLE	: 2393178						
		•	cs	LCS	% Rec	0 115	
Parameter	Units	Conc. Re	sult	% Rec	Limits	Qualifiers	
Bromoform	ug/L	20	17.2	86	62-129		
Bromomethane	ug/L	20	16.9	84	10-179		
Carbon disulfide	ug/L	20	20.5	102	40-156		
Carbon tetrachloride	ug/L	20	18.7	94	66-127		
Chlorobenzene	ug/L	20	20.7	103	70-130		
Chloroethane	ug/L	20	23.2	116	57-142		
Chloroform	ug/L	20	20.0	100	70-130		
Chloromethane	ug/L	20	19.2	96	45-150		
cis-1,2-Dichloroethene	ug/L	20	21.0	105	70-130		
cis-1,3-Dichloropropene	ug/L	20	18.3	92	70-130		
Dibromochloromethane	ug/L	20	16.6	83	70-130		
Dibromomethane	ug/L	20	20.0	100	70-130		
Ethylbenzene	ug/L	20	21.3	106	70-130		
Iodomethane	ug/L	40	59.9	150	21-150		
Isopropylbenzene (Cumene)	ug/L	20	19.7	98	70-130		
m&p-Xylene	ug/L	40	44.0	110	70-130		
Methyl-tert-butyl ether	ug/L	20	20.4	102	64-133		
Methylene Chloride	ug/L	20	22.0	110	65-127		
o-Xylene	ug/L	20	19.2	96	70-130		
Styrene	ug/L	20	20.0	100	70-130		
Tetrachloroethene	ug/L	20	21.4	107	48-155		
Toluene	ug/L	20	21.0	105	70-130		
trans-1,2-Dichloroethene	ug/L	20	21.7	109	68-126		
trans-1,3-Dichloropropene	ug/L	20	17.4	87	70-130		
trans-1,4-Dichloro-2-butene	ug/L	20	14.9	75	46-138		
Trichloroethene	ug/L	20	20.9	104	69-129		
Trichlorofluoromethane	ug/L	20	18.6	93	60-144		
Vinyl acetate	ug/L	20	19.3	97	70-130		
Vinyl chloride	ug/L	20	20.7	104	67-136		
Xylene (Total)	ug/L	60	63.3	105	70-130		
1,2-Dichloroethane-d4 (S)	%			93	75-135		
4-Bromofluorobenzene (S)	%			101	89-111		
Toluene-d8 (S)	%			99	89-112		
	70				00 112		
MATRIX SPIKE SAMPLE:	2393715						
		35386361002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifie
1,1,1,2-Tetrachloroethane	ug/L	0.50 U	20	19.9	99	70-130	
1,1,1-Trichloroethane	ug/L	0.50 U	20	22.2	111	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.12 U	20	17.8	89	70-130	
1 1 0 Triable reathers		0.50 11		40.0	00	70 400	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

0.50 U

0.50 U

0.50 U

0.59 U

0.50 U

ug/L

ug/L

ug/L

ug/L

ug/L

20

20

20

20

20

19.2

21.7

21.4

16.8

18.2

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

70-130

70-130

65-134

65-135

70-130

96

109

106

84

91

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

MATRIX SPIKE SAMPLE:	2393715	35386361002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec		Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	1.0 U	20	16.2		62-133	
1,2-Dibromoethane (EDB)	ug/L	0.50 U	20	19.5	98	70-130	
1,2-Dichlorobenzene	ug/L	0.50 U	20	19.6	98	70-130	
1,2-Dichloroethane	ug/L	0.50 U	20	19.4	97	70-130	
1,2-Dichloroethene (Total)	ug/L	0.50 U	40	41.4	103	70-130 N2	
1,2-Dichloropropane	ug/L	0.50 U	20	19.4	97	70-130	
1,3,5-Trimethylbenzene	ug/L	0.50 U	20	18.8	94	70-130	
1,4-Dichlorobenzene	ug/L	0.50 U	20	19.3	97	70-130	
2-Butanone (MEK)	ug/L	5.0 U	40	34.3	86	61-129	
2-Hexanone	ug/L	5.0 U	40	31.9	80	68-131	
4-Methyl-2-pentanone (MIBK)	ug/L	5.0 U	40	31.7	79	70-130	
Acetone	ug/L	10.0 U	40	38.7	93	44-155	
Acetonitrile	ug/L	5.0 U	200	205	102	46-153	
Benzene	ug/L	0.10 U	20	20.6	103	70-130	
Bromochloromethane	ug/L	0.50 U	20	20.7	103	70-130 70-130	
Bromodichloromethane	ug/L	0.27 U	20	19.9	100	70-130	
Bromoform	ug/L	0.50 U	20	16.4	82	62-129	
Bromomethane	ug/L	0.50 U	20	17.1	85	10-179	
Carbon disulfide	ug/L	5.0 U	20	21.5	106	40-156	
Carbon tetrachloride	ug/L ug/L	0.50 U	20	21.4	107	66-127	
Chlorobenzene	ug/L	0.50 U	20	20.1	101	70-130	
Chloroethane	ug/L ug/L	0.50 U	20	21.3	107	57-142	
Chloroform	-	0.50 U	20	20.5	107	70-130	
Chloromethane	ug/L	0.62 U	20	16.1	81	45-150	
cis-1,2-Dichloroethene	ug/L ug/L	0.50 U	20	20.7	104	70-130	
cis-1,3-Dichloropropene	_	0.25 U	20	14.4	72	70-130	
Dibromochloromethane	ug/L	0.26 U	20	15.9	72 79	70-130 70-130	
Dibromomethane	ug/L	0.50 U	20		97	70-130 70-130	
	ug/L	0.50 U	20	19.4 21.0		70-130 70-130	
Ethylbenzene lodomethane	ug/L	0.50 U			105	70-130 21-150	
	ug/L	0.50 U	40 20	31.5	79 94		
Isopropylbenzene (Cumene) m&p-Xylene	ug/L	1.0 U	40	18.9		70-130 70-130	
	ug/L	0.50 U	20	42.7	107 92	64-133	
Methylene Chloride	ug/L	2.5 U	20	18.4		65-127	
Methylene Chloride	ug/L	0.50 U		20.4	101 91		
o-Xylene	ug/L	0.50 U	20 20	18.2	91	70-130 70-130	
Styrene	ug/L	0.50 U		18.8			
Tetrachloroethene	ug/L	0.50 U	20	21.4	107	48-155	
Toluene	ug/L	0.50 U	20	20.1	100	70-130	
trans-1,2-Dichloroethene	ug/L	0.50 U 0.25 U	20	20.7	103	68-126	
trans-1,3-Dichloropropene	ug/L	5.0 U	20	14.9	74	70-130	
trans-1,4-Dichloro-2-butene	ug/L		20	13.2	66	46-138	
Trichloroethene	ug/L	0.50 U	20	21.1	106	69-129	
Trichlorofluoromethane	ug/L	0.50 U	20	20.6	103	60-144	
Vinyl acetate	ug/L	1.0 U	20	15.7	79	70-130	
Vinyl chloride	ug/L	0.50 U	20	18.9	95	67-136	
Xylene (Total)	ug/L	1.5 U	60	60.8	101	70-130	
1,2-Dichloroethane-d4 (S)	%				103	75-135	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

MATRIX SPIKE SAMPLE:	2393715						
		35386361002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
4-Bromofluorobenzene (S)					101	89-111	
Toluene-d8 (S)	%				98	89-112	

SAMPLE DUPLICATE: 2393714		0500005004				
Parameter	Units	35386065001 Result	Dup Result	RPD	Max RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		0.50 U		40	
1,1,1-Trichloroethane	ug/L	0.50 U	0.50 U		40	
1,1,2,2-Tetrachloroethane	ug/L	0.12 U	0.12 U		40	
1,1,2-Trichloroethane	ug/L	0.50 U	0.50 U		40	
1,1-Dichloroethane	ug/L	0.50 U	0.50 U		40	
1,1-Dichloroethene	ug/L	0.50 U	0.50 U		40)
1,2,3-Trichloropropane	ug/L	0.59 U	0.59 U		40)
1,2,4-Trimethylbenzene	ug/L	0.50 U	0.50 U		40)
1,2-Dibromo-3-chloropropane	ug/L	1.0 U	1.0 U		40)
1,2-Dibromoethane (EDB)	ug/L	0.50 U	0.50 U		40)
1,2-Dichlorobenzene	ug/L	0.50 U	0.50 U		40)
1,2-Dichloroethane	ug/L	0.50 U	0.50 U		40)
1,2-Dichloroethene (Total)	ug/L	0.50 U	0.50 U		40) N2
1,2-Dichloropropane	ug/L	0.50 U	0.50 U		40)
1,3,5-Trimethylbenzene	ug/L	0.50 U	0.50 U		40)
1,4-Dichlorobenzene	ug/L	0.50 U	0.50 U		40)
2-Butanone (MEK)	ug/L	5.0 U	5.0 U		40)
2-Hexanone	ug/L	5.0 U	5.0 U		40)
4-Methyl-2-pentanone (MIBK)	ug/L	5.0 U	5.0 U		40)
Acetone	ug/L	10.0 U	10.0 U		40)
Acetonitrile	ug/L	5.0 U	5.0 U		40)
Benzene	ug/L	0.10 U	0.10 U		40)
Bromochloromethane	ug/L	0.50 U	0.50 U		40)
Bromodichloromethane	ug/L	0.27 U	0.27 U		40	
Bromoform	ug/L	0.50 U	0.50 U		40	
Bromomethane	ug/L	0.50 U	0.50 U		40	
Carbon disulfide	ug/L	5.0 U	5.0 U		40	
Carbon tetrachloride	ug/L	0.50 U	0.50 U		40	
Chlorobenzene	ug/L	0.50 U	0.50 U		40	
Chloroethane	ug/L	0.50 U	0.50 U		40	
Chloroform	ug/L	0.50 U	0.50 U		40	
Chloromethane	ug/L	0.62 U	0.62 U		40	
cis-1,2-Dichloroethene	ug/L	0.50 U	0.50 U		40	
cis-1,3-Dichloropropene	ug/L	0.25 U	0.25 U		40	
Dibromochloromethane	ug/L	0.26 U	0.26 U		40	
Dibromomethane	ug/L	0.50 U	0.50 U		40	
Ethylbenzene	ug/L	0.50 U	0.50 U		40	
lodomethane	ug/L	0.50 U	0.50 U		40	
Isopropylbenzene (Cumene)	ug/L	0.50 U	0.50 U		40)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

SAMPLE DUPLICATE: 2393714						
		35386065001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene	ug/L	1.0 U	1.0 U		40	
Methyl-tert-butyl ether	ug/L	0.50 U	0.50 U		40	
Methylene Chloride	ug/L	2.5 U	2.5 U		40	
o-Xylene	ug/L	0.50 U	0.50 U		40	
Styrene	ug/L	0.50 U	0.50 U		40	
Tetrachloroethene	ug/L	0.50 U	0.50 U		40	
Toluene	ug/L	0.50 U	0.50 U		40	
trans-1,2-Dichloroethene	ug/L	0.50 U	0.50 U		40	
trans-1,3-Dichloropropene	ug/L	0.25 U	0.25 U		40	
trans-1,4-Dichloro-2-butene	ug/L	5.0 U	5.0 U		40	
Trichloroethene	ug/L	0.50 U	0.50 U		40	
Trichlorofluoromethane	ug/L	0.50 U	0.50 U		40	
Vinyl acetate	ug/L	1.0 U	1.0 U		40	
Vinyl chloride	ug/L	0.50 U	0.50 U		40	
Xylene (Total)	ug/L	1.5 U	1.5 U		40	
1,2-Dichloroethane-d4 (S)	%	107	107	0	40	
4-Bromofluorobenzene (S)	%	98	97	0	40	
Toluene-d8 (S)	%	99	99	0	40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

QC Batch: 440828 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAHLV by SIM MSSV

Associated Lab Samples: 35386065001

METHOD BLANK: 2392589 Matrix: Water

Associated Lab Samples: 35386065001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	0.032 U	2.0	0.032	04/19/18 16:52	
2-Methylnaphthalene	ug/L	0.11 U	2.0	0.11	04/19/18 16:52	
Acenaphthene	ug/L	0.013 U	0.50	0.013	04/19/18 16:52	
Acenaphthylene	ug/L	0.012 U	0.50	0.012	04/19/18 16:52	
Anthracene	ug/L	0.012 U	0.50	0.012	04/19/18 16:52	
Benzo(a)anthracene	ug/L	0.055 U	0.10	0.055	04/19/18 16:52	
Benzo(a)pyrene	ug/L	0.020 U	0.10	0.020	04/19/18 16:52	
Benzo(b)fluoranthene	ug/L	0.027 U	0.10	0.027	04/19/18 16:52	
Benzo(g,h,i)perylene	ug/L	0.042 U	0.50	0.042	04/19/18 16:52	
Benzo(k)fluoranthene	ug/L	0.023 U	0.50	0.023	04/19/18 16:52	
Chrysene	ug/L	0.026 U	0.50	0.026	04/19/18 16:52	
Dibenz(a,h)anthracene	ug/L	0.13 U	0.15	0.13	04/19/18 16:52	
Fluoranthene	ug/L	0.018 U	0.50	0.018	04/19/18 16:52	
Fluorene	ug/L	0.016 U	0.50	0.016	04/19/18 16:52	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	0.15	0.12	04/19/18 16:52	
Naphthalene	ug/L	0.048 U	2.0	0.048	04/19/18 16:52	
Phenanthrene	ug/L	0.018 U	0.50	0.018	04/19/18 16:52	
Pyrene	ug/L	0.019 U	0.50	0.019	04/19/18 16:52	
2-Fluorobiphenyl (S)	%	84	33-101		04/19/18 16:52	
p-Terphenyl-d14 (S)	%	95	38-115		04/19/18 16:52	

ABORATORY CONTROL SAMPLE:	2392590					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
-Methylnaphthalene	ug/L		4.7	93	33-118	
-Methylnaphthalene	ug/L	5	4.3	87	34-104	
cenaphthene	ug/L	5	5.0	99	38-109	
cenaphthylene	ug/L	5	4.5	90	31-115	
Anthracene	ug/L	5	5.2	105	38-111	
Benzo(a)anthracene	ug/L	5	6.0	120	36-110	J(L1)
Senzo(a)pyrene	ug/L	5	5.5	110	27-107	J(L1)
enzo(b)fluoranthene	ug/L	5	5.6	112	32-119	
enzo(g,h,i)perylene	ug/L	5	4.9	99	10-109	
enzo(k)fluoranthene	ug/L	5	6.2	124	28-118	J(L1)
hrysene	ug/L	5	6.5	130	33-130	
ibenz(a,h)anthracene	ug/L	5	5.2	104	10-104	
luoranthene	ug/L	5	5.2	104	45-115	
luorene	ug/L	5	5.0	101	41-114	
deno(1,2,3-cd)pyrene	ug/L	5	4.9	98	10-104	
aphthalene	ug/L	5	4.3	86	38-100	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

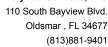
LABORATORY CONTROL SAMPLE:	2392590					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L		5.3	106	41-106	
Pyrene	ug/L	5	5.2	104	45-115	
2-Fluorobiphenyl (S)	%			81	33-101	
p-Terphenyl-d14 (S)	%			91	38-115	

MATRIX SPIKE SAMPLE:	2393609						
		35386029003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L	0.41 I	5	4.9	91	33-118	
2-Methylnaphthalene	ug/L	0.15 I	5	4.3	84	34-104	
Acenaphthene	ug/L	0.038 1	5	4.8	94	38-109	
Acenaphthylene	ug/L	0.012 U	5	4.3	87	31-115	
Anthracene	ug/L	0.012 U	5	5.1	102	38-111	
Benzo(a)anthracene	ug/L	0.055 U	5	5.9	117	36-110	J(M0)
Benzo(a)pyrene	ug/L	0.020 U	5	5.3	106	27-107	
Benzo(b)fluoranthene	ug/L	0.027 U	5	5.3	106	32-119	
Benzo(g,h,i)perylene	ug/L	0.042 U	5	5.5	109	10-109	
Benzo(k)fluoranthene	ug/L	0.023 U	5	5.6	111	28-118	
Chrysene	ug/L	0.026 U	5	6.1	121	33-130	
Dibenz(a,h)anthracene	ug/L	0.13 U	5	5.8	116	10-104	J(M1)
Fluoranthene	ug/L	0.018 U	5	5.3	105	45-115	
Fluorene	ug/L	0.016 U	5	4.9	98	41-114	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	5	5.6	112	10-104	J(M1)
Naphthalene	ug/L	0.45 I	5	4.5	80	38-100	
Phenanthrene	ug/L	0.035 I	5	5.1	102	41-106	
Pyrene	ug/L	0.019 U	5	5.2	104	45-115	
2-Fluorobiphenyl (S)	%				78	33-101	
p-Terphenyl-d14 (S)	%				92	38-115	

SAMPLE DUPLICATE: 2393547						
		35386029002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1-Methylnaphthalene	ug/L	0.032 U	0.032 U		40	
2-Methylnaphthalene	ug/L	0.11 U	0.11 U		40	
Acenaphthene	ug/L	0.013 U	0.013 U		40	
Acenaphthylene	ug/L	0.012 U	0.012 U		40	
Anthracene	ug/L	0.012 U	0.012 U		40	
Benzo(a)anthracene	ug/L	0.055 U	0.055 U		40	
Benzo(a)pyrene	ug/L	0.020 U	0.020 U		40	
Benzo(b)fluoranthene	ug/L	0.027 U	0.027 U		40	
Benzo(g,h,i)perylene	ug/L	0.042 U	0.042 U		40	
Benzo(k)fluoranthene	ug/L	0.023 U	0.023 U		40	
Chrysene	ug/L	0.026 U	0.026 U		40	
Dibenz(a,h)anthracene	ug/L	0.13 U	0.13 U		40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA


Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

SAMPLE DUPLICATE: 2393547 35386029002 Dup Max RPD Parameter Units Result Result **RPD** Qualifiers 0.018 U 0.018 U Fluoranthene ug/L 40 0.016 U 0.016 U 40 Fluorene ug/L 0.12 U Indeno(1,2,3-cd)pyrene ug/L 0.12 U 40 Naphthalene ug/L 0.053 I 0.14 I 40 Phenanthrene ug/L 0.018 U 0.018 U 40 0.019 U Pyrene ug/L 0.019 U 40 74 9 2-Fluorobiphenyl (S) % 68 p-Terphenyl-d14 (S) % 84 79 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35386065

QC Batch: 441139

QC Batch Method: EPA 3510

Analysis Method:

FL-PRO

Analysis Description: FL-PRO Water Low Volume

Associated Lab Samples: 35386065001

METHOD BLANK: 2394098

Matrix: Water

Associated Lab Samples: 35386065001

Date: 05/10/2018 06:56 PM

D		Blank	Reporting	MDI		0 115
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Petroleum Range Organics	mg/L	0.80 U	1.0	0.80	04/20/18 15:48	P2
N-Pentatriacontane (S)	%	84	42-159		04/20/18 15:48	
o-Terphenyl (S)	%	62	82-142		04/20/18 15:48	J(S0)

LABORATORY CONTROL SAMPLE: 2394099 Spike LCS LCS % Rec Limits Parameter Units Conc. Result % Rec Qualifiers Petroleum Range Organics mg/L 5 4.6 93 55-118 N-Pentatriacontane (S) % 113 42-159 o-Terphenyl (S) % 92 82-142

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	ATE: 23947	72		2394773							
			MS	MSD								
	3	35386065001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Petroleum Range Organics	mg/L	0.80 U	5	5.1	3.4	3.9	64	72	41-101	13	20	
N-Pentatriacontane (S)	%						86	95	42-159			
o-Terphenyl (S)	%						67	79	82-142			J(S5)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Safety Kleen Facility

Pace Project No.: 35386065

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/10/2018 06:56 PM

1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
U	Compound was analyzed for but not detected.
J(L1)	Estimated Value. Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
J(M0)	Estimated Value. Matrix spike recovery was outside laboratory control limits.
J(M1)	Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
J(S0)	Estimated Value. Surrogate recovery outside laboratory control limits.
J(S1)	Estimated Value. Surrogate recovery outside laboratory control limits (confirmed by re-analysis).
J(S5)	Estimated Value. Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).
N2	The lab does not hold NELAC/TNI accreditation for this parameter.
P2	Re-extraction or re-analysis could not be performed due to insufficient sample amount.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Safety Kleen Facility

Pace Project No.: 35386065

Date: 05/10/2018 06:56 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35386065001	MW-2R-041318	EPA 3510	441139	FL-PRO	441323
35386065001	MW-2R-041318	EPA 200.8	440341	EPA 200.8	440468
35386065002	MW-1-041318	EPA 200.8	440341	EPA 200.8	440468
35386065003	MW-3-041318	EPA 200.8	440594	EPA 200.8	440604
35386065001	MW-2R-041318	EPA 3510	440828	EPA 8270 by SIM	441381
35386065001	MW-2R-041318	EPA 8260	440900		
35386065004	Trip Blank	EPA 8260	440900		

CHAIN-OF-CUSTODY / Analytical Request Doc WO#: 35386065 The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be

Address: Suite 115, Email: Phone: Requested Section A
Required Client Information:
Company: ECT 1408 N. Westshore Blvd. Section B
Required Project Information:
Report To: - SHOK STEBNISKY KOMM (NOVIDE)
Copy To: Section C
Invoice Information:
Attention:
Company Name:

Custody Sealed Cooler (Y/N) Samples ntact (Y/N)	TEMP in C Received on		©	DATE Signed: 4-13-1	5	ed:	Sign	PATE	-	(3	TOWN SMUMSON	200	35	25	IT h	33	2/2	n m	R. R. ATUR	AMPLE	PRINT NAME AND SIGNATUPING NAME OF SAMPLER:	ER NAN	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER:						1		
7	<u>ن</u> ز	377	our	11316	12			1	2	C)	1	14	*	1/2	1-		St	200	20	-13-18	12	3	1018	-		The same					
	727	2	09/160	3/26/10	ساء		5	0	(03	Men	0 5	1 5	18	14		2530	00	X S	hells	22/23	7	7	of the same	1	10	King	tainers	Empty Containers	Emp	
SAMPLE CONDITIONS	SAM	TIME	711	DATE		H		TION	ACCEPTED BY / AFFILIATION	// AF	D BY	EPTI	ACC		1		TIME	=		DATE		ON.	RELINQUISHED BY / AFFILIATION	D BY / A	HSIU	ELING	5			ADDITIONAL COMMENTS	ADDITIONAL
Annual operating Permut number Tw-000333-2017/2019	Residual Chlorine (Y/N)			FL PRO MS/MSD	8270 Full list plus PAHs	FL Pro Low Volume for Metals 200.8 Ag,Cd,Cr,F	8270 Full list plus PAHs	8260 Full List	Trip BLANK	Analyses Test	Other	Methanol	Na2S2O3	NaOH	HCI	HN03	H2SO4	# OF CONTAINERS	SAMPLE TEMP AT COLLE	TIME	ž.	DATE	START	DATE	SAMPLE TYPE (G=GRA	MATRIX CODE (see valid	2 d & & 6 & b &	olid Water	Waste Produc Soil/Sc Oil Wipa Air Other Tissue	EID er box. -) be unique	SAMPLE ID One Character per box. (A-Z, 0-9/, -) Sample Ids must be unique
	>		Analysis Filtered (YIN)	/sis Filte	AS/	/ate	/ate Requested	7		Y/N			Preservatives	⊣ÿa	rese	⊢ _v I			CTION C			COLLECTED	COLI		C=COMP)		CODE	MATRIX Drinking Water	MA Drii		
	FL			_				,		1	JK.	Н	le 1	9321 line 1	93	#:	Pace Profile #:	ace	_		П		108	180212-1801	1	MI	Project #:	Proj			ed Due Date:
ation	State / Location				М			om,	lori.palmer@pacelabs.com,	pace	ner@	pain	lori	ñ	nage	ct Ma	Pace Project Manager:	ace	-	М	еу	n Medie		Kleen	Safety	1	Project Name:		Fax 813-289-9389	FaxBu3-	(813) 289-9338
Agency	Regulatory Agency			4				М	Ш							in	Pace Quote:	Pace Quo	77 3			108	2-18	8021	5	der #:	Purchase Order #:		×	eetine .com	0
								П								lame	Company Name:	Comp								ľ	Copy To:	cop		Blvd.	5. Tampa, FL 33607

ITEM#

= 12

10 9

8 7 6 5 4 ω N

Document Name: Sample Condition Upon Receipt Form Document No.: F-FL-C-007 rev. 12

Document Revised: August 2, 2017 Issuing Authority: Pace Florida Quality Office

Sample Condition Upon Receipt Form (SCUR)

Project #	WO#: 353860	065	Date and Initials of person:
Project Manager: Client:	PM: LAP Due Da CLIENT: 37-ECTTAM	te: 04/23/18	Examining contents: Label: Deliver: PH:
Thermometer Used: T-203	Date: 4 1 3	18 Time: 18	525 Injitrals: MVC
State of Origin: FL			
Cooler #1 Temp.°c 1. 3 (Visual)	0.0 (Correction Factor)	(Actual)	Samples on ice, cooling process has begun
Cooler #2 Temp.°C(Visual)			Samples on ice, cooling process has begun
Cooler #3 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun
Cooler #4 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun
Cooler #5 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun
Cooler #6 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun
Shipping Method:	S USPS Client C Priority Overnight Standar Third Party	1	☐ Other d ☐ International Priority ☐ Unknown
Tracking #		intact: Yes No	Ice: Wet Blue Dry None
Custody Seal on Cooler/Box Present:	Bubble Bags None	Other	Ice: Wet Blue Dry None ted Time: Qty:
Custody Seal on Cooler/Box Present: Packing Material: □Bubble Wrap Samples shorted to lab (If Yes, comple	Bubble Bags None	OtherShor	
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Samples shorted to lab (If Yes, complete) Chain of Custody Present	Bubble Bags None Co	OtherShor	
Custody Seal on Cooler/Box Present: Packing Material: □Bubble Wrap Samples shorted to lab (If Yes, complete) Chain of Custody Present Chain of Custody Filled Out	Bubble Bags None Content Shorted Date: Yes No No N/A	OtherShor	
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Samples shorted to lab (If Yes, complete Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name	Bubble Bags None Content Shorted Date: Yes No No N/A	OtherShor	
Custody Seal on Cooler/Box Present: Packing Material: □ Bubble Wrap Camples shorted to lab (If Yes, complete Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Camples Arrived within Hold Time	Bubble Bags None Costee Shorted Date: Yes No No N/A Yes No No N/A COC Yes No N/A	OtherShor	
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Samples shorted to lab (If Yes, complete Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Samples Arrived within Hold Time Rush TAT requested on COC	Bubble Bags None Coc No	OtherShor	
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Samples shorted to lab (If Yes, complete Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume	Bubble Bags	OtherShor	
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Samples shorted to lab (If Yes, complete Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs & da	Bubble Bags None Coeffee Shorted Date: Shorted Date: No N/A Pes No N/A	OtherShor	ted Time: Qty:
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Samples shorted to lab (If Yes, complete Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs & date collection) MI containers needing acid/base preservation	Bubble Bags None Coeffee Shorted Date: Shorted Date: No N/A Pes No N/A New been New beat New beat	Comments: Hay Used Preservation	
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Camples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Cample Labels match COC (sample IDs & da collection) Ill containers needing acid/base preservation hecked. Ill Containers needing preservation are found ompliance with EPA recommendation:	Shorted Date: Yes No N/A	Comments: Shore Comments: Preservative: Lot #/Trace #: Date:	Start time Not Ent two
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Camples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Compliance Sample IDs & day Containers needing acid/base preservation hecked. Ill Containers needing preservation are found ompliance with EPA recommendation: Exceptions: VOA, Coliform,	Shorted Date: Yes No N/A	Comments: Preservative: Lot #/Trace #:	Start Time Not End to
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Samples shorted to lab (If Yes, complete Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs & daionlection) It containers needing acid/base preservation thecked. It Containers needing preservation are found to compliance with EPA recommendation: Exceptions: VOA, Coliform, Headspace in VOA Vials? (>6mm):	Bubble Bags None Coeffee Shorted Date:	Comments: Shore Comments: Preservative: Lot #/Trace #: Date:	Start Time Not End to
Custody Seal on Cooler/Box Present: Packing Material: Bubble Wrap Samples shorted to lab (If Yes, complete Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Name Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (sample IDs & dai collection) All containers needing acid/base preservation checked. All Containers needing preservation are found compliance with EPA recommendation:	Bubble Bags None Coete Shorted Date: S	Comments: Shore Comments: Preservative: Lot #/Trace #: Date:	Start Time Not End to

ANALYTICAL REPORT

Pace Analytical - Ormond Beach, FL

Sample Delivery Group: L986311

Samples Received: 04/17/2018

Project Number: 35386065

Description: Safety Kleen Facility

Report To: Lori Palmer

8 E. Tower Circle

Ormond Beach, FL 32174

Entire Report Reviewed By: War F. McLain

Nancy McLain

Results relate only to the items tested or cultivated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Whese applicable, sampling conducted by ESCs performed per guidance provided in laboratory saminard operating procedures. 06/302, 56/303, and 06/304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-2R-041318 L986311-01	5
Qc: Quality Control Summary	7
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	7
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

MW-2R-041318 L986311-01 GW			Collected by	Collected date/time 04/13/18 10:49	Received date/time 04/17/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1099358	1	04/18/18 23:35	04/20/18 00:31	AO
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1099358	1	04/18/18 23:35	04/25/18 17:41	AO

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that

Technical Service Representative

would affect the quality of the data.

SAN

³Ss

Cn

Qc

GI

Sc

Collected date/time: 04/13/18 10:49

MPLE RESULTS - 01	ONE LAB. NATIONWI
L986311	

Semi Volatile Orga	nic Comp	oounds (G	iC/MS) by	Method 8	3270C			
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Acenaphthene	0.316	U	0.316	1.00	1	04/20/2018 00:31	WG1099358	
Acenaphthylene	0.309	U	0.309	1.00	1	04/20/2018 00:31	WG1099358	
Aniline	2.43	U	2.43	10.0	1	04/20/2018 00:31	WG1099358	
Anthracene	0.291	<u>U</u>	0.291	1.00	1	04/20/2018 00:31	WG1099358	
Benzyl alcohol	0.393	U	0.393	10.0	1	04/20/2018 00:31	WG1099358	
Benzidine	4.32	<u>U</u>	4.32	10.0	1	04/20/2018 00:31	WG1099358	
Benzo(a)anthracene	0.0970	<u>U</u>	0.0970	1.00	1	04/20/2018 00:31	WG1099358	
Benzo(b)fluoranthene	0.141	<u> </u>	0.0890	1.00	1	04/20/2018 00:31	WG1099358	
Benzo(k)fluoranthene	0.355	<u>U</u>	0.355	1.00	1	04/20/2018 00:31	WG1099358	
Benzo(g,h,i)perylene	0.161	<u>U</u>	0.161	1.00	1	04/20/2018 00:31	WG1099358	
Benzo(a)pyrene	0.340	<u>U</u>	0.340	1.00	1	04/20/2018 00:31	WG1099358	
Bis(2-chlorethoxy)methane	0.329	<u>U</u>	0.329	10.0	1	04/20/2018 00:31	WG1099358	
Bis(2-chloroethyl)ether	1.62	<u>U</u>	1.62	10.0	1	04/20/2018 00:31	WG1099358	
Bis(2-chloroisopropyl)ether	0.445	<u>U</u>	0.445	10.0	1	04/20/2018 00:31	WG1099358	
4-Bromophenyl-phenylether	0.335	<u>U</u>	0.335	10.0	1	04/20/2018 00:31	WG1099358	
Caprolactam	2.59	<u>U</u>	2.59	10.0	1	04/20/2018 00:31	WG1099358	
Carbazole	0.260	<u>U</u>	0.260	10.0	1	04/20/2018 00:31	WG1099358	
Chrysene	0.332	<u>U</u>	0.332	1.00	1	04/20/2018 00:31	WG1099358	
Dibenz(a,h)anthracene	0.279	<u>U</u>	0.279	1.00	1	04/20/2018 00:31	WG1099358	
4-Chloroaniline	0.382	<u>U</u>	0.382	10.0	1	04/20/2018 00:31	WG1099358	
2-Chloronaphthalene	0.330	<u>U</u>	0.330	1.00	1	04/20/2018 00:31	WG1099358	
4-Chlorophenyl-phenylether	0.303	<u>U</u>	0.303	10.0	1	04/20/2018 00:31	WG1099358	
3,3-Dichlorobenzidine	2.02	<u>U</u>	2.02	10.0	1	04/20/2018 00:31	WG1099358	
2,4-Dinitrotoluene	1.65	<u>U</u>	1.65	10.0	1	04/20/2018 00:31	WG1099358	
2,6-Dinitrotoluene	0.279	<u>U</u>	0.279	10.0	1	04/20/2018 00:31	WG1099358	
Dibenzofuran	0.338	<u>U</u>	0.338	10.0	1	04/20/2018 00:31	WG1099358	
2-Nitroaniline	1.90	<u>U</u>	1.90	10.0	1	04/20/2018 00:31	WG1099358	
3-Nitroaniline	0.308	<u>U</u>	0.308	10.0	1	04/20/2018 00:31	WG1099358	
4-Nitroaniline	0.349	<u>U</u>	0.349	10.0	1	04/20/2018 00:31	WG1099358	
Fluorene	0.323	<u>U</u>	0.323	1.00	1	04/20/2018 00:31	WG1099358	
Fluoranthene	0.310	<u>U</u>	0.310	1.00	1	04/20/2018 00:31	WG1099358	
Hexachloro-1,3-butadiene	0.329	<u>U</u>	0.329	10.0	1	04/20/2018 00:31	WG1099358	
Hexachlorobenzene	0.341	<u>U</u>	0.341	1.00	1	04/20/2018 00:31	WG1099358	
Hexachlorocyclopentadiene	2.33	<u>U</u>	2.33	10.0	1	04/20/2018 00:31	WG1099358	
Hexachloroethane	0.365	<u>U</u>	0.365	10.0	1	04/20/2018 00:31	WG1099358	
Indeno(1,2,3-cd)pyrene	0.279	<u>U</u>	0.279	1.00	1	04/20/2018 00:31	WG1099358	
Isophorone	0.272	<u>U</u>	0.272	10.0	1	04/20/2018 00:31	WG1099358	
1-Methylnaphthalene	0.332	<u>U</u>	0.332	1.00	1	04/20/2018 00:31	WG1099358	
2-Methylnaphthalene	0.311	<u>U</u>	0.311	1.00	1	04/20/2018 00:31	WG1099358	
Pyridine	1.37	<u>U</u>	1.37	10.0	1	04/20/2018 00:31	WG1099358	
Phenanthrene	0.366	U	0.366	1.00	1	04/20/2018 00:31	WG1099358	
Pyrene	0.330	<u>U</u>	0.330	1.00	1	04/20/2018 00:31	WG1099358	
Naphthalene	0.372	U	0.372	1.00	1	04/20/2018 00:31	WG1099358	
Nitrobenzene	0.367	U	0.367	10.0	1	04/20/2018 00:31	WG1099358	
1,2-Dichlorobenzene	3.29	<u>U</u>	3.29	10.0	1	04/20/2018 00:31	WG1099358	
1,3-Dichlorobenzene	0.383	<u>U</u>	0.383	10.0	1	04/20/2018 00:31	WG1099358	
1,4-Dichlorobenzene	0.401	U	0.401	10.0	1	04/20/2018 00:31	WG1099358	
n-Nitrosodimethylamine	1.26	U	1.26	10.0	1	04/20/2018 00:31	WG1099358	
n-Nitrosodiphenylamine	0.304	<u>U</u>	0.304	10.0	1	04/20/2018 00:31	WG1099358	
n-Nitrosodi-n-propylamine	0.403	U	0.403	10.0	1	04/20/2018 00:31	WG1099358	
Benzylbutyl phthalate	0.275	<u>U</u>	0.275	3.00	1	04/20/2018 00:31	WG1099358	
Bis(2-ethylhexyl)phthalate	0.741	<u> </u>	0.709	3.00	1	04/20/2018 00:31	WG1099358	
Di-n-butyl phthalate	0.790	<u> </u>	0.266	3.00	1	04/20/2018 00:31	WG1099358	
Diethyl phthalate	0.282	<u>U</u>	0.282	3.00	1	04/20/2018 00:31	WG1099358	
Dimethyl phthalate	0.283	<u>U</u>	0.283	3.00	1	04/20/2018 00:31	WG1099358	
Di-n-octyl phthalate	0.278	<u>U</u>	0.278	3.00	1	04/20/2018 00:31	<u>WG1099358</u>	Page 32 of 45
								Faye 32 01 43

(S) p-Terphenyl-d14

82.6

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 04/13/18 10:49

L986311

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

								— l¹
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
1,2,4-Trichlorobenzene	0.355	<u>U</u>	0.355	10.0	1	04/20/2018 00:31	WG1099358	
4-Chloro-3-methylphenol	0.263	<u>U</u>	0.263	10.0	1	04/20/2018 00:31	WG1099358	
2-Chlorophenol	0.283	<u>U</u>	0.283	10.0	1	04/20/2018 00:31	WG1099358	E
2,4-Dichlorophenol	0.284	<u>U</u>	0.284	10.0	1	04/20/2018 00:31	WG1099358	
2,4-Dimethylphenol	0.624	<u>U</u>	0.624	10.0	1	04/20/2018 00:31	WG1099358	
4,6-Dinitro-2-methylphenol	2.62	<u>U</u>	2.62	10.0	1	04/20/2018 00:31	WG1099358	4
2,4-Dinitrophenol	3.25	<u>U</u>	3.25	10.0	1	04/20/2018 00:31	WG1099358	
2-Methylphenol	0.312	<u>U</u>	0.312	10.0	1	04/20/2018 00:31	WG1099358	
3&4-Methyl Phenol	0.266	<u>U</u>	0.266	10.0	1	04/20/2018 00:31	WG1099358	
1,2-Diphenylhydrazine	0.318	<u>U</u>	0.318	10.0	1	04/20/2018 00:31	WG1099358	
2-Nitrophenol	0.320	<u>U</u>	0.320	10.0	1	04/20/2018 00:31	WG1099358	
4-Nitrophenol	2.01	<u>U</u>	2.01	10.0	1	04/20/2018 00:31	WG1099358	
Pentachlorophenol	0.313	<u>U</u>	0.313	10.0	1	04/20/2018 00:31	WG1099358	F
Phenol	0.334	U	0.334	10.0	1	04/20/2018 00:31	WG1099358	
2,3,4,6-Tetrachlorophenol	2.00	<u>U</u>	2.00	10.0	1	04/20/2018 00:31	WG1099358	_ [
2,4,5-Trichlorophenol	0.236	U	0.236	10.0	1	04/20/2018 00:31	WG1099358	
2,4,6-Trichlorophenol	0.297	<u>U</u>	0.297	10.0	1	04/20/2018 00:31	WG1099358	
1,3-Dinitrobenzene	0.359	<u>U</u>	0.359	10.0	1	04/25/2018 17:41	WG1099358	
(S) 2-Fluorophenol	47.2			10.0-120		04/20/2018 00:31	WG1099358	
(S) Phenol-d5	37.9			10.0-120		04/20/2018 00:31	WG1099358	L
(S) Nitrobenzene-d5	58.3			10.0-126		04/20/2018 00:31	WG1099358	
(S) 2-Fluorobiphenyl	64.8			22.0-127		04/20/2018 00:31	WG1099358	
(S) 2,4,6-Tribromophenol	86.3			10.0-153		04/20/2018 00:31	WG1099358	

29.0-141

WG1099358

04/20/2018 00:31

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L986311-01

Method Blank (MB)

(MB) R3303265-3 04/19/	18 15:53				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acenaphthene	0.316	U	0.316	1.00	
Acenaphthylene	0.309	<u>U</u>	0.309	1.00	
Aniline	2.43	<u>U</u>	2.43	10.0	
Anthracene	0.291	<u>U</u>	0.291	1.00	
Benzidine	4.32		4.32	10.0	
Benzo(a)anthracene	0.0970	<u>U</u>	0.0970	1.00	
Benzo(b)fluoranthene	0.0890	<u>U</u>	0.0890	1.00	
Benzo(k)fluoranthene	0.355	<u>U</u>	0.355	1.00	
Benzo(g,h,i)perylene	0.161	<u>U</u>	0.161	1.00	
Benzo(a)pyrene	0.340	<u>U</u>	0.340	1.00	
Bis(2-chlorethoxy)methane	0.329	<u>U</u>	0.329	10.0	
Bis(2-chloroethyl)ether	1.62	U	1.62	10.0	
Bis(2-chloroisopropyl)ether	0.445	U	0.445	10.0	
4-Bromophenyl-phenylether	0.335	<u>U</u>	0.335	10.0	
2-Chloronaphthalene	0.330	<u>U</u>	0.330	1.00	
4-Chlorophenyl-phenylether	0.303	<u>U</u>	0.303	10.0	
Chrysene	0.332	<u>U</u>	0.332	1.00	
Dibenz(a,h)anthracene	0.279	<u>U</u>	0.279	1.00	
Caprolactam	2.59	<u>U</u>	2.59	10.0	
Carbazole	0.260	<u>U</u>	0.260	10.0	
4-Chloroaniline	0.382	<u>U</u>	0.382	10.0	
3,3-Dichlorobenzidine	2.02	<u>U</u>	2.02	10.0	
2,4-Dinitrotoluene	1.65	<u>U</u>	1.65	10.0	
2,6-Dinitrotoluene	0.279	<u>U</u>	0.279	10.0	
Fluoranthene	0.310	<u>U</u>	0.310	1.00	
Dibenzofuran	0.338	<u>U</u>	0.338	10.0	
Fluorene	0.323	<u>U</u>	0.323	1.00	
1,2-Dichlorobenzene	3.29	<u>U</u>	3.29	10.0	
Hexachlorobenzene	0.341	<u>U</u>	0.341	1.00	
l,3-Dichlorobenzene	0.383	<u>U</u>	0.383	10.0	
Hexachloro-1,3-butadiene	0.329	<u>U</u>	0.329	10.0	
l,4-Dichlorobenzene	0.401	<u>U</u>	0.401	10.0	
Hexachlorocyclopentadiene	2.33	<u>U</u>	2.33	10.0	
Hexachloroethane	0.365	U	0.365	10.0	
ndeno(1,2,3-cd)pyrene	0.279	<u>U</u>	0.279	1.00	
Isophorone	0.272	<u>U</u>	0.272	10.0	
Naphthalene	0.372	<u>U</u>	0.372	1.00	
Nitrobenzene	0.367	<u>U</u>	0.367	10.0	
n-Nitrosodimethylamine	1.26	U	1.26	10.0	
n-Nitrosodiphenylamine	0.304	U	0.304	10.0 Page 3	

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

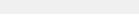
Method Blank (MB)

Method Blank (ME	·)				
(MB) R3303265-3 04/19/	/18 15:53				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
n-Nitrosodi-n-propylamine	0.403	U	0.403	10.0	
Phenanthrene	0.366	U	0.366	1.00	
Benzylbutyl phthalate	0.275	U	0.275	3.00	
Bis(2-ethylhexyl)phthalate	0.709	U	0.709	3.00	
Di-n-butyl phthalate	0.266	<u>U</u>	0.266	3.00	
1-Methylnaphthalene	0.332	<u>U</u>	0.332	1.00	
Diethyl phthalate	0.282	U	0.282	3.00	
2-Methylnaphthalene	0.311	U	0.311	1.00	
Dimethyl phthalate	0.283	U	0.283	3.00	
Di-n-octyl phthalate	0.278	U	0.278	3.00	
2-Nitroaniline	1.90	U	1.90	10.0	
Pyrene	0.330	U	0.330	1.00	
1,2,4-Trichlorobenzene	0.355	U	0.355	10.0	
3-Nitroaniline	0.308	U	0.308	10.0	
4-Nitroaniline	0.349	<u>U</u>	0.349	10.0	
1,2-Diphenylhydrazine	0.318	U	0.318	10.0	
4-Chloro-3-methylphenol	0.263	U	0.263	10.0	
2-Chlorophenol	0.283	U	0.283	10.0	
2-Nitrophenol	0.320		0.320	10.0	
4-Nitrophenol	2.01	<u>U</u>	2.01	10.0	
Pentachlorophenol	0.313	<u>U</u>	0.313	10.0	
Phenol	0.334	U	0.334	10.0	
2,4,6-Trichlorophenol	0.297	<u>U</u>	0.297	10.0	
Pyridine	1.37	U	1.37	10.0	
Benzyl Alcohol	0.393	U	0.393	10.0	
2,4-Dichlorophenol	0.284	U	0.284	10.0	
2,4-Dimethylphenol	0.624	U	0.624	10.0	
2-Methylphenol	0.312	U	0.312	10.0	
3&4-Methyl Phenol	0.266	U	0.266	10.0	
4,6-Dinitro-2-methylphenol	2.62	U	2.62	10.0	
2,4-Dinitrophenol	3.25	U	3.25	10.0	
2,3,4,6-Tetrachlorophenol	2.00	<u>U</u>	2.00	10.0	
2,4,5-Trichlorophenol	0.236	<u>U</u>	0.236	10.0	
(S) Nitrobenzene-d5	61.4			10.0-126	
(S) 2-Fluorobiphenyl	68.0			22.0-127	
(S) p-Terphenyl-d14	81.5			29.0-141	
(S) Phenol-d5	39.6			10.0-120	
(S) 2-Fluorophenol	53.7			10.0-120	
(S) 2,4,6-Tribromophenol	71.5			10.0-153	

PAGE: 8 of 18

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C


Method Blank (MB)

1,3-Dinitrobenzene

(MB) R3305001-1 04/25/18	16:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l

U

0.359

2_	
l C	l

3	
~ C ~	
25	

Laboratory	/ Control	Sample	(1 CS)	 Laborator 	v Control	Sample D	unlicate	(LCSD)
Laborator		Julipic		Laborator	y Corruor	Junpic D	apricate	$(L \cup \cup D)$

0.359

10.0

(LCS) R3303265-1 04/19/	18 15:04 • (LCSE	D) R3303265-2	2 04/19/18 15:2	8						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acenaphthene	50.0	38.1	38.4	76.2	76.9	42.0-120			0.799	22
Acenaphthylene	50.0	39.6	38.5	79.2	77.0	43.0-120			2.76	22
Anthracene	50.0	35.9	37.7	71.9	75.4	44.0-120			4.78	20
Benzidine	50.0	13.2	14.5	26.4	29.0	1.00-120			9.40	36
Benzo(a)anthracene	50.0	40.0	42.0	79.9	83.9	44.0-120			4.85	20
Benzo(b)fluoranthene	50.0	41.5	42.5	83.1	84.9	40.0-120			2.18	21
Senzo(k)fluoranthene	50.0	39.0	39.7	77.9	79.4	41.0-120			1.81	22
Benzo(g,h,i)perylene	50.0	42.4	42.7	84.8	85.4	45.0-121			0.720	20
Benzo(a)pyrene	50.0	40.3	40.8	80.6	81.7	41.0-120			1.33	20
Bis(2-chlorethoxy)methane	50.0	30.7	32.6	61.5	65.2	36.0-120			5.86	25
Bis(2-chloroethyl)ether	50.0	32.6	35.6	65.3	71.1	24.0-120			8.56	29
Bis(2-chloroisopropyl)ether	50.0	30.2	33.7	60.4	67.5	32.0-120			11.0	29
l-Bromophenyl-phenylether	50.0	38.6	39.1	77.2	78.2	42.0-121			1.33	21
-Chloronaphthalene	50.0	35.9	35.0	71.8	70.0	37.0-120			2.45	24
I-Chlorophenyl-phenylether	50.0	38.4	38.9	76.7	77.8	44.0-120			1.32	21
Chrysene	50.0	39.0	40.7	78.0	81.5	45.0-120			4.40	20
Dibenz(a,h)anthracene	50.0	42.3	42.1	84.6	84.1	44.0-121			0.589	21
,3-Dichlorobenzidine	50.0	36.2	38.6	72.4	77.3	29.0-153			6.55	23
,4-Dinitrotoluene	50.0	41.8	41.7	83.6	83.3	47.0-127			0.293	21
,6-Dinitrotoluene	50.0	38.1	39.3	76.1	78.5	42.0-120			3.10	22
Fluoranthene	50.0	40.3	41.3	80.6	82.6	46.0-121			2.51	20
luorene	50.0	40.2	40.3	80.5	80.6	45.0-120			0.202	21
lexachlorobenzene	50.0	38.7	41.4	77.5	82.8	41.0-124			6.62	21
niline	50.0	23.2	24.4	46.4	48.7	10.0-120			4.86	25
lexachloro-1,3-butadiene	50.0	28.7	29.2	57.4	58.4	26.0-120			1.66	31
Hexachlorocyclopentadiene	50.0	31.1	32.2	62.3	64.3	10.0-120			3.27	31
lexachloroethane	50.0	31.5	32.5	63.0	64.9	22.0-120			3.02	34
ndeno(1,2,3-cd)pyrene	50.0	44.0	45.4	88.1	90.7	45.0-123			3.00	21
sophorone	50.0	35.3	36.5	70.5	73.1	37.0-120			3.56	24
laphthalene	50.0	28.7	29.5	57.4	59.0	33.0-120			2.81	28
Nitrobenzene	50.0	31.8	32.1	63.6	64.2	31.0-120			0.863	28
n-Nitrosodimethylamine	50.0	20.4	24.3	40.8	48.7	10.0-120			17.6	34

Page 36 of 45

ACCOUNT: Pace Analytical - Ormond Beach, FL PROJECT: 35386065

SDG: L986311

DATE/TIME: 04/26/18 15:45

PAGE: 9 of 18

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

Laboratory Contro						- ()					
(LC3) K3303203-1 04/19/	Spike Amount	•	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	L
Analyte	ug/l	ug/l	ug/l	%	%	%	200 quamer	EGGD Guanner	%	%	
n-Nitrosodiphenylamine	50.0	41.4	42.2	82.7	84.4	44.0-120			2.00	21	L
n-Nitrosodi-n-propylamine	50.0	41.5	44.6	82.9	89.2	29.0-120			7.27	27	3
Phenanthrene	50.0	37.2	39.1	74.4	78.2	42.0-120			4.96	20	
Benzylbutyl phthalate	50.0	40.3	43.4	80.5	86.9	36.0-123			7.56	22	[2
Bis(2-ethylhexyl)phthalate	50.0	42.1	43.7	84.1	87.3	37.0-121			3.79	21	
Di-n-butyl phthalate	50.0	41.3	42.5	82.6	85.1	43.0-122			2.92	21	
Diethyl phthalate	50.0	40.7	41.6	81.3	83.1	48.0-123			2.17	20	
Dimethyl phthalate	50.0	40.9	40.9	81.8	81.7	47.0-120			0.114	20	
Caprolactam	50.0	13.2	13.7	26.4	27.3	10.0-120			3.56	31	
Di-n-octyl phthalate	50.0	43.4	44.4	86.9	88.8	38.0-120			2.14	22	
Carbazole	50.0	44.3	45.6	88.6	91.3	45.0-121			2.91	22	
Pyrene	50.0	40.8	42.0	81.6	83.9	43.0-120			2.74	21	
1,2,4-Trichlorobenzene	50.0	28.7	29.6	57.3	59.2	29.0-120			3.15	29	
4-Chloroaniline	50.0	27.0	28.4	54.0	56.8	23.0-120			5.18	28	
1,2-Diphenylhydrazine	50.0	45.0	45.5	90.0	90.9	37.0-125			0.979	20	
Dibenzofuran	50.0	38.7	38.7	77.3	77.3	42.0-120			0.0185	21	L
1,2-Dichlorobenzene	50.0	31.2	32.9	62.4	65.9	27.0-120			5.41	30	9
4-Chloro-3-methylphenol	50.0	36.7	37.1	73.4	74.2	39.0-120			1.00	22	
1,3-Dichlorobenzene	50.0	30.8	31.6	61.6	63.3	26.0-120			2.76	31	
2-Chlorophenol	50.0	31.9	33.7	63.8	67.5	28.0-120			5.68	29	
1,4-Dichlorobenzene	50.0	30.5	31.7	61.0	63.3	26.0-120			3.77	30	
2,4-Dichlorophenol	50.0	32.9	33.5	65.9	67.0	37.0-120			1.72	26	
2,4-Dimethylphenol	50.0	33.4	35.1	66.9	70.2	35.0-120			4.84	25	
4,6-Dinitro-2-methylphenol	50.0	43.9	47.7	87.8	95.5	34.0-125			8.42	27	
2,4-Dinitrophenol	50.0	37.1	37.2	74.2	74.3	10.0-120			0.126	40	
2-Nitrophenol	50.0	31.3	32.4	62.6	64.9	35.0-120			3.57	28	
4-Nitrophenol	50.0	23.3	24.7	46.7	49.3	10.0-120			5.44	35	
1-Methylnaphthalene	50.0	29.0	29.8	57.9	59.6	33.0-120			2.89	23	
Pentachlorophenol	50.0	39.1	41.0	78.2	81.9	20.0-126			4.67	32	
2-Methylnaphthalene	50.0	28.3	29.7	56.7	59.3	35.0-120			4.59	25	
Phenol	50.0	21.1	22.6	42.2	45.2	10.0-120			6.84	34	
2,4,6-Trichlorophenol	50.0	39.8	39.0	79.6	78.1	40.0-122			2.02	24	
2-Nitroaniline	50.0	39.4	39.3	78.9	78.5	43.0-120			0.438	23	
3-Nitroaniline	50.0	33.5	35.6	66.9	71.2	35.0-123			6.22	25	
4-Nitroaniline	50.0	43.2	45.3	86.3	90.6	23.0-160			4.78	26	
Pyridine	50.0	13.4	13.8	26.8	27.5	10.0-120			2.58	39	
Benzyl Alcohol	50.0	29.9	31.4	59.8	62.7	20.0-120			4.68	22	
2-Methylphenol	50.0	32.4	33.9	64.9	67.9	26.0-120			4.47	27	
3&4-Methyl Phenol	50.0	36.3	38.7	72.6	77.4	27.0-120			6.32	28	
2,4,5-Trichlorophenol	50.0	40.0	41.3	80.0	82.7	44.0-124			3.24	24	

Page 37 of 45

ACCOUNT: Pace Analytical - Ormond Beach, FL PROJECT: 35386065

SDG: L986311

DATE/TIME: 04/26/18 15:45 PAGE: 10 of 18

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L986311-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3303265-1	04/19/18 15:04 • (LCSD) R3303265-2 04/19/18 15:28	
------------------	---	--

\ /	,	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
2,3,4,6-Tetrachlorophenol	50.0	45.1	45.9	90.2	91.8	39.0-122			1.79	28	
(S) Nitrobenzene-d5				63.4	65.7	10.0-126					
(S) 2-Fluorobiphenyl				72.8	73.0	22.0-127					
(S) p-Terphenyl-d14				82.7	83.0	29.0-141					
(S) Phenol-d5				41.8	42.9	10.0-120					
(S) 2-Fluorophenol				58.6	58.7	10.0-120					
(S) 2,4,6-Tribromophenol				77.5	84.1	10.0-153					

Guide to Reading and Understanding Your Laboratory Report

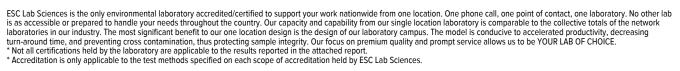
The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
U	Indicates the compound was analyzed for but not detected above the method detection limit.



State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LA000356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Ss

C079

Work	order: 35386065	Workorder Name:	Safety Kleen Fa	cility		Results I	Requested By		L986311
Repor	I/ Invoice To	Subco	ntract To		DESCRIPTION OF REAL PROPERTY.		Requested	Analysis	
110 S Oldsn Phone Email	Analytical Tampa outh Bayview Blvd, nar , FL 34677 a (813)881-9401 : lori.palmer@pacelabs.co			P.O. £15-	999 /	Fey (ist			
State	of Sample Origin: FL			pavies		220			
Item	Sample ID	Collect Date/Time	Lab ID M	atrix 5	1	8		7 4 0 15	LAB USE ONLY
1	MW-2R-041318	4/13/2018 10:49	35386065001 W	ater 3		X	14.12		-01
2	5 15W L	7. Let 1		100			3 2	200	
3			7890	200	1000	111			7 465
4	11 (11 179)								1.00mm/ J.PR
5	104-40	Date/T	ime Received B	V	Date/Tir	me		Comments	1714
Trans	fors Released By			Mens	1 3/6/18	-	ee ou	tached	List
3	les Temperature en Po	ceipt °C	Custody Seal Y	or N	Received o	n Ice Y	or N	Samples In	tact Y or N
C00	er Temperature on Re	серс с	Tracking +	F:7720	0442 80				

3 total

Profile List

PASI Ormond Beach Laboratory

Client 37-ECTTAM

	Profile Number
Amalyte	er 9321
	Line Item
CAS No.	-
POL	7
MDL Units S	www.pacslabs.com

																	8270 WSEP																	And and a supplemental											Moses 1	item Acode	
																	8270 WSEP																	02/01/01/01	The state of										Gunnoece	Cmp List	
naph	1264	24dc	24dm	2nph	1501	nith	hece	nidp	34mp	bis2	2mph	12db	14db	13dc	2cph	bis1	phol		bep2	diba	-	lezf	dze	cho	1	pyre	X	anth	phth	all o	acpl	2002		1	by	dayi	mpxy	word	800	d	9	11.11	t13d	112d	tolu	Cmp	SALIS PROPERTY.
Naphthalene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dimethylphenol	2-Nitrophenol	Isophorone	Nitrobenzene	Hexachlorgethane	N-Nitroso-di-n-propylamine	3&4-Methylphenol(m&p Crasol)	bis(2-Chloroisopropyl) ether	2-Methylphenol(o-Cresol)	1,2-Dichlorobenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	2-Chlorophenol	bis(2-Chloroethyl) ether	Phenol	Search Minority Memory	Benzo(g,h,i)perylene	Diberz(a,b)anthraceng	Indeno(1,2,3-cd)pyrene	Benzo(b)fluoranthene	Benzo(a)pyrene	Gmysene	Bonzo(a)anthrasono	Byrune	Fluorantherra	Anthracene	Phenomerene	Fluorene	Acensphthene	West	Mornidagements	E	Xylene (Total)	- Commercial Control	m&p-Xylene	Just chords	Vinyl acetate	Trichlorofluoramethane	Trichlomethene	trans-1,4-Dichloro-2-butaria	trans-1:3-Dichloropropene	trans-1.2-Dichlorgethene	Toluene	Analyte	THE RESIDENCE OF THE PERSON NAMED IN COLUMN NA
91-20-3	120-82-1	120-83-2	105-67-9	88-75-5	78-59-1	98-95-3	67-72-1	621-64-7		108-60-1	95-48-7	95-50-1	106-46-7	541-73-1	95-57-8	111-44-4	108-95-2	907.08.9	191-24-2	53-70-3	193-39-5	205-99-2	60-32-8	218-01-9	56-55-3	129-00-0	208-44-0	120-12-7	85-01-8	94.73.7	83-32-9	208.46.8	970-18	20-16	1330-20-	95-47-6	179801-23-	16:01-4	108-05-4	75-69-4	79.01	110-57-6	10061-02-0	156 80-5	100-00-1	CAS No.	
ox	0	N	Ch	Ch	01	1000	Q*	4	10	ćn	On	(It	Ch	Ch.	Ch.	4	O1	0.5	0.5	0.15	0.15	0.1	0.1	0.5	0.1	0.6	0.5	0.5	0.0	9,5	0.5			/		1	2	V	10			10	0.5			POL	
0.78 ug/L	0.83 ug/L	0.56 ug/L	1.58 ug/L	0.81 ug/L	0.73 ug/L	1.09 ug/L	0.71 ug/L	0.94 ug/L	0.66 ug/L	0.73 ug/L	0.73 ug/L	0.68 ug/L	0.77 ug/L	0.78 ug/L	0.68 ug/L	0.75 ug/L	0.54 ug/L	- Chinasecolo	0.0418 ug/L	0.1294 ug/L	0.1214 ug/L	0.0267 ug/L	1/gu 9810.0	0.0255 ug/L	0.0554 ug	0.0188 ug/L	0.018 ug/l	0.0119 001	0.0184 ug/c	0.0157 10/L	Typu Mg/L	0.012 ug/l	DOSES TO	7/gu 8/140.0		100	ug/L	0.5 ug/L	H	0.5 w/L	0.5 0	a natr	0:25 ug/L	0.5 dg/L	0.5 0.50	MDL Units	THE REAL PROPERTY.
т	т	m	m	m	m	m	m	m	m	m	m	т	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	т	m	n r		, ,	m	m	m	m	m	m	ш	m	m	m	Е	Flos	210

Page 2 of 4

PASI Ormond Beach Laboratory

Client 37-ECTTAM

Profile Number 9321

Line Item 1

LAR631)
Page 43 of 45

i e	Trigo our		-		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM		
1 11	4 28 19/1	n c	105-60-2	Caprolactam	CDM		
n n	0.60 ug/L	n c	86-74-8	Carbazole	Carz		
n r	0.68 ug/L	DA I	191-24-2	Benzo(g,h,i)perylene	bep2		
n r	0.65 up/l	N I	53-70-3	Dibenz(a,h)anthracene	diba	-	
n i	0.73 up/l	2	193-39-5	Indeno(1,2,3-od)pyrene	inde		4 3 L
m i	0.58 ug/L		50-32-8	Benzo(a)pyrene	bezp		
n i	0.51 up/l	4	207-08-9	Benzo(k)fluoranthene	belf2		The second
m	0.62 ug/L	N	205-99-2	Benzo(b)fluoranthene	bezf		
m	0.9 ug/L	Ø)	117-84-0	Di-n-octylphthalate	dnop		
m	0.8 ug/L	Ch .	117-81-7	bis(2-Ethylhexyl)phthalate	bis4		
m	0.37 ug/L	(h	218-01-9	Chrysene	chry		
m	0.63 ug/L	אט	56-55-3	Benzo(a)anthracene .	beza		
m	1/gu 89.0	10	91-94-1	3,3'-Dichlorobenzidine	33db		
m	0.72 ug/L	(n	85-68-7	Butylbenzylphthalate	bbzp		
m	0.68 ug/L	Ćh.	129-00-0	Pyrene	pyre		
m	0.54 ug/L	Ol	206-44-0	Fluoranthene	flut		
m	0.41 ug/L	OI.	84-74-2	Di-n-buty/phthalate	dobp		
m	0.6 ug/L	Ot.	120-12-7	Anthracene	anth		
m	0.52 ug/L	ÇT	85-01-8	Phenanthrene	phth		
m	0.66 ug/L	20	87-86-5	Pentachlorophenol	pici		
m	0.8 ug/L		118-74-1	Hexachlorobenzene	hecb		
m	0.67 ug/L	UN.	101-55-3	4-Bromophenylphenyl ether	4bpp		
ш	0.5 ug/L	(h	86-30-6	N-Nitrosodiphenylamine	nndp		
m	1.32 ug/L	20	534-52-1	4,6-Dinitro-2-methylphenol	46dp		
m	0.69 ug/L	4	100-01-6	4-Nitroaniline	4nin		
m	0.56 ug/L	On .	86-73-7	Fluorene	fluo		
m	0.63 ug/L	(J)	7005-72-3	4-Chlorophenylphenyl ether	4cph		
m	0.51 ug/L .	O1	84-66-2	Diethylphthalate	dpht		
m	0.53 ug/L	2	121-14-2	2,4-Dinitrotoluene	24dt		
m	0.67 ug/L	Ch.	132-64-9	Dibenzofuran	dibz		
m	1.08 ug/L	20	100-02-7	4-Nitrophenol	4nph		
m	1.57 ug/L	20	51-28-5	2,4-Dinitrophenol	24dp		
m	0.86 ug/L	ch	83-32-8	Acenaphthene	acp1		
m	0.99 ug/L	ćn.	99-09-2	3-Nitroaniline	3nin	-0	
m	1.22 ug/L	2	606-20-2	2,6-Dinitrotoluene	26dt		
т	0.95 ug/L	04	208-96-8	Acenaphthylene	acp2		
т	0.64 ug/L	5	131-11-3	Dimethylphthalate	dipt		
m	0.6 ug/L	On	88-74-4	2-Nitroaniline	2nni		
m	0.8 ug/L	Cn .	91-58-7	2-Chloronaphthalene	2cna		
m	0.52 ug/L		95-95-4	2,4,5-Trichlorophenol	2415		
m	0.69 ug/L	2	88-06-2	2,4,6-Trichlorophenol	2406		
m	1.28 ug/L	Ch .	77-47-4	Hexachlorocyclopentadiene	hecc		
m	0.99 ug/L	ch	91-57-6	2-Methylnaphthalene	2myp		
m	0.62 ug/L	20	59-50-7	4-Chloro-3-methylphenol	4c3m		
m	1.08 ug/L	103	87-68-3	Hexachloro-1,3-butadiene	h13b		•
m	1.21 ug/L	5	106-47-8	4-Chloroaniline	4cha	8270 WSEP	1 8270 WSEP
Figs	MDL Units	PQL	CAS No.	Analyte	Cmp	Cmp List	Mail Woods
COL							The second second

Page 3 of 4

Profile List

PASI Ormond Beach Laboratory

Client 37-ECTTAM

Profile Number 9321

Line Item

Page 44 of 45

SEP 8270 WSEP 12dz 1,3-Diphenylhydrazine anil Aniline bezd Benzidine bis0 bis(2-Chloroethoxy)methane nndm N-Nitrosodimethylamine pyri 1-Methylnaphthalene 23t6 2,3.5,8-Tetrachlorophenol 12dnb 1,3-Dinitrobenzene 13dn 1,3-Dinitrobenzene 13dn 1,3-Dinitrobenzene 9 to pro Petroleum Range Organics	Line							
8270 WSEP 12dz 1,2-Diphenylhydrazine anit Aniline bezd Benzidine bis0 bis(2-Chloroethoxy)methane nndm N-Nitrosodimethylamine pyri Pyridine 1-Methylnaphthalene 23t6 2,3,5,6-Tetrachlorophenol 12dnb 1,3-Dinitrobenzene 13dn 1,3-Dinitrobenzene 13dn Benzyl alcohol FLPRO WLV pro Petroleum Range Organics	III THE PERSON III	olith rist	cmp	Analyto	CAS No.		PQL	PQL MDL Units
anii Aniline bezd Benzidine bis0 bis(2-Chloroethoxy)methane nndm N-Nitrosodimethylamine pyri Pyridine 1-Methylnaphthalene 23t6 2,3,5,6-Tetrachlorophenol 12dnb 1,3-Dinitrobenzene 13dn 1,3-Dinitrobenzene 13dn 1,3-Dinitrobenzene 5deal Benzyl aloohol Petroleum Range Organics	8270 WSEP	8270 WSEP	12dz	1,2-Diphenylhydrazine	122-86-7	- 1	5	5 0.33 ug/L
bezd Benzidine bis0 bis(2-Chloroethoxy)methane mndm N-Nitrosodimethylamine pyri Pyridine 1-Methylnaphthalene 23t6 2,3,5,8-Tetrachlorophenol 12dnb 1,2-Dinitrobenzene 13dn 1,3-Dinitrobenzene 13dn Petroleum Range Organics			ani	Aniline	62-53-3		O.	5 1.98 ug/L
bisO bis(2-Chloroethoxy)methane nndm N-Nitrosodimethylamine pyri Pyridine 1mpe 1-Methylnaphthalene 23t6 2,3,5,6-Tetrachlorophenol 12dnb 1,2-Dinitrobenzene 13dn 1,3-Dinitrobenzene 13dn Petroleum Range Organics			bezd	Benzidine	92-87-5		25	25 0.77 ug/L
nndm N-Nitrosodimethylamine pyri Pyridine 1mpe 1-Methylnaphthalene 23t6 2,3,5,8-Tetrachlorophenol 12drib 1,2-Dinitrobenzene 13dri 1,3-Dinitrobenzene 13dri 9enzyl alcohol FLPRO WLV pro Petroleum Range Organics			bisO	bis(2-Chloroethoxy)methane	111-91-1		5	5 2.95 ug/L
pyri Pyridine 1mpe 1-Methylnaphthalene 23t6 2.3,5,8-Tetrachlorophenol 12dnb 1,2-Dinitrobenzene 13dn 1,3-Dinitrobenzene 13dn 9enzyl alcohol FLPRO WLV pro Petroleum Range Organics			mdm	N-Nitrosodimethylamine	62-75-9		N	2 0.97 ug/L
1mpe 1-Methylnaphthalene 23t6 2,3,5,8-Tetrachlorophenol 12dnb 1,2-Dinitrobenzene 13dn 1,3-Dinitrobenzene beal Benzyl alcohol FLPRO WLV pro Petroleum Range Organics			руп	Pyridine	110-86-1		o.	5 1,49 ug/L
23t6 2,3,5,8-Tetrachlorophenol 12dnb 1,2-Dinitrobenzene 13dn 1,3-Dinitrobenzene beal Benzyl alcohol FLPRO WLV pro Petroleum Range Organics			1mpe	1-Methylnaphthalene	90-12-0		5	5 1 ug/L
12dnb 1,2-Dinitrobenzene 13dn 1,3-Dinitrobenzene 13dn Benzyl alcohol FLPRO WLV pro Petroleum Range Organics			2366	2,3,5,6-Tetrachlorophenol	935-95-5		Oh.	5 0.52 ug/L
13dn 1,3-Dinitrobenzene beal Benzyl alcohol FLPRO WLV pro Petroleum Range Organics			12dnb	1,2-Dinitrobenzene	528-29-0		(In	5 0.327 ug/L
FLPRO WLV pro Petroleum Range Organics			13dn	1,3-Dinitrobenzene	99-65-0		69	8 0.297 ug/L
FLPRO WLV pro			beal	Benzyl alcohol	100-51-6		Ch.	5 0.63 ug/L
212017	FLPRO WLV	FLPRO WLV	pro	Petroleum Range Organics			1	1 0.8 mg/L

^{*}The MDLs listed are not instrument specific

Numeric Value - The actual number of significant figures

- E (EPA) Numbers less than 10 have 2 significant figures and numbers greater than or equal to 10 have 3 significant figures
- M (Metals) Numbers less than 100 have 2 significant figures and numbers greater than or equal to 100 have 3 significant figures
- O (Organics) -Numbers less than 1 have 1 significant figure, numbers less than 100 but not less than 1 have 2 significant figures, and nu greater than or equal to 100 have 3 significant figures.

^{*}Signficant Figures:

ESC LAB So			
Cooler Rece	Control of the Contro		
Client: PACEOBFL	SDG#	L986	311
Cooler Received/Opened On: 04/17 /18	Temperature:	0.9	1
Received By: Kelly Mercer		0	
Signaturet helly Mon			78
Receipt Check List	NP NP	Yes	No
COC Seal Present / Intact?	E CONTRACTOR OF THE PARTY OF TH	F-77	T UT
COC Signed / Accurate?			WE SAL
Bottles arrive intact?		_	1.7-10
Correct bottles used?	MARKET STATE OF THE STATE OF TH		113-1018
Sufficient volume sent?			20-2111
If Applicable	Market Miles Spile		
VOA Zero headspace?		17.5	PARONE
Preservation Correct / Checked?		100000	34,14

Industrial Waste Operating Report Form (IWORF)

Permit #:	IW-333	Permit Year:	2018	Reports must be mailed to: Department of Regulatory and Economic Resources Environmental Resources Management
Facility Name:	SAFETY-KLEEN SYSTI	EMS, INC.		701 NW 1st Ct, Suite #700
Facility Address:	8755 NW 95 ST			Miami, FL 33136-3912
	MEDLEY, FL 33178			
Contact Name:	Mr. Larry Rodriguez			
heing reported and atta-	ch the applicable information	(e.g. waste manifests, anal	vilcal results, etc.) as requi	s) from the listing below. In addition, indicate the period red by each Source Type. Refer to the operating permit applicable to the referenced facility.
Source Type:RF Description: Cog Information shal	₹-1	Reporting Frequency: Quots of all hazardous waste, ne and final destination. R	industrial waste, industrial t	Reporting Period: wastewater, sludge and/or ash disposed of. ined on-site for review.
Sampling Requiren	nents:			
Source Type: SM	P-1	Reporting Frequency: An	nually	Reporting Period: 6/15/19
Description: Grou	ndwater from the facility monit	toring well(s).		
Parameters: Cadr	mium (Total), Chromium (Tota	l), Lead (Total), Silver (Tot	al)	
Source Type: SM	P-2	Reporting Frequency: An	nually	Reporting Period; 6115119
Description: Grou	ndwater from monitoring well	nearest the containment ar	ea stormwater discharge p	oint.
Parameters: EPA	Series 8260, EPA Series 827	0, TRPH		
Average Daily Wast Sewers:	te Water Flow Discharg	e to Sanitary	e production of the control of the c	Gallons Per Day (GPD)
hereby certify that	to the best of my knowled	lge, this document and	i all attachments are tr	ue, accurate and complete.
uthorized Representativ	e or Corporate Officer			Report Completion Date

June 5, 2019 180212-1901

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources**Environmental Resources Management
701 NW 1st Court, Suite #700
Miami, Florida 33136-3192

Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2018/2019 (File # 10139) Annual Report of Groundwater Quality

Dear Mr. Montano:

On behalf of Safety-Kleen Systems, Inc. (S-K), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for S-K's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On May 2, 2019, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FLPRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed Figure 2.1-1.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in <u>Attachment B</u>.

The laboratory report indicated that concentrations for three of the four metals (i.e., silver, cadmium, and lead) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.62I micrograms per liter (μ g/L) at monitoring well MW-2R and 0.79I μ g/L at monitoring well MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are far below the groundwater cleanup target level (GCTL) of 100 μ g/L for chromium as specified in the permit. Chromium was also detected at a concentration of 1.4 μ g/L at monitoring well MW-1 but was well below its GCTL of 100 μ g/L for chromium as specified in the permit.

1408 N Westshore Blvd, Suite 115 Tampa, FL 33607

(813) 289-9338

FAX (813) 289-9388 Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources**June 5, 2019

Page 2

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

- 1. FLPRO concentrations were below the MDL; that is, none was detected.
- 2. No SVOC was detected (i.e., EPA Series 8270 parameters).
- 3. No VOC was detected (i.e., EPA Series 8260 parameters) with one exception. Specifically, acetone was detected at an estimated concentration of 7.9I $\mu g/L$. However, that concentration was detected between the laboratory MDL and the laboratory PQL and is far below its GCTL of 6,300 $\mu g/L$ as specified in the permit. In addition, acetone is a recognized laboratory contaminant and was also detected at an estimated concentration of 5.8I $\mu g/L$ in the trip blank provided by the laboratory.

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of S-K at (561) 523-4719. Thank you.

Sincerely,

ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.

Keith F. Morrison

There of Morison

Project Manager

Gregory B. Page, P.E. Senior Engineer III

SAFETY-KLEEN SYSTEMS, INC.

Jeff Curtis

EHS Manager, Florida

Safety-Kleen Systems, Inc.

5610 Alpha Drive

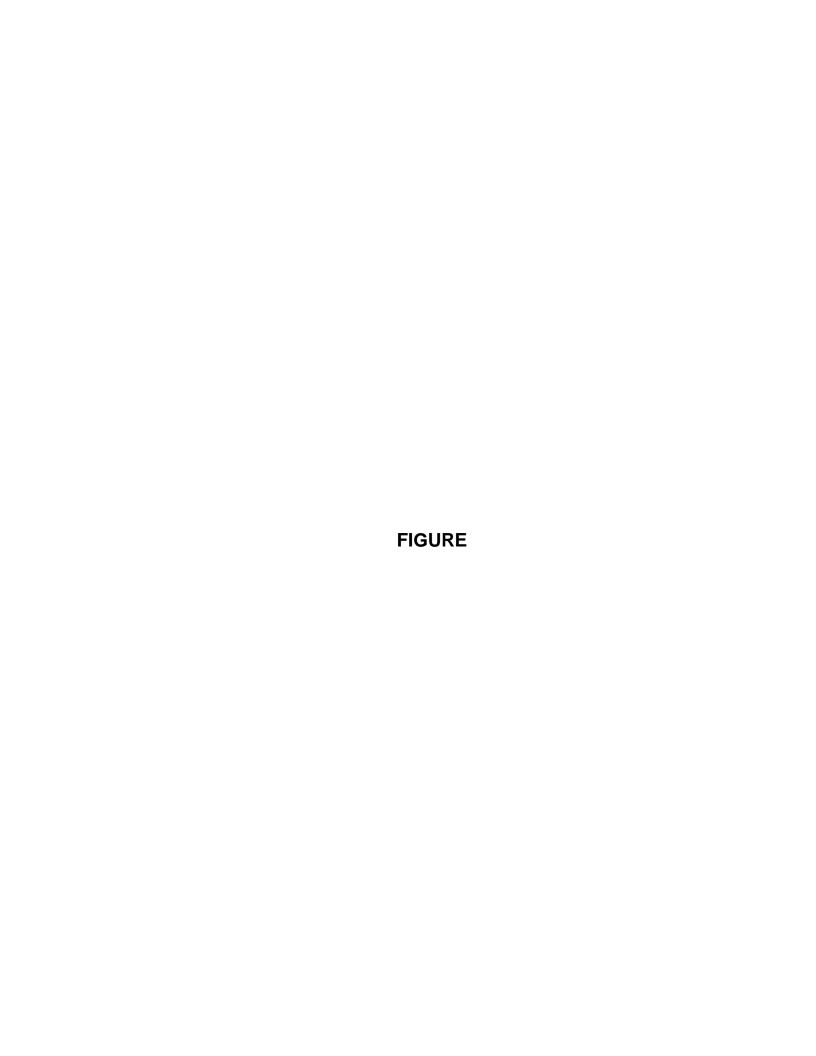
Boynton Beach, Florida 33426

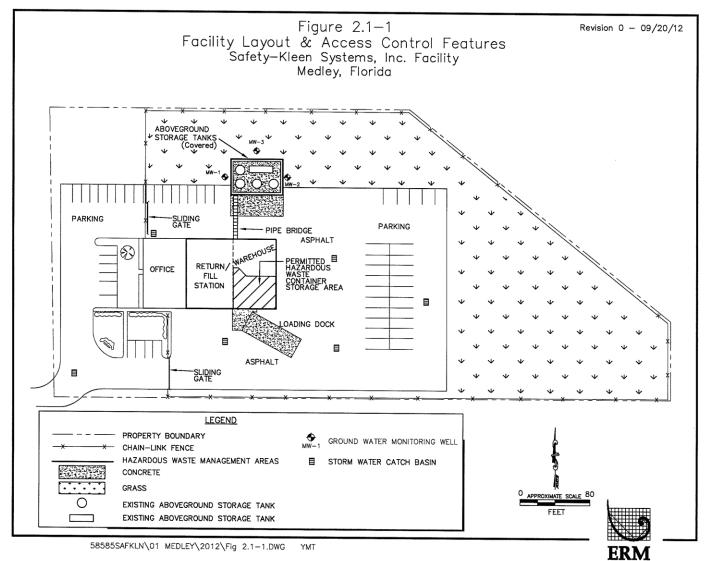
jeff.curtis@safety-kleen.com

Enclosures:

Figure 2.1-1

Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration Logs Attachment B - Laboratory Report


cc: Robert Schoepke – S-K (electronic only)


Greg Page – ECT (electronic only)

Keith Morrison – ECT (electronic only)

Facility 999 File #1760, % S-K Medley facility Branch General Manager

ATTACHMENT A

FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

Sofety Kleen-Medlay/2019 Annual P.2 180212-0200 MON-TONIS EVENT Ett-Rath Morrison 5-1-19 8 5-2-19 41) mobilize 1200 0 TAMPA 604 925 well Lid (Cap condition 840 Sodd 834 845 BAIRE Scuples ×909 8270+ TRAHS O 928 MW 3 X 1002 Z-Sgallon Buckets of ID Cheek up that general Cheek out of office Samolin X 1035 1600 met conferrat unional 102 cattor Kewt & Muso

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	efatu Klaas	Sustama	Inc			SITE LOCATION:	9755	NIM O	isth C	troot !	Madley F	=1			-
WELL NO:	afety Kleen MW-1	<u> </u>	1110.	SAMPL		-1-050		1111 3	,,,,	rti GGt, 1	DATE: 5/				
TILLE NO.	- 330					JRGING		'A	_	- 200					-
WELL DIAMETER WELL VOI	R (inches): 2		- TER (inches):	1/8-ID DE	ELL SCREE! PTH: 2 fee	N INTERVAL It to 12 feet	-	STATI TO W		(feet): 3			SE PUMP TY AILER:	PE PP	
	t if applicable)		= (11.2	feet	3.25		at) X).16		ons/foo		7 g	allons
	NT VOLUME P t if applicable)	URGE: 1 EQL	JIPMENT VO)LUME + (Tl gallons + (ACITY allons/lo	X ot X	TUBI		3TH) + FLO\ feet) +	W CEL	L VOLUME gallons =	: gall	ons
	IMP OR TUBIN WELL (feet):	7.0		MP OR TUBIN I WELL (feet):	7.0	PUR(SING ATED AT	101	1	PURGIN ENDED	IG AT: D		TOTAL VOLI PURGED (ga		9
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	CON (circle u µmho or µS	ID. Inits)	DISS(OX) (circle	OLVED YGEN e units) vL or turation	TURBIDI (NTUs)		COLOR (describe)	ODOR (describe)	ORP
1028	1,36	1,36	0.08	3.41	7.04	2631	54	Ч	0.2	19	1.29		Clear	More	-209
1031	0.24	1.60		3.41	7.05	26.32		\rightarrow	0.	30	0.98			1.	-209
1034	0.24	1.84	1	3.41	7.06	26.34	53	7	0.0	29	0.80)		J.	- 208
	8														
				47.004	1050	00. 01	240	27 0	07:	AV 0.05	; 5" = 1.0	10.	6" = 1.47;	12" = 5.88	
TUBING IN	PACITY (Gallor NSIDE DIA. CA	PACITY (Gal.	/Ft.): 1/8" = (0.0006; 3/1	1.25" = 0 6" = 0.0014;	1/4" = 0.	0026;		= 0.00		" = 0.006;	1/2"	= 0.010;	5/8" = 0.016	
PURGING	EQUIPMENT	CODES: E	3 = Bailer;	BP = Bladde		ESP = Elec			Pump); PP	= Peristaltic	; Pump	; 0 =0i	her (Specify)	
SAMPLED	BY (PRINT) /	AFFILIATION:	ECI	SAMPLER(S	S) SIGNATU					SAMPLII	NG ED AT: D	35	SAMPLING ENDED A		}
PUMP OR		7.0		TUBING MATERIAL	CODE: H	DPE			FIELD)-FILTER	ED: Y (ment Type:		FILTER	I SIZE:	μπ
FIELD DE	CONTAMINATI	ON: PU	MP Y	N	TUBING) Y (replac	ed)		DUPLIC	ATE:	Y	<u> </u>		
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED	TIVE	TOTAL VOI DDED IN FIELD		Ca) FINA pH			DED ANALYSI OR METHOD		SAMPLING EQUIPMENT CODE	FLOW	E PUMP ! RATE ! minute)
17-05021		PE	250 ml	HNO3+		NONE	(1112)	<2		Cd, Cr, _Me	Pb, Ag by E thod 200.8	PA	APP	At pur	ge rate
-	<u> </u>													-9)	
												\blacksquare			
<u> </u>									2						
												\Box			
	-								\dashv						
REMARKS	0 -	0.139m	x 60 50	= 0.0	B gpm	1	7.		1.60	97	-				. 20 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
MATERIA	L CODES:	-	Glass; CG	i = Clear Glass	; HDPE	= High Dens	ity Polye	thylene	i; Li	DPE = Lo	w Density P	olyethy	lene; PP	Połypropyle	ine;
SAMPLIN	G EQUIPMENT	CODES:	APP = After (Through) Peris	staltic Pump;	B = 8a SM = St	iler; raw Meth	BP = B nod (Tui	Bladder bing G	· Pump; ravity Dra	ESP = Eli		iubmersible P (Specify)	ump;	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE NAME: Sa	ifety Kleen	Systems,	Inc.			SITE	TION: 1	B755	NW :	95th S	Street, M	vledley,	FL			
WELL NO:		<u> </u>	11101	SAMPL	E ID: MV							DATE: 5)		
						PURG			_						<i>D</i> .	92.05
	UME PURGE:	DIAME:	TER (inches):	1/8-ID DE	LL SCRE PTH: 2 I PTH -	leet to 12	2 feet		TOW		(feet):		1	GE PUMP TY BAILER:	PE PP	
	if applicable)	URGE: 1 EQL	= (feet -				et) X	TI ID	0.16			ot = 1,23	g	allons
	if applicable)	UNGE: 1 EQL	IIPMENI VO	•	gallons +			allons/fo		100		feet) +	VI QL	gallons =	gall	ons
	MP OR TUBIN WELL (feet):	^{IG} 5.0		MP OR TUBIN I WELL (feet):	5.	.0	PURC	ING TED A	r: g	45	PURGIN ENDED	IG AT: 90	8	TOTAL VOLUE		.9
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standa units)	ra n	MP. °C)	CON (circle µmho or (µS	units) s/m	OX (circ	GOLVED YGEN le units) O' or sturation	TURBID (NTUs		COLOR (describe)	ODOR (describe)	ORP
902	41.4	×1,4	80,0	3.85	7,05	5 25	.76	5:	56	0	.59	2.9	2	Claur	None	-138
905	0.24	= 1.64		3.85	7.03	3 25	.79			υ,	56	2,2	_	1		-142
908	0.14	=1.88	J	3.85	7.00	1 25	5,81	54	O	0-	54	1.97	D		4	-147
						_										
									,							
WELL CAR	PACITY (Gallos	 ns Per Foot): i PACITY (Gal./	0.75" = 0.02; 5: \: 1/8" = /	1" = 0.04;	1.25" : 5" = 0.001		2" = 0.6		3" = 0).37; " = 0.00	4" = 0.65	; 5" = 1. = 0.006;			12" = 5.88 5/8" = 0.016	
	EQUIPMENT		= Bailer;	9P = Bladde		-		ric Sub				= Peristalti			her (Specify)	
CAMPLED	AV (DOINT) /	AEEII (ATION).		CAMPI CD/S	SIGNA	SAMP	LIN	G DA	TA		SAMPLI	NG A		SAMPLIN	G A = 0	
154	AY (PRINT) /	2005	/ECT	SAMPLER(S	iai	7	rno	YM.			INITIATE	DAT: Z	09	ENDED A	<u>1: 728</u>	
	WELL (feet):	5,0		MATERIAL								ment Type:	<u> </u>		R SIZE:	_ µm
FIELD DEC	CONTAMINAT	ION: PUA	AP Y		TUBI	NG Y	<u> </u>	(replac	ed)		DUPLIC	ATE:	Υ	N		
SAMPLE ID	8	ER SPECIFICAT	VOLUME	PRESERVA	IPLE PRES		TAL VOI		FIN	IAL.		DED ANALYS		SAMPLING EQUIPMENT CODE	FLOV	.E PUMP V AATE r minute)
CODE - 28 - C	CONTAINERS 3	CG	40 ml	HCI+ ic	е		IONE) (mil.)		:2		0-Volatile c Compou		APP		100
050210		AG					IONE					Method 8 emi-Volati		,		3 ml/mm
1000	1	AG	250 ml	lce			72				Organio	Compou	nds	APP	303	-
	1_	PE.	250 ml	HNO3+	 -	٨	IONE		<	:2		b, Ag by E		APP	At pui	ge rate
	2	AG	100 ml	H2SO4 +	Ice	N	IONE		-	:2	TRPH	s by FL-Pi Method	RO	APP	303 At pui	rge rate
														1		Cor
REMARKS	· <u>(</u>	$=\frac{0.13}{91}$	A .	isee =	0.08	3 300	^		6	2-1	news o	F Ports 1	N #2/	BZ70/18	PHS/	- 140
MATERIA	L CODES:	AG = Amber S = Silicone;	•	i = Clear Glass ; O = Other		PE = Higl	h Densi	ity Polye	ethylen		DPE = Lo	w Density F	olyeth	ylene; PP	= Polypropyl	ene;
SAMPLIN	G EQUIPMEN			Through) Peris			B = Bai M = Str				r Pump; Gravity Dra			Submersible F (Specify)	Pump;	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

62-160.800 F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: March 1, 2014

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

NAME: Safety Kleen Systems, Inc.	SITE	TION: 8755 NW 95 th	h Street, Medley, FL		_
WELL NO: MW-3	SAMPLE ID: MW-3-		DATE: 5/2/19	9	
	PURG	ING DATA	77 - 32 - 23 - 23		
WELL TUBING 1/2 DIAMETER (inches): 2 DIAMETER (inches):	WELL SCREEN INTE	ERVAL STATIC E		RGE PUMP TYPE BAILER:	PP
WELL VOLUME PURGE: 1 WELL VOLUME = (TOT (only fill out if applicable)	TAL WELL DEPTH - STATIC	DEPTH TO WATER) X		<u>-</u>	
= (EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL		GAPACITY X TI	0.16 gallons/lo		gallons
(only fill out if applicable)	- collans . /	gallons/foot X	feet) +	gallons =	gallons
INITIAL PUMP OR TUBING 7.0 FINAL PUI DEPTH IN WELL (feet): 7.0 DEPTH IN	MP OR TUBING 7.0	PURGING 136	PURGING ENDED AT: 60 \	TOTAL VOLUME PURGED (gallons):	2.0
TIME VOLUME VOLUME PURGE PURGED (gallons) (gallons) (gpm)	DEPTH pH TE	MP. (circle units) C) µmboe/m or(uS/cm)	ISSOLVED OXYGEN Circle units) mg/L er % saturation TURBIDITY (NTUs)	COLOR OD (describe) (desc	OR ORP
955 1.52 1.52 0.08	2.88 7.00 25		.37 1.52	Clear Nh	e -139
958 0.24 1.76			35 1.36		-144
1001 0.24 2.0	2,88 7.01 25	72 517 0	1.36 1.29	1 1	148
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02;	1" = 0.04; 1.25" = 0.06;	2" = 0.16; 3" = 0.37;		6" = 1.47; 12" = 5 " = 0.010; 5/8" = 0	
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0 PURGING EQUIPMENT CODES: 8 = Bailer;		4" = 0.0026; 5/16" = 0 = Electric Submersible Pu			
		LING DATA	1	Tourse me	
SAMPLED BY (PRINT) / AFFILIATION: Kern F-Maroscon Est	SAMPLER(S) SIGNATURE(S)	91)	SAMPLING INITIATED AT: 100 2		304
PUMP OR TUBING DEPTH IN WELL (feet): 7_0	TUBING MATERIAL CODE: HDPE	Fill	ELD-FILTERED: Y N Itration Equipment Type:) FILTER SIZE:	µm _y *
	TUBING Y	(N (replaced)	DUPLICATE: Y	N	
SAMPLE CONTAINER SPECIFICATION SAMPLE ID		PN (including wet ice) FAL VOL FINAL N FIELD (mL) pH	INTENDED ANALYSIS AND/OR METHOD	EQUIPMENT	SAMPLE PUMP FLOW RATE (mL per minute)
CODE CONTAINERS CODE VOECHIE 3-0502V 1 PE 250 ml		ONE <2	Cd, Cr, Pb, Ag by EPA Method 200.8	APP e	At purge rate
7					
			-		
REMARKS: 0.13 got 260	- 0.089p	n.			
MATERIAL CODES: AG = Amber Glass; CG S = Silicone; T = Teflon;	= Clear Glass; HDPE = High	n Density Polyethylene;	LDPE = Low Density Polyeth	nylene; PP = Poly	propylene;
	O = Other (Specify)				

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Salety-Kleen Medig 2010 Annual Grandwater monitoring

Instrument Calibration and Field Verification Log

Model: SmarTroll (556 MPS) Identification: State (State 02C0709 AA

Keth E Mo (120) / Reut A Marin (Date: (mm/dd/w) 5/2/19 Instrument Make: InSitu / YSI Sampler's Name / Signature:

Sampler's Name / Signature:	Keilne	Alo Walan	1 Keuto 7	Luna 1		Date: (mm/dd	l/yy) 5/2/	19		
Procedure Type: ICV, CCV, Cal	(icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	
Standard Values Time	630	16/0								
pH 4.01 S.U.	4,07	4.06								
pH 7.00 S.U.	7.06	7.05					4			
pH 10.00 S.U.	9,94	9.95								
Within 0.2 S.U?	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	
Calibration Required?	Yes / Nø	Yes /(No	Yes / No	Yes / No						
Sampler's Initials	Km	Kin	,							
Conductivity 500 µS/cm Cal	502	503				_				
Conductivity 1000 µS/cm Ver	945	994					-			
Within 5% ?	Rass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	
Calibration Required?	Yes /(No)	Yes No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	
Sampler's Initials	Y. P.	When								
Temperature During D.O.	24 ℃	25 °C	°C	°C	°C	°C	°C	°C	°C	
D.O. mg/L @ Saturation (1/2)	B.5/10214	9,3 (49,2%								
Within 0.3 mg/L ?	Pass / Fail	Rass / Fail	Pass / Fail	Pass / Fail						
Calibration Required?	Yes (No	Yes / No	Yes / No							
Sampler's Initials	Kan	15h								
Temperature During ORP	24 ℃	25 °C	္င	°C	°C	°C	°C	°C	°C	
ORP in mV	232	231								
Within 10 mV ?	Rass / Fail	Rass / Fail	Pass / Fail	Pass / Fail						
Calibration Required?	Yes /(No	Yes / (No.	Yes / No	Yes / No						
Sampler's Initials	KA	Wen								
Calibration Solutions	Solutions Manufacturer				Lot Number		E	Expiration Date		
pH 4.01 S.U.	Exaxol			1922	-70		09	1 2020		
pH 7.00 S.U.	Exaxol	•		18n5	Q FO		1.1	12019		
pH 10.00 S.U.				1813	204A		06/2020			
ConductivityµS/cm Cal	Exaxol				127 A		10	12019 6	3/2020	
ConductivityµS/cm Ver	Exaxol			1818	163			12019		
ORP: mV@*C per mfr. specs.					204B		12	2019		

Notes

Cal = Calibration

This form meets or exceeds the requirements of FDEP Form FD 9000-8

ICV = Initial Calibration Verification

CCV = Continued Calibration Verification

		For	m FD 900	0-8: FIE	LD INSTRUM	ENT CAL	IBRATION	RECORDS	i	
New	INSTRU	MENT (N	/AKE/MOI	DEL#)	HACH 2	1000	INSTRU	MENT # #1	SNH	Ibliocopas
Cett 1	PARAME	ITER: [check only	one]						2110003 351
refer	☐ TEI	MPERATU	IRE C	CONDUC		SALINITY	□pH	☐ ORP		
2019 wh	A TUI	RBIDITY	× -	RESIDUA	rci 🗆	DO	□от	HER		
(Thomas ing	values, and	RDS: [8 I the date :	Specify the ty the standard	196(s) of sta	andards used for	calibration,	the origin of the	standards, the	standard	_
word	Stanc	lard A	O NTVS		Pered of pulchase	STANINA	HRD D. 000	·m/1		<u>16</u> 110C05351
•	Stand	ard B	2W NTVS			3/1(10)3/	115V D. 000	10102	0.5	
		lard C1								
	DATES: (ywmm/dd)	/TIME	(A, E, C)	STD	INSTRUMENT RESPONSE	% DEV	CALIBRATED	TYPE (INIT, CONT)	BAMPLER	ī
May 2,2	219	631	A	לענא סן		710%	(YES, NO)		INITIALS	4
		632	B	26 0	. 19.8	T8%	Yes	THE THE	JEPM	-
		633	C	100 11	98,1	±6.5%	701	TIVIT	KPM	
ĺ		634	17	800 w	787	25%	410	IMIT	KAM	-
		1615	A	10 11	9.87	10%	Ve 9	INIT	1/RM	-
		1616	B	20 11	19,7	±3%		Cont	Kom	-
		1617	C	100 "	98,6	±6.5%		Comp	KAM	-
		1618	D	900 *	788	15%	105	Cont		1
							163	(M)	RM	-
										1
]										1
1									49.500	
-										
-										8
-										22
-										
-										
-										
-										
-										
_										
-										
		- 1								

Revision Date: February 1, 2004

CHAIN-OF-CUST OY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		Section B							Secti	ion C																				
Compan	d Client Information	Required P	_			_	_	_	_	_	ormat	ion:	_		_	_						_			Pag	ge:	1	Of		1
Address	Y Environmental Consulting & Technology-Tampa 1408 North Westshore Blivd	Report To: Copy To	Keith N	Aomson				-	Atten	_		_			_						_	_								
	FL 33607	сору то	_	-	_	_	_	-	Addre		√≅me:	_		_	_	_	_			_		-					en nati	ac lab a	all the Car	1
Email	kmornson@ectinc.com	Purchase O	rder#			_	_	-		Quole		_	_	_	_	_	_	_	_	_		- 1	Ballio	Cong.	25.0	edins	tuly (A)	PCY.	Program Ac	GHŁ.
Phone	813-493-0383 Fax:	Project Nam		afety Kleer	. Facility		_				ct Mar	ager	io	ri pale	narell r	acels	bs.co	m			-	-	TUUTE			(elgis	diblocatio		A STATE OF	(COS)
Request	ed Due Date	Project #	- 1	802	120	201		_	_	Profile		9321	_	_	ioi (St	Jecon	103.00	nic.				-	22500	Contraction		School Cont.	FL	No.	Section 1	-
															- 11	100	625	Re	quest	ed Ant	ilysis	Eilten	ed (Y	M)		1 4	200	Section 1	- 1	952
	MATRIX Driving Vi Votes Viless Vius Product Sol/Sold One Character per box. Who	WT	(see valid codes to left)	ST	COLLI	ECTED	ND	SAMPLE TEMP AT COLLECTION &	ERS		Pr	eserv	ative	s		s Test Vin	DAHe DAHe	olume for Wate	Ag,Cd,Cr.Pb	plus PAHs	ASD .					rine (Y/N)			15	
ITEM #	(A-Z, 0-91, -) Ar Sample Ids must be unique Tissue	AR OT TS	MATRIX CODE SAMPLE TYPE	DATE	50mp	DATE	TIME	SAMPLE TEMP	# OF CONTAINERS	Unpreserved H2SO4	HNO3	ΕĊ	Na2S203	Methanol	Other	K (Analyses	8260 Full List 8270 Full list r	FL Pro Low Volume for Wat	Metals 200 8 Ag, Cd, Cr. Pb	8270 Full list plus PAHs MS/MSD	FL PRO MS/MSD	Trip BLANK				Residual Chlorine (Y/N)				
14	MW-2R -050219		WT	5219	909	CAN	0405	5	u i	v.	(X		1					T.			~	4			710	\Box				\neg
		_	141					1	17/	4		\vdash	+	+	\vdash	H	<u> </u>	쒸	1	A		+	+	++	-	4 7	_			-
3	MW-1 -050219		WT		1035				1		N					Щ	14		×					\perp	440	4.0	1			
3	MW-3 - 050219		wr	S-2-19	1002	5.2.19	1004	*	.1		X		1					I	×											
A	Trip Blank		WT		TT I											П						x			-1	11				
5					1			П						T	П	ı	1	1				1		17		11				\neg
(35,0)63			++	-					+	+	+	\vdash	+	+	Н	1	+	+	+	-	Н	4	+	+	-	47				\rightarrow
6	and the same of th														Ш	Ш										411				
学室				1	11.7		100	П		1				T	П	ſ		T	10		П		Т	\Box		1 /				1
8		-						Н	1	+			+	t	Н	ŀ	+	+	H		Н	+	+	H	+	11				\dashv
1			11				-		+	+	1	\vdash	+	+	Н	+	+	+	-	-	Н	+	+	++	+	1.1	_			\rightarrow
9.			11						1	1		1	1	\perp	Ш	1	4	1		-			4	1		11				- 17
10					7.1		151									- 1										U				
11							7.11	П							П	ı							+	11		1 1				
12	The second second							H	+	+			+	+	Н	1	+	+	H		Н	+	+	++	+	11			_	\dashv
(A)	ADDITIONAL COMMENTS	計學建	BELINCH	SHED BYD,	AFFICIATIO	K 1	DATE	海	(A)	at-	1 152		L	CCEP	TED B	YZAE	PICIATI	Off	1000		25	ATE		TME	(1)	25/8/6	RAMPLE	COMPTTS		274
	Empty Containe	THE RESERVE	Rue	PHYSICAL CO.	Section 2	Pace	46	1	^~	7		1.	2000	No. of Concession,	ORDO-CHO	29900	OC BUD	WITH STREET			Lings	1		A CONTRACTOR		MA L	AND LAND			MAGE.
-	Empty Containe		_					(/1	0.1	130	1	Lei	L.	1				E	I			26-		401				-	-	
_		Ker	ACT.	Hers	47/	- Tale	> 2-	9	10	30	-	1	2	_	Ka	15	-	_	_	5	2-	19	16	30	4			1	1	
_		-	-		_	_	-	-	_	_	+	P			•	_	_		_		-	_	+		+			-	1	_
-		4	5			X.,,,,,,	Terrore	_1	1 TOWN	20CH	1		-	2000	5.010	-		200		NOT Y	1		1	T. Carre	1			1	-	_
	a sainte	P		l.	SAMBLE	IT Name	d. Garantina	A WARD	K	7	4	K	Λn	2	Sin	J	EC	J	No.			ties.	9	915	27	D E	ved on	Custody Sealed Cooler	N.	
					SIGN	IATURE	18		1	M	w	10	- 10			I	D.	ATE S	Signe	5-	2-	19			1	TEMP in C	Receir Ce (Y/N)	Sealed Cooler	Sampl	(N _N)

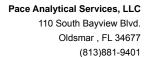
Pace Container Order #491290

Order E	Зу :		Ship 1	Го :			Retur	1 To:
Company E	Environmen	ital Consulting &	Company	Environmental Cons	ulting &		Company	Pace Analytical Oldsmar
Contact N	Morrison, K	eith	Contact	Morrison, Keith				Palmer, Lori
Email k	cmorrison@	ectinc.com	Email	kmorrison@ectinc.c	om			lori.palmer@pacelabs.com
Address 1	408 North	Westshore Bllvd		1408 North Westsho				110 South Bayview Blvd.
Address 2 S	Suite 115	5.8	Address 2	Suite 115			Address 2	
City T	ampa		City	Tampa		·		Oldsmar
State F	L .	Zip 33607	State	FL Zip 3360	07		State	
Phone 8	13-493-03	33		813-493-0383				(813)881-9401
Project N	ame Safe	ty Kleen Facility	Due Date Return	04/26/2019		9321 line		Quote
	ude Trip Bl	wing .		Blank Pre-Printed N X Pre-Printed V	,			Boxed Cases Individually Wrapped Grouped By Sample
No S With	Shipping Shipper Shipper ptions — ptions flar			Sampling Inst Custody Seal Temp. Blanks Coolers Syringes				Extra Bubble Wrap Short Hold/Rush DI Liter(s) USDA Regulated Soils
of Samples	,	Test	Container		Total	# of	Lot#	Notes
	WT	8260 Full List	3-40mL vial	HCI ass Unpreserved + 250	\rightarrow	0		
	-	8270 Full list plus PAHs FL Pro Low Volume for Waters	mL AG unpn	85	2	0		
	** 1					0		
	WT	Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSD	250mL plast			0		
	WT		250 mL AG ι	Inpres		4		
			100-11	ambas H3CO4	a [
0	WT WT	FL PRO MS/MSD Trip BLANK	100ml glass 2-40mL HCL			2		

Hazard Shipping Placard In Place: NO

Sample		Ship Date :	04/26/2019	
		Prepared	ВВ	33
		Verified By:	ВВ	
E-ALL C 000 roy 00 10Doc2016	Page 1 of 1			

^{*}Sample receiving hours are Mon-Fri 8:00am-6:00pm unless special arrangements are made with your project manager.


^{*}Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you.

^{*}Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage and disposal.

^{*}Payment term are net 30 days.

^{*}Please include the proposal number on the chain of custody to insure proper billing.

ATTACHMENT B LABORATORY REPORT

May 10, 2019

Keith Morrison **Environmental Consulting & Techlology** 1408 North Westshore Bllvd Suite 115 Tampa, FL 33607

RE: Project: Safety Kleen Facility Pace Project No.: 35465452

Dear Keith Morrison:

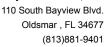
Enclosed are the analytical results for sample(s) received by the laboratory on May 02, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Palmer

lori.palmer@pacelabs.com (813)881-9401


SA Palmer

Project Manager

Enclosures

cc: A/P, Environmental Consulting & Technology

CERTIFICATIONS

Project: Safety Kleen Facility

Pace Project No.: 35465452

Ormond Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174

Alaska DEC- CS/UST/LUST Alabama Certification #: 41320 Arizona Certification# AZ0819

Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007

Maryland Certification: #346 Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236

Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710
North Dakota Certification #: R-216
Oklahoma Certification #: D9947
Pennsylvania Certification #: 68-00547
Puerto Rico Certification #: FL01264
South Carolina Certification: #96042001
Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165

West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

0 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

SAMPLE SUMMARY

Project: Safety Kleen Facility

Pace Project No.: 35465452

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
35465452001	MW-2R-050219	Water	05/02/19 09:28	05/02/19 17:00	
35465452002	MW-1-050219	Water	05/02/19 10:38	05/02/19 17:00	
35465452003	MW-3-050219	Water	05/02/19 10:04	05/02/19 17:00	
35465452004	Trip Blank	Water	05/02/19 09:28	05/02/19 17:00	

SAMPLE ANALYTE COUNT

Project: Safety Kleen Facility

Pace Project No.: 35465452

Lab ID	Sample ID	Method	Analysts	Analytes Reported
35465452001	MW-2R-050219	FL-PRO	RJR	3
		EPA 200.8	FDV	4
		EPA 8270 by SIM	CB1	20
		EPA 8270	TWB	64
		EPA 8260	BTN	57
35465452002	MW-1-050219	EPA 200.8	FDV	4
35465452003	MW-3-050219	EPA 200.8	FDV	4
35465452004	Trip Blank	EPA 8260	BTN	57

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

Sample: MW-2R-050219	Lab ID:	35465452001	Collecte	d: 05/02/19	9 09:28	Received: 05/	02/19 17:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Water, Low Volume	Analytical	Method: FL-PR	O Prepara	tion Method	d: EPA :	3510			
Petroleum Range Organics	0.77 U	mg/L	0.96	0.77	1	05/07/19 10:55	05/07/19 20:48		
Surrogates									
o-Terphenyl (S)	90	%	66-139		1	05/07/19 10:55	05/07/19 20:48		
N-Pentatriacontane (S)	100	%	42-159		1	05/07/19 10:55	05/07/19 20:48	630-07-09	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	05/03/19 09:28	05/04/19 11:43	7440-43-9	
Chromium	0.62 I	ug/L	1.0	0.50	1	05/03/19 09:28	05/04/19 11:43	7440-47-3	
Lead	0.50 U	ug/L	1.0	0.50	1	05/03/19 09:28	05/04/19 11:43	7439-92-1	
Silver	0.050 U	ug/L	0.10	0.050	1	05/03/19 09:28	05/04/19 11:43	7440-22-4	
8270 MSSV PAHLV by SIM	Analytical	Method: EPA 8	270 by SIM	Preparation	n Meth	od: EPA 3510			
Acenaphthene	0.040 U	ug/L	0.50	0.040	1	05/06/19 13:19	05/07/19 14:51	83-32-9	
Acenaphthylene	0.030 U	ug/L	0.50	0.030	1	05/06/19 13:19	05/07/19 14:51	208-96-8	
Anthracene	0.043 U	ug/L	0.50	0.043	1	05/06/19 13:19	05/07/19 14:51	120-12-7	
Benzo(a)anthracene	0.055 U	ug/L	0.10	0.055	1	05/06/19 13:19	05/07/19 14:51	56-55-3	
Benzo(a)pyrene	0.12 U	ug/L	0.20	0.12	1	05/06/19 13:19	05/07/19 14:51	50-32-8	
Benzo(b)fluoranthene	0.027 U	ug/L	0.10	0.027	1	05/06/19 13:19	05/07/19 14:51	205-99-2	
Benzo(g,h,i)perylene	0.15 U	ug/L	0.50	0.15	1	05/06/19 13:19			
Benzo(k)fluoranthene	0.16 U	ug/L	0.50	0.16	1	05/06/19 13:19			
Chrysene	0.026 U	ug/L	0.50	0.026	1	05/06/19 13:19	05/07/19 14:51	218-01-9	
Dibenz(a,h)anthracene	0.13 U	ug/L	0.15	0.13	1	05/06/19 13:19	05/07/19 14:51	53-70-3	
Fluoranthene	0.018 U	ug/L	0.50	0.018	1	05/06/19 13:19			
Fluorene	0.088 U	ug/L	0.50	0.088	1	05/06/19 13:19	05/07/19 14:51	86-73-7	
Indeno(1,2,3-cd)pyrene	0.12 U	ug/L	0.15	0.12	1	05/06/19 13:19	05/07/19 14:51	193-39-5	
1-Methylnaphthalene	0.19 U	ug/L	2.0	0.19	1	05/06/19 13:19	05/07/19 14:51	90-12-0	
2-Methylnaphthalene	0.68 U	ug/L	2.0	0.68	1	05/06/19 13:19	05/07/19 14:51	91-57-6	
Naphthalene	0.29 U	ug/L	2.0	0.29	1	05/06/19 13:19	05/07/19 14:51	91-20-3	
Phenanthrene	0.16 U	ug/L	0.50	0.16	1	05/06/19 13:19	05/07/19 14:51	85-01-8	
Pyrene	0.032 U	ug/L	0.50	0.032	1	05/06/19 13:19			
Surrogates		-							
2-Fluorobiphenyl (S)	64	%	33-82		1	05/06/19 13:19	05/07/19 14:51	321-60-8	
p-Terphenyl-d14 (S)	77	%	49-104		1	05/06/19 13:19	05/07/19 14:51	1718-51-0	
8270 MSSV Semivolatile Organic	Analytical	Method: EPA 8	270 Prepa	ration Meth	od: EPA	A 3510			
Aniline	0.90 U	ug/L	4.8	0.90	1	05/09/19 08:43	05/10/19 12:54	62-53-3	
Benzidine	0.84 U	ug/L	24.0	0.84	1	05/09/19 08:43	05/10/19 12:54		
Benzyl alcohol	1.2 U	ug/L	4.8	1.2	1	05/09/19 08:43			J(M1)
4-Bromophenylphenyl ether	1.6 U	ug/L	4.8	1.6	1	05/09/19 08:43	05/10/19 12:54	101-55-3	
Butylbenzylphthalate	1.1 U	ug/L	4.8	1.1	1	05/09/19 08:43		85-68-7	
Caprolactam	0.38 U	ug/L	4.8	0.38	1	05/09/19 08:43			N2
Carbazole	1.1 U	ug/L	4.8	1.1	1	05/09/19 08:43			J(L2)
4-Chloro-3-methylphenol	5.2 U	ug/L	19.2	5.2	1	05/09/19 08:43			J(M1)
4-Chloroaniline	1.4 U	ug/L	4.8	1.4	1	05/09/19 08:43			J(M1)
bis(2-Chloroethoxy)methane	1.6 U	ug/L	4.8	1.6	1	05/09/19 08:43			J(M1)
bis(2-Chloroethyl) ether	0.33 U	ug/L	3.8	0.33	1	05/09/19 08:43			J(M1)

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

 Sample:
 MW-2R-050219
 Lab ID:
 35465452001
 Collected:
 05/02/19 09:28
 Received:
 05/02/19 17:00
 Matrix:
 Water

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Semivolatile Organic	Analytical	Method: EPA	8270 Prepa	ration Meth	od: EP	A 3510			
bis(2-Chloroisopropyl) ether	1.7 U	ug/L	5.8	1.7	1	05/09/19 08:43	05/10/19 12:54	108-60-1	
2-Chloronaphthalene	0.33 U	ug/L	4.8	0.33	1	05/09/19 08:43	05/10/19 12:54	91-58-7	J(M1)
2-Chlorophenol	1.3 U	ug/L	4.8	1.3	1	05/09/19 08:43	05/10/19 12:54	95-57-8	J(M1)
4-Chlorophenylphenyl ether	1.4 U	ug/L	4.8	1.4	1	05/09/19 08:43	05/10/19 12:54	7005-72-3	J(M1)
Dibenzofuran	1.4 U	ug/L	4.8	1.4	1	05/09/19 08:43	05/10/19 12:54	132-64-9	J(M1)
1,2-Dichlorobenzene	1.5 U	ug/L	4.8	1.5	1	05/09/19 08:43	05/10/19 12:54	95-50-1	J(M1)
1,3-Dichlorobenzene	1.5 U	ug/L	4.8	1.5	1	05/09/19 08:43	05/10/19 12:54	541-73-1	J(M1)
1,4-Dichlorobenzene	1.5 U	ug/L	4.8	1.5	1	05/09/19 08:43	05/10/19 12:54	106-46-7	` ,
3,3'-Dichlorobenzidine	1.0 U	ug/L	9.6	1.0	1	05/09/19 08:43	05/10/19 12:54	91-94-1	J(L2), J(M0)
2,4-Dichlorophenol	0.33 U	ug/L	1.9	0.33	1	05/09/19 08:43	05/10/19 12:54	120-83-2	J(M1)
Diethylphthalate	1.4 U	ug/L	4.8	1.4	1	05/09/19 08:43	05/10/19 12:54	84-66-2	J(M1)
2,4-Dimethylphenol	0.99 U	ug/L	4.8	0.99	1	05/09/19 08:43	05/10/19 12:54	105-67-9	J(M1)
Dimethylphthalate	1.4 U	ug/L	4.8	1.4	1	05/09/19 08:43	05/10/19 12:54	131-11-3	J(M1)
Di-n-butylphthalate	1.0 U	ug/L	4.8	1.0	1	05/09/19 08:43	05/10/19 12:54	84-74-2	J(L2)
4,6-Dinitro-2-methylphenol	4.4 U	ug/L	19.2	4.4	1	05/09/19 08:43	05/10/19 12:54	534-52-1	J(v1)
1,2-Dinitrobenzene	1.8 U	ug/L	5.8	1.8	1	05/09/19 08:43	05/10/19 12:54	528-29-0	
1,3-Dinitrobenzene	1.1 U	ug/L	7.7	1.1	1	05/09/19 08:43	05/10/19 12:54	99-65-0	J(v1)
2,4-Dinitrophenol	2.5 U	ug/L	19.2	2.5	1	05/09/19 08:43	05/10/19 12:54	51-28-5	J(v1)
2,4-Dinitrotoluene	0.26 U	ug/L	3.8	0.26	1	05/09/19 08:43	05/10/19 12:54	121-14-2	J(v1)
2,6-Dinitrotoluene	0.27 U	ug/L	1.9	0.27	1	05/09/19 08:43	05/10/19 12:54	606-20-2	` ,
Di-n-octylphthalate	0.88 U	ug/L	4.8	0.88	1	05/09/19 08:43	05/10/19 12:54	117-84-0	
1,2-Diphenylhydrazine	1.3 U	ug/L	4.8	1.3	1	05/09/19 08:43	05/10/19 12:54	122-66-7	J(M1)
bis(2-Ethylhexyl)phthalate	1.1 U	ug/L	4.8	1.1	1	05/09/19 08:43	05/10/19 12:54	117-81-7	` ,
Hexachloro-1,3-butadiene	0.34 U	ug/L	1.9	0.34	1	05/09/19 08:43	05/10/19 12:54	87-68-3	
Hexachlorobenzene	0.28 U	ug/L	0.96	0.28	1	05/09/19 08:43	05/10/19 12:54	118-74-1	
Hexachlorocyclopentadiene	3.3 U	ug/L	10.6	3.3	1	05/09/19 08:43	05/10/19 12:54	77-47-4	
Hexachloroethane	1.3 U	ug/L	4.8	1.3	1	05/09/19 08:43	05/10/19 12:54	67-72-1	
Isophorone	1.6 U	ug/L	4.8	1.6	1	05/09/19 08:43	05/10/19 12:54	78-59-1	J(M1)
2-Methylphenol(o-Cresol)	0.29 U	ug/L	4.8	0.29	1	05/09/19 08:43	05/10/19 12:54	95-48-7	J(M1)
3&4-Methylphenol(m&p Cresol)	0.21 U	ug/L	9.6	0.21	1	05/09/19 08:43	05/10/19 12:54		J(M1)
2-Nitroaniline	1.2 U	ug/L	4.8	1.2	1	05/09/19 08:43	05/10/19 12:54	88-74-4	J(v1)
3-Nitroaniline	1.2 U	ug/L	4.8	1.2	1	05/09/19 08:43	05/10/19 12:54	99-09-2	` ,
4-Nitroaniline	0.18 U	ug/L	3.8	0.18	1	05/09/19 08:43	05/10/19 12:54	100-01-6	
Nitrobenzene	0.36 U	ug/L	3.8	0.36	1	05/09/19 08:43	05/10/19 12:54	98-95-3	J(M1)
2-Nitrophenol	1.3 U	ug/L	4.8	1.3	1	05/09/19 08:43	05/10/19 12:54	88-75-5	J(M1), J(v1)
4-Nitrophenol	1.9 U	ug/L	19.2	1.9	1	05/09/19 08:43	05/10/19 12:54		0(*1)
N-Nitrosodimethylamine	0.19 U	ug/L	1.9	0.19	1	05/09/19 08:43	05/10/19 12:54		
N-Nitroso-di-n-propylamine	0.32 U	ug/L	3.8	0.32	1	05/09/19 08:43		621-64-7	J(M1)
N-Nitrosodiphenylamine	1.2 U	ug/L	4.8	1.2	1	05/09/19 08:43	05/10/19 12:54	86-30-6	J(M1)
Pentachlorophenol	1.6 U	ug/L	19.2	1.6	1	05/09/19 08:43	05/10/19 12:54	87-86-5	
Phenol	0.60 U	ug/L	4.8	0.60	1	05/09/19 08:43	05/10/19 12:54	108-95-2	
Pyridine	1.1 U	ug/L	4.8	1.1	1	05/09/19 08:43	05/10/19 12:54	110-86-1	
2,3,4,6-Tetrachlorophenol	1.0 U	ug/L	4.8	1.0	1	05/09/19 08:43			J(M1)
2,3,5,6-Tetrachlorophenol	1.8 U	ug/L	8.6	1.8	1	05/09/19 08:43	05/10/19 12:54	935-95-5	N2
1,2,4-Trichlorobenzene	1.4 U	ug/L	4.8	1.4	1	05/09/19 08:43	05/10/19 12:54	120-82-1	J(M1)

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

Collected: 05/02/19 09:28 Received: 05/02/19 17:00 Sample: MW-2R-050219 Lab ID: 35465452001 Matrix: Water PQL DF **Parameters** Results Units MDI Prepared CAS No. Analyzed Qual Analytical Method: EPA 8270 Preparation Method: EPA 3510 8270 MSSV Semivolatile Organic 2,4,5-Trichlorophenol 0.22 U ug/L 3.8 0.22 05/09/19 08:43 05/10/19 12:54 95-95-4 0.35 U 2,4,6-Trichlorophenol ug/L 1.9 0.35 1 05/09/19 08:43 05/10/19 12:54 88-06-2 J(M1) Surrogates 27 % 10-94 05/09/19 08:43 05/10/19 12:54 4165-60-0 Nitrobenzene-d5 (S) 1 2-Fluorobiphenyl (S) 28 % 10-96 1 05/09/19 08:43 05/10/19 12:54 321-60-8 p-Terphenyl-d14 (S) 63 % 24-129 1 05/09/19 08:43 05/10/19 12:54 1718-51-0 Phenol-d5 (S) 10 % 10-35 1 05/09/19 08:43 05/10/19 12:54 4165-62-2 13 % 10-55 05/09/19 08:43 05/10/19 12:54 367-12-4 2-Fluorophenol (S) 1 2,4,6-Tribromophenol (S) 48 % 10-126 05/09/19 08:43 05/10/19 12:54 118-79-6 Analytical Method: EPA 8260 8260 MSV uq/L 20.0 05/03/19 18:56 67-64-1 Acetone 7.9 I 5.3 1 Acetonitrile 24.5 U ug/L 40.0 24.5 1 05/03/19 18:56 75-05-8 Benzene 0.30 U 1.0 0.30 05/03/19 18:56 71-43-2 ug/L 1 ug/L 05/03/19 18:56 74-97-5 Bromochloromethane 0.37 U 10 0.37 1 Bromodichloromethane 0.19 U 0.60 0.19 05/03/19 18:56 75-27-4 ug/L 1 Bromoform 2.6 U 3.0 2.6 1 05/03/19 18:56 75-25-2 ug/L 05/03/19 18:56 74-83-9 Bromomethane 4.0 U ug/L 5.0 4.0 1 J(v2) 2-Butanone (MEK) 7.5 U ug/L 10.0 7.5 1 05/03/19 18:56 78-93-3 Carbon disulfide 0.45 U ug/L 10.0 0.45 1 05/03/19 18:56 75-15-0 Carbon tetrachloride 1.1 U ug/L 3.0 1.1 1 05/03/19 18:56 56-23-5 J(v2) Chlorobenzene 0.35 U 0.35 05/03/19 18:56 108-90-7 ug/L 1.0 1 J(L1), Chloroethane 3.7 U ug/L 10.0 37 1 05/03/19 18:56 75-00-3 J(v1) Chloroform 0.32 0.32 U ug/L 1.0 1 05/03/19 18:56 67-66-3 Chloromethane 0.97 U ug/L 1.0 0.97 1 05/03/19 18:56 74-87-3 1,2-Dibromo-3-chloropropane 1.9 U ug/L 5.0 1.9 1 05/03/19 18:56 96-12-8 Dibromochloromethane 0.45 U ug/L 2.0 0.45 05/03/19 18:56 124-48-1 1 0.31 05/03/19 18:56 106-93-4 1,2-Dibromoethane (EDB) 0.31 U 10 1 ug/L 0.68 U 0.68 Dibromomethane 2.0 1 05/03/19 18:56 74-95-3 ug/L 05/03/19 18:56 95-50-1 0.29 1.2-Dichlorobenzene 0.29 U ug/L 1.0 1 1,4-Dichlorobenzene 0.28 U ug/L 1.0 0.28 1 05/03/19 18:56 106-46-7 trans-1,4-Dichloro-2-butene 2.5 U ug/L 10.0 2.5 1 05/03/19 18:56 110-57-6 J(v2) 1,1-Dichloroethane 0.34 U ug/L 1.0 0.34 1 05/03/19 18:56 75-34-3 1,2-Dichloroethane 0.27 U ug/L 1.0 0.27 1 05/03/19 18:56 107-06-2 N2 1,2-Dichloroethene (Total) 0.27 U ug/L 1.0 0.27 1 05/03/19 18:56 540-59-0 1,1-Dichloroethene 0.27 U ug/L 1.0 0.27 05/03/19 18:56 75-35-4 1 ug/L cis-1,2-Dichloroethene 0.27 U 1.0 0.27 05/03/19 18:56 156-59-2 1 trans-1.2-Dichloroethene 0.23 U 1.0 0.23 05/03/19 18:56 156-60-5 ug/L 1 0.23 U 1.0 0.23 05/03/19 18:56 78-87-5 1,2-Dichloropropane ug/L 1 0.17 U ug/L 0.50 0.17 cis-1,3-Dichloropropene 05/03/19 18:56 10061-01-5 J(v2) 1 0.17 U 0.50 trans-1,3-Dichloropropene ug/L 0.17 1 05/03/19 18:56 10061-02-6 J(v2) Ethylbenzene 0.30 U ug/L 1.0 0.30 1 05/03/19 18:56 100-41-4 2-Hexanone 0.85 U ug/L 10.0 0.85 1 05/03/19 18:56 591-78-6 Iodomethane 9.3 U ug/L 10.0 9.3 1 05/03/19 18:56 74-88-4 J(v2) Isopropylbenzene (Cumene) 0.30 U 0.30 05/03/19 18:56 98-82-8 ug/L 10

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

Sample: MW-2R-050219 Lab ID: 35465452001 Collected: 05/02/19 09:28 Received: 05/02/19 17:00 Matrix: Water

			000010	a. 00/0 <u>-</u> /10	00.20	. 100000.			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	3260						
Methylene Chloride	2.0 U	ug/L	5.0	2.0	1		05/03/19 18:56	75-09-2	
4-Methyl-2-pentanone (MIBK)	0.32 U	ug/L	10.0	0.32	1		05/03/19 18:56	108-10-1	J(v2)
Methyl-tert-butyl ether	0.51 U	ug/L	2.0	0.51	1		05/03/19 18:56	1634-04-4	
Styrene	0.26 U	ug/L	1.0	0.26	1		05/03/19 18:56	100-42-5	
1,1,1,2-Tetrachloroethane	0.32 U	ug/L	1.0	0.32	1		05/03/19 18:56	630-20-6	
1,1,2,2-Tetrachloroethane	0.20 U	ug/L	0.50	0.20	1		05/03/19 18:56	79-34-5	
Tetrachloroethene	0.38 U	ug/L	1.0	0.38	1		05/03/19 18:56	127-18-4	
Toluene	0.33 U	ug/L	1.0	0.33	1		05/03/19 18:56	108-88-3	
1,1,1-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		05/03/19 18:56	71-55-6	
1,1,2-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		05/03/19 18:56	79-00-5	
Trichloroethene	0.36 U	ug/L	1.0	0.36	1		05/03/19 18:56	79-01-6	
Trichlorofluoromethane	0.35 U	ug/L	1.0	0.35	1		05/03/19 18:56	75-69-4	
1,2,3-Trichloropropane	1.1 U	ug/L	2.0	1.1	1		05/03/19 18:56	96-18-4	
1,2,4-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		05/03/19 18:56	95-63-6	
1,3,5-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		05/03/19 18:56	108-67-8	
Vinyl acetate	0.19 U	ug/L	10.0	0.19	1		05/03/19 18:56	108-05-4	
Vinyl chloride	0.39 U	ug/L	1.0	0.39	1		05/03/19 18:56	75-01-4	
Xylene (Total)	2.1 U	ug/L	5.0	2.1	1		05/03/19 18:56	1330-20-7	
m&p-Xylene	2.1 U	ug/L	4.0	2.1	1		05/03/19 18:56	179601-23-1	
o-Xylene	0.27 U	ug/L	1.0	0.27	1		05/03/19 18:56	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	99	%	70-130		1		05/03/19 18:56	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		05/03/19 18:56	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		05/03/19 18:56	2037-26-5	

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

Sample: MW-1-050219	19 Lab ID: 35465452002			d: 05/02/19	10:38	Received: 05/02/19 17:00 Matrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	05/03/19 09:28	05/04/19 11:50	7440-43-9	
Chromium	1.4	ug/L	1.0	0.50	1	05/03/19 09:28	05/04/19 11:50	7440-47-3	
Lead	0.50 U	ug/L	1.0	0.50	1	05/03/19 09:28	05/04/19 11:50	7439-92-1	
Silver	0.050 U	ug/L	0.10	0.050	1	05/03/19 09:28	05/04/19 11:50	7440-22-4	

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

Sample: MW-3-050219	Lab ID:	Lab ID: 35465452003		Collected: 05/02/19 10:04		Received: 05/			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP/	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	05/03/19 09:28	05/04/19 11:52	7440-43-9	
Chromium	0.79 I	ug/L	1.0	0.50	1	05/03/19 09:28	05/04/19 11:52	7440-47-3	
Lead	0.50 U	ug/L	1.0	0.50	1	05/03/19 09:28	05/04/19 11:52	7439-92-1	
Silver	0.050 U	ua/l	0.10	0.050	1	05/03/19 09:28	05/04/19 11:52	7440-22-4	

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35465452

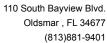
Trichloroethene

Date: 05/10/2019 03:51 PM

Collected: 05/02/19 09:28 Received: 05/02/19 17:00 Sample: Trip Blank Lab ID: 35465452004 Matrix: Water PQL DF **Parameters** Results Units MDI CAS No. Prepared Analyzed Qual Analytical Method: EPA 8260 8260 MSV 20.0 5.3 05/03/19 12:50 67-64-1 Acetone 5.8 I ug/L 1 Acetonitrile 24.5 U ug/L 40.0 24.5 1 05/03/19 12:50 75-05-8 Benzene 0.30 U ug/L 1.0 0.30 1 05/03/19 12:50 71-43-2 Bromochloromethane 0.37 U ug/L 1.0 0.37 05/03/19 12:50 74-97-5 1 05/03/19 12:50 75-27-4 Bromodichloromethane 0.19 U ug/L 0.60 0.19 1 2.6 U 2.6 05/03/19 12:50 75-25-2 Bromoform ug/L 3.0 1 4.0 U 4.0 74-83-9 Bromomethane ug/L 5.0 1 05/03/19 12:50 J(v2) 2-Butanone (MEK) 7.5 U ug/L 10.0 7.5 1 05/03/19 12:50 78-93-3 Carbon disulfide 0.45 U ug/L 10.0 0.45 1 05/03/19 12:50 75-15-0 Carbon tetrachloride 1.1 U ug/L 3.0 1.1 1 05/03/19 12:50 56-23-5 J(v2) Chlorobenzene 0.35 U 0.35 05/03/19 12:50 108-90-7 ug/L 1.0 1 J(L1), Chloroethane 3.7 U ug/L 10.0 3.7 1 05/03/19 12:50 75-00-3 J(v1) Chloroform 0.32 U 1.0 0.32 05/03/19 12:50 67-66-3 ug/L 1 Chloromethane 0.97 U ug/L 1.0 0.97 1 05/03/19 12:50 74-87-3 1,2-Dibromo-3-chloropropane 1.9 U ug/L 5.0 1.9 1 05/03/19 12:50 96-12-8 Dibromochloromethane 0.45 U ug/L 2.0 0.45 1 05/03/19 12:50 124-48-1 1.2-Dibromoethane (EDB) 0.31 U ug/L 1 0 0.31 1 05/03/19 12:50 106-93-4 74-95-3 Dibromomethane 0.68 U ug/L 2.0 0.68 1 05/03/19 12:50 0.29 95-50-1 1.2-Dichlorobenzene 0.29 U ug/L 1.0 1 05/03/19 12:50 1,4-Dichlorobenzene 0.28 U ug/L 1.0 0.28 1 05/03/19 12:50 106-46-7 trans-1,4-Dichloro-2-butene 2.5 U ug/L 10.0 25 1 05/03/19 12:50 110-57-6 J(v2) 1,1-Dichloroethane 0.34 U ug/L 1.0 0.34 1 05/03/19 12:50 75-34-3 1.2-Dichloroethane 0.27 U 1.0 0.27 05/03/19 12:50 107-06-2 ug/L 1 1,2-Dichloroethene (Total) 0.27 U ug/L 1.0 0.27 1 05/03/19 12:50 540-59-0 N2 1.1-Dichloroethene 0.27 U ug/L 1.0 0.27 1 05/03/19 12:50 75-35-4 cis-1.2-Dichloroethene 0.27 U ug/L 1.0 0.27 1 05/03/19 12:50 156-59-2 trans-1,2-Dichloroethene 0.23 U ug/L 1.0 0.23 05/03/19 12:50 156-60-5 1 0.23 1,2-Dichloropropane 0.23 U 10 05/03/19 12:50 78-87-5 ug/L 1 0.50 05/03/19 12:50 10061-01-5 cis-1,3-Dichloropropene 0.17 U 0.17 ug/L 1 J(v2) trans-1,3-Dichloropropene 0.17 U 0.50 0.17 05/03/19 12:50 10061-02-6 ug/L 1 J(v2) Ethylbenzene 0.30 0.30 U ug/L 1.0 1 05/03/19 12:50 100-41-4 2-Hexanone 0.85 U ug/L 10.0 0.85 1 05/03/19 12:50 591-78-6 lodomethane 9.3 U ug/L 10.0 9.3 1 05/03/19 12:50 74-88-4 J(v2) Isopropylbenzene (Cumene) 0.30 U ug/L 1.0 0.30 1 05/03/19 12:50 98-82-8 Methylene Chloride 2.0 U 2.0 05/03/19 12:50 75-09-2 ug/L 5.0 1 0.32 4-Methyl-2-pentanone (MIBK) 0.32 U ug/L 10.0 1 05/03/19 12:50 108-10-1 J(v2) Methyl-tert-butyl ether 0.51 U ug/L 2.0 0.51 1 05/03/19 12:50 1634-04-4 0.26 U 0.26 05/03/19 12:50 100-42-5 Styrene ug/L 10 1 0.32 U 0.32 05/03/19 12:50 630-20-6 1,1,1,2-Tetrachloroethane ug/L 1.0 1 1,1,2,2-Tetrachloroethane 0.20 U 0.50 0.20 05/03/19 12:50 79-34-5 ug/L 1 Tetrachloroethene 0.38 U ug/L 10 0.38 05/03/19 12:50 127-18-4 1 Toluene 0.33 U ug/L 1.0 0.33 1 05/03/19 12:50 108-88-3 1,1,1-Trichloroethane 0.30 U ug/L 1.0 0.30 1 05/03/19 12:50 71-55-6 1,1,2-Trichloroethane 0.30 U ug/L 1.0 0.30 1 05/03/19 12:50 79-00-5

REPORT OF LABORATORY ANALYSIS

0.36


1

1.0

0.36 U

ug/L

05/03/19 12:50 79-01-6

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

Sample: Trip Blank	Lab ID:	35465452004	Collected	l: 05/02/19	09:28	Received: 05	5/02/19 17:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 82	260						
Trichlorofluoromethane	0.35 U	ug/L	1.0	0.35	1		05/03/19 12:50	75-69-4	
1,2,3-Trichloropropane	1.1 U	ug/L	2.0	1.1	1		05/03/19 12:50	96-18-4	
1,2,4-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		05/03/19 12:50	95-63-6	
1,3,5-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		05/03/19 12:50	108-67-8	
Vinyl acetate	0.19 U	ug/L	10.0	0.19	1		05/03/19 12:50	108-05-4	
Vinyl chloride	0.39 U	ug/L	1.0	0.39	1		05/03/19 12:50	75-01-4	
Xylene (Total)	2.1 U	ug/L	5.0	2.1	1		05/03/19 12:50	1330-20-7	
m&p-Xylene	2.1 U	ug/L	4.0	2.1	1		05/03/19 12:50	179601-23-1	
o-Xylene	0.27 U	ug/L	1.0	0.27	1		05/03/19 12:50	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	98	%	70-130		1		05/03/19 12:50	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130		1		05/03/19 12:50	17060-07-0	
Toluene-d8 (S)	97	%	70-130		1		05/03/19 12:50	2037-26-5	

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

QC Batch: 535904 Analysis Method: EPA 200.8 QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 35465452001, 35465452002, 35465452003

METHOD BLANK: 2903212 Matrix: Water

Associated Lab Samples: 35465452001, 35465452002, 35465452003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Cadmium	ug/L	0.050 U	0.10	0.050	05/04/19 11:22	
Chromium	ug/L	0.50 U	1.0	0.50	05/04/19 11:22	
Lead	ug/L	0.50 U	1.0	0.50	05/04/19 11:22	
Silver	ug/L	0.050 U	0.10	0.050	05/04/19 11:22	

LABORATORY CONTROL SAMPLE:	2903213					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L		5.3	105	85-115	
Chromium	ug/L	50	50.3	101	85-115	
Lead	ug/L	50	51.6	103	85-115	
Silver	ug/L	5	5.3	106	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2903	214		2903215							
		35465511001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.050 U	5	5	5.2	5.1	104	102	70-130	1	20	
Chromium	ug/L	0.50 U	50	50	50.8	50.3	101	100	70-130	1	20	
Lead	ug/L	0.50 U	50	50	50.0	49.7	100	99	70-130	1	20	
Silver	ug/L	0.050 U	5	5	5.2	5.2	104	103	70-130	1	20	

MATRIX SPIKE & MATRIX SPI	KE DUPL	ICATE: 2903	216		2903217							
			MS	MSD								
		35465267002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.11	5	5	5.4	5.4	106	105	70-130	0	20	
Chromium	ug/L	0.95 I	50	50	52.7	52.2	104	103	70-130	1	20	
Lead	ug/L	1.4	50	50	51.8	51.8	101	101	70-130	0	20	
Silver	ug/L	0.071 I	5	5	5.4	5.5	107	108	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

QC Batch: 535969 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 35465452001, 35465452004

METHOD BLANK: 2903460 Matrix: Water

Associated Lab Samples: 35465452001, 35465452004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	1.0	0.32	05/03/19 11:12	 -
1,1,1-Trichloroethane	ug/L	0.30 U	1.0	0.30	05/03/19 11:12	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	0.50	0.20	05/03/19 11:12	
1,1,2-Trichloroethane	ug/L	0.30 U	1.0	0.30	05/03/19 11:12	
1,1-Dichloroethane	ug/L	0.34 U	1.0	0.34	05/03/19 11:12	
1,1-Dichloroethene	ug/L	0.27 U	1.0	0.27	05/03/19 11:12	
1,2,3-Trichloropropane	ug/L	1.1 U	2.0	1.1	05/03/19 11:12	
1,2,4-Trimethylbenzene	ug/L	0.24 U	1.0	0.24	05/03/19 11:12	
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	5.0	1.9	05/03/19 11:12	
1,2-Dibromoethane (EDB)	ug/L	0.31 U	1.0	0.31	05/03/19 11:12	
1,2-Dichlorobenzene	ug/L	0.29 U	1.0	0.29	05/03/19 11:12	
1,2-Dichloroethane	ug/L	0.27 U	1.0	0.27	05/03/19 11:12	
1,2-Dichloroethene (Total)	ug/L	0.27 U	1.0	0.27	05/03/19 11:12	N2
1,2-Dichloropropane	ug/L	0.23 U	1.0	0.23	05/03/19 11:12	
1,3,5-Trimethylbenzene	ug/L	0.24 U	1.0	0.24	05/03/19 11:12	
1,4-Dichlorobenzene	ug/L	0.28 U	1.0	0.28	05/03/19 11:12	
2-Butanone (MEK)	ug/L	7.5 U	10.0	7.5	05/03/19 11:12	
2-Hexanone	ug/L	0.85 U	10.0	0.85	05/03/19 11:12	
4-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	10.0	0.32	05/03/19 11:12	J(v2)
Acetone	ug/L	5.3 U	20.0	5.3	05/03/19 11:12	
Acetonitrile	ug/L	24.5 U	40.0	24.5	05/03/19 11:12	
Benzene	ug/L	0.30 U	1.0	0.30	05/03/19 11:12	
Bromochloromethane	ug/L	0.37 U	1.0	0.37	05/03/19 11:12	
Bromodichloromethane	ug/L	0.19 U	0.60	0.19	05/03/19 11:12	
Bromoform	ug/L	2.6 U	3.0	2.6	05/03/19 11:12	
Bromomethane	ug/L	4.0 U	5.0	4.0	05/03/19 11:12	J(v2)
Carbon disulfide	ug/L	0.45 U	10.0	0.45	05/03/19 11:12	
Carbon tetrachloride	ug/L	1.1 U	3.0	1.1	05/03/19 11:12	J(v2)
Chlorobenzene	ug/L	0.35 U	1.0	0.35	05/03/19 11:12	
Chloroethane	ug/L	3.7 U	10.0	3.7	05/03/19 11:12	J(v1)
Chloroform	ug/L	0.32 U	1.0	0.32	05/03/19 11:12	
Chloromethane	ug/L	0.97 U	1.0	0.97	05/03/19 11:12	
cis-1,2-Dichloroethene	ug/L	0.27 U	1.0	0.27	05/03/19 11:12	
cis-1,3-Dichloropropene	ug/L	0.17 U	0.50	0.17	05/03/19 11:12	J(v2)
Dibromochloromethane	ug/L	0.45 U	2.0	0.45	05/03/19 11:12	
Dibromomethane	ug/L	0.68 U	2.0	0.68	05/03/19 11:12	
Ethylbenzene	ug/L	0.30 U	1.0	0.30	05/03/19 11:12	
Iodomethane	ug/L	9.3 U	10.0	9.3	05/03/19 11:12	J(v2)
Isopropylbenzene (Cumene)	ug/L	0.30 U	1.0	0.30	05/03/19 11:12	
m&p-Xylene	ug/L	2.1 U	4.0	2.1	05/03/19 11:12	
Methyl-tert-butyl ether	ug/L	0.51 U	2.0	0.51	05/03/19 11:12	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

METHOD BLANK: 2903460 Matrix: Water

Associated Lab Samples: 35465452001, 35465452004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Methylene Chloride	ug/L	2.0 U	5.0	2.0	05/03/19 11:12	-
o-Xylene	ug/L	0.27 U	1.0	0.27	05/03/19 11:12	
Styrene	ug/L	0.26 U	1.0	0.26	05/03/19 11:12	
Tetrachloroethene	ug/L	0.38 U	1.0	0.38	05/03/19 11:12	
Toluene	ug/L	0.33 U	1.0	0.33	05/03/19 11:12	
trans-1,2-Dichloroethene	ug/L	0.23 U	1.0	0.23	05/03/19 11:12	
trans-1,3-Dichloropropene	ug/L	0.17 U	0.50	0.17	05/03/19 11:12	J(v2)
trans-1,4-Dichloro-2-butene	ug/L	2.5 U	10.0	2.5	05/03/19 11:12	J(v2)
Trichloroethene	ug/L	0.36 U	1.0	0.36	05/03/19 11:12	
Trichlorofluoromethane	ug/L	0.35 U	1.0	0.35	05/03/19 11:12	
Vinyl acetate	ug/L	0.19 U	10.0	0.19	05/03/19 11:12	
Vinyl chloride	ug/L	0.39 U	1.0	0.39	05/03/19 11:12	
Xylene (Total)	ug/L	2.1 U	5.0	2.1	05/03/19 11:12	
1,2-Dichloroethane-d4 (S)	%	100	70-130		05/03/19 11:12	
4-Bromofluorobenzene (S)	%	98	70-130		05/03/19 11:12	
Toluene-d8 (S)	%	100	70-130		05/03/19 11:12	

LABORATORY CONTROL SAMPLE	E: 2903461					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	20.0	100	70-130	
1,1,1-Trichloroethane	ug/L	20	18.7	93	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	18.3	92	68-125	
1,1,2-Trichloroethane	ug/L	20	18.6	93	70-130	
1,1-Dichloroethane	ug/L	20	18.5	92	70-130	
1,1-Dichloroethene	ug/L	20	19.1	95	66-133	
1,2,3-Trichloropropane	ug/L	20	18.1	91	62-127	
1,2,4-Trimethylbenzene	ug/L	20	19.1	96	70-130	
1,2-Dibromo-3-chloropropane	ug/L	20	16.2	81	45-137	
1,2-Dibromoethane (EDB)	ug/L	20	18.8	94	70-130	
1,2-Dichlorobenzene	ug/L	20	17.4	87	70-130	
1,2-Dichloroethane	ug/L	20	16.9	84	70-130	
1,2-Dichloroethene (Total)	ug/L	40	35.8	90	70-130 N	12
1,2-Dichloropropane	ug/L	20	18.2	91	70-130	
1,3,5-Trimethylbenzene	ug/L	20	18.5	92	70-130	
1,4-Dichlorobenzene	ug/L	20	17.9	90	70-130	
2-Butanone (MEK)	ug/L	40	33.8	85	47-143	
2-Hexanone	ug/L	40	32.7	82	48-145	
4-Methyl-2-pentanone (MIBK)	ug/L	40	32.0	80	57-132 J	(v3)
Acetone	ug/L	40	37.1	93	46-148	
Acetonitrile	ug/L	200	193	97	33-175	
Benzene	ug/L	20	18.3	92	70-130	
Bromochloromethane	ug/L	20	17.0	85	70-130	
Bromodichloromethane	ug/L	20	19.6	98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(813)881-9401

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

LABORATORY CONTROL SAMPLE:	2903461					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
romoform	ug/L	20	16.4	82	49-126	
Bromomethane	ug/L	20	14.0	70	10-165	J(v3)
Carbon disulfide	ug/L	20	20.1	100	60-141	
Carbon tetrachloride	ug/L	20	16.2	81	63-126	J(v3)
Chlorobenzene	ug/L	20	17.8	89	70-130	
Chloroethane	ug/L	20	39.7	199	71-142	J(L1), J(v1)
Chloroform	ug/L	20	18.4	92	70-130	
Chloromethane	ug/L	20	24.0	120	40-140	
cis-1,2-Dichloroethene	ug/L	20	17.5	88	70-130	
cis-1,3-Dichloropropene	ug/L	20	15.3	76	70-130	J(v3)
Dibromochloromethane	ug/L	20	16.8	84	62-118	
Dibromomethane	ug/L	20	18.4	92	70-130	
Ethylbenzene	ug/L	20	18.8	94	70-130	
odomethane	ug/L	40	10.3	26	10-164	J(v3)
sopropylbenzene (Cumene)	ug/L	20	18.9	95	70-130	
n&p-Xylene	ug/L	40	38.7	97	70-130	
/lethyl-tert-butyl ether	ug/L	20	18.8	94	64-124	
Methylene Chloride	ug/L	20	18.5	92	65-136	
-Xylene	ug/L	20	18.5	93	70-130	
Styrene	ug/L	20	18.7	94	70-130	
Tetrachloroethene	ug/L	20	18.1	91	64-134	
Toluene	ug/L	20	18.5	93	70-130	
rans-1,2-Dichloroethene	ug/L	20	18.3	91	68-127	
rans-1,3-Dichloropropene	ug/L	20	15.5	77	65-121	J(v3)
rans-1,4-Dichloro-2-butene	ug/L	20	15.3	76	42-129	J(v3)
Trichloroethene	ug/L	20	17.6	88	70-130	
Trichlorofluoromethane	ug/L	20	22.1	110	65-135	
/inyl acetate	ug/L	20	16.0	80	60-144	
/inyl chloride	ug/L	20	22.3	111	68-131	
(ylene (Total)	ug/L	60	57.2	95	70-130	
l,2-Dichloroethane-d4 (S)	%			101	70-130	
-Bromofluorobenzene (S)	%			101	70-130	
oluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	2903555						
Parameter	Units	35465449002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	20	20.6	103	70-130	
1,1,1-Trichloroethane	ug/L	0.30 U	20	20.5	103	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	20	18.5	93	68-125	
1,1,2-Trichloroethane	ug/L	0.30 U	20	19.2	96	70-130	
1,1-Dichloroethane	ug/L	0.34 U	20	20.0	100	70-130	
1,1-Dichloroethene	ug/L	0.27 U	20	21.1	106	66-133	
1,2,3-Trichloropropane	ug/L	1.1 U	20	15.9	79	62-127	
1,2,4-Trimethylbenzene	ug/L	0.24 U	20	20.9	104	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

MATRIX SPIKE SAMPLE:	2903555	35465449002	Spike	MS	MS	% Rec
Parameter	Units	Result	Conc.	Result	% Rec	Limits Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	20	16.3	81	45-137
1,2-Dibromoethane (EDB)	ug/L	0.31 U	20	18.9	95	70-130
1,2-Dichlorobenzene	ug/L	0.29 U	20	18.3	92	70-130
1,2-Dichloroethane	ug/L	0.27 U	20	17.9	89	70-130
1,2-Dichloroethene (Total)	ug/L	0.27 U	40	39.4	99	70-130 N2
1,2-Dichloropropane	ug/L	0.23 U	20	19.5	98	70-130
1,3,5-Trimethylbenzene	ug/L	0.24 U	20	20.5	102	70-130
1,4-Dichlorobenzene	ug/L	0.28 U	20	18.6	93	70-130
2-Butanone (MEK)	ug/L	7.5 U	40	35.5	89	47-143
2-Hexanone (ug/L	0.85 U	40	32.4	81	48-145
4-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	40	32.1	80	57-132 J(v3)
Acetone	ug/L	35.5	40	50.5	38	46-148 J(M1)
Acetonitrile	ug/L	24.5 U	200	192	96	33-175
Benzene	ug/L	0.30 U	20	19.9	100	70-130
Bromochloromethane	ug/L	0.37 U	20	18.9	95	70-130
Bromodichloromethane	ug/L	0.19 U	20	20.3	102	70-130
Bromoform	ug/L	2.6 U	20	16.2	81	49-126
Bromomethane	ug/L	4.0 U	20	10.2	51	10-165 J(v3)
Carbon disulfide	ug/L	0.45 U	20	23.0	114	60-141
Carbon tetrachloride	ug/L	1.1 U	20	17.7	89	63-126 J(v3)
Chlorobenzene	ug/L	0.35 U	20	18.9	94	70-130
Chloroethane	ug/L	3.7 U	20	41.3	206	71-142 J(M0),J(v1)
Chloroform	ug/L	0.32 U	20	19.5	98	70-130
Chloromethane	ug/L	0.97 U	20	25.2	126	40-140
cis-1,2-Dichloroethene	ug/L	0.27 U	20	19.4	97	70-130
cis-1,3-Dichloropropene	ug/L	0.17 U	20	15.3	77	70-130 J(v3)
Dibromochloromethane	ug/L	0.45 U	20	16.8	84	62-118
Dibromomethane	ug/L	0.68 U	20	18.1	90	70-130
Ethylbenzene	ug/L	0.30 U	20	20.1	101	70-130
odomethane	ug/L	9.3 U	40	13.9	35	10-164 J(v3)
sopropylbenzene (Cumene)	ug/L	0.30 U	20	21.1	106	70-130
m&p-Xylene	ug/L	2.1 U	40	41.1	103	70-130
Methyl-tert-butyl ether	ug/L ug/L	0.51 U	20	18.6	93	64-124
Methylene Chloride	ug/L ug/L	2.0 U	20	18.7	93 94	65-136
o-Xylene	ug/L ug/L	0.27 U	20	20.0	100	70-130
Styrene	ug/L ug/L	0.26 U	20	19.4	97	70-130 70-130
Styrene Tetrachloroethene	ug/L ug/L	0.20 U	20	18.6	93	64-134
	- "	0.33 U	20			70-130
Ioluene rans-1,2-Dichloroethene	ug/L	0.23 U	20	19.7 20.0	98 100	68-127
rans-1,3-Dichloropropene	ug/L ug/L	0.23 U	20	20.0 15.8	79	65-121 J(v3)
rans-1,4-Dichloro-2-butene		2.5 U	20	14.5	79 72	
,	ug/L	0.36 U			72 97	42-129 J(v3)
Trichloroethene	ug/L	0.35 U	20	19.4		70-130
Trichlorofluoromethane	ug/L		20	23.7	118	65-135
Vinyl acetate	ug/L	0.19 U	20	15.3	76	60-144
Vinyl chloride	ug/L	0.39 U	20	23.9	120	68-131
Xylene (Total)	ug/L	2.1 U	60	61.1	102	70-130
1,2-Dichloroethane-d4 (S)	%				99	70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

MATRIX SPIKE SAMPLE:	2903555						
		35465449002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
4-Bromofluorobenzene (S)					101	70-130	
Toluene-d8 (S)	%				99	70-130	

SAMPLE DUPLICATE: 2903554		25465440001	Dun		Max	
Parameter	Units	35465449001 Result	Dup Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	0.32 U		40))
1,1,1-Trichloroethane	ug/L	0.30 U	0.30 U		40)
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	0.20 U		40)
1,1,2-Trichloroethane	ug/L	0.30 U	0.30 U		40)
1,1-Dichloroethane	ug/L	0.34 U	0.34 U		40)
1,1-Dichloroethene	ug/L	0.27 U	0.27 U		40)
1,2,3-Trichloropropane	ug/L	1.1 U	1.1 U		40)
1,2,4-Trimethylbenzene	ug/L	0.24 U	0.24 U		40)
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	1.9 U		40)
1,2-Dibromoethane (EDB)	ug/L	0.31 U	0.31 U		40)
1,2-Dichlorobenzene	ug/L	0.29 U	0.29 U		40)
1,2-Dichloroethane	ug/L	0.27 U	0.27 U		40)
1,2-Dichloroethene (Total)	ug/L	0.27 U	0.27 U		40) N2
1,2-Dichloropropane	ug/L	0.23 U	0.23 U		40)
1,3,5-Trimethylbenzene	ug/L	0.24 U	0.24 U		40)
1,4-Dichlorobenzene	ug/L	0.28 U	0.28 U		40)
2-Butanone (MEK)	ug/L	7.5 U	7.5 U		40)
2-Hexanone	ug/L	0.85 U	0.85 U		40)
4-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	0.32 U		40) J(v2)
Acetone	ug/L	9.6 I	12.4 I		40)
Acetonitrile	ug/L	24.5 U	24.5 U		40)
Benzene	ug/L	0.30 U	0.30 U		40)
Bromochloromethane	ug/L	0.37 U	0.37 U		40)
Bromodichloromethane	ug/L	0.19 U	0.19 U		40)
Bromoform	ug/L	2.6 U	2.6 U		40)
Bromomethane	ug/L	4.0 U	4.0 U		40) J(v2)
Carbon disulfide	ug/L	0.45 U	0.45 U		40)
Carbon tetrachloride	ug/L	1.1 U	1.1 U		40) J(v2)
Chlorobenzene	ug/L	0.35 U	0.35 U		40	
Chloroethane	ug/L	3.7 U	3.7 U		40) J(v1)
Chloroform	ug/L	0.32 U	0.32 U		40	
Chloromethane	ug/L	0.97 U	0.97 U		40	
cis-1,2-Dichloroethene	ug/L	0.27 U	0.27 U		40	
cis-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		40) J(v2)
Dibromochloromethane	ug/L	0.45 U	0.45 U		40	
Dibromomethane	ug/L	0.68 U	0.68 U		40	
Ethylbenzene	ug/L	0.30 U	0.30 U		40	
Iodomethane	ug/L	9.3 U	9.3 U) J(v2)
Isopropylbenzene (Cumene)	ug/L	0.30 U	0.30 U		40)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

SAMPLE DUPLICATE: 2903554			_			
Parameter	Units	35465449001 Result	Dup Result	RPD	Max RPD	Qualifiers
	UTIILS		——————————————————————————————————————			Qualifiers
m&p-Xylene	ug/L	2.1 U	2.1 U		40)
Methyl-tert-butyl ether	ug/L	0.51 U	0.51 U		40)
Methylene Chloride	ug/L	2.0 U	2.0 U		40)
o-Xylene	ug/L	0.27 U	0.27 U		40)
Styrene	ug/L	0.26 U	0.26 U		40)
Tetrachloroethene	ug/L	0.38 U	0.38 U		40)
Toluene	ug/L	0.33 U	0.33 U		40)
trans-1,2-Dichloroethene	ug/L	0.23 U	0.23 U		40)
trans-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		40	J(v2)
trans-1,4-Dichloro-2-butene	ug/L	2.5 U	2.5 U		40	J(v2)
Trichloroethene	ug/L	0.36 U	0.36 U		40)
Trichlorofluoromethane	ug/L	0.35 U	0.35 U		40)
Vinyl acetate	ug/L	0.19 U	0.19 U		40)
Vinyl chloride	ug/L	0.39 U	0.39 U		40)
Xylene (Total)	ug/L	2.1 U	2.1 U		40)
1,2-Dichloroethane-d4 (S)	%	98	97		40	1
4-Bromofluorobenzene (S)	%	101	99		40	1
Toluene-d8 (S)	%	103	103		40	1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

QC Batch: 536089 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAHLV by SIM MSSV

Associated Lab Samples: 35465452001

METHOD BLANK: 2904132 Matrix: Water

Associated Lab Samples: 35465452001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	0.19 U	2.0	0.19	05/07/19 08:51	
2-Methylnaphthalene	ug/L	0.68 U	2.0	0.68	05/07/19 08:51	
Acenaphthene	ug/L	0.040 U	0.50	0.040	05/07/19 08:51	
Acenaphthylene	ug/L	0.030 U	0.50	0.030	05/07/19 08:51	
Anthracene	ug/L	0.043 U	0.50	0.043	05/07/19 08:51	
Benzo(a)anthracene	ug/L	0.055 U	0.10	0.055	05/07/19 08:51	
Benzo(a)pyrene	ug/L	0.12 U	0.20	0.12	05/07/19 08:51	
Benzo(b)fluoranthene	ug/L	0.027 U	0.10	0.027	05/07/19 08:51	
Benzo(g,h,i)perylene	ug/L	0.15 U	0.50	0.15	05/07/19 08:51	
Benzo(k)fluoranthene	ug/L	0.16 U	0.50	0.16	05/07/19 08:51	
Chrysene	ug/L	0.026 U	0.50	0.026	05/07/19 08:51	
Dibenz(a,h)anthracene	ug/L	0.13 U	0.15	0.13	05/07/19 08:51	
Fluoranthene	ug/L	0.018 U	0.50	0.018	05/07/19 08:51	
Fluorene	ug/L	0.088 U	0.50	0.088	05/07/19 08:51	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	0.15	0.12	05/07/19 08:51	
Naphthalene	ug/L	0.29 U	2.0	0.29	05/07/19 08:51	
Phenanthrene	ug/L	0.16 U	0.50	0.16	05/07/19 08:51	
Pyrene	ug/L	0.032 U	0.50	0.032	05/07/19 08:51	
2-Fluorobiphenyl (S)	%	69	33-82		05/07/19 08:51	
p-Terphenyl-d14 (S)	%	82	49-104		05/07/19 08:51	

LABORATORY CONTROL SAMPLE:	2904133					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L		3.3	65	40-96	
2-Methylnaphthalene	ug/L	5	3.4	67	40-94	
cenaphthene	ug/L	5	3.6	71	42-96	
Acenaphthylene	ug/L	5	3.4	67	39-90	
anthracene	ug/L	5	3.6	71	46-109	
enzo(a)anthracene	ug/L	5	4.2	84	50-116	
enzo(a)pyrene	ug/L	5	3.7	75	48-117	
enzo(b)fluoranthene	ug/L	5	3.9	77	51-124	
enzo(g,h,i)perylene	ug/L	5	3.7	75	47-121	
enzo(k)fluoranthene	ug/L	5	4.1	81	50-125	
hrysene	ug/L	5	4.3	87	53-122	
Dibenz(a,h)anthracene	ug/L	5	3.8	75	45-123	
luoranthene	ug/L	5	3.9	79	52-119	
luorene	ug/L	5	3.6	71	44-100	
ndeno(1,2,3-cd)pyrene	ug/L	5	3.8	76	46-121	
Naphthalene	ug/L	5	3.4	68	40-91	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

LABORATORY CONTROL SAMPLE:	2904133					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L		3.7	73	47-111	
Pyrene	ug/L	5	3.9	77	51-120	
2-Fluorobiphenyl (S)	%			71	33-82	
p-Terphenyl-d14 (S)	%			83	49-104	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	CATE: 2905	482		2905483	}						
			MS	MSD								
	3	35465504003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/L	39.9	5	5	42.1	42.0	45	42	40-96	0	40	
2-Methylnaphthalene	ug/L	64.2	5	5	66.1	64.9	38	14	40-94	2	40	J(M1)
Acenaphthene	ug/L	0.67	5	5	4.0	4.0	67	66	42-96	1	40	
Acenaphthylene	ug/L	0.030 U	5	5	3.5	3.5	70	70	39-90	0	40	
Anthracene	ug/L	0.099 I	5	5	3.5	3.5	68	67	46-109	1	40	
Benzo(a)anthracene	ug/L	0.055 U	5	5	4.0	3.9	80	77	50-116	3	40	
Benzo(a)pyrene	ug/L	0.12 U	5	5	3.6	3.5	71	70	48-117	2	40	
Benzo(b)fluoranthene	ug/L	0.027 U	5	5	3.5	3.5	70	69	51-124	2	40	
Benzo(g,h,i)perylene	ug/L	0.15 U	5	5	3.2	3.1	63	62	47-121	2	40	
Benzo(k)fluoranthene	ug/L	0.16 U	5	5	3.9	3.8	77	76	50-125	2	40	
Chrysene	ug/L	0.026 U	5	5	4.1	3.9	81	78	53-122	4	40	
Dibenz(a,h)anthracene	ug/L	0.13 U	5	5	3.3	3.2	66	64	45-123	2	40	
Fluoranthene	ug/L	0.018 U	5	5	3.7	3.6	74	73	52-119	2	40	
Fluorene	ug/L	0.96	5	5	4.3	4.3	67	67	44-100	1	40	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	5	5	3.3	3.3	66	65	46-121	2	40	
Naphthalene	ug/L	18.8	5	5	21.8	22.9	59	82	40-91	5	40	
Phenanthrene	ug/L	0.58	5	5	4.0	4.0	69	68	47-111	1	40	
Pyrene	ug/L	0.075 I	5	5	3.7	3.7	73	72	51-120	2	40	
2-Fluorobiphenyl (S)	%						64	64	33-82			
p-Terphenyl-d14 (S)	%						75	75	49-104			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

QC Batch: 537070 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 Water Full List MSSV

Associated Lab Samples: 35465452001

METHOD BLANK: 2909706 Matrix: Water

Associated Lab Samples: 35465452001

Associated Lab Campies. 3340343	J200 I	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
					<u> </u>	- Qualifiers
1,2,4-Trichlorobenzene	ug/L	1.4 U	5.0	1.4	05/10/19 10:00	
1,2-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	05/10/19 10:00	
1,2-Dinitrobenzene	ug/L	1.9 U	6.0	1.9	05/10/19 10:00	
1,2-Diphenylhydrazine	ug/L	1.4 U	5.0	1.4	05/10/19 10:00	
1,3-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	05/10/19 10:00	
1,3-Dinitrobenzene	ug/L	1.2 U	8.0	1.2	05/10/19 10:00	
1,4-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	05/10/19 10:00	
2,3,4,6-Tetrachlorophenol	ug/L	1.0 U	5.0	1.0	05/10/19 10:00	
2,3,5,6-Tetrachlorophenol	ug/L	1.9 U	9.0	1.9	05/10/19 10:00	N2
2,4,5-Trichlorophenol	ug/L	0.23 U	4.0	0.23	05/10/19 10:00	
2,4,6-Trichlorophenol	ug/L	0.36 U	2.0	0.36	05/10/19 10:00	
2,4-Dichlorophenol	ug/L	0.34 U	2.0	0.34	05/10/19 10:00	
2,4-Dimethylphenol	ug/L	1.0 U	5.0	1.0	05/10/19 10:00	
2,4-Dinitrophenol	ug/L	2.6 U	20.0	2.6	05/10/19 10:00	
2,4-Dinitrotoluene	ug/L	0.27 U	4.0	0.27	05/10/19 10:00	
2,6-Dinitrotoluene	ug/L	0.28 U	2.0	0.28	05/10/19 10:00	
2-Chloronaphthalene	ug/L	0.34 U	5.0	0.34	05/10/19 10:00	
2-Chlorophenol	ug/L	1.4 U	5.0	1.4	05/10/19 10:00	
2-Methylphenol(o-Cresol)	ug/L	0.30 U	5.0	0.30	05/10/19 10:00	
2-Nitroaniline	ug/L	1.3 U	5.0	1.3	05/10/19 10:00	
2-Nitrophenol	ug/L	1.4 U	5.0	1.4	05/10/19 10:00	
3&4-Methylphenol(m&p Cresol)	ug/L	0.22 U	10.0	0.22	05/10/19 10:00	
3,3'-Dichlorobenzidine	ug/L	1.0 U	10.0	1.0	05/10/19 10:00	
3-Nitroaniline	ug/L	1.3 U	5.0	1.3	05/10/19 10:00	
4,6-Dinitro-2-methylphenol	ug/L	4.6 U	20.0	4.6	05/10/19 10:00	
4-Bromophenylphenyl ether	ug/L	1.7 U	5.0	1.7	05/10/19 10:00	
4-Chloro-3-methylphenol	ug/L	5.4 U	20.0	5.4	05/10/19 10:00	
4-Chloroaniline	ug/L	1.4 U	5.0	1.4	05/10/19 10:00	
4-Chlorophenylphenyl ether	ug/L	1.4 U	5.0	1.4	05/10/19 10:00	
4-Nitroaniline	ug/L	0.19 U	4.0	0.19	05/10/19 10:00	
4-Nitrophenol	ug/L	2.0 U	20.0	2.0	05/10/19 10:00	
Aniline	ug/L	0.94 U	5.0	0.94	05/10/19 10:00	
Benzidine	ug/L	0.87 U	25.0	0.87	05/10/19 10:00	
Benzyl alcohol	ug/L	1.3 U	5.0	1.3	05/10/19 10:00	
bis(2-Chloroethoxy)methane	ug/L	1.6 U	5.0	1.6	05/10/19 10:00	
bis(2-Chloroethyl) ether	ug/L	0.34 U	4.0	0.34	05/10/19 10:00	
bis(2-Chloroisopropyl) ether	ug/L	1.8 U	6.0	1.8	05/10/19 10:00	
bis(2-Ethylhexyl)phthalate	ug/L	1.1 U	5.0	1.1	05/10/19 10:00	
Butylbenzylphthalate	ug/L	1.1 U	5.0	1.1	05/10/19 10:00	
Caprolactam	ug/L	0.40 U	5.0	0.40	05/10/19 10:00	N2
Carbazole	ug/L	1.1 U	5.0	1.1	05/10/19 10:00	
	ŭ					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

METHOD BLANK: 2909706 Matrix: Water

Associated Lab Samples: 35465452001

Devemates	l loite	Blank	Reporting	MDI	Analysed	0
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Di-n-butylphthalate	ug/L	1.1 U	5.0	1.1	05/10/19 10:00	
Di-n-octylphthalate	ug/L	0.92 U	5.0	0.92	05/10/19 10:00	
Dibenzofuran	ug/L	1.5 U	5.0	1.5	05/10/19 10:00	
Diethylphthalate	ug/L	1.4 U	5.0	1.4	05/10/19 10:00	
Dimethylphthalate	ug/L	1.4 U	5.0	1.4	05/10/19 10:00	
Hexachloro-1,3-butadiene	ug/L	0.35 U	2.0	0.35	05/10/19 10:00	
Hexachlorobenzene	ug/L	0.29 U	1.0	0.29	05/10/19 10:00	
Hexachlorocyclopentadiene	ug/L	3.4 U	11.0	3.4	05/10/19 10:00	
Hexachloroethane	ug/L	1.4 U	5.0	1.4	05/10/19 10:00	
Isophorone	ug/L	1.7 U	5.0	1.7	05/10/19 10:00	
N-Nitroso-di-n-propylamine	ug/L	0.33 U	4.0	0.33	05/10/19 10:00	
N-Nitrosodimethylamine	ug/L	0.20 U	2.0	0.20	05/10/19 10:00	
N-Nitrosodiphenylamine	ug/L	1.2 U	5.0	1.2	05/10/19 10:00	
Nitrobenzene	ug/L	0.37 U	4.0	0.37	05/10/19 10:00	
Pentachlorophenol	ug/L	1.6 U	20.0	1.6	05/10/19 10:00	
Phenol	ug/L	0.63 U	5.0	0.63	05/10/19 10:00	
Pyridine	ug/L	1.1 U	5.0	1.1	05/10/19 10:00	
2,4,6-Tribromophenol (S)	%	43	10-126		05/10/19 10:00	
2-Fluorobiphenyl (S)	%	34	10-96		05/10/19 10:00	
2-Fluorophenol (S)	%	19	10-55		05/10/19 10:00	
Nitrobenzene-d5 (S)	%	34	10-94		05/10/19 10:00	
p-Terphenyl-d14 (S)	%	68	24-129		05/10/19 10:00	
Phenol-d5 (S)	%	16	10-35		05/10/19 10:00	

LABORATORY CONTROL SAMPLE:	2909707					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L		24.0	48	33-89	
1,2-Dichlorobenzene	ug/L	50	23.2	46	30-85	
1,2-Dinitrobenzene	ug/L	50	33.4	67	55-111	
1,2-Diphenylhydrazine	ug/L	50	26.0	52	49-106	
1,3-Dichlorobenzene	ug/L	50	22.6	45	28-83	
1,3-Dinitrobenzene	ug/L	50	33.8	68	55-114	
1,4-Dichlorobenzene	ug/L	50	23.0	46	26-87	
2,3,4,6-Tetrachlorophenol	ug/L	50	28.4	57	56-108	
2,3,5,6-Tetrachlorophenol	ug/L	50	30.0	60	57-108 N	12
2,4,5-Trichlorophenol	ug/L	50	28.6	57	46-111	
2,4,6-Trichlorophenol	ug/L	50	28.0	56	45-108	
2,4-Dichlorophenol	ug/L	50	26.2	52	46-94	
2,4-Dimethylphenol	ug/L	50	24.9	50	44-92	
2,4-Dinitrophenol	ug/L	50	36.8	74	49-123	
2,4-Dinitrotoluene	ug/L	50	33.7	67	47-120	
2,6-Dinitrotoluene	ug/L	50	31.9	64	57-107	
2-Chloronaphthalene	ug/L	50	24.9	50	39-98	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

LABORATORY CONTROL SAMPLE:	2909707	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits Qual	ifiers
2-Chlorophenol	ug/L		22.8	46	35-83	
2-Methylphenol(o-Cresol)	ug/L	50	23.3	47	29-84	
2-Nitroaniline	ug/L	50	31.8	64	56-107	
2-Nitrophenol	ug/L	50	29.9	60	43-96	
3&4-Methylphenol(m&p Cresol)	ug/L	50	22.7	45	26-82	
3,3'-Dichlorobenzidine	ug/L	50	29.0	58	61-113 J(L2)	
3-Nitroaniline	ug/L	50	28.4	57	56-104	
1,6-Dinitro-2-methylphenol	ug/L	50	39.2	78	51-131	
I-Bromophenylphenyl ether	ug/L	50	28.9	58	51-105	
I-Chloro-3-methylphenol	ug/L	50	26.8	54	51-98	
I-Chloroaniline	ug/L	50	26.1	52	50-92	
I-Chlorophenylphenyl ether	ug/L	50	26.8	54	48-103	
l-Nitroaniline	ug/L	50	31.9	64	61-108	
I-Nitrophenol	ug/L	50	11.6 I	23	10-61	
Aniline	ug/L	50	24.0	48	33-88	
Benzidine	ug/L	50	14.0 I	28	10-110	
Benzyl alcohol	ug/L	50	22.2	44	35-78	
•	ug/L	50	25.4	51	43-94	
ois(2-Chloroethoxy)methane ois(2-Chloroethyl) ether	_			48	43-94 34-90	
` ,	ug/L	50 50	23.9		26-96	
ois(2-Chloroisopropyl) ether	ug/L	50 50	22.9	46		
ois(2-Ethylhexyl)phthalate	ug/L	50	23.4	47	28-125	
Butylbenzylphthalate	ug/L	50	28.3	57	54-116	
Caprolactam	ug/L	50	8.6	17	10-36 N2	
Carbazole	ug/L	50	28.4	57	58-109 J(L2)	
Di-n-butylphthalate	ug/L	50	28.1	56	57-113 J(L2)	
Di-n-octylphthalate	ug/L	50	23.9	48	28-124	
Dibenzofuran	ug/L	50	27.0	54	47-101	
Diethylphthalate	ug/L	50	28.3	57	57-107	
Dimethylphthalate	ug/L	50	27.9	56	56-104	
Hexachloro-1,3-butadiene	ug/L	50	23.4	47	25-95	
Hexachlorobenzene	ug/L	50	26.6	53	44-111	
Hexachlorocyclopentadiene	ug/L	50	21.6	43	10-126	
Hexachloroethane	ug/L	50	22.2	44	21-87	
sophorone	ug/L	50	25.6	51	46-95	
N-Nitroso-di-n-propylamine	ug/L	50	25.3	51	44-92	
N-Nitrosodimethylamine	ug/L	50	16.4	33	18-64	
N-Nitrosodiphenylamine	ug/L	50	27.3	55	53-105	
Nitrobenzene	ug/L	50	25.3	51	36-95	
Pentachlorophenol	ug/L	50	30.9	62	45-127	
Phenol	ug/L	50	11.6	23	10-44	
Pyridine	ug/L	50	12.5	25	10-57	
2,4,6-Tribromophenol (S)	%			64	10-126	
2-Fluorobiphenyl (S)	%			53	10-96	
2-Fluorophenol (S)	%			26	10-55	
Nitrobenzene-d5 (S)	%			51	10-94	
p-Terphenyl-d14 (S)	%			56	24-129	
Phenol-d5 (S)	%			22	10-35	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

MATRIX SPIKE & MATRIX SP	IKE DUP	LICATE: 2909		MCD	2909709							
		35465452001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,2,4-Trichlorobenzene	ug/L	1.4 U	48.1	47.9	12.9	14.6	27	30	33-89	13	40	J(M1
1,2-Dichlorobenzene	ug/L	1.5 U	48.1	47.9	12.8	13.8	27	29	30-85	8	40	J(M1
1,2-Dinitrobenzene	ug/L	1.8 U	48.1	47.9	30.5	35.1	63	73	55-111	14	40	
1,2-Diphenylhydrazine	ug/L	1.3 U	48.1	47.9	22.2	25.3	46	53	49-106	13	40	J(M1
1,3-Dichlorobenzene	ug/L	1.5 U	48.1	47.9	12.4	13.2	26	28	28-83	7		J(M1
1,3-Dinitrobenzene	ug/L	1.1 U	48.1	47.9	31.1	35.2	65	73	55-114	12		`
1,4-Dichlorobenzene	ug/L	1.5 U	48.1	47.9	12.5	13.5	26	28	26-87	8	40	
2,3,4,6-Tetrachlorophenol	ug/L	1.0 U	48.1	47.9	26.3	30.7	55	64	56-108	16	40	J(M1
2,3,5,6-Tetrachlorophenol	ug/L	1.8 U	48.1	47.9	28.7	31.8	60	66	57-108	10		N2
2,4,5-Trichlorophenol	ug/L	0.22 U	48.1	47.9	23.6	27.3	49	57	46-111	15	40	
2,4,6-Trichlorophenol	ug/L	0.35 U	48.1	47.9	20.8	24.5	43	51	45-108	16	40	J(M1
2,4-Dichlorophenol	ug/L	0.33 U	48.1	47.9	15.9	18.7	33	39	46-94	16		J(M1
2,4-Dimethylphenol	ug/L	0.99 U	48.1	47.9	15.9	18.9	33	39	44-92	17		J(M1
2,4-Dinitrophenol	ug/L	2.5 U	48.1	47.9	36.3	39.4	76	82	49-123	8	40	•(
2,4-Dinitrotoluene	ug/L	0.26 U	48.1	47.9	32.1	35.4	67	74	47-120	10	40	
2.6-Dinitrotoluene	ug/L	0.27 U	48.1	47.9	28.0	31.8	58	66	57-107	13	40	
2-Chloronaphthalene	ug/L	0.33 U	48.1	47.9	15.8	19.1	33	40	39-98	19		J(M1
2-Chlorophenol	ug/L	1.3 U	48.1	47.9	12.2	13.6	25	28	35-83	11		J(M1
-Methylphenol(o-Cresol)	ug/L	0.29 U	48.1	47.9	12.5	15.3	26	32	29-84	20		J(M1
?-Nitroaniline	ug/L	1.2 U	48.1	47.9	27.0	31.9	56	67	56-107	16	40	O(IVI I
2-Nitrophenol	ug/L	1.2 U	48.1	47.9	16.4	19.0	34	40	43-96	15		J(M1
3&4-Methylphenol(m&p	ug/L	0.21 U	48.1	47.9	11.7	15.0	24	31	26-82	24		J(M1
Cresol)	- 3											- (
3,3'-Dichlorobenzidine	ug/L	1.0 U	48.1	47.9	27.8	29.1	58	61	61-113	5	40	J(M0
3-Nitroaniline	ug/L	1.2 U	48.1	47.9	27.2	29.8	57	62	56-104	9	40	
1,6-Dinitro-2-methylphenol	ug/L	4.4 U	48.1	47.9	39.1	42.2	81	88	51-131	8	40	
I-Bromophenylphenyl ether	ug/L	1.6 U	48.1	47.9	25.4	29.2	53	61	51-105	14	40	
1-Chloro-3-methylphenol	ug/L	5.2 U	48.1	47.9	20.3	24.2	42	51	51-98	18	40	J(M1
I-Chloroaniline	ug/L	1.4 U	48.1	47.9	19.4	21.8	40	45	50-92	12	40	J(M1
1-Chlorophenylphenyl ether	ug/L	1.4 U	48.1	47.9	21.9	26.0	46	54	48-103	17	40	J(M1
1-Nitroaniline	ug/L	0.18 U	48.1	47.9	31.8	34.4	66	72	61-108	8	40	
1-Nitrophenol	ug/L	1.9 U	48.1	47.9	11.3 I	12.0 I	24	25	10-61		40	
Aniline	ug/L	0.90 U	48.1	47.9	17.5	17.4	36	36	33-88	0	40	
Benzidine	ug/L	0.84 U	48.1	47.9	12.6 I	11.2 I	26	23	10-110		40	
Benzyl alcohol	ug/L	1.2 U	48.1	47.9	13.0	14.7	27	31	35-78	12	40	J(M1
ois(2-	ug/L	1.6 U	48.1	47.9	14.0	17.2	29	36	43-94	21) J(M1
Chloroethoxy)methane	- 3											- (
is(2-Chloroethyl) ether	ug/L	0.33 U	48.1	47.9	12.8	13.8	27	29	34-90	8	40	J(M1
is(2-Chloroisopropyl) ether	ug/L	1.7 U	48.1	47.9	12.4	13.3	26	28	26-96	7	40	
ois(2-Ethylhexyl)phthalate	ug/L	1.1 U	48.1	47.9	24.5	26.2	51	55	28-125	7	40	
Butylbenzylphthalate	ug/L	1.1 U	48.1	47.9	29.0	31.2	60	65	54-116	7	40	
Caprolactam	ug/L	0.38 U	48.1	47.9	6.9	7.8	14	16	10-36	12	40	N2
Carbazole	ug/L	1.1 U	48.1	47.9	29.0	30.5	60	64	58-109	5	40	
Di-n-butylphthalate	ug/L	1.0 U	48.1	47.9	28.6	30.6	60	64	57-113	7		
Di-n-octylphthalate	ug/L	0.88 U	48.1	47.9	25.2	26.6	52	56	28-124	5	40	
Dibenzofuran	ug/L	1.4 U	48.1	47.9	20.7	24.6	43	51	47-101	17	40	J(M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(813)881-9401

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2909			2909709							
		25465452004	MS	MSD	МС	MSD	MS	MSD	0/ Daa		Mari	
Parameter	Units	35465452001 Result	Spike Conc.	Spike Conc.	MS Result	Result	% Rec	% Rec	% Rec Limits	RPD	Max RPD	Qual
							55					
Diethylphthalate	ug/L	1.4 U	48.1	47.9	26.2	29.4		61	57-107	11		J(M1)
Dimethylphthalate	ug/L	1.4 U	48.1	47.9	23.8	27.4	50	57	56-104	14		J(M1)
Hexachloro-1,3-butadiene	ug/L	0.34 U	48.1	47.9	12.7	14.0	27	29	25-95	10	40	
Hexachlorobenzene	ug/L	0.28 U	48.1	47.9	24.8	28.1	52	59	44-111	13	40	
Hexachlorocyclopentadiene	ug/L	3.3 U	48.1	47.9	11.9	13.5	25	28	10-126	12	40	
Hexachloroethane	ug/L	1.3 U	48.1	47.9	11.8	13.1	25	27	21-87	10	40	
Isophorone	ug/L	1.6 U	48.1	47.9	14.7	17.1	31	36	46-95	15	40	J(M1)
N-Nitroso-di-n-propylamine	ug/L	0.32 U	48.1	47.9	14.3	16.0	30	33	44-92	11	40	J(M1)
N-Nitrosodimethylamine	ug/L	0.19 U	48.1	47.9	9.7	10.2	20	21	18-64	5	40	
N-Nitrosodiphenylamine	ug/L	1.2 U	48.1	47.9	25.2	28.4	52	59	53-105	12	40	J(M1)
Nitrobenzene	ug/L	0.36 U	48.1	47.9	14.0	15.7	29	33	36-95	12	40	J(M1)
Pentachlorophenol	ug/L	1.6 U	48.1	47.9	32.9	35.2	69	73	45-127	7	40	
Phenol	ug/L	0.60 U	48.1	47.9	5.3	6.4	11	13	10-44	19	40	
Pyridine	ug/L	1.1 U	48.1	47.9	9.6	8.7	20	18	10-57	11	40	
2,4,6-Tribromophenol (S)	%						62	69	10-126			
2-Fluorobiphenyl (S)	%						34	41	10-96			
2-Fluorophenol (S)	%						13	14	10-55			
Nitrobenzene-d5 (S)	%						28	32	10-94			
p-Terphenyl-d14 (S)	%						61	66	24-129			
Phenol-d5 (S)	%						10	13	10-35			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(813)881-9401

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35465452

QC Batch: 536525

QC Batch Method: EPA 3510

Analysis Method: FL-PRO

Analysis Description: FL-PRO Water Low Volume

Associated Lab Samples: 35465452001

METHOD BLANK: 2906351

Date: 05/10/2019 03:51 PM

Matrix: Water

Associated Lab Samples: 35465452001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Petroleum Range Organics	mg/L	0.80 U	1.0	0.80	05/07/19 17:41	
N-Pentatriacontane (S)	%	102	42-159		05/07/19 17:41	
o-Terphenyl (S)	%	93	66-139		05/07/19 17:41	

LABORATORY CONTROL SAMPLE:	2906352					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Petroleum Range Organics	mg/L		3.9	77	66-119	
N-Pentatriacontane (S)	%			92	42-159	
o-Terphenyl (S)	%			89	66-139	

MATRIX SPIKE SAMPLE:	2906359						
Parameter	Units	35465839001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Petroleum Range Organics	mg/L	0.75 U	4.6	3.4	70	65-123	
N-Pentatriacontane (S)	%				91	42-159	
o-Terphenyl (S)	%				86	66-139	

SAMPLE DUPLICATE: 2906360						
		35465839002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Petroleum Range Organics	mg/L	0.75 U	0.73 U		20	0
N-Pentatriacontane (S)	%	93	90			
o-Terphenyl (S)	%	88	86			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Safety Kleen Facility

Pace Project No.: 35465452

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/10/2019 03:51 PM

I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
--

U Compound was analyzed for but not detected.

- J(L1) Estimated Value. Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- J(L2) Estimated Value. Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- J(M0) Estimated Value. Matrix spike recovery was outside laboratory control limits.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J_(V1) The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Safety Kleen Facility

Pace Project No.: 35465452

Date: 05/10/2019 03:51 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35465452001	MW-2R-050219	EPA 3510	536525	FL-PRO	536749
35465452001	MW-2R-050219	EPA 200.8	535904	EPA 200.8	536000
35465452002	MW-1-050219	EPA 200.8	535904	EPA 200.8	536000
35465452003	MW-3-050219	EPA 200.8	535904	EPA 200.8	536000
35465452001	MW-2R-050219	EPA 3510	536089	EPA 8270 by SIM	536630
35465452001	MW-2R-050219	EPA 3510	537070	EPA 8270	537559
35465452001	MW-2R-050219	EPA 8260	535969		
35465452004	Trip Blank	EPA 8260	535969		

Required Client Information:

Section B

Required Project Information:

Section A

CHAIN-OF-CUSTODY /

The Chain-of-Custody is a LEGAL DO

Section C

Invoice Information:

WO#: 35465452

Page 30 of 31

Of

age:

Company. Environmental Consulting & Technology-Tampa Report To: Keith Morrison Attention: Address: 1408 North Westshore Blivd Copy To: Company Name: Tampa, FL 33607 Address: Regulatory Agency Email: kmorrison@ectinc.com Purchase Order #. Pace Quote Phone: 813-493-0383 Fax: Project Name: Safety Kleen Facility Pace Project Manager: lori.palmer@pacelabs.com State / Location Requested Due Date: Project #: 180212-0200 Pace Profile #: 9321 line 1 FL Requested Analysis Filtered (Y/N) C=COMP) (see valid codes to left) COLLECTED Preservatives MATRIX CODE **Drinking Water** DW Water FL Pro Low Volume for Wat (G=GRAB Cd,Cr,Pb Waste Water ww 8270 Full list plus PAHs 8270 Full list plus PAHs MS/MSD Residual Chlorine (Y/N) Product SAMPLE ID **Analyses Test** Soil/Solid START END Oil # OF CONTAINERS FL PRO MS/MSD WP AR OT TS Metals 200.8 Ag. One Character per box. MATRIX CODE SAMPLE TYPE (A-Z, 0-91, -) Air Unpreserved Other Trip BLANK Sample Ids must be unique Na2S203 Methanol SURY ITEM HN03 82601 E C DATE TIME DATE TIME MW-2R -050219 1 5.2-19 WT MW-1-050219 2 WT MW-3 - 050219 3 WT 1002 1004 Trip Blank WT 5 6 8 9 10 11 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION ACCEPTED BY / AFFILIATION SAMPLE CONDITIONS **Empty Containers** Pace 4-26-19 1408 1630 The 3,6 -2114 1200 1700 SAMPLER NAME AND SIGNATURE S PRINT Name of SAMPLER: TEMP : (W/N) SIGNATURE of SAMPLER DATE Signed:

Sample Condition Upon Receipt Form Document No.: F-FL-C-007 rev. 13

Document Revised: May 30, 2018 Issuing Authority Pace Florida Quality Office

Sample Condition Upon Receipt Form (SCUR)

WO#:35465452 Project # Date and Initials of person: Examining contents: MVL **Project Manager:** Due Date: 05/09/19 Label: 5/1/19 CLIENT: 37-ECTTAM Client: Deliver: pH:_ Date: 5/2/19 Time: 1700 Initials: MVC Thermometer Used: T-203 State of Origin: FL For WV projects, all containers verified to ≤6 °C (Actual) Samples on ice, cooling process has begun Cooler #2 Temp.°C_____(Visual) _____(Correction Factor) _____(Actual) Samples on ice, cooling process has begun Cooler #3 Temp.°C_____ ___(Visual) _____(Correction Factor) _____(Actual) Samples on ice, cooling process has begun ____(Visual) ______(Correction Factor) ______(Actual) Cooler #4 Temp.°C Samples on ice, cooling process has begun ___(Visual) ______(Correction Factor) _____(Actual) Cooler #5 Temp.°C Samples on ice, cooling process has begun Cooler #6 Temp.°C_____(Visual) _____(Correction Factor) _____(Actual) Samples on ice, cooling process has begun Fed Ex UPS USPS Client Commercial Pace Other Courier: Shipping Method: ☐ First Overnight ☐ Priority Overnight ☐ Standard Overnight ☐ Ground ☐ International Priority ☐ Other ☐ Recipient ☐ Sender ☐ Third Party Billing: ☐ Credit Card □ Unknown Tracking # Custody Seal on Cooler/Box Present: Yes No Seals intact: Yes No Ice: Wet Blue Dry None Packing Material: Bubble Wrap Bubble Bags None Other Samples shorted to lab (If Yes, complete) Shorted Date: Shorted Time: Qty: Comments: Chain of Custody Present NYes □ No □N/A Chain of Custody Filled Out TYPES INO IN/A Relinquished Signature & Sampler Name COC DY'es ONO ON/A Samples Arrived within Hold Time DYes - No No NA Rush TAT requested on COC □Yes \ No □N/A Sufficient Volume Yes No NA Correct Containers Used Yes No No NA Containers Intact Yes No No NA Sample Labels match COC (sample IDs & date/time of Yes No NA Dim Sample 13 Start Time collection) CA All containers needing acid/base preservation have been Preservation Information: Yes □ No □N/A Preservative: All Containers needing preservation are found to be in Lot #/Trace #: Dyes I No IN/A compliance with EPA recommendation: Time: Date: Exceptions: VOA, Coliform, TOC, O&G, Carbamates Initials Headspace in VOA Vials? (>6mm): □Yes \ No □N/A Trip Blank Present: Yes I No IN/A Client Notification/ Resolution: Person Contacted: Date/Time: Comments/ Resolution (use back for additional comments):

Industrial Waste Operating Report Form (IWORF)

Permit #:	IW-333		Reports must be mailed to: Department of Regulatory and Economic Resources				
Facility Name:	SAFETY-KLEEN SYS	STEMS, INC.		Environmental Re 701 NW 1st Ct, S	uite #700	anagement	
Facility Address:	8755 NW 95 ST			Miami, FL 33136-	3912		
	MEDLEY, FL 33178						
Contact Name:	Mr. Larry Rodriguez						
being reported and atta	ch the applicable information	n (e.g. waste manifests,	analytical results, etc	Type" box(es) from the listing b c.) as required by each Source hodologies, applicable to the re	Type. Ref	er to the operating permit	
Reporting Require	ments:					-	
Source Type:RI	R-1	Reporting Frequency	r: Quarterly	Reportin	g Period		
Information sha	Il include name of hauler, vo	olume and final destination	n. Records shall also	industrial wastewater, sludge o be maintained on-site for revi	ew.		
Sampling Requirer	nents:				29	2.0	
Source Type: SN	IP-1	Reporting Frequency	: Annually	8 la = 14 - Reportin	g Period:	6/15/20	
	undwater from the facility me mium (Total), Chromium (T	0 17	(Total)			,	
Source Type: SM	P-2	Reporting Frequency	r: Annually	Reportir	g Period:	6/15/20	
•	indwater from monitoring w Series 8260, EPA Series 8		nt area stormwater d	The state of the s			
Average Daily Was Sewers:	te Water Flow Discha	rge to Sanitary				Gallons Per Day (GPD)	
hereby certify that,	to the best of my know	ledge, this document	and all attachme	nts are true, accurate and	. 4	e. <u>> 0</u>	
Authorized Penrecentation	e or Comorate Officer			Renart Com	nletion Dat	ie.	

April 21, 2020 200228-0100

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources**Environmental Resources Management
701 NW 1st Court, Suite #700
Miami, Florida 33136-3912

Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2019/2020 (File # 10139) Annual Report of Groundwater Quality

Dear Mr. Montano:

On behalf of Safety-Kleen Systems, Inc. (S-K), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for S-K's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On March 19, 2020, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FLPRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed Figure 1.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in <u>Attachment B</u>.

The laboratory report indicated that concentrations for two of the four metals (i.e., silver and cadmium) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.68I micrograms per liter (μ g/L) at monitoring well MW-1, 0.62I μ g/L at monitoring well MW-2R, and 0.91I μ g/L at monitoring well MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are well below the groundwater cleanup target level (GCTL) of 100 μ g/L for chromium as specified in the permit. Lead was also detected at a concentration of 1.3 μ g/L at monitoring well MW-3 but was well below its GCTL of 15 μ g/L for lead as specified in the permit.

1408 N Westshore Blvd, Suite 115 Tampa, FL 33607

(813) 289-9338

FAX (813) 289-9388

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** April 21, 2020 Page 2

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

- 1. FLPRO concentrations were below the MDL; that is, none was detected.
- 2. No SVOC was detected (i.e., EPA Series 8270 parameters).
- 3. No VOC was detected (i.e., EPA Series 8260 parameters).

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of S-K at (561) 523-4719. Thank you.

Sincerely,

ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.

Keith F. Morrison

There of Morison

Project Manager

Gregory B. Page, P.E. Senior Engineer III

SAFETY-KLEEN SYSTEMS, INC.

Jeff Curtis

EHS Manager, Florida

Safety-Kleen Systems, Inc.

5610 Alpha Drive

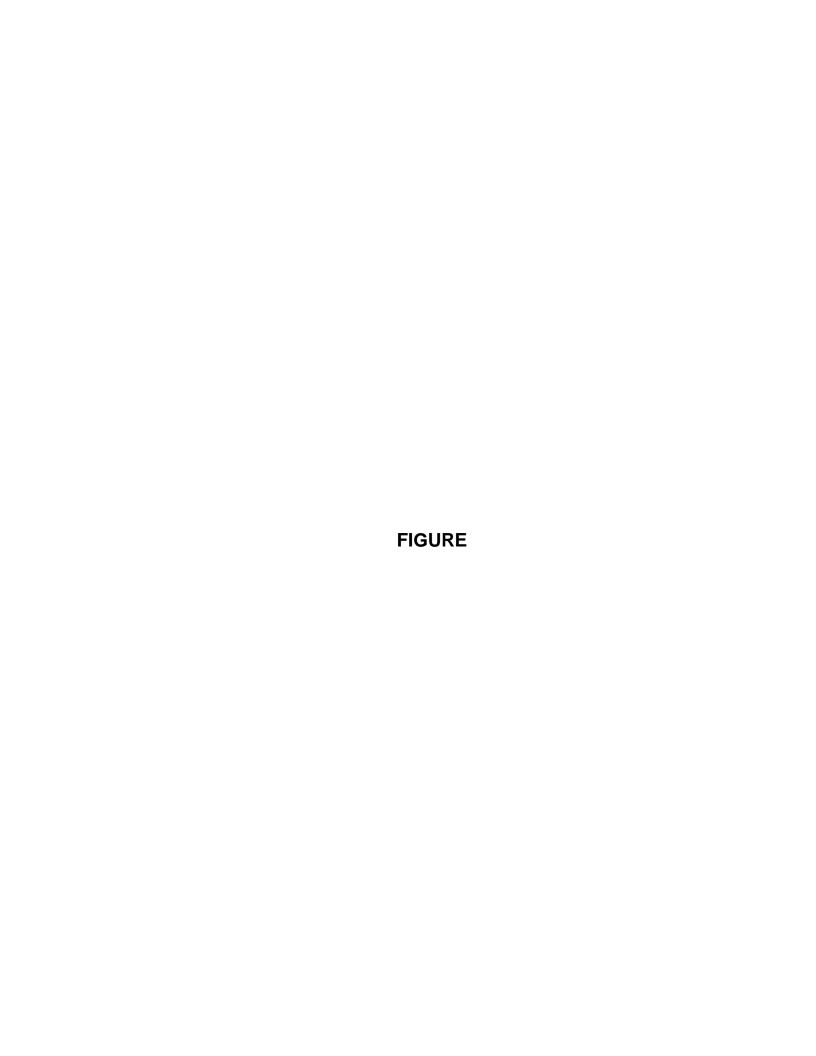
Boynton Beach, Florida 33426

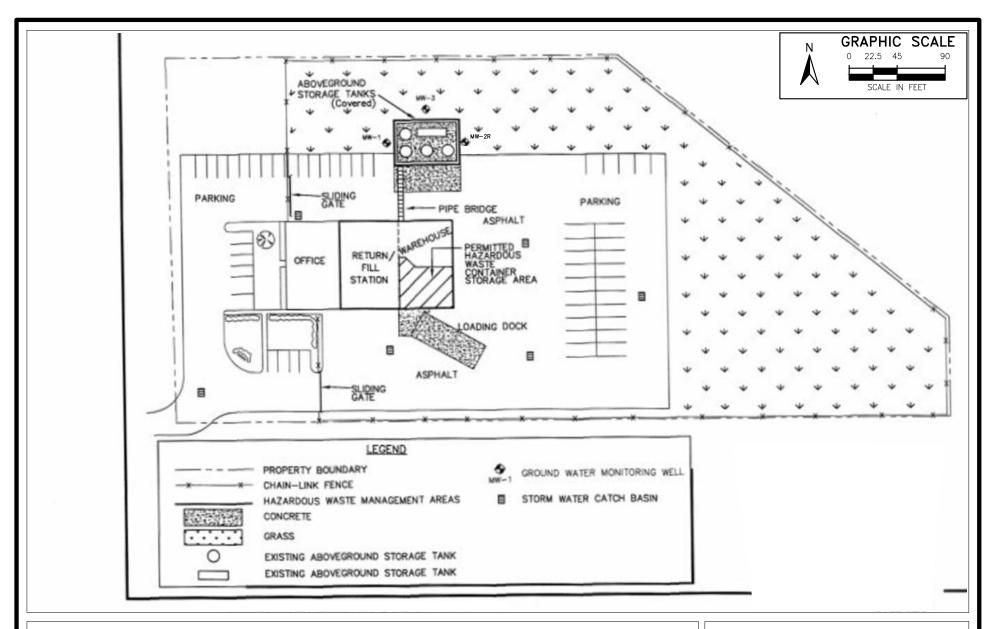
jeff.curtis@safety-kleen.com

Enclosures:

Figure 1

Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration Logs Attachment B - Laboratory Report


cc: Robert Schoepke – S-K (electronic only)


Greg Page – ECT (electronic only)

Keith Morrison – ECT (electronic only)

Facility 999 File #1760, % S-K Medley facility Branch General Manager

FIGURE 1.

FACILITY LAYOUT AND ACCESS CONTROL FEATURES SAFETY-KLEEN SYSTEMS, INC. FACILITY 8755 NW 95TH STREET, MEDLEY, FLORIDA

Source: ERM, 2012; ECT, 2020.

ATTACHMENT A

FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

Sofety-Kleen-Annual Groundwater monitoring Evant

Location Medler, FZ Date S. I.V. Project / Client 200229-0100 | Scholy King 3:19:2020 mountaring wells nw 1, muzz 1021 punging mu-1 with second penstattic 1035 Sompling MW-1 1056 XIIOU Collected. Pot purgeneter in 5-gallon allect out at X = Scmple time

Location	on Nech lea	1 FL SU	ety-14les	n Date	1.45 EVENT 3-19:202
Project	/ Client	<u>-0228-</u>	0106/ Sel	dre-Kla	en
BOOK -	ECT- 14				
1630	al PAC	E Lobo	mold	men	
1655	attu	TAN	NRA OX	Be.	
W	Unload	T-13	calibrat	for ch	ecic
1747	onm	ters.	0 -		
_ 1715	comp	rite =	8,5 h	ν	
		2			
-					
-					
					A
					100
					1.00
		1			
		-			

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE NAME: Safety Kleen Systems, Inc. WELL NO: MW-1 SAMPLE ID: MW-1- 03 92020 SAMPLE ID: MW-1- 03 92020 DATE: 3 9 2020	
WELL NO: MW-1 SAMPLE ID: MW-1- 03 92020 DATE: 3 19 120-20	
PURGING DATA	
WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE	
DIAMETER (inches): 2 DIAMETER (inches):1/8-ID DEPTH: 2 feet to 12 feet TO WATER (feet): 3.3.2 OR BAILER: PP	
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)	
= (11.2 feet - 3.32 feet) X 0.16 gallons/foot = 1.26 gallons EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME	ns
(only fill out if applicable)	
INITIAL PUMP OR TUBING 7,3 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 7.3 PURGING INITIATED AT: 1021 PURGING ENDED AT: 1043 PURGED (gallons): 15	10
DEPTH IN WELL (feet): 7,3 FINAL PUMP OR TUBING 7-3 PURGING ENDED AT: 043 PURGED (gallons): 15	8
TIME VOLUME PURGED (gallons) (gallons) (gpm) (feet) DEPTH TO (standard units) PURGE (feet) (feet) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ORP
	138
10.100 D 200 152 1 0 10 (04) 2200 (120) M /A (122) (4) 5/3/4/ EU	47
	148
100 100 171 010 100 100 100 100 100 100 100 100	טו ו
1043 0,24 1.76 3.60 6.93 23,77470 0.09 0.92 4 2 -1	
1043 0,24 1.76 2 3.60 6.93 23,77470 0.09 0.92 2 1 -1	
1043 0.24 1.76 3.60 6.93 23.77470 0.09 0.92 4 2 -1	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA	7
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION; SAMPLING INITIATED AT: OTY ENDED AT:	7
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION; SAMPLING INITIATED AT: O + N	7
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION; SAMPLING INITIATED AT: DY SAMPLING ENDED AT: PUMP OR TUBING 7 7 TUBING FIELD-FILTERED: Y N FILTER SIZE: µm	7
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION; SAMPLING INITIATED AT: DY SAMPLING INITIATED AT: DY SAMPLING INITIATED AT: DY SAMPLING ENDED AT: PUMP OR TUBING DEPTH IN WELL (feet): 7 3 TUBING MATERIAL CODE: HDPE FIELD-FILTERED: Y N FILTER SIZE: µm SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED ANALOGIC SAMPLING SAMPLE PUMP.	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S) SAMPLING ENDED AT: TUBING FIELD-FILTERED: Y N FILTER SIZE: µm TUBING Y N replaced) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) TOTAL VOL. FINAL SAMPLED MATERIAL CODE: HDPE INSERVATION (including wet lice) FIELD DECONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) TOTAL VOL. FINAL SAMPLED MATERIAL CODE: HDPE INSERVATION (including wet lice) FIELD CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) FIELD MATERIAL CODE: HDPE INSERVATION (including wet lice) FIELD PRESERVATION (including wet lice)	ГЕ
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLING DATA SAMPLING SAMPLING INITIATED AT: O SAMPLING ENDED AT: TUBING FIELD-FILTERED: Y N FILTER SIZE: µm ATERIAL CODE: HDPE FIELD EQUIPMENT Type: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) SAMPLE ON TAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) TIVENDED AND PRESERVATION (including wet ice) INTENDED ANALYSIS AND/OR METHOD SAMPLE PUM FILOW RATE (mL per minut) FILOW RATE (mL per minut) FILOW RATE (mL per minut)	ΓE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S) SAMPLING ENDED AT: TUBING FIELD-FILTERED: Y N FILTER SIZE: µm TUBING Y N replaced) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) TOTAL VOL. FINAL SAMPLED MATERIAL CODE: HDPE INSERVATION (including wet lice) FIELD DECONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) TOTAL VOL. FINAL SAMPLED MATERIAL CODE: HDPE INSERVATION (including wet lice) FIELD CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) FIELD MATERIAL CODE: HDPE INSERVATION (including wet lice) FIELD PRESERVATION (including wet lice)	ΓE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLING DATA SAMPLING SAMPLING INITIATED AT: O SAMPLING ENDED AT: TUBING FIELD-FILTERED: Y N FILTER SIZE: µm ATERIAL CODE: HDPE FIITERD: Y N PRESERVATION (including wet lice) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) SAMPLE CODE CONTAINER SPECIFICATION PRESERVATIVE TOTAL UP IN FINAL AND/OR METHOD SAMPLE ON THE PUMP OF TIME OF TIME OF THE PUMP OF TIME OF	ΓE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLING DATA SAMPLING SAMPLING INITIATED AT: O SAMPLING ENDED AT: TUBING FIELD-FILTERED: Y N FILTER SIZE: µm ATERIAL CODE: HDPE FIITERD: Y N PRESERVATION (including wet lice) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) SAMPLE CODE CONTAINER SPECIFICATION PRESERVATIVE TOTAL UP IN FINAL AND/OR METHOD SAMPLE ON THE PUMP OF TIME OF TIME OF THE PUMP OF TIME OF	ΓE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLING DATA SAMPLING SAMPLING INITIATED AT: O SAMPLING ENDED AT: TUBING FIELD-FILTERED: Y N FILTER SIZE: µm ATERIAL CODE: HDPE FIELD EQUIPMENT Type: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) SAMPLE ON TAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) TIVENDED AND PRESERVATION (including wet ice) INTENDED ANALYSIS AND/OR METHOD SAMPLE PUM FILOW RATE (mL per minut) FILOW RATE (mL per minut) FILOW RATE (mL per minut)	ΓE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLING DATA SAMPLING SAMPLING INITIATED AT: O SAMPLING ENDED AT: TUBING FIELD-FILTERED: Y N FILTER SIZE: µm ATERIAL CODE: HDPE FIELD EQUIPMENT Type: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) SAMPLE ON TAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) TIVENDED AND PRESERVATION (including wet ice) INTENDED ANALYSIS AND/OR METHOD SAMPLE PUM FILOW RATE (mL per minut) FILOW RATE (mL per minut) FILOW RATE (mL per minut)	ΓE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLING DATA SAMPLING SAMPLING INITIATED AT: O SAMPLING ENDED AT: TUBING FIELD-FILTERED: Y N FILTER SIZE: µm ATERIAL CODE: HDPE FIITERD: Y N PRESERVATION (including wet lice) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet lice) SAMPLE CODE CONTAINER SPECIFICATION PRESERVATIVE TOTAL UP IN FINAL AND/OR METHOD SAMPLE ON THE PUMP OF TIME OF TIME OF THE PUMP OF TIME OF	rE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLING DATA SAMPLING SAMPLING INITIATED AT: O SAMPLING ENDED AT: TUBING FIELD-FILTERED: Y N FILTER SIZE: µm ATERIAL CODE: HDPE FIELD EQUIPMENT Type: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) SAMPLE ON TAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) TIVENDED AND PRESERVATION (including wet ice) INTENDED ANALYSIS AND/OR METHOD SAMPLE PUM FILOW RATE (mL per minut) FILOW RATE (mL per minut) FILOW RATE (mL per minut)	ΓE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S) SIGNATURE(S) SAMPLING ENDED AT: TUBING MATERIAL CODE: HDPE FIELD-FILTERED: Y N FILTER SIZE: µm FIELD DECONTAMINATION: PUMP Y N TUBING Y N replaced) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) SAMPLE (CODE CONTAINERS) CODE VOLUME INSED ADDED IN FIELD (ml.) PH PRESERVATIVE INSED ADDED IN FIELD (ml.) PH PRESERVATIVE INSED ADDED IN FIELD (ml.) PH SAMPLE (CONTAINERS) CODE (MILTER) PM FIELD FINAL AND/OR METHOD (ml.) PH FIELD FINAL AND/OR METHOD (ml.) PH FIELD FINAL AND/OR METHOD (ml.) PH FIELOW RATE (ml. per minuter) PRESERVATIVE (ml.) PH FIELOW RATE (ml. per minuter) PH FIELOW RATE (ml.) PH FIELOW RA	rE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./FL): 118" = 0.0006; 3/16" = 0.0014; 114" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 12" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION SAMPLED BY (PRINT) / AFFILIATION PUMP OR TUBING DEPTH IN WELL (feet): 7, 3 TUBING MATERIAL CODE: HDPE SAMPLE CONTAMINATION: PUMP Y N TUBING Y Niveplaced) SAMPLE CONTAMER SPECIFICATION SAMPLE CONTAMER SPECIFICATION SAMPLE CONTAMERS MITTING SAMPLE PUMP SAMPLE CONTAMERS MITTING SAMPLE PUMP SAMPLE CONTAMERS MITTING SAMPLE PUMP PRESERVATIVE USED ADDED IN FIELD (mL) PH ADDED IN F	rE ute)
WELL CAPACITY (Gallors Per Foot): 0.75" = 0.02: 4" = 0.04: 1.25" = 0.06: 2" = 0.16: 3" = 0.37: 4" = 0.65: 5" = 1.02: 6" = 1.47: 12" = 5.85 TUBING INSIDE DIA. CAPACITY (Gall/FL): 1/8" = 0.0006: 3/16" = 0.001: 1/4" = 0.0026: 5/16" = 0.004: 3/8" = 0.006: 1/2" = 0.016: 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Baller: BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristalitic Pump; O = Other (Specify) SAMPLING DATA SAMPLING SAMPLING PRISTALL DATE OF SAMPLING PROBLEM SAMPLER OF SAM	ΓE ute)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02: 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.05; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLED BY (PRINT)/ AFFILIATION SAMPLED BY (PRINT)/ AFFILIATION TUBING TUBING TUBING TUBING TUBING TUBING TUBING TUBING SAMPLED BY (PRINT)/ AFFILIATION SAMPLE (feet); 7, 3 TUBING TU	ΓE ute)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

62-160.800 F.A.C.

Revision Date: March 1, 2014

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

ite iame: Safety Kleen	Systems,	Inc.			LOCATIO	N: 8755	NW 95 ^t	h Street,	Medley,	FL			
VELL NO: MW-2R	-1		SAM	PLE ID: M	W-2R-0 3				DATE:	200	12077)	
					PURGIN					,,,,,			
VELL	TUBING		T		EEN INTERV		STATIC	DEPTH ER (feet): 3	70		PUMP T	PE PI	_
IAMETER (inches): 2 /ELL VOLUME PURGE:		TER (Inches):	1/0-10		feet to 12 fe		1			OR BA	ILER:	FI	
only fill out if applicable)	I WELL VO	-				_					. 79		
QUIPMENT VOLUME P	IRGF: 1 FOI	= (3.75		et) X X T	0.16 UBING LEN	gall GTH) + FLO		= /,2 VOLUME	2	gallons
only fill out if applicable)	DICOL: ILW	JII HILIVI VO	_	gallons +		gallons/fi			feet) +		gallons	= 02	allons
NITIAL PUMP OR TUBIN	G []	FINAL PU	MP OR TUE		, DI	IDCING.		PURGI	NG	4 T	OTAL VOL		10
EPTH IN WELL (feet):	7.5		WELL (fee		5 IN	TIATED A	T: 1056	ENDE	AT:	B P	URGED (g	jallons):	· Z
TIME VOLUME PURGED (gallons)	CUMUL. VOLUMË PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (stand: units		umh	units) os/m (ISSOLVED OXYGEN circle units) mg/L or saturation	TURBID (NTUs		COLOR describe)	ODOR (describe)	ORP
112 1.28	1.29	0.09	3.91	6.9	7 23.	653	2 (1-08	6.4	-	ler	None	33
115 0,24	1.52		3.91	6.90	5 3.7	752	8 (1.07	6.2	7	1_	1	-242
1118 0.24	1.76	W	3,91	69	7 23.8			106	5.2	6	4	4	- 251
7133									3.07		16.15		
HELL CARACITY (Called	na Das Castile	0.75° + 0.00	4" = 0.0	4. 4 25"	~ n ne. 3	2 = 0.16:	3" = 0 37	- A" = 0.8	5· 5° = 1	02· 6×	' = 1 <i>4</i> 7·	12" = 5.88	
UBING INSIDE DIA. CA PURGING EQUIPMENT (PACITY (Gal. CODES: E	/Ft.): 1/8" = (3 = Bailer;	0.0006; 3 BP = Blade	1/16" = 0.00 der Pump;	14; 1/4" = ESP = E SAMPLI		3" = 0.37 5/16" = 0 mersible P	0.004; 3/ ump; P	B" = 0.006; P = Peristalti	1/2" =	SAMPLIN	12" = 5.88 5/8" = 0.010 Other (Specification of the Control of the	y)
FUBING INSIDE DÍA. CA PURGING EQUIPMENT (SAMPLED BY (PRINT) / PUMP OR TUBING	PACITY (Gal. CODES: E	/Ft.): 1/8" = (3 = Bailer;	0.0006; 3 BP = Blade SAMPLEF TUBING	#/16" = 0.00 der Pump; R(\$) SIGN/	ESP = E SAMPLI	0.0026; lectric Sub	5/16" = 0 mersible P	SAMPL INITIAT	B" = 0.006; P = Peristalti ING IED AT:	1/2" = c Pump;	0.010; O = O SAMPLIN ENDED A	5/8" = 0.010 ther (Specified)	N)
WELL CAPACITY (Gallor FUBING INSIDE DIA. CAPURGING EQUIPMENT (SAMPLED BY (PRINT)) PUMP OR TUBING DEPTH IN WELL (feet): FIELD DECONTAMINATION	PACITY (Gal.	/Ft.): 1/8"=1 B = Bailer; en/Ea	0.0006; 3 BP = Blade SAMPLEF TUBING	der Pump; R(\$) SIGNA	ESP = E SAMPLI	0.0026; lectric Sub	5/16" = (mersible P	SAMPL INITIAT	B" = 0.006; P = Peristalti ING ED AT: RED: Y pment Type:	1/2" = c Pump;	0.010; O = O SAMPLIN ENDED A	5/8" = 0.010 ther (Specified AT: 17 4	N)
FURBING INSIDE DÍA. CA PURGING EQUIPMENT (SAMPLED BY (PRINT) / PUMP OR TUBING DEPTH IN WELL (feet): FIELD DECONTAMINATION	PACITY (Gal., CODES: E	/Ft.): 1/8" = 1 3 = Bailer; en / Ea	0.0006; 3 BP = Blade SAMPLEI TUBING MATERIA	w16" = 0.00 der Pump; R(\$) SIGNA L CODE: TUE	ESP = E SAMPLI ATURE(S) HDPE BING Y	N repla	s/16" = (comersible P	D.004; 3/ Jump; P SAMPL INITIAT ELD-FILTEI Itration Equi	B" = 0.006; P = Peristalti ING ED AT: RED: Y pment Type: CATE:	1/2" = c Pump;	O.010; O = O SAMPLIN ENDED / FILTE N SAMPLING	5/8" = 0.010 ther (Specified IG AT: 17 U R SIZE:	N)
PUMP OR TUBING DEPTH IN WELL (feet): FIELD DECONTAMINATI SAMPLE ID #	PACITY (Gal. CODES: E AFFILIATION: ON: PUI ER SPECIFICAT MATERIAL	/Ft.): 1/8" = 1 3 = Bailer; MP Y (0.0006; 3 BP = Blade SAMPLEF TUBING MATERIA N S PRESER	MAG" = 0.00 der Pump; R(S) SIGNA L CODE: TUE TUE TATIVE	ESP = E SAMPLI ATURE(S) HDPE BING Y ESERVATION (I	N repla	5/16" = (comersible P	0.004; 3/ ump; P SAMPL INITIAT ELD-FILTEI Itration Equi	B" = 0.006; P = Peristalti ING ED AT: RED: Y pment Type:	1/2" = c Pump;	0.010; O = O SAMPLIN ENDED / FILTE	SAMI SAMI FILE	у) µm
FURBING INSIDE DÍA. CA PURGING EQUIPMENT (SAMPLED BY (PRINT) / PUMP OR TUBING DEPTH IN WELL (feet): FIELD DECONTAMINATI	PACITY (Gal. CODES: I	/Ft.): 1/8" = 1 3 = Bailer; en / Ea	0.0006; 3 BP = Blade SAMPLEF TUBING MATERIA	A/16" = 0.00 der Pump; R(S) SIGNA L CODE: TUE TUE TAMPLE PRE	ESP = E SAMPLI ATURE(S) HDPE BING Y SERVATION (I	N repla	s/16" = (comersible P	0.004; 3/ ump; P SAMPL INITIAT ELD-FILTEI Itration Equi DUPLIC INTEL ANI 82 Organ	B" = 0.006; P = Peristalti ING ED AT: RED: Y Peristalti RED: Y RED: Y RED: Y RED: ATE:	1/2" = c Pump;	0.010; O = O SAMPLIN ENDED / FILTE N SAMPLING EQUIPMENT	5/8" = 0.010 ther (Specification of the state of the stat	μm PLE PUMP
EAMPLED BY (PRINT) PUMP OR TUBING DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE DECONTAMINATION	PACITY (Gal. CODES: E AFFILIATION: ON: PUI ER SPECIFICAT MATERIAL CODE	/Ft.): 1/8" = 1 3 = Bailer; MP Y TION VOLUME	SAMPLEF TUBING MATERIA N PRESER USE	M/16" = 0.00 der Pump; R(\$) SIGNA L CODE: TUE HAMPLE PRE	ESP = E SAMPLI ATURE S HDPE HING Y SERVATION (I) ADDED IN FI	0.0026; lectric Sub NG DA N) repla nocluding we'	s/16" = (comersible Pinata) Finata Finata Finata Finata pH	SAMPL INITIAT ELD-FILTEI Itration Equi DUPLIC INTEL ANI 82 Orgar by EP.	B" = 0.006; P = Peristalti ING ED AT: RED: Y pment Type: CATE: NDED ANALYS NOR METHOD COMPOUR A Method 8 Semi-Volatile	1/2" = c Pump; Y N y ordan nds 1/260 le	O.010; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAM SIZE: At p.	PLE PUMP W RATE per minute)
FUBING INSIDE DÍA. CA PURGING EQUIPMENT (SAMPLED BY (PRINT) / PUMP OR TUBING DEPTH IN WELL (feet): FIELD DECONTAMINATI SAMPLE CONTAIN SAMPLE CONTAINERS 2 239 2 2 3	PACITY (Gal. CODES: E AFFILIATION: ON: PUI ER SPECIFICAT MATERIAL CODE CG	/Ft.): 1/8" = 1 3 = Bailer; MP Y FION VOLUME 40 ml	0.0006; 3 BP = Blade SAMPLEF TUBING MATERIA N PRESER USE HCI+	M/16" = 0.00 der Pump; R(\$) SIGNA L CODE: TUE HAMPLE PRE	HDPE SERVATION (I ADDED IN FI NON	N) repla	s/16" = (comersible PATA FI FI Ced) FINAL pH <2	SAMPL INITIAT ELD-FILTEI Itration Equi DUPLIC INTEL ANI 82 Organ by EP 8270-5 Organ	B" = 0.006; P = Peristalti ING ED AT: RED: Y pment Type: CATE: NDED ANALYS NOOR METHOD AMETHOD	1/2" = c Pump; Y (Siss) nds (260) le nds	O.010; O = O SAMPLINE ENDED A FILTE N SAMPLING EQUIPMENT CODE	5/8" = 0.010 ther (Specification of the state of the stat	PLE PUMP W RATE per minute)
PURGING INSIDE DIA. CA PURGING EQUIPMENT (SAMPLED BY (PRINT) / PUMP OR TUBING DEPTH IN WELL (feet): FIELD DECONTAMINATI SAMPLE CONTAINERS CODE CONTAINERS 3	PACITY (Gal. CODES: E AFFILIATION: ON: PUI ER SPECIFICAT MATERIAL CODE CG	/Ft.): 1/8" = 1 3 = Bailer; MP Y FION VOLUME 40 ml	0.0006; 3 BP = Blade SAMPLEF TUBING MATERIA N PRESER USE HCI+	MAGE = 0.00 der Pump; R(\$) SIGNA L CODE: TUE HAMPLE PRE VATIVE ED ICE	HDPE SERVATION (I ADDED IN FI NON	N) repla	s/16" = (pmersible P TA Fi ced) Final Final Final Final PH <2	SAMPL INITIAT ELD-FILTEI Itration Equi DUPLIC ANI 82 Organ by EP.	B" = 0.006; P = Peristalti ING ED AT: RED: Y pment Type: CATE: NDED ANALYS NOR METHOD IC Compour A Method 8 Pb, Ag by E	1/2" = c Pump; Y Indicate the second secon	O.010; O = O SAMPLIN ENDED A FILTE N SAMPLING ECUIPMENT CODE APP	SAMI FILE (mL) At p	PLE PUMP DW RATE per minute) <100 urge rate
PURGING INSIDE DÍA. CA PURGING EQUIPMENT (SAMPLED BY (PRINT) / PUMP OR TUBING DEPTH IN WELL (feet): FIELD DECONTAMINATI SAMPLE CONTAIN SAMPLE DE CONTAINERS 2	PACITY (Gal. CODES: E AFFILIATION: ON: PUI ER SPECIFICAT MATERIAL CODE CG AG	/Ft.): 1/8" = 1 3 = Bailer; MP Y FION VOLUME 40 ml	O.0006; 3 BP = Blade SAMPLEF TUBING MATERIAN S PRESER USE HCI+	AL CODE: TUE TAMPLE PRE VATIVE E	HDPE SERVATION (I ADDED IN FI NON	N repla N repla N repla N repla N repla N repla	s/16" = (pmersible P TA FI ced) Final Final FI CP FINAL FI CP FINAL FI CP FINAL FI CP FI CP	SAMPL INITIAT ELD-FILTEI Itration Equi DUPLIC INTE ANI 82 Orgar by EP 8270-\$ Organ by EP Cd, Cr, Method	B" = 0.006; P = Peristalti ING ED AT: RED: Y pment Type: CATE: NDED ANALYS NOR METHOD IC Compour A Method 8 Pb, Ag by E	1/2" = c Pump; Y India siss	O.010; O = O SAMPLINI ENDED / FILTE N SAMPLINO EQUIPMENT CODE APP	SAMI FILE (mL) At p	PLE PUMP DW RATE per minute) <100 urge rate Urge rate urge rate
PURGING INSIDE DÍA. CA PURGING EQUIPMENT (SAMPLED BY (PRINT) / PUMP OR TUBING DEPTH IN WELL (feet): FIELD DECONTAMINATI SAMPLE CONTAIN SAMPLE CONTAINERS 2 1 1	PACITY (Gal. CODES: E AFFILIATION: ON: PUI ER SPECIFICAT MATERIAL CODE CG AG PE AG	/Ft.): 1/8" = 1 3 = Bailer; MP Y FION VOLUME 40 ml 250 ml	O.0006; 3 BP = Blade SAMPLEF TUBING MATERIAN SPRESER USE HCI+	AL CODE: TUE AMPLE PRE VATIVE ED + Ice	HDPE SING Y SERVATION (II NON NON	NO DA N) repla No repla	S/16" = (pmersible P ATA File Ced) Hoe) FINAL pH <2 <2 <2	SAMPLINITIAT ELD-FILTEI Itration Equi DUPLIC INTEL ANI 82 Organ by EP Cd, Cr, Method TRPI	B" = 0.006; P = Peristalti ING IED AT: RED: Y pment Type: CATE: ROED ANALYS POOR METHOD RED-Volatile RED-Vola	1/2" = c Pump; Y N Y Sils nds 1260 le nds 1270 PA RO	O.010; O = O SAMPLIN ENDED / FILTE N SAMPLING ECUIPMENT CODE APP APP APP	SAMI FILE (mL) At p	PLE PUMP DW RATE per minute) <100 urge rate β urge rate β urge rate
CAMPLED BY (PRINT) COMPORTUBING SAMPLED BY (PRINT) PUMP OR TUBING SEPTH IN WELL (feet): SELD DECONTAMINATI SAMPLE CONTAIN SAMPLE D CODE CONTAINERS 2 1 2	PACITY (Gal. CODES: E AFFILIATION: ON: PUI ER SPECIFICAT MATERIAL CODE CG AG PE AG	/Ft.): 1/8" = 1 3 = Bailer; MP Y FION VOLUME 40 ml 250 ml 100 ml	D.0006; 3 BP = Blade SAMPLEF TUBING MATERIA N S PRESER HCI+ Icc. HNO3 H2SO4	AL CODE: TUE TAMPLE PRE VATIVE ED + Ice	HDPE SAMPLI TURES HDPE SING Y SERVATION (II ADDED IN FI NON	NO.0026; lectric Sub NG DA N) repla notuding we VOL ELD (mL) IE	s/16" = (pmersible P TA FI FI ced) Itice) FINAL pH <2 <2 <2	SAMPLINITIAT ELD-FILTEI Itration Equi DUPLIC INTE ANI 82 Orgar by EP 8270-5 Organ by EP Cd, Cr, Method TRPI	B" = 0.006; P = Peristalti ING IED AT: RED: Y pment Type: CATE: NDED ANALYS D/OR METHOD AMETHOD AMETHO	1/2" = c Pump; Polyethyle	O.010; O = O SAMPLING ENDED / FILTE N SAMPLING EQUIPMENT CODE APP APP APP	SAM SIZE: At p At p At p At p At p	PLE PUMP DW RATE per minute) <100 urge rate θ urge rate

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: March 1, 2014

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	£	C: atama	lee.		1 -	TE	0755	NIVA/ OA	Eth C	troot !	Medley, FL			
WELL NO:		Systems,	inc.	SAMPI	EID: MW-3				J J	ili eet, 1		119/20	24	
WELL NO.	19177-0			OAIVII L		RGING						11120	20	
WELL	(inches): 2	TUBING DIAMET	TER (inches)	:1/8-ID DE	ELL SCREEN PTH: 2 feet	INTERVAL to 12 feet	-	STATIO TO WA	ATER ((feet): 3	·80 0	JRGE PUMP TY R BAILER:	PE PI	-
(only fill out	if applicable)	1 WELL VOI	= (11.6	feet - 2	80	fee	et) X	0	.16		foot =).4	1	gallons
	if applicable)	ONGE. TEQU	JIF WILLIAT VO		gallons + (allons/fo		1001	_	feet) +	gallons	= ga	allons
	MP OR TUBIN WELL (feet):	G 7.2		MP OR TUBIN WELL (feet):	7.2	PURO	GING ATED A	103	5	PURGIN ENDED	IG AT: 1059	TOTAL VOL PURGED (g	UME allons): 2	2 0
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	CON (circle µmbe or (µS	units)	OXY (circle mg.	OLVED GEN e units) /L or turation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)	ORP
1053	1,44	1,44	0.08	2.95	6.83	22.72	47	8	0.	10	2.42	cleer	mne	-188
1056	0,24	1.69	1	2,95	6.86	22.68	4		0.0	100	7-30	1	1	-193
1059	0.24	1,92		2,95	6.89	22,6	4	17 1	0.0	58	2,23	d	4	-197
TUBING IN	SIDE DIA. CA EQUIPMENT (PACITY (Gal./CODES: B	Ft.): 1/8" = (= Bailer;	0.0006; 3/10 BP = Bladder SAMPLER(S	6" = 0.0014; Pump;	1/4" = 0.1 SP = Elec VPLIN	tric Subi	5/16" = mersible l	= 0.004 Pump	; PP SAMPLII	" = 0.006; 1. = Peristaltic Pu	mp; O = O SAMPLIN ENDED A	T: 11/02	() S
PUMP OR		7.2			CODE: HD			1		-FILTERI on Equip	ED: Y N ment Type:) FILTEI	R SIZE:	μm
FIELD DEC	CONTAMINATI	ON: PUM	P Y	N	TUBING		replac	ed)		DUPLICA	ATE: Y	N		
SAMPLE ID	# CONTAINEDS	MATERIAL CODE	VOLUME	SAM PRESERVAT USED		ATION (inclu TOTAL VOI DED IN FIELD	L.	FINAL pH	L		OED ANALYSIS OR METHOD	SAMPLING EQUIPMENT CODE	FLO	PLE PUMP W RATE er minute)
3-03191	220 1	PE	250 ml	HNO3+ I	ce	NONE		<2		, ,	Pb, Ag by EPA thod 200.8	APP	@ 30	irge rate
REMARKS	D= 0	13gel	\$ 6054	0.0 0 0	8 9pm		* [ricce o	f	Sed, W	some to	me up the	rough o	tu bing
MATERIAL		AG = Amber S = Silicone:		= Clear Glass	; HDPE =	High Densi					w Density Polye		= Polypropy	
	EQUIPMENT	CODES:	APP = After (RFPP = Reve	Through) Peris	taltic Pump; taltic Pump;		raw Meti		ing Gr	avity Drai		c Submersible F er (Specify)	oump;	

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

18

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Instrument Calibration and Field Verification Log

SmarTroll / 656 MPS Identification: #4 5N# 0408623 AP

Model: SmarTroll / 656 MPS Instrument Make: InSitu / YSI Date: (mm/dd/w) 03 19 20 20 Sampler's Name / Signature: ECT-Kerth F. Mossson Trouth A. Mayn

Sampler's Name / Signature. EC	-Kerlock.	1 DLUZON / K	sect of the	ou-		Date: (mm/dd	(yy) (0.5)	17/2020	
Procedure Type: ICV, CCV, Cal	icv, ccv, cal	icv, (CV) cal	icv, ccv, cal	icv, ccv, cal					
Standard Values Time	945	1655							
pH 4.01 S.U.	4.04	4.06							
pH 7.00 S.U.	7.05	7.04							
pH 10.00 S.U.	1002	10.03							1
Within 0.2 S.U ?	Pass / Fail	Pass / Fail							
Calibration Required?	Yes / No	Yes / No							
Sampler's Initials	KAN	Rem							
Conductivity 500 µS/cm Cal	501	502							
Conductivity <u>δυ 0</u> μS/cm Ver	994	992							
Within 5% ?	Pass / Fail	Pass / Fail							
Calibration Required?	Yes /No	Yes / No	Yes / No						
Sampler's Initials	Hun	Kr							
Temperature During D.O.	2\ °C	23 ℃	°C	°C	°C	°C	°C	°C	°C
D.O. mg/L @ Saturation (0/t	8,9 (100 2%)	8,6 99.8%							
Within 0.3 mg/L?	Pass / Fail	Pase / Fail	Pass / Fail	Pass / Fail					
Calibration Required?	Yes No	Yes /No	Yes / No	Yes / No					
Sampler's Initials	Kin	Ker							
Temperature During ORP	21 °C		°C	°C	°C	°C	°C	°C	°C
ORP in mV	232	234		ķ					
Within 10 mV ?	Pass / Fail	Fass / Fail	Pass / Fail	Pass / Fail					
Calibration Required?	Yes /No	Yes No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No
Sampler's Initials	(Fre	Kfm							
Calibration Solutions		Manufacturer	1		Lot Number			Expiration Date	9
pH 4.01 S.U.	Exaxol			1902	270		09	12020	
pH 7.00 S.U.	Exaxol			1907			01	12021	
pH 10.00 S.U.	Exaxol			1812	04 A			12020	
Conductivity <u>500</u> µS/cm Cal	Exaxol			1907				12020	
Conductivity <u>ესე</u> µS/cm Ver	Exaxol				27B				3/31/2021

Notes Cal = Calibration

ORP: mV@°C per mfr. specs.

This form meets or exceeds the requirements of FDEP Form FD 9000-8

190715E

ICV = Initial Calibration Verification

CCV = Continued Calibration Verification

231 @ 2502

12020

SAFETY-KLEEN MEDLEY

2020 ANNUAL GROUNDWATER

SAMPLING EYENT

-

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS

INSTRUMENT (MAKE/	MODEL#) HACH 2	210062	INSTRUMEN	T# 1/ SNH 1611005354	. 1
PARAMETER: [check	only one]			-73)0	16
☐ TEMPERATURE ☐ TURBIDITY	☐ CONDUCTIVITY ☐ RESIDUAL CI	☐ SALINITY	□ pH □ OTHER	ORP	
STANDARDS: [Specify values, and the date the star	the type(s) of standards us	ed for calibration, the		dards, the standard	
Standard A 10 N	TUS Lot# A182	19			
Standard B 20 N	NS Lot# A922	2			
Standard C 00 8	TVS Lot # A822	6			
DATE TIME ST	D STD INSTRUI	MENT C	ALIBRATED	TYPE SAMPLED	

March 10

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER
9,2020	845	A	lowos	9.89	±10%	Ves	DUTT	Kfin
	847	B	20.11	199	I 80%	Yes	INT	Kom
	849	C	100 11	101	765%	Vas	ZWIT	16m
	1657	A	10 1'	9.91	210%	Yes	Cont	KAM
	1659	B	20 4	19.6	± 8%	Yes	Gost	10m
4	1202	C	100 4	102	1 6.5%	yes .	Cont	An
								;
				7				
-							· ·	
	-							
-								

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		Section B				•			Sec	tion C																	+-			
Compar	d Client Information:	Required Page 170:							_	oice in	forma														P	age:	1	0	f	1
Address		Copy To:		Morrison					-	ntion:		14	eth		W,	Sim							1							
1	FL 33607	Jupy 10.	ν	,					-	npany i iress:	vame		-	EL										-						
Total Control	kmorrison@ectinc.com	Purchase O	rder #:					_	_	e Quot	٥.		-	17	901	W.	1	res	sh	ve	3/4	dok	113	如效类	Mil F	Regul	atory Ac	ency	di A	2018年
Phone:	813-493-0383 Fax: 813-189 4388	Project Nam		afety Kleen	Facility			-	-	e Proje	13	nader	-	losi na	lmer@		la bala	4			_		Sinterest	AND SECTION	PER YEARS	- 109AV		MA STEEL PROPERTY.		
Request	ed Due Date:	Project #:	20	0223	-0100	V		_	-	e Profi		-	1 line		meig	pace	abs.c	om,	-	_	_					State	Loca	ion.	5 万里市政	
			i ii			-			_				3.000		_	1998		R	PAULOS	ted 5	alvei	is Pilt	aract)	VIMIT-E	200.0M	Strain I Y	FL	MATINE TUR	20/95/11/10/65	TEACHERA)
	MATRIX Drinking W Water Viscle Wat Product SAMPLE ID Soll/Solid	WT	(see valid codes to left)		COLL	ECTED		ATCOLLECTION			P	reser	rvativ	es	1	t YM	8		or Wate	SE SE						(N.)				7).
ITEM#	One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique Substituting Sample Ids must be unique	OL WP AR OT TS	MATRIX CODE (see		Samp		ND '	SAMPLE TEMP ATO	# OF CONTAINERS	Unpreserved	HNO3	豆	NaOH .	Na2S203	Other	Analyses Tes		t plus	FL Pro Low Volume I Metals 200.8 Ag Cd	1 2	PRO MS/MSD	98				Residual Chlorine (Y/N)		a		
到金额的			≥ 0	DATE	+	DATE	TIME	-	-	-	_	-	ž	žž	≨ ຽ		82	82	בן צ	8 5		įĘ.				S. S.				
1	MVV-2R		wт	3/4/20	1	3/19/20	1	M	0	2	2	3					х	x ;	x x	庾	DE									
2	MVV-1		WT	3/19/20	1049	3/4/2	1647		1		1								×] 1								- 1
3	MW-3		WT	3/19/2	0 1105	3/19/2	1103		I		1								×	1		П								
4	Trip Blank		WT)17/a	-	3)0	-		2					Į,			1					x								7
5	DAIGC-MW-2RG			3192	1119	3.19.2	2140	J	6	11/4	1									X	X									
6																	2													
7				i ii												1		1	T					1	Ħ					
8	•																	1	1	1				1						
9	2	(8)							П		T			1	1			+	+	1	1	1	H	+	+			-	9	
10	*				-						1			1	\top	1		+	+	+	1	+	H	+	+	Н	+		-	
11	*										1		H		+	1		1	+	1	+	H	H	\pm	+	H	-		-	-
12										,	1			1			4	+	+	+	+	+		+	+	\vdash	\vdash	-		_
	ADDITIONAL COMMENTS		RELINGL	ISHED BY /	AFFILIATIO	N III N	DATE			TUVE				ACCE	PTED E	Y/A	FILIA	TION		ST No.		DATE		TIM			SAMP	E CONDIT	ione	n/seal
	. Bottle l	Kit Z	Rue	R		Pace	3.11	در	1	120		Va	11		N	37	m Haley	T	Er		S-1398			an (50)0	DR T		T THE REAL PROPERTY.	a Silinki		
				Ino	PMA	PET	3.19	20	20	143		1	m	P	N	2	<u>ا</u>	()		(b)		18/	202	1	30	72:	4	1	1	,
						0.					T		N.		-0						1			-8		.,,	-	+		\vdash
					1 - 24 log - 4	ne organie da	North Control		24000	100 m 200 m		and the same	ers birelly	Control of												Я			1	
	3 m				BEST COLUMN	1000	AND SIG	95al9	37. 9		1	The second							10 To		14 AVA			ing day			1		1	
general and an and an and an and an an and an an and an an and an an		Alling was a finite time the same	and the second	amanda a Balancia	PRII	NT Name	of SAMPI	ER:	K	ed	へして	7)	16	W 10	15U	ر بد ا	E	C1 DATE	Signe	ed: 2	i al	9	2) 2 ()	TEMP in C	Received or Ice	Custody Sealed	Y/N).	(Y/N)
*	. The content is contained to the first on the Proceedings and Control of the Procedure of	enner et plant park antrop i stager ope blak ere		mail (- talifirmuma				-	/ `	-	-	10	~	1, 17%	100	-			1-		and f	1	4	1-21	1		-Ω. <u>ō</u>	~ D. W.C	၁၀ တိ	乏之

Pace Container Order #628482

	ddresses -						
	er By :		Ship To:			Retur	ı To:
Company	y Environme	ntal Consulting &	Company Environmental Consu	ulting &		Company	Pace Analytical Oldsmar
Contact	ct Morrison, k	Ceith	Contact Morrison, Keith			Contact	Palmer, Lori
Email	il kmorrison(Dectinc.com	Email kmorrison@ectinc	.com		Email	lori.palmer@pacelabs.com
Address	s 1408 North	Westshore Bllvd	Address 1408 North Westsl	nore Bllv	rd .	Address	110 South Bayview Blvd.
Address 2	2 Suite 115	ri e	Address 2 Suite 115			Address 2	
City	y Tampa		City Tampa			City	Oldsmar
State	e FL	Zip 33607	State FL Zip 33	607		State	FL Zip 34677
Phone	e 813-493-03	383	Phone 813-493-0383			Phone	813-855-1844
Ir	nfo						
		afety Kleen Facility	Due Date 03/17/2020	Pro	file 9321 lir	ne 1	Quote
	-		10-	-	rier Pace C		Location FL
Project	t Manager E	Palmer, Lori Re	eturn Date	Call	Tier Pace C	ourier	
'	Blanks — Include Trip E		Bottle Labels Blank Pre-Printed X Pre-Printed	No Sam	•	Bo	Boxed Cases Individually Wrapped Grouped By Sample ID/Matrix
- coc	urn Shippin No Shipper With Shipper C Options Number of Bla Pre-Printed		Misc Sampling Ir Custody Se Temp. Blan Coolers Syringes	al	ns		Extra Bubble Wrap Short Hold/Rush Stickers DI Water Liter(s) USDA Regulated Soils
of Sampl	les Matrix	Test	Container	Total	# of	Lot#	Notes
	WT	8260 Full List	3-40mL vial HCl	3	0		
	WT	8270 Full list plus PAHs	1L Amber Glass Unpreserved + 2 mL AG unpres	502	0		
					-		
	WT	FL Pro Low Volume for Waters	2-100 ml glass amber H2SO4	2	0		100
	WT	Metals 200.8 Ag,Cd,Cr,Pb	2-100 ml glass amber H2SO4 250mL plastic w/HNO3	3	-		
		Metals 200.8 Ag,Cd,Cr,Pb	2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved +	3	0		
	WT	Metals 200.8 Ag,Cd,Cr,Pb	2-100 ml glass amber H2SO4 250mL plastic w/HNO3	3	0 0 4 2		
1 2	WT	Metals 200.8 Ag, Cd, Cr, Pb 8270 Full list plus PAHs MS/MSE	2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 ml. AG unpres	3	0 0 4		
Ha nple rece ager. se Analyti se Analyti rment ter	WT WT WT azard Sh eiving hours a tical reserves tical reserves rm are net 30	Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSE FL PRO MS/MSD Trip BLANK Ipping Placard In Pare Mon-Fri 8:00am-6:00pm unlended the right to return hazardous, to the right to charge for unused lines.	2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 ml. AG unpres 100ml glass amber H2SO4 2-40mL HCL Place: NO less special arrangements are loxic, or radioactive samples to bottles, as well as cost associal	3 4 2 2 2 2 made with you.	0 0 4 2 2 2 th your project	ct	USE: Ship Date: 03/17/2020 Prepared By: BB Verified By:
mple rece ager. be Analyti be Analyti ment ter ase inclu	WT WT WT WT azard Sh eiving hours a tical reserves tical reserves rm are net 30 ude the propo	Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSE FL PRO MS/MSD Trip BLANK Iipping Placard In Pare Mon-Fri 8:00am-6:00pm unlended to return hazardous, to the right to charge for unused lidays.	2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 ml. AG unpres 100ml glass amber H2SO4 2-40mL HCL Place: NO less special arrangements are loxic, or radioactive samples to bottles, as well as cost associal	3 4 2 2 2 2 made with you.	0 0 4 2 2 2 th your project	ct age/disposal.	Ship Date : 03/17/2020 Prepared By: Verified By:
mple rece ager. be Analyti be Analyti ment ter ase inclu	WT WT WT azard Sh eiving hours a tical reserves tical reserves rm are net 30	Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSE FL PRO MS/MSD Trip BLANK Iipping Placard In Pare Mon-Fri 8:00am-6:00pm unlended to return hazardous, to the right to charge for unused lidays.	2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 ml. AG unpres 100ml glass amber H2SO4 2-40mL HCL Place: NO less special arrangements are loxic, or radioactive samples to bottles, as well as cost associal	3 4 2 2 2 2 made with you.	0 0 4 2 2 2 th your project	ct age/disposal.	Ship Date: 03/17/2020 Prepared By: BB Verified By: USE (Optional):
mple rece lager. ce Analyti ce Analyti ment ter ase inclu	WT WT WT WT azard Sh eiving hours a tical reserves tical reserves rm are net 30 ude the propo	Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSE FL PRO MS/MSD Trip BLANK Iipping Placard In Pare Mon-Fri 8:00am-6:00pm unlended to return hazardous, to the right to charge for unused lidays.	2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 ml. AG unpres 100ml glass amber H2SO4 2-40mL HCL Place: NO less special arrangements are loxic, or radioactive samples to bottles, as well as cost associal	3 4 2 2 2 2 made with you.	0 0 4 2 2 2 th your project	ct age/disposal.	Ship Date: 03/17/2020 Prepared By: BB Verified By: USE (Optional): Date Rec'd:
mple rece nager. ce Analyti ce Analyti yment ter ease inclu	WT WT WT WT azard Sh eiving hours a tical reserves tical reserves rm are net 30 ude the propo	Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSE FL PRO MS/MSD Trip BLANK Iipping Placard In Pare Mon-Fri 8:00am-6:00pm unlended to return hazardous, to the right to charge for unused lidays.	2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 ml. AG unpres 100ml glass amber H2SO4 2-40mL HCL Place: NO less special arrangements are loxic, or radioactive samples to bottles, as well as cost associal	3 4 2 2 2 2 made with you.	0 0 4 2 2 2 th your project	ct age/disposal.	Ship Date: 03/17/2020 Prepared By: BB Verified By: USE (Optional):

ATTACHMENT B LABORATORY REPORT

March 25, 2020

Keith Morrison
Environmental Consulting & Techlology
1408 North Westshore Bllvd
Suite 115
Tampa, FL 33607

RE: Project: Safety Kleen Facility Pace Project No.: 35538498

Dear Keith Morrison:

Enclosed are the analytical results for sample(s) received by the laboratory on March 19, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Palmer

lori.palmer@pacelabs.com

SA Palmer

813-855-1844 Project Manager

Enclosures

cc: A/P, Environmental Consulting & Technology

CERTIFICATIONS

Project: Safety Kleen Facility

Pace Project No.: 35538498

Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174

Alaska DEC- CS/UST/LUST Alabama Certification #: 41320

Arizona Certification# AZ0819

Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383

Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007

Maryland Certification: #346 Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236

Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958

New Jersey Certification #: FL022

New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710
North Dakota Certification #: R-216
Oklahoma Certification #: D9947
Pennsylvania Certification #: 68-00547
Puerto Rico Certification #: FL01264
South Carolina Certification: #96042001

Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165

West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

SAMPLE SUMMARY

Project: Safety Kleen Facility

Pace Project No.: 35538498

Lab ID	Sample ID	Matrix	Date Collected	Date Received
35538498001	MW-2R	Water	03/19/20 11:40	03/19/20 16:30
35538498002	MW-1	Water	03/19/20 10:47	03/19/20 16:30
35538498003	MW-3	Water	03/19/20 11:03	03/19/20 16:30
35538498004	Trip Blank	Water	03/19/20 00:01	03/19/20 16:30

(813)881-9401

SAMPLE ANALYTE COUNT

Project: Safety Kleen Facility

Pace Project No.: 35538498

Lab ID	Sample ID	Method	Analysts	Analytes Reported
35538498001	MW-2R	FL-PRO	RJR	3
		EPA 200.8	SLG	4
		EPA 8270 by SIM	CB1	20
		EPA 8270	TWB	82
		EPA 8260	MKG	57
35538498002	MW-1	EPA 200.8	SLG	4
35538498003	MW-3	EPA 200.8	SLG	4
35538498004	Trip Blank	EPA 8260	MKG	57

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

Sample: MW-2R Lab ID: 35538498001 Collected: 03/19/20 11:40 Received: 03/19/20 16:30 Matrix: Water PQL DF **Parameters** Results Units MDI Prepared CAS No. Analyzed Qual Analytical Method: FL-PRO Preparation Method: EPA 3510 FL-PRO Water, Low Volume Petroleum Range Organics 0.78 U 0.97 0.78 03/24/20 16:53 03/25/20 01:19 mg/L Surrogates % o-Terphenyl (S) 85 66-139 1 03/24/20 16:53 03/25/20 01:19 84-15-1 N-Pentatriacontane (S) 100 % 42-159 03/24/20 16:53 03/25/20 01:19 630-07-09 1 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 0.050 U 0.10 0.050 1 03/20/20 02:14 03/20/20 11:13 7440-43-9 Cadmium ug/L Chromium 0.62 I ug/L 1.0 0.50 1 03/20/20 02:14 03/20/20 11:13 7440-47-3 Lead 0.50 U ug/L 1.0 0.50 1 03/20/20 02:14 03/20/20 11:13 7439-92-1 Silver 0.050 U ug/L 0.10 0.050 1 03/20/20 02:14 03/20/20 11:13 7440-22-4 Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3510 8270 MSSV PAHLV by SIM Acenaphthene 0.040 U ug/L 0.50 0.040 1 03/24/20 08:14 03/24/20 20:46 83-32-9 Acenaphthylene 0.030 U ug/L 0.50 0.030 03/24/20 08:14 03/24/20 20:46 208-96-8 1 0.043 U 0.50 0.043 03/24/20 08:14 03/24/20 20:46 120-12-7 Anthracene ug/L 1 Benzo(a)anthracene 0.055 U ug/L 0.10 0.055 1 03/24/20 08:14 03/24/20 20:46 56-55-3 0.12 U 03/24/20 08:14 03/24/20 20:46 50-32-8 Benzo(a)pyrene ug/L 0.20 0.12 1 Benzo(b)fluoranthene 0.027 U ug/L 0.10 0.027 1 03/24/20 08:14 03/24/20 20:46 205-99-2 0.15 U 03/24/20 08:14 03/24/20 20:46 191-24-2 Benzo(g,h,i)perylene ug/L 0.50 0.15 1 Benzo(k)fluoranthene 0.16 U ug/L 0.50 0.16 03/24/20 08:14 03/24/20 20:46 207-08-9 1 Chrysene 0.026 U ug/L 0.50 0.026 1 03/24/20 08:14 03/24/20 20:46 218-01-9 Dibenz(a,h)anthracene 0.13 U ug/L 0.15 0.13 1 03/24/20 08:14 03/24/20 20:46 53-70-3 Fluoranthene 0.018 U ug/L 0.50 0.018 1 03/24/20 08:14 03/24/20 20:46 206-44-0 Fluorene 0.088 U ug/L 0.50 0.088 1 03/24/20 08:14 03/24/20 20:46 86-73-7 Indeno(1,2,3-cd)pyrene 0.12 U ug/L 0.15 0.12 1 03/24/20 08:14 03/24/20 20:46 193-39-5 1-Methylnaphthalene 0.19 U 2.0 0.19 03/24/20 08:14 03/24/20 20:46 90-12-0 ug/L 1 0.68 2-Methylnaphthalene 0.68 U ug/L 20 1 03/24/20 08:14 03/24/20 20:46 91-57-6 Naphthalene 0.29 U 2.0 0.29 1 03/24/20 08:14 03/24/20 20:46 91-20-3 ug/L Phenanthrene 0.16 U ug/L 0.50 0.16 1 03/24/20 08:14 03/24/20 20:46 85-01-8 0.032 U 0.50 0.032 03/24/20 08:14 03/24/20 20:46 129-00-0 Pyrene ug/L 1 Surrogates 2-Fluorobiphenyl (S) 64 % 38-92 03/24/20 08:14 03/24/20 20:46 321-60-8 p-Terphenyl-d14 (S) 78 % 54-112 03/24/20 08:14 03/24/20 20:46 1718-51-0 Analytical Method: EPA 8270 Preparation Method: EPA 3510 8270 MSSV Semivolatile Organic 0.34 U 4.8 0.34 03/20/20 16:59 03/21/20 23:27 83-32-9 Acenaphthene ug/L Acenaphthylene 0.29 U ug/L 4.8 0.29 1 03/20/20 16:59 03/21/20 23:27 208-96-8 0.90 Aniline 0.90 U ug/L 4.8 1 03/20/20 16:59 03/21/20 23:27 62-53-3 Anthracene 0.21 U ug/L 4.8 0.21 03/20/20 16:59 03/21/20 23:27 120-12-7 1 0.83 03/21/20 23:27 92-87-5 0.83 U ug/L 23.9 03/20/20 16:59 **Renzidine** 1 Benzo(a)anthracene 0.19 U 4.8 0.19 03/21/20 23:27 56-55-3 ug/L 1 03/20/20 16:59 0.16 U 0.96 0.16 03/21/20 23:27 50-32-8 Benzo(a)pyrene ug/L 1 03/20/20 16:59 0.26 205-99-2 Benzo(b)fluoranthene 0.26 U ug/L 1.9 1 03/20/20 16:59 03/21/20 23:27 Benzo(g,h,i)perylene 0.16 U ug/L 4.8 0.16 1 03/20/20 16:59 03/21/20 23:27 191-24-2 Benzo(k)fluoranthene 0.17 U ug/L 3.8 0.17 1 03/20/20 16:59 03/21/20 23:27 207-08-9 Benzyl alcohol 1.2 U ug/L 48 1.2 1 03/20/20 16:59 03/21/20 23:27 100-51-6

ANALYTICAL RESULTS

Project: Safety Kleen Facility

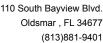
Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

Sample: MW-2R Lab ID: 35538498001 Collected: 03/19/20 11:40 Received: 03/19/20 16:30 Matrix: Water

Campie. Mitt Zix	Lub ib.	00000400001	Concoto	u. 00/10/20	7 11.40	recognica. con	10/20 10:00 Wil	atrix. Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Semivolatile Organic	Analytical	Method: EPA 8	3270 Prepa	ration Meth	od: EPA	A 3510			
4-Bromophenylphenyl ether	1.6 U	ug/L	4.8	1.6	1	03/20/20 16:59	03/21/20 23:27	101-55-3	
Butylbenzylphthalate	1.1 U	ug/L	4.8	1.1	1	03/20/20 16:59	03/21/20 23:27	85-68-7	
Caprolactam	0.38 U	ug/L	4.8	0.38	1	03/20/20 16:59	03/21/20 23:27	105-60-2	N2
Carbazole	1.1 U	ug/L	4.8	1.1	1	03/20/20 16:59	03/21/20 23:27	86-74-8	
4-Chloro-3-methylphenol	5.2 U	ug/L	19.2	5.2	1	03/20/20 16:59	03/21/20 23:27	59-50-7	
4-Chloroaniline	1.4 U	ug/L	4.8	1.4	1	03/20/20 16:59	03/21/20 23:27	106-47-8	
bis(2-Chloroethoxy)methane	1.6 U	ug/L	4.8	1.6	1	03/20/20 16:59	03/21/20 23:27	111-91-1	
bis(2-Chloroethyl) ether	0.33 U	ug/L	3.8	0.33	1	03/20/20 16:59	03/21/20 23:27	111-44-4	
bis(2-Chloroisopropyl) ether	1.7 U	ug/L	5.7	1.7	1	03/20/20 16:59	03/21/20 23:27	108-60-1	
2-Chloronaphthalene	0.33 U	ug/L	4.8	0.33	1	03/20/20 16:59	03/21/20 23:27	91-58-7	
2-Chlorophenol	1.3 U	ug/L	4.8	1.3	1	03/20/20 16:59	03/21/20 23:27		
4-Chlorophenylphenyl ether	1.4 U	ug/L	4.8	1.4	1	03/20/20 16:59	03/21/20 23:27	7005-72-3	
Chrysene	0.19 U	ug/L	4.8	0.19	1	03/20/20 16:59	03/21/20 23:27		
Dibenz(a,h)anthracene	0.17 U	ug/L	1.9	0.17	1	03/20/20 16:59	03/21/20 23:27		
Dibenzofuran	1.4 U	ug/L	4.8	1.4	1	03/20/20 16:59	03/21/20 23:27	132-64-9	
1,2-Dichlorobenzene	1.5 U	ug/L	4.8	1.5	1	03/20/20 16:59	03/21/20 23:27		
1,3-Dichlorobenzene	1.5 U	ug/L	4.8	1.5	1	03/20/20 16:59	03/21/20 23:27		
1,4-Dichlorobenzene	1.5 U	ug/L	4.8	1.5	1	03/20/20 16:59	03/21/20 23:27		
3,3'-Dichlorobenzidine	1.0 U	ug/L	9.6	1.0	1	03/20/20 16:59	03/21/20 23:27		
2,4-Dichlorophenol	0.33 U	ug/L	1.9	0.33	1	03/20/20 16:59	03/21/20 23:27		
Diethylphthalate	1.4 U	ug/L	4.8	1.4	1	03/20/20 16:59	03/21/20 23:27		
2,4-Dimethylphenol	0.99 U	ug/L	4.8	0.99	1	03/20/20 16:59	03/21/20 23:27		
Dimethylphthalate	1.4 U	ug/L	4.8	1.4	1	03/20/20 16:59	03/21/20 23:27		
Di-n-butylphthalate	1.0 U	ug/L	4.8	1.0	1	03/20/20 16:59	03/21/20 23:27		
4,6-Dinitro-2-methylphenol	4.4 U	ug/L	19.2	4.4	1	03/20/20 16:59	03/21/20 23:27		
1,2-Dinitrobenzene	1.8 U	ug/L	5.7	1.8	1	03/20/20 16:59	03/21/20 23:27		
1,3-Dinitrobenzene	1.1 U	ug/L	7.7	1.1	1	03/20/20 16:59	03/21/20 23:27		
2,4-Dinitrophenol	2.5 U	ug/L	19.2	2.5	1	03/20/20 16:59	03/21/20 23:27		
2,4-Dinitrotoluene	0.26 U	ug/L	3.8	0.26	1	03/20/20 16:59	03/21/20 23:27		
2,6-Dinitrotoluene	0.27 U	ug/L	1.9	0.27	1	03/20/20 16:59	03/21/20 23:27		
Di-n-octylphthalate	0.88 U	ug/L	4.8	0.88	1	03/20/20 16:59	03/21/20 23:27		
1,2-Diphenylhydrazine	1.3 U	ug/L	4.8	1.3	1	03/20/20 16:59	03/21/20 23:27		
pis(2-Ethylhexyl)phthalate	1.5 U	ug/L	4.8	1.1	1	03/20/20 16:59	03/21/20 23:27		
Fluoranthene	0.20 U	ug/L	4.8	0.20	1	03/20/20 16:59	03/21/20 23:27		
Fluorene	0.33 U	ug/L	4.8	0.23	1	03/20/20 16:59	03/21/20 23:27		
Hexachloro-1,3-butadiene	0.34 U	ug/L	1.9	0.34	1	03/20/20 16:59			
Hexachlorobenzene	0.34 U		0.96	0.34	1	03/20/20 16:59	03/21/20 23:27		
Hexachlorocyclopentadiene	3.3 U	ug/L ug/L	10.5	3.3	1	03/20/20 16:59	03/21/20 23:27		
Hexachlorocycloperitadierie Hexachloroethane	3.3 U 1.3 U	ug/L ug/L	4.8	3.3 1.3	1	03/20/20 16:59	03/21/20 23:27		
	0.16 U	_	4.6 1.9	0.16	1		03/21/20 23:27		
Indeno(1,2,3-cd)pyrene	1.6 U	ug/L				03/20/20 16:59			
Isophorone		ug/L	4.8	1.6	1	03/20/20 16:59	03/21/20 23:27		
1-Methylnaphthalene	0.34 U	ug/L	4.8	0.34	1	03/20/20 16:59	03/21/20 23:27		
2-Methylnaphthalene	0.27 U	ug/L	4.8	0.27	1	03/20/20 16:59			
2-Methylphenol(o-Cresol)	0.29 U	ug/L	4.8	0.29	1	03/20/20 16:59	03/21/20 23:27	95-48-7	
3&4-Methylphenol(m&p Cresol)	0.21 U	ug/L	9.6	0.21	1	03/20/20 16:59	03/21/20 23:27	04.00.0	
Naphthalene	0.37 U	ug/L	4.8	0.37	1	03/20/20 16:59	03/21/20 23:27	91-20-3	

ANALYTICAL RESULTS


Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

Sample: MW-2R Lab ID: 35538498001 Collected: 03/19/20 11:40 Received: 03/19/20 16:30 Matrix: Water

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Semivolatile Organic	Analytical	Method: EPA	A 8270 Prepar	ation Metho	od: EP	A 3510			
2-Nitroaniline	1.2 U	ug/L	4.8	1.2	1	03/20/20 16:59	03/21/20 23:27	88-74-4	
3-Nitroaniline	1.2 U	ug/L	4.8	1.2	1	03/20/20 16:59	03/21/20 23:27	99-09-2	
4-Nitroaniline	0.18 U	ug/L	3.8	0.18	1	03/20/20 16:59	03/21/20 23:27		
Nitrobenzene	0.35 U	ug/L	3.8	0.35	1	03/20/20 16:59	03/21/20 23:27	98-95-3	
2-Nitrophenol	1.3 U	ug/L	4.8	1.3	1	03/20/20 16:59	03/21/20 23:27	88-75-5	
4-Nitrophenol	1.9 U	ug/L	19.2	1.9	1	03/20/20 16:59	03/21/20 23:27	100-02-7	
N-Nitrosodimethylamine	0.19 U	ug/L	1.9	0.19	1	03/20/20 16:59	03/21/20 23:27		
N-Nitroso-di-n-propylamine	0.32 U	ug/L	3.8	0.32	1	03/20/20 16:59	03/21/20 23:27		
N-Nitrosodiphenylamine	1.2 U	ug/L	4.8	1.2	1	03/20/20 16:59	03/21/20 23:27		
Pentachlorophenol	1.6 U	ug/L	19.2	1.6	1	03/20/20 16:59	03/21/20 23:27		
Phenanthrene	0.22 U	ug/L	4.8	0.22	1	03/20/20 16:59	03/21/20 23:27		
Phenol	0.60 U	ug/L	4.8	0.60	1	03/20/20 16:59	03/21/20 23:27		
Pyrene	0.20 U	ug/L	4.8	0.20	1	03/20/20 16:59	03/21/20 23:27		
Pyridine	1.1 U	ug/L	4.8	1.1	1	03/20/20 16:59	03/21/20 23:27		
2,3,4,6-Tetrachlorophenol	1.0 U	•	4.8	1.0	1	03/20/20 16:59	03/21/20 23:27		
•	1.0 U	ug/L	8.6	1.8	1	03/20/20 16:59	03/21/20 23:27		N2
2,3,5,6-Tetrachlorophenol 1,2,4-Trichlorobenzene		ug/L					03/21/20 23:27		INZ
	1.4 U	ug/L	4.8	1.4	1	03/20/20 16:59	03/21/20 23:27		
2,4,5-Trichlorophenol	0.22 U	ug/L	3.8	0.22	1	03/20/20 16:59 03/20/20 16:59			
2,4,6-Trichlorophenol	0.34 U	ug/L	1.9	0.34	1	03/20/20 16:59	03/21/20 23:27	88-06-2	
Surrogates	40	%	10-94		1	03/20/20 16:59	03/21/20 23:27	4165 GO O	
Nitrobenzene-d5 (S) 2-Fluorobiphenyl (S)	48	%	10-94		1	03/20/20 16:59	03/21/20 23:27		
	46 47		24-129				03/21/20 23:27		
p-Terphenyl-d14 (S)		%			1	03/20/20 16:59			
Phenol-d5 (S)	17	%	10-35		1	03/20/20 16:59	03/21/20 23:27		
2-Fluorophenol (S)	24	%	10-55		1	03/20/20 16:59	03/21/20 23:27		
2,4,6-Tribromophenol (S)	57	%	10-126		1	03/20/20 16:59	03/21/20 23:27	118-79-6	
8260 MSV	Analytical	Method: EPA	A 8260						
Acetone	5.3 U	ug/L	20.0	5.3	1		03/20/20 19:04	67-64-1	
Acetonitrile	24.5 U	ug/L	40.0	24.5	1		03/20/20 19:04	75-05-8	J(v1)
Benzene	0.30 U	ug/L	1.0	0.30	1		03/20/20 19:04	71-43-2	
Bromochloromethane	0.37 U	ug/L	1.0	0.37	1		03/20/20 19:04	74-97-5	
Bromodichloromethane	0.19 U	ug/L	0.60	0.19	1		03/20/20 19:04	75-27-4	
Bromoform	2.6 U	ug/L	3.0	2.6	1		03/20/20 19:04	75-25-2	J(v2)
Bromomethane	4.0 U	ug/L	5.0	4.0	1		03/20/20 19:04	74-83-9	J(v2)
2-Butanone (MEK)	7.5 U	ug/L	10.0	7.5	1		03/20/20 19:04	78-93-3	
Carbon disulfide	0.45 U	ug/L	10.0	0.45	1		03/20/20 19:04	75-15-0	
Carbon tetrachloride	1.1 U	ug/L	3.0	1.1	1		03/20/20 19:04	56-23-5	
Chlorobenzene	0.35 U	ug/L	1.0	0.35	1		03/20/20 19:04	108-90-7	
Chloroethane	3.7 U	ug/L	10.0	3.7	1		03/20/20 19:04	75-00-3	
Chloroform	0.32 U	ug/L	1.0	0.32	1		03/20/20 19:04	67-66-3	
Chloromethane	0.97 U	ug/L	1.0	0.97	1		03/20/20 19:04		J(v2)
1,2-Dibromo-3-chloropropane	1.9 U	ug/L	5.0	1.9	1		03/20/20 19:04		J(v2)
Dibromochloromethane	0.45 U	ug/L	2.0	0.45	1		03/20/20 19:04		- \ -/
1,2-Dibromoethane (EDB)	0.31 U	ug/L	1.0	0.31	1		03/20/20 19:04	106-93-4	

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35538498

Toluene-d8 (S)

Date: 03/25/2020 02:22 PM

Collected: 03/19/20 11:40 Received: 03/19/20 16:30 Sample: MW-2R Lab ID: 35538498001 Matrix: Water PQL DF **Parameters** Results Units MDI Prepared CAS No. Analyzed Qual Analytical Method: EPA 8260 8260 MSV 1,2-Dichlorobenzene 0.29 U ug/L 1.0 0.29 03/20/20 19:04 95-50-1 1 1,4-Dichlorobenzene 0.28 U ug/L 1.0 0.28 1 03/20/20 19:04 106-46-7 trans-1,4-Dichloro-2-butene 2.5 U ug/L 10.0 2.5 1 03/20/20 19:04 110-57-6 1.1-Dichloroethane 0.34 U ug/L 1.0 0.34 1 03/20/20 19:04 75-34-3 03/20/20 19:04 107-06-2 1,2-Dichloroethane 0.27 U ug/L 1.0 0.27 1 0.27 U 0.27 03/20/20 19:04 540-59-0 N2 1,2-Dichloroethene (Total) ug/L 10 1 0.27 03/20/20 19:04 75-35-4 1,1-Dichloroethene 0.27 U ug/L 1.0 1 J(v1) cis-1,2-Dichloroethene 0.27 U ug/L 1.0 0.27 1 03/20/20 19:04 156-59-2 03/20/20 19:04 156-60-5 trans-1,2-Dichloroethene 0.23 U ug/L 1.0 0.23 1 1,2-Dichloropropane 0.23 U ug/L 1.0 0.23 1 03/20/20 19:04 78-87-5 cis-1,3-Dichloropropene 0.17 U 0.50 0.17 03/20/20 19:04 10061-01-5 ug/L 1 trans-1,3-Dichloropropene 0.17 U ug/L 0.50 0.17 1 03/20/20 19:04 10061-02-6 Ethylbenzene 0.30 U ug/L 1.0 0.30 1 03/20/20 19:04 100-41-4 2-Hexanone 0.85 U ug/L 10.0 0.85 1 03/20/20 19:04 591-78-6 Iodomethane 9.3 U ug/L 10.0 9.3 03/20/20 19:04 74-88-4 1 J(v2) Isopropylbenzene (Cumene) 0.30 U 10 0.30 03/20/20 19:04 98-82-8 ug/L 1 03/20/20 19:04 75-09-2 Methylene Chloride 2.0 U 5.0 2.0 1 ug/L 4-Methyl-2-pentanone (MIBK) 0.32 U ug/L 10.0 0.32 1 03/20/20 19:04 108-10-1 0.51 03/20/20 19:04 1634-04-4 Methyl-tert-butyl ether 0.51 U ug/L 20 1 J(v2) Styrene 0.26 U ug/L 1.0 0.26 1 03/20/20 19:04 100-42-5 1,1,1,2-Tetrachloroethane 0.32 U ug/L 1.0 0.32 1 03/20/20 19:04 630-20-6 1,1,2,2-Tetrachloroethane 0.20 U 0.50 0.20 03/20/20 19:04 79-34-5 ug/L 1 Tetrachloroethene 0.38 U 0.38 03/20/20 19:04 127-18-4 ug/L 1.0 1 Toluene 0.33 U ug/L 1.0 0.33 1 03/20/20 19:04 108-88-3 1,1,1-Trichloroethane 0.30 U ug/L 1.0 0.30 1 03/20/20 19:04 71-55-6 1.1.2-Trichloroethane 0.30 U 1.0 0.30 03/20/20 19:04 79-00-5 ug/L 1 0.36 U Trichloroethene 1.0 0.36 03/20/20 19:04 79-01-6 ug/L 1 0.35 U J(L1), Trichlorofluoromethane 1.0 0.35 03/20/20 19:04 75-69-4 ug/L 1 J(v1) 2.0 1,2,3-Trichloropropane 1.1 U ug/L 03/20/20 19:04 96-18-4 1.1 1 1,2,4-Trimethylbenzene 0.24 U 1.0 0.24 03/20/20 19:04 95-63-6 ug/L 1 1,3,5-Trimethylbenzene 0.24 U 0.24 03/20/20 19:04 108-67-8 ug/L 1.0 1 Vinyl acetate 0.19 U ug/L 10.0 0.19 1 03/20/20 19:04 108-05-4 Vinyl chloride 0.39 U ug/L 1.0 0.39 1 03/20/20 19:04 75-01-4 Xylene (Total) 2.1 U ug/L 5.0 2.1 1 03/20/20 19:04 1330-20-7 m&p-Xylene 2.1 U 4.0 2.1 03/20/20 19:04 179601-23-1 ug/L 1 o-Xylene 0.27 U 0.27 03/20/20 19:04 95-47-6 ug/L 1.0 Surrogates 4-Bromofluorobenzene (S) 90 % 70-130 1 03/20/20 19:04 460-00-4 1,2-Dichloroethane-d4 (S) 102 % 70-130 1 03/20/20 19:04 17060-07-0

REPORT OF LABORATORY ANALYSIS

1

70-130

103

%

03/20/20 19:04 2037-26-5

ANALYTICAL RESULTS

Project: Safety Kleen Facility

0.050 U

ug/L

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

Silver

Sample: MW-1	Lab ID:	35538498002	Collected	d: 03/19/20	10:47	Received: 03/	19/20 16:30 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	03/20/20 02:14	03/20/20 11:20	7440-43-9	
Chromium	0.68 I	ug/L	1.0	0.50	1	03/20/20 02:14	03/20/20 11:20	7440-47-3	
Lead	0.50 U	ug/L	1.0	0.50	1	03/20/20 02:14	03/20/20 11:20	7439-92-1	

0.050

0.10

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

Lead

Silver

Sample: MW-3	Lab ID:	35538498003	Collecte	d: 03/19/20	11:03	Received: 03/	/19/20 16:30 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	03/20/20 02:14	03/20/20 11:22	7440-43-9	
Chromium	0.91 I	ug/L	1.0	0.50	1	03/20/20 02:14	03/20/20 11:22	7440-47-3	

0.50

0.050

1.0

0.10

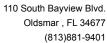
1.3

0.050 U

ug/L

ug/L

ANALYTICAL RESULTS

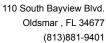

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

Sample: Trip Blank Lab ID: 35538498004 Collected: 03/19/20 00:01 Received: 03/19/20 16:30 Matrix: Water

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	8260						
Acetone	5.3 U	ug/L	20.0	5.3	1		03/20/20 14:07	67-64-1	
Acetonitrile	24.5 U	ug/L	40.0	24.5	1		03/20/20 14:07	75-05-8	J(v1)
Benzene	0.30 U	ug/L	1.0	0.30	1		03/20/20 14:07	71-43-2	
Bromochloromethane	0.37 U	ug/L	1.0	0.37	1		03/20/20 14:07	74-97-5	
Bromodichloromethane	0.19 U	ug/L	0.60	0.19	1		03/20/20 14:07	75-27-4	
Bromoform	2.6 U	ug/L	3.0	2.6	1		03/20/20 14:07	75-25-2	J(v2)
Bromomethane	4.0 U	ug/L	5.0	4.0	1		03/20/20 14:07	74-83-9	J(v2)
2-Butanone (MEK)	7.5 U	ug/L	10.0	7.5	1		03/20/20 14:07	78-93-3	
Carbon disulfide	0.45 U	ug/L	10.0	0.45	1		03/20/20 14:07	75-15-0	
Carbon tetrachloride	1.1 U	ug/L	3.0	1.1	1		03/20/20 14:07	56-23-5	
Chlorobenzene	0.35 U	ug/L	1.0	0.35	1		03/20/20 14:07	108-90-7	
Chloroethane	3.7 U	ug/L	10.0	3.7	1		03/20/20 14:07	75-00-3	
Chloroform	0.32 U	ug/L	1.0	0.32	1		03/20/20 14:07	67-66-3	
Chloromethane	0.97 U	ug/L	1.0	0.97	1		03/20/20 14:07	74-87-3	J(v2)
1,2-Dibromo-3-chloropropane	1.9 U	ug/L	5.0	1.9	1		03/20/20 14:07	96-12-8	J(v2)
Dibromochloromethane	0.45 U	ug/L	2.0	0.45	1		03/20/20 14:07	124-48-1	
1,2-Dibromoethane (EDB)	0.31 U	ug/L	1.0	0.31	1		03/20/20 14:07	106-93-4	
Dibromomethane	0.68 U	ug/L	2.0	0.68	1		03/20/20 14:07	74-95-3	
1,2-Dichlorobenzene	0.29 U	ug/L	1.0	0.29	1		03/20/20 14:07	95-50-1	
1,4-Dichlorobenzene	0.28 U	ug/L	1.0	0.28	1		03/20/20 14:07	106-46-7	
trans-1,4-Dichloro-2-butene	2.5 U	ug/L	10.0	2.5	1		03/20/20 14:07	110-57-6	
1,1-Dichloroethane	0.34 U	ug/L	1.0	0.34	1		03/20/20 14:07	75-34-3	
1,2-Dichloroethane	0.27 U	ug/L	1.0	0.27	1		03/20/20 14:07	107-06-2	
1,2-Dichloroethene (Total)	0.27 U	ug/L	1.0	0.27	1		03/20/20 14:07	540-59-0	N2
1,1-Dichloroethene	0.27 U	ug/L	1.0	0.27	1		03/20/20 14:07	75-35-4	J(v1)
cis-1,2-Dichloroethene	0.27 U	ug/L	1.0	0.27	1		03/20/20 14:07	156-59-2	
trans-1,2-Dichloroethene	0.23 U	ug/L	1.0	0.23	1		03/20/20 14:07	156-60-5	
1,2-Dichloropropane	0.23 U	ug/L	1.0	0.23	1		03/20/20 14:07	78-87-5	
cis-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		03/20/20 14:07	10061-01-5	
trans-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		03/20/20 14:07	10061-02-6	
Ethylbenzene	0.30 U	ug/L	1.0	0.30	1		03/20/20 14:07	100-41-4	
2-Hexanone	0.85 U	ug/L	10.0	0.85	1		03/20/20 14:07	591-78-6	
lodomethane	9.3 U	ug/L	10.0	9.3	1		03/20/20 14:07	74-88-4	J(v2)
Isopropylbenzene (Cumene)	0.30 U	ug/L	1.0	0.30	1		03/20/20 14:07	98-82-8	
Methylene Chloride	2.0 U	ug/L	5.0	2.0	1		03/20/20 14:07	75-09-2	
4-Methyl-2-pentanone (MIBK)	0.32 U	ug/L	10.0	0.32	1		03/20/20 14:07	108-10-1	
Methyl-tert-butyl ether	0.51 U	ug/L	2.0	0.51	1		03/20/20 14:07	1634-04-4	J(v2)
Styrene	0.26 U	ug/L	1.0	0.26	1		03/20/20 14:07	100-42-5	
1,1,1,2-Tetrachloroethane	0.32 U	ug/L	1.0	0.32	1		03/20/20 14:07	630-20-6	
1,1,2,2-Tetrachloroethane	0.20 U	ug/L	0.50	0.20	1		03/20/20 14:07	79-34-5	
Tetrachloroethene	0.38 U	ug/L	1.0	0.38	1		03/20/20 14:07	127-18-4	
Toluene	0.33 U	ug/L	1.0	0.33	1		03/20/20 14:07	108-88-3	
1,1,1-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		03/20/20 14:07	71-55-6	
1,1,2-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		03/20/20 14:07	79-00-5	


ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

Sample: Trip Blank	Lab ID:	35538498004	Collecte	d: 03/19/20	00:01	Received: 03	3/19/20 16:30 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 82	260						
Trichlorofluoromethane	0.35 U	ug/L	1.0	0.35	1		03/20/20 14:07	75-69-4	J(L1), J(v1)
1,2,3-Trichloropropane	1.1 U	ug/L	2.0	1.1	1		03/20/20 14:07	96-18-4	, ,
1,2,4-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		03/20/20 14:07	95-63-6	
1,3,5-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		03/20/20 14:07	108-67-8	
Vinyl acetate	0.19 U	ug/L	10.0	0.19	1		03/20/20 14:07	108-05-4	
Vinyl chloride	0.39 U	ug/L	1.0	0.39	1		03/20/20 14:07	75-01-4	
Xylene (Total)	2.1 U	ug/L	5.0	2.1	1		03/20/20 14:07	1330-20-7	
m&p-Xylene	2.1 U	ug/L	4.0	2.1	1		03/20/20 14:07	179601-23-1	
o-Xylene	0.27 U	ug/L	1.0	0.27	1		03/20/20 14:07	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	93	%	70-130		1		03/20/20 14:07	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130		1		03/20/20 14:07	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		03/20/20 14:07	2037-26-5	

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

QC Batch: 619475 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 35538498001, 35538498002, 35538498003

METHOD BLANK: 3367371 Matrix: Water

Associated Lab Samples: 35538498001, 35538498002, 35538498003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Cadmium	ug/L	0.050 U	0.10	0.050	03/20/20 10:46	
Chromium	ug/L	0.50 U	1.0	0.50	03/20/20 10:46	
Lead	ug/L	0.50 U	1.0	0.50	03/20/20 10:46	
Silver	ug/L	0.050 U	0.10	0.050	03/20/20 10:46	

LABORATORY CONTROL SAMPLE:	3367372					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L		5.0	101	85-115	
Chromium	ug/L	50	51.3	103	85-115	
Lead	ug/L	50	51.4	103	85-115	
Silver	ug/L	5	5.3	105	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3367	373		3367374							
			MS	MSD								
		35538300001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.050 U	5	5	5.2	5.1	103	102	70-130	1	20	
Chromium	ug/L	0.50 U	50	50	51.8	52.7	103	104	70-130	2	20	
Lead	ug/L	0.50 U	50	50	50.0	50.0	100	100	70-130	0	20	
Silver	ug/L	0.050 U	5	5	5.4	5.2	107	105	70-130	2	20	

MATRIX SPIKE & MATRIX SPI	KE DUPI	LICATE: 3367	375		3367376							
			MS	MSD								
		35538498001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.050 U	5	5	5.2	5.1	104	102	70-130	2	20	
Chromium	ug/L	0.62 I	50	50	52.7	52.9	104	105	70-130	0	20	
Lead	ug/L	0.50 U	50	50	51.7	50.8	103	102	70-130	2	20	
Silver	ug/L	0.050 U	5	5	5.4	5.3	107	107	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

QC Batch: 619616 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 35538498001, 35538498004

METHOD BLANK: 3368154 Matrix: Water

Associated Lab Samples: 35538498001, 35538498004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	1.0	0.32	03/20/20 12:30	
1,1,1-Trichloroethane	ug/L	0.30 U	1.0	0.30	03/20/20 12:30	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	0.50	0.20	03/20/20 12:30	
1,1,2-Trichloroethane	ug/L	0.30 U	1.0	0.30	03/20/20 12:30	
1,1-Dichloroethane	ug/L	0.34 U	1.0	0.34	03/20/20 12:30	
1,1-Dichloroethene	ug/L	0.27 U	1.0	0.27	03/20/20 12:30	J(v1)
1,2,3-Trichloropropane	ug/L	1.1 U	2.0	1.1	03/20/20 12:30	
1,2,4-Trimethylbenzene	ug/L	0.24 U	1.0	0.24	03/20/20 12:30	
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	5.0	1.9	03/20/20 12:30	J(v2)
1,2-Dibromoethane (EDB)	ug/L	0.31 U	1.0	0.31	03/20/20 12:30	
1,2-Dichlorobenzene	ug/L	0.29 U	1.0	0.29	03/20/20 12:30	
1,2-Dichloroethane	ug/L	0.27 U	1.0	0.27	03/20/20 12:30	
1,2-Dichloroethene (Total)	ug/L	0.27 U	1.0	0.27	03/20/20 12:30	N2
1,2-Dichloropropane	ug/L	0.23 U	1.0	0.23	03/20/20 12:30	
1,3,5-Trimethylbenzene	ug/L	0.24 U	1.0	0.24	03/20/20 12:30	
1,4-Dichlorobenzene	ug/L	0.28 U	1.0	0.28	03/20/20 12:30	
2-Butanone (MEK)	ug/L	7.5 U	10.0	7.5	03/20/20 12:30	
2-Hexanone	ug/L	0.85 U	10.0	0.85	03/20/20 12:30	
4-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	10.0	0.32	03/20/20 12:30	
Acetone	ug/L	5.3 U	20.0	5.3	03/20/20 12:30	
Acetonitrile	ug/L	24.5 U	40.0	24.5	03/20/20 12:30	J(v1)
Benzene	ug/L	0.30 U	1.0	0.30	03/20/20 12:30	
Bromochloromethane	ug/L	0.37 U	1.0	0.37	03/20/20 12:30	
Bromodichloromethane	ug/L	0.19 U	0.60	0.19	03/20/20 12:30	
Bromoform	ug/L	2.6 U	3.0	2.6	03/20/20 12:30	J(v2)
Bromomethane	ug/L	4.0 U	5.0	4.0	03/20/20 12:30	J(v2)
Carbon disulfide	ug/L	0.45 U	10.0	0.45	03/20/20 12:30	
Carbon tetrachloride	ug/L	1.1 U	3.0	1.1	03/20/20 12:30	
Chlorobenzene	ug/L	0.35 U	1.0	0.35	03/20/20 12:30	
Chloroethane	ug/L	3.7 U	10.0	3.7	03/20/20 12:30	
Chloroform	ug/L	0.32 U	1.0	0.32	03/20/20 12:30	
Chloromethane	ug/L	0.97 U	1.0	0.97	03/20/20 12:30	J(v2)
cis-1,2-Dichloroethene	ug/L	0.27 U	1.0	0.27	03/20/20 12:30	
cis-1,3-Dichloropropene	ug/L	0.17 U	0.50	0.17	03/20/20 12:30	
Dibromochloromethane	ug/L	0.45 U	2.0	0.45	03/20/20 12:30	
Dibromomethane	ug/L	0.68 U	2.0	0.68	03/20/20 12:30	
Ethylbenzene	ug/L	0.30 U	1.0	0.30	03/20/20 12:30	
Iodomethane	ug/L	9.3 U	10.0	9.3	03/20/20 12:30	J(v2)
Isopropylbenzene (Cumene)	ug/L	0.30 U	1.0	0.30	03/20/20 12:30	
m&p-Xylene	ug/L	2.1 U	4.0	2.1	03/20/20 12:30	
Methyl-tert-butyl ether	ug/L	0.51 U	2.0	0.51	03/20/20 12:30	J(v2)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

METHOD BLANK: 3368154 Matrix: Water

Associated Lab Samples: 35538498001, 35538498004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Methylene Chloride	ug/L	2.0 U	5.0	2.0	03/20/20 12:30	-
o-Xylene	ug/L	0.27 U	1.0	0.27	03/20/20 12:30	
Styrene	ug/L	0.26 U	1.0	0.26	03/20/20 12:30	
Tetrachloroethene	ug/L	0.38 U	1.0	0.38	03/20/20 12:30	
Toluene	ug/L	0.33 U	1.0	0.33	03/20/20 12:30	
trans-1,2-Dichloroethene	ug/L	0.23 U	1.0	0.23	03/20/20 12:30	
trans-1,3-Dichloropropene	ug/L	0.17 U	0.50	0.17	03/20/20 12:30	
trans-1,4-Dichloro-2-butene	ug/L	2.5 U	10.0	2.5	03/20/20 12:30	
Trichloroethene	ug/L	0.36 U	1.0	0.36	03/20/20 12:30	
Trichlorofluoromethane	ug/L	0.35 U	1.0	0.35	03/20/20 12:30	J(v1)
Vinyl acetate	ug/L	0.19 U	10.0	0.19	03/20/20 12:30	
Vinyl chloride	ug/L	0.39 U	1.0	0.39	03/20/20 12:30	
Xylene (Total)	ug/L	2.1 U	5.0	2.1	03/20/20 12:30	
1,2-Dichloroethane-d4 (S)	%	110	70-130		03/20/20 12:30	
4-Bromofluorobenzene (S)	%	94	70-130		03/20/20 12:30	
Toluene-d8 (S)	%	115	70-130		03/20/20 12:30	

LABORATORY CONTROL SAMPLE:	3368155					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	17.6	88	70-130	
1,1,1-Trichloroethane	ug/L	20	21.3	106	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	21.0	105	68-125	
1,1,2-Trichloroethane	ug/L	20	20.6	103	70-130	
1,1-Dichloroethane	ug/L	20	22.4	112	70-130	
1,1-Dichloroethene	ug/L	20	24.7	123	66-133	J(v1)
1,2,3-Trichloropropane	ug/L	20	18.4	92	62-127	
1,2,4-Trimethylbenzene	ug/L	20	19.5	98	70-130	
1,2-Dibromo-3-chloropropane	ug/L	20	14.3	72	45-137	J(v3)
1,2-Dibromoethane (EDB)	ug/L	20	20.0	100	70-130	
1,2-Dichlorobenzene	ug/L	20	20.3	102	70-130	
1,2-Dichloroethane	ug/L	20	19.6	98	70-130	
1,2-Dichloroethene (Total)	ug/L	40	42.1	105	70-130	N2
1,2-Dichloropropane	ug/L	20	21.9	109	70-130	
1,3,5-Trimethylbenzene	ug/L	20	19.9	100	70-130	
1,4-Dichlorobenzene	ug/L	20	20.4	102	70-130	
2-Butanone (MEK)	ug/L	40	35.2	88	47-143	
2-Hexanone	ug/L	40	34.6	87	48-145	
4-Methyl-2-pentanone (MIBK)	ug/L	40	35.2	88	57-132	
Acetone	ug/L	40	40.8	102	46-148	
Acetonitrile	ug/L	200	267	134	33-175	
Benzene	ug/L	20	22.7	113	70-130	
Bromochloromethane	ug/L	20	21.1	106	70-130	
Bromodichloromethane	ug/L	20	19.0	95	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

ABORATORY CONTROL SAMPLE:	3368155	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
romoform	ug/L		13.8	69	49-126	J(v3)
romomethane	ug/L	20	9.8	49	10-165	J(v3)
arbon disulfide	ug/L	20	19.5	98	60-141	
arbon tetrachloride	ug/L	20	18.9	94	63-126	
hlorobenzene	ug/L	20	20.8	104	70-130	
nloroethane	ug/L	20	18.2	91	71-142	
hloroform	ug/L	20	21.8	109	70-130	
hloromethane	ug/L	20	14.5	72	40-140	J(v3)
s-1,2-Dichloroethene	ug/L	20	20.6	103	70-130	
s-1,3-Dichloropropene	ug/L	20	18.7	94	70-130	
ibromochloromethane	ug/L	20	16.5	82	62-118	
ibromomethane	ug/L	20	19.7	98	70-130	
thylbenzene	ug/L	20	21.0	105	70-130	
domethane	ug/L	40	24.7	62	10-164	J(v3)
opropylbenzene (Cumene)	ug/L	20	21.0	105	70-130	
&p-Xylene	ug/L	40	42.7	107	70-130	
ethyl-tert-butyl ether	ug/L	20	15.4	77	64-124	J(v3)
ethylene Chloride	ug/L	20	21.3	106	65-136	
Xylene	ug/L	20	19.8	99	70-130	
yrene	ug/L	20	20.2	101	70-130	
trachloroethene	ug/L	20	17.9	90	64-134	
luene	ug/L	20	21.1	106	70-130	
ns-1,2-Dichloroethene	ug/L	20	21.4	107	68-127	
ns-1,3-Dichloropropene	ug/L	20	17.6	88	65-121	
ns-1,4-Dichloro-2-butene	ug/L	20	17.1	86	42-129	
ichloroethene	ug/L	20	20.8	104	70-130	
ichlorofluoromethane	ug/L	20	27.8	139	65-135	J(L1), J(v1)
inyl acetate	ug/L	20	19.2	96	60-144	
nyl chloride	ug/L	20	22.2	111	68-131	
vlene (Total)	ug/L	60	62.5	104	70-130	
2-Dichloroethane-d4 (S)	%			100	70-130	
Bromofluorobenzene (S)	%			95	70-130	
luene-d8 (S)	%			101	70-130	

MATRIX SPIKE SAMPLE:	3368157						
Damanatan	l locks	35538604002	Spike	MS	MS	% Rec	0
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	 ug/L	0.32 U	20	18.1	90	70-130	
1,1,1-Trichloroethane	ug/L	0.30 U	20	21.6	108	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	20	21.3	107	68-125	
1,1,2-Trichloroethane	ug/L	0.30 U	20	22.4	112	70-130	
1,1-Dichloroethane	ug/L	0.34 U	20	21.8	109	70-130	
1,1-Dichloroethene	ug/L	0.27 U	20	25.5	127	66-133 J	(v1)
1,2,3-Trichloropropane	ug/L	1.1 U	20	24.4	122	62-127	
1,2,4-Trimethylbenzene	ug/L	0.24 U	20	19.5	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

MATRIX SPIKE SAMPLE:	3368157	35538604002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	20	14.5	73	45-137	J(v3)
1,2-Dibromoethane (EDB)	ug/L	0.31 U	20	20.5	103	70-130	` ,
1,2-Dichlorobenzene	ug/L	0.29 U	20	19.9	99	70-130	
1,2-Dichloroethane	ug/L	0.27 U	20	19.6	98	70-130	
1,2-Dichloroethene (Total)	ug/L	0.27 U	40	41.7	104	70-130	N2
1,2-Dichloropropane	ug/L	0.23 U	20	21.6	108	70-130	
1,3,5-Trimethylbenzene	ug/L	0.24 U	20	20.3	101	70-130	
1,4-Dichlorobenzene	ug/L	0.28 U	20	20.1	101	70-130	
2-Butanone (MEK)	ug/L	7.5 U	40	34.8	87	47-143	.l(v3)
2-Hexanone	ug/L	0.85 U	40	30.4	76	48-145	0(10)
4-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	40	33.1	83	57-132	
Acetone	ug/L	5.3 U	40	37.0	81	46-148	
Acetonitrile	ug/L	24.5 U	200	226	113	33-175	I(v1)
Benzene	ug/L	0.30 U	20	22.3	111	70-130	O(V1)
Bromochloromethane	ug/L	0.37 U	20	21.3	107	70-130	
Bromodichloromethane	ug/L	0.19 U	20	19.2	96	70-130	
Bromoform	ug/L	2.6 U	20	14.1	70	49-126	1(v3)
Bromomethane	ug/L ug/L	4.0 U	20	13.8	69	10-165	
Carbon disulfide		0.45 U	20	18.8	94	60-141	J(V3)
Carbon tetrachloride	ug/L	1.1 U	20	19.3	94 97	63-126	
	ug/L	0.35 U	20	21.4			
Chlorobenzene	ug/L	3.7 U			107	70-130	
Chloroethane	ug/L		20	15.2	76	71-142	
Chloroform	ug/L	0.32 U	20	21.6	108	70-130	1/ 0)
Chloromethane	ug/L	0.97 U	20	12.8	64	40-140	J(V3)
cis-1,2-Dichloroethene	ug/L	0.27 U	20	20.8	104	70-130	
cis-1,3-Dichloropropene	ug/L	0.17 U	20	17.6	88	70-130	
Dibromochloromethane	ug/L	0.45 U	20	17.9	89	62-118	
Dibromomethane	ug/L	0.68 U	20	19.8	99	70-130	
Ethylbenzene	ug/L	0.30 U	20	21.3	106	70-130	
odomethane	ug/L	9.3 U	40	12.4	28	10-164	J(v3)
sopropylbenzene (Cumene)	ug/L	0.30 U	20	20.6	103	70-130	
n&p-Xylene	ug/L	2.1 U	40	42.6	107	70-130	
Methyl-tert-butyl ether	ug/L	0.51 U	20	13.0	65	64-124	J(v3)
Methylene Chloride	ug/L	2.0 U	20	19.7	99	65-136	
o-Xylene	ug/L	0.27 U	20	19.7	98	70-130	
Styrene	ug/L	0.26 U	20	19.5	97	70-130	
Tetrachloroethene	ug/L	0.38 U	20	18.4	92	64-134	
Toluene	ug/L	0.33 U	20	22.2	111	70-130	
rans-1,2-Dichloroethene	ug/L	0.23 U	20	20.9	104	68-127	
rans-1,3-Dichloropropene	ug/L	0.17 U	20	17.4	87	65-121	
rans-1,4-Dichloro-2-butene	ug/L	2.5 U	20	12.8	64	42-129	
Trichloroethene	ug/L	0.36 U	20	20.9	105	70-130	
Trichlorofluoromethane	ug/L	0.35 U	20	22.4	112	65-135	J(v1)
Vinyl acetate	ug/L	0.19 U	20	15.0	75	60-144	
Vinyl chloride	ug/L	0.39 U	20	19.3	96	68-131	
Xylene (Total)	ug/L	2.1 U	60	62.3	104	70-130	
1,2-Dichloroethane-d4 (S)	%				100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

MATRIX SPIKE SAMPLE:	3368157						
		35538604002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
4-Bromofluorobenzene (S)					92	70-130	
Toluene-d8 (S)	%				99	70-130	

		35538604001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	0.32 U		40)
1,1,1-Trichloroethane	ug/L	0.30 U	0.30 U		40)
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	0.20 U		40	
1,1,2-Trichloroethane	ug/L	0.30 U	0.30 U		40	
1,1-Dichloroethane	ug/L	0.34 U	0.34 U		40	
1,1-Dichloroethene	ug/L	0.27 U	0.27 U		40) J(v1)
1,2,3-Trichloropropane	ug/L	1.1 U	1.1 U		40	
1,2,4-Trimethylbenzene	ug/L	0.24 U	0.24 U		40)
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	1.9 U		40) J(v2)
1,2-Dibromoethane (EDB)	ug/L	0.31 U	0.31 U		40	
1,2-Dichlorobenzene	ug/L	0.29 U	0.29 U		40)
1,2-Dichloroethane	ug/L	0.27 U	0.27 U		40)
1,2-Dichloroethene (Total)	ug/L	0.27 U	0.27 U		40) N2
1,2-Dichloropropane	ug/L	0.23 U	0.23 U		40)
1,3,5-Trimethylbenzene	ug/L	0.24 U	0.24 U		40)
1,4-Dichlorobenzene	ug/L	0.28 U	0.28 U		40)
2-Butanone (MEK)	ug/L	7.5 U	7.5 U		40)
2-Hexanone	ug/L	0.85 U	0.85 U		40)
4-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	0.32 U		40)
Acetone	ug/L	7.8 I	8.5 I		40)
Acetonitrile	ug/L	24.5 U	24.5 U		40)
Benzene	ug/L	0.30 U	0.30 U		40)
Bromochloromethane	ug/L	0.37 U	0.37 U		40)
Bromodichloromethane	ug/L	0.19 U	0.36 I		40)
Bromoform	ug/L	2.6 U	2.6 U		40) J(v2)
Bromomethane	ug/L	4.0 U	4.0 U		40) J(v2)
Carbon disulfide	ug/L	0.45 U	0.45 U		40)
Carbon tetrachloride	ug/L	1.1 U	1.1 U		40)
Chlorobenzene	ug/L	0.35 U	0.35 U		40)
Chloroethane	ug/L	3.7 U	3.7 U		40)
Chloroform	ug/L	3.2	3.3	2	40	
Chloromethane	ug/L	0.97 U	0.97 U		40) J(v2)
cis-1,2-Dichloroethene	ug/L	0.27 U	0.27 U		40	
cis-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		40	
Dibromochloromethane	ug/L	0.45 U	0.45 U		40	
Dibromomethane	ug/L	0.68 U	0.68 U		40	
Ethylbenzene	ug/L	0.30 U	0.30 U		40	
lodomethane	ug/L	9.3 U	9.3 U		40) J(v2)
Isopropylbenzene (Cumene)	ug/L	0.30 U	0.30 U		40)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

SAMPLE DUPLICATE: 3368156		35538604001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene	ug/L		2.1 U		40	<u> </u>
Methyl-tert-butyl ether	ug/L	0.51 U	0.51 U		40) J(v2)
Methylene Chloride	ug/L	2.0 U	2.0 U		40)
o-Xylene	ug/L	0.27 U	0.27 U		40)
Styrene	ug/L	0.26 U	0.26 U		40)
Tetrachloroethene	ug/L	0.38 U	0.38 U		40)
Toluene	ug/L	0.33 U	0.33 U		40)
trans-1,2-Dichloroethene	ug/L	0.23 U	0.23 U		40)
trans-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		40)
trans-1,4-Dichloro-2-butene	ug/L	2.5 U	2.5 U		40)
Trichloroethene	ug/L	0.36 U	0.36 U		40)
Trichlorofluoromethane	ug/L	0.35 U	0.35 U		40) J(v1)
Vinyl acetate	ug/L	0.19 U	0.19 U		40)
Vinyl chloride	ug/L	0.39 U	0.39 U		40)
Xylene (Total)	ug/L	2.1 U	2.1 U		40)
1,2-Dichloroethane-d4 (S)	%	102	106		40)
4-Bromofluorobenzene (S)	%	91	91		40)
Toluene-d8 (S)	%	104	108		40)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

QC Batch: 620149 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAHLV by SIM MSSV

Associated Lab Samples: 35538498001

METHOD BLANK: 3371134 Matrix: Water

Associated Lab Samples: 35538498001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	0.19 U	2.0	0.19	03/24/20 19:18	
2-Methylnaphthalene	ug/L	0.68 U	2.0	0.68	03/24/20 19:18	
Acenaphthene	ug/L	0.040 U	0.50	0.040	03/24/20 19:18	
Acenaphthylene	ug/L	0.030 U	0.50	0.030	03/24/20 19:18	
Anthracene	ug/L	0.043 U	0.50	0.043	03/24/20 19:18	
Benzo(a)anthracene	ug/L	0.055 U	0.10	0.055	03/24/20 19:18	
Benzo(a)pyrene	ug/L	0.12 U	0.20	0.12	03/24/20 19:18	
Benzo(b)fluoranthene	ug/L	0.027 U	0.10	0.027	03/24/20 19:18	
Benzo(g,h,i)perylene	ug/L	0.15 U	0.50	0.15	03/24/20 19:18	
Benzo(k)fluoranthene	ug/L	0.16 U	0.50	0.16	03/24/20 19:18	
Chrysene	ug/L	0.026 U	0.50	0.026	03/24/20 19:18	
Dibenz(a,h)anthracene	ug/L	0.13 U	0.15	0.13	03/24/20 19:18	
Fluoranthene	ug/L	0.018 U	0.50	0.018	03/24/20 19:18	
Fluorene	ug/L	0.088 U	0.50	0.088	03/24/20 19:18	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	0.15	0.12	03/24/20 19:18	
Naphthalene	ug/L	0.29 U	2.0	0.29	03/24/20 19:18	
Phenanthrene	ug/L	0.16 U	0.50	0.16	03/24/20 19:18	
Pyrene	ug/L	0.032 U	0.50	0.032	03/24/20 19:18	
2-Fluorobiphenyl (S)	%	67	38-92		03/24/20 19:18	
p-Terphenyl-d14 (S)	%	83	54-112		03/24/20 19:18	

LABORATORY CONTROL SAMPLE:	3371135					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L	5	3.3	66	40-96	
2-Methylnaphthalene	ug/L	5	3.2	64	40-94	
Acenaphthene	ug/L	5	3.5	71	42-96	
Acenaphthylene	ug/L	5	3.5	70	39-90	
Inthracene	ug/L	5	4.1	83	46-109	
enzo(a)anthracene	ug/L	5	4.4	87	50-116	
enzo(a)pyrene	ug/L	5	4.4	89	48-117	
enzo(b)fluoranthene	ug/L	5	4.5	89	51-124	
enzo(g,h,i)perylene	ug/L	5	4.6	92	47-121	
enzo(k)fluoranthene	ug/L	5	4.6	91	50-125	
hrysene	ug/L	5	4.6	93	53-122	
ibenz(a,h)anthracene	ug/L	5	4.4	89	45-123	
luoranthene	ug/L	5	4.5	90	52-119	
luorene	ug/L	5	3.6	72	44-100	
deno(1,2,3-cd)pyrene	ug/L	5	4.5	89	46-121	
laphthalene	ug/L	5	3.1	63	40-91	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

LABORATORY CONTROL SAMPLE: 3371135

LABORATORY CONTROL SAMPLE.	. 33/1133	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L		4.2	85	47-111	
Pyrene	ug/L	5	4.5	91	51-120	
2-Fluorobiphenyl (S)	%			64	38-92	
p-Terphenyl-d14 (S)	%			83	54-112	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 3371	136		3371137							
			MS	MSD								
	3	5538498001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/L	0.19 U	5	5	3.3	3.2	65	64	40-96	2	40	
2-Methylnaphthalene	ug/L	0.68 U	5	5	3.2	3.1	62	61	40-94	3	40	
Acenaphthene	ug/L	0.040 U	5	5	3.4	3.5	69	70	42-96	2	40	
Acenaphthylene	ug/L	0.030 U	5	5	3.5	3.5	69	69	39-90	0	40	
Anthracene	ug/L	0.043 U	5	5	4.0	4.0	80	81	46-109	1	40	
Benzo(a)anthracene	ug/L	0.055 U	5	5	4.1	4.2	82	84	50-116	2	40	
Benzo(a)pyrene	ug/L	0.12 U	5	5	4.3	4.3	86	86	48-117	0	40	
Benzo(b)fluoranthene	ug/L	0.027 U	5	5	4.2	4.3	84	86	51-124	2	40	
Benzo(g,h,i)perylene	ug/L	0.15 U	5	5	4.1	4.2	83	84	47-121	2	40	
Benzo(k)fluoranthene	ug/L	0.16 U	5	5	4.3	4.3	85	86	50-125	0	40	
Chrysene	ug/L	0.026 U	5	5	4.3	4.4	85	87	53-122	2	40	
Dibenz(a,h)anthracene	ug/L	0.13 U	5	5	4.1	4.1	82	82	45-123	0	40	
Fluoranthene	ug/L	0.018 U	5	5	4.2	4.2	85	84	52-119	1	40	
Fluorene	ug/L	0.088 U	5	5	3.5	3.6	69	71	44-100	3	40	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	5	5	4.1	4.1	82	83	46-121	1	40	
Naphthalene	ug/L	0.29 U	5	5	3.2	3.0	62	58	40-91	6	40	
Phenanthrene	ug/L	0.16 U	5	5	4.0	4.1	80	81	47-111	1	40	
Pyrene	ug/L	0.032 U	5	5	4.3	4.3	87	86	51-120	1	40	
2-Fluorobiphenyl (S)	%						63	62	38-92			
p-Terphenyl-d14 (S)	%						76	75	54-112			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

QC Batch: 619415 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 Water Full List MSSV

Associated Lab Samples: 35538498001

METHOD BLANK: 3366772 Matrix: Water

Associated Lab Samples: 35538498001

Associated Lab Gampies. 5555649	00001	Plank	Donorting			
Doromotor	Units	Blank	Reporting Limit	MDL	Analyzad	Qualifiana
Parameter		Result		WIDL	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/L	1.4 U	5.0	1.4	03/20/20 10:19	
1,2-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	03/20/20 10:19	
1,2-Dinitrobenzene	ug/L	1.9 U	6.0	1.9	03/20/20 10:19	
1,2-Diphenylhydrazine	ug/L	1.4 U	5.0	1.4	03/20/20 10:19	
1,3-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	03/20/20 10:19	
1,3-Dinitrobenzene	ug/L	1.2 U	8.0	1.2	03/20/20 10:19	
1,4-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	03/20/20 10:19	
1-Methylnaphthalene	ug/L	0.36 U	5.0	0.36	03/20/20 10:19	
2,3,4,6-Tetrachlorophenol	ug/L	1.0 U	5.0	1.0	03/20/20 10:19	
2,3,5,6-Tetrachlorophenol	ug/L	1.9 U	9.0	1.9	03/20/20 10:19	N2
2,4,5-Trichlorophenol	ug/L	0.23 U	4.0	0.23	03/20/20 10:19	
2,4,6-Trichlorophenol	ug/L	0.36 U	2.0	0.36	03/20/20 10:19	
2,4-Dichlorophenol	ug/L	0.34 U	2.0	0.34	03/20/20 10:19	
2,4-Dimethylphenol	ug/L	1.0 U	5.0	1.0	03/20/20 10:19	
2,4-Dinitrophenol	ug/L	2.6 U	20.0	2.6	03/20/20 10:19	
2,4-Dinitrotoluene	ug/L	0.27 U	4.0	0.27	03/20/20 10:19	
2,6-Dinitrotoluene	ug/L	0.28 U	2.0	0.28	03/20/20 10:19	
2-Chloronaphthalene	ug/L	0.34 U	5.0	0.34	03/20/20 10:19	
2-Chlorophenol	ug/L	1.4 U	5.0	1.4	03/20/20 10:19	
2-Methylnaphthalene	ug/L	0.28 U	5.0	0.28	03/20/20 10:19	
2-Methylphenol(o-Cresol)	ug/L	0.30 U	5.0	0.30	03/20/20 10:19	
2-Nitroaniline	ug/L	1.3 U	5.0	1.3	03/20/20 10:19	
2-Nitrophenol	ug/L	1.4 U	5.0	1.4	03/20/20 10:19	
3&4-Methylphenol(m&p Cresol)	ug/L	0.22 U	10.0	0.22	03/20/20 10:19	
3,3'-Dichlorobenzidine	ug/L	1.0 U	10.0	1.0	03/20/20 10:19	
3-Nitroaniline	ug/L	1.3 U	5.0	1.3	03/20/20 10:19	
4,6-Dinitro-2-methylphenol	ug/L	4.6 U	20.0	4.6	03/20/20 10:19	
4-Bromophenylphenyl ether	ug/L	1.7 U	5.0	1.7	03/20/20 10:19	
4-Chloro-3-methylphenol	ug/L	5.4 U	20.0	5.4	03/20/20 10:19	
4-Chloroaniline	ug/L	1.4 U	5.0	1.4	03/20/20 10:19	
4-Chlorophenylphenyl ether	ug/L	1.4 U	5.0	1.4	03/20/20 10:19	
4-Nitroaniline	ug/L	0.19 U	4.0	0.19	03/20/20 10:19	
4-Nitrophenol	ug/L	2.0 U	20.0	2.0	03/20/20 10:19	
Acenaphthene	ug/L	0.36 U	5.0	0.36	03/20/20 10:19	
Acenaphthylene	ug/L	0.30 U	5.0	0.30	03/20/20 10:19	
Aniline	ug/L	0.94 U	5.0	0.94	03/20/20 10:19	
Anthracene	ug/L	0.22 U	5.0	0.22	03/20/20 10:19	
Benzidine	ug/L	0.87 U	25.0	0.87	03/20/20 10:19	
Benzo(a)anthracene	ug/L	0.20 U	5.0	0.20	03/20/20 10:19	
Benzo(a)pyrene	ug/L	0.17 U	1.0	0.17	03/20/20 10:19	
Benzo(b)fluoranthene	ug/L	0.27 U	2.0	0.27	03/20/20 10:19	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

METHOD BLANK: 3366772 Matrix: Water

Associated Lab Samples: 35538498001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Benzo(g,h,i)perylene	ug/L	0.17 U	5.0	0.17	03/20/20 10:19	<u> </u>
Benzo(k)fluoranthene	ug/L	0.18 U	4.0	0.18	03/20/20 10:19	
Benzyl alcohol	ug/L	1.3 U	5.0	1.3	03/20/20 10:19	
bis(2-Chloroethoxy)methane	ug/L	1.6 U	5.0	1.6	03/20/20 10:19	
bis(2-Chloroethyl) ether	ug/L	0.34 U	4.0	0.34	03/20/20 10:19	
bis(2-Chloroisopropyl) ether	ug/L	1.8 U	6.0	1.8	03/20/20 10:19	
bis(2-Ethylhexyl)phthalate	ug/L	1.1 U	5.0	1.1	03/20/20 10:19	
Butylbenzylphthalate	ug/L	1.1 U	5.0	1.1	03/20/20 10:19	
Caprolactam	ug/L	0.40 U	5.0	0.40	03/20/20 10:19	N2
Carbazole	ug/L	1.1 U	5.0	1.1	03/20/20 10:19	
Chrysene	ug/L	0.20 U	5.0	0.20	03/20/20 10:19	
Di-n-butylphthalate	ug/L	1.1 U	5.0	1.1	03/20/20 10:19	
Di-n-octylphthalate	ug/L	0.92 U	5.0	0.92	03/20/20 10:19	
Dibenz(a,h)anthracene	ug/L	0.18 U	2.0	0.18	03/20/20 10:19	
Dibenzofuran	ug/L	1.5 U	5.0	1.5	03/20/20 10:19	
Diethylphthalate	ug/L	1.4 U	5.0	1.4	03/20/20 10:19	
Dimethylphthalate	ug/L	1.4 U	5.0	1.4	03/20/20 10:19	
Fluoranthene	ug/L	0.21 U	5.0	0.21	03/20/20 10:19	
Fluorene	ug/L	0.34 U	5.0	0.34	03/20/20 10:19	
Hexachloro-1,3-butadiene	ug/L	0.35 U	2.0	0.35	03/20/20 10:19	
Hexachlorobenzene	ug/L	0.29 U	1.0	0.29	03/20/20 10:19	
Hexachlorocyclopentadiene	ug/L	3.4 U	11.0	3.4	03/20/20 10:19	
Hexachloroethane	ug/L	1.4 U	5.0	1.4	03/20/20 10:19	
Indeno(1,2,3-cd)pyrene	ug/L	0.17 U	2.0	0.17	03/20/20 10:19	
Isophorone	ug/L	1.7 U	5.0	1.7	03/20/20 10:19	
N-Nitroso-di-n-propylamine	ug/L	0.33 U	4.0	0.33	03/20/20 10:19	
N-Nitrosodimethylamine	ug/L	0.20 U	2.0	0.20	03/20/20 10:19	
N-Nitrosodiphenylamine	ug/L	1.2 U	5.0	1.2	03/20/20 10:19	
Naphthalene	ug/L	0.39 U	5.0	0.39	03/20/20 10:19	
Nitrobenzene	ug/L	0.37 U	4.0	0.37	03/20/20 10:19	
Pentachlorophenol	ug/L	1.6 U	20.0	1.6	03/20/20 10:19	
Phenanthrene	ug/L	0.23 U	5.0	0.23	03/20/20 10:19	
Phenol	ug/L	0.63 U	5.0	0.63	03/20/20 10:19	
Pyrene	ug/L	0.21 U	5.0	0.21	03/20/20 10:19	
Pyridine	ug/L	1.1 U	5.0	1.1	03/20/20 10:19	
2,4,6-Tribromophenol (S)	%	100	10-126		03/20/20 10:19	
2-Fluorobiphenyl (S)	%	79	10-96		03/20/20 10:19	
2-Fluorophenol (S)	%	47	10-55		03/20/20 10:19	
Nitrobenzene-d5 (S)	%	71	10-94		03/20/20 10:19	
p-Terphenyl-d14 (S)	%	87	24-129		03/20/20 10:19	
Phenol-d5 (S)	%	35	10-35		03/20/20 10:19	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

LABORATORY CONTROL SAMPLE	: 3366773	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifier
1,2,4-Trichlorobenzene	ug/L		33.8	68	33-89
1,2-Dichlorobenzene	ug/L	50	32.3	65	30-85
1,2-Dinitrobenzene	ug/L	50	43.9	88	55-111
1,2-Diphenylhydrazine	ug/L	50	37.4	75	49-106
1,3-Dichlorobenzene	ug/L	50	31.7	63	28-83
1,3-Dinitrobenzene	ug/L	50	45.8	92	55-114
1,4-Dichlorobenzene	ug/L	50	32.0	64	26-87
1-Methylnaphthalene	ug/L	50	35.1	70	40-94
2,3,4,6-Tetrachlorophenol	ug/L	50	42.5	85	56-108
2,3,5,6-Tetrachlorophenol	ug/L	50	43.8	88	57-108 N2
2,4,5-Trichlorophenol	ug/L	50 50	41.4	83	46-111
2,4,6-Trichlorophenol	ug/L	50	40.1	80	45-108
2,4-Dichlorophenol	_	50	37.1	74	46-94
•	ug/L ug/L	50 50	37.1 37.5	74 75	46-94 44-92
2,4-Dimethylphenol	-	50 50	37.5 46.4	75 93	44-92 49-123
2,4-Dinitrophenol	ug/L	50 50	45.6	93 91	49-123 47-120
2,4-Dinitrotoluene	ug/L				
2,6-Dinitrotoluene	ug/L	50	42.9	86	57-107
2-Chloronaphthalene	ug/L	50	34.3	69	39-98
2-Chlorophenol	ug/L	50	32.8	66	35-83
2-Methylnaphthalene	ug/L	50	35.7	71	39-95
2-Methylphenol(o-Cresol)	ug/L	50	31.3	63	29-84
2-Nitroaniline	ug/L	50	43.0	86	56-107
2-Nitrophenol	ug/L	50	37.6	75	43-96
8&4-Methylphenol(m&p Cresol)	ug/L	50	29.5	59	26-82
3,3'-Dichlorobenzidine	ug/L	50	44.5	89	61-113
3-Nitroaniline	ug/L	50	39.3	79	56-104
1,6-Dinitro-2-methylphenol	ug/L	50	50.0	100	51-131
I-Bromophenylphenyl ether	ug/L	50	41.8	84	51-105
I-Chloro-3-methylphenol	ug/L	50	38.4	77	51-98
l-Chloroaniline	ug/L	50	38.2	76	50-92
1-Chlorophenylphenyl ether	ug/L	50	40.2	80	48-103
1-Nitroaniline	ug/L	50	45.6	91	61-108
1-Nitrophenol	ug/L	50	18.6 I	37	10-61
Acenaphthene	ug/L	50	39.0	78	45-102
Acenaphthylene	ug/L	50	38.2	76	46-99
Aniline	ug/L	50	33.5	67	33-88
Anthracene	ug/L	50	41.4	83	56-106
Benzidine	ug/L	50	28.5	57	10-110
Benzo(a)anthracene	ug/L	50	43.0	86	45-114
Benzo(a)pyrene	ug/L	50	44.2	88	36-115
Benzo(b)fluoranthene	ug/L	50	42.7	85	37-118
Benzo(g,h,i)perylene	ug/L	50	45.2	90	32-120
Benzo(k)fluoranthene	ug/L	50	45.3	91	35-119
Benzyl alcohol	ug/L	50	31.3	63	35-78
is(2-Chloroethoxy)methane	ug/L	50	35.4	71	43-94
ois(2-Chloroethyl) ether	ug/L	50	32.3	65	34-90
pis(2-Chloroisopropyl) ether	ug/L	50	29.6	59	26-96

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

ABORATORY CONTROL SAMPLE	: 3366773					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
is(2-Ethylhexyl)phthalate	ug/L		43.0	86	28-125	
utylbenzylphthalate	ug/L	50	43.2	86	54-116	
aprolactam	ug/L	50	14.0	28	10-36	N2
arbazole	ug/L	50	43.2	86	58-109	
rysene	ug/L	50	42.7	85	44-115	
n-butylphthalate	ug/L	50	42.7	85	57-113	
n-octylphthalate	ug/L	50	43.9	88	28-124	
enz(a,h)anthracene	ug/L	50	44.6	89	30-121	
enzofuran	ug/L	50	39.2	78	47-101	
ethylphthalate	ug/L	50	41.6	83	57-107	
nethylphthalate	ug/L	50	41.1	82	56-104	
oranthene	ug/L	50	43.5	87	56-110	
orene	ug/L	50	40.1	80	49-104	
xachloro-1,3-butadiene	ug/L	50	34.0	68	25-95	
kachlorobenzene	ug/L	50	41.8	84	44-111	
kachlorocyclopentadiene	ug/L	50	37.5	75	10-126	
xachloroethane	ug/L	50	31.5	63	21-87	
eno(1,2,3-cd)pyrene	ug/L	50	44.1	88	31-120	
ohorone	ug/L	50	35.6	71	46-95	
Nitroso-di-n-propylamine	ug/L	50	33.1	66	44-92	
Nitrosodimethylamine	ug/L	50	23.3	47	18-64	
litrosodiphenylamine	ug/L	50	40.9	82	53-105	
phthalene	ug/L	50	34.8	70	37-90	
obenzene	ug/L	50	33.1	66	36-95	
ntachlorophenol	ug/L	50	44.7	89	45-127	
enanthrene	ug/L	50	41.8	84	55-106	
enol	ug/L	50	14.9	30	10-44	
rene	ug/L	50	43.3	87	54-114	
ridine	ug/L	50	17.3	35	10-57	
,6-Tribromophenol (S)	%			91	10-126	
luorobiphenyl (S)	%			70	10-96	
Fluorophenol (S)	%			41	10-55	
obenzene-d5 (S)	%			67	10-94	
erphenyl-d14 (S)						
elphenyi-u i+ (o)	% %			78	24-129	

MATRIX SPIKE & MATRIX S	PIKE DUPLI	CATE: 3366		3366775								
	3	35538029001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2,4-Trichlorobenzene	ug/L	1.4 U	48.6	50.2	22.5	26.6	46	53	33-89	 17	40	
1,2-Dichlorobenzene	ug/L	1.5 U	48.6	50.2	21.5	26.2	44	52	30-85	20	40	
1,2-Dinitrobenzene	ug/L	1.9 U	48.6	50.2	34.9	37.9	72	76	55-111	8	40	
1,2-Diphenylhydrazine	ug/L	1.4 U	48.6	50.2	27.8	29.7	57	59	49-106	7	40	
1,3-Dichlorobenzene	ug/L	1.5 U	48.6	50.2	20.9	25.5	43	51	28-83	20	40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	LICATE: 3366			3366775							
			MS	MSD								
D .		35538029001	Spike	Spike	MS	MSD	MS	MSD	% Rec	DDD	Max	_
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qı —
1,3-Dinitrobenzene	ug/L	1.2 U	48.6	50.2	36.1	39.1	74	78	55-114	8	40	
1,4-Dichlorobenzene	ug/L	1.6 U	48.6	50.2	21.1	25.6	43	51	26-87	19	40	
1-Methylnaphthalene	ug/L	0.36 U	48.6	50.2	25.1	28.3	52	56	40-94	12	40	
2,3,4,6-Tetrachlorophenol	ug/L	1.1 U	48.6	50.2	33.1	36.5	68	73	56-108	10	40	
2,3,5,6-Tetrachlorophenol	ug/L	1.9 U	48.6	50.2	35.1	38.2	72	76	57-108	8	40	N2
2,4,5-Trichlorophenol	ug/L	0.23 U	48.6	50.2	33.0	35.9	68	71	46-111	8	40	
2,4,6-Trichlorophenol	ug/L	0.36 U	48.6	50.2	31.6	34.6	65	69	45-108	9	40	
2,4-Dichlorophenol	ug/L	0.34 U	48.6	50.2	28.5	31.9	59	63	46-94	11	40	
2,4-Dimethylphenol	ug/L	1.0 U	48.6	50.2	30.1	33.2	62	66	44-92	10	40	
2,4-Dinitrophenol	ug/L	2.7 U	48.6	50.2	39.8	43.8	82	87	49-123	10	40	
2,4-Dinitrotoluene	ug/L	0.27 U	48.6	50.2	35.0	38.2	72	76	47-120	9	40	
2,6-Dinitrotoluene	ug/L	0.28 U	48.6	50.2	33.3	36.2	69	72	57-107	8	40	
2-Chloronaphthalene	ug/L	0.34 U	48.6	50.2	24.8	27.9	51	56	39-98	12		
2-Chlorophenol	ug/L	1.4 U	48.6	50.2	23.9	28.3	49	56	35-83	17	40	
2-Methylnaphthalene	ug/L	0.28 U	48.6	50.2	25.0	28.7	52	57	39-95	14	40	
2-Methylphenol(o-Cresol)	ug/L	2.0 1	48.6	50.2	26.0	29.4	49	55	29-84	12		
	_		48.6	50.2	34.7		71			7		
-Nitroaniline	ug/L	1.3 U				37.3		74	56-107			
-Nitrophenol	ug/L	1.4 U	48.6	50.2	26.9	31.6	55	63	43-96	16		
&4-Methylphenol(m&p Cresol)	ug/L	51.5	48.6	50.2	71.8	81.6	42	60	26-82	13	40	
3,3'-Dichlorobenzidine	ug/L	1.1 U	48.6	50.2	2.8 1	2.3 I	6	5	61-113		40	J(M
-Nitroaniline	ug/L	1.3 U	48.6	50.2	29.5	32.0	61	64	56-104	8	40	J(IVI
,6-Dinitro-2-methylphenol	_	4.6 U	48.6	50.2	39.1	43.7	80	87	51-131	11	40	
	ug/L		48.6	50.2							40	
-Bromophenylphenyl ether	ug/L	1.7 U			30.9	33.7	64	67	51-105	9		
I-Chloro-3-methylphenol	ug/L	5.5 U	48.6	50.2	38.6	40.1	79 50	80	51-98	4	40	
-Chloroaniline	ug/L	1.4 U	48.6	50.2	25.8	30.2	53	60	50-92	16		
-Chlorophenylphenyl ether	ug/L	1.5 U	48.6	50.2	28.8	31.7	59	63	48-103	9		
-Nitroaniline	ug/L	0.19 U	48.6	50.2	34.7	37.7	71	75	61-108	8	40	
l-Nitrophenol	ug/L	2.0 U	48.6	50.2	16.0 I	16.7 I	33	33	10-61		40	
Acenaphthene	ug/L	0.36 U	48.6	50.2	28.9	31.7	59	63	45-102	10		
Acenaphthylene	ug/L	0.30 U	48.6	50.2	28.2	31.3	58	62	46-99	10		
Aniline	ug/L	0.95 U	48.6	50.2	24.3	28.6	50	57	33-88	16	40	
Anthracene	ug/L	0.22 U	48.6	50.2	30.0	33.1	62	66	56-106	10	40	
Benzidine	ug/L	0.88 U	48.6	50.2	0.85 U	0.87 U	0	0	10-110		40	J(M
Benzo(a)anthracene	ug/L	0.20 U	48.6	50.2	28.4	31.7	58	63	45-114	11	40	
Benzo(a)pyrene	ug/L	0.17 U	48.6	50.2	27.5	30.7	57	61	36-115	11	40	
Benzo(b)fluoranthene	ug/L	0.27 U	48.6	50.2	26.8	29.8	55	59	37-118	11	40	
Benzo(g,h,i)perylene	ug/L	0.17 U	48.6	50.2	26.4	29.8	54	59	32-120	12		
Benzo(k)fluoranthene	ug/L	0.18 U	48.6	50.2	26.9	30.3	55	60	35-119	12		
Benzyl alcohol	ug/L	1.3 U	48.6	50.2	25.1	29.2	51	58	35-78	15		
vis(2-	ug/L	1.6 U	48.6	50.2	25.9	29.5	53	59	43-94	13		
Chloroethoxy)methane	ug/L	1.0 0	70.0	50.2	20.0	20.0	55	33		13	70	
ois(2-Chloroethyl) ether	ug/L	0.34 U	48.6	50.2	22.3	26.9	46	54	34-90	19	40	
ois(2-Chloroisopropyl) ether	ug/L	1.8 U	48.6	50.2	20.6	24.4	42	49	26-96	17		
pis(2-Ethylhexyl)phthalate	ug/L	1.1 U	48.6	50.2	19.1	20.2	39	40	28-125	5		
Butylbenzylphthalate	ug/L	1.1 U	48.6	50.2	30.6	33.8	63	67	54-116	10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3366	774		3366775							
			MS	MSD								
		35538029001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Caprolactam	ug/L	0.40 U	48.6	50.2	11.9	12.9	24	26	10-36	8	40	N2
Carbazole	ug/L	1.1 U	48.6	50.2	33.0	36.2	68	72	58-109	9	40	
Chrysene	ug/L	0.20 U	48.6	50.2	28.6	32.0	59	64	44-115	11	40	
Di-n-butylphthalate	ug/L	1.1 U	48.6	50.2	30.5	34.6	62	68	57-113	12	40	
Di-n-octylphthalate	ug/L	0.93 U	48.6	50.2	19.1	20.2	39	40	28-124	5	40	
Dibenz(a,h)anthracene	ug/L	0.18 U	48.6	50.2	24.8	27.6	51	55	30-121	11	40	
Dibenzofuran	ug/L	1.5 U	48.6	50.2	28.7	31.7	59	63	47-101	10	40	
Diethylphthalate	ug/L	1.4 U	48.6	50.2	33.9	38.0	67	73	57-107	11	40	
Dimethylphthalate	ug/L	1.4 U	48.6	50.2	31.7	34.4	65	68	56-104	8	40	
Fluoranthene	ug/L	0.21 U	48.6	50.2	30.8	34.0	63	68	56-110	10	40	
Fluorene	ug/L	0.34 U	48.6	50.2	29.6	32.1	61	64	49-104	8	40	
Hexachloro-1,3-butadiene	ug/L	0.35 U	48.6	50.2	21.5	25.9	44	52	25-95	18	40	
Hexachlorobenzene	ug/L	0.29 U	48.6	50.2	28.5	32.3	59	64	44-111	12	40	
Hexachlorocyclopentadiene	ug/L	3.5 U	48.6	50.2	26.9	31.7	55	63	10-126	16	40	
Hexachloroethane	ug/L	1.4 U	48.6	50.2	20.8	24.9	43	50	21-87	18	40	
Indeno(1,2,3-cd)pyrene	ug/L	0.17 U	48.6	50.2	25.2	28.3	52	56	31-120	11	40	
Isophorone	ug/L	1.7 U	48.6	50.2	26.2	29.4	54	59	46-95	11	40	
N-Nitroso-di-n-propylamine	ug/L	0.33 U	48.6	50.2	25.0	28.4	52	57	44-92	13	40	
N-Nitrosodimethylamine	ug/L	0.20 U	48.6	50.2	18.1	20.7	37	41	18-64	13	40	
N-Nitrosodiphenylamine	ug/L	1.2 U	48.6	50.2	31.4	34.3	65	68	53-105	9	40	
Naphthalene	ug/L	0.39 U	48.6	50.2	23.9	27.6	49	55	37-90	14	40	
Nitrobenzene	ug/L	0.37 U	48.6	50.2	23.2	26.8	48	53	36-95	14	40	
Pentachlorophenol	ug/L	1.7 U	48.6	50.2	36.4	39.3	75	78	45-127	8	40	
Phenanthrene	ug/L	0.23 U	48.6	50.2	30.5	33.0	63	66	55-106	8	40	
Phenol	ug/L	25.3	48.6	50.2	33.3	37.1	16	23	10-44	11	40	
Pyrene	ug/L	0.21 U	48.6	50.2	30.4	33.5	62	67	54-114	10	40	
Pyridine	ug/L	1.1 U	48.6	50.2	16.2	18.9	33	38	10-57	15	40	
2,4,6-Tribromophenol (S)	%						74	78	10-126			
2-Fluorobiphenyl (S)	%						52	58	10-96			
2-Fluorophenol (S)	%						30	34	10-55			
Nitrobenzene-d5 (S)	%						46	53	10-94			
p-Terphenyl-d14 (S)	%						52	58	24-129			
Phenol-d5 (S)	%						24	26	10-35			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35538498

QC Batch: 620365

o-Terphenyl (S)

Date: 03/25/2020 02:22 PM

QC Batch Method: EPA 3510

QC Batch Method: EPA 3510
Associated Lab Samples: 35538498001

Analysis Method: FL-PRO

Analysis Description: FL-PRO Water Low Volume

METHOD BLANK: 3372064 Matrix: Water

%

Associated Lab Samples: 35538498001

Blank Reporting Limit MDL Parameter Units Result Analyzed Qualifiers Petroleum Range Organics mg/L 0.80 U 1.0 0.80 03/24/20 21:55 N-Pentatriacontane (S) % 100 42-159 03/24/20 21:55 o-Terphenyl (S) % 85 66-139 03/24/20 21:55

LABORATORY CONTROL SAMPLE: 3372065

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Petroleum Range Organics	mg/L	2.5	2.0	78	66-119	
N-Pentatriacontane (S)	%			90	42-159	
o-Terphenyl (S)	%			96	66-139	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3372066 3372067 MS MSD 35538378002 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Petroleum Range Organics mg/L 0.76 U 2.4 2.3 1.6 1.8 65 77 65-123 12 20 N-Pentatriacontane (S) % 67 98 42-159

85

74

66-139

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Safety Kleen Facility

Pace Project No.: 35538498

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/25/2020 02:22 PM

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(L1) Estimated Value. Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J_(V1) The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Safety Kleen Facility

Pace Project No.: 35538498

Date: 03/25/2020 02:22 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35538498001	MW-2R	EPA 3510	620365	FL-PRO	620456
35538498001	MW-2R	EPA 200.8	619475	EPA 200.8	619478
35538498002	MW-1	EPA 200.8	619475	EPA 200.8	619478
35538498003	MW-3	EPA 200.8	619475	EPA 200.8	619478
35538498001	MW-2R	EPA 3510	620149	EPA 8270 by SIM	620263
35538498001	MW-2R	EPA 3510	619415	EPA 8270	619509
35538498001	MW-2R	EPA 8260	619616		
35538498004	Trip Blank	EPA 8260	619616		

CHAIN-OF-CL

The Chain-of-Custody

:curately.

32
ð
31
- Φ

Section A
Required Client Information:

Section B

Required Project Information:

Se 3553849

Compan		Report To:	Keith	Morrison					Atte	ntion:		12	150	LA	0.1.5	:GA	Λ.	_	_	-	-		-			_	Page :	<u>:</u>	1_	10	1
Address		Copy To:	ı	Λ					Con	npany	Nam	e:		L AN	O DV.	130		_			_	-	\dashv								
Tampa,	FL 33607								Add	ress.		0.4	-	-	Not	43	1	. 100	de	1		NI.	(4)	110		0.0	Dan	21652	ory Age	0.00	HOUSE I
Email:	kmorrison@ectinc.com	Purchase O	attended to the						Pac	e Quo	te:				400	(VZ.		NC.	110	wa	4	lo le	VP	115			riegi	uldtu	лу Аде	icy	
Phone:	813-493-0383 Fax 913-189-4388 and Due Date:	Project Nam	of the state of th					0436	TE	- 12.0	St	ate /	Locatio	n	3 5 A 5																
request	d Due Date.	Project #:	1	VILLY.	-0100				Pac	e Prof	ile#:	93:	21 line	e 1	A									FL							
				1		_		_	-		_		_			Jill I	1000	COLL	Requ	este	d An	alysi	s Filte	red (Y/N)			37	1119		7.00
			left)	Ê												Z								-		1					
	MATRIX	CODE	0 S	CECOMP	COLLEC	CTED		Jz			F	rese	rvati	ves		X			18												
	Drinking Wa Water	iter DW WT	e code					l E				T	1			100			ate					\neg	\neg	1		Т			-
	Waste Wate Product	er WW	(see valid codes to left)	Ž	1			SAMPLE TEMP AT COLLECTION	П	- 1	- 1	1			1	摄		또 또	for Wate	Metals 200.8 Ag,Cd,Cr,Pb	Ϋ́ E		- 00	. 1	1		1 /	9			
	SAMPLE ID Soil/Soild Oil	SL OL) e e	ST ST	ART	F	ND T	00						1		Test	1	PA	ne fe	O'p	PAHs			-	-		1 2	اَغَ			
	One Character per box. Wipe	WP			1		T	₹	ERS		1		1	1	1			snlc	olun	Ag, C	olus	1SD		- 1	-	1		rine			
**	(A-Z, 0-9 / , -) Air Other	AR OT	MATRIX CODE					EME	CONTAINERS	ved	- 1		١.		1	Analyses	8260 Full List	8270 Full list plus PAHs	>	0.8	8270 Full list plus MS/MSD	FI. PRO MS/MSD	¥				3	Residual Chlorine (Y/N)			
Σ	Sample lds must be unique Tissue	TS	× L	4	1 1			15	N N	Unpreserved	4		1	Na2S2O3	Wethanol	al y	3	3	FL Pro Low	\$ 20	1 Q	0	Trip BLANK			1	1 7	ied			
ITEM			ATR		Sample		l	₽ E	# OF C	ngr o	HZSO4	豆	NaOH	32S	Wetha	15	09	70	Pre	etals	70 F	P. P.	В	- 1	1	1	1 7	Sign		2	
No.			≥ 0	DATE		DATE	_	-	-	_	ΣĮ	-	Ž	ž 2	≥ ō		8	82	正	ž	8 §	瓦	Ë	_1	1	L	۵	ř			
1	MW-2R		WT	3/4/20	11193	19/20	1140	M	3	3	2 1	3				П	x	Х	х	х	P	X		1	9 =			T			
2	MVV-1		WT	3/19/20	10443	14/2	1047	1	1		, 1					1				x											
3	MVV-3		WT	3/19/2	0 11003			1	I		i						-			×				3	1	T	П	t			
4	Trip Blank		WT	119/4)e-	-		2	1	1			Ħ	1	1							х	1	+	T	П				
5	QAIQC-MW-ZR				11193		2146	5	4	الم		İ	H	1		1	H			1	~			+	+	Ħ	H	-			
				1	111	•				1 4	-			+	+	1	\vdash	\dashv		-1	X	^	+	+	+	╄	H	-			
6			\vdash	-						_	_	1				1	L				L.,							L			
7								8		- 1	1				-1	1		1		1			1	1							
										_	1			-	1	1		-	-1	- 1	-	\vdash	+	+	+	\vdash	H	1	_		
8			\vdash	-		- 9		Ш	\dashv	-					4					_								-			
9	2																				- 1		1	1	1.		- 1	1			
10					-				П		1			1	1	1				1			+	+	1	\vdash	\dashv	1			
30			\vdash						\vdash	+	+		\vdash	+	+	1	\vdash		-	-			-1	+	1	1	-	1			
11			-	-						_	1			1	4					-				1	1			L			
12	MINISTER PORT OF THE PROPERTY													1				3	j	1		J.									
	ADDITIONAL COMMENTS		- 31	200	AFFILIATION		DATE		18000	IME				ACCER	PTED E	BY / A	FFILIA	TION				C	ATE		TIME		1897	S	AMPLE	CONDITION	s
	Bottle K	it Z	here	R.	_ P	ace	345	ورا	14	120	1	Ke	al	7	M	ev	rh	1	E	CT		3.	16-21	515	160	00	Th	J			
		Then	tt.	Ine	P mm/E	EST	319	20	201	43	4		か	P	0					-	_		9/2		143		11,6	-	4	N	4
					,						1		5)		d													1			1

SAMPLER NAME AND SIGNATU	RE	
PRINT Name of SAMPLER:	Kod	1

SIGNATURE OF SAMPLER: Keth F. Monscu

DATE Signed: 3-19-20-20

Received on Costody Sealed Cooler (YNI)

Document Name: Sample Condition Upon Receipt Form Document No.: F-FL-C-007 rev. 13

Document Revised: May 30, 2018 Issuing Authority: Pace Florida Quality Office

Sample Condition Upon Receipt Form (SCUR)

Project #

Project Manager: Client:

Project Manager Review:

PM: LAP

Due Date: 03/26/20

CLIENT: 37-ECTTAM

Date and Initials of person: Examining contents: 3/19/20 Label: MOS Deliver:_

			рн:
Thermometer Used: 1243	Date: 3/19/	Time: 16	130 Initials:_w/
State of Origin: FL	☐ For WV	projects, all containers verif	ied to ≤6 °C
Cooler #1 Temp. CULS (Visual) To.	_		Samples on ice, cooling process has begun
Cooler #2 Temp.°C(Visual)		· · · · · ·	Samples on ice, cooling process has begun
Cooler #3 Temp.°C(Visual)			Samples on ice, cooling process has begun
Cooler #4 Temp.°C(Visual)			Samples on ice, cooling process has begun
Cooler #5 Temp.°C(Visual)			Samples on ice, cooling process has begun
Cooler #6 Temp.°C(Visual)			Samples on ice, cooling process has begun
Courier: Fed Ex UPS US	SPS Client C	ommercial 🏻 Pace	Other
Shipping Method: ☐ First Overnight ☐ Prior	rity Overnight 🔲 Standar	d Overnight Ground	d □ International Priority
□ Other			
Billing: ☐ Recipient ☐ Sender	r ☐ Third Party	☐ Credit Card	☐ Unknown
Tracking #		1	
Custody Seal on Cooler/Box Present:	No Seals i	ntact: Yes No	Ice: Wat Blue Dry None
Packing Material: Bubble Wrap Bubble	Bags None DC	Other	
Samples shorted to lab (If Yes, complete)	Shorted Date:	Short	ed Time: Qty:
			
Chain of Custody Present	NYes □ No □N/A	Comments:	
Chain of Custody Fresent Chain of Custody Filled Out	NYes No N/A	- y	
Relinquished Signature & Sampler Name COC	Yes □ No □N/A		
Samples Arrived within Hold Time	NYes No N/A	14.15	0
Rush TAT requested on COC	□Yes □No □N/A		
Sufficient Volume	Nes □ No □N/A		
Correct Containers Used	NYes □ No □N/A		
Containers Intact	NYes □ No □N/A		
Sample Labels match COC (sample IDs & date/time of			
collection) All containers needing acid/base preservation have been	No □N/A		
checked.	⊠Yes □ No □N/A	Preservative	Preservation Information:
All Containers needing preservation are found to be in compliance with EPA recommendation:	NYes □ No □N/A	Lot #/Trace # Date:	fTime:
Exceptions: VOA, Coliform, TOC, O&G,	, Carbamates	Initials:	
Headspace in VOA Vials? (>6mm)	□Yes No □N/A		
Trip Blank Present:	Yes □ No □N/A		, I'
Client Notification/ Resolution: Person Contacted:		Data/Times	
1 CISON CONTACTED.		Date/Time:	
Comments/ Resolution (use back for additional	comments):		
Project Manager Review:			Page 32 of 32

Date:

Permit #:

IW-333

Permit Year:

2019

Reports must be mailed to:

Department of Regulatory and Economic Resources Environmental Resources Management 701 NW 1st Ct, Suite #700 Miami, FL 33136-3912

Facility Address: 8755 NW 95 ST

MEDLEY, Fl. 33178

SAFETY-KLEEN SYSTEMS, INC.

Contact Name:

Facility Name:

Mr. Larry Rodriguez

Instructions; Indicate which report is being provided by checking off the applicable "Source Type" box(es) from the listing below. In addition, indicate the period

Reporting Requirements: Source Type:RR-1	Reporting Frequency: Quarterly	Reporting Period:			
	and/or receipts of all hazardous waste, industrial waste, indus hauler, volume and final destination. Records shall also be n				
ampling Requirements:					
Source Type: SMP-1	Department Consumers Americally	Reporting Period: 6 15 21			
Description: Groundwater from the	Reporting Frequency: Annually	Reporting Period:			
•	omlum (Total), Lead (Total), Silver (Total)	ii ii			
Source Type: SMP-2	Reporting Frequency: Annually	Reporting Period: 611512			
*	nitoring well nearest the containment area stormwater discha-	rge point.			
Parameters: EPA Series 8260, EP	A Series 8270, TRPH				
verage Daily Waste Water Flov ewers:	Gallons Per Day (GPD				
hereby certify that, to the best of	ny knowledge, this document and all attachments a	are true, accurate and complete.			
Ou For	· · · ·	5/4/21			
		10			
uthorized Representative or Corporate C	officer	Report Completion Date			

May 4, 2021 210212-0100

Mr. Michael Montano, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources**Environmental Resources Management
701 NW 1st Court, Suite #700
Miami, Florida 33136-3912

Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2020/2021 (File # 10139) Annual Report of Groundwater Quality

Dear Mr. Montano:

On behalf of Safety-Kleen Systems, Inc. (SK), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for SK's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On April 12, 2021, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FLPRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed Figure 1.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in <u>Attachment B</u>.

The laboratory report indicated that concentrations for two of the four metals (i.e., silver and cadmium) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.60I micrograms per liter (μ g/L) at monitoring well MW-1, 0.69I μ g/L at monitoring well MW-2R, and 0.57I μ g/L at monitoring well MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are well below the groundwater cleanup target level (GCTL) of 100 μ g/L for chromium as specified in the permit. Lead was also detected at an estimated concentration of 0.82I μ g/L at monitoring well MW-3 which was between the laboratory MDL and the laboratory PQL and is well below the GCTL of 15 μ g/L as specified in the permit.

Mr. Michael Montano, Environmental Specialist Supervisor

Department of Regulatory and Economic Resources

May 4, 2021

Page 2

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

- 1. FLPRO concentrations were below the MDL; that is, none was detected.
- 2. No SVOC was detected (i.e., EPA Series 8270 parameters).
- 3. No VOC was detected (i.e., EPA Series 8260 parameters).

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of SK at (561) 523-4719. Thank you.

Sincerely,

ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.

Keith F. Morrison

There of Morrison

Project Manager

Gregory B. Page, P.E.

8-7- B. 7-

Senior Engineer III

SAFETY-KLEEN SYSTEMS, INC.

Jeff Curtis

EHS Manager, Florida Safety-Kleen Systems, Inc.

5610 Alpha Drive

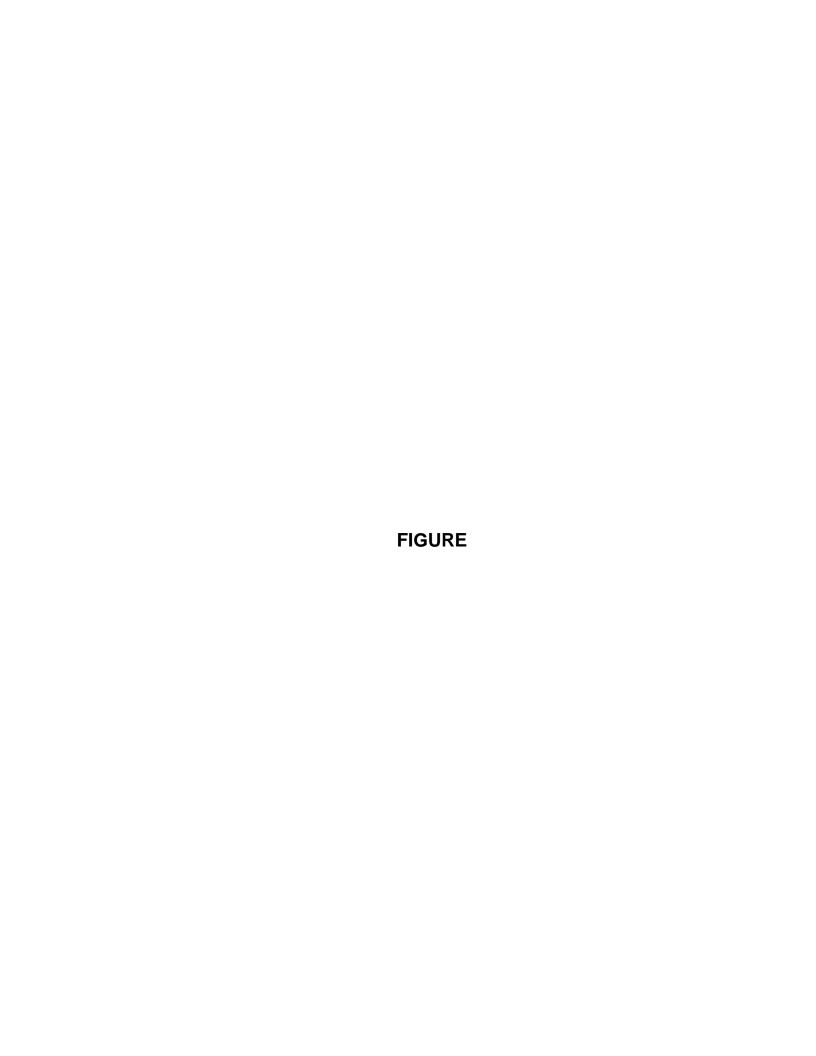
Boynton Beach, Florida 33426

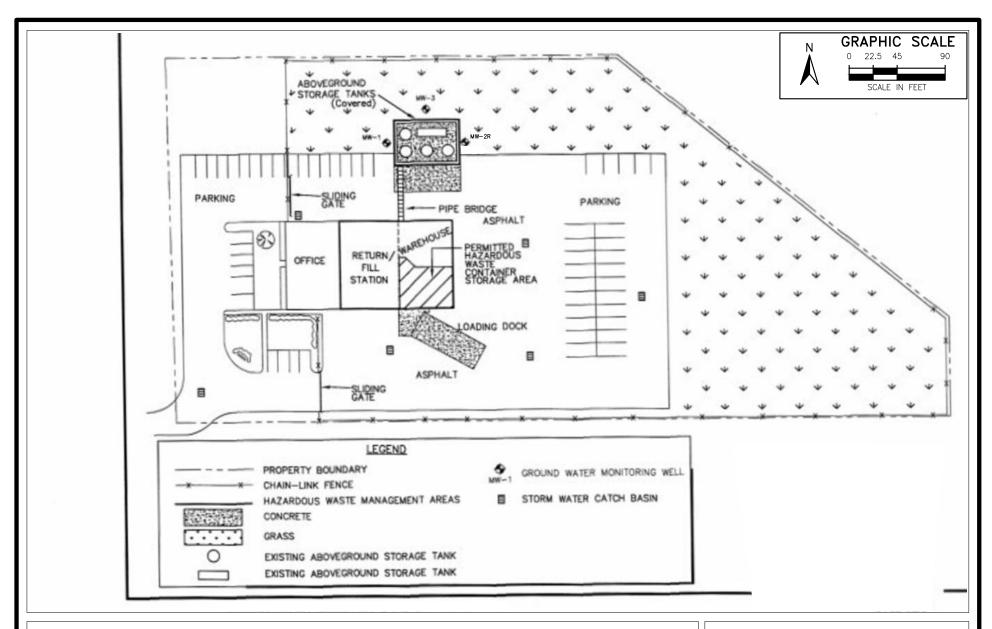
jeff.curtis@safety-kleen.com

Enclosures:

Figure 1

Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration Logs Attachment B - Laboratory Report


cc: Robert Schoepke – S-K (electronic only)


Greg Page – ECT (electronic only)

Keith Morrison – ECT (electronic only)

Facility 999 File #1760, % S-K Medley facility Branch General Manager

FIGURE 1.

FACILITY LAYOUT AND ACCESS CONTROL FEATURES SAFETY-KLEEN SYSTEMS, INC. FACILITY 8755 NW 95TH STREET, MEDLEY, FLORIDA

Source: ERM, 2012; ECT, 2020.

ATTACHMENT A

FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

SAFETY-KLEEN MEDLEY, FL. 210212-0400 P. 1 ECT-Restr Morrison/4/11/21+4/12/21 to Condo MFX 12.30 mab 12 4-12-21 40 Calibration check on motors 700 off to Safot 740 onsite soldy- 12 7308 No wind in with office enny wens must, MW-2R+MW3 pung MW-3 806 MW-2R with second parotative 831 pump sampling mw.3 X 832 semplong MW-2R QA/OC samples L855 also collected MW-1 with seward pump Lam Sampling mw-1 container The Drestigation Derived Waste (IDW), close yells, check not at 3 cloty 12 lagon medley office 1030 Off for more Th 1125 W.35 or PACE Labo, Dipped of Cooler at Est TAMPA officer Unload T-15, Calibration everyon metos 1030 complet Keuth J. Mour X= sample Time

Pace Container Order #796677

Company E	Order By :		Ship To:			Return To:			
Company Environmental Consulting &		ntal Consulting &	Company Environmental Consulting &			Company	Company Pace Analytical Oldsmar		
Contact Morrison, Keith		Keith	Contact Morrison, Keith			Contact	Palmer, Lori		
Email kmorrison@ectinc.com		@ectinc.com	Email kmorrison@ectinc.com		Email	lori.palmer@pacela	bs.com		
Address 1408 North Westshore Bllvd		Westshore Bllvd	Address 1408 North Westshore Bllvd		Address	ss 110 South Bayview Blvd.			
Address 2	Suite 115		Address 2 Suite 115			Address 2			
City Tampa			City Tampa			City	City Oldsmar		
State FL Zip 33607		Zip 33607	State FL. Zip 33607			State	State FL Zip 34677		
Phone	813-493-0	383	Phone 813-493-0383			Phone	813-855-1844		
Info	0							y magaza	
Projec	ct Name _s	Safety Kleen Facility	Due Date 04/05/2021	Profi	le 9321	ine 1	Quote		
Project N	Manager _F	Palmer, Lori Re	eturn Date	Carri	er Pace	Courier	Location FL		
- Trip BI	lanks —		Bottle Labels			- BC	ottles -	()	
	clude Trip E		Blank					9.1	
. [2]	oldan itip E	SIGNING.	Pre-Printed	Vo Sami	nle IDe		Individually Wrapp	ed	
ξ'n:			X Pre-Printed				Grouped By Samp		
ъ÷.	į						Oroupod by Carris	I DINIGUIX	
- coc c	Shipper ith Shipper Options		Sampling Ins Custody Sea Temp. Blank Coolers Syringes	ıl	5		. Extra Bubble Short Hold/Ru DI Water USDA Regula	ish Stickers iter(s)	
	e-Printed						1	or federals e w	
لــــا								Assistance of the state of the	
X Pre		Test	Container	Total	# of	Lot#	Notes	Authorites	
	WT	8260 Full List	3-40mL vial HCl	3	0	Lot #	Notes	Anthropens	
	WT WT		3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres	3 0 2	0	Lot#	Notes	Vallengen.	
ا ا	WT WT	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4	3 0 2 2	0 0 0	Lot#	Notes .	Anthonymous de la company de l	
	WT WT WT	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters Metals 200.8 Ag,Cd,Cr,Pb	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved +	3 0 2 2 3	0 0 0 0	Lot#	Notes	Various and services of the se	
	WT WT WT WT	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSD	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 mL AG unpres	3 2 2 3 4	0 0 0 0 0	Lot#	Notes .	Controllers	
	WT WT WT	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters Metals 200.8 Ag,Cd,Cr,Pb	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved +	3 0 2 2 3	0 0 0 0	Lot #	Notes	Controduces	
Haz mple receivinger. ce Analytica ce Analytica	WT WT WT WT WT WT all reserves all reserves	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSD FL PRO MS/MSD 8260 Trip Blank hipping Placard In Pare Mon-Fri 8:00am-6:00pm unlother right to return hazardous, to the right to charge for unused by	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 mL AG unpres 100ml glass amber H2SO4 2-40ml vials w/HCL + DI	3 2 2 3 4 4 2 2 2 made with	0 0 0 0 4 2 2	LAB	USE: Ship Date: Prepared By: Verified By:	04/05/2021	
Haz nple receivinger. se Analyticae Analytic	WT WT WT WT WT WT WT all reserves all reserves are net 30	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSD FL PRO MS/MSD 8260 Trip Blank hipping Placard In Pare Mon-Fri 8:00am-6:00pm unlette right to return hazardous, to the right to charge for unused by days.	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 mL AG unpres 100ml glass amber H2SO4 2-40ml vials w/HCL + DI lace: NO ess special arrangements are moxic, or radioactive samples to youttles, as well as cost associated	3 2 2 3 4 4 2 2 2 made with	0 0 0 0 4 2 2	LAB	USE: Ship Date ; Prepared By:	04/05/2021	
Haz nple receivinger. ee Analyticate Analy	WT WT WT WT WT WT WT all reserves all reserves are net 30	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSD FL PRO MS/MSD 8260 Trip Blank hipping Placard In Pare Mon-Fri 8:00am-6:00pm unlother right to return hazardous, to the right to charge for unused by	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 mL AG unpres 100ml glass amber H2SO4 2-40ml vials w/HCL + DI lace: NO ess special arrangements are moxic, or radioactive samples to youttles, as well as cost associated	3 2 2 3 4 4 2 2 2 made with	0 0 0 0 4 2 2	LAB	USE: Ship Date ; Prepared By:	04/05/2021	
Haz nple receivinger. se Analytica re Analytica re Analytica re Analytica re Analytica	WT WT WT WT WT WT WT all reserves all reserves are net 30	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSD FL PRO MS/MSD 8260 Trip Blank hipping Placard In Pare Mon-Fri 8:00am-6:00pm unlette right to return hazardous, to the right to charge for unused by days.	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 mL AG unpres 100ml glass amber H2SO4 2-40ml vials w/HCL + DI lace: NO ess special arrangements are moxic, or radioactive samples to youttles, as well as cost associated	3 2 2 3 4 4 2 2 2 made with	0 0 0 0 4 2 2	LAB lect rage/disposal.	USE: Ship Date ; Prepared By:	04/05/2021	
Haz nple receivinger. se Analytica re Analytica re Analytica re Analytica re Analytica	WT W	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSD FL PRO MS/MSD 8260 Trip Blank hipping Placard In Pare Mon-Fri 8:00am-6:00pm unlette right to return hazardous, to the right to charge for unused by days.	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 mL AG unpres 100ml glass amber H2SO4 2-40ml vials w/HCL + DI lace: NO ess special arrangements are moxic, or radioactive samples to youttles, as well as cost associated	3 2 2 3 4 4 2 2 2 made with	0 0 0 0 4 2 2	LAB lect rage/disposal.	USE: Ship Date : Prepared By: Verified By:	04/05/2021	
Haz nple receivinger. se Analytica re Analytica re Analytica re Analytica re Analytica	WT W	8260 Full List 8270 Full list plus PAHs FL Pro Low Volume for Waters Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs MS/MSD FL PRO MS/MSD 8260 Trip Blank hipping Placard In Pare Mon-Fri 8:00am-6:00pm unlette right to return hazardous, to the right to charge for unused by days.	3-40mL vial HCl 1L Amber Glass Unpreserved + 25 mL AG unpres 2-100 ml glass amber H2SO4 250mL plastic w/HNO3 2-1L Amber Glass Unpreserved + 250 mL AG unpres 100ml glass amber H2SO4 2-40ml vials w/HCL + DI lace: NO ess special arrangements are moxic, or radioactive samples to youttles, as well as cost associated	3 2 2 3 4 4 2 2 2 made with	0 0 0 0 4 2 2	LAB lect rage/disposal.	USE: Ship Date: Prepared By: Verified By:	04/05/2021	

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

TE .	SITE			
AME: Safety Kleen Systems, Inc.		W 95th Street, Medley, FL		
ELL NO: MW-1 SAMPLE ID:	MW-1-0412202		12/21	
AMETER (inches): 2 DIAMETER (inches):1/8-ID DEPTH ELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH nly fill out if applicable) = (11.2 fe	2 feet to 12 feet	STATIC DEPTH TO WATER (feet): 3.07 C FER) X WELL CAPACITY X 0.16 gallons	URGE PUMP TYPI R BAILER:	PP
QUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUM nly fill out if applicable) = gallo	•	X TUBING LENGTH) + FLOW (EX. Feet) +	gallons =	gallons
ITIAL PUMP OR TUBING PINAL PUMP OR TUBING DEPTH IN WELL (feet):	7.0 PURGING INITIATED AT:	PURGING ENDED AT: 940	TOTAL VOLUI PURGED (gall	
	pH ndard rits) TEMP. (°C) (circle uni pmhos/a or (µS/cr	its) OXYGEN TURBIDITY	COLOR (describe)	ODOR (describe) ORP
134 1.36 1.36 0.09 3.11 7	14 23,81 514	5 0.15 1.48		Slight -223
740 0.24 1.84 3.11 7	1323.80515	5 0.14 0.92		11 -228
/ELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1 UBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = URGING EQUIPMENT CODES; B = Bailer; BP = Bladder Pur	0.0014; 1/4" = 0.0026;	ersible Pump; PP = Peristaltic F	1/2" = 0.010; 5/	2" = 5.88 8" = 0.016 er (Specify)
TUDBLO		SAMPLING INITIATED AT: 94	SAMPLING ENDED AT	743
DEPTH IN WELL (feet): 7.0	E: HDPE TUBING Y N eplaced	FIELD-FILTERED: Y N Filtration Equipment Type: d) DUPLICATE: Y	N	SIZE: μm
AMDIE ID # MATERIAL DRESERVATIVE	PRESERVATION (including wet ice	e) INTENDED ANALYSIS FINAL AND/OR METHOD	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
CODE CONTAINERS CODE VOLUME USED USED 1 PE 250 ml HNO3+ Ice	ADDED IN FIELD (mL) NONE	PH Cd, Cr, Pb, Ag by EP, Method 200.8		303
REMARKS: Q = 0.13 gal x 60 sec = (1099pm		•	
AG = Amber Glass; CG = Clear Glass; S = Silicone; T = Teflon; O = Other (Sp	HDPE = High Density Polyeth	hylene; LDPE = Low Density Pol	/ethylene; PP =	Polypropylene;
AMPLING EQUIPMENT CODES: APP = After (Through) Peristaltii RFPP = Reverse Flow Peristaltii			tric Submersible Pu	ımp;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 1, 2014

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

WELL NO:	afety Kleen	Cystems	, Inc.					V 95 th	Street,	Medley,	FL			
	MW-2R			SAMPL	E ID: MW-2	2-041	22021			DATE: L	1-12	L-21		
						RGING								
WELL VOL	R (inches): 2		TER (inches)	:1/8-ID DE	ELL SCREEN PTH: 2 feet PTH - ST/	to 12 feet	TC		R (feet): 3			GE PUMP TY BAILER:	PE PP	
QUIPMEI	nt if applicable) NT VOLUME Point if applicable)	URGE: 1 EQ		11.4 DL. = PUMP VC	feet –	3. 49 BING CAPA	feet)		0.16 BING LEN	gall GTH) + FLO		ot = 1.2	7 ,	allons
200	JMP OR TUBIN	G	FINAL PI		gallons + (allons/foot X		PURGII	feet) +	in I	gallons :		ons
DEPTH IN	WELL (feet):	5.0	DEPTH II	JMP OR TUBIN N WELL (feet):	5,0	INITIA	SING ATED AT:	131	ENDED	AT: 85	7	PURGED (9	jallons):	7
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units µmhos/m or µS/cm	(cir	SOLVED KYGEN cle units) 19/L or saturation	TURBIDI (NTUs		COLOR (describe)	ODOR (describe)	ORE
848	1,36	1,36	0,09	3,64.	696	23.64	520	0	34	4,43		Cleer	Slogat	-193
851	0,24	1.6	1	3.64	7.01	23.67	520	0	29	4.64		1	OMERIC	- 190
854	0.24	1.84	1	3.64	7.03	23,69	520		21	4-83	2	L	1.	-194
SAMPLED Leth	BY (PRINT) / A	AFFILIATION:	B = Bailer;	BP = Bladder	SA	ESP = Elect	ric Submers		p; PF	= Peristaltion	Pump	o; O = Ot	ther (Specify)	
UMP OR		YDIN	ECT	Vaco	471	E(S):			SAMPLI	NG OS	15	SAMPLIN ENDED A		
IN HI Y	WELL (feet):	1	ECT	TUBING	471	nom		FIEL	D-FILTER	ED: Y		ENDED A	G 92. T: 92. R SIZE:)
	WELL (feet): CONTAMINATION	5,0		TUBING MATERIAL O	471	PE		FIEL	D-FILTER	ED: Y ment Type:		ENDED A	T: 720)
SAMPLE ID	CONTAMINATION AMPLE CONTAINED	ON: PUM ER SPECIFICAT	MP Y	MATERIAL (N SAM PRESERVAT	CODE: HD TUBING PLE PRESERV	PE Y N PATION (included)	replaced)	FIEL Filtra	D-FILTER ation Equip DUPLIC	ED: Y ment Type:	N Y	ENDED A	R SIZE:	μm E PUMP
SAMPLE ID	CONTAMINATION CONTAINERS CONTAINERS 2 1 3	S DON: PUMER SPECIFICATE MATERIAL CODE CG	MP Y	MATERIAL C	CODE: HD TUBING PLE PRESERV	PE Y N	replaced)	FIEL Filtra	D-FILTER ation Equip DUPLIC. INTEN AND. 826 Organi by EPA	ED: Y ment Type: ATE: DED ANALYS OR METHOD 60-Volatile c Compour Method 8:	Y Is Inds	FILTER N SAMPLING EQUIPMENT	R SIZE:	μm E PUMP / RATE · minute)
SAMPLE ID	CONTAMINATION AMPLE CONTAINED	ON: PUN ER SPECIFICAT MATERIAL CODE	MP Y C	SAM PRESERVAT USED HCI+ Icc	CODE: HD TUBING PLE PRESERV	PE Y N ATION (inclu- TOTAL VOL DED IN FIELD	replaced)	FIEL Filtra	D-FILTER ation Equip DUPLIC. INTEN AND. 826 Organi by EPA 8270-S Organic	ED: Y ment Type: ATE: DED ANALYS OR METHOD 60-Volatile c Compour Method 8: emi-Volatil c Compoun	Y IS Inds 260 e ids	SAMPLING EQUIPMENT CODE APP	R SIZE:	E PUMP / RATE minute)
SAMPLE ID	CONTAMINATION CONTAINERS CONTAINERS 2 1 3	S DON: PUNER SPECIFICATE MATERIAL CODE CG	VOLUME 40 ml	SAM PRESERVAT USED HCI+ Icc	CODE: HD TUBING PLE PRESERV TIVE ADD	PPE Y N VATION (inclui- TOTAL VOLDED IN FIELD NONE	replaced)	FIEL Filtra	D-FILTER ation Equip DUPLIC. INTEN AND. 826 Organi by EPA 8270-S Organi by EPA	ED: Y ment Type: ATE: DED ANALYS OR METHOD CO-Volatile C Compour Method 8: Emi-Volatile C Compoun Method 8: Pb, Ag by EF	Y Is Inds 260 e Ids 270	SAMPLING EQUIPMENT CODE	SAMPL FLOW (mL per 100	E PUMP / RATE · minute)
SAMPLE ID	CONTAMINATION CONTAINERS 21 3	STOON: PUNER SPECIFICATE MATERIAL CODE CG	VOLUME 40 ml	TUBÍNG MATERIAL (N) SAM PRESERVAT USED HCI+ Ici	CODE: HD TUBING PLE PRESERV TIVE ADD	PPE Y N ATION (included) TOTAL VOL DED IN FIELD NONE	replaced)	FIEL Filtra	D-FILTER ation Equip DUPLIC. INTEN AND. 826 Organi by EPA 8270-S Organic by EPA Cd, Cr, F Method :	ED: Y ment Type: ATE: DED ANALYS OR METHOD CO-Volatile C Compour Method 8: Emi-Volatile C Compoun Method 8: Pb, Ag by EF	Y Is Inds 260 e Inds 270 PA	SAMPLING EQUIPMENT CODE APP APP	SAMPL FLOW (mL per	E PUMP / RATE · minute)
SAMPLEID CODE	CONTAMINATION TO THE CONTAINERS 21 3 1 1 2	SOON: PUMER SPECIFICATE CODE CG AG	VOLUME 40 ml 250 ml 100 ml	TUBING MATERIAL (N) SAM PRESERVAT USED HCI+ Ic	CODE: HD TUBING PLE PRESERV TIVE ADD	PPE Y N ATION (included) TOTAL VOL DED IN FIELD NONE NONE	replaced)	FIEL Filtra	D-FILTER ation Equip DUPLIC. INTEN AND. 826 Organi by EPA 8270-S Organic by EPA Cd, Cr, F Method :	ED: Y ment Type: ATE: DED ANALYS OR METHOD 60-Volatile c Compour Method 8: emi-Volatile c Compoun Method 8: Pb, Ag by EF 200.8 s by FL-PF	Y Is Inds 260 e Inds 270 PA	SAMPLING EQUIPMENT CODE APP APP APP	SAMPL FLOW (mL per 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E PUMP / RATE · minute)
SAMPLE ID	CONTAMINATION TO THE CONTAINERS 21 3 1 1 2	SOON: PUNER SPECIFICATE CODE CG AG PE AG	VOLUME 40 ml 250 ml 100 ml	TUBING MATERIAL (N) SAM PRESERVAT USED HCI+ Ici	CODE: HD TUBING PLE PRESERV IVE ADD CCE	PPE Y N VATION (incluit TOTAL VOL DED IN FIELD NONE NONE NONE NONE NONE	replaced)	FIEL Filtra	D-FILTER ation Equip DUPLIC. INTEN AND. 826 Organi by EPA 8270-S Organic by EPA Cd, Cr, F Method :	ED: Y ment Type: ATE: DED ANALYS OR METHOD 60-Volatile c Compour Method 8: emi-Volatile c Compoun Method 8: Pb, Ag by EF 200.8 s by FL-PF	Y Is Inds 260 e Inds 270 PA	SAMPLING EQUIPMENT CODE APP APP APP	SAMPL FLOW (mL per 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E PUMP / RATE · minute)
SAMPLE ID CODE LOUIS REMARKS	CONTAMINATION MPLE CONTAINERS 2) 3 1 1 2	SOON: PUMER SPECIFICATE CODE CG AG	VOLUME 40 ml 250 ml 100 ml	TUBING MATERIAL (N) SAM PRESERVAT USED HCI+ Icc Ice HNO3 + I H2SO4 +	CODE: HD TUBING PLE PRESERV IVE ADD CCE HDPE =	PPE Y N PATION (included in Field in Fi	replaced)	FIELL Filtra	D-FILTER ation Equip DUPLIC INTEN AND, 826 Organi by EPA 8270-S Organic by EPA Cd, Cr, F Method 3	ED: Y ment Type: ATE: DED ANALYS OR METHOD 60-Volatile c Compour Method 8: emi-Volatile c Compoun Method 8: Pb, Ag by EF 200.8 s by FL-PF	Y IS Inds 260 e ids 270 PA	SAMPLING EQUIPMENT CODE APP APP APP APP	SAMPL FLOW (mL per 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E PUMP / RATE · minute)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: March 1, 2014

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

		Systems,	IIIO.	1			8755 NW	95" 5	u eet,				_
WELL NO:	MW-3			SAMPL	E ID: MW-	3-041	22021			DATE: 4	12 21		
14454.1							DATA						
WELL DIAMETER	(inches): 2	TUBING		- DE	ELL SCREEN EPTH: 2 fee			TIC DEP WATER (-	1 1 4 4	RGE PUMP T BAILER:	PE PI	5
	UME PURGE:	D 11 4141F	TER (inches) LUME = (TO	. 1/0					-		DAILLIN.	- ''	_
(only fill out	if applicable)		= (11 6	6 feet –	1 41	feet) X		.16				
	IT VOLUME P	URGE: 1 EQI				BING CAP				gallons/fo GTH) + FLOW CE			gallo
(only fill out	if applicable)			=	gallons + (a	allons/foot X			feet) +	gallons	= 0:	allons
	MP OR TUBIN			IMP OR TUBIN	IG.			o L	DUDGIN	,	TOTAL VOI		
DEPTH IN	WELL (feet):	7.0	DEPTH IN	WELL (feet):	7,0	INITIA	GING ATED AT:		ENDED	AT: 831	PURGED (g	allons): 2	0
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmbee/m or (µS/cm)	OXY (circle mg/	OLVED GEN units) Laturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)	
925	1.52	1,52	0,08	260	675	2202	493	1.26	5	2-21	Clear	None	-
828	0,24	1.76	1	2.60	6.75	22.04	494	1-2	4	215	1	1	4
831	0.24	2.0	1/	2.60	6.75	22.07	495	1,2	2	2-11	4	1	+
			-			-	-	110		671			+
													+
													+
WELL CAF	ACITY (Gallor	ns Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0				4" = 0.65		6" = 1.47;	12" = 5.88	
TUBING IN	ISIDE DÍA. CA	PACITY (Gal.	/Ft.): 1/8" = 0	0.0006; 3/10	6" = 0.0014;	1/4" = 0.	0026; 5/16	" = 0.004	1; 3/8	3" = 0.006; 1/2	2" = 0.010;	5/8" = 0.010	
TUBING IN	PACITY (Gallor ISIDE DIA. CA EQUIPMENT (PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0 3 = Bailer;	1" = 0.04; 0.0006; 3/10 BP = Bladder	6" = 0.0014; r Pump;	1/4" = 0. ESP = Elec	0026; 5/16 tric Submersib	" = 0.004	1; 3/8		2" = 0.010;		
PURGING SAMPLED	EQUIPMENT	PACITY (Gal., CODES: E	/Ft.): 1/8" = 0 3 = Bailer;	0.0006; 3/10 BP = Bladder	6" = 0.0014; r Pump; SA	1/4" = 0. ESP = Elec MPLING RE(S):	0026; 5/16 tric Submersib	" = 0.004 le Pump;	i; 3/8 ; PF	" = 0.006; 1/2 = Peristaltic Pur	2" = 0.010; mp; O = 0	5/8" = 0.010 ther (Specif	y)
PURGING SAMPLED	EQUIPMENT	PACITY (Gal.	/Ft.): 1/8" = 0 3 = Bailer;	0.0006; 3/10 BP = Bladder	6" = 0.0014; r Pump; SA	1/4" = 0. ESP = Elec MPLING RE(S):	0026; 5/16 tric Submersib	" = 0.004 le Pump;	SAMPLI	" = 0.006; 1/2 P = Peristaltic Pur	2" = 0.010; np; O = 0 SAMPLIN ENDED A	5/8" = 0.010 ther (Specif	y) S
PURGING SAMPLED PUMP OR	EQUIPMENT	PACITY (Gal., CODES: E	/Ft.): 1/8" = 0 3 = Bailer;	BP = Bladder SAMPLER(S	6" = 0.0014; r Pump; SA SIGNATUI	1/4" = 0. ESP = Elec MPLING RE(S):	0026; 5/16 tric Submersib	r = 0.004 le Pump;	SAMPLI INITIATE	" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N	2" = 0.010; np; O = 0 SAMPLIN ENDED A	5/8" = 0.010 ther (Specif	y) S
PUMP OR DEPTH IN	BY (PRINT) / TUBING	PACITY (Gal., CODES: E	/Ft.): 1/8" = 0 3 = Bailer;	0.0006; 3/10 BP = Bladder	6" = 0.0014; r Pump; SA SIGNATUI	1/4" = 0. ESP = Elec MPLING RE(S): OPE	0026; 5/16 tric Submersib	FIELD Filtratio	SAMPLI INITIATE	" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y Nement Type:	2" = 0.010; np; O = 0 SAMPLIN ENDED A	5/8" = 0.010 ther (Specif	y) S
PUMP OR DEPTH IN	BY (PRINT) / / TUBING WELL (feet):	PACITY (Gal., CODES: E	(Ft.): 1/8" = 0 3 = Bailer; MP Y	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N	6" = 0.0014; r Pump; SA SIGNATUI	## 1/4" = 0. ## ESP = Elect ## PLING RE(S): PE Y N PE	0026; 5/16 tric Submersib G DATA V replaced)	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC	" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N ment Type: ATE: Y	2" = 0.010; np; O = 0 SAMPLIN ENDED / FILTE	5/8" = 0.010 ther (Specification of Specification of Spec	y) _ μτ
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRINT) // TUBING WELL (feet): CONTAMINATI MPLE CONTAIN	PACITY (Gal., CODES: E AFFILIATION: MODULE ON: PUM ER SPECIFICAT MATERIAL	(Ft.): 1/8" = 0 3 = Bailer; MP Y	D.0006; 3/10 BP = Bladder SAMPLER(S) TUBING MATERIAL (N) SAM PRESERVA	6" = 0.0014; r Pump; SA SIGNATUI CODE: H[TUBING	1/4" = 0. ESP = Elec MPLING RE(S): DPE Y VATION (inclu	0026; 5/16 tric Submersib G DATA V replaced) Iding wet ice)	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC	" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y Nement Type:	2" = 0.010; np;	SAMI SAMI FLC	y) μr PLE Plow RA
PUMP OR DEPTH IN FIELD DEC	BY (PRIM) / TUBING WELL (feet): CONTAMINATI	PACITY (Gal., CODES: E AFFILIATION: TO MAKE THE PACITY OF	(Ft.): 1/8" = (3	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM	6" = 0.0014; r Pump; SA SIGNATUI CODE: HI TUBING	1/4" = 0. ESP = Elec MPLING RE(S): DPE Y VATION (included)	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) Fill	FIELD	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	2" = 0.010; np; O = 0 SAMPLIN ENDED FILTE N SAMPLING EQUIPMENT	SAMI FLC (mL r	y) μr PLE Pl W RA per mir
PUMP OR DEPTH IN FIELD DEC	BY (PRIM) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAIN # CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE	(Ft.): 1/8" = (3 = Bailer; MP Y ONLUME	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM PRESERVA USED	6" = 0.0014; r Pump; SA SIGNATUI CODE: HI TUBING	1/4" = 0. ESP = Elec MPLING RE(S): OPE Y VATION (inclu TOTAL VO DED IN FIELD	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) Fill	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y Moment Type: ATE: Y DED ANALYSIS /OR METHOD	PT = 0.010; np; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAMI SAMI FLC	y) LE Pow Report in
PUMP OR DEPTH IN FIELD DEC	BY (PRIM) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAIN # CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE	(Ft.): 1/8" = (3 = Bailer; MP Y ONLUME	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM PRESERVA USED	6" = 0.0014; r Pump; SA SIGNATUI CODE: HI TUBING	1/4" = 0. ESP = Elec MPLING RE(S): OPE Y VATION (inclu TOTAL VO DED IN FIELD	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) Fill	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	PT = 0.010; np; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAMI FLC (mL r	y) LE Pow Report in
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRIM) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAIN # CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE	(Ft.): 1/8" = (3 = Bailer; MP Y ONLUME	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM PRESERVA USED	6" = 0.0014; r Pump; SA SIGNATUI CODE: HI TUBING	1/4" = 0. ESP = Elec MPLING RE(S): OPE Y VATION (inclu TOTAL VO DED IN FIELD	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) Fill	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	PT = 0.010; np; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAMI FLC (mL r	μI PLE P W RA per min
PUMP OR DEPTH IN FIELD DEC	BY (PRIM) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAIN # CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE	(Ft.): 1/8" = (3 = Bailer; MP Y ONLUME	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM PRESERVA USED	6" = 0.0014; r Pump; SA SIGNATUI CODE: HI TUBING	1/4" = 0. ESP = Elec MPLING RE(S): OPE Y VATION (inclu TOTAL VO DED IN FIELD	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) Fill	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	PT = 0.010; np; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAMI FLC (mL r	μI PLE P W RA per min
PUMP OR DEPTH IN FIELD DEC	BY (PRIM) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAIN # CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE	(Ft.): 1/8" = (3 = Bailer; MP Y ONLUME	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM PRESERVA USED	6" = 0.0014; r Pump; SA SIGNATUI CODE: HI TUBING	1/4" = 0. ESP = Elec MPLING RE(S): OPE Y VATION (inclu TOTAL VO DED IN FIELD	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) Fill	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	PT = 0.010; np; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAMI FLC (mL r	μI PLE P W RA per min
PUMP OR DEPTH IN FIELD DEC	BY (PRIM) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAIN # CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE	(Ft.): 1/8" = (3 = Bailer; MP Y ONLUME	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM PRESERVA USED	6" = 0.0014; r Pump; SA SIGNATUI CODE: HI TUBING	1/4" = 0. ESP = Elec MPLING RE(S): OPE Y VATION (inclu TOTAL VO DED IN FIELD	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) Fill	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	PT = 0.010; np; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAMI FLC (mL r	y) LE Pow Report in
PUMP OR DEPTH IN FIELD DEC	BY (PRIM) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAIN # CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE	(Ft.): 1/8" = (3 = Bailer; MP Y ONLUME	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM PRESERVA USED	6" = 0.0014; r Pump; SA SIGNATUI CODE: HI TUBING	1/4" = 0. ESP = Elec MPLING RE(S): OPE Y VATION (inclu TOTAL VO DED IN FIELD	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) Fill	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	PT = 0.010; np; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAMI FLC (mL r	μr PLE P W RA per min
PUMP OR DEPTH IN FIELD DEC	BY (PRIM) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAIN # CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE	(Ft.): 1/8" = (3 = Bailer; MP Y ONLUME	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM PRESERVA USED	6" = 0.0014; r Pump; SA SIGNATUI CODE: HI TUBING	1/4" = 0. ESP = Elec MPLING RE(S): OPE Y VATION (inclu TOTAL VO DED IN FIELD	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) Fill	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	PT = 0.010; np; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAMI FLC (mL r	μr PLE P W RA per min
PUMP OR DEPTH IN FIELD DEC	EQUIPMENT (BY (PRINT) / TUBING WELL (feet): CONTAMINATI MPLE CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE	(Ft.): 1/8" = (3 = Bailer; MP Y ONLUME	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N SAM PRESERVA USED	6" = 0.0014; r Pump; SA SIGNATUF TUBING TUBING TIVE AD	1/4" = 0. ESP = Elec MPLING RE(S): PATION (inclu TOTAL VO) DED IN FIELD NONE	0026; 5/16 tric Submersib G DATA Verplaced) Iding wet ice) L Fill O (mL)	FIELD Filtratio	SAMPLI INITIATE -FILTER on Equip DUPLIC INTEN AND. Cd, Cr,	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	PT = 0.010; np; O = O SAMPLIN ENDED A FILTE N SAMPLING EQUIPMENT CODE	SAMI FLC (mL r	y) PLE F W R per mi
PUMP OR DEPTH IN FIELD DEC	BY (PRIME) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: TO NO. TO NO. PUM ER SPECIFICAT MATERIAL CODE PE	(Ft.): 1/8" = (Basiler; Basiler; Basile	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N) SAM PRESERVAT USED HNO3+ I	6" = 0.0014; r Pump; SA SIGNATUF TUBING APLE PRESER TIVE AD ICE HDPE =	TOTAL VOIDED IN FIELD	0026; 5/16 tric Submersib G DATA Verplaced) Iding wet ice) L Fill O (mL)	FIELD-Filtratio	SAMPLI INITIATI -FILTER on Equip DUPLIC INTEN AND Cd, Cr, Me	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 832 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb. Ag by EPA	SAMPLINE ENDED A SAMPLINE ENDED A SAMPLINE ENDED A APP	SAMI FLC (mL r	y) µ PLE F W R A Per mi
PUMP OR DEPTH IN FIELD DEC CODE REMARKS MATERIAL	BY (PRIME) / / TUBING WELL (feet): CONTAMINATI MPLE CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: PUM ON: PUM ER SPECIFICAT MATERIAL CODE PE O , 13 9 AG = Amber S = Silicone; CODES:	(Ft.): 1/8" = (Basiler; APP = After (Capped)	D.0006; 3/10 BP = Bladder SAMPLER(S TUBING MATERIAL (N) PRESERVA USED HNO3+ I	6" = 0.0014; r Pump; SA SIGNATUI TUBING TIPLE PRESER TIVE AD Ice Code: H[TUBING TUBING TIPLE PRESER TIVE AD Ice Code: H[TUBING	1/4" = 0. ESP = Elec MPLING RE(S): VATION (Inclu TOTAL VO DED IN FIELD NONE High Densi B = Ba	0026; 5/16 tric Submersib G DATA Vereplaced) Iding wet ice) L Fill O (mL) ity Polyethylen ity Polyethylen	FIELD-Filtration	SAMPLI INITIATI -FILTER on Equip DUPLIC INTEN AND Cd, Cr, Me	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 332 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb, Ag by EPA Ithod 200.8 W Density Polyet	PT = 0.010; np; O = 0 SAMPLINE ENDED A FILTE N SAMPLING EQUIPMENT CODE APP hylene; PP	SAMI SIZE: SAMI FILC (mL p	μι μ
PUMP OR DEPTH IN FIELD DEC CODE REMARKS MATERIAL SAMPLING	BY (PRINT) / TUBING WELL (feet): CONTAMINATI MPLE CONTAINERS 1	PACITY (Gal., CODES: E AFFILIATION: MOUNTS 7-0 ON: PUM ER SPECIFICAT MATERIAL CODE PE AG = Amber S = Silicone; CODES: MOUNTS	(Ft.): 1/8" = (Basiler; Basiler; Basile	D.0006; 3/10 BP = Bladder SAMPLERS TUBING MATERIAL (N) PRESERVAT USED HNO3+ I	6" = 0.0014; r Pump; SA SIGNATUF TUBING TIPLE PRESER TIVE AD Ice Copecify) staltic Pump;	1/4" = 0. ESP = Elec MPLING RE(S): VATION (inclu TOTAL VO DED IN FIELD NONE High Densi B = Ba SM = Str	0026; 5/16 tric Submersib G DATA Vreplaced) Iding wet ice) L FII O (mL) ity Polyethylen ity Polyethylen iter; BP = raw Method (Times)	FIELD-Filtration NAL DH 22 Bladder I ubing Gra	s AMPLI INITIATI -FILTER on Equip DUPLIC INTEN AND Cd, Cr, Me	I" = 0.006; 1/2 P = Peristaltic Pur NG ED AT: 332 ED: Y N Imment Type: ATE: Y DED ANALYSIS /OR METHOD Pb, Ag by EPA Ithod 200.8 W Density Polyet	P" = 0.010; np; O = O SAMPLINE ENDED A FILTE N SAMPLINE EQUIPMENT CODE APP	SAMI SIZE: SAMI FILC (mL p	μι μ

62-160.800 F.A.C.

Revision Date: March 1, 2014

Sostety-Kleen Medley - Annual Groundwater Montoring Event-per Industrial Waste Permit

Instrument Calibration and Field Verification Log

Model: SmarTroll /656 MPS Identification: #4 5N#

Letter F Mocosom Read Fundament Date: (mm/d) Model: SmarTroll / 556 MPS Instrument Make: InSitu / YSI Date: (mm/dd/yy) 04 12 21 Sampler's Name / Signature:

	4		-					
icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal	icv, ccv, cal
1090								
1								
Rass / Fail	Rass/ Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail
Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No
Ken								
991	990							
Rass / Fail		Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail
		Yes / No	Yes / No					Yes / No
142	1CP	51						
20.5 °C	23 °C	°C	°C	°C	°C	°C	°C	°C
)						
Pass / Fail	-	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail
Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No
KB	10n							
205°C	23 °C	°C	°C	°C	°C	°C	°C	°C
, ,	234							
Pass / Fail	Pass/Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail	Pass / Fail
Yes /No	Yes / No	Yes / No	Yes / No					Yes / No
KAM	Ken							
	Yes/No 1999 991 Rass/Fail Yes/No 20.5°C 899(99.4%) Pass/Fail Yes/No 20.5°C 736 Rass/Fail Yes/No	1040 1600	1040 1600	1090 1600	100	100	1	1

Calibration Solutions	Manufacturer	Lot Number	Expiration Date
pH 4.01 S.U.	Exaxol	2007286	0212022
pH 7.00 S.U.	Exaxol	190715A	0413112022
pH 10.00 S.U.	Exaxol	2007297	6212022
Conductivity 500 µS/cm Cal	Exaxol	201728B	6412021
Conductivity 1000 μS/cm Ver	Exaxol	20072EA	0812021
ORP: mV@°C per mfr. specs.	231 025°C	206728E	00/2021

Cal = Calibration Notes

This form meets or exceeds the requirements of FDEP Form FD 9000-8

ICV = Initial Calibration Verification

CCV = Continued Calibration Verification

Schety-Kleen Medley Annual Grandaparter Monitoring Event pr 3 DEP-SOP-001/01 FT 1000 General Field Testing and Measurement Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS MACH 21006 **INSTRUMENT (MAKE/MODEL#)** INSTRUMENT # 5N# 1611000 53 546 PARAMETER: [check only one] TEMPERATURE ☐ CONDUCTIVITY ☐ SALINITY ☐ pH ☐ ORP **TURBIDITY**

☐ OTHER

STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased) Standard A 10 NTUS Cata 2860801 Later A 8219

Standard B 2 U NNS Cott 268 4801

☐ RESIDUAL CI

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER
2021	642	A	10 MUS	10.1	\$10%	Vas	INT.	Kerry
1	644	B	20 m	20-1	19%	Vas	INT	KAN
	646	C	100 "	99.6	26.5%	YOU	DUET	ICA
	1612	A	10 11	10,2	707	Yes	Cont	Kory
1	1614	B	20 0	19.8	+ 8%	Jes	Corrt	1 Pm
-	1616	C	100 2	98,1	26.5%	Yes	Cont	Kan
-								i
-	\vdash							
		-						
				-			,	
		-						
			-					
		-						
	-							
								•

ATTACHMENT B LABORATORY REPORT

April 19, 2021

Keith Morrison Environmental Consulting & Techlology 1408 North Westshore Bllvd Suite 115 Tampa, FL 33607

RE: Project: Safety Kleen Facility

Pace Project No.: 35625214

Dear Keith Morrison:

Enclosed are the analytical results for sample(s) received by the laboratory on April 12, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

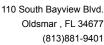
· Pace Analytical Services - Ormond Beach

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Palmer

lori.palmer@pacelabs.com


SA Palmer

813-855-1844 Project Manager

Enclosures

cc: A/P, Environmental Consulting & Technology

CERTIFICATIONS

Project: Safety Kleen Facility

Pace Project No.: 35625214

Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174

Alaska DEC- CS/UST/LUST Alabama Certification #: 41320 Arizona Certification# AZ0819

Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007

Maryland Certification: #346 Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236

Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710 North Dakota Certification #: R-216

Ohio DEP 87780

Oklahoma Certification #: D9947
Pennsylvania Certification #: 68-00547
Puerto Rico Certification #: FL01264
South Carolina Certification: #96042001
Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165

West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

SAMPLE SUMMARY

Project: Safety Kleen Facility

Pace Project No.: 35625214

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
35625214001	MW-2R-04122021	Water	04/12/21 09:20	04/12/21 15:35	
35625214002	MW-1-04122021	Water	04/12/21 09:43	04/12/21 15:35	
35625214003	MW-3-04122021	Water	04/12/21 08:34	04/12/21 15:35	
35625214004	Trip Blank	Water	04/12/21 08:34	04/12/21 15:35	

SAMPLE ANALYTE COUNT

Project: Safety Kleen Facility

Pace Project No.: 35625214

Lab ID	Sample ID	Method	Analysts	Analytes Reported
35625214001	MW-2R-04122021	FL-PRO	BMC	3
		EPA 200.8	SLG	4
		EPA 8270 by SIM	RJR	20
		EPA 8270	TWB	82
		EPA 8260	AST	57
35625214002	MW-1-04122021	EPA 200.8	SLG	4
35625214003	MW-3-04122021	EPA 200.8	SLG	4
35625214004	Trip Blank	EPA 8260	AST	57

PASI-O = Pace Analytical Services - Ormond Beach

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

Sample: MW-2R-04122021	Lab ID:	35625214001	Collecte	d: 04/12/2	1 09:20	Received: 04/	12/21 15:35 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
FL-PRO Water, Low Volume	Analytical	Method: FL-PR	O Prepara	tion Metho	d: EPA 3	3510			
	Pace Ana	lytical Services	- Ormond E	Beach					
Petroleum Range Organics	0.75 U	mg/L	0.94	0.75	1	04/13/21 16:56	04/14/21 01:16		
Surrogates	0.70	mg/L	0.04	0.70	•	0-110/21 10:00	04/14/21 01:10		
o-Terphenyl (S)	73	%	66-139		1	04/13/21 16:56	04/14/21 01:16	84-15-1	
N-Pentatriacontane (S)	85	%	42-159		1	04/13/21 16:56	04/14/21 01:16	630-07-09	
200.8 MET ICPMS	Analytical	Method: EPA 2	00 8 Prens	ration Meth	od: ED	A 200 8			
200.0 MET ICFMS	•	lytical Services	•		10u. Li 7	A 200.0			
Cadmium	0.050 U	ug/L	0.10	0.050	1		04/16/21 11:41		
Chromium	0.69	ug/L	1.0	0.50	1		04/16/21 11:41		
Lead	0.22 U 0.21 U	ug/L	1.0	0.22	1		04/16/21 11:41		
Silver	0.21 0	ug/L	0.50	0.21	1	04/14/21 07:44	04/16/21 11:41	7440-22-4	
8270 MSSV PAHLV by SIM	Analytical	Method: EPA 8	270 by SIM	Preparation	on Meth	od: EPA 3510			
	Pace Ana	lytical Services	- Ormond E	Beach					
Acenaphthene	0.040 U	ug/L	0.50	0.040	1	04/13/21 08:30	04/13/21 18:42	83-32-9	
Acenaphthylene	0.030 U	ug/L	0.50	0.030	1		04/13/21 18:42		
Anthracene	0.043 U	ug/L	0.50	0.043	1		04/13/21 18:42		
Benzo(a)anthracene	0.055 U	ug/L	0.10	0.055	1		04/13/21 18:42		
Benzo(a)pyrene	0.12 U	ug/L	0.20	0.12	1		04/13/21 18:42		
Benzo(b)fluoranthene	0.027 U	ug/L	0.10	0.027	1		04/13/21 18:42		
Benzo(g,h,i)perylene	0.15 U	ug/L	0.50	0.15	1		04/13/21 18:42		
Benzo(k)fluoranthene	0.16 U	ug/L	0.50	0.16	1		04/13/21 18:42		
Chrysene	0.026 U	ug/L	0.50	0.026	1	04/13/21 08:30	04/13/21 18:42	218-01-9	
Dibenz(a,h)anthracene	0.13 U	ug/L	0.15	0.13	1	04/13/21 08:30	04/13/21 18:42	53-70-3	
Fluoranthene	0.018 U	ug/L	0.50	0.018	1	04/13/21 08:30	04/13/21 18:42	206-44-0	
Fluorene	0.088 U	ug/L	0.50	0.088	1	04/13/21 08:30	04/13/21 18:42	86-73-7	
Indeno(1,2,3-cd)pyrene	0.12 U	ug/L	0.15	0.12	1	04/13/21 08:30	04/13/21 18:42	193-39-5	
1-Methylnaphthalene	0.19 U	ug/L	2.0	0.19	1	04/13/21 08:30	04/13/21 18:42	90-12-0	
2-Methylnaphthalene	0.68 U	ug/L	2.0	0.68	1	04/13/21 08:30	04/13/21 18:42	91-57-6	
Naphthalene	0.29 U	ug/L	2.0	0.29	1	04/13/21 08:30	04/13/21 18:42	91-20-3	
Phenanthrene	0.16 U	ug/L	0.50	0.16	1		04/13/21 18:42		
Pyrene	0.032 U	ug/L	0.50	0.032	1	04/13/21 08:30	04/13/21 18:42	129-00-0	
Surrogates		0.4							
2-Fluorobiphenyl (S)	53	%	32-100		1		04/13/21 18:42		
p-Terphenyl-d14 (S)	69	%	48-112		1	04/13/21 08:30	04/13/21 18:42	1/18-51-0	
8270 MSSV Semivolatile Organic	Analytical	Method: EPA 82	270 Prepa	ration Meth	od: EPA	3510			
_	Pace Ana	lytical Services	- Ormond E	Beach					
Acenaphthene	0.34 U	ug/L	4.8	0.34	1	04/12/21 21:53	04/14/21 15:54	83-32-9	
Acenaphthylene	0.29 U	ug/L	4.8	0.29	1		04/14/21 15:54		
Aniline	0.90 U	ug/L	4.8	0.20	1		04/14/21 15:54		
Anthracene	0.21 U	ug/L	4.8	0.21	1		04/14/21 15:54		
Benzidine	0.83 U	ug/L	23.8	0.83	1		04/14/21 15:54		
Benzo(a)anthracene	0.19 U	ug/L	4.8	0.19	1		04/14/21 15:54		
Benzo(a)pyrene	0.16 U	ug/L	0.95	0.16	1	04/12/21 21:53			

ANALYTICAL RESULTS

Collected: 04/12/21 09:20 Received: 04/12/21 15:35 Matrix: Water

Project: Safety Kleen Facility

Pace Project No.: 35625214 Sample: MW-2R-04122021

Date: 04/19/2021 02:14 PM

Lab ID: 35625214001

Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Semivolatile Organic	Analytical	Method: EPA	A 8270 Prepa	ration Metho	od: EP/	A 3510			
	Pace Anal	ytical Service	es - Ormond B	Beach					
Benzo(b)fluoranthene	0.26 U	ug/L	1.9	0.26	1	04/12/21 21:53	04/14/21 15:54	205-99-2	
Benzo(g,h,i)perylene	0.16 U	ug/L	4.8	0.16	1	04/12/21 21:53	04/14/21 15:54		
Benzo(k)fluoranthene	0.17 U	ug/L	3.8	0.17	1	04/12/21 21:53	04/14/21 15:54		
Benzyl alcohol	1.2 U	ug/L	4.8	1.2	1	04/12/21 21:53	04/14/21 15:54	100-51-6	
4-Bromophenylphenyl ether	1.6 U	ug/L	4.8	1.6	1	04/12/21 21:53	04/14/21 15:54		
Butylbenzylphthalate	1.1 U	ug/L	4.8	1.1	1	04/12/21 21:53	04/14/21 15:54		
Caprolactam	0.38 U	ug/L	4.8	0.38	1	04/12/21 21:53	04/14/21 15:54		N2
Carbazole	1.1 U	ug/L	4.8	1.1	1	04/12/21 21:53	04/14/21 15:54		
4-Chloro-3-methylphenol	5.2 U	ug/L	19.1	5.2	1	04/12/21 21:53	04/14/21 15:54		
4-Chloroaniline	1.3 U	ug/L	4.8	1.3	1	04/12/21 21:53	04/14/21 15:54		
bis(2-Chloroethoxy)methane	1.5 U	ug/L	4.8	1.5	1	04/12/21 21:53	04/14/21 15:54		
bis(2-Chloroethyl) ether	0.32 U	ug/L	3.8	0.32	1	04/12/21 21:53	04/14/21 15:54		
bis(2-Chloroisopropyl) ether	1.7 U	ug/L	5.7	1.7	1	04/12/21 21:53	04/14/21 15:54		
2-Chloronaphthalene	0.32 U	ug/L	4.8	0.32	1	04/12/21 21:53	04/14/21 15:54		
2-Chlorophenol	1.3 U	ug/L	4.8	1.3	1	04/12/21 21:53	04/14/21 15:54		
4-Chlorophenylphenyl ether	1.4 U	ug/L	4.8	1.4	1	04/12/21 21:53	04/14/21 15:54		
Chrysene	0.19 U	ug/L	4.8	0.19	1	04/12/21 21:53	04/14/21 15:54		
Dibenz(a,h)anthracene	0.17 U	ug/L	1.9	0.17	1	04/12/21 21:53	04/14/21 15:54		
Dibenzofuran	1.4 U	ug/L	4.8	1.4	1	04/12/21 21:53	04/14/21 15:54		
1,2-Dichlorobenzene	1.5 U	ug/L	4.8	1.5	1	04/12/21 21:53	04/14/21 15:54		
1,3-Dichlorobenzene	1.4 U	ug/L	4.8	1.4	1	04/12/21 21:53	04/14/21 15:54		
1,4-Dichlorobenzene	1.5 U	ug/L	4.8	1.5	1	04/12/21 21:53	04/14/21 15:54		
3,3'-Dichlorobenzidine	1.0 U	ug/L	9.5	1.0	1	04/12/21 21:53	04/14/21 15:54		
2,4-Dichlorophenol	0.32 U	ug/L	1.9	0.32	1	04/12/21 21:53	04/14/21 15:54		
Diethylphthalate	1.3 U	ug/L	4.8	1.3	1	04/12/21 21:53	04/14/21 15:54		
2,4-Dimethylphenol	0.98 U	ug/L	4.8	0.98	1	04/12/21 21:53	04/14/21 15:54		
Dimethylphthalate	1.4 U	ug/L	4.8	1.4	1	04/12/21 21:53	04/14/21 15:54		
Di-n-butylphthalate	1.4 U	ug/L	4.8	1.0	1	04/12/21 21:53	04/14/21 15:54		
4,6-Dinitro-2-methylphenol	4.4 U	ug/L	19.1	4.4	1	04/12/21 21:53	04/14/21 15:54		
1,2-Dinitrobenzene	1.8 U	ug/L	5.7	1.8	1	04/12/21 21:53	04/14/21 15:54		
1,3-Dinitrobenzene	0.26 U	ug/L	7.6	0.26	1	04/12/21 21:53	04/14/21 15:54		
2,4-Dinitrophenol	2.5 U	ug/L	19.1	2.5	1	04/12/21 21:53	04/14/21 15:54		
2,4-Dinitrophenol	0.26 U	ug/L ug/L	3.8	0.26	1	04/12/21 21:53	04/14/21 15:54		
2.6-Dinitrotoluene	0.27 U	ug/L	1.9	0.20	1	04/12/21 21:53	04/14/21 15:54		
Di-n-octylphthalate	0.27 U	ug/L ug/L	4.8	0.27	1	04/12/21 21:53	04/14/21 15:54		
• •	1.3 U	-	4.8	1.3	1	04/12/21 21:53	04/14/21 15:54		
1,2-Diphenylhydrazine		ug/L			=				
bis(2-Ethylhexyl)phthalate	1.1 U 0.20 U	ug/L	4.8 4.8	1.1	1 1		04/14/21 15:54 04/14/21 15:54		
Fluoranthene Fluorene	0.20 U	ug/L		0.20 0.32	1		04/14/21 15:54		
		ug/L	4.8		1				
Hexachloro-1,3-butadiene	0.33 U	ug/L	1.9	0.33			04/14/21 15:54		
Hexachlorobenzene	0.28 U	ug/L	0.95	0.28	1		04/14/21 15:54		
Hexachlorocyclopentadiene	3.3 U	ug/L	10.5	3.3	1		04/14/21 15:54		
Hexachloroethane	1.3 U	ug/L	4.8	1.3	1		04/14/21 15:54		
Indeno(1,2,3-cd)pyrene	0.16 U	ug/L	1.9	0.16	1		04/14/21 15:54		
Isophorone	1.6 U	ug/L	4.8	1.6	1	04/12/21 21:53	04/14/21 15:54	78-59-1	

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

Collected: 04/12/21 09:20 Sample: MW-2R-04122021 Lab ID: 35625214001 Received: 04/12/21 15:35 Matrix: Water PQL DF Results Units MDI Prepared CAS No. **Parameters** Analyzed Qual Analytical Method: EPA 8270 Preparation Method: EPA 3510 8270 MSSV Semivolatile Organic Pace Analytical Services - Ormond Beach 1-Methylnaphthalene 0.34 U ug/L 4.8 0.34 1 04/12/21 21:53 04/14/21 15:54 90-12-0 2-Methylnaphthalene 0.27 U ug/L 4.8 0.27 1 04/12/21 21:53 04/14/21 15:54 91-57-6 2-Methylphenol(o-Cresol) 0.29 U ug/L 4.8 0.29 1 04/12/21 21:53 04/14/21 15:54 95-48-7 04/12/21 21:53 04/14/21 15:54 3&4-Methylphenol(m&p Cresol) 0.21 U ug/L 9.5 0.21 1 Naphthalene 0.37 U ug/L 4 8 0.37 04/12/21 21:53 04/14/21 15:54 91-20-3 1 2-Nitroaniline 1.2 U ug/L 4.8 1.2 1 04/12/21 21:53 04/14/21 15:54 88-74-4 04/14/21 15:54 99-09-2 3-Nitroaniline 1.2 U ug/L 4.8 1.2 1 04/12/21 21:53 0.18 4-Nitroaniline 0.18 U ug/L 3.8 1 04/12/21 21:53 04/14/21 15:54 100-01-6 98-95-3 0.35 Nitrobenzene 0.35 U ug/L 38 1 04/12/21 21:53 04/14/21 15:54 2-Nitrophenol 1.3 U ug/L 4.8 1.3 1 04/12/21 21:53 04/14/21 15:54 88-75-5 4-Nitrophenol 0.91 U ug/L 19.1 0.91 04/12/21 21:53 04/14/21 15:54 100-02-7 1 0.19 N-Nitrosodimethylamine 0.19 U ug/L 1.9 04/12/21 21:53 04/14/21 15:54 62-75-9 N-Nitroso-di-n-propylamine 0.31 U 0.31 ug/L 3.8 04/12/21 21:53 04/14/21 15:54 621-64-7 N-Nitrosodiphenylamine 1.2 U ug/L 48 12 04/12/21 21:53 04/14/21 15:54 86-30-6 Pentachlorophenol 1.6 U ug/L 19.1 1.6 1 04/12/21 21:53 04/14/21 15:54 87-86-5 Phenanthrene 0.22 U 0.22 04/12/21 21:53 04/14/21 15:54 85-01-8 ug/L 48 1 Phenol 0.60 U ug/L 4.8 0.60 04/12/21 21:53 04/14/21 15:54 108-95-2 1 04/12/21 21:53 04/14/21 15:54 129-00-0 0.20 U 0.20 Pyrene 4.8 1 ug/L Pyridine 1.1 U 48 04/12/21 21:53 04/14/21 15:54 110-86-1 ug/L 11 1 2,3,4,6-Tetrachlorophenol 1.0 U ug/L 4.8 1.0 1 04/12/21 21:53 04/14/21 15:54 58-90-2 2,3,5,6-Tetrachlorophenol 1.8 U ug/L 8.6 1.8 1 04/12/21 21:53 04/14/21 15:54 935-95-5 N2 1,2,4-Trichlorobenzene 1.4 U 4.8 1.4 1 04/12/21 21:53 04/14/21 15:54 120-82-1 ug/L 2,4,5-Trichlorophenol 0.22 U ug/L 3.8 0.22 1 04/12/21 21:53 04/14/21 15:54 95-95-4 2,4,6-Trichlorophenol 0.34 U 0.34 04/12/21 21:53 04/14/21 15:54 88-06-2 ug/L 19 1 Surrogates Nitrobenzene-d5 (S) 40 % 10-188 1 04/12/21 21:53 04/14/21 15:54 4165-60-0 2-Fluorobiphenyl (S) 47 % 22-101 1 04/12/21 21:53 04/14/21 15:54 321-60-8 p-Terphenyl-d14 (S) 58 % 48-124 1 04/12/21 21:53 04/14/21 15:54 1718-51-0 Phenol-d5 (S) 16 % 10-48 1 04/12/21 21:53 04/14/21 15:54 4165-62-2 22 % 2-Fluorophenol (S) 10-57 1 04/12/21 21:53 04/14/21 15:54 367-12-4 2,4,6-Tribromophenol (S) 64 % 28-114 04/12/21 21:53 04/14/21 15:54 118-79-6 Analytical Method: EPA 8260 8260 MSV Pace Analytical Services - Ormond Beach 5.3 5.3 U 25.0 Acetone ug/L 1 04/14/21 03:19 67-64-1 Acetonitrile 5.8 U ug/L 50.0 5.8 1 04/14/21 03:19 75-05-8 0.30 Benzene 0.30 U ug/L 1.0 1 04/14/21 03:19 71-43-2 Bromochloromethane 0.37 U 1.0 0.37 04/14/21 03:19 74-97-5 ug/L 1 Bromodichloromethane 0.19 U ug/L 10 0.19 1 04/14/21 03:19 75-27-4 Bromoform 1.0 U ug/L 3.0 1.0 1 04/14/21 03:19 75-25-2 2.3 U 2.3 Bromomethane ug/L 10.0 1 04/14/21 03:19 74-83-9 J(v2) 3.4 U 50.0 2-Butanone (MEK) 34 04/14/21 03:19 78-93-3 ug/L 1 10.0 Carbon disulfide 1.8 U ug/L 1.8 1 04/14/21 03:19 75-15-0 Carbon tetrachloride 0.44 U ug/L 3.0 0.44 1 04/14/21 03:19 56-23-5 Chlorobenzene 0.35 U 0.35 04/14/21 03:19 108-90-7 ug/L 1.0

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

Sample: MW-2R-04122021 Lab ID: 35625214001 Collected: 04/12/21 09:20 Received: 04/12/21 15:35 Matrix: Water

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	x 8260						
			es - Ormond E	Beach					
Chloroethane	1.4 U	ug/L	10.0	1.4	1		04/14/21 03:19	75-00-3	
Chloroform	0.32 U	ug/L	1.0	0.32	1		04/14/21 03:19		
Chloromethane	0.96 U	ug/L	1.0	0.96	1		04/14/21 03:19		
1,2-Dibromo-3-chloropropane	1.9 U	ug/L	5.0	1.9	1		04/14/21 03:19		
Dibromochloromethane	0.45 U	ug/L	2.0	0.45	1		04/14/21 03:19		
1,2-Dibromoethane (EDB)	0.43 U	ug/L	1.0	0.43	1		04/14/21 03:19		
Dibromomethane	0.24 U	-	2.0	0.31	1		04/14/21 03:19		
	0.60 U	ug/L	1.0	0.24	1		04/14/21 03:19		
1,2-Dichlorobenzene		ug/L			1				
1,4-Dichlorobenzene	0.28 U	ug/L	1.0	0.28			04/14/21 03:19		
trans-1,4-Dichloro-2-butene	0.53 U	ug/L	10.0	0.53	1		04/14/21 03:19		
1,1-Dichloroethane	0.34 U	ug/L	1.0	0.34	1		04/14/21 03:19		
1,2-Dichloroethane	0.27 U	ug/L	1.0	0.27	1		04/14/21 03:19		NO
1,2-Dichloroethene (Total)	0.27 U	ug/L	1.0	0.27	1		04/14/21 03:19		N2
1,1-Dichloroethene	0.59 U	ug/L	1.0	0.59	1		04/14/21 03:19		
cis-1,2-Dichloroethene	0.27 U	ug/L	1.0	0.27	1		04/14/21 03:19		
trans-1,2-Dichloroethene	0.23 U	ug/L	1.0	0.23	1		04/14/21 03:19		
1,2-Dichloropropane	0.23 U	ug/L	1.0	0.23	1		04/14/21 03:19		
cis-1,3-Dichloropropene	0.17 U	ug/L	1.0	0.17	1		04/14/21 03:19		
trans-1,3-Dichloropropene	0.37 U	ug/L	1.0	0.37	1		04/14/21 03:19		
Ethylbenzene	0.30 U	ug/L	1.0	0.30	1		04/14/21 03:19	100-41-4	
2-Hexanone	3.2 U	ug/L	25.0	3.2	1		04/14/21 03:19	591-78-6	
Iodomethane	9.3 U	ug/L	10.0	9.3	1		04/14/21 03:19	74-88-4	J(v2)
Isopropylbenzene (Cumene)	0.30 U	ug/L	1.0	0.30	1		04/14/21 03:19	98-82-8	
Methylene Chloride	1.5 U	ug/L	5.0	1.5	1		04/14/21 03:19	75-09-2	
4-Methyl-2-pentanone (MIBK)	2.8 U	ug/L	25.0	2.8	1		04/14/21 03:19	108-10-1	
Methyl-tert-butyl ether	0.53 U	ug/L	5.0	0.53	1		04/14/21 03:19	1634-04-4	
Styrene	0.26 U	ug/L	1.0	0.26	1		04/14/21 03:19	100-42-5	
1,1,1,2-Tetrachloroethane	0.32 U	ug/L	1.0	0.32	1		04/14/21 03:19	630-20-6	
1,1,2,2-Tetrachloroethane	0.18 U	ug/L	1.0	0.18	1		04/14/21 03:19	79-34-5	
Tetrachloroethene	0.38 U	ug/L	1.0	0.38	1		04/14/21 03:19	127-18-4	
Toluene	0.33 U	ug/L	1.0	0.33	1		04/14/21 03:19	108-88-3	
1,1,1-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		04/14/21 03:19	71-55-6	
1,1,2-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		04/14/21 03:19	79-00-5	
Trichloroethene	0.36 U	ug/L	1.0	0.36	1		04/14/21 03:19	79-01-6	
Trichlorofluoromethane	0.35 U	ug/L	1.0	0.35	1		04/14/21 03:19	75-69-4	
1,2,3-Trichloropropane	0.53 U	ug/L	2.0	0.53	1		04/14/21 03:19	96-18-4	
1,2,4-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		04/14/21 03:19		
1,3,5-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		04/14/21 03:19		
Vinyl acetate	0.84 U	ug/L	10.0	0.84	1		04/14/21 03:19		
Vinyl chloride	0.39 U	ug/L	1.0	0.39	1		04/14/21 03:19		
Xylene (Total)	0.63 U	ug/L	5.0	0.63	1		04/14/21 03:19		
m&p-Xylene	0.63 U	ug/L	4.0	0.63	1		04/14/21 03:19		
o-Xylene	0.57 U	ug/L	1.0	0.57	1		04/14/21 03:19		
Surrogates	3.37 3	ug/L	1.0	0.01	•		5-7/1-7/21 00.19	30 41-0	
4-Bromofluorobenzene (S)	100	%	70-130		1		04/14/21 03:19		

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

Sample: MW-2R-04122021	Lab ID:	35625214001	Collecte	d: 04/12/2	21 09:20	Received: 04	/12/21 15:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	•	Method: EPA 8		Reach					
Surrogates	1 400 / 114	17 11001 CO1 11000	Omona E	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Toluene-d8 (S)	101	%	70-130		1		04/14/21 03:19	2037-26-5	
1,2-Dichlorobenzene-d4 (S)	103	%	70-130		1		04/14/21 03:19	2199-69-1	

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

Sample: MW-1-04122021	Lab ID:	35625214002	Collected	d: 04/12/2	09:43	Received: 04/	/12/21 15:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	,	Method: EPA 2 ytical Services			od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	04/14/21 07:44	04/16/21 11:43	7440-43-9	
Chromium	0.60 I	ug/L	1.0	0.50	1	04/14/21 07:44	04/16/21 11:43	7440-47-3	
Lead	0.22 U	ug/L	1.0	0.22	1	04/14/21 07:44	04/16/21 11:43	7439-92-1	
Silver	0.21 U	ug/L	0.50	0.21	1	04/14/21 07:44	04/16/21 11:43	7440-22-4	

ANALYTICAL RESULTS

Project: Safety Kleen Facility

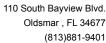
Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

Sample: MW-3-04122021	Lab ID:	35625214003	Collected	d: 04/12/2	08:34	Received: 04/	/12/21 15:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	•	Method: EPA 2 ytical Services	•		od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	04/14/21 07:44	04/16/21 11:46	7440-43-9	
Chromium	0.57 I	ug/L	1.0	0.50	1	04/14/21 07:44	04/16/21 11:46	7440-47-3	
Lead	0.82 I	ug/L	1.0	0.22	1	04/14/21 07:44	04/16/21 11:46	7439-92-1	
Silver	0.21 U	ug/L	0.50	0.21	1	04/14/21 07:44	04/16/21 11:46	7440-22-4	

ANALYTICAL RESULTS

Project: Safety Kleen Facility


Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

Sample: Trip Blank Lab ID: 35625214004 Collected: 04/12/21 08:34 Received: 04/12/21 15:35 Matrix: Water

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	A 8260						
	Pace Anal	ytical Service	es - Ormond E	Beach					
Acetone	5.3 U	ug/L	25.0	5.3	1		04/14/21 01:42	67-64-1	
Acetonitrile	5.8 U	ug/L	50.0	5.8	1		04/14/21 01:42		
Benzene	0.30 U	ug/L	1.0	0.30	1		04/14/21 01:42		
Bromochloromethane	0.37 U	ug/L	1.0	0.37	1		04/14/21 01:42		
Bromodichloromethane	0.19 U	ug/L	1.0	0.19	1		04/14/21 01:42		
Bromoform	1.0 U	ug/L ug/L	3.0	1.0	1		04/14/21 01:42		
Bromomethane	2.3 U	ug/L ug/L	10.0	2.3	1		04/14/21 01:42		J(v2)
	3.4 U	-	50.0	3.4	1		04/14/21 01:42		J(VZ)
2-Butanone (MEK)	1.8 U	ug/L		1.8	1				
Carbon disulfide		ug/L	10.0				04/14/21 01:42		
Carbon tetrachloride	0.44 U	ug/L	3.0	0.44	1		04/14/21 01:42		
Chlorobenzene	0.35 U	ug/L	1.0	0.35	1		04/14/21 01:42		
Chloroethane	1.4 U	ug/L	10.0	1.4	1		04/14/21 01:42		
Chloroform	0.32 U	ug/L	1.0	0.32	1		04/14/21 01:42		
Chloromethane	0.96 U	ug/L	1.0	0.96	1		04/14/21 01:42		
1,2-Dibromo-3-chloropropane	1.9 U	ug/L	5.0	1.9	1		04/14/21 01:42		
Dibromochloromethane	0.45 U	ug/L	2.0	0.45	1		04/14/21 01:42		
1,2-Dibromoethane (EDB)	0.31 U	ug/L	1.0	0.31	1		04/14/21 01:42		
Dibromomethane	0.24 U	ug/L	2.0	0.24	1		04/14/21 01:42	74-95-3	
1,2-Dichlorobenzene	0.60 U	ug/L	1.0	0.60	1		04/14/21 01:42	95-50-1	
1,4-Dichlorobenzene	0.28 U	ug/L	1.0	0.28	1		04/14/21 01:42	106-46-7	
trans-1,4-Dichloro-2-butene	0.53 U	ug/L	10.0	0.53	1		04/14/21 01:42	110-57-6	
1,1-Dichloroethane	0.34 U	ug/L	1.0	0.34	1		04/14/21 01:42	75-34-3	
1,2-Dichloroethane	0.27 U	ug/L	1.0	0.27	1		04/14/21 01:42	107-06-2	
1,2-Dichloroethene (Total)	0.27 U	ug/L	1.0	0.27	1		04/14/21 01:42	540-59-0	N2
1,1-Dichloroethene	0.59 U	ug/L	1.0	0.59	1		04/14/21 01:42	75-35-4	
cis-1,2-Dichloroethene	0.27 U	ug/L	1.0	0.27	1		04/14/21 01:42	156-59-2	
trans-1,2-Dichloroethene	0.23 U	ug/L	1.0	0.23	1		04/14/21 01:42	156-60-5	
1,2-Dichloropropane	0.23 U	ug/L	1.0	0.23	1		04/14/21 01:42	78-87-5	
cis-1,3-Dichloropropene	0.17 U	ug/L	1.0	0.17	1		04/14/21 01:42	10061-01-5	
trans-1,3-Dichloropropene	0.37 U	ug/L	1.0	0.37	1		04/14/21 01:42	10061-02-6	
Ethylbenzene	0.30 U	ug/L	1.0	0.30	1		04/14/21 01:42	100-41-4	
2-Hexanone	3.2 U	ug/L	25.0	3.2	1		04/14/21 01:42		
Iodomethane	9.3 U	ug/L	10.0	9.3	1		04/14/21 01:42		J(v2)
Isopropylbenzene (Cumene)	0.30 U	ug/L	1.0	0.30	1		04/14/21 01:42		J(1-)
Methylene Chloride	1.5 U	ug/L	5.0	1.5	1		04/14/21 01:42		
4-Methyl-2-pentanone (MIBK)	2.8 U	ug/L	25.0	2.8	1		04/14/21 01:42		
Methyl-tert-butyl ether	0.53 U	ug/L	5.0	0.53	1		04/14/21 01:42		
Styrene	0.26 U	ug/L	1.0	0.26	1		04/14/21 01:42		
1,1,1,2-Tetrachloroethane	0.20 U	ug/L ug/L	1.0	0.20	1		04/14/21 01:42		
1,1,2,2-Tetrachloroethane	0.32 U	ug/L ug/L	1.0	0.32	1		04/14/21 01:42		
		_					04/14/21 01:42		
Tetrachloroethene	0.38 U	ug/L	1.0	0.38	1				
Toluene	0.33 U	ug/L	1.0	0.33	1		04/14/21 01:42		
1,1,1-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		04/14/21 01:42		
1,1,2-Trichloroethane	0.30 U	ug/L	1.0	0.30	T		04/14/21 01:42		
Trichloroethene	0.36 U	ug/L	1.0	0.36	1		04/14/21 01:42	79-01-6	

04/14/21 01:42 2199-69-1

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35625214

1,2-Dichlorobenzene-d4 (S)

Date: 04/19/2021 02:14 PM

Sample: Trip Blank	Lab ID:	35625214004	Collected	d: 04/12/21	08:34	Received: 04	/12/21 15:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	lytical Services	- Ormond B	each					
Trichlorofluoromethane	0.35 U	ug/L	1.0	0.35	1		04/14/21 01:42	75-69-4	
1,2,3-Trichloropropane	0.53 U	ug/L	2.0	0.53	1		04/14/21 01:42	96-18-4	
1,2,4-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		04/14/21 01:42	95-63-6	
1,3,5-Trimethylbenzene	0.24 U	ug/L	1.0	0.24	1		04/14/21 01:42	108-67-8	
Vinyl acetate	0.84 U	ug/L	10.0	0.84	1		04/14/21 01:42	108-05-4	
Vinyl chloride	0.39 U	ug/L	1.0	0.39	1		04/14/21 01:42	75-01-4	
Xylene (Total)	0.63 U	ug/L	5.0	0.63	1		04/14/21 01:42	1330-20-7	
m&p-Xylene	0.63 U	ug/L	4.0	0.63	1		04/14/21 01:42	179601-23-1	
o-Xylene	0.57 U	ug/L	1.0	0.57	1		04/14/21 01:42	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	94	%	70-130		1		04/14/21 01:42	460-00-4	
Toluene-d8 (S)	96	%	70-130		1		04/14/21 01:42	2037-26-5	

70-130

%

104

10 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

QC Batch: 720807 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 35625214001, 35625214002, 35625214003

METHOD BLANK: 3928676 Matrix: Water

Associated Lab Samples: 35625214001, 35625214002, 35625214003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Cadmium	ug/L	0.050 U	0.10	0.050	04/14/21 13:59	
Chromium	ug/L	0.50 U	1.0	0.50	04/14/21 13:59	
Lead	ug/L	0.22 U	1.0	0.22	04/14/21 13:59	
Silver	ug/L	0.21 U	0.50	0.21	04/14/21 13:59	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L		4.9	97	85-115	
Chromium	ug/L	50	46.1	92	85-115	
Lead	ug/L	50	47.1	94	85-115	
Silver	ug/L	5	4.7	94	85-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 3928	678		3928679							
		35623077001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.000050 U mg/L	5	5	4.0	4.0	80	80	70-130	0	20	
Chromium	ug/L	0.0013 mg/L	50	50	39.9	39.7	77	77	70-130	0	20	
Lead	ug/L	0.00022 U mg/L	50	50	42.1	41.8	84	84	70-130	1	20	
Silver	ug/L	0.00035 I mg/L	5	5	4.2	4.2	77	77	70-130	1	20	

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 3928	680		3928681							
Parameter	Units	35624869002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cadmium	ug/L	0.000050 U mg/L	5	5	4.2	4.2	83	84	70-130	2	20	
Chromium	ug/L	0.0032 mg/L	50	50	42.7	43.5	79	81	70-130	2	20	
Lead	ug/L	0.00022 U mg/L	50	50	42.3	43.0	84	86	70-130	2	20	
Silver	ug/L	0.00021 U mg/L	5	5	4.0	4.1	81	82	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

QC Batch: 720766 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 35625214001, 35625214004

METHOD BLANK: 3928445 Matrix: Water

Associated Lab Samples: 35625214001, 35625214004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	1.0	0.32	04/14/21 00:29	
1,1,1-Trichloroethane	ug/L	0.30 U	1.0	0.30	04/14/21 00:29	
1,1,2,2-Tetrachloroethane	ug/L	0.18 U	1.0	0.18	04/14/21 00:29	
1,1,2-Trichloroethane	ug/L	0.30 U	1.0	0.30	04/14/21 00:29	
1,1-Dichloroethane	ug/L	0.34 U	1.0	0.34	04/14/21 00:29	
1,1-Dichloroethene	ug/L	0.59 U	1.0	0.59	04/14/21 00:29	
1,2,3-Trichloropropane	ug/L	0.53 U	2.0	0.53	04/14/21 00:29	
1,2,4-Trimethylbenzene	ug/L	0.24 U	1.0	0.24	04/14/21 00:29	
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	5.0	1.9	04/14/21 00:29	
1,2-Dibromoethane (EDB)	ug/L	0.31 U	1.0	0.31	04/14/21 00:29	
1,2-Dichlorobenzene	ug/L	0.60 U	1.0	0.60	04/14/21 00:29	
1,2-Dichloroethane	ug/L	0.27 U	1.0	0.27	04/14/21 00:29	
1,2-Dichloroethene (Total)	ug/L	0.27 U	1.0	0.27	04/14/21 00:29	N2
1,2-Dichloropropane	ug/L	0.23 U	1.0	0.23	04/14/21 00:29	
1,3,5-Trimethylbenzene	ug/L	0.24 U	1.0	0.24	04/14/21 00:29	
1,4-Dichlorobenzene	ug/L	0.28 U	1.0	0.28	04/14/21 00:29	
2-Butanone (MEK)	ug/L	3.4 U	50.0	3.4	04/14/21 00:29	
2-Hexanone	ug/L	3.2 U	25.0	3.2	04/14/21 00:29	
4-Methyl-2-pentanone (MIBK)	ug/L	2.8 U	25.0	2.8	04/14/21 00:29	
Acetone	ug/L	5.3 U	25.0	5.3	04/14/21 00:29	
Acetonitrile	ug/L	5.8 U	50.0	5.8	04/14/21 00:29	
Benzene	ug/L	0.30 U	1.0	0.30	04/14/21 00:29	
Bromochloromethane	ug/L	0.37 U	1.0	0.37	04/14/21 00:29	
Bromodichloromethane	ug/L	0.19 U	1.0	0.19	04/14/21 00:29	
Bromoform	ug/L	1.0 U	3.0	1.0	04/14/21 00:29	
Bromomethane	ug/L	2.3 U	10.0	2.3	04/14/21 00:29	J(v2)
Carbon disulfide	ug/L	1.8 U	10.0	1.8	04/14/21 00:29	
Carbon tetrachloride	ug/L	0.44 U	3.0	0.44	04/14/21 00:29	
Chlorobenzene	ug/L	0.35 U	1.0	0.35	04/14/21 00:29	
Chloroethane	ug/L	1.4 U	10.0	1.4	04/14/21 00:29	
Chloroform	ug/L	0.32 U	1.0	0.32	04/14/21 00:29	
Chloromethane	ug/L	0.96 U	1.0	0.96	04/14/21 00:29	
cis-1,2-Dichloroethene	ug/L	0.27 U	1.0	0.27	04/14/21 00:29	
cis-1,3-Dichloropropene	ug/L	0.17 U	1.0	0.17	04/14/21 00:29	
Dibromochloromethane	ug/L	0.45 U	2.0	0.45	04/14/21 00:29	
Dibromomethane	ug/L	0.24 U	2.0	0.24	04/14/21 00:29	
Ethylbenzene	ug/L	0.30 U	1.0	0.30	04/14/21 00:29	
Iodomethane	ug/L	9.3 U	10.0	9.3	04/14/21 00:29	J(v2)
Isopropylbenzene (Cumene)	ug/L	0.30 U	1.0	0.30	04/14/21 00:29	
m&p-Xylene	ug/L	0.63 U	4.0	0.63	04/14/21 00:29	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

METHOD BLANK: 3928445 Matrix: Water

Associated Lab Samples: 35625214001, 35625214004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Methyl-tert-butyl ether	ug/L	0.53 U	5.0	0.53	04/14/21 00:29	
Methylene Chloride	ug/L	1.5 U	5.0	1.5	04/14/21 00:29	
o-Xylene	ug/L	0.57 U	1.0	0.57	04/14/21 00:29	
Styrene	ug/L	0.26 U	1.0	0.26	04/14/21 00:29	
Tetrachloroethene	ug/L	0.38 U	1.0	0.38	04/14/21 00:29	
Toluene	ug/L	0.33 U	1.0	0.33	04/14/21 00:29	
trans-1,2-Dichloroethene	ug/L	0.23 U	1.0	0.23	04/14/21 00:29	
trans-1,3-Dichloropropene	ug/L	0.37 U	1.0	0.37	04/14/21 00:29	
trans-1,4-Dichloro-2-butene	ug/L	0.53 U	10.0	0.53	04/14/21 00:29	
Trichloroethene	ug/L	0.36 U	1.0	0.36	04/14/21 00:29	
Trichlorofluoromethane	ug/L	0.35 U	1.0	0.35	04/14/21 00:29	
Vinyl acetate	ug/L	0.84 U	10.0	0.84	04/14/21 00:29	
Vinyl chloride	ug/L	0.39 U	1.0	0.39	04/14/21 00:29	
Xylene (Total)	ug/L	0.63 U	5.0	0.63	04/14/21 00:29	
1,2-Dichlorobenzene-d4 (S)	%	104	70-130		04/14/21 00:29	
4-Bromofluorobenzene (S)	%	94	70-130		04/14/21 00:29	
Toluene-d8 (S)	%	97	70-130		04/14/21 00:29	

LABORATORY CONTROL SAMPLE:	3928446					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	21.7	108	70-130	
1,1,1-Trichloroethane	ug/L	20	21.4	107	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	23.0	115	68-125	
1,1,2-Trichloroethane	ug/L	20	22.8	114	70-130	
1,1-Dichloroethane	ug/L	20	22.5	113	70-130	
1,1-Dichloroethene	ug/L	20	22.9	115	66-133	
1,2,3-Trichloropropane	ug/L	20	22.8	114	62-127	
1,2,4-Trimethylbenzene	ug/L	20	21.4	107	70-130	
1,2-Dibromo-3-chloropropane	ug/L	20	20.2	101	45-137	
1,2-Dibromoethane (EDB)	ug/L	20	22.2	111	70-130	
1,2-Dichlorobenzene	ug/L	20	21.4	107	70-130	
1,2-Dichloroethane	ug/L	20	22.0	110	70-130	
1,2-Dichloroethene (Total)	ug/L	40	44.0	110	70-130 N	12
1,2-Dichloropropane	ug/L	20	21.5	108	70-130	
1,3,5-Trimethylbenzene	ug/L	20	22.3	112	70-130	
1,4-Dichlorobenzene	ug/L	20	21.5	107	70-130	
2-Butanone (MEK)	ug/L	100	101	101	47-143	
2-Hexanone	ug/L	100	111	111	48-145	
4-Methyl-2-pentanone (MIBK)	ug/L	100	114	114	57-132	
Acetone	ug/L	100	103	103	46-148	
Acetonitrile	ug/L	100	100	100	33-175	
Benzene	ug/L	20	21.7	108	70-130	
Bromochloromethane	ug/L	20	21.6	108	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

LABORATORY CONTROL SAMPLE:	3928446					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromodichloromethane	ug/L	20	21.4	107	70-130	
Bromoform	ug/L	20	19.8	99	49-126	
Bromomethane	ug/L	20	11.8	59	10-165	J(v3)
Carbon disulfide	ug/L	20	22.4	112	60-141	
Carbon tetrachloride	ug/L	20	22.1	111	63-126	
Chlorobenzene	ug/L	20	21.7	108	70-130	
Chloroethane	ug/L	20	18.6	93	71-142	
Chloroform	ug/L	20	22.4	112	70-130	
Chloromethane	ug/L	20	19.0	95	40-140	
cis-1,2-Dichloroethene	ug/L	20	21.6	108	70-130	
cis-1,3-Dichloropropene	ug/L	20	22.5	113	70-130	
Dibromochloromethane	ug/L	20	21.4	107	62-118	
Dibromomethane	ug/L	20	21.7	109	70-130	
Ethylbenzene	ug/L	20	21.4	107	70-130	
odomethane	ug/L	20	9.3 U	24	10-164	J(v3)
sopropylbenzene (Cumene)	ug/L	20	22.4	112	70-130	
n&p-Xylene	ug/L	40	43.7	109	70-130	
Methyl-tert-butyl ether	ug/L	20	22.1	110	64-124	
Methylene Chloride	ug/L	20	21.6	108	65-136	
-Xylene	ug/L	20	21.5	107	70-130	
tyrene	ug/L	20	22.8	114	70-130	
etrachloroethene	ug/L	20	22.0	110	64-134	
oluene	ug/L	20	21.6	108	70-130	
ans-1,2-Dichloroethene	ug/L	20	22.5	112	68-127	
rans-1,3-Dichloropropene	ug/L	20	23.4	117	65-121	
rans-1,4-Dichloro-2-butene	ug/L	20	18.0	90	42-129	
richloroethene	ug/L	20	21.6	108	70-130	
Trichlorofluoromethane	ug/L	20	19.2	96	65-135	
/inyl acetate	ug/L	20	21.9	110	60-144	
inyl chloride	ug/L	20	17.2	86	68-131	
ylene (Total)	ug/L	60	65.2	109	70-130	
,2-Dichlorobenzene-d4 (S)	%			100	70-130	
-Bromofluorobenzene (S)	%			100	70-130	
Foluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	3928448						
Davamatas	Units	35625332001	Spike	MS	MS % Dan	% Rec	O !:fi
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	20	21.4	107	70-130	
1,1,1-Trichloroethane	ug/L	0.30 U	20	22.8	114	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.18 U	20	20.8	104	68-125	
1,1,2-Trichloroethane	ug/L	0.30 U	20	20.9	105	70-130	
1,1-Dichloroethane	ug/L	0.34 U	20	23.3	117	70-130	
1,1-Dichloroethene	ug/L	0.59 U	20	25.1	126	66-133	
1,2,3-Trichloropropane	ug/L	0.53 U	20	20.3	102	62-127	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

MATRIX SPIKE SAMPLE:	3928448					
Demonstra	11-4-	35625332001	Spike	MS	MS	% Rec
Parameter	Units	Result	Conc	Result	% Rec	Limits Qualifier
1,2,4-Trimethylbenzene	ug/L	0.24 U	20	20.9	105	70-130
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	20	16.7	84	45-137
1,2-Dibromoethane (EDB)	ug/L	0.31 U	20	20.4	102	70-130
1,2-Dichlorobenzene	ug/L	0.60 U	20	20.9	104	70-130
1,2-Dichloroethane	ug/L	0.27 U	20	22.0	110	70-130
1,2-Dichloroethene (Total)	ug/L	0.27 U	40	44.3	111	70-130 N2
1,2-Dichloropropane	ug/L	0.23 U	20	21.9	110	70-130
1,3,5-Trimethylbenzene	ug/L	0.24 U	20	21.8	109	70-130
1,4-Dichlorobenzene	ug/L	0.28 U	20	21.1	106	70-130
2-Butanone (MEK)	ug/L	3.4 U	100	87.6	88	47-143
2-Hexanone	ug/L	3.2 U	100	89.3	89	48-145
4-Methyl-2-pentanone (MIBK)	ug/L	2.8 U	100	91.7	92	57-132
Acetone	ug/L	5.3 U	100	92.9	93	46-148
Acetonitrile	ug/L	5.8 U	100	102	102	33-175
Benzene	ug/L	0.30 U	20	22.5	112	70-130
Bromochloromethane	ug/L	0.37 U	20	22.3	111	70-130
Bromodichloromethane	ug/L	0.19 U	20	22.0	110	70-130
Bromoform	ug/L	1.0 U	20	19.7	99	49-126
Bromomethane	ug/L	2.3 U	20	10.5	53	10-165 J(v3)
Carbon disulfide	ug/L	1.8 U	20	23.6	118	60-141
Carbon tetrachloride	ug/L	0.44 U	20	23.9	120	63-126
Chlorobenzene	ug/L	0.35 U	20	21.3	107	70-130
Chloroethane	ug/L	1.4 U	20	20.4	102	71-142
Chloroform	ug/L	0.32 U	20	23.2	116	70-130
Chloromethane	ug/L	0.96 U	20	18.8	94	40-140
cis-1,2-Dichloroethene	ug/L	0.27 U	20	21.7	109	70-130
cis-1,3-Dichloropropene	ug/L	0.17 U	20	18.8	94	70-130
Dibromochloromethane	ug/L	0.45 U	20	20.6	103	62-118
Dibromomethane	ug/L	0.24 U	20	20.9	104	70-130
Ethylbenzene	ug/L	0.30 U	20	21.1	105	70-130
Iodomethane	ug/L	9.3 U	20	9.5 I	47	10-164 J(v3)
Isopropylbenzene (Cumene)	ug/L	0.30 U	20	21.9	110	70-130
m&p-Xylene	ug/L	0.63 U	40	43.3	108	70-130
Methyl-tert-butyl ether	ug/L	0.53 U	20	19.9	99	64-124
Methylene Chloride	ug/L	1.5 U	20	20.9	104	65-136
o-Xylene	ug/L	0.57 U	20	21.0	105	70-130
Styrene	ug/L	0.26 U	20	22.5	112	70-130
Tetrachloroethene	ug/L	0.38 U	20	20.3	102	64-134
Toluene	ug/L	0.33 U	20	21.0	105	70-130
trans-1,2-Dichloroethene	ug/L	0.23 U	20	22.6	113	68-127
trans-1,3-Dichloropropene	ug/L	0.37 U	20	21.3	107	65-121
trans-1,4-Dichloro-2-butene	ug/L	0.53 U	20	21.4	107	42-129
Trichloroethene	ug/L	0.36 U	20	21.7	108	70-130
Trichlorofluoromethane	ug/L	0.35 U	20	22.2	111	65-135
Vinyl acetate	ug/L	0.84 U	20	16.4	82	60-144
Vinyl chloride	ug/L	0.39 U	20	18.9	95	68-131
Xylene (Total)	ug/L	0.63 U	60	64.3	107	70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

MATRIX SPIKE SAMPLE:	3928448						
		35625332001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichlorobenzene-d4 (S)	%				99	70-130	
4-Bromofluorobenzene (S)	%				100	70-130	
Toluene-d8 (S)	%				98	70-130	

SAMPLE DUPLICATE: 3928447						
		35624882011	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	0.32 U		40	
1,1,1-Trichloroethane	ug/L	0.30 U	0.30 U		40	
1,1,2,2-Tetrachloroethane	ug/L	0.18 U	0.18 U		40	
1,1,2-Trichloroethane	ug/L	0.30 U	0.30 U		40	
1,1-Dichloroethane	ug/L	0.34 U	0.34 U		40	
1,1-Dichloroethene	ug/L	0.59 U	0.59 U		40	
1,2,3-Trichloropropane	ug/L	0.53 U	0.53 U		40	
1,2,4-Trimethylbenzene	ug/L	0.24 U	0.24 U		40	
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	1.9 U		40	
1,2-Dibromoethane (EDB)	ug/L	0.31 U	0.31 U		40	
1,2-Dichlorobenzene	ug/L	0.60 U	0.60 U		40	
1,2-Dichloroethane	ug/L	0.27 U	0.27 U		40	
1,2-Dichloroethene (Total)	ug/L	0.27 U	0.27 U		40	N2
1,2-Dichloropropane	ug/L	0.23 U	0.23 U		40	
1,3,5-Trimethylbenzene	ug/L	0.24 U	0.24 U		40	
1,4-Dichlorobenzene	ug/L	0.28 U	0.28 U		40	
2-Butanone (MEK)	ug/L	3.4 U	3.4 U		40	
2-Hexanone	ug/L	3.2 U	3.2 U		40	
4-Methyl-2-pentanone (MIBK)	ug/L	2.8 U	2.8 U		40	
Acetone	ug/L	5.3 U	5.3 U		40	
Acetonitrile	ug/L	5.8 U	5.8 U		40	
Benzene	ug/L	0.30 U	0.30 U		40	
Bromochloromethane	ug/L	0.37 U	0.37 U		40	
Bromodichloromethane	ug/L	0.19 U	0.19 U		40	
Bromoform	ug/L	1.0 U	1.0 U		40	
Bromomethane	ug/L	2.3 U	2.3 U		40	J(v2)
Carbon disulfide	ug/L	1.8 U	1.8 U		40	
Carbon tetrachloride	ug/L	0.44 U	0.44 U		40	
Chlorobenzene	ug/L	0.35 U	0.35 U		40	
Chloroethane	ug/L	1.4 U	1.4 U		40	
Chloroform	ug/L	0.32 U	0.32 U		40	
Chloromethane	ug/L	0.96 U	0.96 U		40	
cis-1,2-Dichloroethene	ug/L	0.27 U	0.27 U		40	
cis-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		40	
Dibromochloromethane	ug/L	0.45 U	0.45 U		40	
Dibromomethane	ug/L	0.24 U	0.24 U		40	
Ethylbenzene	ug/L	0.30 U	0.30 U		40	
Iodomethane	ug/L	9.3 U	9.3 U		40	J(v2)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

SAMPLE DUPLICATE: 3928447						
		35624882011	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Isopropylbenzene (Cumene)	ug/L	0.30 U	0.30 U		40	
m&p-Xylene	ug/L	0.63 U	0.63 U		40	
Methyl-tert-butyl ether	ug/L	0.53 U	0.53 U		40	
Methylene Chloride	ug/L	1.5 U	1.5 U		40	
o-Xylene	ug/L	0.57 U	0.57 U		40	
Styrene	ug/L	0.26 U	0.26 U		40	
Tetrachloroethene	ug/L	0.38 U	0.38 U		40	
Toluene	ug/L	0.33 U	0.33 U		40	
trans-1,2-Dichloroethene	ug/L	0.23 U	0.23 U		40	
trans-1,3-Dichloropropene	ug/L	0.37 U	0.37 U		40	
trans-1,4-Dichloro-2-butene	ug/L	0.53 U	0.53 U		40	
Trichloroethene	ug/L	0.36 U	0.36 U		40	
Trichlorofluoromethane	ug/L	0.35 U	0.35 U		40	
Vinyl acetate	ug/L	0.84 U	0.84 U		40	
Vinyl chloride	ug/L	0.39 U	0.39 U		40	
Xylene (Total)	ug/L	0.63 U	0.63 U		40	
1,2-Dichlorobenzene-d4 (S)	%	106	107		40	
4-Bromofluorobenzene (S)	%	92	94		40	
Toluene-d8 (S)	%	97	98		40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

QC Batch: 720473 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAHLV by SIM MSSV

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 35625214001

METHOD BLANK: 3926580 Matrix: Water

Associated Lab Samples: 35625214001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	0.19 U	2.0	0.19	04/13/21 11:54	
2-Methylnaphthalene	ug/L	0.68 U	2.0	0.68	04/13/21 11:54	
Acenaphthene	ug/L	0.040 U	0.50	0.040	04/13/21 11:54	
Acenaphthylene	ug/L	0.030 U	0.50	0.030	04/13/21 11:54	
Anthracene	ug/L	0.043 U	0.50	0.043	04/13/21 11:54	
Benzo(a)anthracene	ug/L	0.055 U	0.10	0.055	04/13/21 11:54	
Benzo(a)pyrene	ug/L	0.12 U	0.20	0.12	04/13/21 11:54	
Benzo(b)fluoranthene	ug/L	0.027 U	0.10	0.027	04/13/21 11:54	
Benzo(g,h,i)perylene	ug/L	0.15 U	0.50	0.15	04/13/21 11:54	
Benzo(k)fluoranthene	ug/L	0.16 U	0.50	0.16	04/13/21 11:54	
Chrysene	ug/L	0.026 U	0.50	0.026	04/13/21 11:54	
Dibenz(a,h)anthracene	ug/L	0.13 U	0.15	0.13	04/13/21 11:54	
Fluoranthene	ug/L	0.018 U	0.50	0.018	04/13/21 11:54	
Fluorene	ug/L	0.088 U	0.50	0.088	04/13/21 11:54	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	0.15	0.12	04/13/21 11:54	
Naphthalene	ug/L	0.29 U	2.0	0.29	04/13/21 11:54	
Phenanthrene	ug/L	0.16 U	0.50	0.16	04/13/21 11:54	
Pyrene	ug/L	0.032 U	0.50	0.032	04/13/21 11:54	
2-Fluorobiphenyl (S)	%	54	32-100		04/13/21 11:54	
p-Terphenyl-d14 (S)	%	74	48-112		04/13/21 11:54	

LABORATORY CONTROL SAMPLE:	3926581					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L		2.9	58	34-103	
2-Methylnaphthalene	ug/L	5	2.8	57	35-100	
Acenaphthene	ug/L	5	2.9	58	38-102	
Acenaphthylene	ug/L	5	2.7	55	35-97	
Anthracene	ug/L	5	3.5	69	46-107	
Benzo(a)anthracene	ug/L	5	4.1	83	55-113	
Benzo(a)pyrene	ug/L	5	4.7	93	51-112	
Benzo(b)fluoranthene	ug/L	5	4.9	98	58-116	
Benzo(g,h,i)perylene	ug/L	5	4.1	81	45-116	
Benzo(k)fluoranthene	ug/L	5	5.0	99	58-118	
Chrysene	ug/L	5	4.6	92	58-120	
Dibenz(a,h)anthracene	ug/L	5	4.2	84	46-114	
Fluoranthene	ug/L	5	4.1	83	54-118	
Fluorene	ug/L	5	3.1	61	40-105	
Indeno(1,2,3-cd)pyrene	ug/L	5	4.1	83	46-114	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

LABORATORY CONTROL SAMPLE: 3926581 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers ug/L 5 2.8 34-97 Naphthalene 56 3.5 70 47-110 Phenanthrene ug/L 5 5 4.2 83 Pyrene ug/L 54-117 2-Fluorobiphenyl (S) % 54 32-100 p-Terphenyl-d14 (S) % 72 48-112

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	ATE: 3926	582		3926583	i						
			MS	MSD								
	3	5625202006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/L	0.27	5	5	2.7	2.5	49	45	34-103	7	40	
2-Methylnaphthalene	ug/L	0.68 U	5	5	2.8	2.6	46	43	35-100	6	40	
Acenaphthene	ug/L	0.040 U	5	5	2.6	2.5	51	49	38-102	4	40	
Acenaphthylene	ug/L	0.030 U	5	5	2.4	2.3	48	46	35-97	5	40	
Anthracene	ug/L	0.043 U	5	5	3.1	3.3	63	66	46-107	5	40	
Benzo(a)anthracene	ug/L	0.055 U	5	5	3.8	3.8	76	77	55-113	1	40	
Benzo(a)pyrene	ug/L	0.12 U	5	5	4.2	4.3	85	86	51-112	2	40	
Benzo(b)fluoranthene	ug/L	0.027 U	5	5	4.5	4.5	89	90	58-116	0	40	
Benzo(g,h,i)perylene	ug/L	0.15 U	5	5	3.7	3.8	75	75	45-116	1	40	
Benzo(k)fluoranthene	ug/L	0.16 U	5	5	4.5	4.5	89	90	58-118	1	40	
Chrysene	ug/L	0.026 U	5	5	4.2	4.2	84	84	58-120	1	40	
Dibenz(a,h)anthracene	ug/L	0.13 U	5	5	3.8	3.9	77	78	46-114	1	40	
Fluoranthene	ug/L	0.018 U	5	5	3.8	3.9	76	79	54-118	3	40	
Fluorene	ug/L	0.088 U	5	5	2.7	2.8	55	56	40-105	2	40	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	5	5	3.8	3.8	75	77	46-114	2	40	
Naphthalene	ug/L	0.96 I	5	5	3.1	3.0	44	41	34-97	4	40	
Phenanthrene	ug/L	0.16 U	5	5	3.2	3.4	65	69	47-110	6	40	
Pyrene	ug/L	0.032 U	5	5	3.8	4.0	77	79	54-117	4	40	
2-Fluorobiphenyl (S)	%						49	46	32-100			
p-Terphenyl-d14 (S)	%						66	66	48-112			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

QC Batch: 720426 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 Water Full List MSSV

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 35625214001

METHOD BLANK: 3926308 Matrix: Water

Associated Lab Samples: 35625214001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/L	1.4 U	5.0	1.4	04/14/21 10:04	
1,2-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	04/14/21 10:04	
1,2-Dinitrobenzene	ug/L	1.9 U	6.0	1.9	04/14/21 10:04	
1,2-Diphenylhydrazine	ug/L	1.4 U	5.0	1.4	04/14/21 10:04	
1,3-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	04/14/21 10:04	
1,3-Dinitrobenzene	ug/L	0.27 U	8.0	0.27	04/14/21 10:04	
1,4-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	04/14/21 10:04	
1-Methylnaphthalene	ug/L	0.36 U	5.0	0.36	04/14/21 10:04	
2,3,4,6-Tetrachlorophenol	ug/L	1.0 U	5.0	1.0	04/14/21 10:04	
2,3,5,6-Tetrachlorophenol	ug/L	1.9 U	9.0	1.9	04/14/21 10:04	N2
2,4,5-Trichlorophenol	ug/L	0.23 U	4.0	0.23	04/14/21 10:04	
2,4,6-Trichlorophenol	ug/L	0.36 U	2.0	0.36	04/14/21 10:04	
2,4-Dichlorophenol	ug/L	0.34 U	2.0	0.34	04/14/21 10:04	
2,4-Dimethylphenol	ug/L	1.0 U	5.0	1.0	04/14/21 10:04	
2,4-Dinitrophenol	ug/L	2.6 U	20.0	2.6	04/14/21 10:04	
2,4-Dinitrotoluene	ug/L	0.27 U	4.0	0.27	04/14/21 10:04	
2,6-Dinitrotoluene	ug/L	0.28 U	2.0	0.28	04/14/21 10:04	
2-Chloronaphthalene	ug/L	0.34 U	5.0	0.34	04/14/21 10:04	
2-Chlorophenol	ug/L	1.4 U	5.0	1.4	04/14/21 10:04	
2-Methylnaphthalene	ug/L	0.28 U	5.0	0.28	04/14/21 10:04	
2-Methylphenol(o-Cresol)	ug/L	0.30 U	5.0	0.30	04/14/21 10:04	
2-Nitroaniline	ug/L	1.3 U	5.0	1.3	04/14/21 10:04	
2-Nitrophenol	ug/L	1.4 U	5.0	1.4	04/14/21 10:04	
3&4-Methylphenol(m&p Cresol)	ug/L	0.22 U	10.0	0.22	04/14/21 10:04	
3,3'-Dichlorobenzidine	ug/L	1.0 U	10.0	1.0	04/14/21 10:04	
3-Nitroaniline	ug/L	1.3 U	5.0	1.3	04/14/21 10:04	
4,6-Dinitro-2-methylphenol	ug/L	4.6 U	20.0	4.6	04/14/21 10:04	
4-Bromophenylphenyl ether	ug/L	1.7 U	5.0	1.7	04/14/21 10:04	
4-Chloro-3-methylphenol	ug/L	5.4 U	20.0	5.4	04/14/21 10:04	
4-Chloroaniline	ug/L	1.4 U	5.0	1.4	04/14/21 10:04	
4-Chlorophenylphenyl ether	ug/L	1.4 U	5.0	1.4	04/14/21 10:04	
4-Nitroaniline	ug/L	0.19 U	4.0	0.19	04/14/21 10:04	
4-Nitrophenol	ug/L	0.95 U	20.0	0.95	04/14/21 10:04	
Acenaphthene	ug/L	0.36 U	5.0	0.36	04/14/21 10:04	
Acenaphthylene	ug/L	0.30 U	5.0	0.30	04/14/21 10:04	
Aniline	ug/L	0.94 U	5.0	0.94	04/14/21 10:04	
Anthracene	ug/L	0.22 U	5.0	0.22	04/14/21 10:04	
Benzidine	ug/L	0.87 U	25.0	0.87	04/14/21 10:04	
Benzo(a)anthracene	ug/L	0.20 U	5.0	0.20	04/14/21 10:04	
Benzo(a)pyrene	ug/L	0.17 U	1.0	0.17	04/14/21 10:04	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

METHOD BLANK: 3926308 Matrix: Water

Associated Lab Samples: 35625214001

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Benzo(b)fluoranthene	ug/L	0.27 U	2.0	0.27	04/14/21 10:04	- -
Benzo(g,h,i)perylene	ug/L	0.17 U	5.0	0.17	04/14/21 10:04	
Benzo(k)fluoranthene	ug/L	0.18 U	4.0	0.18	04/14/21 10:04	
Benzyl alcohol	ug/L	1.3 U	5.0	1.3	04/14/21 10:04	
bis(2-Chloroethoxy)methane	ug/L	1.6 U	5.0	1.6	04/14/21 10:04	
bis(2-Chloroethyl) ether	ug/L	0.34 U	4.0	0.34	04/14/21 10:04	
bis(2-Chloroisopropyl) ether	ug/L	1.8 U	6.0	1.8	04/14/21 10:04	
bis(2-Ethylhexyl)phthalate	ug/L	1.1 U	5.0	1.1	04/14/21 10:04	
Butylbenzylphthalate	ug/L	1.1 U	5.0	1.1	04/14/21 10:04	
Caprolactam	ug/L	0.40 U	5.0	0.40	04/14/21 10:04	N2
Carbazole	ug/L	1.1 U	5.0	1.1	04/14/21 10:04	
Chrysene	ug/L	0.20 U	5.0	0.20	04/14/21 10:04	
Di-n-butylphthalate	ug/L	1.1 U	5.0	1.1	04/14/21 10:04	
Di-n-octylphthalate	ug/L	0.92 U	5.0	0.92	04/14/21 10:04	
Dibenz(a,h)anthracene	ug/L	0.18 U	2.0	0.18	04/14/21 10:04	
Dibenzofuran	ug/L	1.5 U	5.0	1.5	04/14/21 10:04	
Diethylphthalate	ug/L	1.4 U	5.0	1.4	04/14/21 10:04	
Dimethylphthalate	ug/L	1.4 U	5.0	1.4	04/14/21 10:04	
Fluoranthene	ug/L	0.21 U	5.0	0.21	04/14/21 10:04	
Fluorene	ug/L	0.34 U	5.0	0.34	04/14/21 10:04	
Hexachloro-1,3-butadiene	ug/L	0.35 U	2.0	0.35	04/14/21 10:04	
Hexachlorobenzene	ug/L	0.29 U	1.0	0.29	04/14/21 10:04	
Hexachlorocyclopentadiene	ug/L	3.4 U	11.0	3.4	04/14/21 10:04	
Hexachloroethane	ug/L	1.4 U	5.0	1.4	04/14/21 10:04	
Indeno(1,2,3-cd)pyrene	ug/L	0.17 U	2.0	0.17	04/14/21 10:04	
Isophorone	ug/L	1.7 U	5.0	1.7	04/14/21 10:04	
N-Nitroso-di-n-propylamine	ug/L	0.33 U	4.0	0.33	04/14/21 10:04	
N-Nitrosodimethylamine	ug/L	0.20 U	2.0	0.20	04/14/21 10:04	
N-Nitrosodiphenylamine	ug/L	1.2 U	5.0	1.2	04/14/21 10:04	
Naphthalene	ug/L	0.39 U	5.0	0.39	04/14/21 10:04	
Nitrobenzene	ug/L	0.37 U	4.0	0.37	04/14/21 10:04	
Pentachlorophenol	ug/L	1.6 U	20.0	1.6	04/14/21 10:04	
Phenanthrene	ug/L	0.23 U	5.0	0.23	04/14/21 10:04	
Phenol	ug/L	0.63 U	5.0	0.63	04/14/21 10:04	
Pyrene	ug/L	0.21 U	5.0	0.21	04/14/21 10:04	
Pyridine	ug/L	1.1 U	5.0	1.1	04/14/21 10:04	
2,4,6-Tribromophenol (S)	%	69	28-114		04/14/21 10:04	
2-Fluorobiphenyl (S)	%	61	22-101		04/14/21 10:04	
2-Fluorophenol (S)	%	36	10-57		04/14/21 10:04	
Nitrobenzene-d5 (S)	%	61	10-188		04/14/21 10:04	
p-Terphenyl-d14 (S)	%	57	48-124		04/14/21 10:04	
Phenol-d5 (S)	%	25	10-48		04/14/21 10:04	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

LABORATORY CONTROL SAMPLE	3926309	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
1,2,4-Trichlorobenzene	ug/L		32.4	65	38-87
1,2-Dichlorobenzene	ug/L	50	29.1	58	37-83
1,2-Dinitrobenzene	ug/L	50	36.8	74	55-111
1,2-Diphenylhydrazine	ug/L	50	31.4	63	47-104
1,3-Dichlorobenzene	ug/L	50	28.6	57	36-81
1,3-Dinitrobenzene	ug/L	50	37.4	75	56-104
1,4-Dichlorobenzene	ug/L	50	28.7	57	37-82
1-Methylnaphthalene	ug/L	50	32.9	66	42-91
2,3,4,6-Tetrachlorophenol	ug/L	50	38.3	77	55-106
2,3,5,6-Tetrachlorophenol	ug/L	50	38.9	78	54-109 N2
2,4,5-Trichlorophenol	ug/L	50 50	35.4	71	54-97
	_	50 50	36.2	72	52-97
2,4,6-Trichlorophenol 2,4-Dichlorophenol	ug/L ug/L	50 50	33.5	72 67	52-97 47-92
•					
2,4-Dimethylphenol	ug/L	50 50	31.8	64	48-90
2,4-Dinitrophenol	ug/L	50	33.0	66	42-120
2,4-Dinitrotoluene	ug/L	50	37.6	75 70	60-101
2,6-Dinitrotoluene	ug/L	50	36.0	72	55-100
2-Chloronaphthalene	ug/L	50	30.5	61	42-95
2-Chlorophenol	ug/L	50	28.4	57	41-83
2-Methylnaphthalene	ug/L	50	32.8	66	42-91
2-Methylphenol(o-Cresol)	ug/L	50	25.9	52	39-78
2-Nitroaniline	ug/L	50	36.4	73	53-103
2-Nitrophenol	ug/L	50	36.0	72	45-93
3&4-Methylphenol(m&p Cresol)	ug/L	50	24.4	49	37-75
3,3'-Dichlorobenzidine	ug/L	50	37.4	75	64-106
3-Nitroaniline	ug/L	50	32.4	65	52-105
1,6-Dinitro-2-methylphenol	ug/L	50	34.1	68	54-115
1-Bromophenylphenyl ether	ug/L	50	34.7	69	48-103
1-Chloro-3-methylphenol	ug/L	50	31.9	64	51-95
1-Chloroaniline	ug/L	50	32.5	65	52-92
1-Chlorophenylphenyl ether	ug/L	50	34.8	70	50-97
4-Nitroaniline	ug/L	50	38.2	76	57-104
1-Nitrophenol	ug/L	50	14.5 I	29	20-51
Acenaphthene	ug/L	50	32.8	66	47-96
Acenaphthylene	ug/L	50	32.8	66	46-99
Aniline	ug/L	50	28.8	58	43-84
Anthracene	ug/L	50	34.9	70	58-98
Benzidine	ug/L	50	12.2 I	24	10-103
Benzo(a)anthracene	ug/L	50	36.3	73	61-101
Benzo(a)pyrene	ug/L	50	36.9	74	59-103
Benzo(b)fluoranthene	ug/L	50	35.8	72	37-118
Benzo(g,h,i)perylene	ug/L ug/L	50	32.8	66	58-107
Benzo(k)fluoranthene	_	50 50	40.2	80	61-106
` '	ug/L				
Benzyl alcohol	ug/L	50 50	26.2	52 61	40-82
pis(2-Chloroethoxy)methane	ug/L	50 50	30.4	61 57	44-91
ois(2-Chloroethyl) ether	ug/L	50	28.5	57	37-91
bis(2-Chloroisopropyl) ether	ug/L	50	32.7	65	31-97

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

LABORATORY CONTROL SAMPLE:	3926309					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
s(2-Ethylhexyl)phthalate	ug/L	50	34.9	70	52-113	
utylbenzylphthalate	ug/L	50	36.4	73	60-111	
aprolactam	ug/L	50	8.8	18	15-32	N2
arbazole	ug/L	50	35.7	71	61-101	
nrysene	ug/L	50	36.5	73	62-102	
n-butylphthalate	ug/L	50	35.2	70	60-105	
-n-octylphthalate	ug/L	50	34.8	70	53-112	
benz(a,h)anthracene	ug/L	50	33.1	66	58-107	
ibenzofuran	ug/L	50	33.3	67	50-95	
iethylphthalate	ug/L	50	31.9	64	57-98	
methylphthalate	ug/L	50	33.4	67	53-99	
uoranthene	ug/L	50	36.2	72	61-102	
uorene	ug/L	50	33.9	68	51-96	
xachloro-1,3-butadiene	ug/L	50	33.6	67	36-90	
xachlorobenzene	ug/L	50	37.2	74	57-97	
xachlorocyclopentadiene	ug/L	50	18.0	36	13-100	
xachloroethane	ug/L	50	27.7	55	33-84	
leno(1,2,3-cd)pyrene	ug/L	50	32.3	65	58-106	
phorone	ug/L	50	31.6	63	44-93	
Nitroso-di-n-propylamine	ug/L	50	31.0	62	41-96	
Nitrosodimethylamine	ug/L	50	19.7	39	25-63	
Nitrosodiphenylamine	ug/L	50	34.9	70	56-97	
phthalene	ug/L	50	31.1	62	41-87	
robenzene	ug/L	50	30.5	61	41-91	
ntachlorophenol	ug/L	50	40.5	81	48-112	
nenanthrene	ug/L	50	34.8	70	58-98	
nenol	ug/L	50	12.3	25	17-40	
rene	ug/L	50	35.9	72	61-104	
ridine	ug/L	50	20.1	40	14-60	
4,6-Tribromophenol (S)	%			81	28-114	
Fluorobiphenyl (S)	%			65	22-101	
Fluorophenol (S)	%			33	10-57	
robenzene-d5 (S)	%			59	10-188	
T I I - I / / / / / / / / /						
Terphenyl-d14 (S) nenol-d5 (S)	% %			55 24	48-124 10-48	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 3926	310 MS	MSD	3926311							
	3	5624754001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2,4-Trichlorobenzene	ug/L	1.4 U	49.9	50.1	28.2	29.7	57	59	38-87	5	40	
1,2-Dichlorobenzene	ug/L	1.5 U	49.9	50.1	25.8	27.4	52	55	37-83	6	40	
1,2-Dinitrobenzene	ug/L	1.9 U	49.9	50.1	34.7	32.8	69	66	55-111	6	40	
1,2-Diphenylhydrazine	ug/L	1.4 U	49.9	50.1	32.8	35.3	66	71	47-104	7	40	
1,3-Dichlorobenzene	ug/L	1.5 U	49.9	50.1	24.9	26.7	50	53	36-81	7	40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 3926		MOD	3926311							
		25624754001	MS Spike	MSD	MS	MSD	MC	MSD	% Rec		May	
Parameter	Units	35624754001 Result	Spike Conc.	Spike Conc.	Result	Result	MS % Rec	% Rec	% Rec	RPD	Max RPD	Qu
I,3-Dinitrobenzene	ug/L		49.9	50.1	36.0	33.4	72	67	56-104	8	40	
1.4-Dichlorobenzene	ug/L	1.6 U	49.9	50.1	25.2	26.6	51	53	37-82	5		
1-Methylnaphthalene	ug/L	8.2	49.9	50.1	38.4	46.1	60	76	42-91	18		
2,3,4,6-Tetrachlorophenol	ug/L	1.1 U	49.9	50.1	34.1	31.7	68	63	55-106	7		
2,3,5,6-Tetrachlorophenol	ug/L	1.9 U	49.9	50.1	35.3	30.8	71	62	54-109	14		N2
2,4,5-Trichlorophenol	ug/L	0.23 U	49.9	50.1	33.3	32.7	67	65	54-97	2		112
2,4,6-Trichlorophenol	ug/L	0.36 U	49.9	50.1	32.7	34.4	66	69	52-97	5		
2,4-Dichlorophenol	ug/L	0.34 U	49.9	50.1	29.8	31.2	60	62	47-92	4	40	
2,4-Dimethylphenol	ug/L	1.0 U	49.9	50.1	30.0	32.0	60	64	48-90	6		
2,4-Dinitrophenol	ug/L	2.7 U	49.9	50.1	37.1	34.7	74	69	42-120	7		
2,4-Dinitrotoluene	ug/L	0.27 U	49.9	50.1	35.1	34.6	70	69	60-101	1	40	
2,6-Dinitrotoluene	ug/L	0.27 U	49.9	50.1	34.1	34.0	68	68	55-100	0	40	
2-Chloronaphthalene	ug/L ug/L	0.26 U	49.9	50.1	34.1	36.9	68	74	42-95	8	40	
2-Chlorophenol	ug/L ug/L	1.4 U	49.9	50.1	24.8	26.6	50	53	41-83	7		
2-Methylnaphthalene	ug/L	10.1	49.9	50.1	39.9	49.2	60	78	42-91	21	40	
2-Methylphenol(o-Cresol)	ug/L	0.30 U	49.9	50.1	23.1	23.9	46	48	39-78	3		
2-Nitroaniline	ug/L	1.3 U	49.9	50.1	35.5	35.1	71	70	53-103	1	40	
2-Nitrophenol	ug/L	1.5 U	49.9	50.1	30.8	33.2	62	66	45-93	8		
&4-Methylphenol(m&p	ug/L ug/L	0.61 I	49.9	50.1	22.6	23.2	44	45	45-93 37-75	3		
Cresol)	ug/L	0.01 1	49.9	50.1	22.0	23.2	44	40	31-13	3	40	
3,3'-Dichlorobenzidine	ug/L	1.1 U	49.9	50.1	23.7	14.1	47	28	64-106	51	40	J(M J(R
B-Nitroaniline	ug/L	1.3 U	49.9	50.1	33.9	31.0	68	62	52-105	9	40	
I,6-Dinitro-2-methylphenol	ug/L	4.6 U	49.9	50.1	37.0	37.6	74	75	54-115	2	40	
l-Bromophenylphenyl ether	ug/L	1.7 U	49.9	50.1	31.5	30.5	63	61	48-103	3	40	
l-Chloro-3-methylphenol	ug/L	5.5 U	49.9	50.1	35.1	38.6	70	77	51-95	10	40	
1-Chloroaniline	ug/L	1.4 U	49.9	50.1	30.3	29.3	61	59	52-92	3	40	
-Chlorophenylphenyl ether	ug/L	1.5 U	49.9	50.1	31.9	32.8	64	65	50-97	3	40	
l-Nitroaniline	ug/L	0.19 U	49.9	50.1	32.9	30.9	66	62	57-104	6	40	
I-Nitrophenol	ug/L	0.96 U	49.9	50.1	15.0 I	14.7 I	30	29	20-51		40	
Acenaphthene	ug/L	0.36 U	49.9	50.1	32.3	32.4	65	65	47-96	1	40	
Acenaphthylene	ug/L	0.30 U	49.9	50.1	31.3	32.3	63	64	46-99	3	40	
Aniline	ug/L	0.95 U	49.9	50.1	27.7	28.0	56	56	43-84	1	40	
Anthracene	ug/L	0.22 U	49.9	50.1	33.7	34.6	68	69	58-98	2	40	
Benzidine	ug/L	0.88 U	49.9	50.1	0.87 U	0.87 U	0	1	10-103		40	J(N
Benzo(a)anthracene	ug/L	0.20 U	49.9	50.1	32.7	32.9	65	66	61-101	1	40	
Benzo(a)pyrene	ug/L	0.17 U	49.9	50.1	30.2	30.9	60	62	59-103	2	40	
Benzo(b)fluoranthene	ug/L	0.27 U	49.9	50.1	30.6	25.8	61	51	37-118	17	40	
Benzo(g,h,i)perylene	ug/L	0.17 U	49.9	50.1	24.6	24.8	49	49	58-107	1		J(N
Benzo(k)fluoranthene	ug/L	0.18 U	49.9	50.1	30.3	26.1	61	52	61-106	15		J(M
Benzyl alcohol	ug/L	1.3 U	49.9	50.1	26.6	27.3	53	54	40-82	3		`
ois(2-	ug/L	1.6 U	49.9	50.1	32.1	34.2	64	68	44-91	7		
Chloroethoxy)methane										-	-	
ois(2-Chloroethyl) ether	ug/L	0.34 U	49.9	50.1	27.0	28.7	54	57	37-91	6	40	
ois(2-Chloroisopropyl) ether	ug/L	1.8 U	49.9	50.1	27.7	29.1	56	58	31-97	5	40	
ois(2-Ethylhexyl)phthalate	ug/L	1.1 U	49.9	50.1	27.8	28.4	55	56	52-113	2	40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3926	310		3926311							
			MS	MSD								
		35624754001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Butylbenzylphthalate	ug/L	1.1 U	49.9	50.1	33.6	34.7	67	69	60-111	3	40	
Caprolactam	ug/L	0.41 U	49.9	50.1	14.8	13.8	30	28	15-32	7	40	N2
Carbazole	ug/L	1.1 U	49.9	50.1	34.8	36.0	70	72	61-101	3	40	
Chrysene	ug/L	0.20 U	49.9	50.1	33.8	33.9	68	68	62-102	0	40	
Di-n-butylphthalate	ug/L	1.1 U	49.9	50.1	34.8	35.9	69	71	60-105	3	40	
Di-n-octylphthalate	ug/L	0.93 U	49.9	50.1	28.5	29.4	57	59	53-112	3	40	
Dibenz(a,h)anthracene	ug/L	0.18 U	49.9	50.1	29.9	30.1	60	60	58-107	1	40	
Dibenzofuran	ug/L	1.5 U	49.9	50.1	32.0	32.6	64	65	50-95	2	40	
Diethylphthalate	ug/L	1.7 I	49.9	50.1	30.7	30.1	58	57	57-98	2	40	
Dimethylphthalate	ug/L	1.4 U	49.9	50.1	32.3	30.6	65	61	53-99	6	40	
Fluoranthene	ug/L	0.21 U	49.9	50.1	26.1	26.1	52	52	61-102	0	40	J(M1)
Fluorene	ug/L	0.34 U	49.9	50.1	32.3	32.3	65	64	51-96	0	40	
Hexachloro-1,3-butadiene	ug/L	0.35 U	49.9	50.1	27.6	28.6	55	57	36-90	4	40	
Hexachlorobenzene	ug/L	0.29 U	49.9	50.1	33.3	35.3	67	70	57-97	6	40	
Hexachlorocyclopentadiene	ug/L	3.5 U	49.9	50.1	25.8	26.8	52	53	13-100	4	40	
Hexachloroethane	ug/L	1.4 U	49.9	50.1	27.1	29.3	54	58	33-84	8	40	
ndeno(1,2,3-cd)pyrene	ug/L	0.17 U	49.9	50.1	30.6	30.4	61	61	58-106	1	40	
sophorone	ug/L	1.7 U	49.9	50.1	30.7	31.4	61	63	44-93	3	40	
N-Nitroso-di-n-propylamine	ug/L	0.33 U	49.9	50.1	30.8	31.2	62	62	41-96	1	40	
N-Nitrosodimethylamine	ug/L	0.20 U	49.9	50.1	18.8	19.6	38	39	25-63	4	40	
N-Nitrosodiphenylamine	ug/L	1.2 U	49.9	50.1	33.5	33.8	67	67	56-97	1	40	
Naphthalene	ug/L	14.0	49.9	50.1	42.4	55.2	57	82	41-87	26	40	
Nitrobenzene	ug/L	0.37 U	49.9	50.1	29.5	30.8	59	62	41-91	4	40	
Pentachlorophenol	ug/L	1.7 U	49.9	50.1	36.6	38.3	73	76	48-112	4	40	
Phenanthrene	ug/L	0.23 U	49.9	50.1	33.2	35.6	66	71	58-98	7	40	
Phenol	ug/L	0.64 U	49.9	50.1	11.0	11.4	22	23	17-40	4	40	
Pyrene	ug/L	0.21 U	49.9	50.1	33.4	33.2	67	66	61-104	0	40	
Pyridine	ug/L	1.1 U	49.9	50.1	17.7	18.9	35	38	14-60	6	40	
2,4,6-Tribromophenol (S)	%						66	64	28-114			
2-Fluorobiphenyl (S)	%						60	61	22-101			
2-Fluorophenol (S)	%						27	29	10-57			
Nitrobenzene-d5 (S)	%						58	60	10-188			
o-Terphenyl-d14 (S)	%						48	49	48-124			
Phenol-d5 (S)	%						21	22	10-48			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

Safety Kleen Facility

Pace Project No.:

35625214

QC Batch:

720651

QC Batch Method:

EPA 3510

Analysis Method:

FL-PRO

Analysis Description:

FL-PRO Water Low Volume

Laboratory:

Pace Analytical Services - Ormond Beach

Associated Lab Samples:

35625214001

METHOD BLANK: 3927286

Matrix: Water

Associated Lab Samples: 35625214001

Blank Reporting Parameter Units Result Limit MDL Qualifiers Analyzed 0.80 U Petroleum Range Organics mg/L 1.0 0.80 04/13/21 22:20 N-Pentatriacontane (S) % 91 42-159 04/13/21 22:20 o-Terphenyl (S) % 71 66-139 04/13/21 22:20

LABORATORY CONTROL SAMPLE:

3927287

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Petroleum Range Organics	mg/L		4.4	89	66-119	
N-Pentatriacontane (S)	%			117	42-159	
o-Terphenyl (S)	%			85	66-139	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Date: 04/19/2021 02:14 PM

3927700

Parameter	Units	35625202006 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Petroleum Range Organics N-Pentatriacontane (S) o-Terphenyl (S)	mg/L % %	0.76 U	4.8	4.8	3.6	4.3	73 86 70	89 101 84	65-123 42-159 66-139	19	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Safety Kleen Facility

Pace Project No.: 35625214

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

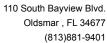
RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.


Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/19/2021 02:14 PM

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J(R1) Estimated Value. RPD value was outside control limits.
- J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Safety Kleen Facility

Pace Project No.: 35625214

Date: 04/19/2021 02:14 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch		
35625214001	MW-2R-04122021	EPA 3510	720651	FL-PRO	720753		
35625214001	MW-2R-04122021	EPA 200.8	720807	EPA 200.8	720899		
35625214002	MW-1-04122021	EPA 200.8	720807	EPA 200.8	720899		
35625214003	MW-3-04122021	EPA 200.8	720807	EPA 200.8	720899		
35625214001	MW-2R-04122021	EPA 3510	720473	EPA 8270 by SIM	720578		
35625214001	MW-2R-04122021	EPA 3510	720426	EPA 8270	720477		
35625214001	MW-2R-04122021	EPA 8260	720766				
35625214004	Trip Blank	EPA 8260	720766				

CHAIN-OF-CUSTODY / Analytical Request Docu

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be

WO#:35625214

(A/N)

DATE Signed:

Section A Section B Section C Required Client Information: Required Project Information: Invoice Information: Company. Environmental Consulting & Technology-Tampa Report To: Keith Morrison Attention Company Name Address 1408 North Westshore Bllvd Copy To: Address: Tampa, FL 33607 Regulatory Agency 210212-0100 Email: kmorrison@ectinc.com Purchase Order #: Pace Quote Project Name: Phone: 813-493-0383 Fax: Safety Kleen Facility Pace Project Manager: State / Location lori palmer@pacelabs com 710212-0100 Requested Due Date: Project # Pace Profile #: 9321 line 1 FL Requested Analysis Filtered (Y/N) C=COMP) X COLLECTED Preservatives MATRIX SAMPLE TEMP AT COLLECTION CODE Drinking Water DW FL Pro Low Volume for W Metals 200.8 Ag,Cd,Cr,Pb 8270 Full list plus PAHs N WT Water (G=GRAB valid Waste Water ww Analyses Test Product (see) SAMPLE ID Soil/Solid START END FL PRO MS/MSD 8260 Trip Blank 8260 Full List One Character per box. Wipe MATRIX CODE Chlor SAMPLE TYPE (A-Z, 0-9/, -) 8270 Full Methanol Sample lds must be unique H2S04 ITEM NaOH HC TIME DATE TIME MW-2R -04722021 12-2 4-12-21 920 WT MW-1-04122021 4-12-21 WT MW-3 - 64122021 4-12-21 3 WT Х Trip Blank NATNA WT х 5 6 7 8 9 10 11 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE ACCEPTED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS Bottle Kit 3 +2000 Mouseuter 3-30-21 350-21 1400 **PACE** Tall 2 Merum ECT 4/12/1 1535 4-12-21 0,0 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: TEMP IN

SIGNATURE of SAMPLER:

DISTALLIRE OF SAMPLESS

Project Manager Review:

Document Name: Sample Condition Upon Receipt Form Document No.: F-FL-C-007 rev, 13

Document Revised:
May 30, 2018
Issuing Authority:
Pace Florida Quality Office

Sample Condition Upon Possint Form (SCUR) Project # Date and Initials of person: Examining contents:__ PM: LAP Due Date: 04/19/21 **Project Manager:** 4/12/21 Label: CLIENT: 37-ECTTAM Client: Deliver: pH: Date: 4/12/21 Time: 1540 Initials: MVC Thermometer Used: State of Origin: For WV projects, all containers verified to ≤6 °C Cooler #1 Temp. C 16, (Visual) 6, (Correction Factor) 10, (Actual) Samples on ice, cooling process has begun (Visual) (Correction Factor) Cooler #2 Temp.°C (Actual) Samples on ice, cooling process has begun Cooler #3 Temp.°C_ __(Visual) ___ ____(Correction Factor) ___ _(Actual) Samples on ice, cooling process has begun Cooler #4 Temp.°C _(Visual) (Correction Factor) _(Actual) Samples on ice, cooling process has begun Cooler #5 Temp.°C (Visual) (Correction Factor) (Actual) Samples on ice, cooling process has begun _(Visual) _ ____(Correction Factor) ___ Cooler #6 Temp.°C_ _(Actual) Samples on ice, cooling process has begun ☐ Fed Ex ☐ UPS ☐ USPS Client Commercial Pace Other ☐ First Overnight ☐ Priority Overnight ☐ Standard Overnight ☐ Ground **Shipping Method:** ☐ International Priority ☐ Other ☐ Recipient ☐ Sender ☐ Third Party ☐ Credit Card □ Unknown Billing: Tracking # Custody Seal on Cooler/Box Present: Yes No Seals intact: Yes No Blue Dry None Packing Material: Bubble Wrap Bubble Bags None Other Samples shorted to lab (If Yes, complete) Shorted Date: Shorted Time: Qty: Comments: Chain of Custody Present QYes □ No □N/A Chain of Custody Filled Out Yes □ No □N/A Yes No No NA Relinquished Signature & Sampler Name COC □ No □N/A Samples Arrived within Hold Time Yes Rush TAT requested on COC □Yes No □N/A Sufficient Volume Yes □ No □N/A □ No □N/A Correct Containers Used Yes Containers Intact Yes No No NA Sample Labels match COC (sample IDs & date/time of collection) NYes □ No □N/A All containers needing acid/base preservation have been Preservation Information: Yes □ No □N/A Preservative: All Containers needing preservation are found to be in Lot #/Trace #: compliance with EPA recommendation: Yes No No N/A Date: Time: Exceptions: VOA, Coliform, TOC, O&G, Carbamates Headspace in VOA Vials? (>6mm): □Yes □No □N/A Trip Blank Present: Yes □ No □N/A Client Notification/ Resolution: Person Contacted: Date/Time: Comments/ Resolution (use back for additional comments):

Date:

Industrial Waste Operating Report Form (IWORF)

				The state of the s
Permit #:	IW-333	Permit Year:	2021	Reports must be mailed to: Department of Regulatory and Economic Resources Environmental Resources Management
Facility Name:	SAFETY-KLEEN SY	STEMS, INC.		701 NW 1st Ct, Suite #700 Miami, FL 33136-3912
Facility Address:	8755 NW 95 ST			
	MEDLEY, FL 33178			
Contact Name:	Mr. Larry Rodrigue:	z		
Instructions: Indica period being reported operating permit docu facility.	ate which report is being plant attach the applicable ument for more information	provided by checking off the e information (e.g. waste n n on reporting and samplin	e applicable "Sour nanifests, analytics g requirements, in	arce Type" box(es) from the listing below. In addition, indicate the cal results, etc.) as required by each Source Type. Refer to the including analytical methodologies, applicable to the referenced
Source Type: Description: C Information st	RR-1	Reporting Frequenc r receipts of all hazardous v er, volume and final destina	waste industrial w	Reporting Period: waste, industrial wastewater, sludge and/or ash disposed of. nall also be maintained on-site for review.
Sampling Require	ements:			
Source Type:	SMP-1	Reporting Frequence	cy: Annually	Reporting Period:
Description: G Parameters: C	roundwater from the facili admium (Total), Chromiu	ty monitoring well(s). m (Total), Lead (Total), Sil	ver (Total)	
	SMP-2 roundwater from monitori PA Series 8260, EPA Se	Reporting Frequen ng well nearest the contair ries 8270, TRPH		Reporting Period:
Average Daily W	aste Water Flow Disc	charge to Sanitary Sev	vers:	Gallons Per Day (GPD)
I hereby certify that	at, to the best of my know	owledge, this document	and all attachm	nents are true, accurate and complete.
Authorized Represer	ntative or Corporate Office	er		Report Completion Date

May 16, 2022 210212-2201

Mrs. Maya Fisher, Environmental Specialist Supervisor **Department of Regulatory and Economic Resources** Environmental Resources Management 701 NW 1st Court, 7th Floor Miami, Florida 33136-3912

Re: Safety-Kleen Systems, Inc., Medley, Florida Industrial Waste Permit No. IW-000333-2021/2022 (File # 10139) Annual Report of Groundwater Quality

Dear Mrs. Fisher:

On behalf of Safety-Kleen Systems, Inc. (SK), this document comprises the Annual Report of Groundwater Quality as required by Specific Condition 16 and the associated sampling requirements in the above-referenced Industrial Waste Annual Operating Permit for SK's Medley, Florida facility. Environmental Consulting & Technology, Inc. (ECT) completed the annual groundwater sampling at the above-referenced Medley facility in accordance with the facility's permit.

On April 18, 2022, ECT collected groundwater samples from monitoring wells MW-1, MW-2R (a.k.a. MW-2), and MW-3 per the annual SMP-1 requirement, and from monitoring well MW-2R per the annual SMP-2 requirement. The samples from all three wells (for SMP-1) were submitted to Pace Analytical Services, Inc. (PAS) for analyses of the silver, cadmium, chromium, and lead by U.S. Environmental Protection Agency (EPA) Method 200.8. In addition, samples from monitoring well MW-2R (for SMP-2) were also submitted to PAS for analyses of volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and Florida Petroleum Range Organics (FL-PRO). The locations of the facility's groundwater monitoring wells are shown on the enclosed Figure 1.

A peristaltic pump was used to purge and sample the monitoring wells. The field notes, groundwater sampling logs, and equipment calibration forms are provided in <u>Attachment A</u>. The groundwater quality results (laboratory report) are provided in <u>Attachment B</u>.

The laboratory report indicated that concentrations for three of the four metals (i.e., cadmium, lead, and silver) were below their respective method detection limits (MDLs) in all three wells sampled per the annual SMP-1 requirements. Chromium was detected at estimated concentrations of 0.62I micrograms per liter (μ g/L) at monitoring well MW-1, 0.79I μ g/L at monitoring well MW-2R, and 0.90I μ g/L at monitoring well MW-3. However, those concentrations were detected between the laboratory MDL and the laboratory practical quantitation limit (PQL) and are well below the groundwater cleanup target level (GCTL) of 100 μ g/L for chromium as specified in the permit.

Per the annual SMP-2 requirement at monitoring well MW-2R, the laboratory report indicated the following results for the various analyses of organic parameters:

1. FL-PRO concentration was below the laboratory MDL; that is, none was detected.

Mrs. Maya Fisher, Environmental Specialist Supervisor

Department of Regulatory and Economic Resources

May 16, 2022

Page 2

- 2. No SVOC was detected (i.e., EPA Series 8270 parameters).
- 3. No VOC was detected (i.e., EPA Series 8260 parameters).

As such, the observed groundwater quality is compliant with the permit.

If you have any questions regarding this report, please call Jeff Curtis of SK at (561) 523-4719. Thank you.

Sincerely,

ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.

Keith F. Morrison

Senior Associate Scientist I

Gregory Sattler, P.E.

Senior Remediation Engineer

SAFETY-KLEEN SYSTEMS, INC.

Jeff Curtis

EHS Manager, Florida Safety-Kleen Systems, Inc.

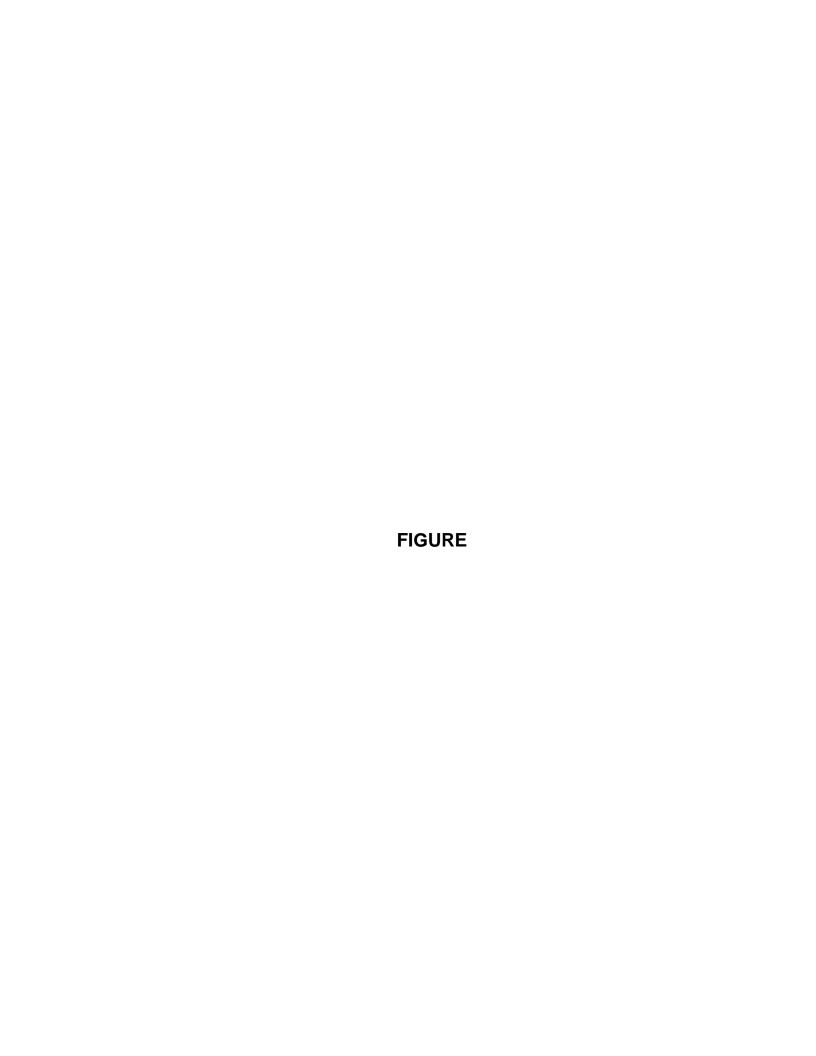
5610 Alpha Drive

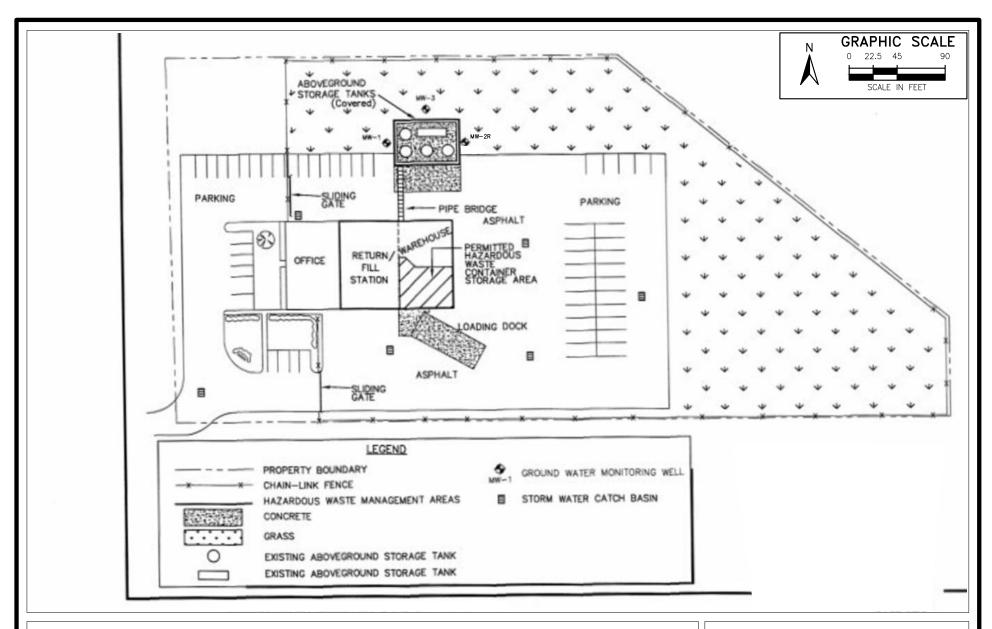
Boynton Beach, Florida 33426

jeff.curtis@safety-kleen.com

Enclosures:

Figure 1


Attachment A – Field Notes, Groundwater Sampling Logs, and Equipment Calibration Logs Attachment B - Laboratory Report


cc: Robert Schoepke – S-K (electronic only)

Gregory Sattler – ECT (electronic only) Keith Morrison – ECT (electronic only)

Facility 999 File #1760, % S-K Medley facility Branch General Manager

FIGURE 1.

FACILITY LAYOUT AND ACCESS CONTROL FEATURES SAFETY-KLEEN SYSTEMS, INC. FACILITY 8755 NW 95TH STREET, MEDLEY, FLORIDA

Source: ERM, 2012; ECT, 2020.

ATTACHMENT A

FIELD NOTES, GROUNDWATER SAMPLING LOGS, AND EQUIPMENT CALIBRATION LOGS

Safety Plean medly Py 210212-020 Ect-12ash Rms man /4 mrs 41820 P. 2 1845 at condo in Fil landerdale/compute Kenumons 645 Cahbroton well 7 w off to 3 efetpklean Med legs Medley Dantel Vilatohao New Moragen Donners on Vacation, Go over MASP weather - Partly away 7 got NEWING 3 mph Dung mw-1 838 2901 Samping mul 913 purging MW-3 × 938 sampling MWB 949 purgus Mer-2R - collectus M3/m30 Scupe from Discharge from Pur Twent tell VIOR Samony MW 2R 1025 Sture tur Sigation Druns of Divertigation Denied unsper at Serry Kleen Facility volume! Cab Results with to PACE Lays in oldsmer 12/1300 get 1315 of AEL WOD/1530got more go univad T13, calibration 1550 at Ect offre. oneck on motors/ 1615 Comprete. Teeth of Morn

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

WILLE NO. 1877													
	ELL NO: MW-1 SAMPLE ID: MW-1-04 18 2012 DATE: 418/22												
PURGING DATA													
WELL TUBING 14-OD WELL SCREEN INTERVAL STATIC DEPTH	PURGE PUMP TY	PE											
DIAMETER (inches): 2 DIAMETER (inches):1/8-ID DEPTH: 2 feet to 12 feet TO WATER (feet): 3.3	OR BAILER:	PP											
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPAC (only fill out if applicable)	CITY												
$= (11.2 \text{ feet} - 3.35 \text{ feet}) \times 0.16$	gallons/foot = 1,26	gallons											
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH (only fill out if applicable)	H) + FLOW CELL VOLUME												
= gallons + (gallons/foot X fee	t) + gallons =	gallons											
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 7.3 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 7.3 PURGING INITIATED AT: 838 ENDED AT	TOTAL VOLUMENTE PURGED (98												
TIME VOLUME PURGED (gallons) CUMUL. VOLUME PURGE RATE (gpm) DEPTH TO WATER (feet) PURGED (gallons) (gpm) PURGE (feet) PURGED (gpm) PH (standard units) TEMP. (°C) (circle units) (circle u	TURBIDITY COLOR (MTUs) (describe)	ODOR (describe) ORP											
854 71,3 =1,3 0.08 3.50 7,18 24,11 481 0.18	1-66 clar	SIGNY -271											
857 -0,24 = 1,54 3,50 7,19 24,12 481 0.19	1-67 1	argenic -275											
900 -0124 1.78 3.50 7,20 24,14 481 0.19	1.63	-280											
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65;		12" = 5.88											
		5/8" = 0.016											
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = SAMPLING DATA	Peristaltic Pump; O = Ot	ther (Specify)											
CAMPLED BY (PRINT) / A FEIL IATION: CAMPLED C) CICNIATURE (C)													
PUMP OR TUBING TUBING SAMPLENGS SIGNATURESS. SAMPLING SAMPLING INITIATED		R SIZE: µm											
DEPTH IN WELL (feet): MATERIAL CODE: HDPE Filtration Equipme	ent Type:												
FIELD DECONTAMINATION: PUMP Y N TUBING Y N replaced) DUPLICAT	E: Y N	10											
	D ANALYSIS SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE											
CODE CONTAINERS CODE USED ADDED IN FIELD PH	, Ag by EPA APP	(mL per minute)											
Metho	od 200.8	303											
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\													
DEMARKS													
REMARKS: Q= 0.13 gs + 60 2cg = 0.08 ppm													
	Density Polyethylene; PP	= Polypropylene;											
, , , , , , , , , , , , , , , , , , , ,													

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

62-160.800 F.A.C. Revision Date: March 1, 2014

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE NAME: Sa	fetv Kleen	Systems,	Inc.			ITE OCATION: {	8755 N	1W 9	5 th S	Street, I	Medley, FL				
WELL NO:				SAMPLE ID						,	DATE:	18/22			
						IRGING			•		1	10/22			
		D 17 11 11 12 1	ER (inches):	1/8-ID DEPTH	SCREEN I: 2 feet I – ST	I INTERVAL to 12 feet ATIC DEPTH	H TO WA	STATI TO W	X V	(feet): 3,	80 OF	RGE PUMP TY BAILER:	PP	allons	
	IT VOLUME P	URGE: 1 EQU	IPMENT VOL	= PUMP VOLUM	ME + (TU	BING CAPA			TUB	ING LEN	STH) + FLOW C	ELL VOLUME			
. ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ons + (allons/foo	ot X			feet) +	gallons =		ons	
DEPTH IN	MP OR TUBIN WELL (feet):	⁶ 4.5	DEPTH IN	MP OR TUBING (WELL (feet):	1.5	PURG	SING ATED AT	91	9	PURGIN ENDED	IG AT: 0 11	TOTAL VOL PURGED (g:	uME allons):		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)		pH tandard units)	TEMP. (°C)	CONI (circle u μπhos or (μS/	nits) /m	OX (circ	SOLVED YGEN ele units) g/L or attration	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)	ORP	
1005	≈1,3	= 1.3	D.09	3,90	2.22	24.94	51	O	O.	UB	4.69	Clear	uzeme	=286	
1000	0,24	1.54	1	3.90 7	1,20	24.80	50	8	0.	07	4-84	4	4.	- 290	
1011	0-24	1.78	1	3.40 7	17	24.77	50		0	06	4,93	0		-294	
	710 111 111 300 7.00 7.00														
WELL CAP	PACITY (Gallor	ns Per Foot):	0.75 " = 0.02;	1" = 0.04; 1	. 25" = 0.	.06; 2"=	0.16;	3 " = 0.	.37;	4" = 0.65	5; 5" = 1.02;	6" = 1.47;	12" = 5.88		
TUBING IN	ISIDE DÍA. CA EQUIPMENT (PACITY (Gal./	Ft.): 1/8" = 0 = Bailer:	.0006; 3/16" = BP = Bladder Put		1/4" = 0.0 ESP = Elect	0026;	5/16"	= 0.00)4; 3/8		2" = 0.010;	5/8" = 0.016 ther (Specify)		
			Dallory	Diagon i di		MPLING			o r unii	ρ,	- i cristanic i u	тр, О-О	iner (Opecity)		
SAMPLED	BY (PRINT)	AFFILIATION:	NECT		GNATU		m	_		SAMPLI INITIATE		SAMPLIN ENDED A		5	
PUMP OR DEPTH IN	TUBING WELL (feet):	45	•	TUBING MATERIAL COD	E: H[)PE				D-FILTER	ED: Y N ment Type:	FILTER	R SIZE:	_μm	
FIELD DEC	CONTAMINATI	ON: PUM	IP Y		TUBING		replace	ed)		DUPLIC		N			
		ER SPECIFICATI	ON			VATION (inclu					DED ANALYSIS	SAMPLING EQUIPMENT		E PUMP V RATE	
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE CG	VOLUME 40 ml	PRESERVATIVE USED HCI+ Ice		TOTAL VOL DED IN FIELD NONE		FIN.	1		OR METHOD	CODE		r minute)	
nw21/	1	CG	40 1111	HOIT ICE		NONE				Organi	60-Volatile c Compounds Method 8260	APP	#30	3	
41820	1	AG	1 L	Ice		NONE			-	Organic	emi-Volatile Compounds Method 8270	APP			
	1	PE	250 ml	HNO3 + Ice		NONE			- 1	Cd, Cr, F Method	Pb, Ag by EPA 200.8	APP			
	2	AG	100 ml	H2SO4 + Ice		NONE					s by FL-PRO Method	APP			
	1 AG 250 ml Ice NONE 8270 LLPAHs APP														
REMARKS	0=0	1390 ×	60 Sec	b.oBgpn	•	* Try	,			butt	n/MSD	A QA	Colbe	HED ALSI	
MATERIAL	L CODES:	AG = Amber S = Silicone;	Glass; CG	= Clear Glass; O = Other (Sp		= High Densi					w Density Polye	thylene; PP	= Polypropyi	ene;	
SAMPLING	G EQUIPMENT	CODES:	APP = After (Through) Peristalti	c Pump;	B = Bai	iler;	BP = B	Bladde	r Pump; Gravity Dra	ESP = Electri	c Submersible Fer (Specify)	Pump;		
NOTES:	1. The abo			of the informa							, 0 - Otti	or (opecity)			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

62-160.800 F.A.C.

Revision Date: March 1, 2014

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE NAME: Sa	fety Kleen	Systems.	Inc.			ITE OCATION:	8755 N	W 95	5 th Street, N	Medley, FL			
WELL NO:				SAMPL	EID: MW-				·	-	18-22		
						RGING							
(only fill out	UME PURGE: if applicable)	1 WELL VOI	FER (inches): LUME = (TO	1/8-ID DI TAL WELL DE	6 feet –	to 12 feet ATIC DEPTI	H TO WAT	TO WA TER) X	0.16	PACITY gallons/fo	RGE PUMP TY BAILER: ot = 1 / 4	PP	allons
	IT VOLUME PI if applicable)	JRGE: 1 EQU	IPMENT VO	L. = PUMP V	OLUME + (TU	BING CAPA				TH) + FLOW CE			
	MP OR TUBIN WELL (feet):	G 7.2		= MP OR TUBII I WELL (feet):		DUDO	allons/foot GING ATED AT:			feet) + IG AT: 93 7	gallons : TOTAL VOL PURGED (g		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND (circle uni µmbee/r or (µS/cr	its)	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)	ORP
931	1,44	LYY	0,09	2,99	7.13	23.51	48	9 (0110	1.99	Char	5 Vigit	-299
934	0.24	1.68	1	2,99	7,14	23.47 23.	490		0109	2/24	1	ardanis	-304
937 0.24 1.92 299 7.15 23. 489 0.09 2.39 1 -308													
								-					
PURGING SAMPLED	PACITY (Gallor ISIDE DIA. CA EQUIPMENT (BY (PRINT) //	PACITY (Gal./ CODES: E		0.0006; 3/1 BP = Bladde	16" = 0.0014; er Pump;	ESP = Elec MPLING (E(S):	0026; tric Subme	5/16" = ersible A	Pump; PP SAMPLI INITIATE	" = 0.006; 1/2 " = Peristaltic Pum NG ED AT: 0 3 A	SAMPLIN	T: 940	
DEPTH IN	WELL (feet):	7.2 ON: PUN	MP Y	II .	CODE: HI		V)replaced		FIELD-FILTER Filtration Equip DUPLIC	ment Type:	(N)	R SIZE:	_ μm
SA	MPLE CONTAIN	ER SPECIFICAT	ION	SAI	MPLE PRESER	VATION (inclu	uding wet ice	e)		PED 411111010	SAMPLING	SAMPL	E PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED	ATIVE A	TOTAL VO	L	FINA	L AND	DED ANALYSIS OR METHOD	EQUIPMENT CODE	FLOV	V RATE r minute)
N-3 2	1	PE	250 ml	HNO3+	Ice	NONE				Pb, Ag by EPA thod 200.8	APP	303	
A.C.										- A			7
REMARKS		1200											
MATERIA	Q F _	AG = Amber S = Silicone;		= Clear Glas	is; HDPE:	- High Dens	ity Polyeth	nylene;	LDPE ≃ Lo	w Density Polyeth	nylene; PP	= Polypropyl	ene;
SAMPLIN	G EQUIPMENT			(Through) Per erse Flow Peri		B = Ba SM = St			adder Pump; ing Gravity Dra	ESP = Electric	Submersible or (Specify)	Pump;	
NOTES		ATION CRITER	RIA FOR RAN	IGE OF VARIA	TION OF LAS	THREE CO	NSECUTIV	VE RE	ADINGS (SEE I	FS 2212, SECTION			

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Project Site/FacID: Safety Ween Myley

Calibrated by (Print)/Affiliation: Kenk Moman ECI Kouch + man

Boldly "X" this box if there is qualified data on this page.

Temperature (Quarterly) Date of Last Temp Verification: See log book:

DISSOLVED OX	YGEN (D	O) (REFER	ENCE: DEP	SOP FT 1500))		Acceptance C	Criteria +/-0.3 n	ng DO/L		
Meter/I	nstrumen	t Name and	Unique ID:	YSI:	536 N	NP3/5N	# 04D 8	023 AP			
	Initials	Date	Time	Standard (DO %)	Temp °C	Saturation mg/L (100%)	Response DO (%)	Deviation mg DO/L	Deviation mg DO/L	Pass or	r Fail
CAL ICV CCV	12m	4-18-12	645	100%	20.0	100.69.6	100.3	9-2	OH	P	F
CAL ICV (CC)	lim	4-19-22	1550	100%	21.2	8.ଷ୍ଟ	1001	9.02	0.15	P	F
CAL ICV CCV				<u>100%</u>						Р	F
CAL ICV CCV				100%		•	<u></u>	··		Р	F
CAL ICV CCV				100%				****		Р	F
CAL ICV CCV				100%				·····		Р	F

See Table FT 1500-1 and/or Table FS 2200-2 for Dissolved Oxygen Saturation corresponding to Temperature.

SPEC	IFIC COND	UCTANO	CE (REFERE	NCE: DEP	SOP FT 1200)		Acceptance Criteria +/-5% the standard										
	Meter/I	nstrumen	t Name and	Unique ID	YSI 536 M	1PS S1	UA 040 90	23 AP									
		Initials	Date	Time	Standard (µmho/cm)	Exp. Date	Lot #	Response	Deviation (%)	Pass o	r Fail						
CAL	(CV) CCV	1 LFm	4-18-22	647	1,413	4/22	16-01207	1419	159.	P	F						
CAL	ICA CCA	Wm	4-18-22	552	1,413	4/22	16-D1207	1420	±58	P	F						
CAL	ICV CCV				22					Р	F						
CAL	ICV CCV									Р	F						
CAL	ICV CCV									Р	F						
CAL	ICV CCV									Р	F						
CAL	ICV CCV									Р	F						
CAL	ICV CCV									Р	F						
CAL	ICV CCV									Р	F						

OXIDATION-R	EDUCTIO	N POTENTI	AL (ORP)		Acceptance Criteria +/-10 mV								
REFERENCE: E	REFERENCE: EPA Region 4, Operating Procedure, Field Measurement of Oxidation-Reduction Potential (ORP)												
Meter/Instrument Name and Unique ID:													
1	Initials	Date	Time	Standard (mV)	Exp. Date	Lot #	Response (mV)	Response (mV)	Pass o	r Fail			
CAL CV CCV	YURS	4-18-22	650	240 mv	4/31/22	160531	246	76	P	F			
CAL ICV CCV) 16m	4-18-22	1555	240 "	4/31/21	16-0531	249	3/2	P	F			
CAL ICV CCV					5.				Р	F			
CAL ICV CCV	'								P	F			
CAL ICV CCV									Р	F			
CAL ICV CCV									Р	F			

Perform ICVs and CCVs only in "READ/RUN" mode.

CAL - Calibration; ICV - Initial Calibration Verification; and, CCV - Continuing Calibration Verification.

FIELD INSTRUMENT CALIBRATION RECORDS - EXAMPLE CALIBRATION LOG - PRP

Project Site/FacID: Sofety Kleen Medley

Calibrated by (Print)/Affiliation: Keith F. Morrison | ECT | Boldly "X" this box if there is qualified data on this page.

TURBIDIT	Y (REFERE	NCE: DEP SOF	FT 1600)		Meter/Inst	rument Name a	and Unique ID:	HACH 21000	SN# 16110C05	5354	6
	Std=0.1-1	0 NTU +/-109	6	Std=11	-40 NTU +/-8	3% Std=4	11-100 NTU +	/-6.5%	Std>100 NTU +	/-5%	
	Initia	als Date	Time	Stand	dard (NTU)	Exp. Date	Lot #	Response (NTU)		Pass o	r Fail
CAL (ICV	ccv 145	n 41822	653	10	SULM	7/22	2961801	9-73	2708	P	F
CAL (ICY	CCV VV	41822	654	20	1)	7/23	2644901	19.4	3%	(P)	F
CAL CV	CCAMP	41812	655	100	n	7/22	26,94901	961	394	(P)	F
CAL ICV	60 JON	1 4-18-22	1557	10	11	7/22		9.75	3.5%	P	F
		4-18-22				7/22	2684801	19.3	3.5%	(P)	F
CAL ICV	Ecv VM	4-18-22	1559	100	P	7/22	2684911	965	3.57	67	F
CAL ICV	CCV									Р	F
CAL ICV	CCV									Р	F
CAL ICV	CCV									Р	F
CAL ICV	CCV									Р	F
CAL ICV	ccv				4					Р	F
CAL ICV	ccv									Р	F
CAL ICV	ccv									Р	F
CAL ICV	ccv									Р	F
		·								Р	F

pH (REFEREN	PH (REFERENCE: DEP SOP FT 1100) Meter/Instrument Name and Unique ID: VST 556 MCS / S NH 0 4 DHo 23 AP													
Mete	er/Instrumen	t Name and	Unique ID:	VSI 536 MP	IS/SNH C	408023	AP							
	Initials	Date	Time	Standard (SU)	Exp. Date	Lot #	Response (SU)	Deviation (SU)	Pass o	r Fail				
CAL CO CO	CV KEN	418-22	657	40	05/22	2007286	4.06	0.06	B	F				
CAL CV CO	CV JUM	4-18-22	700	7.0	09/23	161081	7.09	0-09	P	F				
CAL ICV CO	cv\U\	414-22	703	10.0	02/23	2007250	992	0.08	P	F				
CAL ICV CO	ey ven	4-18-22	1605	4-0	5/22	206778C	4.08	0.00	(b)	F				
CAL ICV CO	ÉV <u>JUM</u>	4-12-22	1610	7.0	9/23	161081	711	0-11	(P)	F				
CAL ICV CO	cy W	4-18-22	1615	10,0	2/22	2 00729	9,90	011	P	F				
CAL ICV CO	cv								Р	F				
CAL ICV CO	cv			-					Р	F				
CAL ICV CO									P	F				
CAL ICV CO	cv								P	F				
CAL ICV CO	cv			[4 <u></u>		<u> </u>			Р	F				
CAL ICV CO				(i)				Р	F				
CAL ICV C	cv			u					Р	F				
CAL ICV C	CV								Р	F				
CAL ICV C	cv			-					Р	F				

Perform ICVs and CCVs only in "READ/RUN" mode.

CAL - Calibration; ICV - Initial Calibration Verification; and, CCV - Continuing Calibration Verification.

Pace Container Order #941673

Add	dresses -							
	By:		Ship To:			Return	To:	
Company	Environme	ntal Consulting &	Company Environmental Consulting	ng &		Company	Pace Analytical Oldsmar	
Contact	Morrison, K	Keith	Contact Morrison, Keith			Contact	Palmer, Lori	
Email	kmorrison@	@ectinc.com	Email kmorrison@ectinc.co	om		Email	lori.palmer@pacelabs.com	
Address	1408 North	Westshore Bllvd	Address 1408 North Westsho	re Bllvd		Address	110 South Bayview Blvd.	1
Address 2	Suite 115		Address 2 Suite 115			Address 2		
	Tampa		City Tampa			City	Oldsmar	
State	-	Zip 33607	State FL Zip 3360)7		State		
	813-493-03	**************************************	Phone 813-493-0383				813-855-1844	1
Priorie	013-453-00		F110116 013-433-0303			THORE	010-033-104-1	
امل خست	(o							
		Safety Kleen Facility	Puo Poto A (00 (000	Drofile	0004 6	- 4	Quote	
C. Christop	En a	Safety Kleen Facility	Due Date 04/08/2022	Fione	9321 lin	le 1	abair al Glossoph	+++-1
	Manager F		eturn Date	Carrier	Pace C	ourier	Location FL	
	Richico Blanks —		Bottle Labels	S .		∼ Во	ttles	
decreas Vier	Blanks —	Nańke	Blank				Boxed Cases	
A HEH!	nclude Trip E	Junto	Pre-Printed N	lo Sample	e IDs		Individually Wrapped	
piliy	We p		X Pre-Printed V				Grouped By Sample ID/M	atrix -
Stole	FI			·			Z LO WY	J
Potu	rn Shippir	and abole	Misc —					
	lo Shipper	ig Labels) (4			Company of the Compan	100
1	Vith Shipper		Sampling Ins	•			Extra Bubble Wrap	
	ect i		Custody Sea				Short Hold/Rush Stic	
_ coc	Options		Temp. Blank	5			DI Water Liter(s) USDA Regulated Soi	
1	lumber of B	1	Syringes				USDA Regulated Sol	18
	Pre-Printed						- Barkey in	
THE I	Zigi 5	3						
# of Sample	es Matrix	Test	Container	Total	# of	Lot#	Notes	
1 13 %	WT.	8260 Full List	3-40mL_vial HCl	3	0		110 1 10 100	
1	WT	8270 Full list plus PAHs	1L AG Unpres + 250 mL AG unpres	2	0		10) 12 (10)	
1 1	wr "	FL Pro Low Volume for Waters	2-100 ml glass amber H2SO4	2	0		154	hadda ya ya da
/3	WT	Metals 200.8 Ag,Cd,Cr,Pb	250mL plastic w/HNO3	3	0		man age of separate a	
1	₩T	8270 Full list plus PAHs MS/MSI	2-1L AG Unpres + 250 mL AG unpres	4	4		w. H. Admin by and	1-4
1 4	WT WT	FL PRO MS/MSD	100ml glass amber H2SO4	2	2		ort in est thesis since	kiero =
17 13 1	WT	8260 Trip Blank	2-40ml vials w/HCL + DI	2	2		Wate (1) Theilift)	
I Posting							Will Aguilated So	dai
1,713	angan kalan Mga kalan							
		hipping Placard In P	Place : NO			LAB	USE:	
12 14	100		less special arrangements are π	ade with	vour proie		Ship Date: 04/08	3/2022
manager.					, , - , - , - , - , - , - , - , -		Prepared By: LS	
			oxic, or radioactive samples to y				Verified By:	
*Payment ter			bottles, as well as cost associate	ed with sa	imple stor	age/disposal.	vermed by.	- 1 108 F 111 10 1
		osal number on the chain of cus	tody to insure proper billing.				SAME TO SERVICE STATE OF THE PROPERTY.	an la a dominate p
1 - 1	1					<u> </u>		
3.1	ample					CLIENT	USE (Optional):	7.1
Quote # 00	107181		0				Date Rec'd:	
是海湖	491 2 8						Received By:	المراك والإستارية
	· · · · · · · · · · · · · · · · · · ·	L	Dogo 1 of 4				Verified By:	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19Dec2016	Page 1 of 1					- k = 3 =
	azz. 1 3	ीं हैं .कें					1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Shire Bakker	7						f tale 1 04/10	5/2022

Pace

CHAIN-OF-CUSTODY / Analytical Request Do CUNION The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be

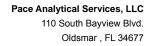
WO#:35711376

wile includes and control was a submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Race Terms and Conditions found at https://info.pacela

-	ed Client Information:	Required F			1	161 -10			Invo	oice In	nform	ation:			.6		0.00		7	8											4:
Compa	The state of the s	Report To:						- 10	Atte	ntion:	400	11 6	160						- 17	5-	20.		(has								
Addres		Сору Та:		(3) THE	1					npany	Name	e: 1	We.				TN.		- 0	328	37	15	Wk.						7777		No.
	15, Tampa, FL 33607	4 11 1 1 1 1 1		15	717	- 4	_	- 73	_	ress:								1	- 1	= 5///					100	Regula	atory Ag	епсу	77.0	The Owner of	
Email:		Purchase C	SAMPLINE			0201	2			e Quoi										-	-	_						= 0	100 m		
Phone:	813-493-0383 Fax:	Project Nar Project #:		iafety Klee	n Facility		2 .	-	_			anagei		lori, pa	lmer@	pace	labs c	om,	-	Cell Co		_	COLD	41101		State	e / Locat	ion	1		100
reque	sico Doe Date.	r toject#s	0	102	1/-	OLDU	, V	_	Fall	e Profi	ile #.	932	1 line	1		fees	War and	D.	- W/08	tool A	Striste	Filter	-4 191	NIV	-		FL	ATM TIMES	and the same of	100000000000000000000000000000000000000	
	MATRIX Drinking W	CODE ater DW	des to left)		COLL	ECTED		NOI			F	Presei	rvativ	'es	_	N/Y		Ţ		Ţ											
ITEM #	SAMPLE ID One Character per box. (A-Z, 0-9 I, -) Sample Ids must be unique Water Valve Product Soli/Solid Gill Other Tissue	WT	MATRIX CODE (see valid codes to left)	ST	TART	DATE	SC My	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H2SO4	HCI	NaOH	Na2S2O3	Other	Analyses Test	ایا	8270 Full list plus PAHs FL Pro Low Volume for		Netals 200 8 Ag, Cd, Cr, Pb 8270 Full list plus PAHs	MS/MSD FL PRO MS/MSD	8260 Trip Blank				Residual Chlorine (Y/N)	AV	w f	12 per 12 le	7+ 3-20	211
1	MW-2R - 04182022		WT	-	~	418-12	1812	W	8	X	X	XX				T	¥.	x x			\neg			П	1	T					2022
2	MW-1 -04182022		WT	_	-	14.21		1	1		X	{								9	100										
3	MW-3 -04 (8 2022		WT		-	4-18-4	939	1	#		1	4	Ш						1												
4	Trip Blank		WT	_	-	-	_	Ш	2	4	y	1	Ш									X	4								
5			Н	4		<u> </u>		Ш			Þ	\perp				1		_	1	_											
6			\vdash		-	-		Н		4		4		4	-			_	4	-		Ц		\sqcup	1						
7					-			Н	_	4		-	Ц	+	+			_	-	-	+	\sqcup	-	\vdash	4	-					
8		4			-				-	4		H		+	+			+	-	-	+	H	+	H		-					
9			\vdash		<u> </u>			Н		-	+	+	Н		-	H	\mathbb{H}	-	-1	+	-		-	H	+	-	_				
10			H		-			Н	1		+	H		+	-	ł	+	+	+	+	+		+	Н	+	-				\dashv	
11			H					Н	\dashv	+	+			+	+		+	+	+	+	+		+	\vdash	+	-					
12	ADDITIONAL COMMENTS		RELINQUI	ISHED BY /	AFFILIATIO	ON	DATE	120	e i	TIME				ACCE	PTED	BY / A	FFILIA	TION				DATE	46	TIME	50.00	25.1	SAMPL	E COND	ITIONS		
LTR	Bottle Kit	La	tha	Shal	hu F	Que	4-1-2	22	11	12		76	eet	7	A	100	m	m	E	25	Ψ,	18/2	2	140	1/2	202		1	122	11.03	8/2- at
124			441	non	W/E	7	4-18	-22				\sum_{i}	W	n	1	XI.	24	90	u.	¥	4	82	4	151	56	4		1/		y	
Quot∈ # 0	0107181				i y		i e							I	i	l,						000	Ĭ			, i			21		THE STATE OF
-	ATTACK STATE AND				100000000000000000000000000000000000000	R NAME	thuch		RE	州西				IIK.					y mi							O	uo			222	
Biling!	PRINT NAME OF SAME SIGNATURE & SAME	ğ.,				NT Name		*********	-		-	5		ME		13	īN	- E	Signa	d: L		2	20			TEMP in C	ceived	stody	Cooler (Y/N)	S ct	
						r 14,56		2107	- /	Ru	W-	M	4	2	Y	\ =	5 1			L	-	9-	22	1 1		벁		ં ટિક્કું	ઈ દે હ	S Internal	

DC#_Title: ENV-FRM-ORB1-0093 Sample Condition Upon Receipt Form Version: 3 | Effective Date: 12/29/2021 | Issued by: Ormond Beach

UR)


Project # **Project Manager:**

Due Date: 04/25/22

Project #	PM: LAI		Date and Initials of person;
Project Manager:	CLIENT: 37-ECTTAM		Examining contents:
Client:			Label:
Onen.			pH:
Thermometer Used: T2	202 Date: 4-18-2	22 Time: 15	6 Initials: 55
State of Origin:F	L	projects, all containers verifie	d to ≤6 °C
Cooler #1 Temp. "C 0 1 2 (Visua	al)+0.2(Correction Factor)(OI (Actual)	Samples on ice, cooling process has begun
Cooler #2 Temp. "C(Visua	al)(Correction Factor)	(Actual)	Samples on ice, cooling process has begun
Cooler #3 Temp.°C(Visua	al)(Correction Factor)	(Actual)	☐ Samples on ice, cooling process has begun
Cooler #4 Temp. C(Visua	al)(Correction Factor)	(Actual)	☐ Samples on ice, cooling process has begun
Cooler #5 Temp.°C(Visua	al)(Correction Factor)	(Actual)	Samples on ice, cooling process has begun
Cooler #6 Temp.°C(Visua	al)(Correction Factor)	(Actual)	Samples on ice, cooling process has begun
Recheck for OOT °C(Vis	sual)(Correction Factor) _	(Actual) Time	e:Initials:
Courier: Fed Ex U	JPS □ USPS Client □ C	Commercial	Other
	ght □ Priority Overnight □ Standar		☐ International Priority
□ Other			,
Billing: □ Recipient	☐ Sender ☐ Third Party	☐ Credit Card	Unknown
Tracking #	1		
Custody Seal on Cooler/Box Prese	nt: ☐ Yes ☑ No Seals i	intact: ☐ Yes ☐ No	Ice: Wet Blue Melted None
Packing Material:	☐Bubble Bags ☐None ☐ (Other	
Samples shorted to lab (If Yes, con	nplete) Shorted Date:	Shorte	d Time: Qty:
		Comments:	,
Chain of Custody Present	Yes □ No □N/A		0
Chain of Custody Filled Out	Yes □ No □N/A		
Polinguished Signature & Complex No	1.1.		

			Comments:
Chain of Custody Present	Ves		I/A
Chain of Custody Filled Out	ZiYes		I/A
Relinquished Signature & Sampler Name COC	Yes	□ No □N	1/A
Samples Arrived within Hold Time	ZiYes		I/A
Rush TAT requested on COC	□Yes	Ø No □N	I/A
Sufficient Volume	Yes	□ No □!	I/A
Correct Containers Used	DYes	□ No □	I/A
Containers Intact	Yes		I/A
Sample Labels match COC (sample IDs & date/time of	of		
collection)	V Yes	□ No □N	I/A
All containers needing acid/base preservation have	/ ,		Preservation Information:
been checked.	Z Yes	\Box No \Box N	I/A Preservative:
All Containers needing preservation are found to be in			Lot #/Trace #:
compliance with EPA recommendation:	ZYes	□ № П	I/A Date: Time:
Exceptions: Vials, Microbiology, O&G,	PFAS		Initials:
Headspace In VOA Vlals? (>6mm):	□Yes	□ No J	I/A
Trip Blank Present:	□Yes	□ No □	I/A
Comments/ Resolution (use back for additional co	mments)	/	

ATTACHMENT B LABORATORY REPORT

April 25, 2022

Keith Morrison Environmental Consulting & Techlology 1408 North Westshore Bllvd Suite 115 Tampa, FL 33607

RE: Project: Safety Kleen Facility
Pace Project No.: 35711376

Dear Keith Morrison:

Enclosed are the analytical results for sample(s) received by the laboratory on April 18, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

· Pace Analytical Services - Ormond Beach

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Palmer

lori.palmer@pacelabs.com

SA Palmer

813-855-1844 Project Manager

Enclosures

cc: A/P, Environmental Consulting & Technology

CERTIFICATIONS

Project: Safety Kleen Facility

Pace Project No.: 35711376

Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174

Alaska DEC- CS/UST/LUST Alabama Certification #: 41320

Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity

Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity

Louisiana Environmental Certificate #: 05007

Maine Certification #: FL01264 Maryland Certification: #346 Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

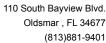
Missouri Certification #: 236

Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710 North Dakota Certification #: R-216

Ohio DEP 87780


Oklahoma Certification #: D9947
Pennsylvania Certification #: 68-00547
Puerto Rico Certification #: FL01264
South Carolina Certification: #96042001
Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165

West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

SAMPLE SUMMARY

Project: Safety Kleen Facility

Pace Project No.: 35711376

Lab ID	Sample ID	Matrix	Date Collected	Date Received
35711376001	MW-2R-04182022	Water	04/18/22 10:12	04/18/22 15:15
35711376002	MW-1-04182022	Water	04/18/22 09:01	04/18/22 15:15
35711376003	MW-3-04182022	Water	04/18/22 09:38	04/18/22 15:15
35711376004	Trip Blank	Water	04/18/22 00:01	04/18/22 15:15

SAMPLE ANALYTE COUNT

Project: Safety Kleen Facility

Pace Project No.: 35711376

Lab ID	Sample ID	Method	Analysts	Analytes Reported
35711376001	MW-2R-04182022	FL-PRO	NCB1	3
		EPA 200.8	AS3	4
		EPA 8270 by SIM	JPB	20
		EPA 8270	TWB	82
		EPA 8260	AST	52
35711376002	MW-1-04182022	EPA 200.8	AS3	4
35711376003	MW-3-04182022	EPA 200.8	AS3	4
35711376004	Trip Blank	EPA 8260	AST	52

PASI-O = Pace Analytical Services - Ormond Beach

10 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

Sample: MW-2R-04182022	Lab ID:	35711376001	Collected	d: 04/18/22	2 10:12	Received: 04/	18/22 15:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
FL-PRO Water, Low Volume	Analytical	Method: FL-PR	O Prepara	tion Method	d: EPA 3	3510			
	Pace Anal	ytical Services	- Ormond E	Beach					
Petroleum Range Organics	0.78 U	mg/L	0.97	0.78	1	04/20/22 20:30	04/21/22 13:24		
Surrogates	0.70 0	IIIg/L	0.31	0.70	'	04/20/22 20.30	04/21/22 13:24		
o-Terphenyl (S)	85	%	66-139		1	04/20/22 20:30	04/21/22 13:24	84-15-1	
N-Pentatriacontane (S)	102	%	42-159		1	04/20/22 20:30	04/21/22 13:24	630-07-09	
200 0 MET 10 DMO	A I: - 4: I	Mathad, EDA O	00 0 D		d. CD	A 200 0			
200.8 MET ICPMS	•	Method: EPA 2	•		100: EP	4 200.8			
	Pace Ana	ytical Services	- Ormona E	seacn					
Cadmium	0.050 U	ug/L	0.10	0.050	1	04/19/22 06:52	04/19/22 19:30	7440-43-9	
Chromium	0.79 I	ug/L	1.0	0.50	1	04/19/22 06:52	04/19/22 19:30	7440-47-3	
ead	0.22 U	ug/L	1.0	0.22	1		04/19/22 19:30		
Silver	0.21 U	ug/L	0.50	0.21	1	04/19/22 06:52	04/19/22 19:30	7440-22-4	
3270 MSSV PAHLV by SIM	Analytical	Method: EPA 8	270 bv SIM	Preparation	n Meth	od: EPA 3510			
2.0 11.000 17.11.21 29 01.11.	-	vtical Services	-						
		•							
Acenaphthene	0.019 U	ug/L	0.50	0.019	1		04/21/22 00:40		
cenaphthylene	0.031 U	ug/L	0.50	0.031	1		04/21/22 00:40		
Anthracene	0.020 U	ug/L	0.50	0.020	1		04/21/22 00:40		
Benzo(a)anthracene	0.020 U	ug/L	0.10	0.020	1		04/21/22 00:40		
Benzo(a)pyrene	0.021 U	ug/L	0.20	0.021	1		04/21/22 00:40		
Benzo(b)fluoranthene	0.027 U	ug/L	0.10	0.027	1		04/21/22 00:40		
Benzo(g,h,i)perylene	0.023 U 0.024 U	ug/L	0.50 0.50	0.023 0.024	1 1		04/21/22 00:40 04/21/22 00:40		
Benzo(k)fluoranthene Chrysene	0.024 U	ug/L ug/L	0.50	0.024	1		04/21/22 00:40		
Dibenz(a,h)anthracene	0.025 U	ug/L ug/L	0.30	0.025	1		04/21/22 00:40		
	0.023 U	ug/L ug/L	0.13	0.023	1		04/21/22 00:40		
Fluorene	0.017 U	ug/L ug/L	0.50	0.017	1		04/21/22 00:40		
ndeno(1,2,3-cd)pyrene	0.024 U	ug/L ug/L	0.30	0.024	1		04/21/22 00:40		
-Methylnaphthalene	0.19 U	ug/L	2.0	0.19	1		04/21/22 00:40		
2-Methylnaphthalene	0.17 U	ug/L	2.0	0.17	1		04/21/22 00:40		
Naphthalene	0.29 U	ug/L	2.0	0.29	1		04/21/22 00:40		
Phenanthrene	0.019 U	ug/L	0.50	0.019	1		04/21/22 00:40		
Pyrene	0.032 U	ug/L	0.50	0.032	1		04/21/22 00:40		
Surrogates		Ü							
2-Fluorobiphenyl (S)	70	%	32-100		1	04/20/22 13:15	04/21/22 00:40	321-60-8	
o-Terphenyl-d14 (S)	96	%	48-112		1	04/20/22 13:15	04/21/22 00:40	1718-51-0	
2270 MSSV Samiyalatila Organia	Analytical	Method: EPA 8	270 Propa	ration Moth	od: EDA	3510			
270 MSSV Semivolatile Organic	=				ou. LFF	(3310			
	Pace Anal	ytical Services	- Ormona E	eacn					
Acenaphthene	0.34 U	ug/L	4.8	0.34	1	04/22/22 18:15	04/25/22 11:07	83-32-9	
Acenaphthylene	0.29 U	ug/L	4.8	0.29	1		04/25/22 11:07		
Aniline	0.90 U	ug/L	4.8	0.90	1		04/25/22 11:07		
Anthracene	0.21 U	ug/L	4.8	0.21	1		04/25/22 11:07		
Benzidine	0.83 U	ug/L	23.8	0.83	1		04/25/22 11:07		
Benzo(a)anthracene	0.19 U	ug/L	4.8	0.19	1		04/25/22 11:07		
Benzo(a)pyrene	0.16 U	ug/L	0.95	0.16	1	04/22/22 18:15	04/25/22 11:07	50-32-8	

Project: Safety Kleen Facility

Pace Project No.: 35711376

Sample: MW-2R-04182022 Lab ID: 35711376001 Collected: 04/18/22 10:12 Received: 04/18/22 15:15 Matrix: Water **Parameters** PQL DF Results Units MDI Prepared CAS No. Analyzed Qual Analytical Method: EPA 8270 Preparation Method: EPA 3510 8270 MSSV Semivolatile Organic Pace Analytical Services - Ormond Beach Benzo(b)fluoranthene 0.26 U ug/L 1.9 0.26 04/22/22 18:15 04/25/22 11:07 205-99-2 1 04/22/22 18:15 Benzo(g,h,i)perylene 0.16 U ug/L 4.8 0.16 1 04/25/22 11:07 191-24-2 Benzo(k)fluoranthene 0.17 U ug/L 3.8 0.17 1 04/22/22 18:15 04/25/22 11:07 207-08-9 Benzyl alcohol 04/22/22 18:15 04/25/22 11:07 100-51-6 1.2 U ug/L 4.8 1.2 1 4-Bromophenylphenyl ether 1.6 U ug/L 4.8 16 1 04/22/22 18:15 04/25/22 11:07 101-55-3 Butylbenzylphthalate 11 II ug/L 4.8 1 1 1 04/22/22 18:15 04/25/22 11:07 85-68-7 Caprolactam 0.81 U ug/L 4.8 0.81 1 04/22/22 18:15 04/25/22 11:07 105-60-2 N2 Carbazole 1.1 U ug/L 4.8 1.1 1 04/22/22 18:15 04/25/22 11:07 86-74-8 5.2 U 19.1 5.2 04/22/22 18:15 04/25/22 11:07 59-50-7 4-Chloro-3-methylphenol ug/L 1 4-Chloroaniline 1.3 U ug/L 4.8 1.3 1 04/22/22 18:15 04/25/22 11:07 106-47-8 bis(2-Chloroethoxy)methane 1.5 U ug/L 4.8 1.5 1 04/22/22 18:15 04/25/22 11:07 111-91-1 bis(2-Chloroethyl) ether 0.32 U 0.32 04/22/22 18:15 04/25/22 11:07 ug/L 3.8 1 111-44-4 bis(2-Chloroisopropyl) ether 1.7 U 04/25/22 11:07 108-60-1 ug/L 5.7 1.7 1 04/22/22 18:15 2-Chloronaphthalene 0.32 U ug/L 48 0.32 1 04/22/22 18:15 04/25/22 11:07 91-58-7 2-Chlorophenol 1.3 U ug/L 4.8 1.3 1 04/22/22 18:15 04/25/22 11:07 95-57-8 1.4 U 4.8 1.4 04/22/22 18:15 04/25/22 11:07 7005-72-3 4-Chlorophenylphenyl ether ug/L 1 0.19 U 4.8 0 19 04/22/22 18:15 04/25/22 11:07 218-01-9 Chrysene ug/L 1 Dibenz(a,h)anthracene 04/22/22 18:15 04/25/22 11:07 0.17 U ug/L 53-70-3 1.9 0.17 1 1.4 U ug/L 4.8 1 04/22/22 18:15 04/25/22 11:07 132-64-9 Dibenzofuran 14 1,2-Dichlorobenzene 1.5 U ug/L 4.8 1.5 1 04/22/22 18:15 04/25/22 11:07 95-50-1 1,3-Dichlorobenzene 1.4 U ug/L 4.8 1.4 1 04/22/22 18:15 04/25/22 11:07 541-73-1 1,4-Dichlorobenzene 1.5 U 4.8 1.5 1 04/22/22 18:15 04/25/22 11:07 106-46-7 ug/L 3,3'-Dichlorobenzidine 1.0 U ug/L 9.5 1.0 1 04/22/22 18:15 04/25/22 11:07 91-94-1 0.32 U 0.32 04/22/22 18:15 04/25/22 11:07 120-83-2 2,4-Dichlorophenol ug/L 19 1 Diethylphthalate 1.3 U ug/L 4.8 1.3 1 04/22/22 18:15 04/25/22 11:07 84-66-2 2,4-Dimethylphenol 0.98 U ug/L 4.8 0.98 1 04/22/22 18:15 04/25/22 11:07 105-67-9 1.4 U Dimethylphthalate ug/L 4 8 14 1 04/22/22 18:15 04/25/22 11:07 131-11-3 3.4 U 3.4 Di-n-butylphthalate ug/L 4 8 1 04/22/22 18:15 04/25/22 11:07 84-74-2 4.4 U 19.1 4.4 04/25/22 11:07 4,6-Dinitro-2-methylphenol ug/L 1 04/22/22 18:15 534-52-1 1.8 U 5.7 1.8 04/25/22 11:07 1,2-Dinitrobenzene ug/L 1 04/22/22 18:15 528-29-0 1,3-Dinitrobenzene 1.7 U ug/L 76 17 1 04/22/22 18:15 04/25/22 11:07 99-65-0 2,4-Dinitrophenol 2.5 U ug/L 19.1 2.5 1 04/22/22 18:15 04/25/22 11:07 51-28-5 2,4-Dinitrotoluene 1.1 U ug/L 3.8 1.1 1 04/22/22 18:15 04/25/22 11:07 121-14-2 2,6-Dinitrotoluene 0.84 U ug/L 1.9 0.84 1 04/22/22 18:15 04/25/22 11:07 606-20-2 0.88 Di-n-octylphthalate 0.88 U ug/L 48 1 04/22/22 18:15 04/25/22 11:07 117-84-0 1,2-Diphenylhydrazine 1.3 U ug/L 4.8 1.3 1 04/22/22 18:15 04/25/22 11:07 122-66-7 bis(2-Ethylhexyl)phthalate 4.8 1.3 04/22/22 18:15 04/25/22 11:07 1.3 U ug/L 1 117-81-7 Fluoranthene 0.20 U 4.8 0.20 04/22/22 18:15 04/25/22 11:07 ug/L 1 206-44-0 0.32 U ug/L 4.8 0.32 1 04/22/22 18:15 04/25/22 11:07 86-73-7 Fluorene Hexachloro-1,3-butadiene 0.33 U ug/L 1.9 0.33 1 04/22/22 18:15 04/25/22 11:07 87-68-3 Hexachlorobenzene 0.28 U ug/L 0.95 0.28 1 04/22/22 18:15 04/25/22 11:07 118-74-1 Hexachlorocyclopentadiene 3.3 U ug/L 10.5 3.3 1 04/22/22 18:15 04/25/22 11:07 77-47-4 Hexachloroethane 1.3 U ug/L 4.8 1.3 1 04/22/22 18:15 04/25/22 11:07 67-72-1 Indeno(1,2,3-cd)pyrene 0.16 U ug/L 1.9 0.16 1 04/22/22 18:15 04/25/22 11:07 193-39-5

REPORT OF LABORATORY ANALYSIS

1.6

4.8

1.6 U

ug/L

Isophorone

Date: 04/25/2022 04:24 PM

04/22/22 18:15 04/25/22 11:07 78-59-1

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

Sample: MW-2R-04182022	Lab ID:	35711376001	Collecte	d: 04/18/22	10:12	Received: 04/	18/22 15:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Semivolatile Organic	Analytical	Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
	Pace Ana	lytical Services	- Ormond E	Beach					
1-Methylnaphthalene	0.34 U	ug/L	4.8	0.34	1	04/22/22 18:15	04/25/22 11:07	90-12-0	
2-Methylnaphthalene	0.27 U	ug/L	4.8	0.27	1	04/22/22 18:15	04/25/22 11:07		
2-Methylphenol(o-Cresol)	0.29 U	ug/L	4.8	0.29	1		04/25/22 11:07		
3&4-Methylphenol(m&p Cresol)	0.21 U	ug/L	9.5	0.21	1		04/25/22 11:07	00 10 1	
Naphthalene	0.37 U	ug/L	4.8	0.37	1		04/25/22 11:07	91-20-3	
2-Nitroaniline	1.2 U	ug/L	4.8	1.2	1		04/25/22 11:07		
3-Nitroaniline	1.2 U	ug/L	4.8	1.2	1	04/22/22 18:15	04/25/22 11:07		
4-Nitroaniline	0.83 U	ug/L	3.8	0.83	1		04/25/22 11:07		
Nitrobenzene	0.35 U	ug/L	3.8	0.35	1		04/25/22 11:07		
2-Nitrophenol	1.3 U	ug/L	4.8	1.3	1		04/25/22 11:07		
4-Nitrophenol	1.9 U	ug/L	19.1	1.9	1		04/25/22 11:07		
N-Nitrosodimethylamine	0.19 U	ug/L	1.9	0.19	1	04/22/22 18:15	04/25/22 11:07		
N-Nitroso-di-n-propylamine	0.13 U	ug/L ug/L	3.8	0.13	1		04/25/22 11:07		
N-Nitrosodiphenylamine	1.2 U	ug/L	4.8	1.2	1		04/25/22 11:07		
Pentachlorophenol	1.6 U	ug/L	19.1	1.6	1		04/25/22 11:07		
Phenanthrene	0.22 U	ug/L	4.8	0.22	1		04/25/22 11:07		
Phenol	0.60 U	ug/L	4.8	0.60	1	04/22/22 18:15	04/25/22 11:07		
Pyrene	0.20 U	ug/L ug/L	4.8	0.00	1		04/25/22 11:07		
Pyridine	1.1 U	ug/L ug/L	4.8	1.1	1		04/25/22 11:07		
2,3,4,6-Tetrachlorophenol	1.1 U	ug/L ug/L	4.8	1.0	1		04/25/22 11:07		
2,3,5,6-Tetrachlorophenol	1.0 U	-	4.6 8.6	1.8	1		04/25/22 11:07		N2
1,2,4-Trichlorobenzene	1.6 U 1.4 U	ug/L	4.8	1.6	1	04/22/22 18:15	04/25/22 11:07		INZ
	0.22 U	ug/L	3.8	0.22	1	04/22/22 18:15			
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	0.22 U	ug/L	3.6 1.9	0.22	1		04/25/22 11:07		
Surrogates	0.34 0	ug/L	1.9	0.34	1	04/22/22 10.15	04/25/22 11.07	00-00-2	
Nitrobenzene-d5 (S)	46	%	10-188		1	04/22/22 18:15	04/25/22 11:07	4165-60-0	
2-Fluorobiphenyl (S)	44	%	22-101		1		04/25/22 11:07		
o-Terphenyl-d14 (S)	71	%	48-124		1		04/25/22 11:07		
Phenol-d6 (S)	16	%	10-48		1		04/25/22 11:07		
2-Fluorophenol (S)	23	%	10-40		1		04/25/22 11:07		
2,4,6-Tribromophenol (S)	68	%	28-114		1		04/25/22 11:07		
	00	70	20-114		'	04/22/22 10.13	04/23/22 11.07	110-79-0	
3260 MSV	Analytical	Method: EPA 8	260						
	Pace Ana	lytical Services	- Ormond E	Beach					
Acetone	9.4 U	ug/L	25.0	9.4	1		04/20/22 02:22	67-64-1	
Benzene	0.30 U	ug/L	1.0	0.30	1		04/20/22 02:22		
Bromobenzene	0.21 U	ug/L	1.0	0.21	1		04/20/22 02:22		
Bromochloromethane	0.37 U	ug/L	1.0	0.37	1		04/20/22 02:22		
Bromodichloromethane	0.44 U	ug/L	1.0	0.44	1		04/20/22 02:22		
Bromoform	2.8 U	ug/L	3.0	2.8	1		04/20/22 02:22		
Bromomethane	3.9 U	ug/L	10.0	3.9	1		04/20/22 02:22		J(v2)
2-Butanone (MEK)	6.0 U	ug/L	50.0	6.0	1		04/20/22 02:22		- ('-/
Carbon disulfide	1.8 U	ug/L	10.0	1.8	1		04/20/22 02:22		
Carbon tetrachloride	0.44 U	ug/L	3.0	0.44	1		04/20/22 02:22		
Chlorobenzene	0.35 U	ug/L	1.0	0.35	1		04/20/22 02:22		

Project: Safety Kleen Facility

Pace Project No.: 35711376

1,2-Dichlorobenzene-d4 (S)

Date: 04/25/2022 04:24 PM

100

%

Lab ID: 35711376001 Collected: 04/18/22 10:12 Received: 04/18/22 15:15 Sample: MW-2R-04182022 Matrix: Water PQL DF **Parameters** Results Units MDI Prepared CAS No. Analyzed Qual Analytical Method: EPA 8260 8260 MSV Pace Analytical Services - Ormond Beach Chloroethane 3.7 U ug/L 10.0 3.7 04/20/22 02:22 75-00-3 1 04/20/22 02:22 67-66-3 Chloroform 0.56 U ug/L 1.0 0.56 1 Chloromethane 0.92 U ug/L 1.0 0.92 1 04/20/22 02:22 74-87-3 J(v1) Dibromochloromethane 0.97 U ug/L 2.0 0.97 1 04/20/22 02:22 124-48-1 Dibromomethane 0.34 U ug/L 2.0 0.34 1 04/20/22 02:22 74-95-3 1.2-Dichlorobenzene 0.60 U ug/L 1.0 0.60 1 04/20/22 02:22 95-50-1 1.3-Dichlorobenzene 0.33 U ug/L 1.0 0.33 1 04/20/22 02:22 541-73-1 1.4-Dichlorobenzene 0.28 U ug/L 1.0 0.28 1 04/20/22 02:22 106-46-7 04/20/22 02:22 75-71-8 0.84 Dichlorodifluoromethane 0.84 U ug/L 10 1 1,1-Dichloroethane 0.34 U ug/L 1.0 0.34 1 04/20/22 02:22 75-34-3 1.2-Dichloroethane 0.27 U ug/L 1.0 0.27 04/20/22 02:22 107-06-2 1 0.59 04/20/22 02:22 75-35-4 1.1-Dichloroethene 0.59 U ug/L 1.0 1 0.83 04/20/22 02:22 156-59-2 cis-1,2-Dichloroethene 0.83 U ug/L 1.0 1 trans-1.2-Dichloroethene 0.23 U ug/L 1.0 0.23 1 04/20/22 02:22 156-60-5 1,2-Dichloropropane 0.23 U ug/L 1.0 0.23 1 04/20/22 02:22 78-87-5 0.26 U ug/L 0.26 04/20/22 02:22 142-28-9 1,3-Dichloropropane 10 1 ug/L 04/20/22 02:22 563-58-6 1,1-Dichloropropene 0.31 U 1.0 0.31 1 0.30 U 0.30 04/20/22 02:22 100-41-4 Ethylbenzene 1.0 1 ug/L 25.0 2-Hexanone 10.0 U 10.0 04/20/22 02:22 591-78-6 ug/L 1 04/20/22 02:22 98-82-8 Isopropylbenzene (Cumene) 0.30 U ug/L 1.0 0.30 1 Methylene Chloride 4.4 U ug/L 5.0 4.4 1 04/20/22 02:22 75-09-2 4-Methyl-2-pentanone (MIBK) 7.5 U 25.0 7.5 1 04/20/22 02:22 108-10-1 ug/L Methyl-tert-butyl ether 1.6 U ug/L 5.0 1.6 1 04/20/22 02:22 1634-04-4 0.65 U 0.65 04/20/22 02:22 100-42-5 Styrene ug/L 1.0 1,1,2,2-Tetrachloroethane 0.59 U ug/L 1.0 0.59 1 04/20/22 02:22 79-34-5 Tetrachloroethene 0.38 U ug/L 1.0 0.38 04/20/22 02:22 127-18-4 1 0.71 U 0.71 04/20/22 02:22 108-88-3 Toluene ug/L 1.0 1 0.30 U 1,1,1-Trichloroethane ug/L 1 0 0.30 04/20/22 02:22 71-55-6 1 0.30 U 0.30 04/20/22 02:22 79-00-5 1,1,2-Trichloroethane ug/L 10 1 0.36 U 0.36 04/20/22 02:22 79-01-6 Trichloroethene ug/L 1.0 1 Trichlorofluoromethane 0.82 U ug/L 1.0 0.82 1 04/20/22 02:22 75-69-4 1,2,3-Trichloropropane 0.53 U ug/L 2.0 0.53 1 04/20/22 02:22 96-18-4 1,1,2-Trichlorotrifluoroethane 3.5 U ug/L 5.0 3.5 1 04/20/22 02:22 76-13-1 1,2,4-Trimethylbenzene 0.58 U ug/L 1.0 0.58 1 04/20/22 02:22 95-63-6 0.64 1,3,5-Trimethylbenzene 0.64 U ug/L 1.0 1 04/20/22 02:22 108-67-8 Vinyl acetate 1.8 U ug/L 10.0 1.8 1 04/20/22 02:22 108-05-4 J(v1) Vinyl chloride 0.88 U 0.88 04/20/22 02:22 75-01-4 ug/L 1.0 1 Xylene (Total) 2.1 U 5.0 2.1 04/20/22 02:22 1330-20-7 ug/L 1 Surrogates 4-Bromofluorobenzene (S) 96 % 70-130 1 04/20/22 02:22 460-00-4 104 70-130 04/20/22 02:22 2037-26-5 Toluene-d8 (S) % 1

REPORT OF LABORATORY ANALYSIS

70-130

04/20/22 02:22 2199-69-1

110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

Sample: MW-1-04182022	Lab ID:	35711376002	Collected	d: 04/18/22	09:01	Received: 04/	/18/22 15:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	•	Method: EPA 2 ytical Services	•		od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	04/19/22 06:52	04/19/22 19:31	7440-43-9	
Chromium	0.62 I	ug/L	1.0	0.50	1	04/19/22 06:52	04/19/22 19:31	7440-47-3	
Lead	0.22 U	ug/L	1.0	0.22	1	04/19/22 06:52	04/19/22 19:31	7439-92-1	
Silver	0.21 U	ug/L	0.50	0.21	1	04/19/22 06:52	04/19/22 19:31	7440-22-4	

110 South Bayview Blvd. Oldsmar , FL 34677 (813)881-9401

ANALYTICAL RESULTS

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

Sample: MW-3-04182022	Lab ID:	35711376003	Collected	d: 04/18/22	09:38	Received: 04/	18/22 15:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	•	Method: EPA 2 ytical Services	•		od: EP	A 200.8			
Cadmium	0.050 U	ug/L	0.10	0.050	1	04/19/22 06:52	04/19/22 19:33	7440-43-9	
Chromium	0.90 I	ug/L	1.0	0.50	1	04/19/22 06:52	04/19/22 19:33	7440-47-3	
Lead	0.22 U	ug/L	1.0	0.22	1	04/19/22 06:52	04/19/22 19:33	7439-92-1	
Silver	0.21 U	ug/L	0.50	0.21	1	04/19/22 06:52	04/19/22 19:33	7440-22-4	

ANALYTICAL RESULTS

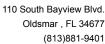
Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

Sample: Trip Blank Lab ID: 35711376004 Collected: 04/18/22 00:01 Received: 04/18/22 15:15 Matrix: Water

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	8260						
	Pace Anal	ytical Service	s - Ormond E	Beach					
Acetone	9.4 U	ug/L	25.0	9.4	1		04/20/22 12:26	67-64-1	
Benzene	0.30 U	ug/L	1.0	0.30	1		04/20/22 12:26		
Bromobenzene	0.21 U	ug/L	1.0	0.21	1		04/20/22 12:26		
Bromochloromethane	0.37 U	ug/L	1.0	0.37	1		04/20/22 12:26		
Bromodichloromethane	0.44 U	ug/L	1.0	0.44	1		04/20/22 12:26		
Bromoform	2.8 U	ug/L	3.0	2.8	1		04/20/22 12:26		
Bromomethane	3.9 U	ug/L	10.0	3.9	1		04/20/22 12:26		
2-Butanone (MEK)	6.0 U	ug/L	50.0	6.0	1		04/20/22 12:26		
Carbon disulfide	1.8 U	ug/L	10.0	1.8	1		04/20/22 12:26		
Carbon tetrachloride	0.44 U	ug/L	3.0	0.44	1		04/20/22 12:26		
Chlorobenzene	0.35 U	ug/L	1.0	0.35	1		04/20/22 12:26		
Chloroethane	3.7 U	ug/L	10.0	3.7	1		04/20/22 12:26		J(v2)
Chloroform	0.56 U	ug/L	1.0	0.56	1		04/20/22 12:26		J(VZ)
Chloromethane	0.92 U	ug/L	1.0	0.92	1		04/20/22 12:26		
Dibromochloromethane	0.97 U	ug/L	2.0	0.92	1		04/20/22 12:26		
Dibromomethane	0.34 U	-	2.0	0.34	1		04/20/22 12:26		
	0.60 U	ug/L		0.60	1		04/20/22 12:26		
1,2-Dichlorobenzene	0.80 U	ug/L	1.0 1.0	0.80	1		04/20/22 12:26		
1,3-Dichlorobenzene		ug/L			1				
1,4-Dichlorobenzene	0.28 U	ug/L	1.0	0.28	-		04/20/22 12:26		1(0)
Dichlorodifluoromethane	0.84 U	ug/L	1.0	0.84	1		04/20/22 12:26		J(v2)
1,1-Dichloroethane	0.34 U	ug/L	1.0	0.34	1		04/20/22 12:26		
1,2-Dichloroethane	0.27 U	ug/L	1.0	0.27	1		04/20/22 12:26		16:0)
1,1-Dichloroethene	0.59 U	ug/L	1.0	0.59	1		04/20/22 12:26		J(v2)
cis-1,2-Dichloroethene	0.83 U	ug/L	1.0	0.83	1		04/20/22 12:26		
trans-1,2-Dichloroethene	0.23 U	ug/L	1.0	0.23	1		04/20/22 12:26		
1,2-Dichloropropane	0.23 U	ug/L	1.0	0.23	1		04/20/22 12:26		
1,3-Dichloropropane	0.26 U	ug/L	1.0	0.26	1		04/20/22 12:26		
1,1-Dichloropropene	0.31 U	ug/L	1.0	0.31	1		04/20/22 12:26		
Ethylbenzene	0.30 U	ug/L	1.0	0.30	1		04/20/22 12:26		
2-Hexanone	10.0 U	ug/L	25.0	10.0	1		04/20/22 12:26		
Isopropylbenzene (Cumene)	0.30 U	ug/L	1.0	0.30	1		04/20/22 12:26		
Methylene Chloride	4.4 U	ug/L	5.0	4.4	1		04/20/22 12:26		
4-Methyl-2-pentanone (MIBK)	7.5 U	ug/L	25.0	7.5	1		04/20/22 12:26		
Methyl-tert-butyl ether	1.6 U	ug/L	5.0	1.6	1		04/20/22 12:26		
Styrene	0.65 U	ug/L	1.0	0.65	1		04/20/22 12:26		
1,1,2,2-Tetrachloroethane	0.59 U	ug/L	1.0	0.59	1		04/20/22 12:26		
Tetrachloroethene	0.38 U	ug/L	1.0	0.38	1		04/20/22 12:26		
Toluene	0.71 U	ug/L	1.0	0.71	1		04/20/22 12:26		
1,1,1-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		04/20/22 12:26		
1,1,2-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		04/20/22 12:26		
Trichloroethene	0.36 U	ug/L	1.0	0.36	1		04/20/22 12:26	79-01-6	
Trichlorofluoromethane	0.82 U	ug/L	1.0	0.82	1		04/20/22 12:26	75-69-4	J(v2)
1,2,3-Trichloropropane	0.53 U	ug/L	2.0	0.53	1		04/20/22 12:26	96-18-4	
1,1,2-Trichlorotrifluoroethane	3.5 U	ug/L	5.0	3.5	1		04/20/22 12:26	76-13-1	J(v2)
1,2,4-Trimethylbenzene	0.58 U	ug/L	1.0	0.58	1		04/20/22 12:26	95-63-6	



Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

Sample: Trip Blank	Lab ID:	35711376004	Collecte	d: 04/18/22	00:01	Received: 04	/18/22 15:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Ormond E	Beach					
1,3,5-Trimethylbenzene	0.64 U	ug/L	1.0	0.64	1		04/20/22 12:26	108-67-8	
Vinyl acetate	1.8 U	ug/L	10.0	1.8	1		04/20/22 12:26	108-05-4	
Vinyl chloride	0.88 U	ug/L	1.0	0.88	1		04/20/22 12:26	75-01-4	
Xylene (Total)	2.1 U	ug/L	5.0	2.1	1		04/20/22 12:26	1330-20-7	
Surrogates		•							
4-Bromofluorobenzene (S)	99	%	70-130		1		04/20/22 12:26	460-00-4	
Toluene-d8 (S)	104	%	70-130		1		04/20/22 12:26	2037-26-5	
1,2-Dichlorobenzene-d4 (S)	102	%	70-130		1		04/20/22 12:26	2199-69-1	

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

QC Batch: 817116 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 35711376001, 35711376002, 35711376003

METHOD BLANK: 4487096 Matrix: Water

Associated Lab Samples: 35711376001, 35711376002, 35711376003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Cadmium	ug/L	0.050 U	0.10	0.050	04/19/22 19:13	
Chromium	ug/L	0.50 U	1.0	0.50	04/19/22 19:13	
Lead	ug/L	0.22 U	1.0	0.22	04/19/22 19:13	
Silver	ug/L	0.21 U	0.50	0.21	04/19/22 19:13	

LABORATORY CONTROL SAMPLE:	4487097	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L		5.0	100	85-115	
Chromium	ug/L	50	50.8	102	85-115	
Lead	ug/L	50	49.5	99	85-115	
Silver	ug/L	5	4.9	99	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4487098					4487099							
			MS	MSD								
	3	35711376003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	0.050 U	5	5	5.1	5.0	102	101	70-130	1	20	
Chromium	ug/L	0.90 I	50	50	52.6	53.2	103	105	70-130	1	20	
Lead	ug/L	0.22 U	50	50	50.4	50.8	101	101	70-130	1	20	
Silver	ug/L	0.21 U	5	5	5.1	5.1	102	101	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

QC Batch: 817412 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 35711376001

METHOD BLANK: 4488900 Matrix: Water

Associated Lab Samples: 35711376001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	0.30 U	1.0	0.30	04/19/22 22:29	
1,1,2,2-Tetrachloroethane	ug/L	0.59 U	1.0	0.59	04/19/22 22:29	
1,1,2-Trichloroethane	ug/L	0.30 U	1.0	0.30	04/19/22 22:29	
1,1,2-Trichlorotrifluoroethane	ug/L	3.5 U	5.0	3.5	04/19/22 22:29	
1,1-Dichloroethane	ug/L	0.34 U	1.0	0.34	04/19/22 22:29	
1,1-Dichloroethene	ug/L	0.59 U	1.0	0.59	04/19/22 22:29	
1,1-Dichloropropene	ug/L	0.31 U	1.0	0.31	04/19/22 22:29	
1,2,3-Trichloropropane	ug/L	0.53 U	2.0	0.53	04/19/22 22:29	
1,2,4-Trimethylbenzene	ug/L	0.58 U	1.0	0.58	04/19/22 22:29	
1,2-Dichlorobenzene	ug/L	0.60 U	1.0	0.60	04/19/22 22:29	
1,2-Dichloroethane	ug/L	0.27 U	1.0	0.27	04/19/22 22:29	
1,2-Dichloropropane	ug/L	0.23 U	1.0	0.23	04/19/22 22:29	
1,3,5-Trimethylbenzene	ug/L	0.64 U	1.0	0.64	04/19/22 22:29	
1,3-Dichlorobenzene	ug/L	0.33 U	1.0	0.33	04/19/22 22:29	
1,3-Dichloropropane	ug/L	0.26 U	1.0	0.26	04/19/22 22:29	
1,4-Dichlorobenzene	ug/L	0.28 U	1.0	0.28	04/19/22 22:29	
2-Butanone (MEK)	ug/L	6.0 U	50.0	6.0	04/19/22 22:29	
2-Hexanone	ug/L	10.0 U	25.0	10.0	04/19/22 22:29	
4-Methyl-2-pentanone (MIBK)	ug/L	7.5 U	25.0	7.5	04/19/22 22:29	
Acetone	ug/L	9.4 U	25.0	9.4	04/19/22 22:29	
Benzene	ug/L	0.30 U	1.0	0.30	04/19/22 22:29	
Bromobenzene	ug/L	0.21 U	1.0	0.21	04/19/22 22:29	
Bromochloromethane	ug/L	0.37 U	1.0	0.37	04/19/22 22:29	
Bromodichloromethane	ug/L	0.44 U	1.0	0.44	04/19/22 22:29	
Bromoform	ug/L	2.8 U	3.0	2.8	04/19/22 22:29	
Bromomethane	ug/L	3.9 U	10.0	3.9	04/19/22 22:29	J(v2)
Carbon disulfide	ug/L	1.8 U	10.0	1.8	04/19/22 22:29	
Carbon tetrachloride	ug/L	0.44 U	3.0	0.44	04/19/22 22:29	
Chlorobenzene	ug/L	0.35 U	1.0	0.35	04/19/22 22:29	
Chloroethane	ug/L	3.7 U	10.0	3.7	04/19/22 22:29	
Chloroform	ug/L	0.56 U	1.0	0.56	04/19/22 22:29	
Chloromethane	ug/L	0.92 U	1.0	0.92	04/19/22 22:29	J(v1)
cis-1,2-Dichloroethene	ug/L	0.83 U	1.0	0.83	04/19/22 22:29	
Dibromochloromethane	ug/L	0.97 U	2.0	0.97	04/19/22 22:29	
Dibromomethane	ug/L	0.34 U	2.0	0.34	04/19/22 22:29	
Dichlorodifluoromethane	ug/L	0.84 U	1.0	0.84	04/19/22 22:29	
Ethylbenzene	ug/L	0.30 U	1.0	0.30	04/19/22 22:29	
Isopropylbenzene (Cumene)	ug/L	0.30 U	1.0	0.30	04/19/22 22:29	
Methyl-tert-butyl ether	ug/L	1.6 U	5.0	1.6	04/19/22 22:29	
Methylene Chloride	ug/L	4.4 U	5.0	4.4	04/19/22 22:29	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

METHOD BLANK: 4488900 Matrix: Water

Associated Lab Samples: 35711376001

Danamatan	11-24-	Blank	Reporting	MDI	A l l	0
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Styrene	ug/L	0.65 U	1.0	0.65	04/19/22 22:29	
Tetrachloroethene	ug/L	0.38 U	1.0	0.38	04/19/22 22:29	
Toluene	ug/L	0.71 U	1.0	0.71	04/19/22 22:29	
trans-1,2-Dichloroethene	ug/L	0.23 U	1.0	0.23	04/19/22 22:29	
Trichloroethene	ug/L	0.36 U	1.0	0.36	04/19/22 22:29	
Trichlorofluoromethane	ug/L	0.82 U	1.0	0.82	04/19/22 22:29	
Vinyl acetate	ug/L	1.8 U	10.0	1.8	04/19/22 22:29	J(v1)
Vinyl chloride	ug/L	0.88 U	1.0	0.88	04/19/22 22:29	
Xylene (Total)	ug/L	2.1 U	5.0	2.1	04/19/22 22:29	
1,2-Dichlorobenzene-d4 (S)	%	101	70-130		04/19/22 22:29	
4-Bromofluorobenzene (S)	%	96	70-130		04/19/22 22:29	
Toluene-d8 (S)	%	105	70-130		04/19/22 22:29	

LABORATORY CONTROL SAMPLE:	4488901					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	20	22.5	112	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	23.3	117	68-125	
1,1,2-Trichloroethane	ug/L	20	22.6	113	70-130	
1,1,2-Trichlorotrifluoroethane	ug/L	20	22.4	112	57-145	
1,1-Dichloroethane	ug/L	20	21.3	106	70-130	
1,1-Dichloroethene	ug/L	20	21.1	106	66-133	
1,1-Dichloropropene	ug/L	20	21.4	107	70-130	
1,2,3-Trichloropropane	ug/L	20	22.2	111	62-127	
1,2,4-Trimethylbenzene	ug/L	20	21.1	105	70-130	
1,2-Dichlorobenzene	ug/L	20	21.1	105	70-130	
1,2-Dichloroethane	ug/L	20	21.4	107	70-130	
1,2-Dichloropropane	ug/L	20	20.9	105	70-130	
1,3,5-Trimethylbenzene	ug/L	20	21.4	107	70-130	
1,3-Dichlorobenzene	ug/L	20	21.7	109	70-130	
1,3-Dichloropropane	ug/L	20	21.8	109	70-130	
1,4-Dichlorobenzene	ug/L	20	20.6	103	70-130	
2-Butanone (MEK)	ug/L	100	109	109	47-143	
2-Hexanone	ug/L	100	109	109	48-145	
4-Methyl-2-pentanone (MIBK)	ug/L	100	106	106	57-132	
Acetone	ug/L	100	111	111	46-148	
Benzene	ug/L	20	22.1	111	70-130	
Bromobenzene	ug/L	20	21.4	107	70-130	
Bromochloromethane	ug/L	20	19.7	98	70-130	
Bromodichloromethane	ug/L	20	23.0	115	70-130	
Bromoform	ug/L	20	23.7	119	49-126	
Bromomethane	ug/L	20	4.0 I	20	10-165 J	(v3)
Carbon disulfide	ug/L	20	21.9	110	60-141	
Carbon tetrachloride	ug/L	20	22.2	111	63-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

ABORATORY CONTROL SAMPLE:	4488901					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
hlorobenzene	ug/L	20	21.8	109	70-130	
hloroethane	ug/L	20	22.3	112	71-142	
hloroform	ug/L	20	22.2	111	70-130	
loromethane	ug/L	20	24.3	122	40-140	J(v1)
-1,2-Dichloroethene	ug/L	20	20.7	104	70-130	
romochloromethane	ug/L	20	22.2	111	62-118	
romomethane	ug/L	20	21.8	109	70-130	
hlorodifluoromethane	ug/L	20	21.1	105	47-150	
ylbenzene	ug/L	20	21.5	107	70-130	
ropylbenzene (Cumene)	ug/L	20	21.5	107	70-130	
hyl-tert-butyl ether	ug/L	20	19.0	95	64-124	
hylene Chloride	ug/L	20	20.6	103	65-136	
rene	ug/L	20	22.3	111	70-130	
achloroethene	ug/L	20	21.6	108	64-134	
iene	ug/L	20	22.0	110	70-130	
s-1,2-Dichloroethene	ug/L	20	20.9	104	68-127	
chloroethene	ug/L	20	22.6	113	70-130	
chlorofluoromethane	ug/L	20	21.3	106	65-135	
ıyl acetate	ug/L	20	24.7	124	60-144	J(v1)
yl chloride	ug/L	20	23.9	120	68-131	
ne (Total)	ug/L	60	64.8	108	70-130	
Dichlorobenzene-d4 (S)	%			98	70-130	
romofluorobenzene (S)	%			97	70-130	
uene-d8 (S)	%			101	70-130	

MATRIX SPIKE SAMPLE:	4488903						
		35711433007	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	0.30 U	20	25.4	127	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.59 U	20	23.4	117	68-125	
1,1,2-Trichloroethane	ug/L	0.30 U	20	22.8	114	70-130	
1,1,2-Trichlorotrifluoroethane	ug/L	3.5 U	20	24.7	124	57-145	
1,1-Dichloroethane	ug/L	0.34 U	20	23.7	119	70-130	
1,1-Dichloroethene	ug/L	0.59 U	20	22.4	112	66-133	
1,1-Dichloropropene	ug/L	0.31 U	20	24.3	122	70-130	
1,2,3-Trichloropropane	ug/L	0.53 U	20	22.7	113	62-127	
1,2,4-Trimethylbenzene	ug/L	0.58 U	20	21.4	107	70-130	
1,2-Dichlorobenzene	ug/L	0.60 U	20	20.5	103	70-130	
1,2-Dichloroethane	ug/L	0.27 U	20	21.7	108	70-130	
1,2-Dichloropropane	ug/L	0.23 U	20	22.7	114	70-130	
1,3,5-Trimethylbenzene	ug/L	0.64 U	20	21.4	107	70-130	
1,3-Dichlorobenzene	ug/L	0.33 U	20	21.6	108	70-130	
1,3-Dichloropropane	ug/L	0.26 U	20	22.3	111	70-130	
1,4-Dichlorobenzene	ug/L	0.28 U	20	20.8	104	70-130	
2-Butanone (MEK)	ug/L	6.0 U	100	111	111	47-143	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

MATRIX SPIKE SAMPLE:	4488903						
		35711433007	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
2-Hexanone	ug/L	10.0 U	100	115	115	48-145	
4-Methyl-2-pentanone (MIBK)	ug/L	7.5 U	100	111	111	57-132	
Acetone	ug/L	9.4 U	100	115	110	46-148	
Benzene	ug/L	0.30 U	20	24.5	122	70-130	
Bromobenzene	ug/L	0.21 U	20	21.9	110	70-130	
Bromochloromethane	ug/L	0.37 U	20	22.0	110	70-130	
Bromodichloromethane	ug/L	0.44 U	20	24.1	121	70-130	
Bromoform	ug/L	2.8 U	20	23.8	119	49-126	
Bromomethane	ug/L	3.9 U	20	9.9 1	50	10-165	J(v3)
Carbon disulfide	ug/L	1.8 U	20	20.3	102	60-141	
Carbon tetrachloride	ug/L	0.44 U	20	26.3	132	63-126	J(M1)
Chlorobenzene	ug/L	0.35 U	20	23.2	116	70-130	
Chloroethane	ug/L	3.7 U	20	20.9	104	71-142	
Chloroform	ug/L	0.56 U	20	23.8	119	70-130	
Chloromethane	ug/L	0.92 U	20	28.4	142	40-140	J(M1),J(v1)
cis-1,2-Dichloroethene	ug/L	0.83 U	20	23.3	116	70-130	
Dibromochloromethane	ug/L	0.97 U	20	22.9	115	62-118	
Dibromomethane	ug/L	0.34 U	20	22.4	112	70-130	
Dichlorodifluoromethane	ug/L	0.84 U	20	24.9	125	47-150	
Ethylbenzene	ug/L	0.30 U	20	23.0	115	70-130	
Isopropylbenzene (Cumene)	ug/L	0.30 U	20	22.4	112	70-130	
Methyl-tert-butyl ether	ug/L	1.6 U	20	18.6	93	64-124	
Methylene Chloride	ug/L	4.4 U	20	22.5	112	65-136	
Styrene	ug/L	0.65 U	20	22.7	113	70-130	
Tetrachloroethene	ug/L	0.38 U	20	22.0	110	64-134	
Toluene	ug/L	0.71 U	20	23.1	116	70-130	
trans-1,2-Dichloroethene	ug/L	0.23 U	20	22.4	112	68-127	
Trichloroethene	ug/L	0.36 U	20	24.8	124	70-130	
Trichlorofluoromethane	ug/L	0.82 U	20	25.1	126	65-135	
Vinyl acetate	ug/L	1.8 U	20	23.6	118	60-144	J(v1)
Vinyl chloride	ug/L	0.88 U	20	28.0	140	68-131	J(M1)
Xylene (Total)	ug/L	2.1 U	60	67.6	113	70-130	
1,2-Dichlorobenzene-d4 (S)	%				97	70-130	
4-Bromofluorobenzene (S)	%				100	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 4488902						
		35711433006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/L	0.30 U	0.30 U		40	
1,1,2,2-Tetrachloroethane	ug/L	0.59 U	0.59 U		40	
1,1,2-Trichloroethane	ug/L	0.30 U	0.30 U		40	
1,1,2-Trichlorotrifluoroethane	ug/L	3.5 U	3.5 U		40	
1,1-Dichloroethane	ug/L	0.34 U	0.34 U		40	
1,1-Dichloroethene	ug/L	0.59 U	0.59 U		40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

SAMPLE DUPLICATE: 4488902		35711433006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
,1-Dichloropropene	ug/L	0.31 U	0.31 U		40)
,2,3-Trichloropropane	ug/L	0.53 U	0.53 U		40)
,2,4-Trimethylbenzene	ug/L	0.58 U	0.58 U		40)
,2-Dichlorobenzene	ug/L	0.60 U	0.60 U		40)
,2-Dichloroethane	ug/L	0.27 U	0.27 U		40)
,2-Dichloropropane	ug/L	0.23 U	0.23 U		40)
,3,5-Trimethylbenzene	ug/L	0.64 U	0.64 U		40)
,3-Dichlorobenzene	ug/L	0.33 U	0.33 U		40)
,3-Dichloropropane	ug/L	0.26 U	0.26 U		40)
,4-Dichlorobenzene	ug/L	0.28 U	0.28 U		40)
2-Butanone (MEK)	ug/L	6.0 U	6.0 U		40)
2-Hexanone	ug/L	10.0 U	10.0 U		40)
-Methyl-2-pentanone (MIBK)	ug/L	7.5 U	7.5 U		40)
Acetone	ug/L	9.4 U	9.4 U		40	
Benzene	ug/L	0.30 U	0.30 U		40	
Bromobenzene	ug/L	0.21 U	0.21 U		40)
Bromochloromethane	ug/L	0.37 U	0.37 U		40)
Bromodichloromethane	ug/L	0.44 U	0.44 U		40	
Bromoform	ug/L	2.8 U	2.8 U		40	
Bromomethane	ug/L	3.9 U	3.9 U) J(v2)
Carbon disulfide	ug/L	1.8 U	1.8 U		40	
Carbon tetrachloride	ug/L	0.44 U	0.44 U		40	
Chlorobenzene	ug/L	0.35 U	0.35 U		40	
Chloroethane	ug/L	3.7 U	3.7 U		40	
Chloroform	ug/L	0.56 U	0.56 U		40	
Chloromethane	ug/L	0.92 U	0.92 U) J(v1)
sis-1,2-Dichloroethene	ug/L	0.83 U	0.83 U		40	
Dibromochloromethane	ug/L	0.97 U	0.97 U		40	
Dibromomethane	ug/L	0.34 U	0.34 U		40	
Dichlorodifluoromethane	ug/L	0.84 U	0.84 U		40	
Ethylbenzene	ug/L	0.30 U	0.30 U		40	
sopropylbenzene (Cumene)	ug/L	0.30 U	0.30 U		40	
Methyl-tert-butyl ether	ug/L	1.6 U	1.6 U		40	
Methylene Chloride	ug/L	4.4 U	4.4 U		40	
Styrene	ug/L	0.65 U	0.65 U		40	
etrachloroethene	ug/L	0.38 U	0.38 U		40	
oluene	ug/L	0.71 U	0.71 U		40	
rans-1,2-Dichloroethene	ug/L	0.23 U	0.23 U		40	
richloroethene	ug/L ug/L	0.36 U	0.25 U		4(
richlorofluoromethane	ug/L ug/L	0.82 U	0.82 U		4(
/inyl acetate	_	1.8 U	1.8 U)) J(v1)
/inyl chloride	ug/L ug/L	0.88 U	0.88 U		4(
(ylene (Total)	_	2.1 U	2.1 U		4(
,2-Dichlorobenzene-d4 (S)	ug/L %	103	2.1 0		4(
•	% %	94	99 97		4(
I-Bromofluorobenzene (S)	70	105	91		40	,

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

QC Batch: 817586 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 35711376004

METHOD BLANK: 4489415 Matrix: Water

Associated Lab Samples: 35711376004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	0.30 U	1.0	0.30	04/20/22 10:57	
1,1,2,2-Tetrachloroethane	ug/L	0.59 U	1.0	0.59	04/20/22 10:57	
1,1,2-Trichloroethane	ug/L	0.30 U	1.0	0.30	04/20/22 10:57	
1,1,2-Trichlorotrifluoroethane	ug/L	3.5 U	5.0	3.5	04/20/22 10:57	J(v2)
1,1-Dichloroethane	ug/L	0.34 U	1.0	0.34	04/20/22 10:57	
1,1-Dichloroethene	ug/L	0.59 U	1.0	0.59	04/20/22 10:57	J(v2)
1,1-Dichloropropene	ug/L	0.31 U	1.0	0.31	04/20/22 10:57	
1,2,3-Trichloropropane	ug/L	0.53 U	2.0	0.53	04/20/22 10:57	
1,2,4-Trimethylbenzene	ug/L	0.58 U	1.0	0.58	04/20/22 10:57	
1,2-Dichlorobenzene	ug/L	0.60 U	1.0	0.60	04/20/22 10:57	
1,2-Dichloroethane	ug/L	0.27 U	1.0	0.27	04/20/22 10:57	
1,2-Dichloropropane	ug/L	0.23 U	1.0	0.23	04/20/22 10:57	
1,3,5-Trimethylbenzene	ug/L	0.64 U	1.0	0.64	04/20/22 10:57	
1,3-Dichlorobenzene	ug/L	0.33 U	1.0	0.33	04/20/22 10:57	
1,3-Dichloropropane	ug/L	0.26 U	1.0	0.26	04/20/22 10:57	
1,4-Dichlorobenzene	ug/L	0.28 U	1.0	0.28	04/20/22 10:57	
2-Butanone (MEK)	ug/L	6.0 U	50.0	6.0	04/20/22 10:57	
2-Hexanone	ug/L	10.0 U	25.0	10.0	04/20/22 10:57	
4-Methyl-2-pentanone (MIBK)	ug/L	7.5 U	25.0	7.5	04/20/22 10:57	
Acetone	ug/L	9.4 U	25.0	9.4	04/20/22 10:57	
Benzene	ug/L	0.30 U	1.0	0.30	04/20/22 10:57	
Bromobenzene	ug/L	0.21 U	1.0	0.21	04/20/22 10:57	
Bromochloromethane	ug/L	0.37 U	1.0	0.37	04/20/22 10:57	
Bromodichloromethane	ug/L	0.44 U	1.0	0.44	04/20/22 10:57	
Bromoform	ug/L	2.8 U	3.0	2.8	04/20/22 10:57	
Bromomethane	ug/L	3.9 U	10.0	3.9	04/20/22 10:57	
Carbon disulfide	ug/L	1.8 U	10.0	1.8	04/20/22 10:57	
Carbon tetrachloride	ug/L	0.44 U	3.0	0.44	04/20/22 10:57	
Chlorobenzene	ug/L	0.35 U	1.0	0.35	04/20/22 10:57	
Chloroethane	ug/L	3.7 U	10.0	3.7	04/20/22 10:57	J(v2)
Chloroform	ug/L	0.56 U	1.0	0.56	04/20/22 10:57	
Chloromethane	ug/L	0.92 U	1.0	0.92	04/20/22 10:57	
cis-1,2-Dichloroethene	ug/L	0.83 U	1.0	0.83	04/20/22 10:57	
Dibromochloromethane	ug/L	0.97 U	2.0	0.97	04/20/22 10:57	
Dibromomethane	ug/L	0.34 U	2.0	0.34	04/20/22 10:57	
Dichlorodifluoromethane	ug/L	0.84 U	1.0	0.84	04/20/22 10:57	J(v2)
Ethylbenzene	ug/L	0.30 U	1.0	0.30	04/20/22 10:57	
Isopropylbenzene (Cumene)	ug/L	0.30 U	1.0	0.30	04/20/22 10:57	
Methyl-tert-butyl ether	ug/L	1.6 U	5.0	1.6	04/20/22 10:57	
Methylene Chloride	ug/L	4.4 U	5.0	4.4	04/20/22 10:57	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

METHOD BLANK: 4489415 Matrix: Water

4400440

Associated Lab Samples: 35711376004

LABORATORY CONTROL CAMPLE

Date: 04/25/2022 04:24 PM

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
				IVIDL	Allalyzeu	Qualifiers
Styrene	ug/L	0.65 U	1.0	0.65	04/20/22 10:57	
Tetrachloroethene	ug/L	0.38 U	1.0	0.38	04/20/22 10:57	
Toluene	ug/L	0.71 U	1.0	0.71	04/20/22 10:57	
trans-1,2-Dichloroethene	ug/L	0.23 U	1.0	0.23	04/20/22 10:57	
Trichloroethene	ug/L	0.36 U	1.0	0.36	04/20/22 10:57	
Trichlorofluoromethane	ug/L	0.82 U	1.0	0.82	04/20/22 10:57	J(v2)
Vinyl acetate	ug/L	1.8 U	10.0	1.8	04/20/22 10:57	
Vinyl chloride	ug/L	0.88 U	1.0	0.88	04/20/22 10:57	
Xylene (Total)	ug/L	2.1 U	5.0	2.1	04/20/22 10:57	
1,2-Dichlorobenzene-d4 (S)	%	99	70-130		04/20/22 10:57	
4-Bromofluorobenzene (S)	%	96	70-130		04/20/22 10:57	
Toluene-d8 (S)	%	104	70-130		04/20/22 10:57	

LABORATORY CONTROL SAMPLE:	4489416					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		17.7	89	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	21.2	106	68-125	
1,1,2-Trichloroethane	ug/L	20	19.7	99	70-130	
1,1,2-Trichlorotrifluoroethane	ug/L	20	15.5	78	57-145	J(v3)
1,1-Dichloroethane	ug/L	20	17.1	85	70-130	
1,1-Dichloroethene	ug/L	20	15.7	79	66-133	J(v3)
1,1-Dichloropropene	ug/L	20	16.7	84	70-130	
1,2,3-Trichloropropane	ug/L	20	20.9	104	62-127	
1,2,4-Trimethylbenzene	ug/L	20	18.6	93	70-130	
1,2-Dichlorobenzene	ug/L	20	18.6	93	70-130	
1,2-Dichloroethane	ug/L	20	18.4	92	70-130	
1,2-Dichloropropane	ug/L	20	18.0	90	70-130	
1,3,5-Trimethylbenzene	ug/L	20	18.4	92	70-130	
1,3-Dichlorobenzene	ug/L	20	19.2	96	70-130	
1,3-Dichloropropane	ug/L	20	19.4	97	70-130	
1,4-Dichlorobenzene	ug/L	20	18.6	93	70-130	
2-Butanone (MEK)	ug/L	100	113	113	47-143	
2-Hexanone	ug/L	100	112	112	48-145	
4-Methyl-2-pentanone (MIBK)	ug/L	100	108	108	57-132	
Acetone	ug/L	100	109	109	46-148	
Benzene	ug/L	20	18.2	91	70-130	
Bromobenzene	ug/L	20	18.6	93	70-130	
Bromochloromethane	ug/L	20	17.2	86	70-130	
Bromodichloromethane	ug/L	20	19.6	98	70-130	
Bromoform	ug/L	20	22.3	112	49-126	
Bromomethane	ug/L	20	20.4	102	10-165	
Carbon disulfide	ug/L	20	17.5	88	60-141	
Carbon tetrachloride	ug/L	20	17.6	88	63-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

ABORATORY CONTROL SAMPLE:	4489416	0. "			۵/ ۵	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
hlorobenzene	ug/L		18.9	94	70-130	
hloroethane	ug/L	20	14.7	74	71-142	J(v3)
hloroform	ug/L	20	18.3	92	70-130	
oromethane	ug/L	20	20.9	105	40-140	
1,2-Dichloroethene	ug/L	20	17.3	87	70-130	
romochloromethane	ug/L	20	20.0	100	62-118	
promomethane	ug/L	20	19.9	99	70-130	
hlorodifluoromethane	ug/L	20	15.0	75	47-150	J(v3)
ylbenzene	ug/L	20	17.9	90	70-130	
ropylbenzene (Cumene)	ug/L	20	18.2	91	70-130	
hyl-tert-butyl ether	ug/L	20	16.8	84	64-124	
hylene Chloride	ug/L	20	18.3	91	65-136	
ene	ug/L	20	19.3	97	70-130	
achloroethene	ug/L	20	20.1	100	64-134	
ene	ug/L	20	17.8	89	70-130	
s-1,2-Dichloroethene	ug/L	20	16.3	81	68-127	
chloroethene	ug/L	20	18.2	91	70-130	
chlorofluoromethane	ug/L	20	16.0	80	65-135	J(v3)
yl acetate	ug/L	20	23.6	118	60-144	
yl chloride	ug/L	20	16.6	83	68-131	
ene (Total)	ug/L	60	54.7	91	70-130	
Dichlorobenzene-d4 (S)	%			99	70-130	
romofluorobenzene (S)	%			98	70-130	
uene-d8 (S)	%			104	70-130	

MATRIX SPIKE SAMPLE:	4489418						
		35711696002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	0.30 U	20	20.5	102	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.59 U	20	20.8	104	68-125	
1,1,2-Trichloroethane	ug/L	0.30 U	20	19.1	96	70-130	
1,1,2-Trichlorotrifluoroethane	ug/L	3.5 U	20	19.9	100	57-145	J(v3)
1,1-Dichloroethane	ug/L	0.34 U	20	19.4	97	70-130	
1,1-Dichloroethene	ug/L	0.59 U	20	19.0	95	66-133	J(v3)
1,1-Dichloropropene	ug/L	0.31 U	20	20.2	101	70-130	
1,2,3-Trichloropropane	ug/L	0.53 U	20	20.2	101	62-127	
1,2,4-Trimethylbenzene	ug/L	0.58 U	20	18.5	92	70-130	
1,2-Dichlorobenzene	ug/L	0.60 U	20	17.7	89	70-130	
1,2-Dichloroethane	ug/L	0.27 U	20	18.3	92	70-130	
1,2-Dichloropropane	ug/L	0.23 U	20	18.7	94	70-130	
1,3,5-Trimethylbenzene	ug/L	0.64 U	20	18.2	91	70-130	
1,3-Dichlorobenzene	ug/L	0.33 U	20	18.6	93	70-130	
1,3-Dichloropropane	ug/L	0.26 U	20	19.0	95	70-130	
1,4-Dichlorobenzene	ug/L	0.28 U	20	18.2	91	70-130	
2-Butanone (MEK)	ug/L	6.0 U	100	85.8	86	47-143	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

MATRIX SPIKE SAMPLE:	4489418						
		35711696002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
2-Hexanone	ug/L	10.0 U	100	97.0	97	48-145	
I-Methyl-2-pentanone (MIBK)	ug/L	7.5 U	100	93.2	93	57-132	
Acetone	ug/L	9.4 U	100	91.8	92	46-148	
Benzene	ug/L	0.30 U	20	20.3	101	70-130	
Bromobenzene	ug/L	0.21 U	20	18.5	92	70-130	
Bromochloromethane	ug/L	0.37 U	20	17.8	89	70-130	
Bromodichloromethane	ug/L	0.44 U	20	20.4	102	70-130	
Bromoform	ug/L	2.8 U	20	21.4	107	49-126	
Bromomethane	ug/L	3.9 U	20	7.1 I	35	10-165	
Carbon disulfide	ug/L	1.8 U	20	20.4	102	60-141	
Carbon tetrachloride	ug/L	0.44 U	20	20.2	101	63-126	
Chlorobenzene	ug/L	0.35 U	20	19.5	97	70-130	
Chloroethane	ug/L	3.7 U	20	19.8	99	71-142 J	(v3)
Chloroform	ug/L	0.56 U	20	19.4	97	70-130	
Chloromethane	ug/L	0.92 U	20	25.0	125	40-140	
cis-1,2-Dichloroethene	ug/L	0.83 U	20	18.4	92	70-130	
Dibromochloromethane	ug/L	0.97 U	20	19.8	99	62-118	
Dibromomethane	ug/L	0.34 U	20	19.2	96	70-130	
Dichlorodifluoromethane	ug/L	0.84 U	20	18.9	95	47-150 J	(v3)
Ethylbenzene	ug/L	0.30 U	20	19.2	96	70-130	
Isopropylbenzene (Cumene)	ug/L	0.30 U	20	18.6	93	70-130	
Methyl-tert-butyl ether	ug/L	1.6 U	20	15.8	79	64-124	
Methylene Chloride	ug/L	4.4 U	20	18.1	90	65-136	
Styrene	ug/L	0.65 U	20	19.4	97	70-130	
Tetrachloroethene	ug/L	0.38 U	20	18.5	93	64-134	
Toluene	ug/L	0.71 U	20	19.5	97	70-130	
trans-1,2-Dichloroethene	ug/L	0.23 U	20	18.1	90	68-127	
Trichloroethene	ug/L	0.36 U	20	19.5	98	70-130	
Trichlorofluoromethane	ug/L	0.82 U	20	19.8	99	65-135 J	(v3)
√inyl acetate	ug/L	1.8 U	20	22.2	111	60-144	
Vinyl chloride	ug/L	0.88 U	20	23.6	118	68-131	
Xylene (Total)	ug/L	2.1 U	60	56.9	95	70-130	
1,2-Dichlorobenzene-d4 (S)	%				100	70-130	
4-Bromofluorobenzene (S)	%				100	70-130	
Toluene-d8 (S)	%				101	70-130	

SAMPLE DUPLICATE: 4489417						
		35711696001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/L	0.30 U	0.30 U		40)
1,1,2,2-Tetrachloroethane	ug/L	0.59 U	0.59 U		40)
1,1,2-Trichloroethane	ug/L	0.30 U	0.30 U		40)
1,1,2-Trichlorotrifluoroethane	ug/L	3.5 U	3.5 U		40) J(v2)
1,1-Dichloroethane	ug/L	0.34 U	0.34 U		40)
1,1-Dichloroethene	ug/L	0.59 U	0.59 U		40) J(v2)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

SAMPLE DUPLICATE: 4489417		0574400004				
Parameter	Units	35711696001 Result	Dup Result	RPD	Max RPD	Qualifiers
1,1-Dichloropropene	ug/L	0.31 U	0.31 U		4	<u> </u>
1,2,3-Trichloropropane	ug/L	0.53 U	0.53 U		40)
1,2,4-Trimethylbenzene	ug/L	0.58 U	0.58 U		40)
1,2-Dichlorobenzene	ug/L	0.60 U	0.60 U		40)
1,2-Dichloroethane	ug/L	0.27 U	0.27 U		40	0
1,2-Dichloropropane	ug/L	0.23 U	0.23 U		40)
1,3,5-Trimethylbenzene	ug/L	0.64 U	0.64 U		4	כ
1,3-Dichlorobenzene	ug/L	0.33 U	0.33 U		40)
1,3-Dichloropropane	ug/L	0.26 U	0.26 U		40)
1,4-Dichlorobenzene	ug/L	0.28 U	0.28 U		40	
2-Butanone (MEK)	ug/L	6.0 U	6.0 U		40	
2-Hexanone	ug/L	10.0 U	10.0 U		40	
4-Methyl-2-pentanone (MIBK)	ug/L	7.5 U	7.5 U		40	
Acetone	ug/L	9.4 U	9.4 U		4(
Benzene	ug/L	0.30 U	0.30 U		4(
Bromobenzene	ug/L	0.21 U	0.21 U		4(
Bromochloromethane	ug/L	0.37 U	0.37 U		4	
Bromodichloromethane	ug/L	0.44 U	0.44 U		4	
Bromoform	ug/L	2.8 U	2.8 U		4	
Bromomethane	ug/L	3.9 U	3.9 U		4	
Carbon disulfide	ug/L	1.8 U	1.8 U		4	
Carbon tetrachloride	ug/L	0.44 U	0.44 U		4	
Chlorobenzene	ug/L	0.35 U	0.35 U		41	
Chloroethane	_	3.7 U	3.7 U			
Chloroform	ug/L	0.56 U	0.56 U		4(0 J(v2)
Chloromethane	ug/L	0.92 U	0.92 U		40	
	ug/L	0.83 U	0.83 U		40	
cis-1,2-Dichloroethene	ug/L	0.83 U 0.97 U				
Dibromochloromethane	ug/L	0.97 U 0.34 U	0.97 U		41	
Dibromomethane	ug/L	0.84 U	0.34 U		41	
Dichlorodifluoromethane	ug/L	0.84 U 0.30 U	0.84 U) J(v2)
Ethylbenzene	ug/L		0.30 U	40	4(
sopropylbenzene (Cumene)	ug/L	1.6	1.8	13	41	
Methyl-tert-butyl ether	ug/L	1.6 U	1.6 U		41	
Methylene Chloride	ug/L	4.4 U	4.4 U		41	
Styrene	ug/L	0.65 U	0.65 U		40	
Tetrachloroethene	ug/L	0.38 U	0.38 U		4	
Toluene	ug/L	0.71 U	0.71 U		40	
rans-1,2-Dichloroethene	ug/L	0.23 U	0.23 U		4	
Trichloroethene	ug/L	0.36 U	0.36 U		40	
Trichlorofluoromethane	ug/L	0.82 U	0.82 U) J(v2)
Vinyl acetate	ug/L	1.8 U	1.8 U		40	
Vinyl chloride	ug/L	0.88 U	0.88 U		40	0
Xylene (Total)	ug/L	2.1 U	2.1 U		40)
1,2-Dichlorobenzene-d4 (S)	%	99	102		40)
4-Bromofluorobenzene (S)	%	101	102		40)
Toluene-d8 (S)	%	107	110		40)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

QC Batch: 817483 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAHLV by SIM MSSV

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 35711376001

METHOD BLANK: 4489072 Matrix: Water

Associated Lab Samples: 35711376001

,		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	0.19 U	2.0	0.19	04/20/22 20:36	
2-Methylnaphthalene	ug/L	0.17 U	2.0	0.17	04/20/22 20:36	
Acenaphthene	ug/L	0.019 U	0.50	0.019	04/20/22 20:36	
Acenaphthylene	ug/L	0.031 U	0.50	0.031	04/20/22 20:36	
Anthracene	ug/L	0.020 U	0.50	0.020	04/20/22 20:36	
Benzo(a)anthracene	ug/L	0.020 U	0.10	0.020	04/20/22 20:36	
Benzo(a)pyrene	ug/L	0.021 U	0.20	0.021	04/20/22 20:36	
Benzo(b)fluoranthene	ug/L	0.027 U	0.10	0.027	04/20/22 20:36	
Benzo(g,h,i)perylene	ug/L	0.023 U	0.50	0.023	04/20/22 20:36	
Benzo(k)fluoranthene	ug/L	0.024 U	0.50	0.024	04/20/22 20:36	
Chrysene	ug/L	0.026 U	0.50	0.026	04/20/22 20:36	
Dibenz(a,h)anthracene	ug/L	0.025 U	0.15	0.025	04/20/22 20:36	
Fluoranthene	ug/L	0.018 U	0.50	0.018	04/20/22 20:36	
Fluorene	ug/L	0.017 U	0.50	0.017	04/20/22 20:36	
Indeno(1,2,3-cd)pyrene	ug/L	0.024 U	0.15	0.024	04/20/22 20:36	
Naphthalene	ug/L	0.29 U	2.0	0.29	04/20/22 20:36	
Phenanthrene	ug/L	0.019 U	0.50	0.019	04/20/22 20:36	
Pyrene	ug/L	0.032 U	0.50	0.032	04/20/22 20:36	
2-Fluorobiphenyl (S)	%	60	32-100		04/20/22 20:36	
p-Terphenyl-d14 (S)	%	89	48-112		04/20/22 20:36	

LABORATORY CONTROL SAMPLE:	4489073					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L		3.7	74	34-103	
2-Methylnaphthalene	ug/L	5	3.7	74	35-100	
Acenaphthene	ug/L	5	4.1	82	38-102	
Acenaphthylene	ug/L	5	3.5	69	35-97	
Anthracene	ug/L	5	4.2	83	46-107	
Benzo(a)anthracene	ug/L	5	4.3	86	55-113	
Benzo(a)pyrene	ug/L	5	3.5	71	51-112	
Benzo(b)fluoranthene	ug/L	5	4.0	79	58-116	
Benzo(g,h,i)perylene	ug/L	5	3.9	79	45-116	
Benzo(k)fluoranthene	ug/L	5	4.0	80	58-118	
Chrysene	ug/L	5	4.5	91	58-120	
Dibenz(a,h)anthracene	ug/L	5	4.0	80	46-114	
Fluoranthene	ug/L	5	4.4	89	54-118	
Fluorene	ug/L	5	4.0	81	40-105	
Indeno(1,2,3-cd)pyrene	ug/L	5	3.9	78	46-114	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

LABORATORY CONTROL SAMPLE: 4490072

LABORATORY CONTROL SAMPLE:	4489073					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/L		3.8	76	34-97	
Phenanthrene	ug/L	5	4.3	85	47-110	
Pyrene	ug/L	5	4.3	87	54-117	
2-Fluorobiphenyl (S)	%			77	32-100	
p-Terphenyl-d14 (S)	%			100	48-112	

MATRIX SPIKE & MATRIX SPIKE DUI	PLICATE: 4489	078		4489079							
		MS	MSD								
	35711419004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter Units	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene ug/L	0.19 U	5	5	2.2	2.0	43	40	34-103	7	40	
2-Methylnaphthalene ug/L	0.17 U	5	5	2.2	2.0	43	40	35-100	6	40	
Acenaphthene ug/L	0.019 U	5	5	2.5	2.4	51	47	38-102	7	40	
Acenaphthylene ug/L		5	5	2.0	1.9	41	39	35-97	6	40	
Anthracene ug/L	0.020 U	5	5	2.7	2.5	53	51	46-107	5	40	
Benzo(a)anthracene ug/L	0.020 U	5	5	2.8	2.7	56	55	55-113	1	40	
Benzo(a)pyrene ug/L	0.021 U	5	5	2.3	2.2	45	45	51-112	2	40	J(M1)
Benzo(b)fluoranthene ug/L	0.027 U	5	5	2.6	2.5	53	51	58-116	4	40	J(M1)
Benzo(g,h,i)perylene ug/L	0.023 U	5	5	2.5	2.5	51	50	45-116	2	40	
Benzo(k)fluoranthene ug/L	0.024 U	5	5	2.6	2.5	53	51	58-118	4	40	J(M1)
Chrysene ug/L		5	5	3.0	2.9	60	58	58-120	2	40	
Dibenz(a,h)anthracene ug/L	0.025 U	5	5	2.6	2.5	52	50	46-114	3	40	
Fluoranthene ug/L	0.018 U	5	5	2.9	2.8	57	56	54-118	1	40	
Fluorene ug/L	0.017 U	5	5	2.6	2.4	52	49	40-105	6	40	
Indeno(1,2,3-cd)pyrene ug/L		5	5	2.5	2.5	51	50	46-114	2	40	
Naphthalene ug/L		5	5	2.2	2.1	39	37	34-97	5	40	
Phenanthrene ug/L	0.019 U	5	5	2.8	2.7	57	54	47-110	5	40	
Pyrene ug/L	0.032 U	5	5	2.8	2.8	57	56	54-117	2	40	
2-Fluorobiphenyl (S) %						45	42	32-100			
p-Terphenyl-d14 (S) %						63	63	48-112			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

QC Batch: 818452 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 Water Full List MSSV

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 35711376001

METHOD BLANK: 4494705 Matrix: Water

Associated Lab Samples: 35711376001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
1,2-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	04/25/22 09:01	
1,2-Dinitrobenzene	ug/L	1.9 U	6.0	1.9	04/25/22 09:01	
1,2-Diphenylhydrazine	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
1,3-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	04/25/22 09:01	
1,3-Dinitrobenzene	ug/L	1.8 U	8.0	1.8	04/25/22 09:01	
1,4-Dichlorobenzene	ug/L	1.5 U	5.0	1.5	04/25/22 09:01	
1-Methylnaphthalene	ug/L	0.36 U	5.0	0.36	04/25/22 09:01	
2,3,4,6-Tetrachlorophenol	ug/L	1.0 U	5.0	1.0	04/25/22 09:01	
2,3,5,6-Tetrachlorophenol	ug/L	1.9 U	9.0	1.9	04/25/22 09:01	N2
2,4,5-Trichlorophenol	ug/L	0.23 U	4.0	0.23	04/25/22 09:01	
2,4,6-Trichlorophenol	ug/L	0.36 U	2.0	0.36	04/25/22 09:01	
2,4-Dichlorophenol	ug/L	0.34 U	2.0	0.34	04/25/22 09:01	
2,4-Dimethylphenol	ug/L	1.0 U	5.0	1.0	04/25/22 09:01	
2,4-Dinitrophenol	ug/L	2.6 U	20.0	2.6	04/25/22 09:01	
2,4-Dinitrotoluene	ug/L	1.2 U	4.0	1.2	04/25/22 09:01	
2,6-Dinitrotoluene	ug/L	0.88 U	2.0	0.88	04/25/22 09:01	
2-Chloronaphthalene	ug/L	0.34 U	5.0	0.34	04/25/22 09:01	
2-Chlorophenol	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
2-Methylnaphthalene	ug/L	0.28 U	5.0	0.28	04/25/22 09:01	
2-Methylphenol(o-Cresol)	ug/L	0.30 U	5.0	0.30	04/25/22 09:01	
2-Nitroaniline	ug/L	1.3 U	5.0	1.3	04/25/22 09:01	
2-Nitrophenol	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
3&4-Methylphenol(m&p Cresol)	ug/L	0.22 U	10.0	0.22	04/25/22 09:01	
3,3'-Dichlorobenzidine	ug/L	1.0 U	10.0	1.0	04/25/22 09:01	
3-Nitroaniline	ug/L	1.3 U	5.0	1.3	04/25/22 09:01	
4,6-Dinitro-2-methylphenol	ug/L	4.6 U	20.0	4.6	04/25/22 09:01	
4-Bromophenylphenyl ether	ug/L	1.7 U	5.0	1.7	04/25/22 09:01	
4-Chloro-3-methylphenol	ug/L	5.4 U	20.0	5.4	04/25/22 09:01	
4-Chloroaniline	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
4-Chlorophenylphenyl ether	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
4-Nitroaniline	ug/L	0.87 U	4.0	0.87	04/25/22 09:01	
4-Nitrophenol	ug/L	2.0 U	20.0	2.0	04/25/22 09:01	
Acenaphthene	ug/L	0.36 U	5.0	0.36	04/25/22 09:01	
Acenaphthylene	ug/L	0.30 U	5.0	0.30	04/25/22 09:01	
Aniline	ug/L	0.94 U	5.0	0.94	04/25/22 09:01	
Anthracene	ug/L	0.22 U	5.0	0.22	04/25/22 09:01	
Benzidine	ug/L	0.87 U	25.0	0.87	04/25/22 09:01	
Benzo(a)anthracene	ug/L	0.20 U	5.0	0.20	04/25/22 09:01	
Benzo(a)pyrene	ug/L	0.17 U	1.0	0.17	04/25/22 09:01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

METHOD BLANK: 4494705 Matrix: Water

Associated Lab Samples: 35711376001

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
						- Qualificis
Benzo(b)fluoranthene	ug/L	0.27 U	2.0	0.27 0.17	04/25/22 09:01	
Benzo(g,h,i)perylene	ug/L	0.17 U	5.0		04/25/22 09:01	
Benzo(k)fluoranthene	ug/L	0.18 U	4.0	0.18	04/25/22 09:01	
Benzyl alcohol	ug/L	1.3 U	5.0	1.3	04/25/22 09:01	
bis(2-Chloroethoxy)methane	ug/L	1.6 U	5.0	1.6	04/25/22 09:01	
bis(2-Chloroethyl) ether	ug/L	0.34 U	4.0	0.34	04/25/22 09:01	
bis(2-Chloroisopropyl) ether	ug/L	1.8 U	6.0	1.8	04/25/22 09:01	
bis(2-Ethylhexyl)phthalate	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
Butylbenzylphthalate	ug/L	1.1 U	5.0	1.1	04/25/22 09:01	
Caprolactam	ug/L	0.85 U	5.0	0.85	04/25/22 09:01	N2
Carbazole	ug/L	1.1 U	5.0	1.1	04/25/22 09:01	
Chrysene	ug/L	0.20 U	5.0	0.20	04/25/22 09:01	
Di-n-butylphthalate	ug/L	3.6 U	5.0	3.6	04/25/22 09:01	
Di-n-octylphthalate	ug/L	0.92 U	5.0	0.92	04/25/22 09:01	
Dibenz(a,h)anthracene	ug/L	0.18 U	2.0	0.18	04/25/22 09:01	
Dibenzofuran	ug/L	1.5 U	5.0	1.5	04/25/22 09:01	
Diethylphthalate	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
Dimethylphthalate	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
Fluoranthene	ug/L	0.21 U	5.0	0.21	04/25/22 09:01	
Fluorene	ug/L	0.34 U	5.0	0.34	04/25/22 09:01	
Hexachloro-1,3-butadiene	ug/L	0.35 U	2.0	0.35	04/25/22 09:01	
Hexachlorobenzene	ug/L	0.29 U	1.0	0.29	04/25/22 09:01	
Hexachlorocyclopentadiene	ug/L	3.4 U	11.0	3.4	04/25/22 09:01	
Hexachloroethane	ug/L	1.4 U	5.0	1.4	04/25/22 09:01	
Indeno(1,2,3-cd)pyrene	ug/L	0.17 U	2.0	0.17	04/25/22 09:01	
Isophorone	ug/L	1.7 U	5.0	1.7	04/25/22 09:01	
N-Nitroso-di-n-propylamine	ug/L	0.33 U	4.0	0.33	04/25/22 09:01	
N-Nitrosodimethylamine	ug/L	0.20 U	2.0	0.20	04/25/22 09:01	
N-Nitrosodiphenylamine	ug/L	1.2 U	5.0	1.2	04/25/22 09:01	
Naphthalene	ug/L	0.39 U	5.0	0.39	04/25/22 09:01	
Nitrobenzene	ug/L	0.37 U	4.0	0.37	04/25/22 09:01	
Pentachlorophenol	ug/L	1.6 U	20.0	1.6	04/25/22 09:01	
Phenanthrene	ug/L	0.23 U	5.0	0.23	04/25/22 09:01	
Phenol	ug/L	0.63 U	5.0	0.63	04/25/22 09:01	
Pyrene	ug/L	0.21 U	5.0	0.21	04/25/22 09:01	
Pyridine	ug/L	1.1 U	5.0	1.1	04/25/22 09:01	
2,4,6-Tribromophenol (S)	%	67	28-114		04/25/22 09:01	
2-Fluorobiphenyl (S)	%	50	22-101		04/25/22 09:01	
2-Fluorophenol (S)	%	31	10-57		04/25/22 09:01	
Nitrobenzene-d5 (S)	%	54	10-188		04/25/22 09:01	
p-Terphenyl-d14 (S)	%	77	48-124		04/25/22 09:01	
Phenol-d6 (S)	%	22	10-48		04/25/22 09:01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

1,2-Dichlorobenzene ug/L 50 24.4 49 1,2-Dinitrobenzene ug/L 50 39.2 78 5 1,2-Diphenylhydrazine ug/L 50 37.0 74 4 1,3-Dichlorobenzene ug/L 50 22.9 46 1,3-Dinitrobenzene ug/L 50 40.7 81 5 1,4-Dichlorobenzene ug/L 50 23.3 47 1-Methylnaphthalene ug/L 50 30.7 61 2,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 5 2,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	38-87 37-83 55-111 -7-104 36-81 -6-104 37-82 42-91
1,2-Dichlorobenzene ug/L 50 24.4 49 1,2-Dinitrobenzene ug/L 50 39.2 78 8 1,2-Diphenylhydrazine ug/L 50 37.0 74 4 1,3-Dichlorobenzene ug/L 50 22.9 46 1,3-Dinitrobenzene ug/L 50 40.7 81 5 1,4-Dichlorobenzene ug/L 50 23.3 47 1-Methylnaphthalene ug/L 50 30.7 61 2,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 5 2,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	37-83 55-111 -7-104 36-81 -6-104 37-82
1,2-Dinitrobenzene ug/L 50 39.2 78 8 1,2-Diphenylhydrazine ug/L 50 37.0 74 4 1,3-Dichlorobenzene ug/L 50 22.9 46 1,3-Dinitrobenzene ug/L 50 40.7 81 5 1,4-Dichlorobenzene ug/L 50 23.3 47 1-Methylnaphthalene ug/L 50 30.7 61 2,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 5 2,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	55-111 -7-104 36-81 -6-104 37-82
,2-Diphenylhydrazine ug/L 50 37.0 74 4 ,3-Dichlorobenzene ug/L 50 22.9 46 ,3-Dinitrobenzene ug/L 50 40.7 81 5 ,4-Dichlorobenzene ug/L 50 23.3 47 -Methylnaphthalene ug/L 50 30.7 61 2,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 5 2,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	7-104 36-81 6-104 37-82
,3-Dichlorobenzene ug/L 50 22.9 46 ,3-Dinitrobenzene ug/L 50 40.7 81 5 ,4-Dichlorobenzene ug/L 50 23.3 47 -Methylnaphthalene ug/L 50 30.7 61 2,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 5 2,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	36-81 6-104 37-82
,3-Dichlorobenzene ug/L 50 22.9 46 ,3-Dinitrobenzene ug/L 50 40.7 81 5 ,4-Dichlorobenzene ug/L 50 23.3 47 -Methylnaphthalene ug/L 50 30.7 61 2,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 5 2,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	66-104 37-82
,3-Dinitrobenzene ug/L 50 40.7 81 50 ,4-Dichlorobenzene ug/L 50 23.3 47 -Methylnaphthalene ug/L 50 30.7 61 2,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 50 2,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 50	37-82
-Methylnaphthalene ug/L 50 30.7 61 1,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 5 1,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	
-Methylnaphthalene ug/L 50 30.7 61 2,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 5 2,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	42-91
2,3,4,6-Tetrachlorophenol ug/L 50 40.2 80 5 2,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	
,3,5,6-Tetrachlorophenol ug/L 50 42.2 84 5	55-106
	64-109 N2
,4,5-Trichlorophenol ug/L 50 38.1 76	54-97
· · · · · · · · · · · · · · · · · · ·	52-97
• •	47-92
,	48-90
. ,,	2-120
	60-101
·	55-100
·	42-95
	41-83
	42-91
	39-78
· · · · · · · · · · · · · · · · · · ·	53-103
3	45-93
· ·	37-75
	64-106
-	52-105
· · · · · · · · · · · · · · · · · · ·	54-115
, , , , , , , , , , , , , , , , , , , ,	8-103
	51-95
	52-92
y	50-97
· · · · · · ·	57-104
-Nitrophenol ug/L 50 16.8 I 34	20-51
· ·	47-96
	46-99
·	43-84
•	43-64 58-98
•	
	0-103 61-101
• • • • • • • • • • • • • • • • • • • •	51-101 59-103
	99-103 37-118
• • • • • • • • • • • • • • • • • • • •	
10. · // 3	84.106
• • • • • • • • • • • • • • • • • • • •	31-106
,	40-82
· · · · · · · · · · · · · · · · · · ·	44-91
3	37-91
is(2-Chloroisopropyl) ether ug/L 50 29.0 58	31-97

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

Parameter Units Spike Conc. LCS Result LCS % Rec Limits % Rec Limits Qualifiers s(2-Ethylhexyl)phthalate ug/L 50 41.1 82 52-113 utylbenzylphthalate ug/L 50 41.1 82 60-111 aprolactam ug/L 50 11.1 22 15-32 N2
s(2-Ethylhexyl)phthalate ug/L 50 41.1 82 52-113 utylbenzylphthalate ug/L 50 41.1 82 60-111
utylbenzylphthalate ug/L 50 41.1 82 60-111
aprolactam ug/L 50 11.1 22 15-32 N2
arbazole ug/L 50 38.1 76 61-101
nrysene ug/L 50 39.0 78 62-102
n-butylphthalate ug/L 50 38.9 78 60-105
-n-octylphthalate ug/L 50 39.4 79 53-112
ibenz(a,h)anthracene ug/L 50 39.6 79 58-107
ibenzofuran ug/L 50 34.7 69 50-95
iethylphthalate ug/L 50 37.6 75 57-98
methylphthalate ug/L 50 36.4 73 53-99
ug/L 50 37.6 75 61-102
uorene ug/L 50 35.5 71 51-96
exachloro-1,3-butadiene ug/L 50 24.3 49 36-90
xachlorobenzene ug/L 50 35.6 71 57-97
xachlorocyclopentadiene ug/L 50 25.4 51 13-100
xachloroethane ug/L 50 22.5 45 33-84
leno(1,2,3-cd)pyrene ug/L 50 38.5 77 58-106
phorone ug/L 50 33.4 67 44-93
Nitroso-di-n-propylamine ug/L 50 31.6 63 41-96
Nitrosodimethylamine ug/L 50 20.0 40 25-63
Vitrosodiphenylamine ug/L 50 37.0 74 56-97
phthalene ug/L 50 28.7 57 41-87
robenzene ug/L 50 31.6 63 41-91
ntachlorophenol ug/L 50 42.8 86 48-112
nenanthrene ug/L 50 36.8 74 58-98
nenol ug/L 50 13.4 27 17-40
rrene ug/L 50 39.4 79 61-104
ridine ug/L 50 15.3 31 14-60
,6-Tribromophenol (S)
Fluorobiphenyl (S) % 62 22-101
Fluorophenol (S) % 33 10-57
robenzene-d5 (S)
Terphenyl-d14 (S)
nenol-d6 (S) % 25 10-48

MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 4494 35711711073	709 MS Spike	MSD Spike	4494710 MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	lesult Conc. Conc.		Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2,4-Trichlorobenzene	ug/L	1.5 U	51.5	49.6	13.8	12.4	27	25	38-87	11	40	J(M1)
1,2-Dichlorobenzene	ug/L	1.6 U	51.5	49.6	12.5	11.3	24	23	37-83	10	40	J(M1)
1,2-Dinitrobenzene	ug/L	2.0 U	51.5	49.6	34.5	31.4	67	63	55-111	9	40	
1,2-Diphenylhydrazine	ug/L	1.4 U	51.5	49.6	31.5	28.2	61	57	47-104	11	40	
1,3-Dichlorobenzene	ug/L	1.6 U	51.5	49.6	11.5	10.4	22	21	36-81	10	40	J(M1)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

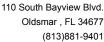
Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

MATRIX SPIKE & MATRIX SPI	KE DUPI	LICATE: 4494			4494710							
		05744744070	MS	MSD		1400		1400	0/ 5			
Parameter	Units	35711711073 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
1,3-Dinitrobenzene	ug/L	1.8 U	51.5	49.6	35.4	32.4	69	65	56-104	9	40	
1,4-Dichlorobenzene	ug/L	1.6 U	51.5	49.6	11.9	10.7	23	22	37-82	10	40	J(M1)
1-Methylnaphthalene	ug/L	0.37 U	51.5	49.6	19.6	17.2	38	35	42-91	13		J(M1)
2,3,4,6-Tetrachlorophenol	ug/L	1.1 U	51.5	49.6	34.6	31.5	67	63	55-106	9		•(
2,3,5,6-Tetrachlorophenol	ug/L	1.9 U	51.5	49.6	36.4	33.0	71	67	54-109	10		N2
2,4,5-Trichlorophenol	ug/L	0.24 U	51.5	49.6	31.5	28.4	61	57	54-97	10		
2,4,6-Trichlorophenol	ug/L	0.37 U	51.5	49.6	29.1	26.1	57	53	52-97	11		
2,4-Dichlorophenol	ug/L	0.35 U	51.5	49.6	22.0	19.2	43	39	47-92	14		J(M1)
2,4-Dimethylphenol	ug/L	1.1 U	51.5	49.6	21.6	18.7	42	38	48-90	15		J(M1)
2,4-Dinitrophenol	ug/L ug/L	2.7 U	51.5	49.6	40.9	38.5	80	78	42-120	6		` '
2,4-Dinitrophenoi 2,4-Dinitrotoluene	ug/L ug/L	1.2 U	51.5	49.6	35.8	32.9	70	66	60-101	8		
		0.90 U	51.5		32.8		64		55-100			
2,6-Dinitrotoluene	ug/L			49.6		29.5		59		11		
2-Chloronaphthalene	ug/L	0.35 U	51.5	49.6	21.3	18.6	41	37	42-95	14		J(M1)
2-Chlorophenol	ug/L	1.4 U	51.5	49.6	15.9	13.5	31	27	41-83	16		J(M1)
2-Methylnaphthalene	ug/L	0.29 U	51.5	49.6	18.9	16.9	37	34	42-91	11		J(M1)
2-Methylphenol(o-Cresol)	ug/L	0.31 U	51.5	49.6	17.0	14.1	33	28	39-78	18		J(M1)
2-Nitroaniline	ug/L	1.3 U	51.5	49.6	33.1	29.9	64	60	53-103	10		
2-Nitrophenol	ug/L	1.4 U	51.5	49.6	19.9	17.5	39	35	45-93	12		J(M1
3&4-Methylphenol(m&p Cresol)	ug/L	0.23 U	51.5	49.6	16.7	14.0	33	28	37-75	18		J(M1)
3,3'-Dichlorobenzidine	ug/L	1.1 U	51.5	49.6	35.6	32.9	69	66	64-106	8		
3-Nitroaniline	ug/L	1.3 U	51.5	49.6	34.8	31.3	68	63	52-105	10		
1,6-Dinitro-2-methylphenol	ug/L	4.7 U	51.5	49.6	37.9	34.4	74	69	54-115	10	40	
4-Bromophenylphenyl ether	ug/L	1.7 U	51.5	49.6	30.0	26.8	58	54	48-103	12	40	
4-Chloro-3-methylphenol	ug/L	5.5 U	51.5	49.6	28.4	24.9	55	50	51-95	13	40	J(M1
4-Chloroaniline	ug/L	1.4 U	51.5	49.6	26.5	23.4	52	47	52-92	12	40	J(M1
1-Chlorophenylphenyl ether	ug/L	1.5 U	51.5	49.6	28.8	25.1	56	51	50-97	14	40	
4-Nitroaniline	ug/L	0.89 U	51.5	49.6	36.2	33.9	70	68	57-104	7	40	
1-Nitrophenol	ug/L	2.0 U	51.5	49.6	16.2 I	14.5 I	31	29	20-51		40	
Acenaphthene	ug/L	0.37 U	51.5	49.6	27.3	23.9	53	48	47-96	13	40	
Acenaphthylene	ug/L	0.31 U	51.5	49.6	25.8	22.8	50	46	46-99	12	40	
Aniline	ug/L	0.96 U	51.5	49.6	21.2	19.4	41	39	43-84	9		J(M1)
Anthracene	ug/L	0.23 U	51.5	49.6	33.6	30.4	65	61	58-98	10		- (
Benzidine	ug/L	0.89 U	51.5	49.6	16.5 I	11.0 I	32	22	10-103		40	
Benzo(a)anthracene	ug/L	0.20 U	51.5	49.6	38.2	35.4	74	71	61-101	8		
Benzo(a)pyrene	ug/L	0.17 U	51.5	49.6	36.8	33.7	71	68	59-103	9		
Benzo(b)fluoranthene	ug/L	0.28 U	51.5	49.6	37.6	35.0	73	70	37-118	7		
Benzo(g,h,i)perylene	ug/L	0.17 U	51.5	49.6	36.8	34.6	71	69	58-107	6		
Benzo(k)fluoranthene		0.17 U	51.5	49.6	38.3	35.6	74	72	61-106	7		
• •	ug/L											
Benzyl alcohol pis(2-	ug/L	1.3 U	51.5	49.6	17.9	15.4	35	31	40-82	15		J(M1)
Dis(2- Chloroethoxy)methane	ug/L	1.7 U	51.5	49.6	19.5	17.1	38	34	44-91	13	40	J(M1
ois(2-Chloroethyl) ether	ug/L	0.35 U	51.5	49.6	16.6	14.4	32	29	37-91	14	4 0	J(M1
ois(2-Chloroisopropyl) ether	ug/L ug/L	1.8 U	51.5	49.6	16.0	13.9	31	28	31-97	14		J(M1)
ois(2-Ethylhexyl)phthalate		1.6 U	51.5	49.6	39.5	35.6	77	71	52-113	11		
Butylbenzylphthalate	ug/L ug/L	1.4 U	51.5 51.5	49.6	39.5 41.0	38.4	80	7 1 77	60-111	7		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA


Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 4494	709		4494710							
Parameter	Units	35711711073 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Caprolactam	ug/L	0.87 U	51.5	49.6	9.8	8.5	19	17	15-32	13	40	N2
Carbazole	ug/L	1.1 U	51.5	49.6	36.5	33.1	71	67	61-101	10	40	
Chrysene	ug/L	0.20 U	51.5	49.6	38.9	35.9	75	72	62-102	8	40	
Di-n-butylphthalate	ug/L	3.7 U	51.5	49.6	36.9	33.5	71	67	60-105	10	40	
Di-n-octylphthalate	ug/L	0.94 U	51.5	49.6	37.9	34.3	73	69	53-112	10	40	
Dibenz(a,h)anthracene	ug/L	0.18 U	51.5	49.6	37.1	34.5	72	69	58-107	7	40	
Dibenzofuran	ug/L	1.5 U	51.5	49.6	27.5	24.6	53	50	50-95	11	40	
Diethylphthalate	ug/L	1.4 U	51.5	49.6	33.3	30.6	65	62	57-98	8	40	
Dimethylphthalate	ug/L	1.5 U	51.5	49.6	31.5	28.4	61	57	53-99	10	40	
Fluoranthene	ug/L	0.22 U	51.5	49.6	36.2	32.8	70	66	61-102	10	40	
Fluorene	ug/L	0.35 U	51.5	49.6	29.7	26.2	58	53	51-96	13	40	
Hexachloro-1,3-butadiene	ug/L	0.36 U	51.5	49.6	12.0	10.9	23	22	36-90	10	40	J(M1
Hexachlorobenzene	ug/L	0.30 U	51.5	49.6	31.9	28.8	62	58	57-97	10	40	
Hexachlorocyclopentadiene	ug/L	3.5 U	51.5	49.6	14.1	11.9	27	24	13-100	17	40	
Hexachloroethane	ug/L	1.4 U	51.5	49.6	10.8	9.7	21	20	33-84	10	40	J(M1
ndeno(1,2,3-cd)pyrene	ug/L	0.17 U	51.5	49.6	35.9	33.6	70	67	58-106	7	40	
sophorone	ug/L	1.7 U	51.5	49.6	21.0	18.3	41	37	44-93	14	40	J(M1
N-Nitroso-di-n-propylamine	ug/L	0.34 U	51.5	49.6	18.7	16.5	36	33	41-96	13	40	J(M1
N-Nitrosodimethylamine	ug/L	0.20 U	51.5	49.6	12.2	10.7	24	22	25-63	13	40	J(M1
N-Nitrosodiphenylamine	ug/L	1.2 U	51.5	49.6	32.7	29.6	64	60	56-97	10	40	
Naphthalene	ug/L	0.40 U	51.5	49.6	16.6	14.8	32	30	41-87	11	40	J(M1
Nitrobenzene	ug/L	0.38 U	51.5	49.6	18.2	16.2	35	33	41-91	12	40	J(M1)
Pentachlorophenol	ug/L	1.7 U	51.5	49.6	40.0	36.5	78	73	48-112	9	40	
Phenanthrene	ug/L	0.24 U	51.5	49.6	34.1	30.7	66	62	58-98	10	40	
Phenol	ug/L	0.65 U	51.5	49.6	7.8	6.3	15	13	17-40	20	40	J(M1
Pyrene	ug/L	0.22 U	51.5	49.6	38.1	35.1	74	70	61-104	8	40	
Pyridine	ug/L	1.1 U	51.5	49.6	11.4	10.6	22	21	14-60	7	40	
2,4,6-Tribromophenol (S)	%						66	64	28-114			
2-Fluorobiphenyl (S)	%						39	36	22-101			
2-Fluorophenol (S)	%						17	15	10-57			
Nitrobenzene-d5 (S)	%						34	31	10-188			
o-Terphenyl-d14 (S)	%						71	68	48-124			
Phenol-d6 (S)	%						13	11	10-48			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Safety Kleen Facility

Pace Project No.: 35711376

QC Batch: 817735

Date: 04/25/2022 04:24 PM

QC Batch Method: EPA 3510

Analysis Description: FL-PRO Water Low Volume

Laboratory: Pace Analytical Services - Ormond Beach

FL-PRO

Associated Lab Samples: 35711376001

METHOD BLANK: 4490248 Matrix: Water

Associated Lab Samples: 35711376001

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Petroleum Range Organics mg/L 0.80 U 1.0 0.80 04/21/22 12:53 N-Pentatriacontane (S) % 109 42-159 04/21/22 12:53 o-Terphenyl (S) % 89 66-139 04/21/22 12:53

Analysis Method:

LABORATORY CONTROL SAMPLE: 4490249 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Petroleum Range Organics mg/L 102 5 5.1 66-119 N-Pentatriacontane (S) % 112 42-159 o-Terphenyl (S) % 66-139 96

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4490250 4490251 MS MSD 35711419004 MSD MS MSD Spike Spike MS % Rec Max Qual Parameter Units Conc. Result % Rec % Rec Limits **RPD** RPD Result Conc. Result 0.75 U 65-123 Petroleum Range Organics mg/L 4.7 4.6 4.2 3.6 83 72 15 20 104 42-159 N-Pentatriacontane (S) % 98 % 75 66-139 o-Terphenyl (S) 87

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Safety Kleen Facility

Pace Project No.: 35711376

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/25/2022 04:24 PM

1	The reported value is between the laboratory n	method detection limit and the laboratory practical quantitation limit.

U Compound was analyzed for but not detected.

J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

J(v1) The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Safety Kleen Facility

Pace Project No.: 35711376

Date: 04/25/2022 04:24 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35711376001	MW-2R-04182022	EPA 3510	817735	FL-PRO	817883
35711376001	MW-2R-04182022	EPA 200.8	817116	EPA 200.8	817246
35711376002	MW-1-04182022	EPA 200.8	817116	EPA 200.8	817246
35711376003	MW-3-04182022	EPA 200.8	817116	EPA 200.8	817246
35711376001	MW-2R-04182022	EPA 3510	817483	EPA 8270 by SIM	817758
35711376001	MW-2R-04182022	EPA 3510	818452	EPA 8270	818692
35711376001	MW-2R-04182022	EPA 8260	817412		
35711376004	Trip Blank	EPA 8260	817586		

CHAIN-OF-CUSTODY / Analytical Request Do

The Chain-of-Custody is a LEGAL: DOCUMENT. All relevant fields must wis 12 uses of a security in Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pace

WO#: 35711376

TODY / Analytical Request Do	Black and	
LEGAL:DOCUMENT. All relevant fields must b		1 8 8 11 1 8 1 8 8 W
ace Terms and Conditions found at https://info.pacela		
n C	35711376	

Require	ed Client Information:	Required F	Project In	formation:		167 - 10			Invoi	ce Infe	ormatic	n:	10.74	- 6			100		71 3	-	/11.	3/0								Pag
Compar	Environmental Consulting & Technology-Tampa	Report To:	·Keith N	/lorrison				Н.	Atten	tìon:	000	(195)					10		(III.)	- 20		(ha								ш
Address		Сору Та:		32 TEE					Comp	oany N	lame:	100					N	1100	0.3	31.37	13	Wx					14	1770		Tol.
	5, Tampa, FL 33607	1 252		181	20.10			-	Addre		- 0-	ē1						145	-	SOW IS	10-17		- 1		Regu	latory.	Адепсу	100	CONTROL OF	
Email:	kmorrison@ectinc.com	Purchase C	SAUSTINE		1212-	0201	0	_		Quote		*								1111								2 1000		
Phone:	813-493-0383 Fax:	Project Nan		afety Kleer	Facility			_		_	t Mana	-		palm	ег@ра	acelat	s con	1,				155	17		Stat	te / Loc	cation		188	4
Reques	ted Due Date	Project #:	No.	102	12-	0201	V		Pace	Profile	e#: (9321 li	ne 1	_					7.00							FL		-3		-
			1	_	_			_	- 1	_	_	_	_	_	-	20390	9	Requ	ested	Analy	sis Fil	tered (Y/N)	12000		Shire				4
	MATRIX Drinking W Water Waste Wat	WT	(see valid codes to left)		COLL	ECTED		COLLECTION		1	Pre	serva	tives			2	<i>y</i>		Pb	φ.					Take 1	3	(amo	me P	u.	- Constant
	SAMPLE ID Product Soil/Solid	P SL OL	(see valid	. ST	TART	E	:ND	AT COLLI	RS							lest	plus PAHs	ume for	g,Cd,Cr	us PAH	<u>۾</u> ا				Ne C/N	5	men	my-12	Uen	
ITEM #	One Character per box. Wipe (A-Z, 0-9 / , -) Air Other Tissue	WP AR OT TS	MATRIX CODE				SEMMIN	SAMPLE TEMP	# OF CONTAINERS	Unpreserved H2SO4	03	_	Na2S203	Methanol	er	Analyses Test	8270 Full list pl	FL Pro Low Volume for Waters	Metals 200 8 Ag, Cd, Cr, Pb	8270 Full list plus MS/MSD	FL PRO MS/MSD 8260 Trip Blank				Residual Chlorine (Y/N)	A	thro	Den		
E			SAN SAN	DATE	TIME	DATE			_	ž ž	HN03	NaOH CI	Na	Me	Oliher	, gCR	827	Mat W	Met	827 MS/	FL PF 8260	Ш	4	Щ	Res	4	IWA	0003	33-21	
1	MW-2R - 04142022		WT	1-		4-18-22	1812	W	8	XZ	44	X	-		\Box	×	×	X	X	X	K			$\perp \downarrow$		_				2
2	MW-1 ~ 64182022		WT	_	-	14.2		11	1		X							L	W					Ш	Ц					
3	MW-3 -04 (8 2022		WT			4-18-2	939		1		1	_	<u> </u>				L	L	X											
4	Trip Blank		WT	_	-	_	_		2		×										X	4								
5										>																				
6																														1
7													Ì																	1
8																					1									1
9		4							T			1	Ī		٦		-		П			Ħ		\Box	7					1
10								T	T							r	-		П	\exists	T			11	7					1
11					1			T			\Box				Ħ	F	T					Ħ		Ħ	7					1
12								1		\top	\Box	\top	T	П	T	r	T		H		\top	Ħ		\forall	7					1
	ADDITIONAL COMMENTS	.0	RELINQUI	SHED BY /	AFFILIATIO	ON	DATE		TIF	ME		BY6	AC	CEPT	ED BY	/ AFFI	LIATIO	N	30		DAT	E	TIME	E	200	SAM	IPLE CO	NOITION	5	
	Bottle Kit	da	tha	Shall	her F	Que	4-7-2	2	1) 1	2	17	Cest	to	1	1/1	mer)	in	1/2	2	- 1	4-19	22	14	00	ROC	1	110	122	E - c	1
1840				noul		4	4-18-2	22				m			X	la	M	e	J	- 4	18:	24	-15	15	64	1	4	1	y	
)uote # 00	1107281			181			11.			23	1 4	2		- 10			-	,		-				18				174	V/ \$1	1
de skar	ATTURE FEAMPLER NAME AND SE	RATURE			SAMPLE	R NAME	AND SIGNA	ATUF	RE	Page 8	V S			RIE.					nii- ,		35		469	200		-	-114			1
SA.Zar		LGR)		1	PRII	NT Name	of SAMPLE	R:	K	er	h s	A	N	10	W	Sin	1 -	E	T	l is	I DA			1	in C	sceived on	Z y		se	
B. Linder	ealigner) Signature @ same	MERINANG.			SIC	NATURE	of SAMPLE	RS	n	6		140	- 1	-	~	-	DA	TE SIG	nad:	11	10	10	2	-31	MP in	Sej	(N)	aled ooler (N)	imples act (N)	1

DC#_Title: ENV-FRM-ORB1-0093 Sample Condition Upon Receipt Form Version: 3 | Effective Date: 12/29/2021 | Issued by: Ormond Beach

MO#:35711376

Project #
Project Manager:
Client:

M: LAP

Due Date: 04/25/22

CLIENT: 37-ECTTAM

Date and Initials of person

⇒UR)

Date an	ia init	iais c	or perso	n;)H
Examini	ng con	tents:	<u></u>		
Label:	1/_	10	77		
Deliver:_	4.	10.	u		
pH:	1		1	V	
		-	-		

Thermometer Used: T202 Date: 4-18	22 Time: 555 Initials: 55			
State of Origin: FL	NV projects, all containers verified to ≤6 °C			
Cooler #1 Temp. C (Visual) +0.2 (Correction Factor)				
TAY A MARSHA DE TOTAL				
Cooler #2 Temp. "C(Visual) (Correction Factor) Cooler #3 Temp. "C(Visual) (Correction Factor)	40.4.0			
	MATERIAL PROPERTY OF THE PROPE			
Cooler #4 Temp. C (Visual) (Correction Factor)				
Cooler #5 Temp.°C (Visual) (Correction Factor)				
Cooler #6 Temp.°C(Visual)(Correction Factor)				
Recheck for OOT °C(Visual)(Correction Factor				
Courier: Fed Ex UPS USPS Client Shipping Method: First Overnight Priority Overnight Stan	Commercial ☐ Pace ☐ Other dard Overnight ☐ Ground ☐ International Priority			
Billing: ☐ Recipient ☐ Sender ☐ Third Party	☐ Credit Card ☐ Unknown			
Tracking #				
Custody Seal on Cooler/Box Present: Yes No Sea	Is intact: Yes No (Ice: Wet Blue Melted None			
Packing Material: ☑ Bubble Wrap ☐ Bubble Bags ☐ None	Other			
Samples shorted to lab (If Yes, complete) Shorted Date:	Shorted Time: Qty:			
	Comments:			
Chain of Custody Present ✓Yes ☐ No ☐N	/A			
Chain of Custody Filled Out ✓ Yes □ No □N	/A			
Relinquished Signature & Sampler Name COC	/A			
Samples Arrived within Hold Time ✓ ✓ Yes □ No □N	/A			
Rush TAT requested on COC	/A			
Sufficient Volume	/A			
Correct Containers Used	/A			
Containers Intact	/A			
Sample Labels match COC (sample IDs & date/time of collection) ☐Yes ☐ No ☐N	/Δ			
All containers needing acid/base preservation have	Preservation Information:			
been checked. All Containers needing preservation are found to be in Yes □ No □N	/A Preservative:			
compliance with EPA recommendation: ✓Yes □ No □N	Lot #/Trace #: (A Date:Time:			
Exceptions: Vials, Microbiology, O&G, PFAS	Initials:			
Headspace In VOA Vlals? (>6mm): ☐Yes ☐ No ☑N	/A			
Trip Blank Present: □Yes □ No □	/A			
Comments/ Resolution (use back for additional comments):				

Tab 11 Part II.S Subpart BB and CC

Part II

S. AIR EMISSION STANDARDS

AIR EMISSION STANDARDS FOR EQUIPMENT LEAKS

The requirements of 40 CFR 264 Subpart BB – Air Emission Standards for Equipment Leaks apply to the RCRA-Permitted Hazardous Waste Tank (Used Solvent), miscellaneous unit, and ancillary equipment. The regulations in this subpart apply to owners and operators of facilities that treat, store, dispose, or recycle hazardous wastes (except as provided in 264.1) and apply to equipment that contains or contacts hazardous wastes with organic concentrations of at least 10% by weight that are managed in units that are subject to the permitting requirements of Part 270.

"Equipment" is defined in 40 CFR 264.1031 as each valve, pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, or flange or other connector, and any control devices or systems required by Subpart BB. Each piece of equipment at the Safety-Kleen Medley facility is marked in such a manner that it can be distinguished readily from other pieces of equipment (see figures 11.1-1/11.1-2 at the end of this section).

The information contained here are specific procedures for the Safety-Kleen Medley branch to implement the Leak Detection and Repair Program. Appendix D of this permit application, Procedures for Compliance with RCRA Subparts BB and CC, is a Branch Operating Guideline overview and training document used at all Safety-Kleen branches to guide personnel on compliance with Subparts BB/CC.

Implementation Schedule

Implementation of the Leak Detection and Repair Program is the responsibility of the Safety-Kleen Branch Manager and facility personnel he/she designates

Equipment Standards

Pumps in Light Liquid Service (40 CFR 264.1052)

The facility has no pumps that contain or contact hazardous waste in light service.

Compressors (40 CFR 264.1053)

The facility has no compressors that contain or contact hazardous waste.

Pressure Relief Devices in Gas/Vapor Service (40 CFR 264.1054)

The facility does not maintain any pressure relief devices that contain or contact hazardous waste in gas/vapor service or closed vent systems or control devices.

Sampling Connecting Systems (40 CFR 264.1055)

The facility does not have any sampling connecting or in situ sampling systems. Recurring sampling of waste in contact with this equipment is not necessary since Safety-Kleen has determined that all liquid hazardous wastes in the equipment regulated by Subpart BB is presumed to be greater than 10% organic concentration and all equipment at the facility is to be managed in heavy liquid service as defined in 264.1031. Documentation of the actual vapor pressure for the hazardous wastes in contact with this equipment is maintained in the operating record at the facility. The vapor pressure of the used parts washer solvent at 20°C is approximately 0.11 kPa (2 mm-Hg).

Open-Ended Valves or Lines (40 CFR 264.1056)

Each open-ended valve or line will be equipped with a cap, blind flange, plug, or a second valve. The cap, blind flange, plug, or second valve will seal the open end at all times except during operations requiring hazardous waste stream flow through the open-ended valve or line. Each open-ended valve or line equipped with a second valve will be operated in a manner such that the valve on the hazardous waste stream end is closed before the second valve is closed. When a double block and bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but will comply with paragraph (a) of 40 CFR 264.1056 at all other times.

Pumps and Valves in Heavy Liquid Service, Pressure Relief Devices in Light Liquid or Heavy Liquid Service, and Flanges and Other Connectors (40 CFR 264.1058)

Pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid service, and flanges and other connectors will be monitored within 5 days by the method specified in 264.1063(b) if evidence of a potential leak is found by visual, audible, olfactory, or any other detection method.

The RCRA-Permitted Hazardous Waste Tank (Used Solvent) is provided with a pressure relief device as indicated in Part II.C of the permit application. The device is a Morrison Brothers UL listed 8" Flanged Emergency Pressure Relief Vent, which is located on top of the 24" diameter

long-bolted manway on the fixed tank roof. The emergency vent is designed to relieve excessive internal pressure in the event of fire or adverse chemical reaction. Should there be an event causing the pressure relief vent to be activated, the device will be visually inspected to ensure it is in good working condition.

At the present time, the pumps, valves, flanges, and other connectors at the Medley facility are used for heavy liquid service. As defined in 40 CFR 264.1031, the used parts washer solvents managed at the facility are considered to be heavy liquid because the solvents have a vapor pressure less than 0.3 kilopascals at 20° C. Furthermore, no single contaminant is present in the wastes that has vapor pressure greater than 0.3 kilopascals in concentrations in excess of 20% by weight. In addition, the wastes presently managed in the equipment at the Medley facility have a maximum of 2,000 ppm concentration in the vapor phase. Therefore, a portable organic vapor analyzer will not be used for leak detection because leaks cannot result in concentrations of more than 10,000 ppm. Equipment leaks will be monitored based on visual inspection/observation. If a leak is detected, the piece of equipment is tagged and identified with the equipment number and date of actual leak detection. When a leak is detected, it will be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in 264.1059. The first attempt at repair will be made no later than 5 calendar days after any leak is detected. First attempts at repair include, but are not limited to, the best practices under 264.1057(e), such as tightening or replacement of bonnet bolts, tightening of packing gland nuts, injection of lubricant into lubricated packing, etc. Repair tags identifying leaking or damaged equipment, except those tags on valves, will be removed after repair of the equipment.

Difficult to monitor equipment will be visually inspected on an annual basis due to the safety hazards inherent to inspecting these items.

Delay of Repair (40 CFR 264.1059)

The facility may delay repair of equipment for which leaks have been detected if the repair is technically infeasible without a hazardous waste unit shutdown. In such a case, repair of this equipment will occur before the end of the next hazardous waste management unit shutdown. Delay of repair of equipment for which leaks have been detected will be allowed for equipment that is isolated from the hazardous waste management unit and that does not continue to contain or contact hazardous waste with organic concentrations at least 10% by weight. Delay of repair for valves will be allowed if:

- 1. The facility determines that emissions of purged material resulting from immediate repair are greater than the emissions likely to result from delay of repair.
- 2. When repair procedures are affected, the purged material will be collected and destroyed or recovered in a control device complying with 254.1060.

The Facility may delay repair beyond a hazardous waste management unit shut down for a valve if valve assembly replacement is necessary during the hazardous waste management unit shutdown, valve assembly supplies have been depleted, and valve assembly supplies had been sufficiently stocked before the supplies were depleted. Delay of repair beyond the next hazardous waste management unit shutdown will not be allowed unless the next hazardous waste management unit shutdown.

Testing

The facility will comply with the following test methods and procedures:

- A. The facility will determine, for each piece of equipment, whether the equipment contains or contacts a hazardous waste with organic concentration that equals or exceeds 10% by weight using the following:
 - 1. Methods described in ASTM Methods D 2267-88, E 169-87, E 168-88, E 260-85 (incorporated by reference under 260.11); or
 - 2. Method 9060A of SW-846 (incorporated by reference under 260.11); or
 - 3. Application of the knowledge of the nature of the hazardous waste stream or the process by which it was produced. Documentation of a waste determination by knowledge is required. Examples of documentation that will be used to support a determination under this provision include production process information that the waste is generated by a process that is identical to a process at the same or another facility that has previously been demonstrated by direct measurement to have total organic content less than 10%, or prior speciation analysis results on the same waste stream where it can also be documented that no process changes have occurred since that analysis that could affect the waste total organic concentration.
 - 4. All liquid hazardous waste in the equipment regulated by Subpart BB at this facility is presumed to be greater than 10% organic concentration and all equipment is to be managed in heavy liquid service as defined in 264.1031.

Documentation of the actual vapor pressure is maintained in the operating record at the facility, and the vapor pressure of the used parts washer solvent at 20°C is approximately 0.11 kPa (2 mm-Hg).

- B. If the facility determines that a piece of equipment contains or contacts a hazardous waste with organic concentrations at least 10% by weigh, the determination can be revised only after following the procedures in items A(1) or A(2) above.
- C. Samples used in determining the percent of organic content will be representative of the highest total organic content hazardous waste that is expected to be contained in or contact the equipment. Sampling methods for obtaining representative samples of hazardous waste for analysis under this section are the same as those found in the Waste Analysis Plan (Part II Waste Analysis Plan WAP).

Recordkeeping Requirements (40 CFR 264.1064)

The facility will maintain the recordkeeping requirements for all hazardous waste management Units subject to the provisions of Subpart BB in one recordkeeping system. The following Information will be recorded in the facility operating record and maintained on-site for a minimum of three (3) years:

- 1. For each piece of equipment to which Subpart BB applies:
 - a. Equipment identification number and hazardous waste management unit identity.
 - b. Approximate locations within the facility (identify the hazardous waste management units on a facility site plan).
 - c. Type of equipment (e.g., pump or pipeline valve).
 - d. Percentage of total organics in the hazardous waste stream which contacts equipment subject to this regulation is 100% by weight.
 - e. Hazardous waste state at the equipment (e.g., gas/vapor or liquid).
 - f. Method of compliance with the standard (e.g., daily inspections, leak detection and repair).
- 2. When each leak is detected as specified in 264.1052, 264.1053, 264.1057, and 264.1058, the following applicable requirements apply:
 - a. A weatherproof and readily visible identification, marked with the equipment identification number, date of evidence of a potential leak was found in accordance with 264.1058(a), and date the leak was detected, will be attached to the leaking equipment.

- b. The identification on equipment, except on a valve, may be removed after it has been repaired.
- c. The identification on a valve may be removed after it has been monitored for 2 successive months as specified in 264.1057(c) and no leak has been detected during those 2 months.
- 3. When each leak is detected as specified in 264.1052, 264.1053, 264.1057, and 264.1058, the following information will be recorded in an inspection log and will be kept in the facility operating record:
 - a. The instrument and operator identification numbers and the equipment identification number.
 - b. The date of evidence of a potential leak was found in accordance with 264.1058(a).
 - c. The date the leak was detected and the dates of each attempt to repair the leak.
 - d. Repair methods applied in each attempt to repair the leak.
 - e. "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.
 - f. Documentation supporting the delay of repair of a valve in compliance with 264.1059(c).
 - g. The signature of the owner or operator (or designee) whose decision it was that the repair could not be affected without a hazardous waste management unit shutdown.
 - h. The expected date of successful repair of the leak, if a leak is not repaired within 15 calendar days.
 - i. The date of successful repair of the leak.
- 4. The following information pertaining to all applicable equipment subject to the requirements in 264.1052 through 264.1060 will be recorded in a log that is kept in the facility operating record:
 - a. A list of identification numbers for equipment (except welded fittings) subject to the requirements of Subpart BB.
 - b. A list of identification numbers for equipment that the facility elects to designate for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, under the provisions of 264.1052(e), 264.1053(i), and 264.1057(f).

- c. The designation of this equipment as subject to the requirements of 264.1052(e), 264.1053(i), or 264.1057(f) will be signed by the owner or operator.
- d. A list of equipment identification numbers for pressure relief devices required to comply with 264.1054(a).
- e. The dates of each compliance test required in 264.1052(e), 264.1053(i) 264.1054, and 264.1057(f), as applicable.
- f. The background level measured during each compliance test.
- g. The maximum instrument reading measured at the equipment during each compliance test.
- h. A list of identification numbers for equipment in vacuum service.
- The following information will be recorded in the facility operating record for use in determining exemptions as provided in the applicability section of this subpart and other specific subparts.
 - a. An analysis determining the design capacity of the hazardous waste management unit.
 - b. A statement listing the hazardous waste influent to and the effluent from each hazardous waste management unit subject to the requirements in 264.1052 through 264.1060 and an analysis determining whether these hazardous wastes are heavy liquids.
 - c. An up-to-date analysis and the supporting information and data used to determine whether equipment is subject to the requirements in 264.1052 through 264.1060. The record will include supporting documentation as required by 264.1063(d((3) when application of the knowledge of the nature of the hazardous waste stream or the process by which it was produced is used. If the facility takes any action (e.g., changing the process that produced the waste) that could result in an increase in the total organic content of the waste contained in or contacted by the equipment determined not to be subject to the requirements in 264.1052 through 264.1060, then a new determination is required.
- 6. Records of the equipment leak information and the operating information required by paragraph (d) and (e) of 264.1064 need only be kept for three (3) years. The Leak Detection and Repair Record used by the Safety-Kleen Medley facility is found at the end of this section (Figure 11.1-3). Each piece of equipment which will be in hazardous waste service has been described by type and assigned a unique identification number. The location of the equipment within the hazardous waste management unit will be

identified and placed in the Operating Record. Pursuant to Subpart BB of 40 CFR Part 264 and 40 CFR 270.25, Safety-Kleen inspects all regulated units for leaks each business day. Inspections are completed electronically (Form CO Tank Sys BB Equipment Inspection, found at the end of this section), and a list of equipment inspected is found on Figure 11.1-2, found at the end of this section. If an issue arises with the electronic inspection system, they will be completed on paper using Figure 11.1-2. All valves, pumps, and flanges are visually inspected. The inspection items have been properly tagged in accordance with 40 CFR 264.1050(d) and are inventoried on the environmental piping schematic diagrams included in Figure 11.1-1, found at the end of this section.

Due to the inherent properties of the waste parts washer solvent stored in the tank, the use of a screening device such as a photoionization detector (PID) is impractical. The liquids are heavy and have low vapor pressures, therefore a release would be visible in a liquid phase rather than a vapor. The used parts washer solvent has a maximum of 2,000 ppm concentration in the vapor phase.

Reporting Requirements (40 CFR 264.1065)

Safety-Kleen will submit reports as required by 40 CFR Part 264.1065 to the Regional Administrator.

AIR EMISSION STANDARDS FOR TANKS, AND CONTAINERS

Safety-Kleen's Medley facility manages wastes that range in Volatile Organic concentrations up to 100%. Therefore, all wastes managed in containers and in storage tanks are handled as being subject to 40 CFR 264 Subpart CC requirements based on the knowledge of the wastes managed at the facility. Therefore, no analytical waste determination is required.

EXEMPTIONS FROM 40 CFR 264.1084 – 264.1087 STANDARDS

Not applicable – The hazardous waste management units at this facility that are subject to Subpart CC requirements do not qualify for these stipulated exemptions.

Subpart CC Tank Standards (40 CFR 265.1084)

The Safety-Kleen Medley facility manages hazardous wastes in a tank system that consists of one 20,000-gallon storage tank and ancillary equipment. The tank in this system is subject to Subpart CC requirements as a Level 1 Tank based on tank dimensions and maximum vapor pressure of

volatile organic materials managed in this tank (see following table for criteria). A list of tank dimensions and maximum vapor pressure of volatile organics managed in tanks subject to Level 1 Tank controls is provided in the following table.

Applicability of Standards Level 1 Tanks

Tank Capacity	Maximum Vapor Pressure
> 151 cubic meters (39,800 gallons)	< 5.2 kPa (0.76 psia)
> 19800 gallons < 39,800 gallons	27.6 kPa (4.05 psia)
< 19,800 gallons	76.6 kPa (11.26 psia)

Tanks that meet the above size and vapor pressure limits and that are not heated to a temperature that would increase the vapor pressure of the materials above these limits are required to meet Level 1 Tank Standards. The storage tank at this facility is not heated to temperature greater than the temperature at which maximum organic vapor pressure of the waste is determined for purposes of compliance with this standard. See Table 11.2-1, found at the end of this section, for a summary of the tank at the Medley facility subject to the requirements of Subpart CC, and the applicable controls.

Level 1 Tank Requirements (40 CFR 264.1084(c))

Safety-Kleen used parts washer solvent has a vapor pressure of less than 0.3 kilopascals at 20° C. The tank used for storing this waste has a capacity of 20,000 gallons. A complete description of the tank system is found in Part II C. Waste material stored in this tank is used Safety-Kleen Premium 150 Solvent. The waste managed in this tank is not being treated using a stabilization process, as defined in 40 CFR 265.1081. The storage tank meeting Level 1 requirements are equipped with fixed roofs with the following specifications:

- The fixed roof and its closure devices form a continuous barrier over the entire surface area of the hazardous waste in the tank.
- There are no visible cracks, holes, gaps, or other open spaces between roof section and the tank wall.
- Each opening in the fixed roof is equipped with a closure device designed to operate such that when the closure device is secured in closed position, there are no visible cracks, holes, gap, or other open spaces in the closure device or between the perimeter of the opening and the closure device or connected to a control device (control is not required for Level 1 Tanks).

Inspection Requirements for Level 1 Tanks are as follows:

The fixed roof and its closure devices are visually inspected to check for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes or gaps in the roof sections; broken, cracked, or damaged seals or gaskets on closure devices; broken or missing hatches, access covers, caps, or other closure devices. A description of inspections and example logs for tank system can be found in Part II C.

Level 2 Tanks (40 CFR 265..1084(d))

There are no level 2 tanks at this facility.

MISCELLANEOUS UNITS

Description and Applicability of Miscellaneous Units (Subpart X)

The drum washer/wet dumpster unit at the facility are managed under the Subpart X – Miscellaneous Units Standards of 40 CFR 264.600. This unit is located, designed, constructed, operated and maintained in a manner to protect human health and the environment. The unit is located within an area provided with secondary containment, as described in Part II.C, to prevent any potential releases from migrating to the surrounding subsurface or groundwater.

The drum washer/wet dumpster unit is designed to allow employees to empty drums of used parts washer solvent into the unit, rinse/clean the drums via a spray system with used solvent pumped within the unit by a recirculation pump. These drums are then refilled with clean recycled or virgin parts washer solvent. As designed and utilized, this unit is simply a device used to effectively convey the contents of the used parts washer solvent drums to the on-site RCRA-Permitted Hazardous Waste Tank (Used Solvent). The drum washer/wet dumpster unit is not designed or intended to treat, store, or accumulate hazardous waste.

When not actively being used to receive used parts washer solvent, or clean drums, the unit will be maintained in a closed position. The internal sump at the bottom of the wet dumpster will be emptied at the end of each day's operating shift.

The unit will be inspected for leaks or malfunctions each operating day in accordance with the inspection procedures outlined in Part II.C. The physical and chemical characteristics of the used parts washer solvent transferred through this unit can be found in Part II.A.5.

Subpart CC Container Standards (40 CFR 264.1086)

This section is applicable to containers that are greater than 26 gallons that are used to manage hazardous wastes with greater than 500 ppm volatile organic contents. Hazardous waste containers that are filled (generated) at the facility as well as hazardous waste containers that are received from off site are subject to this rule. Part II.B of the permit application provides a summary of types of containers managed for which subpart CC is applicable. In addition, Table 11.2-2 (found at the end of this section) provides a summary of the areas, and types of containers managed, at the Medley facility for which Subpart CC is applicable.

Level 1 Containers (40 CFR 265.1086(c))

Containers greater than 26 gallons but less than 119 gallons and containers greater than 119 gallons used in heavy material service (<0.038 psia) are to be controlled in accordance with one of the following Level 1 container standards as follows:

- Containers that meet DOT standards are in compliance with Subpart CC Level 1 container design standards. Safety-Kleen drums meet DOT standards; or
- A container equipped with cover and closure devices that form a continuous barrier over
 the container openings such that when the cover and closure devices are secured in the
 closed position there are no visible holes, gaps, or other open spaces into the interior of
 the container. The cover may be a separate cover installed on the container such as a lid
 on a drum or a tarp on a roll-off box; or
- An open-top container in which an organic-vapor-suppressing barrier is placed on or over the hazardous waste in the container such that no hazardous waste is exposed to the atmosphere.

Level 1 Container Operating Requirements (40 CFR 264.1086(c)(3))

Whenever a hazardous waste is in a container using Level 1 controls, the covers shall be Maintained in a closed position except as follows:

- Adding hazardous waste or other materials to the container: if the container is filled in
 one continuous operation, the container is closed upon conclusion of the filling operation.
 In the case of discrete or batch filling the container is to be closed:
 - a) upon filling the container to the intended final level;

- b) the completion of a batch loading after which no additional waste will be added within 15 minutes;
- c) the person performing the loading operation leaving the immediate vicinity of the container; or
- d) the shutdown of the process generating waste being added to the container.
- Removing hazardous waste from the container: When discrete quantities of hazardous waste are removed from the container, covers shall be promptly secured upon completion of a batch removal after which no additional material will be removed from the container within 15 minutes or the person performing the unloading operation leaves the immediate vicinity of the container, whichever occurs first. RCRA empty containers may be open to the atmosphere at any time.

Containers may be opened when sampling and/or measuring hazardous wastes, as well as adding or removing hazardous wastes from them. Covers must be replaced and secured on containers once such activities are completed.

Level 1 Container Inspection Requirements

All Level 1 Containers that are not emptied upon receipt at the facility, are inspected upon arrival and each day thereafter until the container is transferred to a recycle center. Each Level 1 Container and its cover and closure devices are inspected for visible cracks, holes, gaps, or other open spaces. No container remains at the facility over 1 year. If a defect is detected for a container, cover, or closure devices, a repair shall be attempted within 24 hours after detection, and repair shall be completed as soon as possible, but no later than 5 calendar days. The container will be over-packed in a DOT approved container as a means of repair. A description of the types of inspections and example logs for containers can be found in Part II B.

Level 2 Containers (264.1086(d))

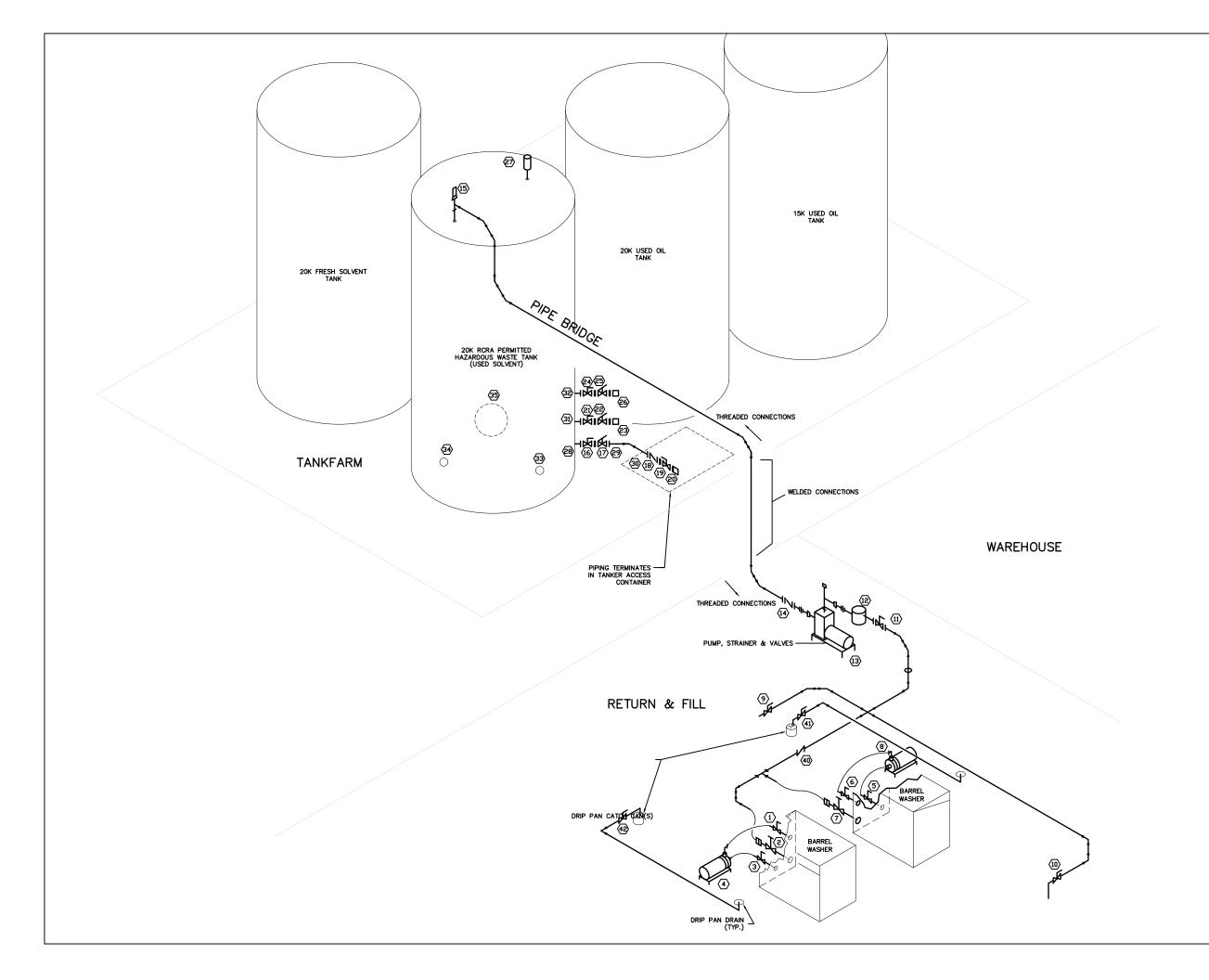
Hazardous waste containers with design capacity greater than 119 gallons, and that are in light material service, are subject to Level 2 container standards. These include totes, roll-off boxes that are greater than 119 gallons in capacity, and bulk tankers and rail car tankers. Level 2 containers are not stored at this facility, therefore 40 CFR 264.1087(d) does not apply at this location. However, these types of containers may undergo 10-day transfer at the facility, but since they will be considered "still in the course of

transportation" Subpart CC will not be applicable.

Miscellaneous Units

If a leak is detected from the drum washer/wet dumpster unit during the daily visual inspection, the defect will be repaired no later than 45 days from the date of the detection, unless the standards associated with delay of repair (40 CFR 264.1084(k)(2) apply. First attempts to repair the equipment will occur within 5 days after the leak confirmation. Additional information concerning procedures for the inspection and detection of leaks from the equipment associated with the drum washer/wet dumpster unit can be found in Part II.C of this application.

Safety-Kleen has performed emissions monitoring of these units at numerous of its' facilities across the U.S. and this data has consistently shown that VOC emission levels are considerably below the 10,000 ppm leak detection threshold.


Based on the above information there would not be any tangible environmental benefit to adding pollution controls to the drum washer/wet dumpster unit. In addition, developing pollution controls would be very difficult since processing containers of used parts washer solvent requires that the lids to the unit remain open during active operation and are located over an open grated working surface provided with a concrete secondary containment system. It should be noted that the drum washer/wet dumpster unit is drained and closed during those times of the operating day when no trucks are delivering used parts washer solvent to be processed. Also, at the end of each operating day, which typically consists of 2.5-4 hours of processing, the drum washer/wet dumpster units are emptied, cleaned, closed and prepared for the next day's operation. These procedures provide an additional amount of risk reduction.

Recording and Reporting

For demonstration of compliance with Subpart CC, as stipulated in 40 CFR 264.1089, Safety-Kleen Medley branch maintains the required information described in this permit application.

- Documentation of Waste Determination is provided in Part II Waste Analysis Plan of this permit application.
- Documentation of Container design and closure is provided in Part II.B of this permit application.
- Documentation of Container and Tank inspections are provided in Part II.B and Part II.C of this permit application.

Records for required inspections are maintained at the facility for a minimum of three (3) years. Any written reports, as required by 40 CFR 264.1090, particularly 40 CFR 264.1090(b), will be prepared and submitted to the Regional Administrator as applicable within 15-calendar days of the time Safety-Kleen becomes aware of any occurrence of non-compliance under this standard.

_						
	EQUIPMENT SCHEDULE					
	MARK	RK DESCRIPTION				
	Θ	1 1/4" BALL VALVE (BARREL WASHER)				
	(2)	2" GATE VALVE				
	3	1 1/2" BALL VALVE (BARREL WASHER)				
	4	RECIRCULATING PUMP (BARREL WASHER)				
	5	1 1/2" BALL VALVE (BARREL WASHER)				
	6	1 1/4" BALL VALVE (BARREL WASHER)				
	7	2" GATE VALVE				
	8	RECIRCULATING PUMP (BARREL WASHER)				
	9	2" FLANGED BALL VALVE				
	10	2" FLANGED BALL VALVE				
	11)	2" FLANGED BALL VALVE				
	12	STRAINER ASSY.				
	(13)	USED SOLVENT PUMP				
	14	2" FLANGED CHECK VALVE				
	(15)	3/8" AUTOMATIC VACUM BREAKER				
	(16)	3" FLANGED BALL VALVE				
	17	3" FLANGED EXTERNAL EMERGENCY GATE VALVE				
	(18)	3" FLANGED CHECK VALVE				
	(19)	3" FLANGED BALL VALVE				
	20	3" FLANGED CAM LOCK				
	21	3" FLANGED BALL VALVE				
	22	3" FLANGED EXTERNAL EMERGENCY GATE VALVE				
	23	3" FLANGED CAM LOCK				
	24	3" FLANGED BALL VALVE				
	25	3" FLANGED EXTERNAL EMERGENCY GATE VALVE				
	26	3" FLANGED CAM LOCK				
	27	3" PRESSURE VACUM BREAKER				
	28	3" TANK FLANGE ADJACENT TO "16"				
	29	3" PIPE FLANGE ADJACENT TO "17"				
	33	3" PIPE FLANGE ADJACENT TO "18"				
	(31)	3" TANK FLANGE ADJACENT TO "21"				
	32	3" TANK FLANGE ADJACENT TO "24"				
	33	3" BLIND TANK FLANGE				
	34∕	3" BLIND TANK FLANGE				
	35	3' MANWAY				
	36	NOT USED				
	37	NOT USED				
	38	NOT USED				
	39	NOT USED				
	40	2" CHECK VALVE				
	41	1" BALL VALVE				
	42	1" BALL VALVE				

A	ISSUED FOR PERMIT	JEK	JZ	JZ	092022
NO.	DESCRIPTION	BY	СНК	APPR	DATE
	REVISIONS				

PROPRIETARY STATEMENT

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF SAFETY-KLEEN CORP. AND IS PROPRIETARY AND CONFIDENTIAL INFORMATION. THIS DRAWING AND THE INFORMATION CONTAINED THEREIN MUST NOT BE DUPLICATED, USED, DIVILGED, REPRODUCED, COPIED, DISCLOSED OR APPROPRIATED IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN AS EXPRESSLY AUTHORIZED BY SAFETY-KLEEN CORP. THIS DRAWING MUST BE RETURNED PROMPTLY UPON REQUEST.

FIGURE 11.1-1 **ENVIRONMENTAL PIPING** SCHEMATIC - EXISTING

SAFETY-KLEEN SYSTEMS, INC. 42 LONGWATER DRIVE, NORWELL, MA. 02061 PHONE: 781-792-5000

	SCALE NONE	BY JEK	CHKD JZ	APPROVED JZ		DATE 9/20/22
- [SERVICE CENTER LOCATION			SC-DWG NUMB	ER	REV. NO.
	MEDLEY, FL.		7096-56	800-300	Α	

Figure 11.1-2 Safety-Kleen Medley, Florida Hazardous Waste Solvent Tank/Piping Equipment Subpart BB Tags

TAG NUMBER	EQUIPMENT DESCRIPTION		
1	1 ¼" Ball Valve-drum washer		
2	2" Gate Valve		
3	1' ½" Ball Valve-drum washer		
4	Waste Mineral Spirits Rec. Pump		
5	1 ½" Ball Valve-drum washer		
6	1' 1/4" Ball Valve-drum washer		
7	2" Gate Valve		
8	Waste Mineral Spirits Rec. Pump		
9	2" Flanged Ball Valve		
10	2" Flanged Ball Valve		
11	2" Flanged Ball Valve		
12	Strainer Assy.		
13	Used Solvent Pump		
14	2" Flanged Check Valve		
15	3/8" Vacuum Breaker		
16	3" Flanged Ball Valve		
17	3" Fl. External Emerg. Gate Valve		
18	3" Flanged Check Valve		
19	3" Flanged Ball Valve		
20	3" Flanged Cam Lock		
21	3" Flanged Ball Valve		
22	3" Fl. Extern. Emer. Gate Valve		
23	3" Flanged Cam Lock		
24	3" Flanged Ball Valve		
25	3" Fl. Extern. Emerg. Gate Valve		
26	3" Flanged Cam Lock		
27	3" Pressure Vacuum Breaker		
28	3" Tank Flange		
29	3" Pipe Flange		
30	3" Pipe Flange		
31	3" Tank Flange		
32	3" Tank Flange		
33	3" Blind Tank Flange		
34	3" Blind Tank Flange		
35	3" Long Bolt Manway		
36	No longer in use		
37	No longer in use		
38	No longer in use		
39	No Longer in use		
40	2" Check Valve		
41	1" Ball Valve		
42	1" Ball Valve		

Figure 11.1-3 Leak Detection and Repair Record (Example)

Safety-Kleen Medley, Florida

Equipment ID #.						Other:		
How was potential or actual leak detected?							Date	Inspectors Signature
Describe the potential o						-		
(1.) Instrument Mo	_		-			-		
(2.) Repair Attempt Method:	t					_		
Results:								
(4.) Date of Success Method: Results:	ful Rep	air (Mu	ıst be c	omplet	ed with			
Follow up Mon (5.) Results: (6.) Results:						_ _		
Monitoring Summary (Reference Number – See of					above)			
	(1)	(2)	(3)	(4)	(5)	(6)		
Instrument # / Operator								
Calibration								
Background Reading								
Reading at Equipment								
Leak Detected								

Attach any documentation prepared by consultant(s).

CO Tank Sys BB Equipment

Form Code: 42

Compliance Header	
Inspector Name	
Area of Inspection	
Inspection Date and Time	
CO Tank System BB Equipment Instruction	
Note condition of inspection items. Inspect all tag system drawing specification. All unsatisfactory f changes or corrective actions.	
CO Tank System BB Equipment Inspection Items	S
Inspect all tagged and non-tagged tank system identified BB equipment points per area plan - Check for evidence of failure. (e.g., all inclusive review of all equipment pumps, valves, flanges, connections, unions, couplings or caps for potential leaks, active leaks, sticking, wear, does not operate smoothly, other).	
Each open-ended valve or line is equipped with a which seals the open end at all times except whe ended valve or line. [264.1056/ 265.1056]	
Pieces of equipment found to be leaking, usually calendar days and the first attempt to repair is m 265.1058(c)]	•
When a leak is detected, a weatherproof identification with ID # and the date leak was detected. The identification [264.1064(c)/ 265.1064(c)]	
The liquids in use are heavy liquids. It should be storage tanks contain between 80% and 100% o	•
Subpart BB equipment tags that are "Difficult to I (i.e. those that are located on top of tanks	Monitor" will be inspected on an annual basis
Compliance Footer	
Inspector Signature	

Attach Photo	
Inspection Overall Assessment	

TABLE 11.2-1 SUMMARY OF TANK MANAGEMENT UNITS SUBJECTED TO SUBPART CC SAFETY-KLEEN SYSTEMS, INC. MEDLEY, FL EPA ID NUMBER: FLD 984 171 694

Hazardous Waste	Location of	EPA	Brief Waste	Average	Subpart	Control
Management Unit	Hazardous	Hazardous	Description	Volatile	CC	Option
	Waste	Waste Codes		Organic	Status	(See
	Management	Managed		Concentration		Table
	Unit			of		11.2-3)
				Hazardous		
				Waste		
RCRA- Permitted	See Figure	D001, and	Waste Parts	> 500	Level 1	1
Hazardous Waste	2.1-1	codes listed in	Washer Solvent		Control	
Tank (Used Solvent)		Note 1 below	(Petroleum			
(20,000 g)			Naphtha)			

NOTE: D018, D039, D040

TABLE 11.2-2 SUMMARY OF CONTAINER MANAGEMENT UNITS SUBJECTED TO SUBPART CC SAFETY-KLEEN SYSTEMS, INC. MEDLEY, FL

EPA ID NUMBER: FLD 984 171 694

Hazardous	Location	EPA	Brief Waste	Average	Container	Subpart	Control
Waste	of	Hazardous	Description	Volatile	Type	CC Status	Option
Management	Hazardous	Waste		Organic			(See
Unit	Waste	Codes		Concentration			Table
	Unit	Managed		of			11.2-3)
				Hazardous			
				Waste			
Container	See Figure	D001,	Waste Parts	> 500	Type A	Container	11
Storage Area	2.1-1	F001, F002,	Washer			Level 1	
		F003, F005	Solvent			Controls per	
		and codes	(Petroleum			264.1086(c)	
		listed in	Naphtha),				
		Note 1	Dry Cleaner				
		below	Wastes				
Return and	See Figure	D001 and	Waste Parts	> 500	Type A	Container	11
Fill Area	2.1-1	codes listed	Washer			Level 1	
		in Note	Solvent			Controls per	
		below	(Petroleum			264.1086(c)	
			Naphtha)				

Note: D004 thru D011, D018, D019, D021 thru D030, and D032 thru D043

Table 11.2-3

Subpart CC Control Options

Tanks

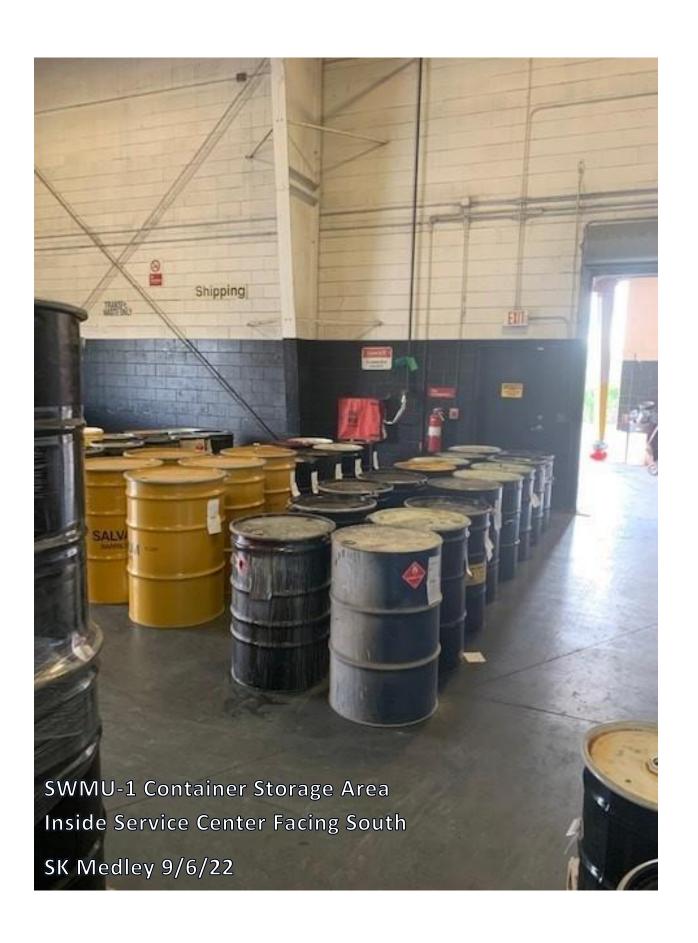
- 1. These tanks shall comply with Tank Level 1 controls which require tanks to have a fixed roof with no visible cracks, holes, gaps, or other spaces in accordance with 40 CFR 264.1084(c). The tank shall be visually inspected for defects prior to the tank becoming subject to these requirements and at least once a year thereafter [40 CFR 264.1084(c)].
- 2. These tanks are fixed roof tanks equipped with an internal floating roof and shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(e). The internal floating roof shall be visually inspected for defects at least once every twelve months after initial fill unless complying with the alternative inspection procedures in 40 CFR 264.1084(e)(3)(iii). [40 CFR 264.1084.(d)(1)]
- 3. These tanks are equipped with an internal floating roof and shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(f). The external roof seal gaps shall be measured in accordance with procedures contained in 40 CFR 264.1084(f)(3)(I) within 60 days and at least once every 5 years thereafter. The external floating roof shall be visually inspected for defects at least once every 12 months after initial fill. [40 CFR 264.1084(d)(2)]
- 4. These tanks are vented through a closed-vent system to control device and shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(g). The tank shall be equipped with a fixed roof and closure devices which shall be visually inspected for defects initially and at least once every year. The closed-vent system and control device shall be inspected and monitored in accordance with 40 CFR 264.1087. [40 CFR 264.1084(d)(3)]
- 5. These tanks are pressure tanks which shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(h). [40 CFR 264.1084(d)(4)]
- 6. These tanks are located inside an enclosure that is vented through a closed-vent system to an enclosed combustion control device and shall comply with Tank Level 2 controls in accordance with 40 CFR 264.1084(1). The closed-vent system and control device shall be inspected and monitored in accordance with 40 CFR 264.1087 [40 CFR 264.1084(d)(5)]
- 7. These tanks have covers which have been specified as "unsafe to inspect and monitor" and shall comply with the requirements of 40 CFR 264.1084(l)(1) [40 CFR 264.1084(f) & (g)]

Table 11.2-3

Subpart CC Control Options

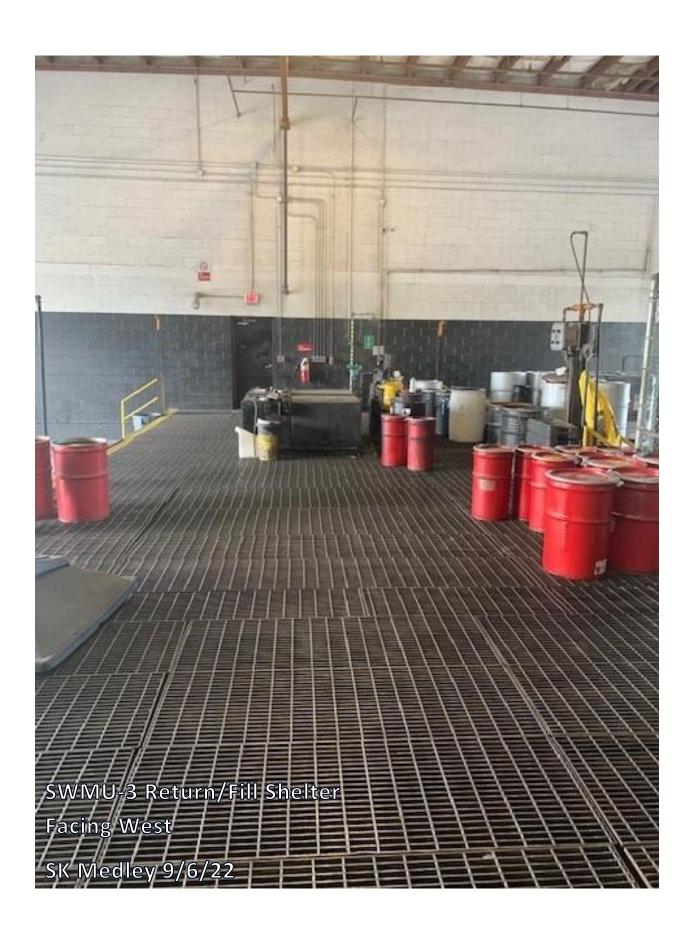
Containers

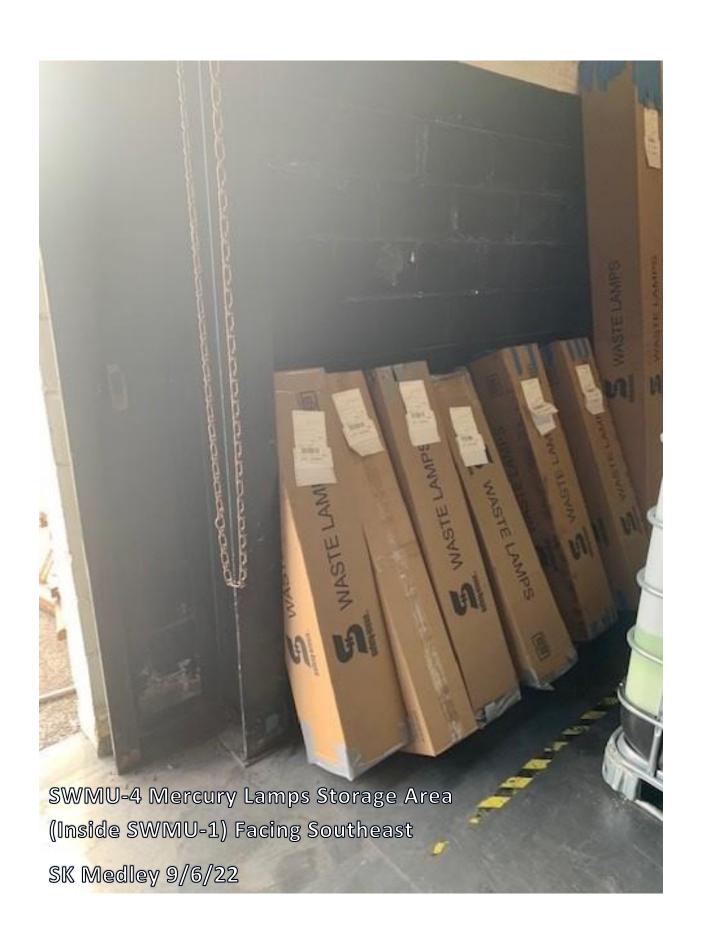
- 8. These containers have a design capacity greater than 0.1 m³ and less than or equal to 0.46 m³ and meet the applicable US DOT regulations under the Container Level 1 standards. The container shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1) & (c)(1)(i)]
- 9. These containers have a design capacity greater than 0/1 m³ and less than or equal to 0.46 m³ and are equipped with a cover and closure devices which form a continuous barrier over container openings. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(i) & (c)(1)(i)]
- 10. These containers have a design capacity greater than 0/1 m³ and less than or equal to 0.46 m³ and are open-top containers in which an organic-vapor surpressing is placed on or over the hazardous waste in a container. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(i) & (c)(1)(iii)]
- 11. These containers have a design capacity greater than 0.46 m³, are not in light material service and meet the applicable US DOT regulations under Container Level 1 standards. The container shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(ii) & (c)(1)(i)]
- 12. These containers have a design capacity greater than 0.46 m³, are not in light material service and are equipped with a cover and closure devices which form a continuous barrier over container openings. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(ii) & (c)(1)(ii)]
- 13. These containers have a design capacity greater than 0.46 m³, are not in light material service and are open-top containers in which an organic-vapor surpressing is placed on or over the hazardous waste in a container. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(ii & (c)(1)(iii)]
- 14. These containers have a design capacity greater than 0.46 m³, are in light material service and meet the applicable US DOT regulations under Container Level 2 standards. The container shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1086(b)(1)(iii) & (d)(1)(i)]

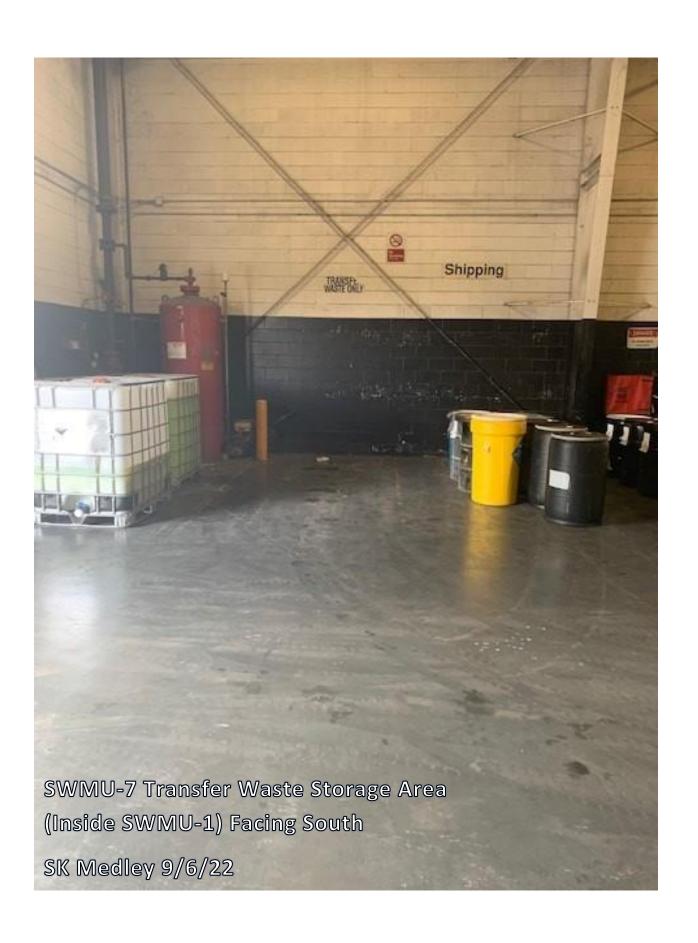

Table 11.2-3

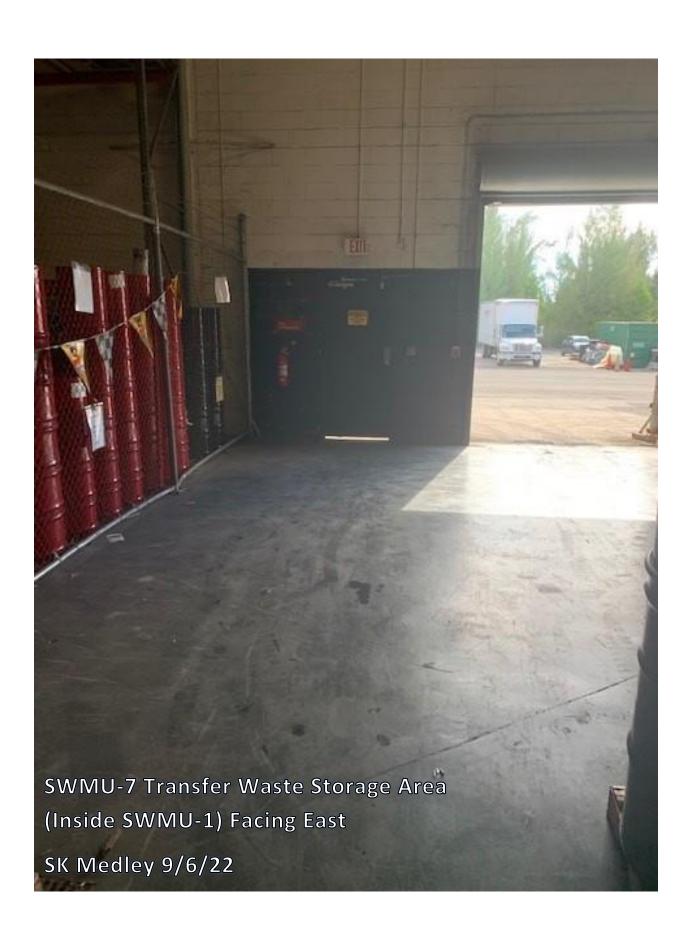
Subpart CC Control Options

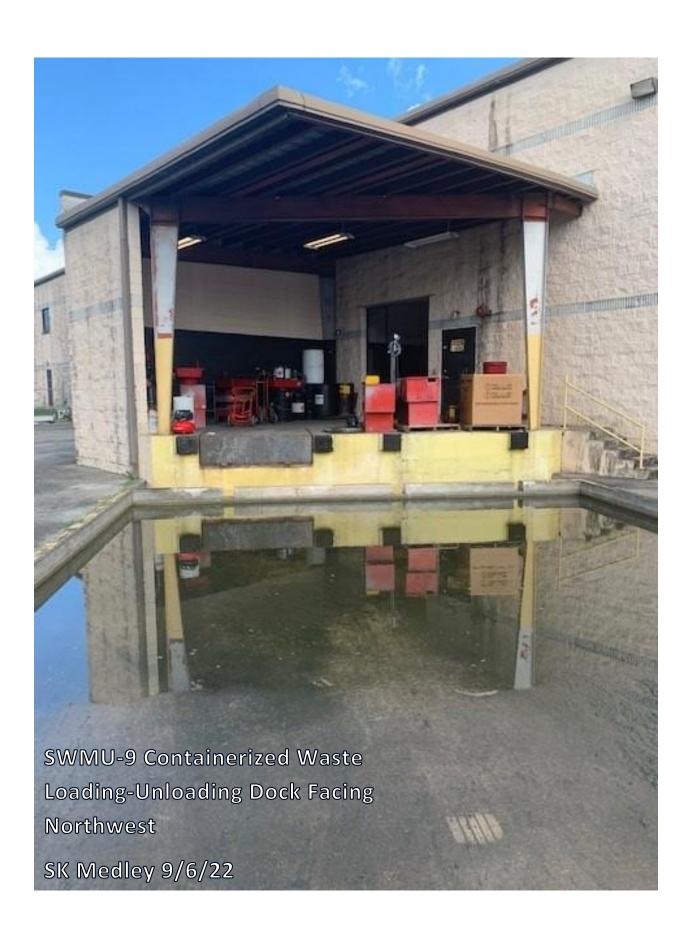
- 15. These containers have a design capacity greater than 0.46 m³, are in light material service and operate with no detectable organic emissions as defined in 40 CFR 265.1081. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1088(b)(1)(iii) & (d)(1)(ii)]
- 16. These containers have a design capacity greater than 0.46 m³, are in light material service and that have been demonstrated within the preceding 12 months to be vapor tight using 40 CFR Part 60, Appendix A, Method 27. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 264.1088(b)(1)(ii) & (c)(1)(i)]
- 17. These containers have a design capacity greater than 0.1 m³ that are used for treatment of a hazardous waste by a waste stabilization process and are vented directly through a closed-vent system to a control device in accordance with 40 CFR 264.1086(e)(2)(ii). The closed-vent system and control devices shall be inspected and monitored as specified in 40 CFR 264.1087. [40 CFR 264.1088(b)(2) & (e)(1)(i)]
- 18. These containers have a design capacity greater than 0.1 m³ that are used for treatment of a hazardous waste by a waste stabilization process and are vented inside an enclosure which is exhausted through a closed-vent system to a control device in accordance with 40 CFR 264.1086(a)(2)(i) & (ii).). The closed-vent system and control devices shall be inspected and monitored as specified in 40 CFR 264.1087. [40 CFR 264.1088(b)(2) & (e)(1)(ii)]

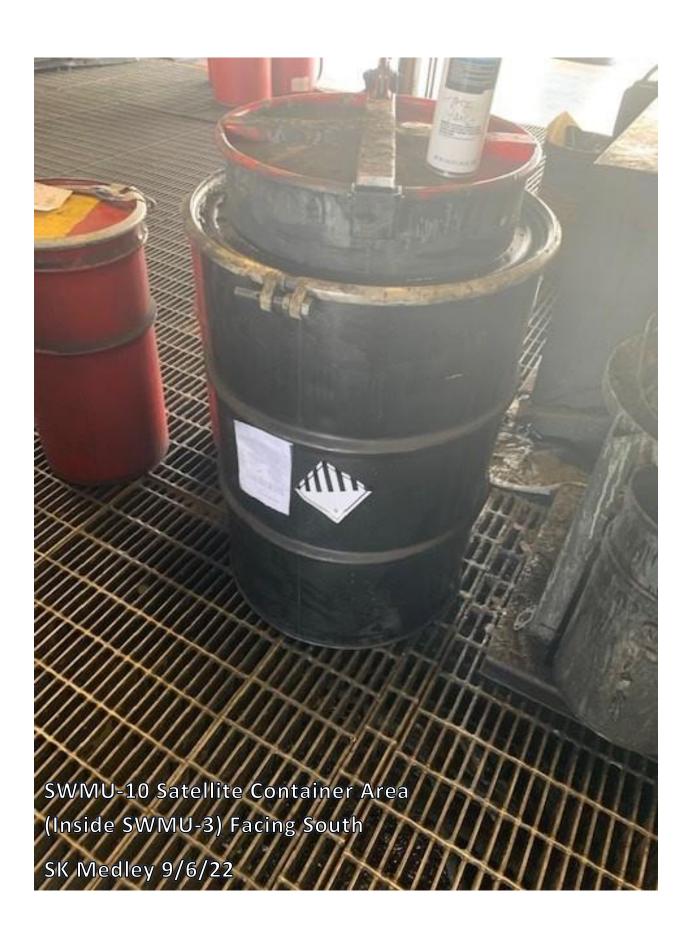

Appendix A Site Photographs

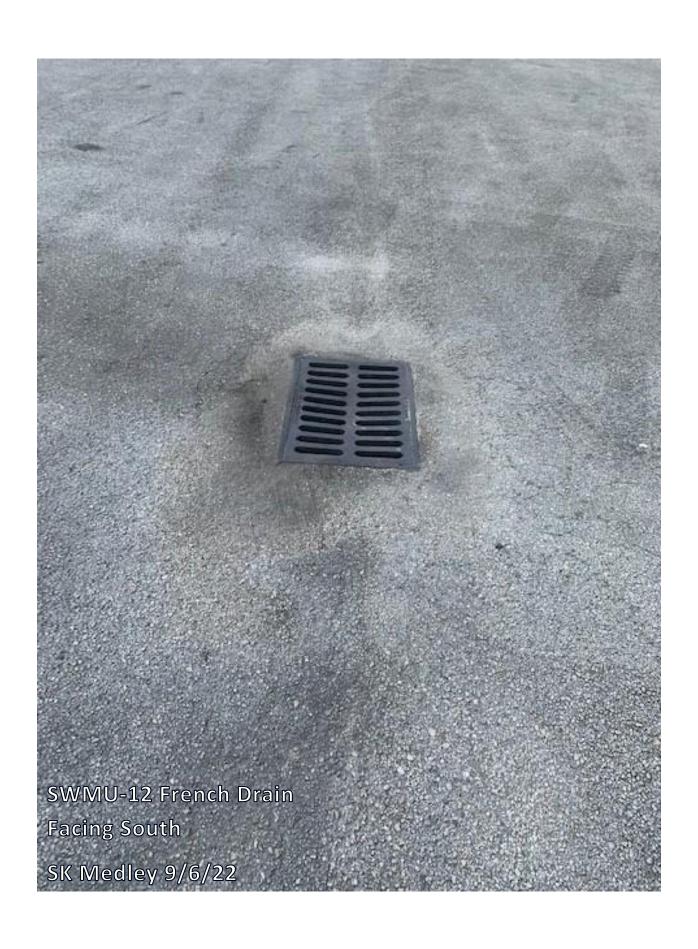












Appendix B Chemical Analysis Reports Annual Re-Characterization

2022 AR Codes and SKDOTS - National

Waste Stream	Description Subcategory	Changes from 2021 to 2022	2022 National Waste Codes	2022 NATIONAL Profile
Branch Contaminated Debris (Solid would not carry D001)	N/A	No Change	F002, F003, F005, D001, D004, D005, D006, D007, D008, D009, D010, D011, D018, D019, D021, D022, D023, D024, D025, D026, D027, D028, D029, D030, D032, D033, D034, D035, D036, D037, D038, D039, D040, D041, D042, D043	Refer to CH Outbound
Immersion Cleaner	N/A	Remove D006, D018, D027	D039, D040	153634
Parts Washer Solvent 105 Virgin	under 100 lbs over 100 lbs (RQ) Non-RQ DF container (no DOT SP)		D001, D018, D039, D040	150045 150085 157045
Bulk MS Solvent	N/A	No Change	D001, D018, D039, D040	Refer to CH Outbound
Parts Washer Solvent Sludge/Dumpster Mud	N/A	No Change	D001, D018, D039, D040	Refer to CH Outbound
Parts Washer Solvent Tank Bottoms (bulk)	N/A	No Change	D001, D018, D039, D040	Refer to CH Outbound
Premium (150) / PRF / PDF Mil Spec Solvent	N/A DF container (no DOT SP)	No Change	D039	150055 157055
Paint Gun Cleaner	under 100 lbs over 100 lbs (RQ)	No Change	F003, F005, D001, D018, D035, D039, D040	150380 150425
Paint Gun Cleaner (Premium Thinner)	under 100 lbs over 100 lbs (RQ)	No Change	F003, F005, D001, D018, D035, D039, D040	158380 158381
Clear Choice Paint Gun Cleaner	under 100 lbs over 100 lbs (RQ)	No Change	F003, D001, D018, D035, D039, D040	150426 150427
Paint Waste Other	Any size container	No Change	F003, F005, D001, D018, D035, D039, D040	150375
Universal Paint Gun Cleaner	N/A	No Change	D001, D018, D035, D039, D040	403901294
Dry Cleaner (Perc) Bottoms	N/A	Remove D029	F002, D007, D039, D040	150589
Dry Cleaner (Perc) Filters	N/A	Remove D029	F002, D007, D039, D040	150621
Dry Cleaner (Perc) Separator Water	N/A	Remove D029	F002, D039, D040	150520
Dry Cleaning Naphtha Bottoms	N/A	No Change	D001, D007, D039, D040	150422
Dry Cleaning Naphtha Filters	N/A	No Change	D001, D007, D039, D040	150424
Dry Cleaning Naphtha Separator Water	N/A	No Change	D001, D039, D040	150423

Appendix C Containment Calculations

Professional Engineers Certification Report

of

Construction of the Safety-Kleen Medley, Florida

Branch Service Center

CERTIFICATION

Florida Dept. of Environmental Regulation

Facility Name

SAFETY-KLEEN CORP., MEDLEY, FLORIDA

FDER Site Code

FLD984167791

Construction Permit Requiring Certification HC-13-175466

Permit Issuance Date March 1, 1991

The <u>Hazardous Waste Facilities</u> have been constructed and tested in accordance with the specifications in the Part B construction permit with the exceptions noted in the attached report. Documentation that the construction was in accordance with the permit is contained in the enclosed report.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of imprisonment for knowing violations.

Signature of Owner/Operator

Glenn R. Casbourne, Vice-President, Engineering Name and Title

Signature of Registered P.E.

William O. Heyn, 45516

Name of Registered P.E. and Florida P.E. No.

7-7-92

(P.E. Seal)

Date

Construction Documentation Report for Construction of Hazardous Waste Facilities at the Safety-Kleen Corp. Branch Service Center Located at 8755 N.W. 95th Street, Medley, Florida

Introduction

Safety-Kleen Corp. constructed an office, warehouse building and tank farm with ancillary equipment in Medley, Florida in accordance with the requirements of the Part B construction permit that was issued by the Florida DER on March 1, 1991 and amended on December 9, 1991 and May 15, 1992 with deviations from the permit indicated in this report. Figure 11A.4(b)-3 indicates Sanford whereas it should be Medley. Also the tank farm as-built is in the "Future" location which is consistent with the rest of the permit.

Regulatory Requirements:

40CFR264.192(a)

The tanks for storage of hazardous waste were constructed in accordance with Underwriters Laboratories Inc., "Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids." The tank shell thickness is 1/4" from 0 to 18 feet, and 3/16" from 18 to 24 feet. The tank bottom is 1/4" thick and the tank top is 3/16" thick steel. The waste ethylene glycol and waste mineral spirits tanks are identical.

All tanks are coated with white acrylic base paint. All pipes and threads are painted to protect them from corrosion. Each tank is protected by a high level alarm which will sound and activate an alarm and a strobe light when the tank level reaches 95% of capacity. The alarm on the waste solvent tank will also deactivate the waste solvent pump at the return and fill. The high level alarm system was changed from a float activated switch to a sonar based tank gauge and high level alarm system called "Level Devil" provided by Electronic Sensors, Inc. of Wichita, Kansas.

All connections to the tanks are equipped with a spring loaded safety valve held in the open position by a fusible link that will melt and allow the valve to close in the event of a fire.

40CFR 264.192(b)

Each tank was inspected after installation for weld breaks, punctures, scrapes of protective coatings, cracks, corrosion and other structural damage or inadequate construction/installation.

All discrepancies found were corrected and the tanks are suitable for use.

40CFR264.192(c) Not applicable

40CFR264.192(d)

The tanks, after installation, were filled over 95% of full with water and observed for 5 hours for leaks. No leaks were observed and the tanks are certified tight. All ancillary equipment was tested in conjunction with the tank tests and certified tight.

40CFR264.192(e)

All ancillary equipment has been properly mounted and installed. All lengths of piping are supported no less than every eight running feet.

40CFR264.192(f) Not applicable

40CFR264.192(g) See Certification Statement

40CFR264.193(a-e)

Tank secondary containment in the form of an open concrete dike vault has been constructed in accordance with prints No. 316301-5002-00 Sheet No. 8 and 316301-5015-00 Sheet No. 9. The floor and dike walls of the tank containment system contain no cracks. The slab has been sloped to drain all liquids that accumulate inside the containment system to a

stainless steel sump which can be readily pumped out to a holding tank to remove the accumulated liquids. The sump is located adjacent to the south wall of the vault per Figure II C2-1.

The interior of the dike walls and slab are coated with an epoxy material (Semstone 140) to prevent permeation through the concrete.

40CFR264.193(f)

Some piping inside the dike vault is threaded. Secondary containment for this piping is provided by the vault. All piping outside the concrete dike vault has fully welded connections. The clean solvent pump has been installed inside the concrete dike vault as is the spill container for hookup to tank trucks. Note: Although the permit specified that six tanks would be installed in the tank farm, only 3 tanks have been installed: one dirty mineral spirits tank, one clean mineral spirits tank and one waste glycol tank. The two waste oil tanks and the perchloroethylene tank were not installed but may be at a later date. Also the permit showed the tank truck connections outside the diked area and a change was made to move them inside the diked area. Refer to print No. 316301-2000-00 sheet No. 45.

With reference to Fig. II C.2-1 Tank Farm; The location of the tanks was changed to accommodate the use of one truck connection container. As-built, the used mineral spirits tank is located in the southwest corner of the vault whereas the permit shows it in the southeast corner of the vault. The fresh mineral spirits tank as-built is located in the northwest corner of the vault vs. the northeast location per the permit. The used ethylene glycol tank as-built is located in the south central position of the tank farm vs. the permit location in the northwest position. The tanks were mounted on stainless steel sheets, 13 ft. 8 in. by 13 ft. 8 in. which were bolted to the concrete housekeeping pads.

The dimensions of the vault, as-built, varies from the permit dimensions as follows; length 58 ft. 0 in. vs. 56 ft. 0 in. in the permit, width 40 ft. 0 in. vs. 40 ft. 0 in. in the permit. The height of the dike wall varies from 36-1/4 in. to 38 in. due to the sloped floor of the vault

vs. 36 in. in the permit. Three monitoring wells have been installed about 10 ft. from the north, east and west sides of the vault.

Tank Truck Loading Area

The permit application shows an 80 ft. by 25 ft. tank truck loading area constructed of 6 in. thick reinforced concrete sloping 2 inches to a 2 ft. diameter by 2 ft. deep stainless steel sump with no outlet. A change was made to increase the slope to 9 inches to increase the containment capacity of the pad to 2917 gallons. Refer to print No. 316301-5003-00 sheet No. 10. The containment volume of the truck loading area was measured by filling with water. The actual volume measured was 2432 gallons which is significantly less than the design volume.

Tank Farm Shelter

Provisions were made during construction to provide foundations for a proposed tank farm shelter which will be installed at a later date. This proposed shelter will cover the entire tank farm and tank truck loading pad with an overhang of 10 ft. at each end of the tank farm (east and west) and a 2 ft. overhang on the front and rear (south and north) of the tank farm and tank truck loading slab. This shelter will prevent a major portion of rainfall from entering the containment areas. No side walls will be installed so that access for fire fighting is not impaired. Refer to print Sheet No. ST-1 Tank Farm Canopy.

Warehouse Containment Area

The Warehouse containment area was constructed in accordance with print 316301-7005-00 Sheet No. 26. The sloped floor containment area is free of cracks and has been sealed with an epoxy sealant (Semstone 245) that is chemically resistant to the products to be stored in the warehouse. The sloped floors of the warehouse drain into a 12 ft. x 2 ft. stainless steel sump that has no outlet. Any spills collected in the sump will be pumped out and properly disposed. The containment volume of the warehouse was measured by filling with water. The actual

volumetric measure was 2996 gallons which is equal to or greater than the design volume of 2940 gallons.

With reference to Fig. II B.1-1 Container Storage Location; The rollup door and personnel door in the northeast location in the east wall of the warehouse were moved to a southeast location in the east wall. A personnel door was added to the north wall. The security fence in the warehouse was relocated and two 6 ft. wide by 8 ft. high sliding gates were added to the fence.

The truck loading dock will contain one dock leveler and provisions for a second leveler and is covered by a metal roof. Any spills that occur on the loading dock will be collected in a 24 ft. x 2 ft. stainless steel trench located at the foot of the dock. This trench, covered by a steel grating, has no outlet and any spills must be pumped out by use of a portable pump.

Rainwater which falls on the outside truck loading pad is collected in a sump which drains into the stormwater system. A small brem separates this sump from the stainless steel spill collecting sump at the foot of the dock to prevent rainwater from entering the stainless steel sump.

Return and Fill

The return and fill containment is made up of concrete floors sloped to two 2 ft. diameter by 2 ft. deep stainless steel sumps that have no outlets. The concrete containment areas are sealed by an epoxy sealant (Semstone 140) that is compatible with and resistant to the solvents that will be handled in the facility. The steel loading dock, sized to handle 8 trucks, is covered by heavy duty grating that can support all anticipated loads including forklifts. Openings in the gratings contain two drum washers for dumping and washing solvent drums. The dock is equipped with dock plates to provide safe access to the trucks. Hose trees are located at the edge of the dock to provide valves and hose mountings for filling drums.

Two as-built, wet dumpster/barrel washers were installed adjacent to each other near the positions indicated in Fig. II C.7-3 Return and Fill Shelter.

The containment volume of the return and fill area was measured by filling with water that was used in the hydrostatic test of the tanks. The actual volume measured was 3693 gallons which compares favorably with the design volume of 3680 gallons. After the test the

water was pumped into the storm sewer.

The permit application showed a single 20 ft. by 2 ft. rectangular stainless steel sump in the return and fill. A change was made to two round sumps with changes in the floor slopes to accommodate them and to achieve the same overall containment volume. Refer to print no. 316301-7004-00 sheet No. 24.

Fire Suppression System

The fire sprinkler system for the warehouse, Return and Fill area and the office area has been designed and installed by Kannapolis Fire Sprinklers. The piping system with sprinkler heads for the warehouse and Return and Fill areas have been completed and are operational. The available water flow has been tested by the City of Medley. The available flow has been found to be inadequate as required by NFPA for a water system. Flow *is* adequate for a foam system which has been installed. The foam bladder tank has been installed in the southeast corner of the warehouse with the required controls. The foam sprinkler system has been tested by the installer and approved by the Medley Fire Department prior to issuance of the Certificate of Occupancy.

Other Emergency Equipment

Fire Extinguishers - The warehouse and Return and Fill are equipped with eight 20 lb. ABC fire extinguishers wall bracket mounted and labeled in accordance with the approved design.

Eye Washer/Showers - one eyewash/shower is located on the west wall of the warehouse adjacent to the doorway to the Return and Fill. A second eyewash/shower is located on the west side of the steel loading dock in the Return and Fill area. A third eyewash/shower is located adjacent to the tank farm.

Exit Signs - All doorways opening to the outside are identified by a lighted "Exit" sign.

Personal Protective Equipment - All employees working in the Warehouse and the Return
and Fill will be required to wear safety glasses with side shields, hard hats and safety shoes.

Branch Security

The working areas of the Medley facility are enclosed by a 6 foot high chain link fence with a one foot extension containing 3 strands of barbed wire. Access and exit is through two 30 ft. sliding gates which are motor operated. Entrance is achieved by a keypunch pad located adjacent to the entrance drive. The gate opening can also be achieved by a push button located in the office. Gate closing is controlled by a timer and an electric eye. All gates are required to be kept closed at all times except for passage of vehicles.

Access into the office is controlled by a door equipped with an electrically operated lock activated from inside the office. Two doors exiting from the office area will be equipped with an emergency bar on the inside. These doors can only be opened from inside the building.

Signs designating "no smoking", "fire extinguisher", etc. have been mounted in locations shown on drawing No. 316301-9000-00 Sheet No. 28.

Site Storm Water Control

The City of Medley has no stormwater drainage system available for this site. In order to provide for stormwater control and disposal, the areas to be paved have been equipped with 6 catch basins each of which are connected to an underground collection system. The collection system consists of 15 in. diameter perforated corrugated metal pipes laid horizontally 3 ft. underground in 15 ft. deep by 36 in. wide trenches filled with pervious material. The capacity of these structures is adequate to store a rainfall of 6.7 inches over a 1 hour period. The water collected in the structure will drain by seepage into the surrounding soil.

Electrical

All electrically operated equipment was tested with a temporary electrical supply. Florida Power and Light will hook up permanent power after the Certificate of Occupancy is issued by the City of Medley.

Strategy for measuring volume of Containment Areas and Testing Tanks and Piping Systems

Since the tanks are to be tested by filling with water and observing for leaks, 20,000 gallons of water will be available for filling the various containment systems, i.e. Return and Fill (3680 gal. reqd.) and the warehouse (2940 gal. reqd.) and the tank truck loading/unloading pad (2917 gal. reqd.)

One option to determine volumes is to measure the physical dimensions of each containment area and calculate the actual volume each would contain.

A second option would be to fill each containment volume with water from the tank test and measure the amount of water used by means of the tank gauge after the tanks are tested.

The high level alarms for the tanks should be operational when the tanks are filled to provide a test of the high level alarm system for each tank.

At the completion of the tests the water will be drained into the stormwater drainage system onsite.

Procedure

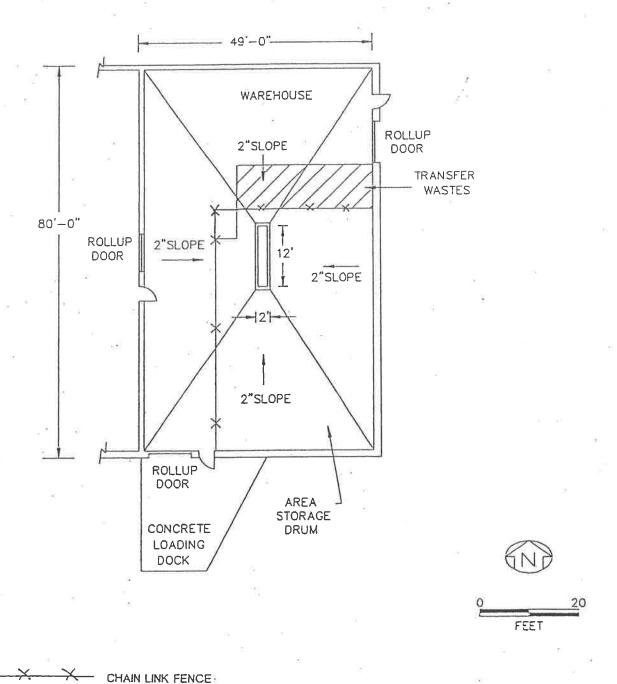
- 1. Fill used Mineral Spirits tank with water from the domestic supply until the high level alarm sounds. Record the number of gallons indicated by the tank gauge. Continue to fill an additional 500 gal. taking care *not* to overfill the tank. Observe the tank system for 5 hours for leaks. Note any leakage that must be repaired before placing tank in service.
- 2. Hook up an auxiliary pump to the drain line of the used Mineral Spirits tank and connect the discharge to the fill line of the Used Glycol Tank. Transfer the water to the Used Glycol tank. Note: The residual water in the bottom of the used Mineral Spirits tank is not available for this part of the test. Add additional water to the Used Ethylene Glycol of 500 gallons over the point at which the high level alarm sounds. Record the tank gauge reading when the high level alarm sounds. After the tank is filled observe the tank system for 5 hours and note any points of leakage. Repair all leaks before terminating the tests on both tanks.
- 3. Fill out certification forms indicating tanks and ancillary piping are tight.
- 4. Drain water from the filled tank into the truck loading area. Note gauge readings on the tank gauge before filling and at the point that the loading area is completely filled. Record gallons. Pump the water from the truck loading area into the storm drain.
- 5. Drain water from the filled tank into the warehouse containment area. Note tank gauge readings before and at the point the containment area is completely filled. Record gallons. Pump the water from the containment area into the storm drain.
- 6. Repeat the above procedure for the return and fill containment area.
- 7. Fill out certification forms for all 3 areas.
- 8. Drain remaining water from the filled tank into the storm drain. Note: each tank tested will contain several hundred gallons of water in the bottom of the dish that cannot be pumped out through the discharge ports. To remove this residual water, remove one 4" plug at the bottom of the tank and siphon or pump the residual water from the bottom of the dish. After draining replace plug using approved thread sealer.

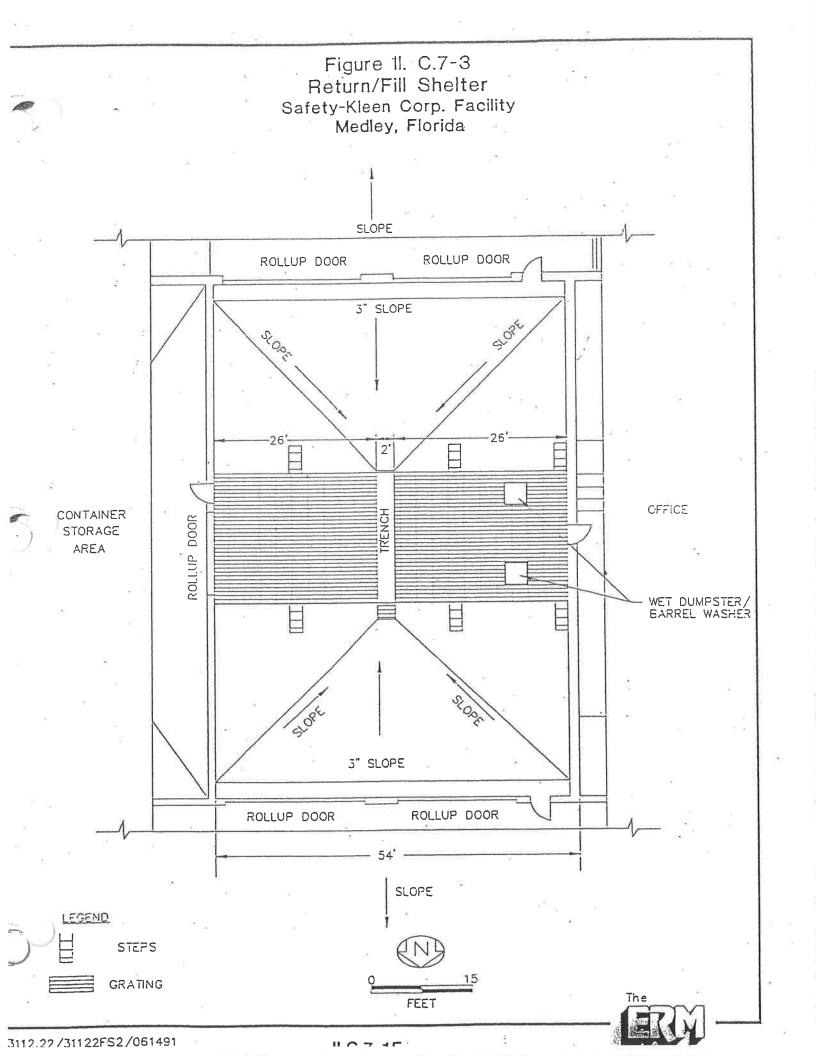
W. O. Heyn 2010 Imperial G.C. Boulevard Naples, FL 33942 813-566-2326

TEST CERTIFICATION FORM

Date 6-6-92	S 2 9 5		5
Project SAFETY-KLEEN C			e e
Location MEDIEY, FLORIDA	9	ž.	
System TANK #1 WASTE	MINERAL SPIRITS		WT g
Type of Test	Hydrostatic	9 ° 9	
TI V	Air		
	Other	<u> </u>	
Test Pressure ATMOS PHERIC		* *	
Duration of Test 5 Hours	e (2	
Test Witnessed By Joshie Harel	3		
Test Supervised By W.O. HEYN	ja		
PESULTS - TANK AND	ANCILLARY EGUST	DMEDT T	IGHT

Ву: _	li	12	leyn	J	30	
Title: _	PE	FLOR	10.4 (EKT:	455	16
Date:	6	-6-9	32			


W. O. Heyn 2010 Imperial G.C. Boulevard Naples, FL 33942 813-565-2326


TEST CERTIFICATION FORM

e e	
Date 6-6-92	
Project SAFETY-KLEEN C	ORP
Location MEDIEY, FLORIDA	7
9 g	,
System TANK #3 WASTE ETT	HYLENE GLYCOL
12 W	
Type of Test	Hydrostatie
	Air
	Other
Test Pressure ATMOSPHERIC	
Duration of Test 5 HOURS	# # # # # # # # # # # # # # # # # # #
Test Witnessed By Jacke / Parce	at
Test Supervised By W. G. HE?	\mathcal{N}^*
18 Telephone 18 Te	
RESULTS - TANK AND.	ANCILLARY EQUIPMENT TIGHT
, 0014	
e e e	8
8	2 (E)
21	* * * * * * * * * * * * * * * * * * *
	By: Le Dieg
***************************************	Title: PE FLORIDA CERT 45516

Date: 6-6-92

II.B.1-1
Container Storage Location
Safety-Kleen Corp. Facility
Medley, Florida

Figure II.C.2-1 Tank Farm Safety-Kleen Corp. Facility Medley, Florida

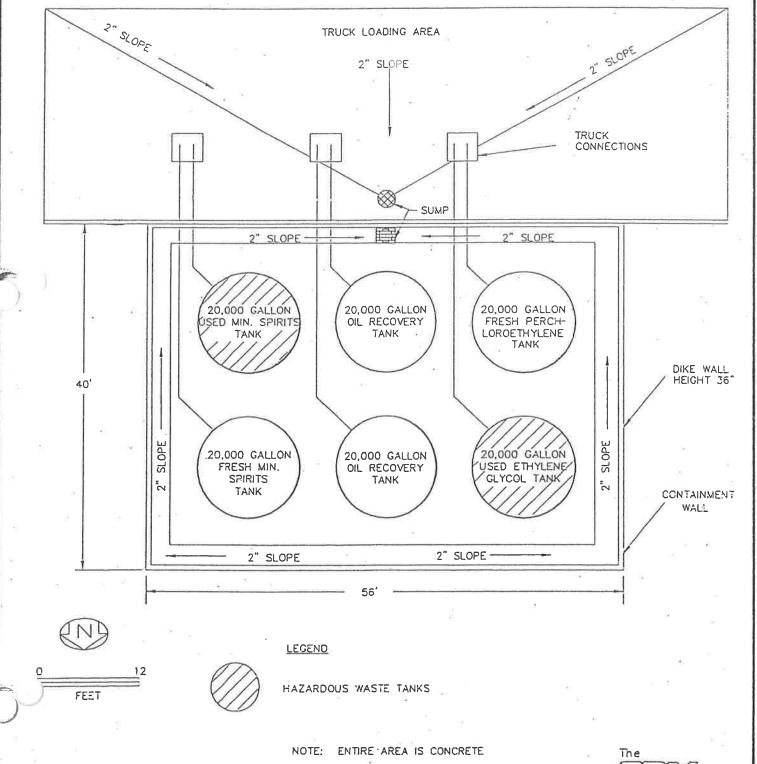
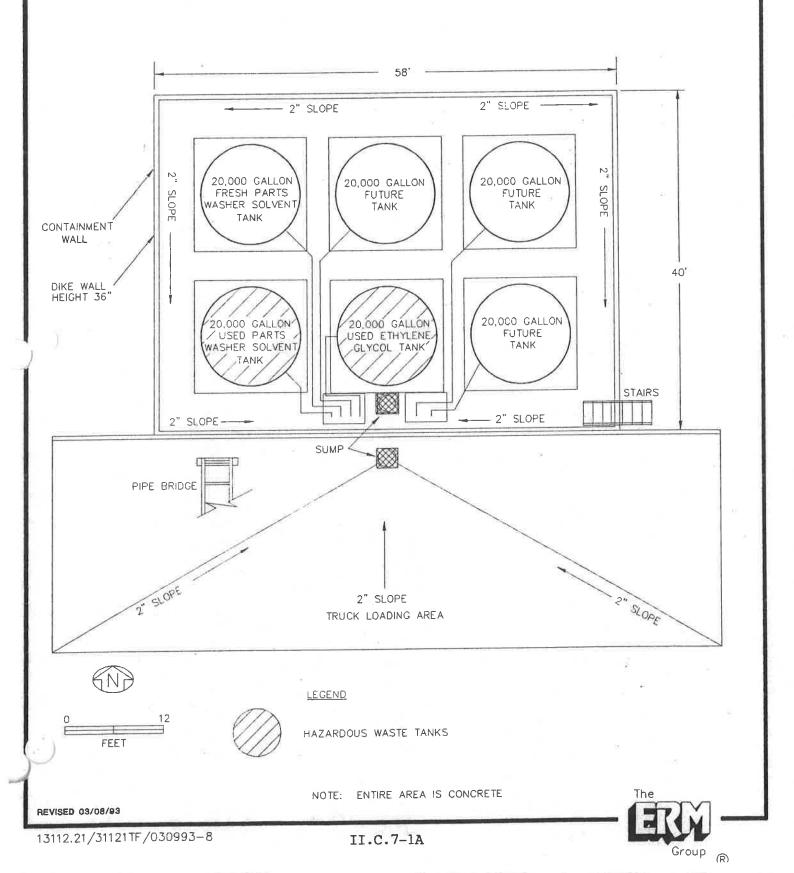



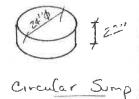
Figure II.C.7-1
Tank Farm
Safety-Kleen Corp. Facility
Medley, Florida

ERM-South, Inc.

Environmental Resources Management

100	Estationistation Resources transferment	W.O. No. 1212.21	Shoot of 2
-	J. K. of Hashin		
Subject	Lyan a wile a forth on Capacity	By	_Date7-/6-92
		Chied by 1/#	Date 7/16/92

1. Confirment Drea:


$$V_{c} = (58' - 16'')(40' - 16'')(\frac{36 + 38''}{2})$$

$$= (56.67')(38.67')(3.08')$$

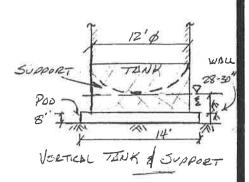
$$= 6749.60 \text{ ft}^{3}(7.48 \text{ gal/ft}^{3})$$

$$= 50,487.0 \text{ gal}$$

2.
$$sump (94g=1)$$
 $V_{5} = (\pi \frac{d^{2}}{4})(h)$
 $= \pi \frac{(2)^{2}}{4}(22/2) = 5.76 \text{ ft}^{3}$
 $= 5.76 \text{ ft}^{3}(7.48 \frac{3a}{4}/43)$
 $= 43.1 \text{ gaf}$

FIGURE II.C.7-2 (CONT.)

ERM-South, Inc.


Environmental Resources Management

W.O. No. 13/12. 21 Sheet 2 of 2 Project 5K - Medle Subject Dua: lable Storage Capacit

Chkd by UH Date_7/16/92 TONIK FARM

3. Tank (46=6, W/ 1 ruptured of 5 infact)

(a)
$$V_{+} = 5\left(\pi \frac{(12)^{2}}{4}\right)\left(\frac{28+30^{"}}{2(12)}\right)$$

= 1366.59 ft³(7.4834/ft³)
= 10,222.1 gal

(b)
$$V_{p} = 6(14)(14)(8/12)$$

= 784 A3 (7.48 gal/A3) = 5864.3 gal

4. Rainfall:

Based on 254e-24 Hr rainfall of 10 inches VR = (Confainment Drea) (Rainfall) = (5667' x 38.67') (10/12) = 1826.29= (7.48 9/A=) = 13,659.930l

Total Evailable Sterese Vol. = Vc + 15 - VT - VP - VE Nol = (50, 487.0 + 43.1 - 10,222.1 - 5864.3 - 13,659.9) Vol = 20,783.8 gal

> i. Total surilable storase volume (20,783.900) existeds single tank volume (20,000 gal).

Appendix D Subpart BB/CC Information

Procedure for Compliance with RCRA Subparts BB and CC

<u>OPERATIONS</u>

Division/Department: Operations

Contact: Jane Spetalnick

Jane.spetalnick@safety-kleen.com

Procedure: O220-005

Revision: 3

Revision Date: October 10, 2017

Supercedes: April 25, 2012 Issue Date: November 3, 2004

Page: 1 of 12 Approved: Bill Ross

Purpose:

The purpose of this Branch Operating Guideline is to provide general guidelines for complying with the requirements for controlling emissions from equipment leaks (Subpart BB) and controlling emissions from containers, tanks, surface impoundments and miscellaneous units (Subpart CC).

Scope:

This procedure applies to all U.S. Safety-Kleen Branches that are permitted Treatment, Storage, and Disposal Facilities (TSDFs).

Responsibilities:

Branch General Manager (BGM) Branch General Managers are responsible for following these procedures. BGMs also assist the EHS Manager in all compliance issues as they

relate to the branch.

Environment Health and **Safety Managers** (EHS Manager)

EHS Managers are responsible for understanding all federal, state, and local regulatory issues pertaining to maintaining branch compliance with the control of emissions. EHS Managers conduct routine inspections and

training to ensure branch compliance with Subparts BB and CC

compliance.

Definitions:

Average Volatile Organic Concentration or average VOC

Means the mass-weighted average volatile organic concentration of a hazardous waste as determined in accordance with the requirements of 40 CFR 265.1084.

Closed-vent system

A system that is not open to the atmosphere and that is composed of piping, connections, and necessary, flow-inducing devices that transport gas or vapor from a piece or pieces of

equipment to a control device.

Closure device Means a cap, hatch, lid, plug, seal, valve, or other type of fittings that

blocks an opening in a cover such that when the device is secured in the closed position it prevents or reduces air pollutant emissions to the

atmosphere (Example: a hinged access lid or hatch)

Connector Any flanged, screwed, welded, or other joined fittings used to connect

two pipelines or a pipeline and a piece of equipment. For the purposes of reporting and recordkeeping, connector means flanged fittings that are not covered by insulation or other materials that prevent location of the

fittings.

Equipment Each valve, pump, compressor, pressure relief device, sampling

connection system, opened-ended valve or line, or flange, or any control

devices or systems required by Subpart BB.

In heavy liquid service

Means that the piece of equipment is not in gas/vapor service or in light

liquid service (Example: mineral spirits is a heavy liquid)

In light liquid service

Means that the piece of equipment containers or contacts a waste stream

where the vapor pressure of one or more of the components in the stream is greater than 0.3 kilopascals (kPa) at 20°C, the total

concentration of the pure components having a vapor pressure greater than 0.3 kPa at 20°C is equal to or greater than 20 percent by weight and the fluid is a liquid at operating conditions (Example: paint thinner is a

light liquid)

Level 1 Container ≤ 122 gallons. Storage of any hazardous; no waste stabilization or

>122 gallons, "Not in light material service" (See Subpart BB section of this BOG for Light Material Service definition); no waste stabilization

Level 2 Container >122 gallons, "In light material service," no waste stabilization

Level 3 Container >26.4 gallons, Stabilization of hazardous waste

Malfunction Means any sudden, infrequent, and not reasonably preventable failure of

air pollution control equipment, process equipment, or a process to operate in a normal or unusual manner. **Note:** Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Maximum Organic Vapor Pressure

valve or line

Means the sum of the individual organic constituent partial pressure exerted by the material contained in a tank, at the maximum vapor pressure-causing conditions (i.e., temperature, agitation, pH effects of combining wastes, etc.) reasonably expected to occur in the tank.

Open-ended Any valve, except pressure relief valves, have one side of the valve seat

in contact with the process fluid and one side open to the atmosphere,

either directly or through open piping.

Point of waste origination

- (1) When the facility owner or operator is the generator of the hazardous waste, point of waste origination means the point where a solid waste is produced by a system, process, or waste management unit is determined to be a hazardous waste as defined by 40 CFR Part 261.
- (2) When the facility owner and operator is not the generator of the hazardous waste, point of the waste origination means the point where the owner or operator accepts delivery or takes possession of the hazardous waste.

Related Documents:

Attachment A Example daily Subpart BB Inspection Form

Attachment B Example Leak Detection and Repair Form

Attachment C Example Branch Daily Inspection Form (tanks and containers)

Attachment D Example Subpart CC Annual Tank Inspection (including

difficult Subpart BB tagged fittings at tops of tanks).

Overview:

Procedures for compliance with both Subparts BB and CC are covered in the BOG.

Standards have been promulgated limiting organic emissions resulting from equipment leaks at new and existing hazardous waste treatment, storage and disposal facilities (TSDFs) requiring RCRA permit under RCRA Subtitle C.

These emission standards, set forth under 40 CFR Parts 264 and 265, Subpart BB, apply to any "leaks" from valves, pumps, compressors, pressure relief devices, sampling connection systems, flanges or other pipe connectors, control devices, and open-ended valves or lines that may result in organic emissions. Controls for these sources are required at TSDFs where the equipment contains or comes in contact with hazardous waste streams with 10 percent or greater organics content (by weight).

Subpart CC regulations require owners and operators of tanks, container, surface impoundments, and miscellaneous units to limit VOC emissions from these units by providing covers and emission control devices.

Tanks Subject to Subpart CC: Any tank that is used to store or treat hazardous waste with a VOC 100 ppm or greater.

Containers Subject to Subpart CC: Containers with design volume of greater than 0.1 m³ (about 26 gallons) that are used to store or treat hazardous waste with a VOC 100 ppm or greater.

Generators storing hazardous waste in containers and in tanks for up to 90 days are also subject to the Subpart CC regulations. Satellite accumulation drums of less than 55 gallons are not subject to Subpart CC.

Procedures:

Subpart BB

• Each piece of equipment in waste service, such as pumps, valves, flanges (includes flanges located at either end of a valve), compressors, other connectors (any threaded fitting), open-ended lines, and flanged manway covers must be marked (tagged) such that they are easily distinguished from other pieces of equipment (numbered).

Note: Zip ties (nylock ties) are <u>not</u> acceptable for attaching Subpart BB ID tags to equipment. Subpart BB ID tags **must** be attached to equipment using a stainless steel wire which can be ordered from MSC (**MSC #93536928**). All Subpart BB equipment ID tags currently attached to equipment by something other than a stainless steel wire need to be replaced immediately.

- Each open-ended valve or line must be equipped with a cap, blind flange, plug, or a second valve which seals the open end at all times except when hazardous waste flows through the open-ended valve or line. Note: Any cover to an open-ended valve must be marked (tagged/number).
- Drawings to show location of each piece of equipment and corresponding tag/number must be current and maintained in the EHS file. Note: Notify EHS Manager if tags or equipment are added or removed.
- List numbers for valves (threaded fittings) that are designated as unsafe-to monitor or difficult-to-monitor. Provide an explanation of why these threaded fittings are unsafe or difficult to monitor on a daily basis and when they are inspected. (Example: Tagged equipment on top of vertical tank(s) is inspected annually in conjunction with the Subpart CC inspection. See Subpart CC section of this BOG)
- Each tagged piece of equipment must be visually inspected during daily inspections. If a leak is noticed, it must be noted on the daily inspection log for that day.
- If pieces of equipment are found to be leaking:
 - Note the leaking equipment on the daily inspection form (circle "N" and note the tag number at the bottom of the inspection sheet)
 - o Tag the leaking equipment with a weatherproof tag.
 - Complete the Leak Detection and Repair form with the required information.
 Record the status of repairs on this form.
 - The first attempt to repair the leak must be done in 5 calendar days from the time the leak was noted on the daily inspection sheet.

- The leak must be repaired with 15 calendar days of detecting a leak or the
 equipment must be taken out of service. Note: Contact BGM and EHS Manager
 if it appears that repairs cannot be made within the 15 days.
- If repairs are not made within 15 calendar days or taken out of service, the EHS Manager must submit a semi-annual report to the Regional Administrator describing the situation.
- Remove the weatherproof tag when repairs are finished.
- All activities to repair a leak must be recorded on a Leak Detection and Repair form.
- The actual vapor pressure must be maintained in the operating record (EHS 999 file cabinet) to show that the equipment is in heavy liquid service. Note: EHS Manager will make sure this information is current, in the EHS 999 file, and available for inspection.

Subpart CC

 The facility operating record must identify all hazardous waste storage tanks for Subpart CC compliance (including 90 day tanks), drum storage areas and transfer operations, such as drum emptying and truck stations, as applicable units.

Note: This information can be found in Part B Permit Application, but must be in EHS 999 file and available for inspection

 Hazardous waste storage tanks must be classified as Level 1 or Level 2 tanks based on the above referenced definitions.

Note: Most branch storage tanks are classified as Level 1 tanks. Therefore, the following procedures address Level 1 tanks.

- Vapor pressure of the waste in the tank(s) must be available for inspection (see EHS 999 files).
- Tanks must be equipped with covers, and all cover openings are kept closed except when sampling, adding or removing waste materials.

Note: Due to SK policy which requires the use of 55-gallon drums for accumulation of site generated wastes, all satellite accumulation containers of return and fill/dock wastes are subject to this requirement.

Note: In states that consider the drum washer(s) as Level 1 tanks, the drum washer(s) lid must be closed when drum washing operations are being conducted and when not in use if materials are present in the unit (exception being when wastes are being added or removed from the equipment), and be equipped with proper seals on the lid to control emissions.

 Annual inspections must be conducted on all tanks' covers and all tank openings, such as manhole covers, pressure relief devices, conservation vents and long bolted manways. **Note:** If visible holes or gaps are noted in the inspection: Repair documentation must indicate the first attempt at repair was performed within 5 days and repairs must be completed within 45 days of discovery unless repair cannot be conducted without emptying the tank or taking it out of service and no alternative tank capacity is available. In such instances, a tank must be repaired the next time it stops operation and the repair must be completed before placing the tank back into service (Note: see EHS Manager for additional guidance if repair cannot be completed within 45 days of detecting a leak. Some permits or other regulatory requirements may not allow the continued operation of a tank beyond 45 days after discovering a defect. Severe leaks will require immediate action and may require the tank to be removed from service immediately, and repair certified by an independent Professional Engineer).

 An inspection of the top of the tank(s) must be conducted annually. The findings must be documented.

Branches with vertical waste tank(s): Due to the difficult location of the Subpart BB tags for the threaded fittings at the top of these tank(s), daily inspection of these fittings is not possible. Therefore, in conjunction with the annual Subpart CC inspection, these tagged fittings will be inspected. The documentation of the Subpart CC annual tank inspection will also reference the tag numbers for the fittings located at the top of the tank and whether leaks were noted or not.

ATTACHEMENT A – Example Subpart BB Inspection Form

		- 1	NSPE	CTOR'S S	GNATI	RF-					
MONDAY	TUESDAY			WEDNES		_	THURS	DAY	-	FRIDA	Y
			_						-		
DATE: (M / D / Y)											
TIME		-	-						-	***************************************	
Pump, Flange, or Val-	ve Number	MC	ON.	TU	JES.	w	ED.	Ti	HURS.	F	RI.
1 2	,	A	N	A	N	A	N	A		А	N
3	-	A	N	A	N	A	N	A		A	N
4 —		Â	N	Ä	N	A	N	A A	N	A	N
5 —		A	N	A	N	A	N	A	N	A	N
6 —		A	N	A	N	A	N	A	N	Â	N
7		A	N	A	N	A	N	A	N	A	N
8		A	N	A	N	A	N	A	N	А	N
9 —		A	N	A	N	A	N	A	N	A	N
11		A	N	A	N	A ·	N	A	N	A	N
12		A	N	A	N	A	N	A A	N N	A	N
13		A	N	A	N	A	N	A	N	A	N
14 —		Α	N	A	N	A	N	A	N	A	N
		Α	N	A	N	A	N	. A	N	A	N
		A	N	A	N	. A	N	A	N	A	N
17		A	N	A	N	A	N	A	N	A	N
19		A	N	A	N	A	N	A	N	A	N
20		A	N	A	N	A A	N	A	N	A	N
		A	N	A	N	A	N	A	N N	A	N
		A	N	A	N	A	N	A	N	A	N
		Α	N	A	N	. A	N	A	N	A	N
		Α	N	A	N	A	N	A	N	A	N
	-	A	N	A	N	A	N	A	N	A	N
		A	N	A	N	A	N	A	N	A	N
		A	N	A	N	A	N	A	N	A	N
29		A	N	A A	N	A	N	A	N	A	N
30		A	N	A	N	A	N	A	N	A	N
31		Α	N	A	N	Â	N	Ä	N	A	N
32	- Proposition	Α	N	A	N	A	N	A	N	Â	N
33		Α	N	A	N	A	N	A	N	Â	N
		A	N	A	N	Α	N	A	N	A	N
35	7.000	A	N	A	N	Α	N	Α	N	A	N
36 —— 37		A	N	A	N		N		N	Α	N
20		A	N	A	N N N		N		N	A	N
39		A	N	A	N	A A		A	N N	A	
40		A	N	Â	N	A			N	A	N N
enter pump or valve # _	an	d circi	le appr	opriate pro							
othly, other:				_				, , ,			- opo

ATTACHMENT B - Example Subpart BB Leak Detection and Repair Form

LEAK DETECTION AND REPAIR RECORD

BRANCH#	
DATE	INSPECTOR'S SIGNATURE
	BIGNATURE
	•
	-
(3) (4) (5)	(6)
	DATE NUMBER - SEE A (3) (4) (5)

ATTACH ANY DOCUMENTATION PREPARED BY THE CONSULTANT

ATTACHMENT C – Example Subpart CC Daily Inspection Form Page 1 of 3

MONDAY TUESDAY MONDAY TRANSFER PUMPS AND HOSES Pump Seals: If 'N', circle appropriate problem: leaks, other: Motors: A If 'N', circle appropriate problem: overheating, other fittings: A If 'N', circle appropriate problem: leaks, other: A If 'N', circle appropriate problem: leaks, other: A If 'N', circle appropriate problem: leaks, stlicking, other A If 'N', circle appropriate problem: leaks, stlicking, other A If 'N', circle appropriate problem: cracked, loose, leaks Body: A	N N N	TUES. A N A N A N		N N		N N	A	RII.
Panns Fer Pumps and Hoses Pump Seals: A* If 'N', circle appropriate problem: leaks, other: Actors: A If 'N', circle appropriate problem: overheating, other fittings: A If 'N', circle appropriate problem: leaks, other: /alves: A If 'N', circle appropriate problem: leaks, sticking, other leaks, other: A If 'N', circle appropriate problem: leaks, sticking, other fose Connections and Fittings: A If 'N', circle appropriate problem: cracked, loose, leaks, sticking, other A	N N N N her:	A N A N	A A	N N	A A	N N	A	N
Pump Seals: If 'N', circle appropriate problem: leaks, other: Actors: A If 'N', circle appropriate problem: overheating, other Fittings: A If 'N', circle appropriate problem: leaks, other: A If 'N', circle appropriate problem: leaks, other: A If 'N', circle appropriate problem: leaks, stlcking, other Connections and Fittings: A If 'N', circle appropriate problem: cracked, loose, leaks, loose, loose, leaks, loose, loose, leaks, loose, loose	N N N her:	A N	A	N	Α	N		
Adotors: If 'N', circle appropriate problem: overheating, other ittings: A If 'N', circle appropriate problem: leaks, other: A If 'N', circle appropriate problem: leaks, sticking, others: A If 'N', circle appropriate problem: leaks, sticking, others. A If 'N', circle appropriate problem: cracked, loose, leaks, sticking, others.	N N her:	A N	A	N				N
If 'N', circle appropriate problem: overheating, other ittings: A If 'N', circle appropriate problem: leaks, other: A If 'N', circle appropriate problem: leaks, sticking, other it 'N', circle appropriate problem: leaks, sticking, other it 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, other its 'N', circle appropriate problem: cracked, loose, leaks, sticking, stick	N N her:	A N	A	N				N
ittings: If 'N', circle appropriate problem: leaks, other: A If 'N', circle appropriate problem: leaks, sticking, of lose Connections and Fittings: A If 'N', circle appropriate problem: cracked, loose, leaks, sticking, or leaks, sticking, or lose Connections and Fittings:	N N her:				Α	N		
If 'N', circle appropriate problem: leaks, other: /alves: A If 'N', circle appropriate problem: leaks, sticking, others lose Connections and Fittings: A If 'N', circle appropriate problem: cracked, loose, le	N her:				Α	N		
/alves: A If 'N', circle appropriate problem: leaks, sticking, of lose Connections and Fittings: A If 'N', circle appropriate problem: cracked, loose, le	her:	A N	А	N			A	N
If 'N', circle appropriate problem: leaks, sticking, of tose Connections and Fittings: A If 'N', circle appropriate problem: cracked, loose, lo	her:	A N	A	N				
lose Connections and Fittings: A If 'N', circle appropriate problem: cracked, loose, lo					А	N	A	N
If 'N', circle appropriate problem: cracked, loose, lo	N							
		A N	A	N	Α	N	Α	N
Anse Bortic A	eaks, other: _							
ibbo boay.	N	A N	A	N	A	N	Α	N
If 'N', circle appropriate problem: crushed, thin spo	is, leaks, oth	ner:				************		
RETURN AND FILL STATION								
Vet Dumpster: A	N	A N	А	N	А	N	А	N
If 'N', circle appropriate problem: sediment buildup other:	, leaks, rust, —	split seams	, distortion,	deteriora	tion, exce	ess debris	5 <u>.</u>	
Secondary Containment A	N	A N	А	N	A	N	A	N
If 'N', circle appropriate problem: sediment/liquid, other:	eaks, deterio	oration, distr	ortion, exce	s debris				
.oading/Unloading Area: A	N	A N	А	N	А	N	A	N
If 'N', circle appropriate problem: cracks, ponding/	wet spots, de	eterioration.	other:					

ATTACHMENT C – Example Subpart CC Daily Inspection Form Page 2 of 3

		INS	PECTO	R'S SIGN	ATURE						
MONDAY	TUESDAY			DNESDA			JRSDA	Y		FRIDAY	
DATE (M/D/Y)				/_	-				_		_
TIME		-	-		-			_	-		
STORAGE TANKS: TANKS MUST NEVER BE MORE	THAN 95% FULU)	MON.		TUES		WED.		THUR	S.	FF	21.
^Tank (in.	/		/		/		/		/	
Tank	(in/gal.)	1		1		1		/		/	
ank Exterior:		A**	N	А	N	А	N	А	N	А	N
If 'N', circle appropriate other:	problem: rusty or l	oose and	horing, la	ack of gro	unding, s	wet spots.	discolor	ation, leak	s, distor	tion,	
ligh Level Alarms:		Α	N	Α	N	Α	N	А	N	Α	N
If 'N', circle appropriate other:	problem: malfunct	ioning "Po	ower On	" light, ma	Munction	ning siren/	strobe li	ght,			
/olume Gauges:		А	N	A	N	A	N	А	N	А	N
If 'N', circle appropriate	problem: disconne	ected, stick	king, car	densation	n, other:						_
CONTAINMENT AREA (Tar	ık Dike)										
ny material which spills, lea	ks or otherwise acc	cumulates	in the d	ike, includ	ing rains	water, mus	t be cor	npletely re	moved	within 24	hou
lottom and Walls		Α	N	A	N	Α	N	Α	N	Α	N
If 'N', circle appropriate chipped, deterioration,			like, ope	n drums i	n diko, p	onding/wo	st spots,	stains, se	alant is	pitted, cr	acki
laid Dining and Supports		Α	N	A	N	А	N	А	N	Α	N
igin riping and Supports	problem: distortion	, corrosio	n, paint l	allure, lea	ks, othe	c					
Rigid Piping and Supports If 'N', circle appropriate											
				DS OF AN	IV ITEM	SINDICA	TED AS	"NOT AC	CEPTA	BLE":	
	ITS, DATE AND NA	TURE OF	REPAI	no or Ai							

ATTACHMENT C – Example Subpart CC Daily Inspection Form Page 3 of 3

	Daily I (A separa	nspect	ion of C	CONTAIN	ER STO	PRAGE A	REA ge area.	.]			
ESCRIPTION OF AREA (e.g., me	rtal shelter, n	ortheas	l corner.	of warehou	use, etc.						
ERMITTED STORAGE VOLUME											
SPECTOR'S NAME/TITLE											
		II	USPECT	OR'S SK	NATUE	RE:					
MONDAY	TUESDAY		W	VEDNESD	AY	TI	HURSDA	AY		FRIDAY	
DATE: IM / D / YI			(manual)	_11		-	<i>J</i>		-		
TWE		-	-					_	-		
ONTAINERS		M	ON.	TU	ES.	WE	D.	THU	RS.	F	RI.
stal Volume* of	** waste: [T		T	-	T		T	
otal Volume of	-										
otal Volume of	_										
otal Volume of			-			1			-		
otal Volume of				1		1				-	-
OTAL VOLUME (IN GALLONS):		-		-							
If 'N', circle appropriate prob other: andition of Containers: If 'N', circle appropriate prob other:		A	N	А	N	А	N	А	N s, distor	A tion,	N
acking/Placement/Aisie Space: If 'N', circle appropriate prob pallets, other:	lem: differen	A It from F	N an B Flo	A por Plan, c	N ontainer	A es not on pa	N allels, un	A stable sta	N cks, bro	A ken or dan	N naged
ONTAINMENT											
urbing, Floor and Sump(s):		Α	N	A	N	A	N	A	N	A	N
ny material which spilla, leaka o it being discovered.) If 'N', circle appropriate prob other:											
pading/Unloading Area: If 'N', circle appropriate prob	loss esseko	A	N rotion o	A	N	A	N	Α	N	A	N
							Carl service				
BSERVATIONS, COMMENTS, C	DATE AND N	ATURE	OF REI	PAIRS OF	ANY ITI	EMS INDIC	ATED A	S "NOT A	CCEPT	ABLE":	
When calculating total volumes, *Enter a short description of the ** A - Acceptable N - Not A AN ITEM IS NOT APPLICABLE. EN	waste (e.g., N loceptable	LS., LC.,	, paint, e	to.)	HROUGI	H THE 'ACC	EPTABLI	E/NOT ACC	CEPTAB	LE' ROWI	

ATTACHMENT D- Example Subpart CC Annual Tank Inspection

ANNUAL INSPECTION LOG SHEET FOR EQUIPMENT THAT IS 'DIFFICULT TO MONITOR

INSPECTOR'S NAME:			
INSPECTOR' S TITLE:			
INSPECTOR'S SIGNATURE:			
DATE (M/D/Y):			
ID #39 – NORMAL CONSERVATIO	ON VENTING	A	N
ID #40 - LONG BOLTED MANWAY	Y EMERGENCY VENTING	A	N
If "N", circle appropriate problem: pote operate smoothly, unusual odor, or	ntial leak, actual leak, sticking, w	ear, doe	s not
For all leaks and potential leaks, the Leacompleted.	k Detection and Repair Record n	nust be	
A = Acceptable			
N = Not Accentable			