

Environmental Planning Specialists, Inc. 1936 Bruce B. Downs Blvd. No. 328 Wesley Chapel, Florida 33543 Telephone: (813) 388-1026

www.envplanning.com

February 1, 2011

Mr. F. Thomas Lubozynski, P.E.
Waste Program Administrator
Solid and Hazardous Waste Program
Florida Department of Environmental Protection, Central District
3319 Maguire Boulevard, Suite 232
Orlando, Florida 32803-3767

Re: 13th Semi-Annual Water Quality Monitoring Report

J.E.D. Solid Waste Management Facility, Osceola County, Florida

Permit No. SO49-0199726-015 WACS Facility ID #89544

Dear Mr. Lubozynski:

Submitted herewith is the subject report documenting the 13th semi-annual water quality monitoring event conducted at the J.E.D. Solid Waste Management (JED) Facility located in Osceola County, Florida. This report is being submitted as required for compliance with the conditions contained within the Monitoring Plan Implementation Schedule (MPIS) for the above referenced permit. In accordance with the permit conditions, this semi-annual water quality monitoring event was performed in November 2010. This report is being submitted within the sixty day period after receipt of the final analytical data reports from the laboratory. This report satisfies the semi-annual water quality monitoring compliance requirements as described in the Permit.

As noted in the revised MPIS, two electronic copies of the water quality report are being submitted to FDEP. Each electronic copy contains a pdf of the entire water quality report and the required ADaPT compatible electronic data deliverable (EDD) saved on a compact disk (CD). One CD is attached to this transmittal letter. The second CD containing an electronic copy of this report, including the EDD compatible with the ADaPT software has been sent to the attention of Mr. Clark Moore in Tallahassee, Florida.

If you have any questions or need additional information, please do not hesitate to contact the undersigned at (813) 388-1026.

Sincerely,

Kirk Wills Senior Engineer

Attachments

Copy: Mike Kaiser, WSI

Clark Moore, FDEP Tallahassee

Prepared for:

Waste Services, Inc.

2893 Executive Park Drive, Suite 305 Weston, Florida 33331

13th SEMI-ANNUAL WATER QUALITY MONITORING REPORT J.E.D. SOLID WASTE MANAGEMENT FACILITY OSCEOLA COUNTY, FLORIDA

Prepared by:

Environmental Planning Specialists, Inc. 1936 Bruce B. Downs Blvd. No. 328 Wesley Chapel, Florida 33543 (813) 388-1026

January 2011

TABLE OF CONTENTS

1.	IN	NTRODUCTION	3
1	1.1	Terms of Reference	3
1	1.2	Overview	3
]	1.3	Site Description	4
2.	M	ONITORING WELL DETAILS	5
2	2.1	Well Layout and Construction	5
2	2.2	Turbidity Issues	6
3.	M	ONITORING WELL SAMPLING	7
3	3.1	Sampling Locations and Procedures	7
3	3.2	Sample Analyses	8
4.	\mathbf{A}	NALYTICAL RESULTS	8
2	4.1	Field Parameters	9
2	4.2	Groundwater Monitoring Wells	9
4	4.3	Data Validation	11
4	1.4	Impact of Turbidity on Metals Concentrations	12
5.	G	ROUNDWATER LEVEL MEASUREMENTS & FLOW DIRECTION	13
4	5.1	Field Measurements	13
4	5.2	Water Level Contours	13
6	SU	URFACE WATER SAMPLING	15
6	5.1	Sampling Locations and Procedures	15
7	L	EACHATE SAMPLING	16
7	7.1	Sampling Locations and Procedures	16
7	7.2	Sample Analyses	16
-	7.3	Field Measurements and Analytical Results	16

8	CONC	CLUSIONS AND RECOMMENDATIONS17
8.1	S	ampling Locations17
8.2	2 S	ample Analyses17
LIST	OF T	CABLES
Table		Summary of Monitoring Well Construction Details
Table		Summary of Final Field Parameter Results and Field Data
Table		Summary of Groundwater Analytical Results
Table	4 (Groundwater Level Measurements
Table	5	Summary of Field Measurements and Analytical Results for Leachate Samples
LIST	OF F	IGURES
Figur	e 1	"A" Zone (Shallow) Wells – Water Level Contours
Appe	endix A	Water Quality Monitoring Certification FDEP Form 62-701.900(31)
Appe	endix I	3: Field Sampling Logs (Monitoring Wells & Leachate)
Appe	endix (C: Field Instrument Calibration Logs
Appe	endix I	Chain-of-Custody Forms
Appe	endix I	E: CD Containing Analytical Laboratory Reports

1. INTRODUCTION

1.1 Terms of Reference

This report documents the implementation of the Water Quality Monitoring Plan (Plan) for the J.E.D. Solid Waste Management (JED) facility. The Plan was prepared as a part of the JED facility permit applications. The requirements for executing the Plan are presented in the Monitoring Plan Implementation Schedule (MPIS) of the current permit (Permit Numbers SC49-0199726-004 and SO49-0199726-005) that authorizes the development of Phases 1 through 3 at the JED facility. The current permit was issued by the Florida Department of Environmental Protection (FDEP) on April 4, 2008. This report presents the results for the 13th semi-annual water quality (groundwater, surface water, and leachate) monitoring event conducted between November 1, 2010 and November 11, 2010.

This report was prepared on behalf of Waste Services Incorporated (WSI), parent company of Omni Waste of Osceola County, LLC, owner and operator of the JED facility by Mr. Kirk E. Wills of Environmental Planning Specialists, Inc. (EPS). In accordance with EPS's peer review procedures, Mr. Robert Thompson, P.G. reviewed this report. A completed water quality certification form (FDEP Form 62-701.900(31)) is included in Appendix A.

1.2 Overview

The Plan and the MPIS describe a water quality monitoring program at the JED facility that has as its intent to: (i) measure and report groundwater and surface water conditions for the monitoring network; (ii) monitor the groundwater flow direction; (iii) monitor the groundwater and surface water quality on a semi-annual basis; and (iv) monitor leachate quality on an annual basis. The 13th semi-annual water quality monitoring has been completed. This report includes presentation and discussions of the sample locations, sampling procedures, laboratory analyses and results, field data measurements, groundwater level measurements, groundwater flow direction, surface water quality monitoring, and leachate monitoring. In addition, this report includes a comparison of the analytical results of this sampling event to applicable Groundwater Cleanup Target Levels (GCTLs) as promulgated in Chapter 62-777, Florida Administrative Code (FAC).

1.3 Site Description

The JED facility is located in eastern Osceola County, Florida, west of highway U.S. 441, and approximately 6.5 miles south of Holopaw. The facility includes a Class I landfill, which is linked to highway U.S. 441 by a 2.86-mile access road. The JED facility comprises a total of approximately 2,179 acres. The landfill footprint at build-out is approximately 264 acres and consists of a total of 21 landfill cells that provide available waste capacity for a period of approximately 30 years. The FDEP issued a permit to construct and operate Phase 1 development of the JED facility in October 2003. Phase 1 development includes four landfill cells (Cells 1 through 4), located in the northern part of the landfill and covering approximately 54 acres. As part of Phase 1, forty-five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. The baseline water quality report for the Phase 1 monitoring well network was submitted to FDEP in May 2004. All components of the Phase 1 development have been constructed.

The FDEP issued a permit to construct and operate Phases 2 and 3 at the JED facility in March 2007. The development of Phases 2 and 3 includes six cells (Cells 5 through 10) with a total footprint of approximately 72 acres. As part of Phases 2 and 3 development, and as approved by FDEP, six (6) existing Phase 1 monitoring wells (MW-14 A, B, and C, and MW-15 A, B, and C), and ten (10) piezometers were decommissioned. The wells and piezometers were decommissioned to allow for construction of future cells, construction of a storm water retention basin located within Phases 2 and 3, and due to the proximity of piezometers to the new network wells installed. The decommissioning of the monitoring wells and piezometers was discussed in the Phases 2 and 3 baseline water quality report. For the development of Phases 2 and 3, twenty-four (24) additional groundwater monitoring wells were installed in eight (8) well clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas in September 2007. The baseline water quality report for the Phases 2 and 3 monitoring well network was submitted to FDEP in January 2008.

The FDEP issued a permit to construct and operate Phases 1 through 3 with vertical expansion at the JED facility in April 2008. The MPIS was revised on April 6, 2009, updating the sample locations and sampling schedule. The MPIS was revised again on June 22, 2009 to include electronic data reporting requirements. For monitoring purposes, the JED facility was given the Water Assurance Compliance System (WACS) facility identification number 89544.

2. MONITORING WELL DETAILS

2.1 Well Layout and Construction

For the Phase 1 development, forty five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. Monitoring well clusters were located such that the spacing between well clusters was no greater than 500 ft, in accordance with the FDEP permit For development of Phases 2 and 3, twenty four (24) groundwater monitoring wells were installed in eight (8) clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas. In accordance with the FDEP permit requirements, the monitoring well clusters were located such that the spacing between detection well clusters (MW-16 through MW-21) was approximately 500 feet (ft), and the spacing between background well clusters (MW-22 and MW-23) was approximately 800 ft. Each monitoring well cluster consisted of three (3) groundwater monitoring wells installed (i) across the water table to monitor the upper limit of the surficial aquifer (identified as A-zone [shallow] wells); (ii) within the lower limit of the upper surficial aquifer above the intermediate clay layer (identified as C-zone [deep] wells); and (iii) at an intermediate depth between the shallow and deep wells (identified as B-zone [intermediate] wells).

A layout depicting the location of groundwater monitoring wells installed for Phases 2 and 3, and the previously installed groundwater monitoring wells for Phase 1, and the piezometers installed as part of the hydro-geologic investigation are shown for the shallow zone ("A" wells) on Figure 1. As shown, groundwater monitoring well clusters MW-1 through MW-13 and MW-23 were installed along the top of the outer edge of the landfill perimeter berm. The ground surface at the location of the wells in the perimeter berm is at approximately Elevation 92 ft with respect to National Geodetic Vertical Datum of 1929 (NGVD, 1929). Groundwater monitoring well clusters MW-16 and MW-17 were installed along the outer edge of the landfill perimeter berm that serves as the initial storm water berm. The ground surface at these two well locations is at approximately Elevation 85 ft NGVD, 1929. Groundwater monitoring well clusters MW-18 through MW-22 were installed along the interim Phase 3 storm water berm at the southern limit of the Phase 3 development at approximately Elevation 84 ft NGVD, 1929. The locations of each well, in Florida state plane coordinates and latitude/longitude, and levation NGVD, 1929 were surveyed by professional land surveyors licensed in the State of Florida.

Wells were constructed with 2-inch diameter schedule 40 PVC casing. The well screens were 10-ft in length with #6-slot (0.006-in.). A 30/45 graded silica sand was placed around the screen to a height of 2 to 3 ft above the top of the screen. A seal of 30/65 graded fine silica sand was placed above the sand filter around the screen. The remaining annular space from the top of the fine sand filter seal to the existing ground surface was grouted using a tremie pipe with a cement/bentonite mixture containing no more than 5 percent bentonite by dry weight. The PVC well casings were extended approximately 2.5 to 3 ft above the existing ground surface. Surface completion consisted of a protective steel or aluminum casing with a lockable cover set in a concrete pad. Each well was provided with a well cap, padlock, and an identification label. A summary of the monitoring well construction details are presented in Table 1.

2.2 Turbidity Issues

As discussed in the baseline water quality reports for the Phase 1, and Phases 2 and 3 monitoring networks, the formation around the screened intervals consists primarily of a fine, brown to dark brown, silty sand. Due to the subsurface formation properties, fine-grained and colloidal material are able to pass through the sand filter pack in many wells, primarily in the B-zone and C-zone wells. This is the case even though the wells are constructed using the smallest screen slot size (0.006 in.) commonly available. Most of the intermediate and deep wells had turbidity values in excess of the 20 nephelometric turbidity unit (NTU) criterion even after extended well development and the removal of multiple well volumes.

The difficulty in attaining the desired turbidity criterion was originally discussed at a meeting between Geosyntec Consultants (Geosyntec) and FDEP on January 12, 2004 during the well development activities associated with the wells installed as part of the Phase 1 development. Geosyntec notified FDEP again on September 14, 2007 of the elevated turbidity levels even after extended well development during development of the Phases 2 and 3 monitoring wells. In accordance with these discussions, it was agreed to collect field-filtered (1-micron) and unfiltered samples for metals analyses for any sample with a turbidity value greater than 20 NTU. The data generated by the dual sampling is expected to help demonstrate: (i) what effect turbidity may have on metal analyses (i.e., compare total and dissolved metals concentrations); and (ii) whether groundwater samples with turbidities greater than 20 NTU showed higher concentrations of metals than those samples with turbidities less than 20 NTU.

3. MONITORING WELL SAMPLING

3.1 Sampling Locations and Procedures

In accordance with the current MPIS (revised June 22, 2009), twenty-six (26) monitoring wells installed as part of the Phase 1 development and seven (7) of the monitoring wells installed as part of the Phase 2 and 3 development were sampled. Low-flow sampling techniques were used for groundwater sample collection. Except for the turbidity considerations as described in the previous section, all groundwater sampling was performed in accordance with the current applicable FDEP Standard Operating Procedures (DEP-SOP-001-01, December 2008) for groundwater sampling. Additionally for quality control (QC) purposes, two equipment blanks were collected and analyzed.

Peristaltic pumps were used to purge and sample all A-zone (shallow) and the majority of the C-zone (deep) groundwater monitoring wells. A stainless steel submersible pump was used to purge and sample the remainder of the C-zone (deep) and the one C-zone (intermediate) groundwater well (MW-16B). New tubing (silicone and/or polyethylene) was used at each monitoring well location.

During the purging process, a YSI 556 water quality meter equipped with a flow-through cell was used to monitor the following field parameters: pH; temperature; field conductivity; oxidation-reduction potential (ORP); and dissolved oxygen. Turbidity levels were measured using a LaMotte 2020e turbidity meter. Field parameters were recorded on sample collection forms, which are contained in Appendix B. Observations pertaining to the color of the groundwater samples collected were also noted on the sample collection forms. When the field parameters stabilized within the acceptable tolerances required by the FDEP SOP, well purging was considered complete and groundwater samples were collected. For wells where the turbidity was not less than 20 NTU, stability was established by purging at least 5 well volumes and observing variations in the measured turbidity. For problematic wells, once the turbidity had stabilized and all other parameters conformed to the guidance set forth in the FDEP SOP's, samples were collected. A non-filtered and field-filtered (1-micron) metals sample was collected from each monitoring well where turbidity measurements exceeded the 20 NTU level.

For monitoring wells where peristaltic pumps were used, volatile organic compound (VOC) sample vials were filled by removing the down well sample tubing, disconnecting the tubing from the water quality meter flow through cell, and reversing the flow direction on the peristaltic pump.

For the monitoring wells that were purged and sampled with the stainless steel submersible pump, all sample aliquots were filled directly from the down-well tubing.

The calibration of the water quality monitoring instruments was checked daily and recalibrated when necessary. Water quality instrument calibration forms are presented in Appendix C. Samples were placed in coolers and packed with bagged ice for transport to the analytical laboratory. Chain-of-Custody (COC) forms were completed and accompanied the samples to the analytical laboratory. All COC forms have been included in Appendix D of this report. Trip blank samples accompanied all sample coolers with VOC samples. Temperature blanks were packed in each sample cooler. Security seals were affixed to every cooler shipped.

3.2 Sample Analyses

Samples were analyzed by Columbia Analytical Services, Inc. (Columbia) of Jacksonville, Florida in accordance with the National Environmental Laboratory Accreditation Conference (NELAC) standards. Columbia holds certification from the Florida Department of Health (FDOH) for the analytical test methods used for this project and is certified in the State of Florida for analysis of environmental samples.

Groundwater samples were analyzed by Columbia for total ammonia as nitrogen (N), chlorides, nitrate, total dissolved solids (TDS), iron, mercury, sodium, and the 40 Code of Federal Regulations (CFR) Part 258 Appendix I parameters. Other required parameters (i.e., pH; temperature; conductivity; turbidity; ORP; and dissolved oxygen) were measured in the field during collection of the groundwater samples.

4. ANALYTICAL RESULTS

4.1 Field Parameters

Table 2 provides a summary of the field measurements of selected water quality parameters utilized for determining sample stability for this semi-annual monitoring event.

4.2 Groundwater Monitoring Wells

The analytical laboratory results for this groundwater sampling event have been transferred to a compact disc (CD) and are included in Appendix E. Analytical results have been summarized in Table 3 to show all parameters where a constituent concentration was reported above the applicable FDEP Groundwater Cleanup Target Level (GCTL). Any parameter exceeding the GCTL has been highlighted orange. The following discussion regarding groundwater quality is limited to those parameters where the GCTL was exceeded in at least one groundwater monitoring well and has been organized by analytical method.

Total Metals (Method 6020 and Method 7470 for Mercury)

Arsenic was detected (above the method reporting limit [MRL]) in fifteen (15) monitoring wells in concentrations ranging between 0.45 and 19.7 micrograms per liter (µg/L). All reported concentrations were less than the GCTL for arsenic of 10 µg/L with the exception of MW-11A and MW-13A, where the reported concentrations were 11.2 µg/L and 19.7 µg/L, respectively. As discussed in the third biennial water quality monitoring report (November 2010), a positive correlation exists between iron and arsenic levels for monitoring wells at the site. This has been documented throughout the State of Florida, and is due to the fact that low levels of naturally occurring arsenic are bound up primarily by ferric (iron) hydroxides in many Florida soils. This has been discussed in previous correspondence with FDEP. The arsenic concentrations detected in MW-11A and MW-13A for the 13th semi-annual event are comparable with historical data reported for these two wells during previous monitoring events.

Iron was detected above the GCTL of 300 μ g/L in all thirty-three (33) of the monitoring wells sampled in concentrations ranging between 420 and 16,900 μ g/L. Iron has historically exceeded the GCTL in all wells at the site for all monitoring events including

the baseline events. The iron concentrations reported for the 13th semi-annual event are typical of previous monitoring events.

Ammonia-N (Method 350.1)

Ammonia-N was detected in all of the thirty-three (33) monitoring wells sampled in concentrations ranging between 0.073 mg/L and 21.6 mg/L. All reported concentrations are less than the GCTL for ammonia-N of 2.8 mg/L except for MW-1A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, 10A, 11A, 019A, and 23A where the reported concentrations ranged between 3.24 and 21.6 mg/L. Ammonia-N has historically been detected in these wells at the site for the previous monitoring events since the 1st and 2nd semi-annual water quality events, and GCTL for ammonia was exceeded in the baseline event for MW-5A and MW-19A. Of the locations where ammonia exceeded the GCTL during the 13th semi-annual event, monitoring wells MW-1A, 3A, 4A, 6A, 7A, 8A, 9A, 11A, 19A, and 23A indicated an increase when compared to the 12th semi-annual event. Monitoring wells MW-5A and MW-10A indicated a decrease when compared to the 12th semi-annual event. The highest ammonia concentration detected in a baseline monitoring event was 16 mg/L in MW-19A. All of the ammonia concentrations detected for the 13th semiannual event are all below this concentration, except for MW-19A (21.6 mg/L). Of all the monitoring wells sampled as part of the semi-annual monitoring, MW-19A is located the furthest from any active disposal cell.

40 CFR Part 258, Appendix I Volatile Compounds (Method 8260)

Benzene was detected (above the MRL) in eight (8) monitoring wells (MW-1A, 3A, 8A, 9A, 10A, 11A, 12A, and 13A) at concentrations of ranging between 1.3 and 11.5 μ g/L, which are all above the GCTL of 1.0 μ g/L.

Vinyl Chloride was detected in two (2) wells (MW-9A, and 11A) at concentrations of $1.45 \mu g/L$ and $1.38 \mu g/L$, respectively, which are both above the GCTL of $1.0 \mu g/L$.

The GCTL for benzene was exceeded in MW-1A, 3A, 8A, 9A, 10A, 11A, 12A, and 13A. The GCTL for vinyl chloride was exceeded in MW-9A, and 11A. In accordance with Chapter 62-701.510(7)(a) F.A.C. and Paragraph 4 of Monitoring Plan Implementation Schedule section of the FDEP Permit, the FDEP is to be notified within 14 days after the receipt of the laboratory data of any GCTL exceedances. The notification is to also inform the FDEP if any confirmational samples will be collected from any of the wells or if the data will be accepted as indicative of groundwater conditions. On behalf of WSI,

EPS notified Mr. Thomas Lubozynski (FDEP) in a letter dated December 14, 2010 of all the GCTL exceedances for which certified data was received by EPS. The letter also notified the FDEP that no confirmational samples would be collected and the data was accepted as representative of current groundwater conditions. FDEP responded to the notification letter in an email from Ms. Laxsamee Levin (FDEP), dated December 15, 2010.

As reported in the 6th semi-annual water quality monitoring report, the cause of the exceedances (benzene and vinyl chloride) in MW-9A appeared to be related to storm water issues associated with the landfill. As part of the Phase I partial closure project completed in November 2009, the landfill side slopes between elevation 180 ft and the landfill perimeter berm (approximately elevation 96 ft) for Cells 1-4 were covered with a geomembrane and vegetated soil cap. This closure system will significantly reduce or prevent soil run-off from the active landfill area.

Based on the results of recent investigations into potential landfill gas migration issues, it is becoming more apparent that the detections and exceedances of VOCS may be largely attributable to landfill gas migration at the perimeter berm area and not solely to surface water run-off as first reported.

4.3 Data Validation

All analyses were performed within the method specified holding times.

Two equipment blanks were collected during the 13th semi-annual monitoring event. One (1) equipment blank (EB) was collected using the stainless steel submersible pump set up used for collection of the groundwater sample at MW-23C. The second equipment blank was collected using the peristaltic pump set-up used for collection of the groundwater sample from MW-11A. De-ionized water supplied by Columbia was pumped through the submersible pump and tubing and analyzed for the same parameters as the groundwater samples. The same procedure was also used for the peristaltic pump set up. As described in the case narratives for the two lab reports containing the results for the two equipment blanks (J1005286 and J1005431), the laboratory had recently installed a new de-ionized water system and an incorrect water type was provided for the collection of the field quality control samples. Due to this error, the two equipment blank samples had detections that are highly suspect that are attributable to the water provided and not the field decontamination procedures or equipment and materials used for the sampling event.

4.4 Impact of Turbidity on Metals Concentrations

As discussed in Section 2.2 of this report, extended well development was not successful in clearing up some of the B-zone (intermediate) and C-zone (deep) groundwater monitoring wells.

Turbidity levels were less than the FDEP guidance of 20 NTUs in thirty (30) of the thirty-three (33) wells sampled. A review of the analytical results for MW-19A, 23A, and 19C (the only three wells sampled with a final measured turbidity level > 20 NTUs) shows no significant difference between the dissolved and total metals concentrations. Historical data shows that the turbidity levels for the wells has improved over the course of the semi-annual water quality monitoring events and the need to continue collection of dissolved metal samples may no longer be necessary.

5. GROUNDWATER LEVEL MEASUREMENTS AND FLOW DIRECTION

5.1 Field Measurements

Groundwater level measurements were obtained on November 1, 2010 from all of the Phases 1 through 3 groundwater monitoring wells and the remaining piezometers installed as part of the original site hydrogeological investigation. All groundwater levels measurements were made within an approximate 6-hr period. The groundwater level measurements from the monitoring wells and piezometers are presented in Table 4.

It should be noted that, as part of the site hydrogeological investigation, a total of 27 piezometers were installed. Two (2) piezometers (DP-1 and DP-2) located at the northern part of the site within Cell 1 footprint were decommissioned and abandoned on October 3, 2003 by Ambient Technologies, Inc. (ATI) of St. Petersburg, Florida. Two (2) additional piezometers (DP-3 and DP-4) located within Cell 3 footprint were decommissioned and abandoned on January 16, 2006 by National Environmental Technology, Inc (NET) Drilling Services of Dover, Florida. For the development of Phases 2 and 3, six (6) of the Phase 1 groundwater monitoring wells (MW-14A, 14B, 14C, 15A, 15B, and 15C) and ten (10) additional piezometers (DP-5, DP-6, DP-7, DP-8, DP-9, DP-10, DP-11, DP-12, DP-13, and SZ-1) were decommissioned and abandoned on July 10 and 11, 2007 by NET Drilling Services.

5.2 Water level Contours

The water level contour map prepared from groundwater level measurements for the upper surficial aquifer zone (i.e., A-zone) is presented in Figure 1.

Historically, the direction of the horizontal component of groundwater flow for all three zones is predominantly east-northeast towards Bull Creek. However, the dewatering operation for the Bronson's borrow area has created a localized groundwater depression on the west side of the Phase 1 and 2 development areas. Groundwater flow along the western property boundary is predominantly west towards the dewatering area. The groundwater level elevation data collected from the remainder of the A-zone monitoring well network indicate the direction of the horizontal component of groundwater flow is predominantly east-northeast toward Bull Creek.

Comparison of water levels between the A, B and C wells shows a similar vertical gradient (1E⁻³ ft/ft). These gradients are consistent with the regional gradient in the upper surficial

aquifer and indicate an interconnected, sluggish flow regime in the saturated zone above the Intermediate Confining Unit (ICU).

6 SURFACE WATER SAMPLING

6.1 Sampling Locations and Procedures

Two (2) surface water sampling locations established during the initial hydrogeological investigation were selected by FDEP for routine water quality monitoring. As stated in the Permit, surface water samples are only to be collected when there is flow in Bull Creek.

At the time of the 13th semi-annual water quality monitoring event, no flow was observed in Bull Creek at either the upstream monitoring station (SW-4) or the downstream monitoring location (SW-3). Since there was no flow, no surface water samples were collected as part of this 13th semi-annual event.

7 LEACHATE SAMPLING

7.1 Sampling Location and Procedures

In accordance with the permit requirements, a leachate sample is to be collected from each disposal cell on an annual basis. To date, Cells 1 through 6 have been constructed and have received waste. Therefore, leachate samples for this 13th semi-annual sampling event were collected from primary leachate sump risers for Cells 1 through 6 only. These leachate samples collected as part of the 13th semi-annual sampling event fulfills the leachate sampling requirement for the 2010 calendar year.

The leachate samples were collected from sampling ports that are connected to each of the primary leachate sump risers. An YSI 556 water quality meter was used to measure field parameters including temperature, pH, dissolved oxygen, conductivity, ORP, and turbidity. The leachate samples were collected in accordance with the applicable FDEP SOPs.

7.2 Sample Analyses

The leachate sample was analyzed by Columbia in accordance with the NELAC standards for total ammonia-N, total alkalinity (as CaCO3), chlorides, nitrate, total dissolved solids (TDS), iron, mercury, sodium, BOD, COD and the 40 CFR, Part 258 Appendix II parameters. Other required parameters (i.e., pH; temperature; conductivity; turbidity; ORP and dissolved oxygen) were field measured during collection of the leachate samples.

7.3 Field Measurements and Analytical Results

Table 5 provides a summary of the field parameter values and field data measured for the leachate samples.

The analytical results for the leachate samples are presented on a CD in Appendix D. Analytical results have been summarized in Table 5 to show all parameters where a constituent concentration was reported above the method detection limit. No constituents tested exceeded the regulatory levels listed in 40 CFR Part 261.24. It should be noted that the leachate from the JED facility is removed from the site for treatment at the City of St. Cloud waste water treatment facility or re-circulated within the active disposal area.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Sampling Locations

The existing monitoring well network is adequate for monitoring purposes and no changes are recommended.

8.2 Sample Analyses

The detections of ammonia, iron, and arsenic above the GCTLs in specific groundwater monitoring wells have been discussed in detail in the 1st, 2nd, and 3rd Biennial Technical Reports on Water Quality (November 2006, September 2008, and November 2010). We believe that the iron, arsenic and ammonia are naturally occurring and are not related to landfill operations. Our recommendation is to continue to monitor these constituents as part of the current MPIS.

The detections of various VOCs in a significant number of the shallow (A-Zone) wells are noted. Initially, it was thought that the early detections and exceedances of benzene and vinyl chloride were attributable to storm water management issues in the vicinity of MW-9A; however, it appears that landfill gas migration may be influencing these shallow groundwater monitoring wells rather than storm water management issues. Note that the shallow groundwater wells are screened approximately two (2) feet up into the landfill perimeter berm, which is approximately two (2) feet higher than the original land surface prior to the development of the landfill. With this well screen within the constructed landfill perimeter berm, potential landfill gas migration within this berm could be influencing the groundwater within these wells. Omni is currently investigating landfill gas migration within the perimeter berm and outer dry retention storm water berms at the site and those findings may help determine if the shallow groundwater monitoring wells are being influenced by landfill gas.

Our recommendation is to continue semi-annual monitoring of these constituents as part of the current MPIS while this on-going gas migration investigation continues. As part of the landfill gas migration investigation, it may be beneficial to monitor select wells for the presence of landfill gas in the well headspace.

Table 1 (1 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 13th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

		Screen Setting Top of Cooling										
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	втос)	(feet E	levation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
	,	,			(feet)	(1000)	Тор	Bottom	Тор	Bottom		(feet BTOC)
MW-1A	28 03 48.55	81 05 59.88	19900	9-Dec-03	95.1	23.0	13.0	23.0	82.1	72.1	10.6	8.2
MW-2A	28 03 51.99	81 05 59.90	19903	10-Dec-03	95.2	22.6	12.6	22.6	82.6	72.6	10.3	8.9
MW-3A	28 03 55.34	81 05 59.91	19906	11-Dec-03	94.6	22.8	12.8	22.8	81.9	71.9	10.4	9.0
MW-4A	28 03 58.97	81 05 59.92	19909	12-Dec-03	95.5	23.1	13.1	23.1	82.4	72.4	10.8	9.4
MW-5A	28 04 02.92	81 05 59.95	19912	24-Nov-03	95.3	22.5	12.5	22.5	82.8	72.8	10.1	9.1
MW-6A	28 04 06.50	81 05 59.15	19915	25-Nov-03	94.7	22.6	12.6	22.6	82.2	72.2	10.6	8.6
MW-7A	28 04 07.13	81 05 54.78	19918	26-Nov-03	95.5	23.3	13.3	23.3	82.2	72.2	10.3	9.3
MW-8A	28 04 06.20	81 05 50.64	19921	5-Dec-03	94.7	22.5	12.5	22.5	82.2	72.2	10.2	8.6
MW-9A	28 04 04.34	81 05 46.60	19924	4-Dec-03	94.7	22.4	12.4	22.4	82.3	72.3	10.0	8.6
MW-10A	28 04 00.07	81 05 44.77	19927	3-Dec-03	96.3	22.1	12.1	22.1	84.1	74.1	9.8	7.6
MW-11A	28 03 55.43	81 05 43.27	19930	3-Dec-03	93.6	22.8	12.8	22.8	80.7	70.7	10.5	9.1
MW-12A	28 03 52.08	81 05 43.26	19933	2-Dec-03	95.1	23.0	13.0	23.0	82.1	72.1	10.7	9.3
MW-13A	28 03 48.67	81 05 43.25	19936	8-Dec-03	95.2	22.5	12.5	22.5	82.7	72.7	10.2	7.7
MW-14A					Monitoring Well	Abandoned 10 Jul	ly 2007					
MW-15A					Monitoring Well	Abandoned 10 Jul	ly 2007					
MW-16A	28 03 44.55	81 05 40.22	22342	21-Sep-07	88.69	18.63	8.1	18.1	80.6	70.6	6.1	5.1
MW-17A	28 03 42.38	81 05 35.42	22345	22-Sep-07	88.86	19.88	9.4	19.4	79.5	69.5	7.4	6.4
MW-18A	28 03 37.21	81 05 35.16	22348	11-Sep-07	87.56	17.70	7.2	17.2	80.4	70.4	5.2	4.2
MW-19A	28 03 33.40	81 05 39.60	22351	11-Sep-07	87.54	17.65	7.2	17.2	80.4	70.4	5.2	4.2
MW-20A	28 03 31.82	81 05 45.45	22354	19-Sep-07	87.12	17.93	7.4	17.4	79.7	69.7	5.4	4.4
MW-21A	28 03 32.10	81 05 52.48	22357	14-Sep-07	87.20	18.04	7.5	17.5	79.7	69.7	5.5	4.5
MW-22A	28 03 32.35	81 05 59.48	22360	14-Sep-07	87.71	18.00	7.5	17.5	80.2	70.2	5.5	4.5
MW-23A	28 03 42.41	81 05 59.79	22363	25-Sep-07	97.90	27.75	17.3	27.3	80.7	70.7	15.3	14.3

Table 1 (2 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 13th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

		Top of Casing				Screen	Setting					
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	втос)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
	, ,	,			(feet)	, ,	Тор	Bottom	Тор	Bottom	,	(feet BTOC)
MW-1B	28 03 48.59	81 05 59.89	19901	9-Dec-03	95.0	47.9	37.9	47.9	57.1	47.1	35.6	33.1
MW-2B	28 03 51.94	81 05 59.90	19904	10-Dec-03	95.2	48.3	38.3	48.3	56.9	46.9	36.0	34.6
MW-3B	28 03 55.31	81 05 59.91	19907	11-Dec-03	94.7	47.6	37.6	47.6	57.1	47.1	35.3	33.9
MW-4B	28 03 59.01	81 05 59.92	19910	12-Dec-03	95.2	47.4	37.4	47.4	57.8	47.8	35.1	33.5
MW-5B	28 04 02.88	81 05 59.95	19913	24-Nov-03	95.3	47.1	37.1	47.1	58.2	48.2	34.4	32.7
MW-6B	28 04 06.48	81 05 59.18	19916	25-Nov-03	94.6	47.4	37.4	47.4	57.2	47.2	34.9	33.5
MW-7B	28 04 07.13	81 05 54.81	19919	26-Nov-03	95.3	47.5	37.5	47.5	57.8	47.8	34.5	33.5
MW-8B	28 04 06.19	81 05 50.60	19922	5-Dec-03	94.6	49.6	39.6	49.6	55.0	45.0	37.1	35.6
MW-9B	28 04 04.31	81 05 46.56	19925	4-Dec-03	94.6	49.1	39.1	49.1	55.5	45.5	36.8	35.3
MW-10B	28 04 00.04	81 05 44.75	19928	3-Dec-03	96.2	48.3	38.3	48.3	58.0	48.0	35.9	33.9
MW-11B	28 03 55.40	81 05 43.27	19931	2-Dec-03	93.6	47.9	37.9	47.9	55.7	45.7	35.5	34.0
MW-12B	28 03 52.05	81 05 43.27	19934	1-Dec-03	95.0	49.0	39.0	49.0	56.1	46.1	36.6	35.1
MW-13B	28 03 48.64	81 05 43.24	19937	8-Dec-03	95.1	47.2	37.2	47.2	58.0	48.0	34.8	33.4
MW-14B					Monitoring Well A	abandoned 10 July	2007					
MW-15B					Monitoring Well A	bandoned 10 July	2007					
MW-16B	28 03 44.52	81 05 40.17	22343	21-Sep-07	88.73	38.09	27.6	37.6	61.1	51.1	25.6	24.6
MW-17B	28 03 42.35	81 05 35.36	22346	20-Sep-07	88.79	40.18	29.7	39.7	59.1	49.1	27.7	26.7
MW-18B	28 03 37.16	81 05 35.19	22349	11-Sep-07	87.43	37.80	27.3	37.3	60.1	50.1	25.3	24.3
MW-19B	28 03 33.38	81 05 39.66	22352	11-Sep-07	87.64	37.73	27.2	37.2	60.4	50.4	25.2	24.2
MW-20B	28 03 31.82	81 05 45.51	22355	19-Sep-07	87.27	37.76	27.3	37.3	60.0	50.0	25.3	24.3
MW-21B	28 03 32.09	81 05 52.55	22358	17-Sep-07	87.23	37.63	27.1	37.1	60.1	50.1	25.1	24.1
MW-22B	28 03 32.36	81 05 59.54	22361	14-Sep-07	87.69	37.96	27.5	37.5	60.2	50.2	25.5	24.5
MW-23B	28 03 42.46	81 05 59.79	22364	25-Sep-07	97.91	42.75	32.3	42.3	65.7	55.7	30.3	29.3

Table 1 (3 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 13th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

						Screen	Setting					
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet BTOC)		(feet Elevation)		Sand Pack (feet BTOC)	Fine-Grained Sand Seal
	,	,			(feet)	,	Тор	Bottom	Тор	Bottom	((feet BTOC)
MW-1C	28 03 48.63	81 05 59.88	19902	9-Dec-03	95.2	75.2	65.2	75.2	30.0	20.0	62.9	61.4
MW-2C	28 03 51.90	81 05 59.89	19905	10-Dec-03	95.3	68.4	58.4	68.4	36.9	26.9	56.1	53.7
MW-3C	28 03 55.28	81 05 59.91	19908	11-Dec-03	94.7	68.7	58.7	68.7	36.0	26.0	56.3	54.8
MW-4C	28 03 59.04	81 05 59.92	19911	12-Dec-03	95.4	72.5	62.5	72.5	32.9	22.9	61.2	59.6
MW-5C	28 04 02.83	81 05 59.95	19914	24-Nov-03	95.4	73.0	63.0	73.0	32.4	22.4	60.7	58.7
MW-6C	28 04 06.46	81 05 59.22	19917	25-Nov-03	94.6	73.2	63.2	73.2	31.4	21.4	60.2	57.7
MW-7C	28 04 07.13	81 05 54.86	19920	25-Nov-03	94.9	73.3	63.3	73.3	31.6	21.6	60.3	59.3
MW-8C	28 04 06.17	81 05 50.55	19923	5-Dec-03	94.5	73.9	63.9	73.9	30.6	20.6	61.6	59.8
MW-9C	28 04 04.29	81 05 46.53	19926	4-Dec-03	94.5	73.8	63.8	73.8	30.8	20.8	61.4	59.4
MW-10C	28 04 00.01	81 05 44.74	19929	3-Dec-03	96.4	73.7	63.7	73.7	32.7	22.7	61.4	60.0
MW-11C	28 03 55.36	81 05 43.26	19932	2-Dec-03	93.7	73.4	63.4	73.4	30.3	20.3	61.0	59.6
MW-12C	28 03 52.01	81 05 43.26	19935	1-Dec-03	95.1	73.6	63.6	73.6	31.5	21.5	60.2	58.7
MW-13C	28 03 48.60	81 05 43.25	19938	8-Dec-03	95.0	73.0	63.0	73.0	32.1	22.1	60.7	58.2
MW-14C					Monitoring Well	Abandoned 10 July	y 2007					
MW-15C					Monitoring Well	Abandoned 10 July	y 2007					
MW-16C	28 03 44.50	81 05 40.11	22344	21-Sep-07	88.8	67.7	57.2	67.2	31.6	21.6	55.2	54.2
MW-17C	28 03 42.31	81 05 35.31	22347	20-Sep-07	88.9	67.3	56.8	66.8	32.0	22.0	54.8	53.8
MW-18C	28 03 37.10	81 05 35.22	22350	12-Sep-07	87.4	67.2	56.7	66.7	30.8	20.8	54.7	53.7
MW-19C	28 03 33.37	81 05 39.72	22353	10-Sep-07	87.4	66.7	56.2	66.2	31.2	21.2	54.2	53.2
MW-20C	28 03 31.82	81 05 45.57	22356	18-Sep-07	87.4	66.8	56.3	66.3	31.1	21.1	54.3	53.3
MW-21C	28 03 32.10	81 05 52.61	22359	17-Sep-07	87.1	62.6	52.1	62.1	35.1	25.1	50.1	49.1
MW-22C	28 03 32.36	81 05 59.60	22362	13-Sep-07	87.6	67.3	56.8	66.8	30.8	20.8	54.8	53.8
MW-23C	28 03 42.51	81 05 59.80	22365	24-Sep-07	97.9	67.1	56.6	66.6	41.4	31.4	54.6	53.6

Table 2

SUMMARY OF FINAL FIELD PARAMETER RESULTS AND FIELD DATA
13th SEMI-ANNUAL WATER QUALITY MONITORING EVENT
J.E.D. SOLID WASTE MANAGEMENT FACILITY

Monitoring Well	Temperature (°C) ¹	pH (Standard Units)	Specific Conductance (uS/cm) ²	Turbidity (NTUs) ³	Oxidation- Reduction Potential (mV) ⁴	DO (mg/L) ⁵	Purging Method
MW-1A	23.5	4.76	188	0.6	-76.9	0.57	Peristaltic Pump
MW-2A	21.52	4.75	181	0.8	-78.9	0.75	Peristaltic Pump
MW-3A	28.32	4.9	559	0.5	-76.3	0.58	Peristaltic Pump
MW-4A	25.22	4.8	302	0.6	-50.4	0.86	Peristaltic Pump
MW-5A	25.0	3.91	391	1.6	-54.0	0.59	Peristaltic Pump
MW-6A	27.6	4.8	362	0.4	-61.7	0.53	Peristaltic Pump
MW-7A	25.93	4.94	200	0.3	-74.3	0.37	Peristaltic Pump
MW-8A	25.35	4.36	396	1.1	-20.1	0.54	Peristaltic Pump
MW-9A	26.1	4.92	225	9.6	-1.5	0.39	Peristaltic Pump
MW-10A	26.01	4.97	143	12.3	-15.7	0.5	Peristaltic Pump
MW-11A	27.35	5.26	371	4.0	-65.4	0.55	Peristaltic Pump
MW-12A	27.27	4.39	152	0.7	-7.7	0.51	Peristaltic Pump
MW-13A	25.56	5.25	150	3.8	-28.9	0.45	Peristaltic Pump
MW-16A	27.32	4.87	55	3.4	-76.0	0.5	Peristaltic Pump
MW-19A	27.04	6.01	724	38.6	-116.6	0.44	Peristaltic Pump
MW-23A	25.73	5.34	259	45	-72.6	0.71	Peristaltic Pump
MW-1C	24.13	5.43	82	6.5	-45.0	0.46	Peristaltic Pump
MW-2C	22.48	4.9	45	0.8	-12.4	0.39	Peristaltic Pump
MW-3C	26.24	5.27	76	1.5	-6.9	0.35	Peristaltic Pump
MW-4C	24.62	5.64	117	16.8	-75.1	0.18	Submersible Pump
MW-5C	23.61	5.06	82	0.9	-34.4	0.28	Peristaltic Pump
MW-6C	25.52	4.94	51	3.4	-29.1	0.35	Peristaltic Pump
MW-7C	24.9	5.25	75	1.7	-1.4	0.35	Peristaltic Pump
MW-8C	24.59	4.91	68	1.2	-19.1	0.45	Peristaltic Pump
MW-9C	25.3	5.58	133	3.9	-60.4	0.22	Peristaltic Pump
MW-10C	24.93	5.05	66	6.6	9.2	0.3	Peristaltic Pump
MW-11C	25.98	5.27	118	0.6	-27.0	0.53	Peristaltic Pump
MW-12C	25.72	4.9	57	1.0	7.0	0.61	Peristaltic Pump
MW-13C	24.37	4.91	70	3.1	-14.3	0.41	Peristaltic Pump
MW-16C	25.73	5.08	117	2.4	-62.8	0.4	Submersible Pump
MW-19C	25.6	5.4	119	46.5	-117.3	0.15	Submersible Pump
MW-23C	24.15	5.65	108	16.7	-34.7	0.21	Submersible Pump
MW-16B	24.86	4.91	61	17.3	-128.0	0.27	Submersible Pump

Notes:

¹ °C = degrees Celsius

² uS/cm = micro Siemens per centimeter

³ NTU = Nephelometric Turbidity Units

⁴ mV = millivolts

⁵ mg/L = milligram per liter

SUMMARY OF GROUNDWATER ANALYTICAL DATA

Table 3

13th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Well ID	Acetone	Vinyl Chloride	Cis-1,2 Dichloroethene	1,1-Dichloroethene	1,4-Dichlorobenzene	1,2-Dichloropropane	Benzene	Ethylbenzene	Toluene	EDC	Total Xylenes	Arsenic	Iron	Ammonia	TDS
	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)		GCTL (mg/L)
	6,300	1	70	7	75	5	1	30	40	3	20	10	300	2.8	500
MW-1A	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	6.1	6.44	1.54	<0.18	8.25	1.95	3,110	4.72	80
MW-1C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	420	0.073	48
MW-2A	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	0.63	15.000	1.65	80
MW-2C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	490	0.088	24
MW-3A	<5.6	<0.22	< 0.36	<0.16	1.18	<0.12	6.65	4.01	<0.19	<0.18	1.47	.45 i	16,900	7.23	245
MW-3C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	850	0.086	37
MW-4A	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	.63 i	<0.18	<0.41	0.82	1,120	12.7	121
MW-4C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	720	0.118	70
IVIVV-4C	₹3.0	<0.22	Q0.30	Q0.10	Q0.1	Q0.12	Q0.21	C0.21	Q0.19	<0.10	V0.41	\(\0.4\)	720	0.110	70
MW-5A	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	0.54	1150	5.81	242
MW-5C	<5.6	<0.22	< 0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	< 0.4	950	0.097	44
MW-6A	<5.6	<0.22	< 0.36	<0.16	<0.1	<0.12	0.94 i	<0.21	<0.19	<0.18	<0.41	0.83	16,900	3.24	115
MW-6C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	770	0.134	47
MW-7A	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	1.31	9,140	4.51	80
MW-7C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	720	0.088	48
IVIVV-7C	₹3.0	<0.22	Q0.30	Q0.10	Q0.1	Q0.12	Q0.21	C0.21	Q0.19	<0.10	Q0.41	\(\0.4\)	720	0.000	40
MW-8A	<5.6	<0.22	< 0.36	<0.16	<0.1	<0.12	1.3	<0.21	<0.19	<0.18	< 0.41	0.54	3,650	6.5	165
MW-8C	<5.6	<0.22	< 0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	< 0.4	970	0.129	44
MW-9A	<5.6	1.45	1.26	<0.16	1.58	<0.12	11.5	1.69	1.31	<0.18	10.78	1.69	1,050	13.2	159
MW-9C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	670	0.226	83
MW-10A	<5.6	<0.22	.85 i	<0.16	<0.1	<0.12	2.74	<0.21	<0.19	<0.18	1.13 i	1.53	620	7.19	93
MW-10C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	840	0.118	42
IVIVV-10C	₹5.0	<0.22	<0.30	Q0.10	ζ0.1	Q0.12	V0.21	C0.21	Q0.15	Q0.10	V0.41	\0.4	040	0.110	42
MW-11A	<5.6	1.38	1.15	<0.16	<0.1	0.5 i	5.65	<0.21	0.3 i	<0.18	0.32 i	11.2	13,700	6.71	232
MW-11C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	510	0.098	63
MW-12A	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	2.19	<0.21	<0.19	<0.18	<0.41	1.6	1,950	0.343	69
MW-12C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	620	0.094	27
MW-13A	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	1.31	<0.21	<0.19	<0.18	<0.41	19.7	16,400	1.26	95
MW-13C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	540	0.111	32
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	70.22	10.00	~0.10	70.1	70.12	NO.21	NO.21	X0.10	NO.10	NO.71	\0.T	040	0.111	- 02
MW-16A	13.4 i	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	1,150	0.084	39
MW-16B	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	1,010	0.153	34
MW-16C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	1.15	1.49	<0.18	<0.41	<0.4	840	0.122	65
104/404	5.0	0.00	0.00	0.40	0.4	0.40	0.04	0.04	0.40	0.40	0.44	7.00	44.000	04.0	070
MW-19A MW-19C	<5.6 <5.6	<0.22 <0.22	<0.36 <0.36	<0.16 <0.16	<0.1 <0.1	<0.12 <0.12	<0.21 <0.21	<0.21 <0.21	<0.19 <0.19	<0.18 <0.18	<0.41	7.69 <0.4	11,600 1,090	21.6 0.113	972 79
IVIVV-19C	0.6>	<0.22	<0.30	<0.10	<0.1	<u.12< td=""><td><0.21</td><td><u.z i<="" td=""><td><0.19</td><td><0.10</td><td><0.41</td><td><0.4</td><td>1,090</td><td>0.113</td><td>79</td></u.z></td></u.12<>	<0.21	<u.z i<="" td=""><td><0.19</td><td><0.10</td><td><0.41</td><td><0.4</td><td>1,090</td><td>0.113</td><td>79</td></u.z>	<0.19	<0.10	<0.41	<0.4	1,090	0.113	79
MW-23A	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	1.31	2,120	9.9	214
MW-23C	<5.6	<0.22	<0.36	<0.16	<0.1	<0.12	<0.21	<0.21	<0.19	<0.18	<0.41	<0.4	560	0.134	66

Estimated value - reported bewteen MDL and MRL

Exceeds GCTL

GROUNDWATER LEVEL MEASUREMENTS 13th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Site Name: JED Solid Waste Management Facility Sampling Personnel: Joe Terry **Field Conditions:** clear, ~77°F

Date: Osceola County, Florida

1-Nov-2010

Date:	1-No	v-2010				
Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations
DP-1]	Piezometer Aba	ndoned 03 O	ctober 2003
DP-2]	Piezometer Aba	indoned 03 O	ctober 2003
DP-3				Piezometer Aba	ındoned 16 Ja	nuary 2006
DP-4		nuary 2006				
DP-5		July 2007				
DP-6				Piezometer A	bandoned 10.	July 2007
DP-7				Piezometer A	bandoned 10.	July 2007
DP-8				Piezometer A	bandoned 10.	July 2007
DP-9				Piezometer A	bandoned 10.	July 2007
DP-10				Piezometer A	bandoned 10.	July 2007
DP-11				Piezometer A	bandoned 10.	July 2007
DP-12				Piezometer A	bandoned 10.	July 2007
DP-13				Piezometer A	bandoned 11.	July 2007
DP-14	9:12	82.0	6.23	18.6	75.74	
DP-15	9:12	82.0	6.22	53.7	75.76	protective casing lid broken
DP-16	8:54	82.6	5.99	18.5	76.58	protective casing hinge rusted
DP-17	8:54	82.6	6.04	53.7	76.54	protective casing hinge rusted
DP-18	10:27	84.4	6.37	52.9	78.01	protective casing rusted, lid broken
DP-19	10:27	84.3	6.30	18.4	78.04	protective casing lid broken
DP-20	11:00	83.1	5.89	18.4	77.18	protective casing lid broken
DP-21	11:00	83.0	5.84	53.7	77.16	
DP-22	9:06	81.0	5.76	18.6	75.24	protective casing lid broken
DP-23	9:06	81.3	5.47	53.8	75.80	
DP-24	8:57	82.2	5.96	18.6	76.26	protective casing lid broken
SZ-1				Piezometer A	bandoned 10.	July 2007
SZ-2	11:00	83.2	6.67	75.4	76.49	protective casing lid broken
SZ-3	9:05	81.3	5.62	78.9	75.65	protective casing lid broken
MW-1A	12:50	95.1	18.40	23.0	76.72	
MW-1B	12:50	95.0	18.27	47.9	76.73	
MW-1C	12:50	95.2	18.46	74.4	76.72	
MW-2A	12:45	95.2	18.78	22.6	76.43	
MW-2B	12:45	95.2	18.75	48.1	76.42	
MW-2C	12:45	95.3	18.91	68.4	76.41	
MW-3A	12:40	94.6	18.40	22.8	76.24	
MW-3B	12:40	94.7	18.42	47.7	76.26	
MW-3C	12:40	94.7	18.41	68.8	76.25	

GROUNDWATER LEVEL MEASUREMENTS 13th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Site Name:JED Solid Waste Management FacilitySampling Personnel:Joe TerryLocation:Osceola County, FloridaField Conditions:clear, ~77°F

Date: 1-Nov-2010

1		ı							
Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations			
MW-4A	12:35	95.5	19.12	23.1	76.36				
MW-4B	12:35	95.2	18.83	47.4	76.35				
MW-4C	12:35	95.4	19.00	72.6	76.39				
MW-5A	12:30	95.3	17.97	22.5	77.35				
MW-5B	12:30	95.3	18.58	47.1	76.72				
MW-5C	12:30	95.4	18.82	73.0	76.57				
MW-6A	12:24	94.7	18.01	22.6	76.71				
MW-6B	12:24	94.6	17.88	47.5	76.72				
MW-6C	12:24	94.6	18.00	73.1	76.58				
MW-7A	12:18	95.5	18.65	23.3	76.83				
MW-7B	12:18	95.3	18.44	48.0	76.83				
MW-7C	12:18	94.9	18.20	73.4	76.73				
MW-8A	12:13	94.7	17.80	22.5	76.87				
MW-8B	12:13	94.6	17.73	49.3	76.85				
MW-8C	12:13	94.5	17.78	73.8	76.72				
MW-9A	11:52	94.7	17.76	22.4	76.90				
MW-9B	11:52	94.6	17.76	49.1	76.87				
MW-9C	11:52	94.5	17.87	74.7	76.67				
MW-10A	11:46	96.3	19.35	22.1	76.90				
MW-10B	11:46	96.2	19.37	48.3	76.86				
MW-10C	11:46	96.4	19.65	74.9	76.71				
MW-11A	11:40	93.6	16.91	22.8	76.65				
MW-11B	11:40	93.6	16.98	47.9	76.61				
MW-11C	11:40	93.7	17.05	73.6	76.60				
MW-12A	11:35	95.1	18.25	23.0	76.85				
MW-12B	11:35	95.0	18.26	49.0	76.75				
MW-12C	11:35	95.1	18.39	73.6	76.71				
MW-13A	11:30	95.2	18.17	22.5	77.02				
MW-13B	11:30	95.1	18.10	47.3	77.02				
MW-13C	11:30	95.0	18.09	73.0	76.95				
MW-14A	Monitoring Well Abandoned 10 July 2007								
MW-14B	Monitoring Well Abandoned 10 July 2007								
MW-14C	Monitoring Well Abandoned 10 July 2007								
MW-15A	Monitoring Well Abandoned 10 July 2007								
MW-15B	Monitoring Well Abandoned 10 July 2007								
MW-15C	Monitoring Well Abandoned 10 July 2007								

Table 4 (3 of 3)

GROUNDWATER LEVEL MEASUREMENTS 13th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

 Site Name:
 JED Solid Waste Management Facility
 Sampling Personnel:
 Joe Terry

 Location:
 Osceola County, Florida
 Field Conditions:
 clear, ~77°F

Date: 1-Nov-2010

Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations
MW-16A	9:38	88.69	10.52	18.63	78.17	
MW-16B	9:37	88.73	11.59	38.09	77.14	
MW-16C	9:38	88.77	11.76	67.65	77.01	
MW-17A	9:26	88.86	11.81	19.88	77.05	
MW-17B	9:26	88.79	11.95	40.18	76.84	
MW-17C	9:26	88.85	12.08	67.33	76.77	
MW-18A	11:22	87.56	10.58	17.70	76.98	
MW-18B	11:22	87.43	10.48	37.80	76.95	
MW-18C	11:22	87.42	10.51	67.15	76.91	
MW-19A	11:15	87.54	10.34	17.65	77.20	
MW-19B	11:15	87.64	10.42	37.73	77.22	
MW-19C	11:15	87.44	10.28	66.70	77.16	
MW-20A	10:50	87.12	9.50	17.93	77.62	
MW-20B	10:50	87.27	9.70	37.76	77.57	
MW-20C	10:50	87.35	9.84	66.75	77.51	
MW-21A	10:40	87.20	9.43	18.04	77.77	
MW-21B	10:40	87.23	9.45	37.63	77.78	
MW-21C	10:40	87.13	9.34	62.57	77.79	
MW-22A	10:32	87.71	9.87	18.00	77.84	
MW-22B	10:32	87.69	9.78	37.96	77.91	
MW-22C	10:32	87.55	10.07	67.25	77.48	
MW-23A	12:55	97.90	20.57	27.75	77.33	
MW-23B	12:55	97.91	20.57	42.75	77.34	
MW-23C	12:55	97.93	20.62	67.05	77.31	

SUMMARY OF FIELD MEASUREMENTS AND ANALYTICAL RESULTS FOR LEACHATE SAMPLES 13th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

		Regulatory	L-1	L-2	L-3	L-4	L-5	L-6
Parameter	Units	Level 1	Nov-10	Nov-10	Nov-10	Nov-10	Nov-10	Nov-10
FIELD MEASUREMENTS								
Temperature	°C³	I	30.74	32.09	27.53	37.77	33.68	30.52
pН	Std Units		7.13	6.77	6.97	7.31	7.02	7.39
Conductivity	mS/cm⁴		23.96	15.98	16.93	19.45	16.39	16.87
Turbidity	NTU ⁵		3.4	0.8	6.2	6	8.5	2.10
ORP ⁶	mV ⁷		-146.9	-42.4	-203.6	-65.4	-42.2	-56.90
Dissolved Oxygen	mg/L ⁸		1.28	2.6	0.48	0.33	3.02	5.37
ANALYTICAL RESULTS	L	l		l	.4		I	
Biological Oxygen Demand (BOD)	mg/L	T	167	507	133	490	124	119
Chemical Oxygen Demand (COD)	mg/L		7,490	7,010	8,350	9,090	5,490	6,430
Ammonia-N	mg/L		1,090	816	798	1,150	696	904
Nitrate as N	mg/L		3.7	BDL ²	BDL	3.2	BDL	BDL
1,4-Dichlorobenzene	μg/L ⁹		10	14	13.6	6.5 i	9.2 i	5.6 i
2,4-Dimethylphenol	μg/L		11 i	BDL	BDL	BDL	BDL	BDL
2-Butanone (MEK)	μg/L	200,000	832	1,150	BDL	660	871	BDL
4-methyl-2-pentanone (MIBK)	μg/L		9.6 i	16 i	BDL	52.3 i	20.1 i	BDL
2-Methylphenol	μg/L		16 i	BDL	BDL	BDL	7.5 i	28 i
4-Methylphenol	μg/L		290	900	97	1,800	120	BDL
Acetone	μg/L		687	1,250	82.3 i	879	512	BDL
Antimony	μg/L		40 i	12 i	23	58	7 i	22
Arsenic	μg/L	5,000	138	200	43.5	178	56	73 430
Barium	μg/L	100,000	471	350	332	271	178	430
Benzene	μg/L	500	5.8 i	8.7 i	10.4	6.6 i	7.1 i	6.1 i
Benzyl alcohol	μg/L		BDL	BDL	BDL	150 i	BDL	BDL
Beryllium	μg/L		2.9 i	3.2 i	1.3 i	2.5 i	1.7 i	1.6 i
Cadmium	μg/L	1,000	1.7 i	BDL	1.7 i	BDL	BDL	4.3
Chloride	mg/L		4.470	2.970	3.180	2,490	2.770	2.740
Chromium	μg/L	5,000	545	515	363	548	262	467
Cobalt	μg/L		37	13	363 33	33	30	29
Copper	μg/L		57	13	13	57	12	30
Cyanide, Total	μg/L		33	30	33		40	25
Ethylbenzene	μg/L		33 37.3	39.7	33 51.2	36 32.2	50.8	25 29.9
Iron	μg/L		6,770	2,580	4,550	4,110	3,680	3030
Isobutyl Alcohol	μg/L		BDL	BDL	BDL	927 i	BDL	BDL
Lead	μg/L	5,000	31	11	11.9	23	6 i	26.9
m&p-Xylenes	μg/L		38.1	43.5	56.5	40.1	76.2	47.7
Naphthalene	μg/L		7.2 i	17.1 i	BDL	16.6 i	9.2 i	BDL
Nickel	μg/L		596	132	250	197	224	298
N-Nitrosodi-n-propylamine	μg/L	-	BDL	310	BDL	BDL	42 i	BDL
o-Xylene	μg/L	-	18.3	25.3	26	22.4	35.3	22.2
Phenol	μg/L		220	980	7.5 i	1,100	65	BDL
Selenium	μg/L	1,000	120	87	83	113	56	140
Sodium	mg/L		2,430	1,410	1,880	1,440	1,550	1,610
Sulfide	mg/L		24 i	22 i	18 i	24 i	22 i	8 i
Tin	μg/L	-	15 i	10 i	8 i	28 i	BDL	8 i
Toluene	μg/L	-	6.7 i	29.3	21	29.5	35.6	51.5
Total Dissolved Solids (TDS)	mg/L	-	14,700	10,400	11,600	11,000	9,280	11,200
Vanadium	μg/L		514	753	606	571	9,280 419	807
Zinc	μg/L		114	753 34	67	290	58	73
4 1110	r-3· -		117	57	UI.	200	30	1.0

Notes:

- 1 Maximum concentration of contaminants for the toxicity characteristic listed in 40 CFR 261.24.
- 2 BDL = Below method detection limit.
- 3 °C = degrees Celsius
- 4 mS/cm = milli Siemens per centimeter
- 5 NTU = Nephelometric Turbidity Units
- 6 ORP = Oxidation-Reduction Potential
- 7 mV = millivolts
- 8 mg/L = milligram per liter
- 9 μ g/L = microgram per liter
- i = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit

Appendix A

Water Quality Monitoring Certification FDEP Form 62-701.900(31)

PART I GENERAL INFORMATION

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form #: 62-701.900(31), F.A.C.

Form Title: Water Quality Monitoring Certification

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(9), F.A.C.

WATER QUALITY MONITORING CERTIFICATION

(1) Facility Name J.E.D. Soild Waste Management Facility		
Address 1501 Omni Way		
City Saint Cloud	Zip <u>34773</u>	County Osceola
Telephone Number (407) 891-3720		
(2) WACS Facility ID 89544		
(3) DEP Permit Number <u>SO49-0199726-015</u>		
(4) Authorized Representative's Name Mike Kaiser	Title	Engineer
Address 1501 Omni Way		
City Saint Cloud		
Telephone Number (407) 891-3720		
Email address (if available) _mkaiser@wsii.us		
I certify under penalty of law that I have personally exami document and all attachments and that, based on my inqui the information, I believe that the information is true, accu penalties for submission of false information including the pos-	ry of those individuals imm rate, and complete. I am	ediately responsible for obtaining aware that there are significant
1/31/2011 Mile Kaise (Owner or	Authorized Representative	's Signature)
PART II QUALITY ASSURANCE REQUIREMENTS		
Sampling Organization	s, Inc. (EPS)	
Analytical Lab NELAC / HRS Certification # E82502		
Lab Name Columbia Analytical Services (CAS)		
Address 9143 Philips Highway, Suite 200 Jacksonville, Florid	da 32256	
Phone Number (904) 739-2277		
Email address (if available)		

Appendix B

Field Sampling Logs (Monitoring Wells & Leachate)

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773												
									110			
PURGING DATA WELL TUBING WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE												
DIAMETER (inches): 2.0 DIAMETER (inches): 0.25 DEP					H: 7 fe	et to 27 fee	et TO WATE	R (feet): 18.4/5 OR BAILER:peristaltic				
(only fill ou	LUME PURGE: t if applicable)	1 WELL VO		AL WELL DEPTI						n 1	1	
EQUIPME	NT VOLUME PL	JRGE: 1 EQU	= (JIPMENT VOL	. = PUMP VOLU	eet – ME + (TUB	18.45 BING CAPACIT	feet) X Y X TU	0.16 g (BING LENGTH)	allons/foot + FLOW CI		gallons	
(only fill ou	t if applicable)				lons + (0		s/foot X	feet)			gallone	
INITIAL PL	IMP OR TUBIN	G _	FINAL PUN	P OR TUBING	10/13 . (0	PURGING	Alfanderica de la companya della companya della companya de la companya della com	PURGING	. 0,12	TOTAL VOL	gallons	
DEPTH IN	WELL (feet):	21	DEPTH IN	WELL (feet):	21			ENDED AT: 0935		PURGED (g	PURGED (gallons): 3.25	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or aS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)			
0925	2.75	2.75	0.05	18.64	4.76	23.49	187	0.59	0.6	Clea	73.9	
0930	0.25	3-00	0.05	The Property of the Control of the C	4.76	23.52	188	0.50	0.6			
0935	0.25	3.25	0.05	18.64	4.76	23,50	188	0.57	0.6	Cleu	The second second second	
			-	-								
								- Meditie				
	1											
	PACITY (Gallon				1.25" = 0.0	6; 2" = 0.16 1/4" = 0.0026			5" = 1.02;	6 " = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016	
	EQUIPMENT C			BP = Bladder Pu			Submersible Pur		eristaltic Pun		ther (Specify)	
						LING DA					(2000)	
	BY (PRINT) / A	FFILIATION:		SAMPLER(S) S	GNATUR	E(S):		SAMPLING		SAMPLIN		
Joe Terry / EPS						4		INITIATED AT: 0940 ENDED AT: 0957				
PUMP OR DEPTH IN	TUBING WELL (feet):	21		TUBING / MATERIAL COI	DE: PE	<i>V</i>		FILTERED: Y on Equipment Ty		FILTER S	IZE: μm	
FIELD DE	CONTAMINATIO	ON: PUN	IP Y (N)	TUBING	Y (N) (rep	olaced)	DUPLICATE:	Υ	®		
						RESERVATION		INTENDE		SAMPLING	SAMPLE PUMP	
SAMPLE ID CODE					TOTAL VOL FINAL ED IN FIELD (mL) pH		ANALYSIS AND/OR METHOD		CODE	FLOW RATE (mL per minute)		
MW-IA	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100	
MW-1A	3	CG	40mL	None		None		8011		RFPP	<100	
MW-14	1	PE	250mL	HNO ₃	Pr	efilled by lab		Metals		APP	200	
MW-IA	1	PE	125mL	H ₂ SO ₄	Pr	Prefilled by lab		NH ₃		APP	200	
MW-IA	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	200	
REMARKS: Odor, none												
wentler: Cleur, ~53°F, Sleet breeze MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)												
MATERIA SAMPLIN		AG = Amber					PP = Polypropyl				outer (opecity)	
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)												

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773												
			. 00044)	SAMPLE		LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773 DATE: 9 November 2010						
7												
WELL TUBING WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE												
DIAMETER	DIAMETER (inches): 2.0 DIAMETER (inches): 0.25 DE					DEPTHUS, Zfeet to 75, 2 feet TO WATE			R (feet): 19.48 OR BAILER:peristaltic			
(only fill out	.UME PURGE: t if applicable)	1 WELL VO	LUME = (TO	AL WELL DEP	TH - STA	ATIC DEPTH T	O WATER) X	WELL CAPACI	TY		110011	
			= (feet -		feet) X	0.16 g	allons/foot =	13	gallons	
(only fill out	NT VOLUME PU	JRGE: 1 EQ	UIPMENT VOL	= PUMP VOL	UME + (TU	BING CAPACI	TY X TU	JBING LENGTH	+ FLOW CEL	LVOLUME		
				= 0,0 ga	allons + ((0,0026 gallo	ns/foot X	7 7 feet)	+ 0.12	gailons = 0	.32 gallons	
	MP OR TUBINO WELL (feet):	^G 70		MP OR TUBING WELL (feet):					PURGING TOTAL VOLUME PURGED (gallons): 1, 7			
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/Lor % saturation	TURBIDITY (NTUs)	Y COLOF (describ		
0850	1.25	1.25	0.05	18.65	5.43	24.06	82	0.47	8.6	clen	44.5	
0055	0.25	1.50	0.05	The second of the second of		24.12	82	0.48	6.9	cleu		
0900	0.75	1.75	0.05	18.65	5.43	24.13	82	0,46	6.5	clea		
TUBING IN	PACITY (Gallon: ISIDE DIA. CAP EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0		ump; I	1/4" = 0.002 ESP = Electric	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0		= 0.010;	12" = 5.88 5/8" = 0.016 her (Specify)	
						PLING DA	ATA					
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNA Joe Terry / EPS								SAMPLING INITIATED A	INITIATED AT: 0905		SAMPLING ENDED AT: 0908	
PUMP OR		70		TUBING	225			-FILTERED: Y		FILTER SI	ZE: μm	
	WELL (feet): CONTAMINATION		MP Y (Î	MATERIAL CO	TUBING	Y (N)(re	placed)	DUPLICATE:		(N)		
										AMPLING	CARADI E DI BAD	
SAMPLE ID CODE				PRESERVATI USED	VE	RESERVATION TOTAL VOL FINA ED IN FIELD (mL) pH		INTENDI ANALYSIS A METHO	ND/OR EQ	CODE	SAMPLE PUMP FLOW RATE (mL per minute)	
MW-IC	3	CG	40mL	HCL		refilled by lab		8260		RFPP	<100	
MW-1C	3	CG	40mL	None		None		8011		RFPP	<100	
MW-16	1	PE	250mL	HNO ₃	Р	refilled by lab		Metals		APP	200	
MW-1C	1	PE	125mL	H₂SO₄		refilled by lab		NH ₃		APP	200	
nw-1c	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	200	
REMARKS	: ^1	1	2 = 1/	1.00al								
REMARKS: Odar none 3EV: 1.0gal												
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)												
	G EQUIPMENT	CODES:	APP = After P	eristaltic Pump;	B = Ba	ailer; BP =	Bladder Pump;	ESP = Electr	ric Submersible	e Pump;	7-6	
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)												

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

Revision Date: February 12, 2009

^{2. &}lt;u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: J.	E.D. SWMF (WA	Cs Facility ID	· 89544)			ITE	04 Omni May C	Claud Osses	On the First		
WELL NO	MW-21	1.	. 00044)	SAMPLE			on Omni way, S	t, Cloud, Osceola	Ø).		2040
	1.100 27	1		O/WII EE I	D: MW	ータハ SING DA	TA		DATE: 1	November 2	<u> </u>
WELL		TUBIN	G	WELL		INTERVAL	STATIC)EDTU	DUE	RGE PUMP T	VDF
DIAMETE	R (inches): 2.0	DIAME	TER (inches):	0.25 DEP1	H: /2. (. fe	et to 22.6 fo	eet TO WATE	R (feet): IA	96 OR	BAILER:peris	–
(only fill or	LUME PURGE: ut if applicable)	1 WELL VO			H – STA	TIC DEPTH T	O WATER) X	WELL CAPAC	TY		
		IDOE. 4 EA	= (<i>み</i> よ、し 1 = PUMP VOLU	eet –	18.86	feet) X	0.16 დ	allons/foot	= 0.6	gallons
(only fill or	ut if applicable)	JRGE: TEQ	UIPMENT VOI	≂ PUMP VOLU	JME + (TUE	BING CAPACI	TY X TI	JBING LENGTH	+ FLOW CE	LL VOLUME	
IMPERIO	IN OD TUDBU				ilons + (0		ns/foot X	feet)	+ 0.12	gallons =	gallons
	UMP OR TUBING WELL (feet):	21	DEPTH IN	MP OR TUBING WELL (feet):	21	PURGIN INITIATE	G ED AT: 0700		0750	TOTAL VO PURGED (LUME gallons): 2, 5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units)	DISSOLVED OXYGEN (circle units) mg/l or saturation	TURBIDIT (NTUs)	Y COLO	
0740	2.00	2.00	0.05	19.00	4,77	21.47	130	0.83	1.0	Clea	-75.0
0745	0.25	2.25	0.05	19.00	4.74	21.52	182	0.77	0.8	clea	- 78.6
0 750	0.25	2.50	0.05	19,00	4.75	31.23	181	0.75	0.8	Clen	-78.9
	-										
WELL CA	PACITY (Gallons	s Per Foot):	0.75 " = 0.02:	1" = 0.04;	1.25 " = 0.0	6; 2" = 0.16	3; 3" = 0,37;	4" = 0.65;	5" = 1.02;	6" = 1.47:	12" = 5.88
TUBING I	NSIDE DIA. CAP	ACITY (Gal.				1/4" = 0.002				= 0.010;	5/8" = 0.016
PURGING	EQUIPMENT C	ODES: E	B = Bailer;	BP = Bladder Pu			Submersible Pur	mp; PP = Pe	eristaltic Pump	$o; \qquad O = C$	ther (Specify)
SAMPLE	BY (PRINT) / A	FEILIATION:		SAMPLER(S)		LING DA	TA				
Joe Terry		TILIATION.		/	ve Te			SAMPLING INITIATED AT	· 0750	SAMPLIN	NG AT: 08 09
PUMP OR	TUBING	2.		TUBING	DE CE	3	FIELD	-FILTERED: Y			SIZE:µm
	WELL (feet):	21		MATERIAL CO				on Equipment Ty			
	CONTAMINATIO				TUBING		placed)	DUPLICATE:	Y	N	
SAMPLE	IPLE CONTAINE	R SPECIFICA MATERIAL	ATION			RESERVATION		INTENDE ANALYSIS AI		AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	PRESERVATIV USED		TOTAL VOL D IN FIELD (r	nL) PH	METHO		CODE	(mL per minute)
NW 2A	3	CG	40mL	HCL	Pro	efilled by lab		8260		RFPP	<100
nw-2A	3	CG	40mL	None	Ŷ	None		8011		RFPP	<100
mw-dA	1	PE	250mL	HNO ₃	Pro	efilled by lab		Metals		APP	180
MW-2A	1	PE	125mL	H₂SO₄	Pro	efilled by lab		NH ₃		APP	190
NG-WM	1	PE	250mL	None		None		TDS, CI, I	4O3	APP	180
REMARK	s: Odor ; Sulf	v-like									
went	her: clea	r. 248	۴F								
	L CODES:	AG = Amber		Clear Glass;	PE = Poly	ethylene;	PP = Polypropyl	ene; S = Silico	ne; T = Tet	fion; O = 0	Other (Specify)
	G EQUIPMENT		RFPP = Revers	eristaltic Pump; se Flow Peristalti	800	SM = Straw	Bladder Pump; Method (Tubing	Gravity Drain);	ic Submersibl O = Other		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	E.D. SWMF (WA	Cs Facility ID	89544\			TE CATION: 150	04 Omni Mov	St Cloud (Januaria O	Savente Flavie	d- 04770	
	MW-Z		. 00044)	SAMPLE ID:			Offini vvay	, St. Cloud, C			na, 34773 November 2	010
	1-100321					SING DA	TΛ			A1E. 9	November 2	010
WELL		TUBIN	IG			INTERVAL		C DEPTH		PUR	GE PUMP T	YPF
	R (inches): 2.0		TER (inches):		58.4fe	et to 68.4 f	eet TOW	ATER (feet):	18.94	1 OR F	AILER:peris	
(only fill ou	it if applicable)	1 WELL VC	COME = (10)	AL WELL DEPTH	- STA	TIC DEPTH T	O WATER)	X WELL (CAPACITY	Y		
EQUIPME	NT VOLUME PI	URGE: 1 EQ	= (UIPMENT VOI	fee = PUMP VOLUM	t → F + (TUB	ING CAPACI	feet)	X 0.16	gal	lons/foot =	LVOLIME	gallons
(only fill ou	it if applicable)											
INITIAL PL	JMP OR TUBIN	G	FINAL PUI	= 0.0 gallor MP OR TUBING	15 + (0.	PURGIN	ons/foot X	70 PUR	feet) +	0.12	gallons = ¿	9.3 gallons
DEPTH IN	WELL (feet):	641			14		D AT: 065	O ENDI	ED AT: 0	725		gallons): 1,75
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)		pH tandard units)	TEMP, (°C)	COND. (circle units	(circle	GEN units) or	TURBIDITY (NTUs)	COLC (descri	
0715	1.25	1.25	0.05	19.12	1.91	22.44	45	0.	45	0.8	clea	-5.1
0720	0.25	1.50	0.05		1.90	22.52	45	0.		0.9	clea	-9.5
0725	0.25	1.75	0.05	19.12 4	1.40	22.48	45	0.3	9	0.8	Clea	-12.4
							Huga et e e e e e e e e e e e e e e e e e e					
								-		-11-15-11		
		1.		1				-			-	
							-					
WELL CA	PACITY (Gallon	s Per Foot):	0.75 " = 0.02;	1" = 0.04; 1.2	5" = 0.06						6" = 1.47;	12" = 5.88
	NSIDE DÍA. CAI EQUIPMENT C			BP = Bladder Pum		1/4" = 0.002 SP = Electric			3/8" = 0.00 PP = Paris	06; 1/2" staltic Pump	= 0.010;	5/8" = 0.016 other (Specify)
						LING DA		i dinp,	T - T C/K	statio i ump	, 0-0	trier (Opecity)
SAMPLED Joe Terry	BY (PRINT) / A	FFILIATION:	1111	SAMPLER(S) SIG	NATURE	E(S):		SAMP	LING		SAMPLIN	IG
					ten	2				0730		AT: 0740
PUMP OR DEPTH IN	WELL (feet):	64		TUBING MATERIAL CODE	: PE			LD-FILTERE ation Equipn			FILTER S	SIZE: μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	т (UBING	Y 🕼 (re	eplaced)	DUPL	CATE:	Υ	(W)	
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	MPLE PR	ESERVATIO	N		ITENDED		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED		OTAL VOL D IN FIELD (r	mL) FINA		YSIS AND METHOD		UIPMENT CODE	FLOW RATE (mL per minute)
MWZC	3	CG	40mL	HCL		efilled by lab			8260		RFPP	<100
MW-2C	3	CG	40mL	None		None			8011		RFPP	<100
mwzc	1	PE	250mL	HNO ₃	Pre	efilled by lab			Metals		APP	200
MW-2C	1	PE	125mL	H₂SO₄	Pre	efilled by lab			NH ₃		APP	200
MW-2C	1	PE	250mL	None		None		TD	S, CI, NO	D ₃	APP	200
DEMA	. 00											
1	non, John		EV: 1.0 ga	X								
	her: cle	AG = Amber		= Clear Glass; F	F = Dale	rethylane:	PP = Polypro	invlana: E	= Silicone	2. T = Tell	on: 0 = 1	Other (Specify)
	CODES:		APP = After Pe		B = Bail		Bladder Pum			e; T = Tefl Submersible		Other (Specify)
			RFPP = Revers	se Flow Peristaltic F	oump;	SM = Straw	Method (Tub	ng Gravity D		O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	E.D. SWMF (WA	Cs Facility ID	89544\			ITE	1 Omni May S	t. Cloud, Osceola	County Fla	uida 0.1770			
	MW-3		. 00044)	SAMPLE			1 Offilli VVay, S			November 2	010		
-	7.40-3	77			1000	U-3A SING DAT	ГА		DAIL 8	, November 2	.010		
WELL		TUBIN	G	WELI		INTERVAL	STATIC)FPTH	PH	RGE PUMP T	YDE		
	R (inches): 2.0	DIAME	TER (inches):	0.25 DEP1	TH: /2.8 fe	eet to 2.2. P) fe	et TO WATI	ER (feet): IB.	46 06	BAILER:peris	-		
(only fill ou	LUME PURGE: It if applicable)	1 WELL VO			TH - STA	TIC DEPTH TO	O WATER) X	WELL CAPACI	TY		197		
FOLIPME	NT VOLUME PL	IRGE: 1 EO	= (22.8 1 .= PUMP VOLL	feet -	18.46	feet) X	0.16 g	allons/foot	= 0.7	gallons		
(only fill ou	t if applicable)	JNOE. TEQ	OIPWENT VOL					UBING LENGTH)	+ FLOW C	ELL VOLUME			
INUTIAL DI	IMP OD TUDIN	_	T FINAL BLA		llons + (0		ns/foot X	feet)	+ 0.12	gallons =	gallons		
	JMP OR TUBIN WELL (feet):	21		MP OR TUBING WELL (feet):	21	PURGING	3 DAT:/ <i>330</i>	PURGING ENDED AT:	1425	TOTAL VO	LUME gallons): 2.75		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/D or % saturation	TURBIDI (NTUs)	TY COLO	OR ORP		
1415	2.25	2.25	0.05	18.53	41-95	28.37	552	0.71	0.5	clei	r -75.0		
1420	0.25	2.50	0.05	18,53	4.91	28.30	559	0.54	0.2	c-leu			
1425	0.25	2.75	0.05	18.53	4.90	28.32	559	0.58	0.5	clea	v -76.3		
MELLOAD	PACITY (Gallon:	a Par East\:	0.75" - 0.00	1" = 0.04;	1.25" = 0.0	6; 2" = 0.16	; 3" = 0.37;	4" = 0.65;	5" = 1.02;	0.0	100 5.00		
	ISIDE DIA. CAF					1/4" = 0.0026				6" = 1.47; 2" = 0,010;	12" = 5,88 5/8" = 0.016		
PURGING	EQUIPMENT C	ODES: E	3 = Bailer;	BP = Bladder Pu			Submersible Pu	mp; PP = Pe	eristaltic Pun	$np; \qquad O = C$	other (Specify)		
SAMPLED	BY (PRINT) / A	EEII IATION:		SAMPLER(S) S		LING DA	TA						
Joe Terry /		ITTILIATION.		SAIVIPLER(S)	$\gamma - 7$	E(0).		SAMPLING INITIATED AT	14/20	SAMPLIN	NG AT: <i>1440</i>		
PUMP OR	TUBING			TUBING	poe C	my.	FIELD	-FILTERED: Y			SIZE: µm		
	WELL (feet):	2		MATERIAL CO			Filtrati	on Equipment Typ	pe:				
	CONTAMINATIO				TUBING		placed)	DUPLICATE:	Y	N			
	PLE CONTAINE	100	ATION			RESERVATION		INTENDE ANALYSIS AI		SAMPLING QUIPMENT	SAMPLE PUMP FLOW RATE		
SAMPLE ID CODE	CONTAINERS	MATERIAL, CODE	VOLUME	PRESERVATIN USED		TOTAL VOL ED IN FIELD (m	L) FINAL	METHO		CODE	(mL per minute)		
MW.3A	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100		
MW-3A	3	CG	40mL	None		None		8011		RFPP	<100		
MW3A	1	PE	250mL	HNO₃	Pr	efilled by lab		Metals		APP	200		
MW-34	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	200		
nw-3A	1	PE	250mL	None		None		TDS, CI, I	VO₃	APP	200		
1	Odor 1 70		42.0-										
	ner: cle			Closs Class	DE - D-1	uethuler -	DD - Debrasa	lano: P = 09:	.no. T-T	oflon: O	Other (Caralf A		
MATERIAL	L CODES:	AG = Amber	Glass; CG = APP = After Pe	Clear Glass;	PE = Pol		PP = Polypropy Bladder Pump;	lene; S = Silico ESP = Electr			Other (Specify)		
			RFPP = Revers	se Flow Peristalt	ic Pump;	SM = Straw I	Method (Tubing	Gravity Drain);		er (Specify)			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	E.D. SWMF (WA	Cs Facility ID	: 89544)			ITE OCATION: 150	1 Omni Wav. S	t. Cloud, Osceola	County Florid	a 34773	
	MW-3			SAMPLE II			T Office Viay, O		45	November 2	010
					PURC	SING DA	TA				
	R (inches): 2.0	TUBIN DIAME	TER (inches):	0.25 DEPT	SCREEN	INTERVAL	STATIC I	DEPTH ER (feet): /8, WELL CAPAC	45 OR B	SE PUMP T AILER:peris	
(only fill ou	it if applicable)		= (6	eet		foot\ V		allons/foot =		a alla sec
(only fill ou	NT VOLUME PU It if applicable)	URGE: 1 EQ	UIPMENT VOL	= PUMP VOLU	ME + (TUE	BING CAPACIT		UBING LENGTH			gallons
INITIAL DI			T		lons + (0			75 feet)	+ 0.12	gallons = (り、了) gallons
	JMP OR TUBIN WELL (feet):	64		MP OR TUBING WELL (feet):	641	PURGING INITIATE	^д D AT:/ <i>}⊋ऽ</i> Г	PURGING ENDED AT:		TOTAL VO PURGED (LUME gallons): ルフ5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	(feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm o µS/cm	OXYGEN (circle units) (mg/l) or % saturation	TURBIDITY (NTUs)	COLC (descril	70 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1
1345	1.00	1.00	0.05		5.25	26.24	80	0.39	1.8	clew	8.4
1350	0.25	1.25	0.05		5.27	26.23	76	0.37	1.4	Clear	-0.2
1355	0.25	1.50	0.05	18.57	5.28	26.25	76	0.35	1.8	clew	- 2.6
1400	0.25	1.75	0.05	18.57	5.27	26.24	76	0.35	1.5	Cleu	-6.9
TUBING IN	PACITY (Gallon: ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0.	0006; 3/16" = BP = Bladder Pu	0.0014; mp; E		5; 5/16" = 0. Submersible Pu	004; 3/8" = 0		" = 1.47; = 0.010; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
CANADIED	DV (DDINT) (A	EEU IATION				LING DA	TA				
Joe Terry /	BY (PRINT) / A EPS	FFILIATION:		SAMPLER(S) S	IGNATURI	E(S):		SAMPLING INITIATED AT	r: 1405	SAMPLIN ENDED A	IG AT: 1410
PUMP OR DEPTH IN	TUBING WELL (feet):	6 L	1	TUBING MATERIAL COL	DE: PE			-FILTERED: Y on Equipment Ty			IZE: μm
FIELD DEC	CONTAMINATIO	ON: PUM	MP Y (N	9	TUBING	Y (N)(re	placed)	DUPLICATE:	Y	\bigcirc	
	PLE CONTAINE					RESERVATION		INTENDE		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (m		ANALYSIS AI METHO		JIPMENT CODE	FLOW RATE (mL per minute)
MW-3C	3	CG	40mL	HCL	Pre	efilled by lab		8260	F	RFPP	<100
MW-3C	3	CG	40mL	None		None		8011	F	REPP	<100
mw-3C	1	PE	250mL	HNO ₃	Pro	efilled by lab		Metals		APP	200
mw3c	1	PE	125mL	H₂SO₄	Pro	efilled by lab		NH ₃		APP	200
mw-36	1	PE	250mL	None		None		TDS, CI, I	VO ₃	APP	200
REMARKS: Olocinone 3EV: 1, ogal											
	weather; clear, ~60°F										
MATERIA		AG = Amber		Clear Glass;	PE = Poly	yethylene; I	PP = Polypropy	lene; S = Silico	one; T = Teflo	on; O = 0	Other (Specify)
SAMPLING	3 EQUIPMENT	II.		eristaltic Pump; se Flow Peristaltic		SM = Straw I	Bladder Pump; Method (Tubing	Gravity Drain);	ic Submersible O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	.D. SWMF (WA	Cs Facility ID	: 89544)			SITE LOCATION: 150	11 Omni Way S	t. Cloud, Osceola	County Flor	rido 24772			
	MW-4			SAMPLE		w-4A	or Omini vvay, o		5310	November 2	010		
	/ 1.0 (/1				RGING DA	ΤΔ		5.T.E. 8	140VCIIIDEI 2	010		
WELL		TUBIN		WEL		N INTERVAL	STATIC I	DEPTH	PUI	RGE PUMP T	YPE		
	R (inches): 2.0	DIAME	TER (inches):	0.25 DEP	TH:13.1	feet to 23.1 fe	et TO WATI	ER (feet): 19	23 OR	BAILER:peris	staltic		
(only fill ou	t if applicable)	I WELL VC		2- 1									
EQUIPME	NT VOLUME PL	JRGE: 1 EQ	= (UIPMENT VOL	23.) = PUMP VOL	feet – UME + (T	19.23 UBING CAPACI	feet) X	0,16 g UBING LENGTH	allons/foot	= 0.6 <u>2</u>	gallons		
(only fill ou	t if applicable)				allons + (ns/foot X						
INITIAL PL	MP OR TUBIN		FINAL PUI	MP OR TUBING		PURGIN		feet)	T U, 12	gallons =	gallons		
DEPTH IN	WELL (feet):	21	DEPTH IN	WELL (feet):	21		DAT: 1145	ENDED AT:	1225		gallons): 2.00		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standar units)	d TEMP.	COND. (circle units) μmhos/cm <u>or</u> μS/cm)	OXYGEN (circle units) (mg/L or % saturation	TURBIDIT (NTUs)	COLC (descri			
1205	1.00	1.00	0.05	19.37	4.80	24.94	320	0.96	1.0	Clea	-31.6		
1210	0.25	1.25	0.05	19.37	4.80		311	0.85	0.7	clea			
1215	0.25	1.50	0.05	19.37	4.74		306	0.88	0.5	Clea	v -46.4		
1220	0.25	1.75	0.05	19.37	41.78		305	0.87	0.6	Llea	-		
1225	0.25	2,00	0.05	19.37	41.80	25.72	302	0.86	0.6	Cle	w -50.4		
			_		-								
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88												
	ISIDE DIA. CAF EQUIPMENT C	,				1/4" = 0.002				" = 0.010;	5/8" = 0.016		
FUNGING	EQUIPMENT	ODES. I	- Daner,	BP = Bladder P		PLING DA		mp; PP = P6	eristaltic Pum	p; υ = υ	Other (Specify)		
	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATU	RE(S):		SAMPLING		SAMPLIN			
Joe Terry /				Ch	re Te	m		INITIATED AT	1/230	ENDED A	AT: 123B		
PUMP OR DEPTH IN	TUBING WELL (feet):	21		TUBING MATERIAL CO				-FILTERED: Y on Equipment Ty		FILTER S	SIZE: μm		
	CONTAMINATIO		MP Y		TUBING	Y () (re	placed)	DUPLICATE:	Y	()			
SAMI	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE	PRESERVATIO	N	INTENDE	ED S	SAMPLING	SAMPLE PUMP		
SAMPLE ID CODE	# CONTAINERS	MATERIAL, CODE	VOLUME	PRESERVATI USED		TOTAL VOL DED IN FIELD (r	nL) FINAL	ANALYSIS AI METHO		QUIPMENT CODE	FLOW RATE (mL per minute)		
MW-4A	3	CG	40mL	HCL		Prefilled by lab		8260		RFPP	<100		
nn-414	3	CG	40mL	None		None		8011		RFPP	<100		
MW-4/4	1	PE	250mL	HNO₃		Prefilled by lab		Metals		APP	200		
MW-4/A	1	PE	125mL	H₂SO₄		Prefilled by lab		NH ₃		APP	200		
MW-4/1	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	200		
DEMARKS													
	Odorinor		20-										
MATERIAL	ner clea	AG = Amber		= Clear Glass:	PF = D	olyethylene;	PP = Polypropy	lene; S = Silico	one; T = Te	eflon: O = 4	Other (Specify)		
	EQUIPMENT			eristaltic Pump;			Bladder Pump;	ESP = Electr			zaioi (Opecity)		
			RFPP = Rever	se Flow Peristal	itic Pump;		Method (Tubing	Gravity Drain);		r (Specify)			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.I	E.D. SWMF (WA	Cs Facility ID): 89544)			OCATION: 150	11 Omni Way S	t. Cloud, Osceola	County Fla		
	MW-41			SAMPLE		V-4C	71 Omini vvay, 3	i. Cloud, Osceola	DATE: 🔑	November 2	110
	1 10 -					GING DA	ΤΔ		Brite. 8	November 2	
WELL VO	R (inches): 2,0 LUME PURGE: It if applicable)	TUBIN DIAMI 1 WELL VO	ETER (inches):	0.375 DEI	LL SCREEN	NINTERVAL	STATIC I	DEPTH ER (feet): /9 , WELL CAPAC	09 OR	RGE PUMP TY BAILER: elect	PE ric submersible
EQUIPME	NT VOLUME PI	URGE: 1 EQ	= (UIPMENT VOI		feet – .UME + (TU		_	0.16 gall UBING LENGTH			gallons
	JMP OR TUBIN WELL (feet):	6 6B		MP OR TUBING WELL (feet):		PURGIN		PURGING ENDED AT:		TOTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE	DEPTH TO WATER (feet)	pH (standard units)	TEMP	COND. (circle units) µmhos/cm or µS/ch	DISSOLVED OXYGEN (circle units) mg/h or % saturation	TURBIDI' (NTUs)	TY COLO	R ORP
1240	24.00	24.00	0,40	20.26	5.62	241.56	117	0.18	18.7	clew	-60,4
1245	2.00	26.00	0.40	2026	5.64	24.60	117	0.14	17.4	cleu	-723
1250	2.00	28.00	0.40	20,26	5.64	24.62	117	0.13	16.8	Clew	-75.1
TUBING II	PACITY (Gallon NSIDE DIA, CAP EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0	1" = 0.04; 0006; 3/16' BP = Bladder I		1/4" = 0,002	6; 5/16" = 0. Submersible Pu	.004; 3/8" = 0	5" = 1.02; 9.006; 1/2 eristaltic Purr	" = 0.010;	12" = 5.88 5/8" = 0.016 her (Specify)
SAMPLED Joe Terry	BY (PRINT) / A / EPS	FFILIATION:		SAMPLER(\$)		RE(S):		SAMPLING INITIATED A	T:/2<757	SAMPLING ENDED A	: 1302
PUMP OR DEPTH IN	TUBING WELL (feet):	6 <i>B</i>		TUBING MATERIAL C	-	/	FIELD Filtrati	-FILTERED: Y on Equipment Ty	(N)		ZE: μm
FIELD DE	CONTAMINATIO	ON: PUI	MP Ø		TUBING	Y ()P(re	placed)	DUPLICATE:	Υ	(A)	
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	R SPECIFIC MATERIAL CODE	ATION VOLUME	PRESERVAT USED	IVE	RESERVATION TOTAL VOL ED IN FIELD (r	FINAL	INTENDI ANALYSIS A METHO	ND/OR E	SAMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
MWHC	3	CG	40mL	HCL		refilled by lab		8260		ESP	<100
MW-46	3	CG	40mL	None		None		8011		ESP	<100
MW-4C	1	PE	250mL	HNO ₃	Р	refilled by lab		Metals	3	ESP	300
MW-HL	1	PE	125mL	H ₂ SO ₄	Р	refilled by lab		NH ₃	-	ESP	300
MW-HC	1	PE	250mL	None		None		TDS, CI,	NO ₃	ESP	300
MATERIA	S: Initial + Ther cli L CODES: G EQUIPMENT	AG = Amber	Glass; CG :	= Clear Glass; eristaltic Pump;	B = Ba	lyethylene; ailer; BP =	PP = Polypropy Bladder Pump;	ESP = Electr	ric Submersit	ole Pump;	ther (Specify)
IOTEO A	The above		RFPP = Rever				Method (Tubing		O = Othe	r (Specify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE	D CAMAE (IAIA	O. F	00544			SITE		77					
	.D. SWMF (WA		89544)	PAMPLE			11 Omni Way, Si	t. Cloud, Osceola					
WELLING	WW-2	/+		SAMPLE		V-SA GING DA	TA		DATE: &	November 2	010		
WELL		TUBIN	 G	WE		INTERVAL	STATIC E)EDTH	DUE	RGE PUMP T	Vor		
	R (inches): 2.0	DIAME	TER (inches):	0.25 DEF	TH:12.5	feet to 22.5 fe	eet TO WATE	R (feet): 19	24 OR	BAILER:peris			
(only fill ou	t if applicable)		= (22.5	feet -	18.29	feet) V	WELL CAPAC	ITY nallons/foot :	= 0.7	gallons		
(only fill ou	NT VOLUME PU t if applicable)	URGE: 1 EQI	JIPMENT VOL	= PUMP VOL	.UME + (Tu	IBING CAPACI	TY X TI	UBING LENGTH	+ FLOW CE	LL VOLUME			
INITIAL PL	JMP OR TUBIN	G	FINAL PUR	MP OR TUBING	allons + (PURGIN	ns/foot X	feet)) + 0.12	gallons =	gallons		
DEPTH IN	WELL (feet):	20		WELL (feet):	20	INITIATE	DAT: 0935	ENDED AT:	1050	TOTAL VO PURGED (gallons): 3, 75		
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) or saturation	TURBIDIT (NTUs)	Y COLC (descri			
1040	3-25	3.25	0.02	18.75	3.91	24.91	387	0.59	1.7	c lea	M. M.		
1045	0.25	3.50	0.05	19.75	3.91	25,00	391	0.60	1.6	Cleu			
1050	0.25	3.75	0.05	18.75	3.91	25.00	391	0.59	1.6	C lei	v -54,0		
	1		-	<u> </u>									
				 					-				
				4									
				1									
										-			
				i									
	ACITY (Galloni ISIDE DIA. CAF			1" = 0.04;	1.25" = 0.0	06; 2 " = 0.16 1/4 " = 0.002	3" = 0.37; 6; 5/16" = 0.	4" = 0.65; 004; 3/8" = 0		6" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016		
	EQUIPMENT C			BP = Bladder F			Submersible Pu		eristaltic Pump		ther (Specify)		
						PLING DA	TA			IV. I Santa			
SAMPLED Joe Terry /	BY (PRINT) / A EPS	FFILIATION:		SAMPLER(S)	SIGNATUR	RE(S):		SAMPLING INITIATED AT	T. 100-C	SAMPLIN			
PUMP OR	TUBING		.3	TUBING ,	you	cery	FIELD	-FILTERED: Y			AT: // <i>O</i> ∠/		
	WELL (feet):	20		MATERIAL C		Con.		on Equipment Ty					
	CONTAMINATIO		$\overline{}$		TUBING		placed)	DUPLICATE:		0			
SAMPLE	PLE CONTAINE	MATERIAL		PRESERVAT		RESERVATION TOTAL VOL	FINAL	INTENDE ANALYSIS AI		AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE		
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADD	ED IN FIELD (r		METHO		CODE	(mL per minute)		
MW-51	3	CG	40mL	HCL	P	refilled by lab		8260		RFPP	<100		
MW-5A	3	CG	40mL	None		None		8011		RFPP	<100		
MW-SA	1 1	PE PE	250mL	HNO ₃		refilled by lab		Metals		APP	200		
MW-SA	1	PE	125mL 250mL	H₂SO₄ None	P	refilled by lab		NH ₃	NO -	APP	200		
MW-57		r-E	ZJUIIL	NOTE		None	-	TDS, CI, I	3	APP	200		
REMARKS	REMARKS: Office - 1. The												
l .	er: clew	-	F. slal	nt breeze	٤								
MATERIAL	CODES:	AG = Amber	Glass; CG =	Clear Glass;		lyethylene;	PP = Polypropyl	ene; S = Silico	one; T = Tef	flon; $\mathbf{O} = 0$	Other (Specify)		
	EQUIPMENT	F	RFPP = Revers	eristaltic Pump; se Flow Perista		SM = Straw	Bladder Pump; Method (Tubing	Gravity Drain);	ic Submersibl O = Other				

do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME: J.	E.D. SWMF (WA	Cs Facility ID	: 89544)			ITE OCATION: 150	01 Omni Wav. S	t. Cloud, Osceola	County, Florida	a 34773	
WELL NO	MW-50	·		SAMPLE	ID: Mh					ovember 20	 010
						SING DA	TA		0		
WELL VO	R (inches): 2.0	TUBIN DIAME 1 WELL VO	TER (inches)	0.25 DEF	LL SCREEN PTH: 63 fe PTH - STA	eet to 77 f	STATIC I eet TO WATE O WATER) X	DEPTH ER (feet): /8 WELL CAPACI	RLI OR BA	E PUMP T	
EQUIPME	ut if applicable) NT VOLUME Pout if applicable)	URGE: 1 EQ	= (UIPMENT VO	L. = PUMP VOL	feet - UME + (TUE	BING CAPACI	feet) X	0.16 g UBING LENGTH)	alions/foot = + FLOW CELL	VOLUME	galtons
					allons + (0	.0026 gallo	ons/foot X	75 feet)	+ 0.12	galions = 0	0.3⊋ gallons
	JMP OR TUBIN WELL (feet):	G 68		MP OR TUBING WELL (feet):	68	PURGIN INITIATE	G ED AT: 09 30	PURGING ENDED AT:		TOTAL VOL PURGED (g	.UME gallons): る。おく
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or(µS/cm	DISSOLVED OXYGEN (circle units) mg/l_ or % saturation	TURBIDITY (NTUs)	COLO (describ	
1015	3:15	3.15	0.07	19.05	5.06	23.53	82	0.29	1.1	Clear	-42.3
1020	0.35	3.50	0.07	19.05	5.06	23.60	82	0.28	0.9	clea	~ -35.3
1025	0.35	3.85	0.07	14,05	5.06	23.61	82	0.28	0.9	Clear	
TUBING II	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal./			= 0.0014;	6; 2" = 0.10 1/4" = 0.002 SP = Electric	6; 3 " = 0.37; 6; 5/16" = 0. Submersible Pu	004; 3/8" = 0.		0.010;	12" = 5.88 5/8" = 0.016 ther (Specify)
						LING DA	TA	in the second			
Joe Terry	BY (PRINT) / A / EPS	AFFILIATION:		SAMPLER(S)	SIGNATURI	E(S):		SAMPLING INITIATED AT	1030	SAMPLINE ENDED A	G T: 1037
PUMP OR	TUBING WELL (feet):	68		TUBING MATERIAL CO	DDE: DE	V	FIELD	-FILTERED: Y	(N)	FILTER SI	IZE: μm
	CONTAMINATION		1P Y (1	1	TUBING	Y (N)(re	placed)	DUPLICATE:		(N)	
SAM	PLE CONTAINE	R SPECIFICA			SAMPLE PR	RESERVATIO		INTENDE		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	IVE		FINAL		ND/OR EQU	IPMENT ODE	FLOW RATE (mL per minute)
MW-5C	3	CG	40mL	HCL	Pr	efilled by lab		8260	F	REPP	<100
MW-5C	3	CG	40mL	None		None		8011	F	REPP	<100
MW-52	1	PE	250mL	HNO ₃	Pr	efilled by lab		Metals		APP	250
MW-5C	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab		NH ₃		APP	250
MW-52	1	PE	250mL	None		None		TDS, CI, N	103	APP	250
	3: Odor (no -er: Cley L CODES:	-				yethylene;	PP = Polypropy	lene; S = Silico	ne; T = Teflo	n; 0 = 0	Other (Specify)
	G EQUIPMENT	ı	RFPP = Rever	eristaltic Pump; se Flow Perista		SM = Straw	Bladder Pump; Method (Tubing er 62-160, F.A	Gravity Drain);	c Submersible O = Other (S		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.	E.D. SWMF (W.	ACs Facility I	D: 89544)			ITE OCATION: 150	11 Omni Way St	. Cloud, Osceola	County Flyi	d- 0.776	
WELL NO				SAMPLE		W-6A	71 Ollilli VVay, St				2010
		<u> </u>				GING DA	TA		DATE: 3	November 2	:010
WELL		TUBI	NG	WEI		INTERVAL	STATIC D	EDTU	Dun	OF DUMP T	
DIAMETE	R (inches): 2.0	DIAM	ETER (inches):	0.25 DFF	TH: 12 66	eet to 22 I fo	TO MATE	D (foot): /D	OO ODE	GE PUMP T SAILER:peris	
(only fill o	ut if applicable)	: 1 WELL V	OLUME = (TO	TAL WELL DEP	TH - STA	ATIC DEPTH T	O WATER) X	WELL CAPACI	TY		
FOLIPME	NT VOLUME D	HDGE: 4 E	= (22.6	feet -	18.00	feet) X	0.16 g	allons/foot =	0,8	gallons
(only fill o	ENT VOLUME P ut if applicable)	UNGE. TEC	ZOIPMENT VO				TY X TL	JBING LENGTH	+ FLOW CEL	L VOLUME	
INITIAL D	IMD OD TUDIA	10	T ======		allons + (C	0.0026 gallo	ns/foot X	feet)	+ 0.12	gallons =	gallons
	UMP OR TUBIN VELL (feet):	20		MP OR TUBING WELL (feet):	20	PURGIN	g Dat: <i>[3]2</i>	PURGING ENDED AT:	17410	TOTAL VO	LUME
	0.0000000000000000000000000000000000000	CUMUL		DEPTH	A1880A		COND.	DISSOLVED	1348	PURGED (gallons): /, 4/4/
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)			pH (standard units)	TEMP. (°C)	(circle units) µmhos/cm or µS/cm	OXYGEN (circle units) (mg/D or	TURBIDITY (NTUs)	COLC (descri	
1338	1.04	1.04	0.04	18.04	4.79	27.57	362	% saturation	0.4	- (72 6
1343	0.20	1.24	0.04			27.58	360	0.54	0.6	clea	
1348	0.20	1.44	0.04		4.80	27.60	362	0.53	0.4	clea	
					7.0	7	2011	0.05		Clea	-61.7
	<i>y</i>										
WELL CA TUBING II	PACITY (Gallon NSIDE DIA. CAI	s Per Foot): PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0.	1" = 0.04; .0006: 3/16"	1.25" = 0.0 = 0.0014;	6; 2" = 0.16 1/4" = 0.0026		4" = 0.65; § 004; 3/8" = 0.	" = 1.02; 6	3" = 1.47; = 0.010;	12" = 5.88
	EQUIPMENT C			BP = Bladder P			Submersible Pum		ristaltic Pump		5/8" = 0.016 ther (Specify)
2.11						LING DA	TA				(
Joe Terry) BY (PRINT) / A / EPS	AFFILIATION:		SAMPLER(S)	سيبسناوسير	E(S):	ĺ	SAMPLING		SAMPLIN	G
PUMP OR	TUBING			TUBING	cu	7	FIELD	INITIATED AT		ENDED A	T: 1400
	WELL (feet):	20		MATERIAL CO	DE: PE	<u></u>		FILTERED: Y n Equipment Typ		FILTER S	IZE: μm
FIELD DE	CONTAMINATIO	ON: PUI	MP Y)	TUBING	Y Nrep	olaced)	DUPLICATE:	Υ	N	
	PLE CONTAINE		ATION			RESERVATION	1	INTENDE		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		OTAL VOL D IN FIELD (m	FINAL (L) pH	ANALYSIS AN METHOL		UIPMENT CODE	FLOW RATE (mL per minute)
MW-6A	3	CG	40mL	HCL		efilled by lab	-/ P''	8260		RFPP	<100
MW-6A	3	CG	40mL	None		None		8011		RFPP	<100
MW-6A	1	PE	250mL	HNO ₃	Pre	efilled by lab		Metals		APP	150
MW-GA	1	PE	125mL	H₂SO₄	Pre	efilled by lab		NH ₃		APP	150
MW-64	1	PE	250mL	None		None		TDS, CI, N	IO ₃	APP	150
REMARKS	_	/ A	~ (0.0)								
	ler: p.c					r: Sullw					, , , , , , , , , , , , , , , , , , ,
MATERIAL SAMPLING	L CODES!		Glass; CG =		PE = Poly		PP = Polypropyle				other (Specify)
OTEC: 4				se Flow Peristalt	B = Bailic Pump;		Bladder Pump; Method (Tubing G	ESP = Electric Gravity Drain);	O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.	E.D. SWMF (W	ACs Facility I	D; 89544)			ITE OCATION: 150	01 Omni Way St	t. Cloud, Osceola	County Elect	a www.	
WELL NO): MW-(C.		SAMPLE	ID: M	W-6C	or online vvay, or				140
					, ,	SING DA	TA		DATE. 3	November 20	10
WELL VO	ER (inches): 2.0 DLUME PURGE ut if applicable)	TUBI DIAM : 1 WELL V	ETER (inches):0.25 DEP	L SCREEN	INTERVAL	STATIC E	DEPTH ER (feet): /7,0 WELL CAPACI		GE PUMP TY BAILER:perist	
EQUIPME		PURGE: 1 E	= (QUIPMENT VO)L. = PUMP VOL	feet – UME + (TUE allons + (0			JBING LENGTH)		L VOLUME	gallons
INITIAL P DEPTH IN	UMP OR TUBIN WELL (feet):	NG 68	FINAL PL DEPTH I	JMP OR TUBING N WELL (feet):		PURGIN		PURGING ENDED AT:	1418	gallons = 0	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEE (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg/l) or % saturation	TURBIDITY (NTUs)		R ORP
14105		2.50	0.05		41.76	25.78	51	0.37	1.6	clea	-21.3
1-110	0.25	2.75	0.05	18.00	41.93	25,51	52	0.35	4.41	clear	
1415	0.25	3.00	0.05	18.08	41.93	25.56	52	0.31	4.8	Clear	
1418	0.15	3.15	0.05	18.08	4.94	25.52	51	0.35	3.4	clear	
TUBING IN	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0	1" = 0.04; 0.0006; 3/16" = BP = Bladder Pt		1/4" = 0.0026	5; 5/16" = 0.0 Submersible Pum	004; 3/8" = 0.0		= 0.010; 5	12" = 5.88 18" = 0.016 er (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)			IA			1	
Joe Terry /	EPS				or a	4		SAMPLING INITIATED AT:	1420	SAMPLING ENDED AT	: 1430
PUMP OR DEPTH IN	TUBING WELL (feet):	68		TUBING / MATERIAL CO	DE: PE			FILTERED: Y n Equipment Typ	(1)		.Έ: μm
FIELD DEC	CONTAMINATIO	ON: PUI	MP Y C	D	TUBING	Y (N)(rep	placed)	DUPLICATE:	Υ Υ	60	
	PLE CONTAINE		ATION	S	SAMPLE PR	ESERVATION		INTENDE) SA	MPLING	SAMPLE PUMP
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		OTAL VOL) IN FIELD (m	FINAL L) pH	ANALYSIS AN METHOD		JIPMENT CODE	FLOW RATE (mL per minute)
4w-6C	3	CG	40mL	HCL	Pre	filled by lab		8260	F	RFPP	<100
1W-6C	3	CG	40mL	None		None		8011	F	RFPP	<100
Mn-6C	1	PE	250mL	HNO ₃		filled by lab		Metals		APP	200
1W-6C	1	PE	125mL	H₂SO₄	Pre	filled by lab		NH ₃		APP	200
112-6C	. 1	PE	250mL	None	- 4	None		TDS, CI, N	O ₃	APP	ಎಂಂ
	3EV: 1.	, ,									
	<u>ان م بعد</u>			slight bre				Odoc:			
MATERIAL SAMPLING	CODES:		APP = After Pe	= Clear Glass; eristaltic Pump;	PE = Polye	er; BP = B	P = Polypropyle ladder Pump;	ESP = Electric		Pump;	ner (Specify)
TEC: 1	The chave o			se Flow Peristaltic		SM = Straw M	lethod (Tubing G	Gravity Drain);	O = Other (S		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

240 0.25 3.25 0.05 18.65 4 .94 25.92 201 0.38 0.3 Chew	
NELL CAPACITY (Gallons) Purce	
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH: /3 /3 feet to /3 /3 /3 feet (only fill out if applicable)	
DIAMETER (Inches): 2.0 DIAMETER (Inches): 0.25 DEPTH: /3.3 feet to 23.3 feet TO WATER (feet): /8.60 OR BAILER: peristaltic	
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME	:
Second S	gallons
FINAL PUMP OR TUBING DEPTH IN WELL (feet): DEPTH	E. was
TIME VOLUME PURGED (gallons) PURGE PURGED (gallons) PURGE PURGED (gallons)	
240 0.25 3.25 0.05 18.65 194 25.92 201 0.38 0.3 Clear 1245 0.25 3.50 0.05 18.65 194 25.93 200 0.37 0.3 Clear WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" =	ORP (mV)
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" =	-79,2
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" =	-79.3
	-74.3
11) BING INSIDE DIA CAPACITY (Ca) (E) \ 4/0" = 0.0006 2/40" = 0.0044 4/4" 0.0000 = 1/4"	= 5.88 = 0.016
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (S	
SAMPLING DATA	
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING	
PUMP OR TUBING TUBING TUBING FIELD FILTER FOR YAND FILTER FOR THE POLYCE AND T	
DEPTH IN WELL (feet): TUBING MATERIAL CODE: PE TUBING FIELD-FILTERED: Y (N) FILTER SIZE: Filtration Equipment Type:	μm
FIELD DECONTAMINATION: PUMP Y (N) TUBING Y (N) (replaced) DUPLICATE: Y (N)	
	MPLE PUMP
	LOW RATE L per minute)
WW-7A 3 CG 40mL HCL Prefilled by lab 8260 RFPP	<100
√W ⁷ A 3 CG 40mL None None 8011 RFPP	<100
1 PE 250mL HNO ₃ Prefilled by lab Metals APP	200
	200
AW~7A 1 PE 250mL None None TDS, Ct, NO ₃ APP	200
REMARKS: Odar, sulfur like	
wenter: n-svnny, ~78°F	
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other ((Specify)
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	7

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

WELL NO. MW-TC DATE 3 November 2010	SITE NAME: J.	E.D. SWMF (W	ACs Facility I	D: 89544)			TE CATION: 450	4.0			OV	
WELL CAPACITY TUBNIC DIMMETER (circles): 2.0 DIMETER (circles): 2.0 DIM					SAMPLE	ID: 1/1/10	JUATION: 150	11 Omni vvay, S	t. Cloud, Osceola	The Court of the C	1920-1911	
DUMMETER (inches) 2.0 DUMMETER (inches) 0.25 DEPTH (4.7.5) February 1.5 Fort (1.7.5) February 1.5 Fort (1.7.5) February 1.5		7-10/	10					TA		DATE: 3	November 20	010
DIAMETER (nothes): 20	WELL		TUBII	NG.	MEI							
Converged Conv	DIAMETE	R (inches): 2.0	DIAM	ETER (inches):	0.25 DEP	TH-6.7.7 fc	ot to 72 3 fo	TO MATE	-n / n / O	1 -7		
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL = PUMP VOLUME; (TUBING CAPACITY X TUBING ENGRI) + FLOW CELL VOLUME (only 81 out if applicable)	(only fill o	DLUME PURGE ut if applicable)	: 1 WELL V	DLUME = (TOT	AL WELL DEP	TH - STA	TIC DEPTH TO	O WATER) X	WELL CAPAC	ITY OR E	MILER. pens	laitic
Depth Marie Mari		, , , , , , , , , , , , , , , , , , , ,		- 7		e1						2.1 III.
DEPTH N WELL (1991) G	(only fill o	ENT VOLUME P ut if applicable)	PURGE: 1 EC	UIPMENT VOL	= PUMP VOLU	JME + (TUE	SING CAPACIT			+ FLOW CEL	L VOLUME	galions
NITIAL PUMP OR TUBING CEPTH NWELL (reds): CePTH NWELL (reds)	Was walled						.0026 gallor	ns/foot X	75 feet	+ 0:12	gallons =	n Mallons
VOLUME VOLUME PURGED Gallons PURGED Gallons PURGED Gallons	DEPTH IN	UMP OR TUBIN WELL (feet):	68	DEPTH IN	IP OR TUBING WELL (feet):	68	PURGING INITIATE	3	DUDCING		TOTAL VOL	.UME
1.55 0.30 1.50 0.06 18.25 5.33 25.00 76 0.49 1.5 0.66 75.4		PURGED (gallons)	VOLUME PURGED	PURGE RATE	TO WATER	(standard	TEMP.	COND. (circle units) µmhos/cm	OXYGEN (circle units) (mg/l) or	TURBIDITY	COLO	R ORP
155 0.30 7.50 0.06 18.25 5.33 25.00 7.6 0.49 1.5 0.64 7.2 1.20 1.			100 0 - 200	0.06	18.25	5.42	25.04	80	0.55	1.4	cles	154
200 0.30 1.90 0.06 18.25 5.30 21.95 74 0.42 1.8 1.				0.06	18.25	5.33	25.00	76	0.49			
205 0.30 2.10 0.06 18.25 5.27 24.66 75 0.37 1.77 C/cw -0.4 210 0.30 2.10 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.40 1.77 C/cw -1.2 215 0.30 2.70 0.06 18.25 5.25 24.66 75 0.35 1.77 C/cw -1.2 216 0.30 2.70 0.06 18.25 5.25 24.66 75 0.35 1.77 C/cw -1.2 1.2	Carlo department	8		0.06	18.25	5.30	24.95				1	
10			2.10	0.06	18.25	5.27	24.80	75		1.7		
MELL CAPACITY (Gallons Per Foot): 0.75" = 0.02;					18.25	5.25	241.88	75	The company of the co		24	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02. 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.55; 5" = 1.02; 6" = 1.47; 12" = 5.88	1212	0.30	2.70	0.06	18.25	5.25	24.90	75	0.35			
TUBING PRESERVATIVE TOTAL VOL FINAL SAMPLE SA												
TUBING PURPORT CODES B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)										SH1005-		
TUBING PRESERVATIVE TOTAL VOL FINAL SAMPLE SA												
TUBING PRESERVATIVE TOTAL VOL FINAL SAMPLE SA												
TUBING PURPORT CODES B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)	WELLOA	DACITY (C-II-	D									V - 3240
PURGING EQUIPMENT CODES: B = Bailer, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION: loc Terry / EPS PUMP OR TUBING DECONTAMINATION: PUMP Y N TUBING Y (Preplaced) SAMPLE CONTAMINATION: PUMP Y N TUBING Y (Preplaced) SAMPLE PRESERVATION INTENDED ANALYSIS AND/OR (EQUIPMENT (CODE (IN L) PPH) MATERIAL CODE: PE FILLD-FILTERED: Y N N SAMPLE PUMP (PRESERVATION) SAMPLE CONTAMINATION: PUMP Y N TUBING Y (PRESERVATION) SAMPLE PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR (PRESERVATIVE USED ADDED IN FIELD (INL) PH METHOD (CODE (INL) PH METHOD) AUX 1C 3 CG 40mL None None 8011 REPP <100 AUX 1C 1 PE 250mL HNO3 Prefilled by lab Metals APP 220 AUX 1C 1 PE 125mL H ₂ SO ₄ Prefilled by lab NH ₃ APP 220 AUX 1C 1 PE 250mL None None TDS, CI, NO ₃ APP 220 AUX 1C 1 PE 250mL None None TDS, CI, NO ₃ APP 220 AMERIAR S.	TUBING II	NSIDE DIA. CAI	PACITY (Gal.	0.75 " = 0.02; /Ft.): 1/8" = 0.0		1.25" = 0,06 : 0.0014;	; 2 " = 0.16; 1/4" = 0.0026	100 W 100 CO 1 1 1 1 1 1 1 1 1				
SAMPLED BY (PRINT) / AFFILIATION: Oct Terry / EPS	PURGING	EQUIPMENT C	CODES: E	B = Bailer; E	BP = Bladder Pu	mp; Es	3P = Electric S					
PUMP OR TUBING PUMP O	CAMPLED	DV (DDINE) / A	CCD LATION					TA				
TUBING MATERIAL CODE: PE FILLD-FILTERED: Y N N INTENDED ANALYSIS AND/OR BAMPLE PUMP FLOW RATE (mL per minute) ANALYSIS AND/OR BEQUIPMENT CODE (mL per minute) ANALYSIS AND/OR BAMPLE PUMP FLOW RATE (mL per minute) ANALYSIS AND/OR BEQUIPMENT CODE ANALYSIS AND/OR BAMPLE PUMP FLOW RATE (mL per minute) ANALYSIS AND/OR BEQUIPMENT CODE None None None None None None None None None TDS, CI, NO ₃ APP 220 APP After Peristaltic Pump; REMARKS: SEV: 1.094 AMPLING EQUIPMENT CODES: APP After Peristaltic Pump; B Bailer; BP Bladder Pump; ESP = Electric Submersible Pump; RESP = Electric Submersible	Joe Terry	EPS	AFFILIATION:	3	/ /		<u>(\$</u>):		SAMPLING	EWI III		
DEPTH IN WELL (feet): 60 MATERIAL CODE: PE Filtration Equipment Type: FILTER SIZE: JIM MATERIAL CODE: PE Filtration Equipment Type: FILTER SIZE: JIM MATERIAL CODE: PE Filtration Equipment Type: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION INTENDED ANALYSIS AND/OR METHOD ANALYSIS AND/OR METHOD ANALYSIS AND/OR METHOD CODE MATERIAL CODE WELL TC 3 CG 40mL HCL Prefilled by lab None None None None 8011 REPP <100 ANALYCI ANALYCI ANALYSIS AND/OR METHOD CODE (mL per minute) 400 ANALYCI APP 200 ANALYCI APP ANALYCI ANALYSIS AND/OR BEGUIPMENT CODE ANALYSIS AND/OR ANALYSIS AND/OR BEQUIPMENT CODE ANALYCI ANALYCI ANALYCI ANALYCI ANALYCI ANALYSIS AND/OR BEQUIPMENT CODE ANALYSIS AND/OR ANALYSIS AND/OR BEQUIPMENT CODE ANALYSIS AND/OR BEQUIPMENT CODE ANALYSIS AND/OR BEQUIPMENT CODE ANALYSIS AND/OR ANALYSIS AND/OR BEQUIPMENT CODE ANALYSIS AND/	PUMP OR	TUBING				e le	7	FIELD				The same of the sa
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PUMP FLOW RATE GODE CONTAINERS CODE CODE CODE CONTAINERS CODE			68			DE: PE					FILTER SIZ	ZE:μm
SAMPLE # MATERIAL CODE CONTAINERS CODE VOLUME PRESERVATIVE USED ADDED IN FIELD (mL) PH ANALYSIS AND/OR CODE (mL per minute) SAMPLE BANDLE SAMPLING EQUIPMENT CODE (mL per minute) ANALYSIS AND/OR EQUIPMENT CODE (mL per minute) FLOW RATE	FIELD DE	CONTAMINATIO	ON: PUN	AP Y (N)	TUBING	Y (rep	laced)	DUPLICATE:	Y	N	
ADDED CONTAINERS CODE				ATION	S	AMPLE PR	ESERVATION		INTENDE	D SAI	MPLING	SAMPLE PUMP
CG 40mL HCL Prefilled by lab 8260 RFPP <100	SAMPLE ID CODE			VOLUME								FLOW RATE
CG 40mL None None 8011 RFPP <100 Auric 1 PE 250mL HNO3 Prefilled by lab Metals APP 220 Auric 1 PE 125mL H ₂ SO ₄ Prefilled by lab NH ₃ APP 220 Auric 1 PE 250mL None None TDS, CI, NO ₃ APP 220 REMARKS: 3 EV: 1.0 pc MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) RAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	14.7C			40mL				_/ PH				
PE 250mL HNO ₃ Prefilled by lab Metals APP 220 ANT 1 PE 125mL H ₂ SO ₄ Prefilled by lab NH ₃ APP 220 ANT 1 PE 250mL None None TDS, CI, NO ₃ APP 220 REMARKS: 3 EV: 1.0 yel ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	uw-7c	3	CG									
PE 125mL H ₂ SO ₄ Prefilled by lab NH ₃ APP 220 None None TDS, CI, NO ₃ APP 220 REMARKS: 3 EV: 1.0 yel Weatler: 1.5 Unity 1.5 Unit		1				Pre						
REMARKS: 3 EV: 1.0 yel Weather in Sunny ~ 780/c Odor: none MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)		1	PE									
REMARKS: 3 EV: 1.0 yel Weather In Sunny ~ 780/F Odor: none MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	4w-7C	1	PE									
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)			2			_			.20, 0., 10	-3 /		000
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	REMARKS	3EV:1.	oyel									
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)		_	•	~780K		odor .	june					
AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)		CODES:	AG = Amber	Glass; CG =	Clear Glass;			P = Polypropyle	ene; S = Silicor	ne; T ≃ Teflo	n; O = Ot	her (Specify)
	SAMPLING	EQUIPMENT							ESP = Electric Gravity Drain);		Pump;	· · · · · ·

OTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NAME: J.	NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Oppn Way St. Cloud, Occools County, Florida, 64775													
WELL NO	MW-8	3.4		SAMPLE	ID: MU	C D A	of Office vvay, Si							
	,	//\		12.5000001100	DIID	GING DA	та		DATE: 3	November 2	010			
WELL		TUBI	NG	WEI	L SCREEN		STATIC E	NEDTU	Laur	NOT 51415 -				
DIAMETE	R (inches): 2.0	DIAM	IETER (inches	1:0.25 DED	TH. 17 CE	not to 00 to 5	TO 1814 TT		COMPANY OF THE PARK OF THE PAR	RGE PUMP T BAILER:peris				
(only fill o	ut if applicable)	: 1 WELL V	OLUME = (TC	TAL WELL DEP	TH - STA	TIC DEPTH T	O WATER) X	WELL CAPACI	TY	· ·				
EQUIPME	NT VOLUME P	URGE: 1 EC	= (22.5 L. = PUMP VOL	feet -	17.78	feet) X	0.16 g	allons/foot =	= 0.8	gallons			
(only fill o	ut if applicable)		ZOII MILITY VC				TY X TI	JBING LENGTH)	+ FLOW CE	LL VOLUME				
INITIAL P	UMP OR TUBIN	IG.	EINAL DI	= 0.0 g JMP OR TUBING	allons + (0	7/00/20	ns/foot X	feet)	+ 0.12	gallons =	gallons			
DEPTH IN	WELL (feet):	20	DEPTHI	NWELL (feet):	20	PURGING	G D AT: 094 /0	PURGING ENDED AT:	1018	TOTAL VO				
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or vS/cm	DISSOLVED OXYGEN (circle units) mg/L)or % saturation	TURBIDITY (NTUs)		R ORP			
1005 1.25 1.25 0.05 18.28 4.34 25.29 396 0.64 1.3 clew -4.1														
1010	0.25	1.50	THE CONTRACTOR OF THE CONTRACT	13.20	4.35	25.32	396	0.57	1.2	clea				
	013 0.15 1.65 0.05 18.20 4.36 25.37 396 10.54 1.1 6/200 195													
1019	019 0.25 1.90 0.05 18.20 4.36 25.35 396 0.54 1.1 cler -20.1													
	1.10 0.03 10.00 4.36 25.33 396 0.34 1.1 cler -20.1													
									1.1					
	-													
	-									ii.				
	-													
WELL CA	PACITY (Gallon	s Per Footh	0.75" = 0.02	1" = 0.04;	1.25" = 0.06	011 - 0.40		40						
TUBING II	NSIDE DIA. CA	PACITY (Gal.	/Ft.): 1/8" = 0			3; 2" = 0.16 1/4" = 0.0026		4" = 0.65; 5 004; 3/8" = 0.0			12" = 5.88 5/8" = 0.016			
PURGING	EQUIPMENT (ODES:	B = Bailer;	BP = Bladder Pt			ubmersible Pun	np; PP = Per	ristaltic Pump		her (Specify)			
SAMPLED	BY (PRINT) / A	FFILIATION.		SAMPLER(S)		LING DA	TA							
Joe Terry /	EPS			SAWIF LENG)	SIGNATURE	<u>-(3).</u>		SAMPLING INITIATED AT:	1000	SAMPLIN	G Ti			
PUMP OR		20		TUBING			FIELD-I	FILTERED: Y	(0)	FILTER SI	T: /030 ZE:μm			
	WELL (feet): CONTAMINATION	-	MP Y (S	MATERIAL CO			Filtratio	n Equipment Typ	e:		μπ			
	PLE CONTAINE				TUBING	Y (N)rep		DUPLICATE:	Y	N				
SAMPLE				PRESERVATIV		ESERVATION OTAL VOL	FINAL	INTENDEI ANALYSIS AN		MPLING UIPMENT	SAMPLE PUMP FLOW RATE			
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD (m		METHOD		CODE	(mL per minute)			
UNJBA	3	CG	40mL	HCL	Pre	filled by lab		8260	ı	RFPP	<100			
hw BA	3	CG	40mL	None		None		8011		RFPP	<100			
W-BA	1	PE	250mL	HNO ₃		filled by lab		Metals		APP	300			
nw.ba	1	PE	125mL	H₂SO₄	Pre	filled by lab		NH ₃		APP	200			
ABUN	1	PE	250mL	None		None		TDS, CI, N	O ₃	APP	200			
REMARKS														
-35	·	6 N=	141012	a 1	الساء	1 11	101 -							
and the same of the first of the same	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)													
SAMPLING	EQUIPMENT	CODES:	APP = After Pe	eristaltic Pump;	B = Baile	er; BP = B	ladder Pump;	ESP = Electric			ner (opecily)			
OTEC. 4	<u> </u>		RFPP = Rever	se Flow Peristalti	c Pump;	SM = Straw M	ethod (Tubing G	Gravity Drain);	O = Other (Specify)				

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J	E.D. SWMF (W	ACs Facility I	D: 89544)			ITE OCATION: 15	01 Omni Way S	St. Cloud, Osceola	County Flori	d- 04770	
WELL NO	: MW-E	30		SAMPLE	ID: Mh	1-0.0	or only vvay, c		DATE: 3		240
					PLIR	GING DA	TΛ		DATE. J	November 2	710
WELL VO	ER (inches): 2.0 DLUME PURGE out if applicable)	TUBI DIAM : 1 WELL V	DETER (inches):0 OLUME = (TOTA	AL WELL DEP	L SCREEN TH(3.9 fo TH - STA	INTERVAL	STATIC	DEPTH ER (feet): /7, WELL CAPACI	76 000	GE PUMP T BAILER:peris	
EQUIPMI (only fill o	ENT VOLUME P ut if applicable)	URGE: 1 E	= (QUIPMENT VOL.	= PUMP VOL	feet – UME + (TUI allons + (C			UBING LENGTH)		L VOLUME	gallons
INITIAL P DEPTH II	UMP OR TUBIN WELL (feet):	ig 69	FINAL PUM DEPTH IN V	IP OR TUBING VELL (feet):		PURGIN		PURGING ENDED AT:	1045	TOTAL VOL	UME (1,20)
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEI (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg/L or % saturation	TURBIDITY (NTUs)		R ORP
1035	3.50	3.50	0.07	17.85		24.58	67	0.49	1.1	clea	19.0
1040	0.35	3.85		17.85	41-92	24.56	68	0.47	1.0	clear	
1045	0.35	L),20	0-07	17.85	4.91	24.59	68	0.45	1.2	cle	
		011									
									V-1		
TUBING II PURGING	EQUIPMENT C	PACITY (Gal	./Ft.): 1/8" = 0.0 B = Bailer; B	006; 3/16" = P = Bladder Pu	mp; E	1/4" = 0.0026 SP = Electric S	5; 5/16" = 0. Submersible Pur	004; 3/8" = 0.		= 0.010;	12" = 5.88 5/8" = 0.016 ner (Specify)
Joe Terry		SEFILIATION:		SAMPLER(S) S	OL CE	E(S):		SAMPLING INITIATED AT	1050	SAMPLING ENDED A	F: //00
	WELL (feet):	69		TUBING MATERIAL CO			Filtratio	-FILTERED: Y on Equipment Typ	e (N)	FILTER SI	ZE: μm
	CONTAMINATIO		<u> </u>		TUBING	Y (N)re		DUPLICATE:	Y	(N)	
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	MATERIAL CODE		S PRESERVATIV USED	Έ T	ESERVATION OTAL VOL D IN FIELD (m	FINAL	INTENDE ANALYSIS AN METHOD	D/OR EQU	MPLING JIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
nw-6C	3	CG	40mL	HCL		efilled by lab		8260	F	RFPP	<100
wec	3	CG	40mL	None		None		8011	F	RFPP	<100
W-BC	1	PE	250mL	HNO₃	Pre	filled by lab		Metals		APP	250
W-BC	1	PE	125mL	H₂SO₄	Pre	filled by lab		NH ₃		APP	250
in-BC	, 1	PE	250mL	None		None	1	TDS, CI, N	O ₃	APP	250
hear	BEV: 1. No: clear	~76			Odor:	none					
MATERIAI SAMPLING	CODES:		Glass; CG = (APP = After Peris RFPP = Reverse	Clear Glass; staltic Pump;	B = Bail	er; BP = E	PP = Polypropyle Bladder Pump; Method (Tubing	ESP = Electric		Pump;	her (Specify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J	E.D. SWMF (WA	ACs Escility II	D: 90544)			TE					
	MW-9		<u>D. 89344)</u>	CAMPLE			1 Omni Way, St	. Cloud, Osceola	County, Florid	a, 34773	
	1.100 =0	IA		SAMPLE	ID: MW				DATE: 3 N	November 20)10
WELL		TUBII	NG	IME		SING DAT					
	R (inches): 2.0	DIAM	ETER (inches):	0.25 DEP	L SCREEN	et to 20 u fe	STATIC D	R (feet): 17,	741 000	GE PUMP T' AILER:peris	··· -
(Only in O	at ii applicable)		- /	22 4	6	1771	feet) X	0.16 a	allons/foot =	0.7	5 gallons
(only fill or	ut if applicable)	URGE: 1 EC	QUIPMENT VO	L. = PUMP VOLI		SING CAPACIT	Y X TI	JBING LENGTH)	+ FLOW CELI	VOLUME	
INITIAL P	UMP OR TUBIN	IG	FINAL PU	MP OR TUBING		PURGING		feet) PURGING		galions =	gallons
DEPTH IN	WELL (feet):	20	DEPTH IN	WELL (feet):	20		DAT: 0735	ENDED AT:		TOTAL VOL PURGED (g	Jume Jallons): 2, 75
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/D or % saturation	TURBIDITY (NTUs)	(describ	e) (mV)
0820	2.25	2.25		17.90	4.93	26.04	223	0.58	9.9	right I	ow 6.5
0825		2.50		-	4.92	26.10	224	0.30	9.6	ce	4 1.1
0830	0.25	2.75	0.05	17.90	4.92	26.10	225	0.39	9.6	E.	" -1.5
9711-3-10											
			- V								
WELL CA	PACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0.06	6: 2" = 0.16:	3" = 0.37;	4 " = 0.65; 5	5" = 1.02; 6 '	' = 1.47:	12" = 5.88
	NSIDE DÍA. CAI EQUIPMENT C			0006; 3/16" = BP = Bladder Pu	= 0.0014;	1/4" = 0.0026	5/16" = 0.0 submersible Pun	004; 3/8" = 0.		0.010;	5/8" = 0.016
				= Diadder t		LING DA		np, FF - Fe	nstaluc Pump;	0=0	her (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A EPS	FFILIATION:		SAMPLER(S)	SIGNATURE	(S):	ē.	SAMPLING INITIATED AT	0.075	SAMPLING	
PUMP OR DEPTH IN	TUBING WELL (feet):	20)	TUBING MATERIAL CO	- U	7		FILTERED: Y	(N)		T: <i>0844</i> ZE: μm
	CONTAMINATIO		-		TUBING	Y (N)(rep		n Equipment Typ DUPLICATE:		N	
SAM	PLE CONTAINE	R SPECIFIC	ATION	S	SAMPLE PRI	ESERVATION		INTENDE	D SAM	MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		OTAL VOL D IN FIELD (ml	FINAL L) pH	ANALYSIS AN METHOD		IPMENT CODE	FLOW RATE (mL per minute)
nw9A	3	CG	40mL	HCL	Pre	filled by lab	30	8260	R	RFPP	<100
nw94	3	CG	40mL	None		None		8011	R	REPP	<100
nn-GA	1	PE	250mL	HNO ₃	Pre	filled by lab		Metals	/	APP	200
nwga	1	PE	125mL	H₂SO₄	Pre	filled by lab		NH ₃		APP	200
nn94	1	PE	250mL	None	-	None		TDS, CI, N	IO ₃	APP	200
REMARKS	Odorina	،د ا									
	Lr: clen		30=								
MATERIAL		AG = Amber		: Clear Glass;	PE = Polye	ethylene; P	P = Polypropyle	ene; S = Silicor	ne; T = Teflo	n; O = Ot	ther (Specify)
SAMPLING	EQUIPMENT		APP = After Pe RFPP = Revers	ristaltic Pump; se Flow Peristalti	B = Baile c Pump;		ladder Pump; lethod (Tubing 0	ESP = Electric Gravity Drain);	Submersible I		
OTEC. 4	The charge		414 4 - 11 - 7						\\ <u>_</u>		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J	E.D. SWMF (W	ACs Facility I	D: 89544)			ITE OCATION: 150	01 Omni Merr G	2 0 1 0		Vir savetes	
): MW-C			SAMPLE			or Omni vvay, S	St. Cloud, Osceola	AND THE WAY SEED IN	11-4/	2010
	7 100				/· V	W-9C GING DA	TA		DATE: 3	November 2	2010
WELL		TUBI	NG	WE		INTERVAL	STATIC	DEDTU			
DIAMETE	R (inches): 2.0	DIAM	ETER (inches):	0.25 DEF	THIZ R F	not to 172 0 6	ant TO MAT	FD (0) 7	621	RGE PUMP 1 BAILER:peri	
(only fill o	ut if applicable)	: 1 WELL V	OLUME = (TO	TAL WELL DEP	TH - STA	TIC DEPTH T	O WATER) X	WELL CAPAC	ITY	po//	otatio
EQUIPMI	ENT VOLUME E	DIRGE: 1 E	= (L - DUMP LOL	feet -		feet) X	0.16	gallons/foot =	=	gallons
(only fill o	ut if applicable)	UNGE. TEC	OPMENT VO	L. = PUMP VOL			TY X T	UBING LENGTH	+ FLOW CE	LL VOLUME	
INITIAL D	UMP OR TUBIN	10	F-11.1.1		allons + (0		ns/foot X	75 feet	+ 0.12	gallons =	9.32 gallons
DEPTH IN	WELL (feet):	69	DEPTH IN	MP OR TUBING WELL (feet):	69	PURGIN	G DAT: 0745	PURGING ENDED AT:	0855	TOTAL VO	DLUME (gallons): 4,20
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)		OR ORP
0845	3.60	3.60		17.92	5.59	25.29	134	0.25	5.1	clea	60.5
0850	0.30	3.90	0.06	17.92	5.50	25-30	134	0.23	7.3	clea	
0855	0.30	41.20	0.06	17.92	5.58	25.30	133	0.22	3.9	cle	
		-							1-11-11-11-11-11-11-11-11-11-11-11-11-1	-	
									1 17		
	1										
WELLOA	DACITY (C. II									100	
TUBING II	PACITY (Gallon NSIDE DIA. CAI	PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0.		1.25" = 0.06 = 0.0014;	3; 2" = 0.16 1/4" = 0.0026				3" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: F	3 = Bailer;	BP = Bladder P	the state of the s	SP = Electric S	Submersible Pu		ristaltic Pump		Other (Specify)
SAMPLED	BY (PRINT) / A	CCILIATION.			SAMP	LING DA	TA				
Joe Terry		IFFILIATION:		SAMPLER(S)	SIGNATURE	E(S):		SAMPLING	0.6 - 0	SAMPLIN	
PUMP OR		1 CA		TUBING			FIELD.	INITIATED AT	(N)		AT: <i>0910</i> SIZE: µm
	WELL (feet): CONTAMINATION	69	4D V (2)	MATERIAL CO			Filtratio	on Equipment Typ			π 2 Ε μm
					TUBING	Y (rep		DUPLICATE:	Y	\odot	,
SAMPLE	PLE CONTAINE #	MATERIAL				ESERVATION		INTENDE ANALYSIS AN		MPLING UIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	PRESERVATIV USED		OTAL VOL D IN FIELD (m	FINAL pH	METHO		CODE	(mL per minute)
mw-gc	3	CG	40mL	HCL	Pre	filled by lab		8260		RFPP	<100
nuge	3	CG	40mL	None		None		8011		RFPP	<100
1W-9C	1	PE	250mL	HNO ₃		filled by lab		Metals		APP	220
hw9c	1	PE PE	125mL	H₂SO₄	Pre	filled by lab	-	NH ₃		APP	220
hwer			250mL	None	-	None		TDS, CI, N	IO ₃	APP	220
REMARKS	3EV.	1.0 gul.									
wen	ster: c	\ /	-68°F		Odec	nont					
MATERIAL	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Polye		P = Polypropyle	ene; S = Silicor	ne; T = Teflo	on; O = C	Other (Specify)
SAMPLING	EQUIPMENT		APP = After Per RFPP = Revers	ristaltic Pump; e Flow Peristalti	B = Baile c Pump;		Bladder Pump; Method (Tubing	ESP = Electric Gravity Drain);	Submersible O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: J	AME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773												
	D: MW-10			SAMPLE	D: 447	OCATION, 150	T Offini Way, S						
	7.100-10	1/4		SAMPLE	DUD!	/-104	TA		DATE: 2	November	2010 		
WELL		TUBI	NG	WELL		GING DAT							
DIAMETE	R (inches): 2.0	DIAM	ETER (inches	0:0.25 DEPT	H to the	ant to An I for	et TO WAT	ED (64). (2.5)	70	RGE PUMP BAILER:per			
(only fill o	OLUME PURGE ut if applicable)	: 1 WELL V	OLUME = (To	OTAL WELL DEPT	H - STA	TIC DEPTH TO	O WATER) X	WELL CAPAC	TY	D VILLIV. por	Statuc		
II			= (22·1 f	eet -	19.31	feet) X	0.16	allons/foot	= 0.4	/5 gallon	20	
(only fill o	ut if applicable)	ORGE: 1 E	QUIPMENT VO	DL. = PUMP VOLU	ME + (TUE	BING CAPACIT		UBING LENGTH	+ FLOW CI	LL VOLUME	yallon	15	
					lions + (0	.0026 galio	ns/foot X	feet)	+ 0.12	gallons =	gallon	ıs	
DEPTH IN	UMP OR TUBII WELL (feet):	vg کا		UMP OR TUBING N WELL (feet):	2.1	PURGING		PURGING	211	TOTAL VO	LUME		
		CUMUL		DEPTH	31	INITIATE	DAT: 14/15	ENDED AT:	1435	PURGED	(gallons): /,	0	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGI RATE	TO WATER	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm	OXYGEN (circle units) (mg/L)or	TURBIDI (NTUs)			RP nV)	
1425	0.50	0.50	0.05	0, 15	4.97	26.04	or (15/cm)	% saturation	* * * ***	51.94	19	2	
1430	0.25	0.75			4.97		143	0.49	11.5	yella	wish - 41.		
1435	0.25	1.00	0.09	Series Series	4.97	26.01	143	0.51	12.7	100	-13		
1123		1	0.0	11.11	21.97	26.01	147	0.50	12.3		" -15	. 7	
	7								 				
									-				
							=					- 5	
WELL CA	PACITY (Gallor	s Per Foot):	0.75" = 0.02;	1" = 0.04; 1	.25" = 0.06	3; 2" = 0.16;	3" = 0.37;	4" = 0.65; 8	i" = 1.02;	6 " = 1.47:	12" = 5.88	-	
PURGING	EQUIPMENT (CODES:	/Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = BP = Bladder Pur						' = 0.010;	5/8" = 0.016		
		JODEO.	Daller,		2.400	LING DA	ubmersible Pur	np; PP = Pe	ristaltic Pum	p; O = C	ther (Specify))	
SAMPLED	BY (PRINT) / A	AFFILIATION:		SAMPLER(S) S	GNATURE	(S):	10	SAMPLING		0.4451.15	10		
Joe Terry				du	e lay	5		INITIATED AT	1440	SAMPLIN ENDED	NG AT: /5/5~0	0	
PUMP OR DEPTH IN	TUBING WELL (feet):	21		TUBING / MATERIAL COL	E- DE			FILTERED: Y	N		ize: μ		
	CONTAMINATION	ON: PU	MP Y (TUBING	Y (18) (rep		n Equipment Typ	e. Y				
SAM	PLE CONTAINE	R SPECIFIC				ESERVATION		INTENDE		 AMPLING	SAMPLE PI	LINAR	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	Ξ Τ	OTAL VOL D IN FIELD (m)	FINAL	ANALYSIS AN	D/OR E	QUIPMENT CODE	FLOW RA	ATE	
MW-10A	3	CG	40mL	HCL		filled by lab	-	8260		RFPP	<100	- 2	
MW-104	3	CG	40mL	None		None		8011		RFPP	<100	_	
MW-10A	1	PE	250mL	HNO ₃	Pre	filled by lab		Metals		APP			
nw-104	1	PE	125mL	H₂SO₄	Pre	filled by lab		NH ₃		APP			
MW-104	1	PE	250mL	None		None		TDS, CI, N	O ₃	APP			
REMARKS													
		2 44100	/	,									
MATERIAL	U OVECUS	AG = Amber	Glass: CG	५८९२४ = Clear Glass;	PE ≃ Polye	athylone: P	D = Dohmeon d	no: 6 - 00:		9			
	EQUIPMENT	CODES:	APP = After P	eristaltic Pump:	B = Baile	er; BP = B	P = Polypropyle ladder Pump;	ESP = Electric		e Pump;	Other (Specify))	
OTEC: 1	The chave			se Flow Peristaltic			ethod (Tubing (Gravity Drain);	0 = Other	(Specify)			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.	E.D. SWMF (W	ACs Facility I	D: 89544)			ITE	1 Omni May C	. 0			
	D: MW-18			SAMPLE ID		A LOA	1 Omni vvay, Si	t. Cloud, Osceola		1991	
	7 400-10	,		SAMPLE ID					DATE: 2	November 2	010
WELL VO	ER (inches): 2.0 DLUME PURGE out if applicable)	TUBI DIAM : 1 WELL V	IETER (inches): OLUME = (TO	WELL 0.25 DEPTH	SCREEN	ING DATINTERVAL Set to 73,1 fe	STATIC C	D (foot). #C	1 -2	GE PUMP T BAILER:peris	
EQUIPME (only fill o	ENT VOLUME F ut if applicable)	PURGE: 1 EC	= (QUIPMENT VOI	fe = PUMP VOLUM = 0.0 gallo				JBING LENGTH		L VOLUME	gallons
INITIAL P	UMP OR TUBIN NWELL (feet):	1G 69	FINAL PUI DEPTH IN	MP OR TUBING WELL (feet):	69	PURGING		PURGING ENDED AT:		TOTAL VOI	9.32gallons LUME
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEE (gallons)	PURGE RATE (gpm)	(feet)	pH standard units)	TEMP.	COND. (circle units) µmhos/cm or (1S/cm)	DISSOLVED OXYGEN (circle units) (mg/l or % saturation	TURBIDITY (NTUs)		
1455		4.20			5.09	24.94	67	0.45	1.4	clei	13.4
1500	0.30	4.50	- 10		5.05	74.43	66	0.31	5.5	Clear	9,8
1505	0.30	41.80	0.06	19.69 5	5-05	24.93	66	0-30	6.6	c lea	
TUBING II	PACITY (Gallon NSIDE DIA. CA EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0.	BP = Bladder Pum	p; E :	1/4" = 0.0026;	5/16" = 0.0 ubmersible Pum	04; 3/8" = 0.		= 0.010;	12" = 5.88 5/8" = 0.016 her (Specify)
	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SIG	NATURE	(S):	IA	CAMPUNO		Y	
Joe Terry / PUMP OR		4.0		TUBING	tun			SAMPLING INITIATED AT	1510	SAMPLING ENDED A	1:1520
DEPTH IN	WELL (feet): CONTAMINATION	69 DN: PU		MATERIAL CODE			Filtration	FILTERED: Y n Equipment Typ	e:		ZE: μm
	PLE CONTAINE				UBING	Y (N)(repl	laced)	DUPLICATE:	Y	(N)	
SAMPLE ID CODE		MATERIAL CODE	VOLUME	PRESERVATIVE USED	T	ESERVATION OTAL VOL O IN FIELD (ml	FINAL _) pH	INTENDE ANALYSIS AN METHOL	ID/OR EQU	MPLING JIPMENT CODE	SAMPLE PUMP FLOW RATE (ml. per minute)
w-10C	3	CG	40mL	HCL		filled by lab	P. I	8260	F	RFPP	<100
1W-10C	3	CG	40mL	None		None		8011	F	RFPP	<100
1W-10C	1	PE	250mL	HNO₃	Pre	filled by lab		Metals		APP	225
w-10C	1	PE	125mL	H₂SO₄	Pre	filled by lab		NH ₃		APP	225
w-10c	1	PE	250mL	None		None		TDS, CI, N	IO ₃	APP	225
	3EV: 1.0		Odox:								
MATERIAL		AG = Amber			E = Polye	ethylene; PI	P = Polypropyle	ne; S = Silicor	ne; T = Teflo	on; O = O!	her (Specify)
	EQUIPMENT		APP = After Per RFPP = Reverse	e Flow Peristaltic F	B = Baile Pump;		adder Pump; ethod (Tubing G	ESP = Electric Gravity Drain);	Submersible O = Other (S		100000000000000000000000000000000000000

OTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773												
WELL NO:	MW-11	———— А		SAMPL	EID: Mh			,			Novemb		
	7					SING DA	TA						
WELL VO	R (inches): 2.0 LUME PURGE:		TER (inches):	0.25 DE	PTH:/2.8 fe	INTERVAL	eet TO	TATIC D WATE	DEPTH ER (feet): /6.9 WELL CAPACI	0 0	URGE PUN R BAILER:		
EQUIPME	it if applicable) NT VOLUME Pluit if applicable)	URGE: 1 EQ	= (UIPMENT VOL				TY X		JBING LENGTH)		ELL VOLU		gallons
	JMP OR TUBING WELL (feet):	G 20		= 0.0 MP OR TUBIN WELL (feet):	gallons + (0 G 26	PURGIN	ons/foot X IG ED AT: /		PURGING ENDED AT:			VOLUM	gallons E ns): 2.85
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP,	CON (circle i µmhos or µS	ID. units) s/cm	DISSOLVED OXYGEN (circle units) mg/l or % saturation	TURBID (NTU:	OITY Co	OLOR scribe)	ORP (mV)
1212	2.35	2.35	0.05	17.48	5.26	27.31	36	7	0.64	4.3	very	ellow	-60.5
1217	0-25	2.60	0.05	17.48			37		0.57	4,2	u	25	-62.6
1222 0.25 2.85 0.05 17.48 5.26 27.35 371 0.55 4.0							(1)))	-65,4				
TUBING IN	PACITY (Gallon NSIDE DIA, CAR EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0.	1" = 0,04; 0006; 3/16 BP = Bladder	and in the same	1/4" = 0,002 SP = Electric	26; 5/ 1 Submers	= 0.37; 16" = 0. sible Pur	004; 3/8" = 0	5" = 1.02; .006; 1 /	6" = 1.4; /2" = 0.010; mp; O	5/8'	= 5.88 = 0.016 (Specify)
SAMPLED	BY (PRINT) / A	EER IATION:		SAMDI ED/S	SAMP SIGNATUR	LING DA	ATA		Torrespond to the second			revent revenue	
Joe Terry /	EPS	CEPILIATION.			pe C	E(3).			SAMPLING INITIATED AT		END		1235
PUMP OR DEPTH IN	WELL (feet):	20		TUBING // MATERIAL (ODE: PE	_			-FILTERED: Y on Equipment Ty		FILTE	ER SIZE:	μm
FIELD DE	CONTAMINATIO	ON: PUI	MP Y (N)	TUBING	Y (N)re	eplaced)		DUPLICATE:	Y	N		
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED	TIVE	RESERVATIO TOTAL VOL ED IN FIELD (F	FINAL pH	INTENDE ANALYSIS AI METHO	ND/OR	SAMPLING EQUIPMEN CODE	NT F	MPLE PUMP LOW RATE L per minute)
MW-11A	3	CG	40mL	HCL		efilled by lat		P	8260		RFPP		<100
MW-IIA	3	CG	40mL	None		None			8011		RFPP		<100
MW-IIA	1	PE	250mL	HNO ₃	Pr	efilled by lab	o		Metals	3	APP		200
MW-11A	i	PE	125mL	H ₂ SO ₄	Pr	efilled by lak)		NH ₃		APP		200
MW-11A	1	PE	250mL	None		None			TDS, CI, I	NO ₃	APP		200
MELLY	ا S: ان کان در	AG = Amber		ollected w/c = Clear Glass; eristaltic Pump	PE = Pol	yethylene; iler; BP =	PP = Po Bladder	lypropyl Pump;	eur S # Silico ESP = Electr Gravity Drain);	le ID: one; T = ic Submers	EB-i Teflon; (ትሥር: O = Othe	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME: J.E	SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773												
	MW-11C			SAMPLE II			T Offill Pray, of		Shirt No.	November 2	D10		
						SING DA	TA		<i>o</i> _				
	R (inches): 2.0		ETER (inches):0	.25 DEPT	SCREEN H: (3,4 fe	INTERVAL et to 73.4 fe	STATIC D	ER (feet): 17.0	3 OR	RGE PUMP T BAILER:peris			
(only fill out	t if applicable)		= (eet –		feet) X	WELL CAPACI 0.16 g JBING LENGTH	allons/foot	= FIL VOLUME	gallons		
	t if applicable)				lons + (0			75 feet)			.32 gallons		
I	MP OR TUBING WELL (feet):	³ 69		P OR TUBING VELL (feet):	69	PURGIN		PURGING		TOTAL VO			
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm or (LS/cm)	DISSOLVED OXYGEN (circle units) mg/D or % saturation	TURBIDI (NTUs)	TY COLO	R ORP		
1140	1.40	1.40	0.07	17.14	5.28	25.98	118	0.62	0.7	clea			
1145	0.35	1.75	0.07	17,14	5.27	25.95	117	0.52	0.8	clea			
1150	0.35	a.10	0.07	17.14	5.27	25,98	118	0.53	0.6	c lea	~ -27.0		
TUBING IN	PACITY (Gallon: ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal	/Ft.): 1/8" = 0.0	1" = 0.04; 0006; 3/16" = 3P = Bladder Pu	ımp; E	1/4" = 0,0026 SP = Electric	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0	5" = 1.02; .006; 1/2 eristaltic Pun	6" = 1.47; "" = 0.010; np; O = C	12 " = 5.88 5/8 " = 0.016 other (Specify)		
	au anne d			0.110155/016		LING DA	TA		-				
Joe Terry /		FFILIATION			e te	E(S):		SAMPLING INITIATED A			AT: 1209		
	WELL (feet):	69		TUBING MATERIAL CO			Filtrati	-FILTERED: Y on Equipment Ty	pe:		iIZE: μm		
	CONTAMINATIO				TUBING		placed)	DUPLICATE:		N			
SAMPLE ID CODE	# CONTAINERS	R SPECIFIC MATERIAL CODE	VOLUME	PRESERVATIV USED	/E	RESERVATIO TOTAL VOL ED IN FIELD (r	FINAL	INTENDI ANALYSIS A METHO	ND/OR E	SAMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)		
nw-11C	3	CG	40mL	HCL		efilled by lab		8260		RFPP	<100		
MW-IIC	3	CG	40mL	None		None		8011		RFPP	<100		
MW-116	1	PE	250mL	HNO₃	Pr	efilled by lab		Metals	3	APP	250		
MW-11C	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	250		
MW-11C	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	250		
DEMARKS		2. /		188							L		
	v: Ovews	<i>a</i>	° E		Odos ir								
MATERIAL		AG = Ambe		Clear Glass;		yethylene;	PP = Polypropy	lene; S = Silic	one; T = T	eflon; O =	Other (Specify)		
	G EQUIPMENT		APP = After Pe		B = Ba	iler; BP =	Bladder Pump; Method (Tubing	ESP = Elect Gravity Drain);		ble Pump; er (Specify)			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773													
	MW-12,			SAMPLE	ID: MV		1 0 111111 1 1 1 1 1 1 1	7 012 0101111 00000		November 20)10		
	100 100				PUR	GING DA	TA						
	R (inches): 2,0		TER (inches):0	0.25 DEF	LL SCREEN PTH: <i>「</i> て	NINTERVAL	STATI	C DEPTH ATER (feet): 1년	24 0	JRGE PUMP T			
(only fill ou	LUME PURGE: t if applicable) NT VOLUME PU t if applicable)		= (AL WELL DEF 23	TH - ST	ATIC DEPTH T	O WATER)	X WELL CAPA	CITY gaillons/foot		gallons		
				-	jallons + (ns/foot X			galions =	gallons		
	JMP OR TUBING WELL (feet):	21		MP OR TUBINO WELL (feet):	21	PURGIN	G ED AT: 092		T: 1020	TOTAL VOI PURGED (g	Jume gallons): 3, 6		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	(*C)	COND. (circle units µmhos/cm or (aS/cm	(circle units	TURBIC (NTU:		pe) (mV)		
0956	2-16	2.16	0.06				150	0.56	0.6		- 1-4,8		
1010	0.94	3.00	0.06	18.55	4.39	27.26	151	0,51	0.7				
1015	015 0.30 3.30 0.06 18.55 4.39 27.26 152 0.51 0.7 clear -7.6												
1020	0.30	3.60	0.06	18.55	4.39	27.27	152	0.51	0.7	cka	1 - 7.7		
TUBING IN	PACITY (Gallon ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0.		' = 0.0014; Pump;	1/4" = 0.002 ESP = Electric	6; 5/16" : Submersible		5;" = 1.02; = 0.006; 1 Peristaltic Pu	/2" = 0.010;	12" = 5.88 5/8" = 0.016 ther (Specify)		
		men is micht		CHARLER (C)		PLING DA	ATA			4			
Joe Terry	BY (PRINT) / A 'EPS	FFILIATION:		SAMPLER(S	SIGNATU	RE(S):		SAMPLING INITIATED	B AT: 1020		T: 1030		
PUMP OR DEPTH IN	TUBING WELL (feet):	21		TUBING MATERIAL C	ODE: PE			ELD-FILTERED: ration Equipment			IZE: μm		
FIELD DE	CONTAMINATIO	ON: PUN	MP Y (È	D	TUBING	Y (N)(re	eplaced)	DUPLICAT	E: Y	(D)	/		
SAM SAMPLE	PLE CONTAINE #	R SPECIFIC		PRESERVAT		PRESERVATIO	N FINA	INTEN ANALYSIS	AND/OR	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE		
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADI	DED IN FIELD (mL) pH	MEII		CODE	(mL per minute)		
MW-12A	3	CG	40mL	HCL		Prefilled by lat)	82		RFPP	<100		
MW-12A	3	CG	40mL	None		None		08 Mod		APP	<100		
MW-12A	1	PE	250mL	HNO ₃		Prefilled by lat		Met		APP	225		
MW-12A	1	PE PE	125mL 250mL	H₂SO₄ None		Prefilled by lai	<u> </u>	TDS, C		APP	225		
MWIZA			ZJUHL	140116		HOUG		100,0	., 1103		-03		
REMARKS					1.00	. 0							
	ler: clear			01 5		9000: 100			lianne. T	Toflon: A:	Othor (English)		
MATERIA		AG = Amber		= Clear Glass;		olyethylene;	PP = Polypr Bladder Pun		ectric Submer		Other (Specify)		
	G EQUIPMENT		RFPP = Rever	eristaltic Pump se Flow Perista	altic Pump;		Method (Tuk	oing Gravity Drain		ner (Specify)			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME: J.E	SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773												
	MW-12		,	SAMPLE	ID: Mh		· · · · · · · · · · · · · · · · · · ·			November 20	010		
						SING DA	ΤΔ		<u> </u>				
WELL VOL	R (inches): 2,0 LUME PURGE; t if applicable)		TER (inches):0).25 DEF	LL SCREEN PTH: 63.6fe	INTERVAL et to 73.6fe	STATIC D	DEPTH ER (feet): /B., WELL CAPACI	36 OR	RGE PUMP T BAILER:peris			
EQUIPME	NT VOLUME PU t if applicable)	JRGE: 1 EQI	= (JIPMENT VOL		feet – .UME + (TUE pallons + (=0		feet) X TY X TI	0.16 g JBING LENGTH) 75 feet)		LL VOLUME	gallons 9.32 gallons		
	IMP OR TUBIN WELL (feet):	G 69		MP OR TUBINO WELL (feet):		PURGIN		PURGING		TOTAL VOI			
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gailons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/om or µS/cm	DISSOLVED OXYGEN (circle units) ng/L or % saturation	TURBIDIT (NTUs)		R ORP		
0928	0.80	0.80	0.05	18.44	41.90	25.81	58	0.74	0.9	c lea	v 27.7		
0933	0.25	1.05	0.05	18.44	4,88	25.75	57	0.63	0.9	c/e	r 13.6		
0938	0.25	1.30	0.05	18.44	41.90	75.72	57	0.61	1.0	cle	ar 7.0		
TUBING IN	PACITY (Gallon ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal./ CODES: E	'Ft.): 1/8" = 0.		SAMP	1/4" = 0.002 SP = Electric	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0		6" = 1.47; " = 0.010; p; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)		
Joe Terry / PUMP OR		I CA		TUBING	i try	•		INITIATED AT	(N)	ENDED A	AT: 0954/		
	WELL (feet): CONTAMINATION	69 DN: PUN	NP Y (N	MATERIAL C	ODE: PE TUBING	Y (N)re	Filtrati placed)	on Equipment Ty DUPLICATE:	pe: Y	(D)			
	PLE CONTAINE					RESERVATION		INTENDE		SAMPLING	SAMPLE PUMP		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	IVE	TOTAL VOL	FINAL	ANALYSIS AI METHO	ND/OR E	QUIPMENT CODE	FLOW RATE (mL per minute)		
MW-12C	3	CG	40mL	HCL		efilled by lab		8260		RFPP	<100		
MW-12C	3	CG	40mL	None		None		8011		RFPP	<100		
mw-12e	1	PE	250mL	HNO ₃	Pr	efilled by lab		Metals	3	APP	200		
hw-12C 1 PE 125mL H ₂ SO ₄						efilled by lab		NH ₃		APP	200		
hwipe	1	PE	250mL	None		None		TDS, Cl,	NO ₃	APP	200		
	: 3EV: 1.				00	loc; non	ε						
MATERIAL		AG = Amber	Glass; CG =	= Clear Glass;			PP = Polypropy	lene; S = Silico	one; T = Te	eflon; O = (Other (Specify)		
SAMPLING	G EQUIPMENT		APP = After Pe RFPP = Revers				Bladder Pump; Method (Tubing	ESP = Electr Gravity Drain);		ole Pump; r (Specify)			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria For Range of Variation of Last three consecutive Readings (see FS 2212, section 3) pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME: J.E	ITE SITE IAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773												
	MW-13,		. 000 1 17	SAMPLE		V-13A	TOTHII VVAY, C			November 20	010		
	7-100-13	71				GING DA	ΤΑ						
	(inches): 2.0		TER (inches):0	.25 DEP	L SCREEN	INTERVAL eet to 22,5 fe	STATIC et TO WAT	DEPTH ER (feet): 18,7 WELL CAPAC	" OR	RGE PUMP T BAILER:peris			
(only fill out	if applicable) IT VOLUME PU if applicable)		= (22.5	feet -	18.14	feet) X		allons/foot		gallons		
					allons + (ns/foot X	feet)	0.12	gailons =	gallons		
	MP OR TUBINO WELL (feet):	20		IP OR TUBING WELL (feet):	20	PURGING INITIATE	G D AT: <i>0 740</i>		0835	PURGED (LUME gallons): る、フン		
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (ng/L)or % saturation	TURBIDI (NTUs)				
0825 2.25 2.25 0.05 18.29 5.26 25.51 150 0.39 4.7 clear -20.1													
0630	0.25	2.50	0.05	18.29	5.25		149	0.40	41.0	c le			
0 835	0.25	2.75	0.05	18.29	5.75	25.56	150	0.45	3.8	C lea	r -28.9		
-													
0													
		<u> </u>	_						-				
WELL CAP	PACITY (Gallons	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0.0	06; 2 " = 0.16	3" = 0.37;	4" = 0.65;	5" = 1.02;	6" = 1,47;	12" = 5,88		
	ISIDE DIA. CAP EQUIPMENT C		***************************************	0006; 3/16" BP = Bladder F	= 0.0014;	1/4" = 0.002	***************************************		0.006; 1/2 eristaltic Pur	2" = 0,010; on:	5/8" = 0.016 hther (Specify)		
FUNGING	EQUIPMENT	ODES.	5 - Dallet,	or - blaudel r		PLING DA		amp, ri-r	enstante i ui	пр, О-С	ther (opecity)		
SAMPLED Joe Terry /	BY (PRINT) / A EPS	FFILIATION:		SAMPLER(8)			1172	SAMPLING INITIATED A	T 0840	SAMPLIN ENDED	IG AT: 0846		
PUMP OR DEPTH IN	TUBING WELL (feet):	20		TUBING MATERIAL C	ODE: PE			D-FILTERED: Y			SIZE: μm		
FIELD DEC	CONTAMINATIO	ON: PUI	MP Y CN)	TUBING	Y (N)(re	placed)	DUPLICATE:	: Y	N			
SAMI	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE P	RESERVATIO	N	INTEND	ED I	SAMPLING	SAMPLE PUMP		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL ED IN FIELD (1	rINAL nL) pH	ANALYSIS A METHO		EQUIPMENT CODE	FLOW RATE (mL per minute)		
MW-13.4	3	CG	40mL	HCL		refilled by lab		8260		RFPP	<100		
MW-13A	3	CG	40mL	None		None		8011		RFPP	<100		
NW-13A	1	PE	250mL	HNO ₃	P	refilled by lab		Metal	s	APP	200		
MW-13A	1 PE 125mL H₂SO₄							NH ₃		APP	200		
MW-13A	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	200		
REMARKS											l		
	er: clear	A LOOF		Odor: n									
MATERIA		AG = Ambe	r Glass; CG =	Clear Glass;		olyethylene;	PP = Polyprop	ylene; S = Silic	one; T = 1	eflon; O =	Other (Specify)		
	G EQUIPMENT		APP = After Pe RFPP = Revers	eristaltic Pump;	B = B litic Pump;	ailer; BP =		g Gravity Drain);	tric Submers O = Oth	ible Pump; er (Specify)			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	ITE AME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773												
	MW-1			SAMPLE		V-13C				November 2	010		
	,					GING DA	ΓA						
WELL		TUB				INTERVAL	STATIC D			URGE PUMP T			
	(inches): 2.0		IETER (inches):	0.25 DEP	TH: 63 1	feet to 73 fe	et TO WATE	R (feet): /႘ႝ WELL CAPACI	<i>04</i> 0	R BAILER:peris	taltic		
	t if applicable)		= (THE DEI THE	-						
	NT VOLUME PU	JRGE: 1 E	QUIPMENT VOL	= PUMP VOL	feet – UME + (TU	BING CAPACIT	feet) X TY X TU	0.16 g JBING LENGTH	allons/foot + FLOW (ELL VOLUME	gallons		
(Offig fill Ou	т п арріїсавіе;			= 0.0 g	allons + (0.0026 gallo	ns/foot X	75 feet)	+ 0.13	2 gallons = (9.77 gallons		
	IMP OR TUBING WELL (feet):	68		MP OR TUBING WELL (feet):	68	PURGING INITIATE	G D AT: 0 735		0810	TOTAL VO PURGED (LUME gallons): ス.45		
TIME	VOLUME PURGED (gallons)	CUMUL VOLUM PURGE (gallons	PURGE RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (uS/cm	OXYGEN (circle units) (mg// or % saturation	TURBIC (NTU		be) (mV)		
0800													
0805	0.35	2.10	0.07	18.14	4.91	2	70	0.411	3.2				
0810 0.35 2.45 0.07 18.14 4.91 24.37 70 0.41 3.1 clear -14.3													
		VI ====00=1						HARRIST CONTRACTOR					
									V In a second				
	A OLTAY (O. II	B E 0					3" = 0.37;	4" = 0.65:			100 5.00		
	PACITY (Gallon ISIDE DIA. CAF		0.75" = 0.02; d./Ft.): 1/8" = 0	1" = 0.04; .0006; 3/16"	1.25" = 0. = 0.0014;	06; 2" = 0.16 1/4" = 0.0026			5" = 1.02; 0.006; 1	6" = 1.47; /2" = 0.010;	12" = 5.88 5/8" = 0.016		
PURGING	EQUIPMENT C	ODES:	B = Bailer;	BP = Bladder P			Submersible Pu	mp; P.P = P	eristaltic Pu	ump; O = C	ther (Specify)		
SAMPLED	BY (PRINT) / A	FEILIATIO	J.	SAMPLER(S)		PLING DA	IA	1	-	1			
Joe Terry		II I ILIA I IOI	•		Cer	Λ <u>ι</u> (ο).		SAMPLING INITIATED A	T: 0815	SAMPLII ENDED	NG ^{AT:} 0820		
PUMP OR	TUBING WELL (feet):	60		TUBING MATERIAL CO	6			-FILTERED: Y	(1)		SIZE: μm		
	CONTAMINATIO		JMP Y (i		TUBING	Y (re	placed)	DUPLICATE:	**********	(A)			
SAM	PLE CONTAINE	R SPECIF	CATION		SAMPLE F	PRESERVATION	N	INTEND		SAMPLING	SAMPLE PUMP		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL ED IN FIELD (r	rlNAL pH	ANALYSIS A METHO		EQUIPMENT CODE	FLOW RATE (mL per minute)		
MW-13C	3	CG	40mL	HCL		refilled by lab		8260		RFPP	<100		
MW-13C	3	CG	40mL	None		None		8011		RFPP	<100		
MW-13C	MW-13C 1 PE 250mL HNO ₃							Metal	s	APP	250		
MW-13C	1	PE	125mL	H₂SO₄	F	refilled by lab		NH ₃		APP	250		
MW-13C	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	250		
DEMARK	ر است است. د داد حراست د												
	3 EV: 1		=	0							2		
MATERIA	w clew	AG = Amb		Los: movē = Clear Glass;		olyethylene;	PP = Polypropy	lene; S = Silic	one: T=	Teflon; O =	Other (Specify)		
	G EQUIPMENT		APP = After P	eristaltic Pump;	B = B	ailer; BP =	Bladder Pump;	ESP = Elect	ric Submer	sible Pump;	, 1//		
			RFPP = Rever	se Flow Perista	Itic Pump;		Method (Tubing		O = Ot	her (Specify)			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria For Range of Variation of Last three consecutive readings (see FS 2212, section 3) pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME: J.E	SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773										
	MW-1		,	SAMPLE ID		1-16A				November 20	010
	7	011				SING DA	ΓΑ				
WELL		TUBING			SCREEN	INTERVAL	STATIC E			RGE PUMP T	YPE
	R (inches): 2,0		TER (inches):0	.25 DEPTI	H: 8. 63fe	et to / 8.63 fe	et TO WATE	R (feet): /O. WELL CAPACI	SZ ORI	BAILER:peris	taltic
	t if applicable)	I WELL VO					•			, 2	
EQUIPMEN	NT VOLUME PL	JRGE: 1 EQL	= (JIPMENT VOL	/ 8 . 63 fe . = PUMP VOLUI	eet – ME + (TUE	SING CAPACIT	feet) X	0.16 g JBING LENGTH)	allons/foot =	= 1,3	gallons
(only fill out	(only fill out if applicable) = 0.0 gallons + (0,0026 gallons/foot X feet) + 0,12 gallons = gallons										
INITIAL PUMP OR TUBING PURGING PURGING TOTAL VOLUME											
DEPTH IN	WELL (feet):	15	DEPTH IN	WELL (feet):	15	INITIATE	DAT: /325	ENDED AT:	1420	PURGED (g	gallons): 4/,4/
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND, (circle units) µmhos/cm o(µS/cm)	OXYGEN (circle units) (mg/L or % saturation	TURBIDIT (NTUs)	COLO (describ	
14105	3.20	3.20	0.08		4.92	27,42	60	0.53	3.8	clea	v -92.7
1410	0.40	3.60	8.08	The state of the s	4,89	27.34	55	0.62	3,5	e lea	v -77.7
145	0.40	4.00	0.00		4.87	27.29	54	0.54	2.9	cles	w -80.6
1420	0.40	41.40	0.08	11.81	4,87	27.32	55	0.50	3,4	clea	·76.0
									1		
				-						_	
									1		
			 	-					-		
				-					-		
	PACITY (Gallon:			1" = 0.04; 1	.25" = 0,0	6; 2 " = 0.16	; 3" = 0.37;	4" = 0.65;	5" = 1.02;	6" = 1.47;	12" = 5,88
	ISIDE DIA. CAF					1/4" = 0.0026	*				5/8" = 0.016
PURGING	EQUIPMENT C	ODES. E	= Bailer; I	BP = Bladder Pu		LING DA	Submersible Pu	inp, PP Pt	eristaltic Pum	р, О-О	ther (Specify)
	BY (PRINT) / A	FFILIATION:		SAMPLER(S) S				SAMPLING	***************************************	SAMPLIN	IG
Joe Terry /				Jue "	tun	/	71	INITIATED A		ENDED A	T: 1432
PUMP OR DEPTH IN	TUBING WELL (feet):	15		TUBING MATERIAL COI	DE: PE			-FILTERED: Y on Equipment Ty		FILTER S	IZE: μm
	CONTAMINATIO		IP Y (N		TUBING	Y (N) (re	placed)	DUPLICATE:	Y	N	
SAMI	PLE CONTAINE	R SPECIFICA	ATION	S	AMPLE PE	RESERVATION	١	INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (n	FINAL nL) pH	ANALYSIS AI METHO		QUIPMENT CODE	FLOW RATE (mL per minute)
MW-16A	3	CG	40mL	HCL		efilled by lab	ι <i>-)</i> μπ	8260		RFPP	<100
MW-16A	3	CG	40mL	None		None		8011		RFPP	<100
MW-16A	1	PE	250mL	HNO ₃	Pr	efilled by lab		Metals	;	APP	300
MW-16A	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	300
MW-16A	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	300
REMARKS: My How Holding: 5.5 NTM											
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
SMITTLING	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.	SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773											
	MW-16"			SAMPLE		W-16B	Tomas ray, or	70 - 70		November 2	010	
	y	V				RGING DA	TA		-			
WELL DIAMETER	(inches): 2.0	TUBING	ER (inches):0.		L SCREE	EN INTERVAL STATIC DEPTH PURGE PUMP TYPE TO WATER (feet): OR BAILER: electric submersit						
WELL VOL	UME PURGE:			AL WELL DEP	TH - ST	TATIC DEPTH TO	O WATER) X	WELL CAPAC		IN DAMELIN. CICC	and Submersible	
, ,	if applicable)		= (feet -		feet) X		ons/foot =		gallons	
	NT VOLUME PU : if applicable)	JRGE: 1 EQU	IPMENT VOL.	≃ PUMP VOL	UME + (T	UBING CAPACIT		BING LENGTH	+ FLOW C	ELL VOLUME	1000	
			T/		allons + (0.12		0. 4 gallons	
	MP OR TUBINO WELL (feet):	333	DEPTH IN V	P OR TUBING VELL (feet):	33	PURGING	G DAT: / <i>335</i>	PURGING ENDED AT:	1540	PURGED (-UME gallons): 56.25	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standar units)	d TEMP.	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) (mg/L) or % saturation	TURBID (NTUs			
1525	419.50	49.50	0.45	12.44	4.92	24.96	61	0.27	24.0		-124.7	
1535	4.50	54.00	0.45	12.44	4.91		61	0.27	19.6		v -127.8	
1540	2.25	56.25	0.45	12.44	4.9	1 24,86	61	0.27	17.3	3 clew	-128.0	
			1						-			
				-								
WELL CAF	PACITY (Gallon:	s Per Foot): (0.75" = 0.02;	1" = 0.04;	1.25 " = 0).06; 2" = 0.16			5" = 1.02;	6 " = 1.47;	12 " = 5.88	
	ISIDE DIA. CAF EQUIPMENT C			0006; 3/16" BP = Bladder F	= 0.0014;		6; 5/16" = 0.0 Submersible Pun		0.006; 1/ eristaltic Pu	/2" = 0.010;	5/8" = 0.016 ther (Specify)	
FUNGING	EQUIPMENT	ODES. B	- Danei, L	or - Diaudei F		PLING DA		np, rr-r	enstance i u	шр, υ-υ	ther (opecity)	
SAMPLED Joe Terry /	BY (PRINT) / A EPS	FFILIATION:		SAMPLER(S)				SAMPLING INITIATED A	T- 12-21	SAMPLIN ENDED A	IG AT: 1552	
PUMP OR DEPTH IN	TUBING WELL (feet):	33		TUBING MATERIAL CO	ODE: PE	7		FILTERED: You Equipment Ty	(N)	FILTER S	IZE: µm	
	ONTAMINATIO		1		TUBING	Y (N)re	placed)	DUPLICATE		N		
SAMI	PLE CONTAINE	R SPECIFICA	TION		SAMPLE	PRESERVATIO	N	INTEND	ED	SAMPLING	SAMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL DED IN FIELD (r	FINAL, nL) pH	ANALYSIS A METHO		CODE	(mL per minute)	
AW-16B	3	CG	40mL	HCL		Prefilled by lab		8260		ESP	<100	
MW-16B	3	CG	40mL	None		None		8011		ESP	<100	
MW-16B	1	PE	250mL	HNO ₃		Prefilled by lab		Metal		ESP	300	
MW-16B	1	PE	125mL	H₂SO₄		Prefilled by lab		NH ₃		ESP	300	
MW-16B	1	PE	250mL	None		None		TDS, CI,	NO ₃	ESP	300	
REMARKS: Mitch the birthy : 113NTU												
weather nisunny, 20% BEV: 1.2 gal Odor: NONE												
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)												
SAMPLING	G EQUIPMENT		APP ≂ After Pe RFPP = Revers			Bailer; BP = SM = Straw	Bladder Pump; Method (Tubing	ESP = Elect Gravity Drain);		sible Pump; ner (Specify)		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME: J.E	SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773										
WELL NO:	MW-160	-		SAMPLE I						November 20	010
						GING DA	TA				
WELL VOL	R (inches): 2,0 LUME PURGE: t if applicable)		ER (inches):0	0.25 DEPT	SCREEN	INTERVAL eet to 6 7.7 fe	STATIC eet TO WAT	ER (feet): //, WELL CAPACI	76 OR	RGE PUMP T'R BAILER:peris	
	NT VOLUME PU t if applicable)	JRGE: 1 EQU	IPMENT VOL	. = PUMP VOLU	JME + (TUI Jlons + (0		ry x t	UBING LENGTH	+ FLOW C		_
	MP OR TUBING	63		IP OR TUBING WELL (feet):	63	PURGIN		PURGING ENDED AT:	***	TOTAL VOI	
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) or % saturation	TURBIDI (NTUs) (descrit	
1438	4.24	4.24	0.08	-	5.09	25.79	117	0.47	2.3		
1442	0.32	41.56	0.08	12.00	5.08	25.72	118	0.46	2.4		
1449	0,210	11.96	0.09	12.00	5.09	25.73	117	0.46	2.4	Clea	-62.8
TUBING IN	PACITY (Gallon: ISIDE DIA, CAF EQUIPMENT C	PACITY (Gal./F	Ft.): 1/8" = 0.		= 0.0014; ump;	1/4" = 0.002 ESP = Electric	Submersible Pu	0.004; 3/8" = 0	5" = 1.02; 0.006; 1/2 eristaltic Pur	6" = 1.47; 2" = 0.010; mp; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
		-				PLING DA	TA				
Joe Terry /		FFILIATION:		Ghi	SIGNATUR	RE(S):		SAMPLING INITIATED A			T: 1457
PUMP OR DEPTH IN	TUBING WELL (feet):	63		TUBING MATERIAL CO	DE: PE			D-FILTERED: Y tion Equipment Ty		FILTER S	IZE: μm
FIELD DE	CONTAMINATIO		P Y ())	TUBING	Y (N)re	placed)	DUPLICATE:	Y	(N)	
SAM	PLE CONTAINE	R SPECIFICA	TION	5	SAMPLE P	RESERVATIO	N	INTEND		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED	ADD	TOTAL VOL ED IN FIELD (1		ANALYSIS A METHO	DD O	CODE	(mL per minute)
MW-16C	3	CG	40mL	HCL	Р	refilled by lab	<u> </u>	8260		RFPP	<100
mw-16C	3	CG	40mL	None		None		8011		RFPP	<100
MW-16C	1	PE	250mL	HNO ₃		refilled by lab		Metal		APP	300
MW-16C	1	PE	125mL	H₂SO₄	P	refilled by lab		NH ₃		APP	300
MW-160	1	PE	250mL	None		None	_	TDS, CI,	NO ₃	APP	300
REMARKS: initial turbidity; Zil NTY											
	N. A.SUT	, ,		Odorinon		3 Equ	y. W1: 1.	Ogul			04 (0 '5')
MATERIA		AG = Amber		= Clear Glass;				ylene; , S = Silic			Other (Specify)
	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) INTES: 4. The above do not constitute all of the information required by Chapter 62-160. F.A.C.										

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773											
	MW-V			SAMPLE I		1-19A	1 Ollin Vay, O		DATE: 9	November 20	010
	7 100 - 10	1/4				ING DA	ΤΔ				
WELL		TUBIN	 G	WELL		INTERVAL	STATIC I	DEPTH	PL	JRGE PUMP T	YPE
	R (inches): 2.0		TER (inches):0		H: 7,65 fe	et to / 7, 65 fe	et TO WATE	R (feet): 9,7	/ OF	R BAILER:peris	taltic
	t if applicable)	1 WELL VO					OWATER) X	WELL CAPACI		, 7	
EQUIPMEN	NT VOLUME PU	JRGE: 1 EQ	= (JIPMENT VOL	17.65 f	eet – JMF + (TUF	9.71	feet) X	0.16 g UBING LENGTH)	allons/foot		gallons
	t if applicable)				llons + (0		ns/foot X	,			
INITIAL PU	JMP OR TUBINO	G ,	FINAL PUN	#P OR TUBING	nons+(v	PURGIN		feet) PURGING	+ 0.12	gallons =	gallons
DEPTH IN WELL (feet): 14 DEPTH IN WELL (feet): 14 INITIATED AT: 1310 ENDED AT: 1420 PURGED (gallons): 7.00											
TIME VOLUME PURGE PURGED PURGED (gallons) (gallons) (gpm) (feet) UEPTH TO WATER (get)						TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/l or % saturation	TURBID (NTUs		
1410	6.00	6.00	0.10	10.12	6.02	27.05	727	0.46	38,	2 brow	-106.9
1415	0.50	6.50	0./0		6.02	27.03	725	0.45	38.		
1420	0.50	7.00	0.10	10.12	6-01	27.04	724	0.44	38.6	brow	n -116.6
					31111						
							1				
TUBING IN	PACITY (Gallon: NSIDE DIA. CAP EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0.			1/4" = 0.002	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0	5 ;" = 1.02; .006; 1/ eristaltic Pu	6" = 1.47; 2" = 0.010; mp;	12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A / EPS	FFILIATION:		SAMPLER(S)				SAMPLING INITIATED AT	r: /410e	SAMPLIN	IG AT: 1438
PUMP OR	TUBING			TUBING	700 C	P	FIELD	-FILTERED: Y			IZE:/_μm
	WELL (feet):	14		MATERIAL CO		F 5.		on Equipment Ty		etak on h	
	CONTAMINATIO				TUBING		eplaced)	DUPLICATE:			
	PLE CONTAINE		ATION	PRESERVATI		RESERVATIO	N FINAL	INTENDE ANALYSIS AI		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	USED	ADDI	ED IN FIELD (mL) pH	METHO		CODE	(mL per minute)
MW-GA		CG	40mL	HCL	Pı	efilled by lab		8260		RFPP	<100
MW-19A	3	CG	40mL	None		None		8011		RFPP	<100
MW-191		PE	250mL	HNO ₃		efilled by lab		Metals	3	APP	375
MW-191	1	PE	125mL	H₂SO₄	Pı	efilled by lab). 	NH ₃		APP	375
MW-19A	1	PE	250mL	None		None		TDS, CI,	7	APP	375
MW-19A 1 PE 250al HANO, Poetilled by lat Metals APP 375											
menthe: clear, ~74°F slight breeze Turbidity afto filter 30NTG											
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
		CODES:	APP = After Po	eristaltic Pump;	B = Ba	iler; BP =	Bladder Pump;	ESP = Electr	ric Submers	sible Pump;	
	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773										
	MW-K		,	SAMPLE ID:		1-19C			DATE: G	November 2	010
	7 100 1					SING DA	TA				
WELL	2 (inches): 2.0	TUBING		WELL S	CREEN	INTERVAL	STATIC D	DEPTH	PU	RGE PUMP T	
	R (inches): 2.0	1 WELL VO	TER (inches):	AL WELL DEPTH	56, 7 fe - STA	et to 66.7 fe	et TO WATE	R (feet): 9. (ッと) OR TY	BAILER: elec	ric submersible
(only fill ou	t if applicable)		= (fee			feet) X				
EQUIPME!	NT VOLUME PU	JRGE: 1 EQU		= PUMP VOLUM	E + (TUE	BING CAPACI		JBING LENGTH)	ons/foot = + FLOW CI	ELL VOLUME	gallons
(Orliy IIII Ou	t if applicable)			= 0,0 gallo	ns + (0.	006 gallons	s/foot X	7	0,12	gallons = (26 gallons
	JMP OR TUBING WELL (feet):	62		MP OR TUBING WELL (feet):	62	PURGIN INITIATE	G DAT: 13/5	PURGING ENDED AT:	1455	TOTAL VOL PURGED (g	UME (allons): 50
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	(feet)	pH tandard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) (mg/L or % saturation	TURBIDI (NTUs)		
1445	45.00	45.00			.411	25.59	119	0.15	48	Cloud	1-119,6
1450	2.50	47,50			5.40	25.59	119	0.16	46	cloud	ly -119.4
1455	2.50	40.00	0.50	12.18	5,40	25.60	119	0.15	46.5	cloud	4-117.3
		50.00	0								
	97,910										
	ļ			-							
			-								
	1		-	+							
											_
	1		1								
	PACITY (Gallon				25" = 0.0				5" = 1.02;	6" = 1.47;	12" = 5.88
	NSIDE DIA, CAF EQUIPMENT C			.0006; 3/16" = 0 BP = Bladder Pum		1/4" = 0.002 SP = Electric	6; 5/16" = 0. Submersible Pui		eristaltic Pun		5/8" = 0.016 ther (Specify)
						LING DA		.,			
SAMPLED Joe Terry /	BY (PRINT) / A EPS	FFILIATION:		SAMPLER(S) SIC		<u>E</u> (S):		SAMPLING INITIATED AT	F: / (TOO)	SAMPLIN	G T: /5/10
PUMP OR	TUBING	10		TUBING		7	FIELD	FILTERED/ Y			IZE: / µm
	WELL (feet):	62		MATERIAL CODE				on Equipment Ty		tals only	
	CONTAMINATIO				UBING		placed)	DUPLICATE:	Y		04445
SAMPLE	PLE CONTAINE	R SPECIFICA MATERIAL		SA PRESERVATIVE		RESERVATIO	N FINAL	INTENDE ANALYSIS AI	ND/OR E	SAMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDE	D IN FIELD (nL) pH	METHO	D	CODE	(mL per minute)
MW-19C	3	CG	40mL	HCL	Pr	efilled by lab		8260		ESP	<100
MW-19C	3	CG	40mL	None		None		8011		ESP	<100
MW-19C	1	PE	250mL	HNO₃ H₂SO₄	-	efilled by lab		Metals		ESP ESP	350
MW-19C	1	PE PE	125mL 250mL	H₂SO₄ None	Pr	efilled by lab None		TDS, Cl, I	NO.	ESP	350
MW-19C		PE	25001	HNOz	Oras		1	Meta		ESP	350 350
MW-196 1 DE 250AL HMOZ Pretilled by Int. Metals ESP 350 REMARKS: initial turbidity: 123 NTM, 3EV: 1.9gol											
weather: clear, ~74°F, slight breeze Odor: none turbidity after filter: nowing											
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Peristaltic	B = Bai		Bladder Pump; Method (Tubing	ESP = Electr Gravity Drain):			
LIOTEO. 4	RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); 0 = Other (Specify)										

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773											
	MW-23			SAMPLE		N-23A			DATE: 9	November 20	010
	<i>y</i> -3					SING DA	TA				
	(inches): 2,0		TER (inches):0	.25 DEP	L SCREEN TH: 17.75fe	INTERVAL eet to 27,75 fe	STATIC D	EPTH ER (feet): 20. (2 OR	RGE PUMP T BAILER:peris	
(only fill out	if applicable) IT VOLUME PL		= (,	27-75 . = PUMP VOLU	feet –	20.62	feet) X		allons/foot	= /, 2 ELL VOLUME	gallons
(only fill out	if applicable)				illons+(0		ns/foot X	feet)		gallons =	gallons
	MP OR TUBINO WELL (feet):	3 24		IP OR TUBING WELL (feet):		PURGING		PURGING		TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP, (°C)	COND. (circle units) µmhos/cm or (µS/cm)	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)	TY COLO	R ORP pe) (mV)
1300	4.75	4.75	0.05		5.34	25.71	256	0.82	49.3	yelloo	V184-57.0
1310	0.50	5.25	0-05	1 "	5-34	25.72	258	0.74	46.0	در	11 -70.3
1220	0.50	5.75	0.05		5.33	25.71	259	0.73	44.8	CL	11-71.6
1230	0.50	6.25	0.05	20.98	5.34	25.73	259	0.71	45.0	Cc	11 -72.6
TUBING IN	PACITY (Gallon: SIDE DIA. CAF EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0.			1/4" = 0,002	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0	5" = 1.02; .006; 1/2 eristaltic Pun	6" = 1.47; "" = 0.010; np; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A EPS	FFILIATION:		SAMPLER(S)				SAMPLING INITIATED A	r: 1275	SAMPLIN ENDED	IG AT: 1249
PUMP OR DEPTH IN	TUBING WELL (feet):	24	Э.	TUBING MATERIAL CO	DDE: PE		Filtrati	-FILTERED: (Y	N	FILTER S	IZE:/_ μm
FIELD DEC	CONTAMINATIO	ON: PUN	AP Y		TUBING		placed)	DUPLICATE:			·
SAMPLE	PLE CONTAINE	MATERIAL	VOLUME	PRESERVATI	VE	RESERVATION	FINAL	INTENDI ANALYSIS A METHO	ND/OR E	SAMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
ID CODE	CONTAINERS 3	CODE	40mL	USED HCL		ED IN FIELD (r refilled by lab		8260		RFPP	<100
	3	CG	40mL	None		None	-	8011		RFPP	<100
MW-23A	1	PE	250mL	HNO ₃	P	refilled by lab		Metals	6	APP	200
MW-23A MW-23A	1	PE	125mL	H₂SO₄		refilled by lab		NH ₃		APP	200
MW-33A	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	200
MW-23A	1	PE	250nL	HNO.	Pres	fled by Jul	- 1	issued Meta	ls	APP	200
REMARKS: Initial terbidity. 62.8 NTM. Odor none wouther: clear, N68°F, sixh-breeze Turbidity when filter 1.5 NTM											
	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;										
RFPP = Reverse Flow Peristalitic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)											

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773										
WELL NO	MW-2°	₹ <i>С</i>		SAMPLE ID		J-23C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, Grand, Goodele		9 November	2010
		<i></i>			PUR	GING DAT	ΓΔ				
WELL VO	R (inches): 2.0 LUME PURGE: It if applicable)	TUBIN DIAMI 1 WELL VO	ETER (inches):		SCREEN H:よフィfe	INTERVAL	STATIC D	R (feet): 2/1)	67 0	PURGE PUMP T OR BAILER: elec	
EQUIPME		URGE: 1 EQ	= (UIPMENT VOI	L. = PUMP VOLUI	eet – ME + (TUI ons + (=0.			JBING LENGTH	+ FLOW	CELL VOLUME	gallons
	JMP OR TUBIN WELL (feet):	G 62		MP OR TUBING	62	PURGING		PURGING		TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	RATE (gpm)	(feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (s/cm)	DISSOLVED OXYGEN (circle units) (mg/l) or % saturation	TURBI (NTL	IDITY COLC	OR ORP
1050	15.00	15.00		21.52	5.66	24.13	109	0.26	13	clear	- 19.5
1055	2.50	17.50	0.50		5.65	241.15	108	0.23	17.	1 Clear	-26.1
1100	2.50	20.00	0.50	2152 3	5.65	24.15	108	0.21	16.	7 Clea	
TUBING IN	PACITY (Gallon NSIDE DIA, CAF EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0	BP = Bladder Pur	0,0014; np; E		5/16" = 0.0 ubmersible Pun	004; 3/8" = 0	5" = 1.02; .006; eristaltic P	1/2" = 0,010;	12" = 5.88 5/8" = 0.016 ther (Specify)
	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SI			17	SAMPLING	Ÿ	SAMPLIN	IC
Joe Terry /	EPS			Ch	se Co	ex		INITIATED AT	r: //os		T: ///0
	WELL (feet):	6	-	TUBING MATERIAL COD			Filtratio	FILTERED: Y in Equipment Ty	pe:	FILTER S	IZE: μm
	CONTAMINATIO				TUBING	Y (N) (rep		DUPLICATE:	Y	N	
SAMPLE ID CODE	# CONTAINE	MATERIAL CODE	VOLUME	PRESERVATIVE USED	=	RESERVATION TOTAL VOL ED IN FIELD (m	FINAL	INTENDE ANALYSIS AI METHO	ND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (ml. per minute)
MW-23C	3	CG	40mL	HCL		efilled by lab		8260		ESP	<100
nn-236	3	CG	40mL	None		None		8011		ESP	<100
MW-23C	1	PE	250mL	HNO₃	Pr	efilled by lab		Metals		ESP	300
MW-236	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		ESP	300
MW-23C	1	PE	250mL	None		None		TDS, CI, I	NO ₃	ESP	300
EB-2	collected	for sur	e paran	eters as a	buve.	Collection	time 11.	30			
REMARKS: initial turbidity: 30NTH Odor: none BEV: 1, Byul weather; clear, N68°F, 51, 54 to reeze After decontamination of pump collected as equipment blank through pump w/ lab supplied DI water.											
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING FOLIPMENT CODES: APP = After Peristaltic Pump: R = Bailer: RP = Bladder Pump: ESP = Electric Submersible Pump:											
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)											

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Client: WSI Project:	J.E.D. Solid Waste Management Facility	Task:03	0 Sampled By: J. Terry
Station: Simp I primary & WACS ID: _	19947		
Sample Rate: <u>~ 400</u> ml/min Sample F	Rate (VOC's): <u><!--00</u--> ml/min Water Quality</u>	y Meter (Make & Model): YSI 556	S/N or ID: 06 A 2173 AM
Sampling Method: Bailer Per	ristaltic Pump Submersible Pump Grav	vity Feed X Port Pump (Make &	: Model):

Time	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Comments
1125	30.74	7.13	23,956	34	-146.9	1.28	durk brown	
	×							

Field Conditions/Observations: Clear, ~72°F

Detectable Odor: X Yes No Describe: Shoke like

		E CONTAINER CIFICATION		SAMPLE PRESERVATION	INTENDED ANALYSIS AND/OR METHOD
# CONTAINERS	MATERIAL	VOLUME (ml)	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	
3	Clear glass	40	Helkone	Pre-filled by Lab	8260
1	HDPE	250	HNO3	Pre-filled by Lab	Metals
1	HDPE	125	H2SO4	Pre-filled by Lab	NH ₃ , COD
1,0	HDPE	250	NaOH	Pre-filled by Lab	Cyanide
I,	HDPE	250	NaOH & ZnAc	Pre-filled by Lab	Sulfide
1	HDPE	500	None	None	Cl, NO ₃ , BOD ₅ , TDS
7	Amber Glass	1000	None	None	8270, 8081, 8082, 8151
3	Clear Glass	40	None	None	8011

Sample ID: Sample Time:	Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: Courier UPS (Airbill No.12x5w09932100303	3) Other ()
sampling locations. Leuchall offervesces when in contact infactor,	sump piping and then poured into sample containers. Glass vessel was decontaminated in between preserved better. To avoid head space in vials for 3260 the vial was rused by leadant
to remove acrot prior to Cilling for collection.	J /

Client: WSI Project:	J.E.D. Solid Waste Management Faci	ility Task: 03 Date: 101	November 2010 Sampled By: J. Terry
Station: Surp 2 prinary WACS ID:	199418		
		Quality Meter (Make & Model): _	YSI 556 S/N or ID: 06 A 2173 AM
Sampling Method: Bailer F	Peristaltic Pump Submersible Pump	Gravity Feed X Port	Pump (Make & Model):

Time	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Comments
1240	32.09	6.77	15.984	0.8	-42.4	2.60	durk brown	

Field Conditions/Observations: Clear, ~78°F

Detectable Odor: X Yes No Describe: Sour

		E CONTAINER DIFICATION		SAMPLE PRESERVATION	INTENDED ANALYSIS AND/OR METHOD
# CONTAINERS	MATERIAL	VOLUME (ml)	PRESERVATIVE USED OT //	TOTAL VOL ADDED IN FIELD (mL)	
3	Clear glass	40	HCL NO. VE	Pre-filled by Lab	8260
1	HDPE	250	HNO3	Pre-filled by Lab	Metals
I	HDPE	125	H2SO4	Pre-filled by Lab	NH ₃ , COD
1	HDPE	250	NaOH	Pre-filled by Lab	Cyanide
1	HDPE	250	NaOH & ZnAc	Pre-filled by Lab	Sulfide
1	HDPE	500	None	None	Cl, NO ₃ , BOD ₅ , TDS
7	Amber Glass	1000	None	None	8270, 8081, 8082, 8151
3	3 Clear Glass		None	None	8011

Sample ID: L- \(\)	Sample Time: 1245	Laboratory Performing Analy	vsis: Columbia Analytica	l Services	-10
Method of Shipment: Courier	UPS (Airbill No.13x5V0982210003024)	Other ()		
Notes: Leachate was collected into	a 2.5 gallon glass vessel from port in su	imp piping and then poured	into sample containers.	Glass vessel was decor	ntaminated in between
sampling locations. Leachate och	ervesces when in contact w/acid	preserved boyles. To	avoid hand space.	h unls for 8260	the vial was
rinsed w/leachase to remove	re acid prior to filling for	collection			

Client:	WSI	Pre	oject: J.E.D. S	Solid Waste Managemen	t Facility Task:	03 Date: //	November 2010	Sampled E	3y: <u>J. </u>]	erry
Station: 51	\$3/priving	1)WA	CS ID: 19949							
Sample Rat	e: 1400	ml/min	Sample Rate (VOC's):	00 ml/min</td <td>Water Quality Meter (N</td> <td>Aake & Model):</td> <td>YSI 556 S</td> <td>/N or ID:</td> <td>64217341</td> <td>1</td>	Water Quality Meter (N	Aake & Model):	YSI 556 S	/N or ID:	64217341	1
Sampling N	lethod:	Bailer	Peristaltic Pump	Submersible Pum	p Gravity Feed	X Port	Pump (Make &	Model):		

(°C) III (mS/cm)	(NTU) (m	V) (mg/L)	Color	Comments
0635 27.53 6.97 16.932	6.2 -203	6 0.48	durk brown	

Field Conditions/Observations: Clear, ~55%

Detectable Odor: X Yes ___ No Describe: Smoke - 1. ke

	SAMPLE CONTAINER SPECIFICATION			SAMPLE PRESERVATION	INTENDED ANALYSIS AND/OR METHOD
# CONTAINERS	MATERIAL	VOLUME (ml)	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	
3	Clear glass	40	HELDINE	11.10 Pre-filled by Lab	8260
1,	HDPE	250	HNO3	Pre-filled by Lab	Metals
1	HDPE	125	H2SO4	Pre-filled by Lab	NH ₃ , COD
1	HDPE	250	NaOH	Pre-filled by Lab	Cyanide
1.	HDPE	250	NaOH & ZnAc	Pre-filled by Lab	Sulfide
1	HDPE	500	None	None	Cl, NO ₃ , BOD ₅ , TDS
7	Amber Glass	1000	None	None	8270, 8081, 8082, 8151
3	Clear Glass	40	None	None	8011

Sample ID: Sample Time:	Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX UPS (Airbill No. LEXSW0952216	002972)Other ()
sampling locations. Leuchate effervesces when in contact up	n port in sump piping and then poured into sample containers. Glass vessel was decontaminated in between facility preserved buttles. To avoid head space unals for 13260 were rissed up landate
to remove acid preservative prior to filling ti	er collection.

Client:	WSI	Project:	J.E.D. Solid V	Waste Managemei	nt Facilit	y Task:	03 Date: /01	November 2	010 Sample	d By:	J. Terry	
Station: Suc	04 (pringy Na) W	ACS ID:\c	1950						-			
Sample Rate	: <u>~400</u> ml/mi	n Sample Rat	te (VOC's): <u><!--</u-->/00</u>	ml/min	Water Qu	uality Meter (Ma	ake & Model): _	YSI 556	S/N or ID:	06AZ173	AM	
Sampling M	ethod: Bailer	Peris	taltic Pump	_ Submersible Pum	np	Gravity Feed	X Port	Pump (Make	& Model):			

Time	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Comments
1025	37.77	7.31	19.446	6.0	-65,4	0.33	brown	
7000	21:11	7.71	1-1-1-16	6.0	-65,9	0.35	proun	

Field Conditions/Observations: Clear, ~68°F

Detectable Odor: X Yes No Describe: Sour

		E CONTAINER DIFICATION		SAMPLE PRESERVATION	INTENDED ANALYSIS AND/OR METHOD
# CONTAINERS	MATERIAL	VOLUME (ml)	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	
3	Clear glass	40	Helmeri	Pre-filled by Lab	8260
1	HDPE	250	HNO3	Pre-filled by Lab	Metals
1	HDPE	125	H2SO4	Pre-filled by Lab	NH ₃ , COD
10	HDPE	250	NaOH	Pre-filled by Lab	Cyanide
1	HDPE	250	NaOH & ZnAc	Pre-filled by Lab	Sulfide
1	HDPE	500	None	None	Cl, NO ₃ , BOD ₅ , TDS
7	Amber Glass	1000	None	None	8270, 8081, 8082, 8151
3	Clear Glass	40	None	None	8011

Sample ID:	Sample Time:	Laboratory Performing Analysis:	Columbia Analytical Services
Method of Shipment: Courier _	VPS (Airbill No. 12 X5 W04 872100 2341)	Other (
Notes: Leachate was collected in sampling locations. Leachate of the sample and the same to send acres of the same to send	Herrosces when in correct w/acid pro	ump piping and then poured into ese-red boxtes. To avoid hi	sample containers. Glass vessel was decontaminated in between and space in vials for 3760 the vial was consed upleached

Client: WSI	Project:	J.E.D. Solid W	Vaste Management	Facility Task:	03_ Date: 10	November 2010	Sampled By:	J. Terry
Station: Surp 5 (pr. nur	ين)WACS ID:	22369						
Sample Rate: ~ 400 m	ıl/min Sample R	ate (VOC's): <u><!--0</u-->0</u>	ml/min V	Vater Quality Meter (Make & Model):	YSI 556 S/	N or ID: OGAT	173AM
Sampling Method: Ba	ailer Per	istaltic Pump	_Submersible Pump	Gravity Feed	X Port	Pump (Make & N	Model):	

Time	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Comments
0855	33.68	7.02	16.393	8.5	-42.2	3.02	brown	
				-				

Field Conditions/Observations: <u>Clear</u>, ~56°F

Detectable Odor: X Yes ___ No Describe: _Snoke - like

		E CONTAINER CIFICATION		SAMPLE PRESERVATION	INTENDED ANALYSIS AND/OR METHOD	
# CONTAINERS	MATERIAL	VOLUME (ml)	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)		
3	Clear glass	40	HEL RUNE	Pre-filled by Lab	8260	
1,	HDPE	250	HNO3	Pre-filled by Lab	Metals	
1.	HDPE	125	H2SO4	Pre-filled by Lab	NH ₃ , COD	
1	HDPE	250	NaOH	Pre-filled by Lab	Cyanide	
1	HDPE	250	NaOH & ZnAc	Pre-filled by Lab	Sulfide	
1 9	HDPE	500	None	None	Cl, NO ₃ , BOD ₅ , TDS	
7	Amber Glass	1000	None	None	8270, 8081, 8082, 8151	
3	Clear Glass	40	None	None	8011	

Sample ID: L-5	Sample Time: <u>0</u> 900	Laboratory Performing Ana	alysis: <u>Columbia Analytic</u>	al Services	
Method of Shipment: Courier	(UPS (Airbill No.13-X5W0482240002981)	Other (
Notes: Leachate was collected into sampling locations. Leachate	a 2.5 gallon glass vessel from port in su Hervesces when in contact wi	imp piping and then poure	d into sample containers.	Glass vessel was decor	ntaminated in between
	discard to remove acid prior to			7	

Leachate Sampling Form

Client: WSI Project: J.E.D. Solid Waste Management Facility Task: 03 Date: // November 2010 Sampled By: J. Terry
Station: Sup (Wall) WACS ID: 22370
Sample Rate:
Sampling Method: Bailer Peristaltic Pump Submersible Pump Gravity Feed X_ Port Pump (Make & Model):

Time	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Comments
0755	30.52	7.39	16.870	2.1	-56.9	5.37	Suk brown	

Field Conditions/Observations: Clear, ~ 62°F

Detectable Odor: Y Yes No Describe: Snoke - like

		E CONTAINER DIFICATION		SAMPLE PRESERVATION	INTENDED ANALYSIS AND/OR METHO		
# CONTAINERS	MATERIAL	VOLUME (ml)	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)			
3	Clear glass	40		11-10 Pre-filled by Lab	8260		
1	HDPE	250	HNO3	Pre-filled by Lab	Metals		
1	HDPE	125	H2SO4	Pre-filled by Lab	NH ₃ , COD		
1	HDPE	250	NaOH	Pre-filled by Lab	Cyanide		
1	HDPE	250	NaOH & ZnAc	Pre-filled by Lab	Sulfide		
1	HDPE	500	None	None	Cl, NO₃, BOD₅, TDS		
7	Amber Glass	1000	None	None	8270, 8081, 8082, 8151		
3	Clear Glass	40	None	None	8011		

Sample ID:	Sample Time: 0800	Laboratory Performing Analysis:	Columbia Analytical Services
Method of Shipment: Courier _	<u>X</u> UPS (Airbill No.12x5W09823/000 3963)	Other (
sampling locations. Leachale e	nto a 2.5 gallon glass vessel from port in su Genesia who in contact which p two prior to filling for collection	reserved boxles. To avoid	sample containers. Glass vessel was decontaminated in between head space, wals for 9760 were russed up leached

Appendix C

Field Instrument Calibration Logs

Client: WSI	Project Name: <u>J.E.D. Solid Waste Management Fac</u>	cility Task: 03 Date: / November 2010
Rental Company:ESS		
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME 10404

Time: 0600

	Calibration Standard		Teachersen	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
7696	7 April 2011	pH = 4.00	4,00	Ø - 60	0.2	У	I	QT
7656	21 Jan 2011	pH = 7.00	7.00	0.00	0.2	V	I	DT-
7796	17 Mar 2011	pH = 10.00	10,00	0.00	0.2	Ÿ	I	27
C034709	Oct. 2011	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C033300	Sept. 2011	Turbidity = 10 NTU	9.96	0.4	10%	V	I	gT_
U.		Turbidity = 50 NTU			6.5%			
8064	7 June 2011	Conductivity = 0.100 mS/cm	0.103	3.0	5%	У	C	NI
8063	7 Jun 2011	Conductivity = 1.000 mS/cm	1.002	0.2	5%	Ý	C	YT.
	Per Table →	D.O. = 3.34 mg/L @ 24.5°C	8.38	0.04	0.2 mg/l	Ý	I	97

Date: 2 Nov 2010 Time: 0530

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
7696	7 April 2011	pH = 4.00	4.01	0.01	0.2	Y	Ĉ	OT
7656	21 Jan 2011	pH = 7.00	7.03	0.03	0.2	7	C	gt_
7796	17 Mar 2011	pH = 10.00			0.2	7		
C034709	Oct. 2011	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C033300	Sept. 2011	Turbidity = 10 NTU	9.92	0.2	10%	У	C	97
		Turbidity = 50 NTU			6.5%			,
8064	7 June 2011	Conductivity = 0.100 mS/cm	0.102	2.0	5%	Y	C	gT_
8063	7 Jun 2011	Conductivity = 1.000 mS/cm	1.003	0.3	5%	V	C	91
	Per Table →	D.O. = 9.403 mg/L @ 24.1 °C	8.45	0.047	0.2 mg/l	4	#	94

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH \pm 0.2 of Standard Value; Conductivity \pm 5 % of Standard Value; Salinity \pm 3 % of Standard Value; DO \pm 0.2 mg/L;

 $Turbidity~0.1-10~NTU\pm10\%~of~Standard~Value,~11-40~NTU\pm8\%~of~Standard~Value,~41-100~NTU\pm6.5\%~of~Standard~Value,~2100~NTU\pm5\%$

Client: WSI	Project Name: J.E.D. Solid Waste Management Facility Task: 03 Date: 3 November 2010
Rental Company:ESS	
Water Quality Instrument Make: YSI	Instrument Model Number: 556 Instrument Serial Number: 06.4 2173 AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e Instrument Serial Number: ME 10404

Time: 0520

	Calibration Standard			Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
7696	7 April 2011	pH = 4.00	4.02	0.02	0.2	~	C	gr
7656	21 Jan 2011	pH = 7.00	7.02	0.02	0.2	4	C	97
7796	17 Mar 2011	pH = 10.00			0.2	<i>'</i>	8 - 8	,
C034709	Oct. 2011	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C033300	Sept. 2011	Turbidity = 10 NTU	10.12	1.2	10%	4	e	97
		Turbidity = 50 NTU			6.5%	5		
8064	7 June 2011	Conductivity = 0.100 mS/cm	0.103	3.0	5%	Υ	C	0'
8063	7 Jun 2011	Conductivity = 1.000 mS/cm	0.995	0.5	5%	4		gr
	Per Table →	D.O. = 8.356mg/L @ 24.4°C	8.36	0.004	0.2 mg/l	5	I I	191

Date: 4500 4 Nov 2010 Time: 0500

	Calibration Standard		Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
7696	7 April 2011	pH = 4.00	4,03	0.03	0.2	У	<i>C</i>	QT
7656	21 Jan 2011	pH = 7.00	7.00	0.06	0.2	Ý	C	25
7796	17 Mar 2011	pH = 10.00			0.2		KI	
C034709	Oct. 2011	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%		38	
C033300	Sept. 2011	Turbidity = 10 NTU	10.15	1.5	10%	У	C	91
		Turbidity = 50 NTU			6.5%			
8064	7 June 2011	Conductivity = 0.100 mS/cm	0.100	0.00	5%	Y	I	OT
8063	7 Jun 2011	Conductivity = 1.000 mS/cm	1.000	0.00	5%	Y	T	21
	Per Table →	D.O. = 9.387mg/L @ 24.2°C	8.47	0.083	0.2 mg/l	Ý	C	gr

Note (1): Percent Deviation = (Standard Value – Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH \pm 0.2 of Standard Value; Conductivity \pm 5 % of Standard Value; Salinity \pm 3 % of Standard Value; DO \pm 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Client: WSI	Project Name: J.E.D. Solid Waste Management Facility Task: 03 Date: / November 2010
Rental Company:ESS	
Water Quality Instrument Make: YSI	Instrument Model Number: 556 Instrument Serial Number: 06 42173 Am
Turbidity Instrument Make:LaMotte	Instrument Model Number: 2020e Instrument Serial Number: ME 10404

Time: 1830

	Calibration Standard			Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
7696	7 April 2011	pH = 4.00	4.02	0.02	0.2	У	Č	97
7656	21 Jan 2011	pH = 7.00	7.02	0.02	0.2	ý	_ C	9T
7796	17 Mar 2011	pH = 10.00			0.2			
C034709	Oct. 2011	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C033300	Sept. 2011	Turbidity = 10 NTU	9.85	1.5	10%	Y	C	25
		Turbidity = 50 NTU			6.5%	/		
8064	7 June 2011	Conductivity = 0.100 mS/cm	0.101	1.0	5%	y	C	gr
8063	7 Jun 2011	Conductivity = 1.000 mS/cm	3.992	0.8	5%	Ÿ	C	97
	Per Table →	D.O. = £.576 mg/L @ 23.0 °C	8.64	0.062	0.2 mg/l	4	エ	gr

Date: 9 Nov 7010 Time: 05/5

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
7696	7 April 2011	pH = 4.00	4.03	0.03	0.2	V	C	gr
7656	21 Jan 2011	pH = 7.00	7.06	0.06	0.2	V	C	97
7796	17 Mar 2011	pH = 10.00			0.2			
C034709	Oct. 2011	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C033300	Sept. 2011	Turbidity = 10 NTU	9.85	1.5	10%	Y	C	21
		Turbidity = 50 NTU			6.5%			
8064	7 June 2011	Conductivity = 0.100 mS/cm	0.102	2.0	5%	Y		Q†
8063	7 Jun 2011	Conductivity = 1.000 mS/cm	0.992	0.0	5%	У	<u>C</u>	97
	Per Table →	D.O. = 8.51-1 mg/L @23.7 °C	8.54	0.026	0.2 mg/l	ý_	エ	ar a

Note (1): Percent Deviation = (Standard Value – Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

 $Turbidity~0.1-10~NTU\pm10\%~of~Standard~Value,~11-40~NTU\pm8\%~of~Standard~Value,~41-100~NTU\pm6.5\%~of~Standard~Value,~2100~NTU\pm5\%$

Client: WSI	Project Name: J.E.D. Solid Waste Management Facility Task: 03 Date: November 2010
Rental Company:ESS	
Water Quality Instrument Make: YSI	Instrument Model Number: 556 Instrument Serial Number: 06 A Z173 AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e Instrument Serial Number: ME 10404

Time: 0520

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽ⁱ⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
7696	7 April 2011	pH = 4.00	4.04	0.04	0.2	Y	C	gr
7656	21 Jan 2011	pH = 7.00	7.07	0.07	0.2	Ý	Ĉ	01
7796	17 Mar 2011	pH = 10.00	9,96	0.04	0.2	Ý	C	07
C034709	Oct. 2011	Turbidity = 0.0 NTU				<u> </u>		/
		Turbidity = 1.0 NTU			10%			
C033300	Sept. 2011	Turbidity = 10 NTU	9.82	1.8	10%	Y	C	9T
		Turbidity = 50 NTU			6.5%	,		
8064	7 June 2011	Conductivity = 0.100 mS/cm	0.103	3,0	5%	У	C	OT
8063	7 Jun 2011	Conductivity = 1.000 mS/cm	0.991	0.9	5%	·	C	OT
	Per Table →	D.O. = 8.53 mg/L @ 23.3°C	8.56	0.03	0.2 mg/l	V	I	DT

Date: 11 November 7010 Time: 0500

Lot No.	Calibra Expiration Date	ntion Standard Standard Value	Instrument Response	Percent Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
7696	7 April 2011	pH = 4.00	4.06	0.06	0.2	~	C	97
7656	21 Jan 2011	pH = 7.00	7.08	0-08	0.2	Ÿ	C	OT
7796	17 Mar 2011	pH = 10.00	10.02	0.02	0.2	4	C	01
C034709	Oct. 2011	Turbidity = 0.0 NTU				/		
		Turbidity = 1.0 NTU			10%			
C033300	Sept. 2011	Turbidity = 10 NTU	9.80	2.0	10%	4	٥	QT.
		Turbidity = 50 NTU			6.5%	/		
8064	7 June 2011	Conductivity = 0.100 mS/cm			5%			
8063	7 Jun 2011	Conductivity = 1.000 mS/cm	0,990	1.0	5%	Y		gr
	Per Table →	D.O. = 8.49 &mg/L @ 23.5°C	8.55	0.052	0.2 mg/l	Ý	I	94

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Client: WSI	Project Name: J.E.D. Solid Waste Management Facility Task: 03 Date: /2 November 2010
Rental Company:ESS	
Water Quality Instrument Make: YSI	Instrument Model Number: 556 Instrument Serial Number: 06 A 2 173 A/S
Turbidity Instrument Make:LaMotte	Instrument Model Number: 2020e Instrument Serial Number: ME 10404

Time: 0830

	Calibra	ation Standard	In atmosp.	Percent	Allamakla	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Yes or No	Type of Calibration ⁽³⁾	Performed By:
7696	7 April 2011	pH = 4.00	4,04	0.04	0.2	4	C	OT
7656	21 Jan 2011	pH = 7.00	7.08	0.08	0.2	77	С	97
7796	17 Mar 2011	pH = 10.00	10.03	0.03	0.2	4	C	27
C034709	Oct. 2011	Turbidity = 0.0 NTU				1		
		Turbidity = 1.0 NTU			10%			
C033300	Sept. 2011	Turbidity = 10 NTU	9.82	1.8	10%	y	C	QT
		Turbidity = 50 NTU	- 4 N. 12		6.5%			
8064	7 June 2011	Conductivity = 0.100 mS/cm			5%			
8063	7 Jun 2011	Conductivity = 1.000 mS/cm	0.994	0.6	5%	У	Ċ	97
	Per Table →	D.O. = 8,403mg/L @ 24.1 °C	8.45	0.047	0.2 mg/l	Ý	F	OT

Date:	Time:

	Calibration Standard		Instrument Percen		Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
7696	7 April 2011	pH = 4.00			0.2			
7656	21 Jan 2011	pH = 7.00			0.2			
7796	17 Mar 2011	pH = 10.00			0.2			
C034709	Oct. 2011	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C033300	Sept. 2011	Turbidity = 10 NTU			10%			
		Turbidity = 50 NTU			6.5%			
8064	7 June 2011	Conductivity = 0.100 mS/cm			5%			
8063	7 Jun 2011	Conductivity = 1.000 mS/cm			5%			
	Per Table →	D.O. = mg/L @ $^{\circ}C$			0.2 mg/l			

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Appendix D

Chain-of-Custody Forms

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM SR# Jiooszsi CAS Contact 9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE www.caslab.com TED SWOF Project Number ANALYSIS REQUESTED (Include Method Number and Email Address PRESERVATIVE Kirk Wills

1 3 4 4 1 1 3	1 (00, 103)	COV	Ulanni	95,600		1)		~										
Company/Address				•			7	/	$^{\prime}$	/		/	7	7	1	7		7	1		0. NONE	1
1936 Bruce	B Downs Bh	1 #	+328	,	NUMBER OF CONTAINERS		/c		/	/	\$_{\}^{-1}						/			//	2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH	4
Wesky Chap	el, FL 33	543			JF CON		/\n	1	/47	5	7 4	7	/ /	/ /	/ /	/ /	/ /	/ /	/ /		5. Zn. Ace 6. MeOH 7. NaHSO	etate
813-300-1026	FAX#				ABER C	1/	D).	80/		1	1.49V										8. Other_	
Sampler's Signature Con	Sampler's Printed Nar	Terr	Y		NG NG	/-		/	/5		/			/			/			ALTER	REMARKS/	PTION
CLIENT SAMPLE ID	LAB ID	SAM! DATE	LING TIME	MATRIX																		
MW-16A		11-1-10	1425	GW	9	3	3	į	1	i												
MW-163		11-1-10		GW	9	3	3	1	ì	i												
MW-16C		11-40	1450	GW	9	3	3	i	1	١												
Trip Blak		10-25-10	080	A7O	1	1																
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					1.																	
ODECIM MOTEUCTION COMMENT													_						_			
SPECIAL INSTRUCTIONS/COMMENTS COOLUTE: 10305	TEN.						- TU		ROUND H (SURC			_		REPI		EQUIRE	EMENT	S		INVOICE	E INFORMATIO	NC
Coole Ex. 10305-	2600/						~	_ HUS _ STAI	01180100000	MANGE	S APPL	х}	1	_ II. Resi	D.		orion.		PO	74		
									FAX DAT	re			-			MSD as		ed)				
E							I III. GOL	LOTED	I AA DA	12			_	III. Res		C and C	alibration	n	BILL	LTO:		
							REON	ESTEN	REPORT	T DATE						ion Don	net with I	Raw Data	_			
									112, 011	DATE						Forms / (†			
See QAPP													1	- 14		Yes		50.	-			
AMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY S RELINQUISHED BY RECEIVED BY RELINQUISH						N		- 11	DEOF	IVED B	1/					UISHE		140	_	DI	ECEIVED BY	
4				INQUISHED	21				HEGE	IVEU B	1.			,	SELING	IUISHEI	DBY			, ni	CEIVED B1	
gnature Les Signature Signature Signature							Signatu	re					Signa	ture					Sigr	nature		
rinted Name Joe Telly Printed Name Printed Name Printed Name						Printed	Name		-			Printed Name						Printed Name				
	''''' (A)	Firm					Firm						Firm				Firm					
ate/Time 11-1-10/1700 Date/Time Date/Time Date/Time						Date/Time					Date/Time						Date/Time					

Distribution: White - Return to Originator; Yellow - Retained by Client

JSCOC-06/20/08

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR #	#	
	51605286	
CAS	Contact	

www.caslab.com	s Highway, Ste 200 • Jacksonvill	e, FL 322	256 (904) 73	39-22// • 8	00-695	-1222	XU6 • F.	AX (90	14) /35	1-2011	PA	GE_		<u> </u>	JF _	/	_	CAS	Conta	ici	-		
Project Name JED SWDF Project Manager	Project Number							A	NALYS	SIS RE	QUES	TED (I	nciud	Meth	od Nu	mber a	and C						
Project Manager KY W: Us	Email Address Fuilseen	vola	nnike.	100	PRE	SERV	ATIVE	1	0	3	0	2											
Company/Address		-			S		1	7	7	1	5/	1	7	1	1	7	1		20 m	NAME OF		TION.	
1936 Bruce B	Down Blut	#3	228		AINER			. /		1		_/						/			2. 3.	HCL HNO ₃ H ₂ SO ₄ NaOH	
Wesley Chape	1. FL 3354	3			NUMBER OF CONTAINERS		0		12	10	le Fa	Ĭ,	/ ,	/ /	/ /	/ /	/ ,	/ /	/ /	/ /	4. 5. 6.	NaOH Zn. Aceta MeOH NaHSO ₄	ate
Wesley Chapel, FL 33543 Phone # 813-388-1026 FAX#					BER 0	1	6	000	77		2	/	/									Other	
Sampler's Signature Over Cen Sampler's Printed Name Joe Terry					NOM				/	3/	7									ALT	REN ERNATE	ARKS/ DESCRIPT	TION
CLIENT SAMPLE ID	LAB ID	SÁMF DATE	PLING TIME	MATRIX																			
MW-13A	//	-2-10	0840	GW	9	×	×	×	X	×													
MW-13C		1	0815	1	1	1				1													
MW-12A			1020																				
MW-12C			0940																				
MW-IIA			1225																				
MW-11C			1155																				
MW-10A			1440	4																			
MW-10C		1	1510	GW	V	V	4	J	V	V													
EB-1	11	7-10	1250	STHO O	9	X	X		X	×											1001125		
Trop Black	10		0830	DAINO	Ì	i																	
SPECIAL INSTRUCTIONS/COMMENTS				-	¢		TL				IREME					EQUIRE	EMENT	S		INVC	ICE INF	ORMATION	N
COOLUTA:10306	5-JED-1						-		3.7	HARGE	S APPLY	1)	1	I. Resu	- 23								
							1-	STAN	IDARD				X	II. Rest	ults + QC DUP, MS	C Summi /MSD as	aries s require	ed)	PO#	ŧ			
							REQU	ESTED	FAX DA	TE				_ III. Res		C and C	alibratio	n	BILL	L TO:			
							REQU	ESTED	REPOR	T DATE	Sag		_	OPERTICION (CO	CIACLE	ion Repo	ort with I	Raw Dat	a				
See QAPP						39	-	- 65			75		_	V. Spei	calized F	Forms / (Custom	Report					
SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY S						N			-710				1	Edata	_	Yes	-	No					
RELINQUISHED BY	RELINQUISHED BY RECEIVED BY RELINQUISHE					-			RECE	IVED B	Υ			F	RELINQ	NISHE	D BY		\dagger	1	RECEIV	ED BY	
nature Ox (Signature) 13 Signature						Signati	ure					Signa	ture					Sign	nature				
Printed Name Joe Terry Pr	charle Danger	Prir	nted Name				Printed	l Name				91	Printed Name					Printed Name					
PO LAS				Firm					Firm	Firm				Firm	Firm								
Pate/Time 11 - 2-10/1630 Date/Time 11-2-10/1630 Date/Time					Date/Time Date/Tim				Date/Time				Date	Date/Time									

	Columbia	
(Rosella)	Columbia Analytical	Services

Distribution: White - Return to Originator; Yellow - Retained by Client

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#		
7		
CAS Contr	U5317	
UAS Conta	Ct	

JSCOC-06/20/08

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE www.caslab.com roject Name Project Number ANALYSIS REQUESTED (Include Method Number JED SWAF PRESERVATIVE 2 kwillse enuplaning con 0 1. HCL 2. HNO₃ 3. H₂SO₄ 4. NaOH NUMBER OF CONTAINERS 1936 Bruce B Downs Blue #328 Zn. Acetate MeOH 7. NaHSO₄ 8. Other 813-399-1026 Sampler's Printed Name REMARKS/ JOE TEMY ALTERNATE DESCRIPTION SAMPLING CLIENT SAMPLE ID LAB ID TIME MATRIX MW-GA XX 11-3-10 1350 X 6W MW-6C 1420 MW- TA 1250 MW-7C 1220 MW-94 1020 MW-BC. 1050 MW-9A 0835 MW-90 11-3-10 0900 Trip Black 10-25-10 0900 SPECIAL INSTRUCTIONS/COMMENTS INVOICE INFORMATION TURNAROUND REQUIREMENTS REPORT REQUIREMENTS RUSH (SURCHARGES APPLY) I. Results Only Coolubb: 10307-JED-1 X II. Results + QC Summaries X STANDARD (LCS, DUP, MS/MSD as required) REQUESTED FAX DATE BILL TO: III. Results + QC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report See QAPP Edata _____ Yes ____ No SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEALS: Y N RELINQUISHED BY RECEIVED BY RELINQUISHED BY RELINQUISHED BY RECEIVED BY RECEIVED BY 73 Signature Signature Signature Signature Printed Name Printed Name Printed Name Printed Name Larles Bamiger Firm Date/Time Date/Time Date/Time Date/Time

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#	
5,005393	(7)
 CAS Contact	

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE __/__OF __/ www.caslab.com

Project Name TED SWAF Project Manager	Project Number	ANALYSIS REQUESTED (Include											O (Include Method Number and Co											
Project Manager Kork Wills	Email Address	001/12	lanos.	(in	PRE	SERV	ATIVE	1	0	3	0	2				1								
Company/Address	- iconing		7	,,,	S		_/	7	1	1		-	7	1	7	7	7							
1936 Bruce	B Down Blu	1 #	-328	,	NUMBER OF CONTAINERS			./		/	100°	_/								//	1. Ho 2. Hi 3. H	NO ₃ 2SO ₄		
Wesley Chapel IL 33543					F CON	,		1	/_x	3	12	/	/ /	/ /	/ /	/ /	/	/ /	/ /	' /	5. Zr 6. M	 Acetate 		
013-500-1026					18ER O	/	ું∜,	8	5,	5	57										8. O		-	
Sampler's Signature Out Cury	Sampler's Printed Name	Em	./		N			7	X.C	7	Y	/	/	/ ,	Ι,	/ ,	/		/ ;	ALTE	REMAR RNATE DE	KS/ SCRIPTION	N	
CLIENT SAMPLE ID	LAB ID	SAME DATE	PLING TIME	MATRIX																				
MW-5A	1	1-9-10	1055	GW	9	X	X	X	X	X														
MW-5C			1030	İ	9	1	1	1	1	Ī														
MW-LA			1230		9																			
MW-41C			1255		9																			
MW-3A		V	1430	1	9	V	V	V	V	V														
MW-3C	1	1-8-10	1405	GW	9	X	×	-	×	×														
Trip Black		The second second		CZH ZO	2																20.00			
1						ŕ															16			
														-									D.*	
301																								
SPECIAL INSTRUCTIONS/COMMENTS		-			TURNAROUND REQU						IREMEN	NTS	REPORT REQUIREMENTS							INVOICE INFORMATION				
Cooler ID: 103	117 - TEN . 7							_ RUSH	(SURC	HARGE	S APPLY	ን	i. Results Only										1	
0000 103	112- 700-1						->	∠ STAN	DARD				الإ	li, Resu	its + QC	Summa	ries	****	PO#		-	-	\neg	
							REQU	ESTED I	FAX DAT	ΓE				(LCS, D					BILL	TO: -				
													-	III. Rest		and Ca	alibration	n		5572				
							REQU	ESTED	REPORT	DATE				IV. Data	Validati	on Répo	art with F	Raw Data	i .					
							_							V. Speid	alized F	orms / C	Sustom 1	Report						
See QAPP															3								-	
SAMPLE RECEIPT: CONDITION/COO	RECEIVED BY			TODY SEA	F20100 - 01	N	_		DECE	IVED B	·		_		ELINO				+	-,,	RECEIVED	RV		
61			FICE	MOUNTED	71				NEVE	14500	8				LLINGI	JONEL	, 51				- COLIVED			
Signature As S	Signature LB-	Sig	nature				Signat	ure					Signat	ure			hand in		Signa	ature	15			
Printed Name To Terry	7 919	Prin	nted Name		-		Printe	d Name					Printe	d Name					Print	ed Name			-	
	Charles Barrager CHS	Firr	n				Firm					-	Firm		72	_			Firm		_	-	\dashv	
Date/Time 11-8-10/1600	Date/Time 11-8-10 0921	Dat	re/Time				Date/1	ime					Date/	ime:					Date	Time			\neg	

Distribution: White - Return to Originator; Yellow - Retained by Client

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#	
310	05431
CAS Contact	

JSCOC-06/20/08

9143 Phillips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE (www.caslab.com Project Number JED SUNF ANALYSIS REQUESTED (Include Method Number and **PRESERVATIVE** KNK Wills kuilise enuplanning .con NUMBER OF CONTAINERS 1. HCL 2. HNO₃ 3. H₂SO₄ 4. NaOH 1936 Bruce B Downs Blod #328 5. Zn. Acetate MeOH 7. NaHSO₄ 8. Other Sampler's Printed Name REMARKS/ Joe Terry ALTERNATE DESCRIPTION SAMPLING CLIENT SAMPLE ID LAB ID DATE TIME MATRIX MW-2A GW X XX × N-9-10 A 755 × MW-2C 0730 MW-IA 9 0940 MW-1C 9 0905 MW-23A 10 1235 X MW. 23C 1105 MW-19A 1425 X MW-190 GW 144 10 1500 FB-2 Q14,09 XXX 11.9.10 1/30 Trio Black DIHZO 10-25-10 1000 SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION I. Results Only RUSH (SURCHARGES APPLY) COOLER DD: 10313-JED-I X II. Results + QC Summaries X STANDARD PO# (LCS, DUP, MS/MSD as required) REQUESTED FAX DATE BILL TO: III. Results + QC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report See QAPP Edata _____ Yes ____ No SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEALS: Y N RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY Signature Signature Signature Signature Signature Printed Name Printed Name Printed Name Printed Name Firm Firm Date/Time Date/Time (- (0 - (0 Date/Time Date/Time Date/Time 0917 Date/Time

Columbia Analytical	
Analytical	Services*

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

90	#	
1011	**	
	1005461	
1		
CA	S Contact	

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE www.caslab.com Project Number SWAF ANALYSIS REQUESTED (Include Method Number PRESERVATIVE kwills @ enuploning, con 0 0. NONE
1. HCL
2. HNO3
3. H₂SO₄
4. NaOH
5. Zn. Acetate NUMBER OF CONTAINERS Bine B Down Blud #328 FL 33543 2808 1808 MeOH 7. NaHSO₄ Other Sampler's Printed Name REMARKS/ ALTERNATE DESCRIPTION SAMPLING CLIENT SAMPLE ID LAB ID DATE TIME MATRIX 17 x x x x x x x x x x x 11-10-10 1130 DEHZO Trip Black 2 10-25-10 1100 SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION RUSH (SURCHARGES APPLY) I, Results Only COOK IN: 10314-JED-L1 X STANDARD II. Results + QC Summaries PO# (LCS, DUP, MS/MSD as required) REQUESTED FAX DATE III. Results + QC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report See QAPP Edata _____ Yes ____ No SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEALS: Y N RELINQUISHED BY RECEIVED BY RELINOUISHED BY RECEIVED BY RECEIVED BY RELINQUISHED BY 89 Signature Signature Printed Name Printed Name Printed Name Printed Name Joe Telly Firm Date/Time 0922 Date:Time Date/Time Date/Time 1-10-10/1500

	Columbia Analytical Serv	vices~
--	-----------------------------	--------

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

51005462

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE CAS Contact www.caslab.com roject Name Project Number JFD SWAF ANALYSIS REQUESTED (Include Method Number at **PRESERVATIVE** 0 0 Kuilly erupluniz, ca 0 NONE NUMBER OF CONTAINERS 1. HCL 2. HNO₃ 3. H₂SO₄ 4. NaOH Bruce B Down Blod #329 5. Zn. Acetate 808 6. MeOH 7. NaHSO₄ Sampler's Printed Name JOE TELLY REMARKS/ ALTERNATE DESCRIPTION SAMPI ING CLIENT SAMPLE ID LAB ID DATE TIME MATRIX L-2 XXXX 11-10-10 1245 Philase XXXXX 义 人 DF HO Trup Black 10-25-10 1015 SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION COOLUID: 1031-1- JED-12/2 **RUSH (SURCHARGES APPLY)** I. Results Only X STANDARD II. Results + QC Summaries PO# 9T 11-10-10 (LCS, DUP, MS/MSD as required) REQUESTED FAX DATE BILL TO: III. Results + OC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report See QAPP SAMPLE RECEIPT: CONDITION/COOLER TEMP: Edata _____ Yes _____ No CUSTODY SEALS: Y N RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY 90 Signature Signature Signature Signature Signature Printed Name Printed Name Printed Name Joe Terry Printed Name Firm Firm Date/Time Date/Time Date/Time Date/Time 1-11-10 0122

[K	Columbia Analytical	
	Analytical	Services [™]

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

51005434	J1005436	CD #			000000000000000000000000000000000000000	
51005436	51005436	017 #				
01605486	31605436		-		DN	200
		E.	0/6	20	54	6

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE / OF / www.castab.com Project Number ANALYSIS REQUESTED (Include Method Number and JEDSWDF **PRESERVATIVE** 0 0 kuilliceruplanyica NUMBER OF CONTAINERS HCL HNO3 H₂SO₄ NaOH Bruce B Downs Blud 5. Zn. Acetate 6. MeOH FL 33543 7. NaHSO₄ 8. Other Sampler's Printed Name
Soe Jerry REMARKS/ ALTERNATE DESCRIPTION SAMPLING **CLIENT SAMPLE ID** LAB ID DATE TIME MATRIX 1-3 17 X x X x x x x x x 11-11-10 0645 DI HOO Trip Black 2 X 10-05-10 1215 SPECIAL INSTRUCTIONS/COMMENTS INVOICE INFORMATION TURNAROUND REQUIREMENTS REPORT REQUIREMENTS RUSH (SURCHARGES APPLY) I. Results Only (00 Let ID: 10315-TEN-L3 STANDARD II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REQUESTED FAX DATE BILL TO: III. Results + QC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report See QAPP Edata ____ Yes ____ No SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEALS: Y N RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY 63 Signature Signature Signature Printed Name Printed Name Printed Name Printed Name Firm Date/Time Date/Time Date/Time Date/Time Date/Time 0954 JSCOC-06/20/08

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#			
The same of the	_		
	(10)	15467	
		2461	
CASC	ontact	1/3	

9143 Ph www.caslab.com	39-2277 • 80	00-695	-7222 x	k06 • F	AX (90	4) 739	-2011	PA	GE _		<u>_</u>	OF_		/	CAS	Conta	ıct	7967					
Project Name "JED SWDP	Project Number				ANALYSIS REQUESTED (Include Method Number an																		
Project Menager	Email Address		2 18 5		PRE	SERVA	ATIVE	^	6		_		1,1	73	^	0					15 (SET)		
Company/Address	- Luille	enup lan	min . (0	n	-			0	0	3	2	4/5	4	0	0	0							
EPS					ERS		/			/	/	/	1	200	/		7	7	7	7	/ 1. F	ICL	
1936 Brace B	Downs Blud	#	328		IAIN		/		16	d.	_/				1		/			1	2. H 3. H 4. N	ICL INO ₃ I ₂ SO ₄ IaOH	
Wesley Chapel	FL 3754	13			NUMBER OF CONTAINERS		60	/=/	/5	12	1/2	i	F	20/	/_/	/ ~/	/_	/)	/ /	/ /	5. 4	n. Acetate NeOH IaHSO ₄	3
Phone # 813 - 338 - 1026 FAX#						/	9,260	100	<i>#</i>		12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J'and	27,	W.	<u>8</u> /2	2005	2/	/	1		7. N 8. C		
Sampler's Signature We Tu	Sampler's Printed Nar	Terry			NOM			7.	\$/	yι	90			y a	9/5	\emptyset ,		/		/	REMAI ERNATE DE	RKS/	ON.
CLIÉNT SAMPLE ID	LAB ID		PLING TIME	MATRIX																7161	ETHERIC D	2007111 776	
4-4		11-10-16	T	Lewhork	17	X	X	×	X	×	X	×	×	×	×	×							
Trip Black		10-25-10		ST D	1	X																	
									1,9														
					-																		
						-																	-11
	182															-					-		
1.					-			-							-				-				
Jan																		23					
SPECIAL INSTRUCTIONS/COMMENTS							TL	JRNAR	OUND	REQUI	REMEN	NTS		REPO	ORT RE	EQUIRE	EMENT	S	T	INVC	ICE INFOR	RMATION	
Cook Fo: 1031	4-JED-L4								92	HARGES	APPLY	')	I. Results Only										
								STAN					LCS, DUP, MS/MSD as required)						PO#				
							REQU	ESTED I	AX DAT	E						C and C	alibration	3	BILL	TO:			
							BEQUE	ESTED F	REPORT	DATE				Summa IV Date		ion Dane	art with E	Raw Data	\vdash				
Soo CARR III																Forms / (
See QAPP SAMPLE RECEIPT: CONDITION/CO-	OLER TEMP		CHE	TODY SEA	ic. v		L					11	-			Yes			-				
RELINQUISHED BY	RECEIVED BY			INQUISHED		IN	·	-	RECEI	VED BY	,			F	RELING	UISHE	D BY		+		RECEIVED	BY	
88	Simulation																						
Signature Que Cay	Signature A-B-	_ "	inature				Signatu						Signat							ature			
Printed Name Joe Ferry Irm	Printed Varies Repris	ger Pri	nted Name				Printed	Name					0.000	d Name						led Name			
E81	1712		m te/Time				Firm Date/Ti	ima					Firm	T and					Firm	V			
11-10-10/1500	Date/Time 11-11-10 0\$2	7	er (mile)				₩ (1)	HI/IE					Date/Time					Date/Time					

7	CHAIN OF CU																,	SR		درن	461		
9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 80 Project Number							00-695-7222 x06 • FAX (904) 739-2011 PAGE / OF /																
JED SWAF						ANALYSIS REQUESTED (Include Method Number and																	
Project Manager Kirk Wills Email Address Company/Address_ 00						SERVA	VATIVE 0		0	3 2 4/5		400			0	0							
Company/Address		1	y		SS.		/	/	/			$\overline{}$		150/					/	7	/ Pres	NONE HCL	
1936 Bruce B Downs Blud #328								./	/_		/	/-		/							2. 3.	HNO3 H2SO4 NaOH	
Wesley Chapel, FL 33543						1	/ 0/		00	Cher.	12	1		02/201	(m)	2	/_ /	Ι,	Ι,	/ /	5. 4 6. i	NaOH Zn. Acetate MeOH NaHSO₄	
Phone # B13-388-1026 FAX#						/	2560		±75.	IJ,	文艺术	The state of the s	\$	$\widetilde{\varphi}_{i}$	800	3	5/2/	1				NamSU ₄ Other	
Sampler's Signature Joe Cop	Sampler's Printed Nar	Terry			NUMBER OF CONTAINERS			/ 3	3/		7) \	78	Ť				2)			/ A	REMA LTERNATE D	ARKS/ DESCRIPTION	-
CLIENT SAMPLE ID	LAB ID	SAMP DATE	LING TIME	MATRIX				= 10.0															
2-5		11-10-10	0900	Lenchank	17	×	×	×	X	×	×	x	×	×	x	×							
Trip Blak		10.25.10	1145	DIA	1	X																	
				1															_				-
												-		(I=:	-					-	-		
													i i										
3																							
SPECIAL INSTRUCTIONS/COMMENTS		1							Section 15	044102777			_						<u>Ļ</u>	<u></u>		- New York	
coole ID: 103/4/-	TFN-15						TU		OUND (SURC				ļ	REPO			EMENT	S		IN۷	OICE INFO	RMATION	
							★ STANDARD ★ II. Result								ults + Qf	- OC Summaries POE							
		REQUESTED FAX DATE (LCS, DUP, MS/MSD III. Results + QC and										BULTO:											
		UI. Results + Summaries								√ and €	akofalio												
		REQUESTED REPORT DATE IV. Data Validation Report								ort with	Raw Dat	a											
See CAPP [7]		*									calized l	Forms /	Custom	Report									

See QAPP SAMPLE RECEIPT: CONDITION/COOLER TEMP; Edata _____ Yes _____ No CUSTODY SEALS: Y N RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RECEIVED BY RELINQUISHED BY ∞ 7 Signature Signature Signature Signature Signature Joe Terry Printed Name Printed Name Printed Name Printed Name Firm Firm Firm Firm Date/Time 14.10-10 / 1500 0922 Date/Time Date/Time Date/Time Date/Time

Distribution: White - Return to Originator; Yellow - Retained by Client

Columbia CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM										SR#														
Allalytical Sel Vices		695-7222 x06 • FAX (904) 739-2011 PAGE/OF/_										,	J/005486 CAS Contact											
www.caslab.com Project Name TED SWD F Project Number						ANALYSIS REQUESTED (Include Method Number and																		
Project Manager Kilk Wills Email Address Company/Address Company/Address							ATIVE	0	0	3 2 4/5			4	400		٥	0 0							
Company/Address EPS							/0	//	1	1	1	Γ]		Voy C	1808	7	15/18	7	7		0. N	ONE		
1936 Bluce D Down Blad #328									/~											//	2. H 3. H 4. N	ervative key IONE ICL INO3 I2SO4 IaOH		
Wesley Chapel FL 33543						/	0920	108	3	16 kg (0)	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1	/ /	/ - /	6. N	n. Acetate leOH laHSO ₄		
913-788-1026								3/3	**************************************		3/	1	3/	39) (8. Oth			
CLIENT SAMPLE ID	LABID	SAME	PLING TIME	MATRIX	NUMBER OF CONTAINERS		\vdash		-/	-	/	70	7	$\overline{}$	-	\leftarrow		f		/ ALT	ERNATE DI	RKS/ ESCRIPTION		
L-6	LABID	11-11-10	-25577,1153	Cecebak	17	X	X	X	X	×	×	×	X	×	×	×								
Trip Blank		10.25.10		OFHZO	2	X																,tu		
<u> </u>				-					1									-	-					
										-	-			-										
																-	1							
												-												
3				-	-					_	-	-	_	-		-	-		-					
SPECIAL INSTRUCTIONS/COMMENTS							a comparation of the comparation							REPORT REQUIREMENTS					INVOICE INFORMATION					
Cook ID: 10315		RUSH (SURCHARGES APPLY) STANDARD						I. Results Only II. Results + QC Summaries					od)	PO#										
		REQUESTED FAX DATE							(LCS, DUP, MS/MSD as required) III. Results + QC and Catibration Summaries				AND IN	BILL TO:										
							REQUESTED REPORT DATE				IV. Data Validation Report with Ra					Raw Da	ta							
See QAPP																								
SAMPLE RECEIPT: CONDITION/COOL				STODY SEA		N							Edata Yes No								DESCRIPTION	2.00		
RELINQUISHED BY RELINQUISHED BY RELINQUISHED BY						D BY RECEIVED BY									RELINC	DUISHE	D BY		RECEIVED BY					

Signature

Date/Time

Firm

Printed Name

Signature

Printed Name

Date/Time

Signature

Firm

0954

11-12-10

Printed Name

Date/Time

11-11-10/1200

Signature

Date/Time

Printed Name Joe Terry

Signature

Date/Time

Firm

Printed Name

Appendix E

CD Containing Analytical Laboratory Reports