

3937 Tampa Road, Suite 6 Oldsmar, Florida 34677 PH 813.558.0990 www.geosyntec.com

February 19, 2013

Mr. F. Thomas Lubozynski, P.E. Waste Program Administrator Solid and Hazardous Waste Program Florida Department of Environmental Protection, Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Re: 17th Semi-Annual Water Quality Monitoring Report J.E.D. Solid Waste Management Facility, Osceola County, Florida Permit No. SO49-0199726-022 WACS Facility ID #89544

Dear Mr. Lubozynski:

Submitted herewith is the subject report documenting the 16th semi-annual water quality monitoring event conducted at the J.E.D. Solid Waste Management (JED) Facility located in Osceola County, Florida. This report is being submitted as required for compliance with the conditions contained within the Monitoring Plan Implementation Schedule (MPIS) for the above referenced permit. In accordance with the permit conditions, this semi-annual water quality monitoring event was performed in May 2012. This report is being submitted within the sixty day period after receipt of the final analytical data reports from the laboratory. This report satisfies the semi-annual water quality monitoring compliance requirements as described in the Permit.

As noted in the revised MPIS, two electronic copies of the water quality report are being submitted to FDEP. Each electronic copy contains a pdf of the entire water quality report and the required ADaPT compatible electronic data deliverable (EDD) saved on a compact disk (CD). One CD is attached to this transmittal letter. The second CD containing an electronic copy of this report, including the EDD compatible with the ADaPT software has been sent to the attention of Mr. Clark Moore in Tallahassee, Florida.

If you have any questions or need additional information, please do not hesitate to contact Matthew Wissler at (813) 379-4386.

Sincerely,

Matthew P. Wissler Senior Hydrogeologist

Attachments

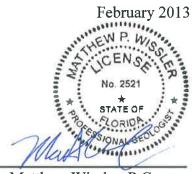
Copy: Mike Kaiser, WSI Clark Moore, FDEP Tallahassee

Prepared For:

Omni Waste of Osceola County, LLC 1501 Omni Way St. Cloud, Florida 34773

17th SEMI-ANNUAL WATER QUALITY MONITORING REPORT

J.E.D. Solid Waste Management Facility 1501 Omni Way St. Cloud, Osceola County, Florida 34773


Prepared by:

consultants

3937 Tampa Road, Suite 6 Oldsmar, FL 34677

Project No. FW2070

Matthew Wissler, P.G. Florida Registration No. 2521 Date: 0Z/19/13

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 Terms of Reference	1
1.2 Overview	1
1.3 Site Description	1
2. MONITORING WELL DETAILS	4
2.1 Well Layout and Construction	4
2.2 Turbidity Issues	5
3. MONITORING WELL SAMPLING	6
3.1 Sampling Locations and Procedures	6
3.2 Sample Analyses	
4. ANALYTICAL RESULTS	8
4.1 Field Parameters	8
4.2 Groundwater Monitoring Wells	
4.3 Data Validation	
4.4 Impact of Turbidity on Metals Concentrations	12
5. GROUNDWATER LEVEL MEASUREMENTS AND FLOW DIRECTION	N13
5.1 Field Measurements	13
5.2 Water Level Contours	13
6. SURFACE WATER SAMPLING	14
6.1 Sampling Locations and Procedures	14
7. CONCLUSIONS AND RECOMMENDATIONS	
7.1 Sampling Locations	
7.1 Sampling Locations7.2 Sample Analyses	
LIST OF TABLES	

Table 1	Summary of Monitoring Well Construction Details
Table 2	Summary of Final Field Parameter Results and Field Data

Table 3 Summary of Groundwater Analytical ResultsTable 4 Groundwater Level Measurements

LIST OF FIGURES

Figure 1 "A" Zone (Shallow) Wells – Water Level Contours

LIST OF APPENDICES

- Appendix A: Water Quality Monitoring Certification FDEP Form 62-701.900(31)
- Appendix B: Field Sampling Logs
- Appendix C: Field Instrument Calibration Logs
- **Appendix D:** Chain-of-Custody Forms
- Appendix E: CD Containing Analytical Laboratory Reports

1. INTRODUCTION

1.1 Terms of Reference

On behalf of Omni Waste of Osceola County, LLC (Omni), Geosyntec Consultants (Geosyntec) has prepared the 17th semi-annual water quality monitoring report for the J.E.D. Solid Waste Management (JED) facility. This report summarizes and provides interpretation of the water quality monitoring performed in accordance with the Water Quality Monitoring Plan (Plan) prepared as part of the JED facility permit application. The requirements for executing the Plan were presented in Appendix 3 - Monitoring Plan Implementation Schedule (MPIS) of the current Permit (Permit Number SO49-0199726-022) that authorizes the development of Phases 1 through 4 at the JED facility issued by the Florida Department of Environmental Protection (FDEP) on 12 July 2012.

This report was prepared on behalf of Waste Services, Incorporated (WSI), parent company of Omni Waste of Osceola County, LLC, owner and operator of the JED facility by Mr. Matthew Wissler of Geosyntec. A completed water quality certification form (FDEP Form 62-701.900[31]) is included in **Appendix A**.

1.2 Overview

The Plan and the MPIS describe a water quality monitoring program at the JED facility that has as its intent to: (i) measure and report groundwater and surface water conditions for the monitoring network; (ii) monitor the groundwater flow direction; and (iii) monitor the groundwater and surface water quality on a semi-annual basis. The 17th semi-annual water quality monitoring event was completed from 11 November through 19 November 2012. This report includes presentation and discussions of the sample locations, sampling procedures, laboratory analyses and results, field data measurements, groundwater level measurements, groundwater flow direction and surface water quality monitoring. In addition, this report includes a comparison of the analytical results of this sampling event to applicable Groundwater Cleanup Target Levels (GCTLs) as promulgated in Chapter 62-777, Florida Administrative Code (FAC).

1.3 Site Description

The JED facility is located in eastern Osceola County, Florida, west of highway U.S. 441, and approximately 6.5 miles south of Holopaw. The facility is a Class I landfill which is linked to highway U.S. 441 by a 2.9-mile access road. The JED facility comprises a total of approximately 2,179 acres. The landfill footprint at build-out will be approximately 360 acres and consist of 23 landfill cells that will provide available waste capacity for a period of approximately 30 years. The FDEP issued a permit to construct and operate Phase 1

development of the JED facility in October 2003. Phase 1 development includes four landfill cells (Cells 1 through 4), located in the northern part of the landfill encompassing approximately 54 acres. As part of Phase 1, forty-five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. The baseline water quality report for the Phase 1 monitoring well network was submitted to FDEP in May 2004. All components of the Phase 1 development have been constructed.

The FDEP issued a permit to construct and operate Phases 2 and 3 at the JED facility in March 2007. The development of Phases 2 and 3 includes six cells (Cells 5 through 10) with a total footprint of approximately 72 acres. As part of Phases 2 and 3 development, and as approved by FDEP, six (6) existing Phase 1 monitoring wells (MW-14 A, B, and C, and MW-15 A, B, and C), and ten (10) piezometers were decommissioned. The wells and piezometers were decommissioned to allow for construction of future cells, construction of a storm water retention basin located within Phases 2 and 3, and due to the close proximity of piezometers to the new network wells installed. The decommissioning of the monitoring wells and piezometers was discussed in the Phases 2 and 3 baseline water quality report. For the development of Phases 2 and 3, twenty-four (24) additional groundwater monitoring wells were installed in eight (8) well clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas in September 2007. The baseline water quality report for the Phases 2 and 3 monitoring well network was submitted to FDEP in January 2008.

The FDEP issued a permit to construct and operate Phases 1 through 3 with vertical expansion at the JED facility in April 2008. In April 2009, the MPIS for the semi-annual water quality monitoring well network and sampling schedule were updated for Phases 1, 2 and 3. The modification included a reduction of the Phase 3 monitoring wells required to be sampled semi-annually until such time that waste placement commences in one of the Phase 3 cells (i.e., Cells 8, 9 and 10) and the sampling schedule was modified for the B-zone (intermediate) and C-zone (deep). These monitoring wells are now sampled on an alternating annual basis. The C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and B-zone monitoring wells MW-16B are sampled in November and reported in January; B-zone monitoring wells MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring wells MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring wells MW-16B are sampled in November and reported in January; B-zone monitoring wells MW-16C are sampled in May and reported in July.

Cell 1 was completed in January 2004, Cell 4 was completed in May 2005, Cell 2 was completed in April 2006, Cell 3 was completed in October 2006, Cell 5 was completed in October 2007, Cell 6 was completed in July 2008 and Cell 7 was completed in August 2010. The FDEP issued a permit to construct a lateral expansion of the facility on 8 August 2011, which authorizes construction of Phases 3-8, Cells 8-23. Cell 8 was completed in April 2012. During construction startup of Cell 8 in November 2011, monitoring well cluster MW-22 (A, B and C) was decommissioned to accommodate the perimeter road access to Cell 8. The MW-22 cluster abandonment report was submitted to the FDEP in April 2012. The well cluster was replaced in

March 2012 and located on the perimeter access road approximately 800 feet south of well cluster MW-23. The shallow, intermediate and deep monitoring wells were designated MW-22RA, MW-22RB and MW-22RC, respectively. The baseline water quality report for cluster MW-22R was submitted to the FDEP in July 2012.

Corresponding to the most recent 5-year permit renewal, the FDEP issued a permit to operate on 12 July 2012, authorizing disposal operations in Phases 1-4, Cells 1-13. The MPIS for the semiannual water quality monitoring well network and sampling schedule was updated during the recent 5-year permit renewal and is provided as Appendix 3 of the current Permit.

2. MONITORING WELL DETAILS

2.1 Well Layout and Construction

For the Phase 1 development, forty five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. In accordance with the FDEP permit requirements monitoring well clusters were located such that the spacing between well clusters was no greater than 500 feet. For development of Phases 2 and 3, twenty four (24) groundwater monitoring wells were installed in eight (8) clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas. In accordance with the FDEP permit requirements, the monitoring well clusters were located such that the spacing between detection well clusters (MW-16 through MW-21) was approximately 500 feet, and the spacing between background well clusters (MW-22R and MW-23) was approximately 800 feet. Each monitoring well cluster consisted of three (3) groundwater monitoring wells installed (i) across the water table to monitor the upper limit of the surficial aquifer (identified as A-zone [shallow] wells); (ii) within the lower limit of the upper surficial aquifer above the intermediate clay layer (identified as C-zone [deep] wells); and (iii) at an intermediate depth between the shallow and deep wells (identified as B-zone [intermediate] wells).

A layout depicting the location of groundwater monitoring wells installed for Phases 2 and 3, and the previously installed groundwater monitoring wells for Phase 1 are shown for the shallow zone ("A" wells) on **Figure 1**. As shown, groundwater monitoring well clusters MW-1 through MW-13, MW-22R and MW-23 were installed along the top of the outer edge of the landfill perimeter berm. The ground surface at the location of the wells in the perimeter berm is at approximately Elevation 92 ft with respect to National Geodetic Vertical Datum of 1929 (NGVD, 1929). Groundwater monitoring well clusters MW-16 and MW-17 were installed along the outer edge of the landfill perimeter berm that serves as the initial storm water berm. The ground surface at these two well locations is at approximately Elevation 85 ft NGVD, 1929. Monitoring well clusters MW-18 through MW-21 were installed along the interim Phase 3 storm water berm at the southern limit of the Phase 3 development at approximately Elevation 84 ft NGVD, 1929. The locations of each well, in Florida state plane coordinates and latitude/longitude, and elevation NGVD, 1929 were surveyed by professional land surveyors licensed in the State of Florida.

Wells were constructed with 2-inch diameter schedule 40 PVC casing. The well screens were 10-ft in length with #6-slot (0.006-in.). A 30/45 graded silica sand was placed around the screen to a height of 2 to 3 ft above the top of the screen. A seal of 30/65 graded fine silica sand was placed above the sand filter around the screen. The remaining annular space from the top of the fine sand filter seal to the existing ground surface was grouted using a tremie pipe with a cement/bentonite mixture containing no more than 5 percent bentonite by dry weight. The PVC well casings were extended approximately 2.5 to 3 ft above the existing ground surface. Surface

completion consisted of a protective aluminum casing with a lockable cover set in a concrete pad. Each well was provided with a well cap, padlock, and an identification label. A summary of the monitoring well construction details are presented in **Table 1**.

2.2 Turbidity Issues

As discussed in the baseline water quality reports for the Phase 1, and Phases 2 and 3 monitoring networks, the formation around the screened intervals consists primarily of a fine, brown to dark brown, silty sand. Due to the subsurface formation properties, fine-grained and colloidal material are able to pass through the sand filter pack in many wells, primarily in the B-zone and C-zone wells. This is the case even though the wells are constructed using the smallest screen slot size (0.006 in.) commonly available. Most of the intermediate and deep wells had turbidity values in excess of the 20 nephelometric turbidity unit (NTU) criterion even after extended well development and the removal of multiple well volumes.

The difficulty in attaining the desired turbidity criterion was originally discussed at a meeting between Geosyntec and FDEP on 12 January 2004 during the well development activities associated with the wells installed as part of the Phase 1 development. Geosyntec notified FDEP again on 14 September 2007 of the elevated turbidity levels even after extended well development during development of the Phases 2 and 3 monitoring wells. In accordance with these discussions, it was agreed to collect field-filtered (1-micron) and unfiltered samples for metals analyses for any sample with a turbidity value greater than 20 NTU. The data generated by the dual sampling is expected to help demonstrate: (i) what effect turbidity may have on metal analyses (i.e., compare total and dissolved metals concentrations); and (ii) whether groundwater samples with turbidities greater than 20 NTU.

3. MONITORING WELL SAMPLING

3.1 Sampling Locations and Procedures

In accordance with the MPIS, twenty-six (26) monitoring wells installed as part of the Phase 1 development and thirteen (13) of the monitoring wells installed as part of the Phase 2 and 3 development were sampled. Monitoring wells sampled this monitoring event included A and C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and B-Zone monitoring well MW-16B. Low-flow sampling techniques were used for groundwater sample collection. Except for the turbidity considerations as described in the previous section, all groundwater sampling was performed in accordance with the current applicable FDEP Standard Operating Procedures (DEP-SOP-001-01, December 2008) for groundwater sampling. Additionally, for quality control (QC) purposes, two equipment blanks were collected and analyzed.

Peristaltic pumps were used to purge and sample all A-zone (shallow) monitoring wells and the majority of the C-zone (deep) groundwater monitoring wells. Because of continued issues relative to turbidity levels, a stainless steel submersible pump was used to purge and sample B-zone monitoring well MW-16B and C-zone wells MW-19 through MW-23. A submersible pump is utilized in select monitoring wells where the pump rate of the peristaltic pump is not sufficient to adequately purge the wells. New tubing (silicone and/or polyethylene) was used at each monitoring well.

During the purging process, a YSI 556 water quality meter equipped with a flow-through cell was used to monitor the following field parameters: pH; temperature; field conductivity; oxidation-reduction potential (ORP); and dissolved oxygen. Turbidity levels were measured using a LaMotte 2020e turbidity meter. Field parameters were recorded on sample collection forms, which are contained in **Appendix B**. Observations pertaining to the color of the groundwater samples collected were also noted on the sample collection forms. When the field parameters stabilized within the acceptable tolerances required by the FDEP SOP, well purging was considered complete and groundwater samples were collected. For wells where the turbidity was not less than 20 NTU, stability was established by purging at least 5 well volumes and observing variations in the measured turbidity. For problematic wells, once the turbidity had stabilized and all other parameters conformed to the guidance set forth in the FDEP SOP's, samples were collected. A non-filtered and field-filtered (1-micron) metals sample was collected from each monitoring well where turbidity measurements exceeded the 20 NTU level.

For monitoring wells where peristaltic pumps were used, volatile organic compound (VOC) sample vials were filled by removing the down well sample tubing, disconnecting the tubing from the water quality meter flow through cell, and reversing the flow direction on the peristaltic pump.

For the monitoring wells that were purged and sampled with the stainless steel submersible pump, all sample aliquots were filled directly from the down-well tubing.

The calibration of the water quality monitoring instruments was checked daily and re-calibrated when necessary. Water quality instrument calibration forms are presented in **Appendix C**. Samples were placed in coolers and packed with bagged ice for transport to the analytical laboratory. Chain-of-Custody (COC) forms were completed and accompanied the samples to the analytical laboratory. All COC forms are included in **Appendix D**. Trip blank samples accompanied all sample coolers with VOC samples. Temperature blanks were packed in each sample cooler and security seals were affixed to every cooler shipped.

3.2 Sample Analyses

Samples were analyzed by ALS Environmental (formerly Columbia Analytical Services) of Jacksonville, Florida (ALS) in accordance with the National Environmental Laboratory Accreditation Conference (NELAC) standards. ALS holds certification from the Florida Department of Health (FDOH) for the analytical test methods used for this project and is certified in the State of Florida for analysis of environmental samples.

Groundwater samples were analyzed by ALS for total ammonia as nitrogen (N), chlorides, nitrate, total dissolved solids (TDS), iron, mercury, sodium, total phenolic compounds and the 40 Code of Federal Regulations (CFR) Part 258 Appendix I parameters. Other required parameters (i.e., pH; temperature; conductivity; turbidity; ORP; and dissolved oxygen) were measured in the field during collection of the groundwater samples.

4. ANALYTICAL RESULTS

4.1 Field Parameters

 Table 2 provides a summary of the field measurements of selected water quality

 parameters utilized for determining sample stability for this semi-annual monitoring

 event.

4.2 Groundwater Monitoring Wells

The analytical laboratory results for this groundwater sampling event have been transferred to a compact disc (CD) and are included in **Appendix E**. Analytical results have been summarized in **Table 3** to show all parameters where a constituent concentration was reported above the applicable FDEP Groundwater Cleanup Target Level (GCTL). Any parameter exceeding the GCTL has been highlighted orange. The following discussion regarding groundwater quality is limited to those parameters where the GCTL was exceeded in at least one groundwater monitoring well and has been organized by analytical method.

Total Metals (Method 6020 and Method 7470 for Mercury)

Arsenic was reported above the GCTL of 10 μ g/L in MW-13A (17.8 μ g/L). Please note in the MPIS under item 5, the FDEP accepts as a background arsenic concentration 20 μ g/L in MW-13A.

Iron was reported above the GCTL of 300 μ g/L in seventeen (17) of the A-zone monitoring wells sampled with the concentrations ranging between 470 and 41,300 μ g/L, with the highest concentration from MW-6A. Iron was reported above the GCTL in B-zone monitoring well MW-16B (870 μ g/L). Iron was detected above the GCTL in all of the C-zone monitoring wells sampled this event with concentrations ranging between 400 and 4,800 μ g/L, with the highest concentration from MW-22RC.

Iron has historically exceeded the GCTL in all wells at the site for all monitoring events including the baseline events. The iron concentrations reported for the 17th semi-annual event are consistent with period of record data.

Ammonia-N (Method 350.1)

Ammonia-N was reported above the GCTL of 2.8 mg/L in twelve (12) of the A-zone monitoring wells sampled this event with the concentrations ranging between 2.59 and

22.4 mg/L, with the highest concentration from MW-9A. The GCTL for Ammonia-N was not exceeded in any samples collected from B or C-zone monitoring wells. The ammonia-N concentrations reported for the 17th semi-annual event are consistent with period of record data.

As indicated in recent correspondence by HDR, (Class I Permit Renewal Request for Additional Information – January 2012), given that the JED facility is a double geosynthetically lined landfill including a witness zone (secondary liner), an alternative and probable source of ammonia in groundwater at the JED facility includes naturally occurring sources of nitrogen containing compounds present in the organic rich soils. Under the right biogeochemical conditions, nitrogen containing compounds can be converted to ammonia under reducing geochemical conditions. Reducing conditions can be formed in a variety of ways including, shadow effect due to reduction of oxygen rich precipitation infiltration over a large area, displacement of oxygen by landfill gas immediately above the water table, and release of organic matter which promotes the growth of microorganisms which can consume oxygen.

As HDR noted, reductive dissolution is a plausible explanation for the detection of ammonia at the facility. Researchers have recently found good correlation with arsenic and ammonia with iron which supports the concept of reductive dissolution of iron hydroxide as a dominant reaction mobilizing these compounds in groundwater. The reductive dissolution of iron and the associated mobilization of iron in groundwater are well documented in literature. More recent research demonstrates this same mechanism can explain the release of arsenic at landfills. The mechanisms of iron and arsenic chemistry are well established; however, the presence of ammonia in groundwater at landfills has only recently been evaluated.

It has been reported that ammonium will co-precipitate with iron. Conversely as a result of reductive dissolution, ammonium would be mobilized in the groundwater if no other adsorption sites are readily available for the ammonium cation. As a cation, ammonium may be bound to soil particles through ion exchange. If high concentrations of Fe^{+2} are released (such as those that occur during reductive dissolution), an increase in ammonium ion concentrations in groundwater would be expected.

A large scale leachate release would produce pronounced concentration increases in groundwater, but the increases in ammonia seem to occur at the onset of construction without correlation to the filling sequence. Neither the constituents nor the concentrations detected in groundwater appear to correlate well with leachate. As discussed in the recent 4th Biennial Report, if detections in groundwater were due to a direct leachate release, the concentrations of various indicator constituents (such as chloride, sodium

etc.) found in groundwater should be relatively proportional to those found in leachate samples, particularly given the close proximity of the groundwater wells to the leachate sumps, however this is not the case. The VOC's (and concentrations) detected in leachate are markedly different than the VOC fingerprint at individual wells (which further supports landfill gas as the source of the benzene in groundwater). A direct release of leachate should also indicate proportional levels of other indicator compounds such as sodium, chloride and metals concurrent with ammonia.

Although ammonia is considered a common leachate indicator, no definitive evidence of a leachate discharge exists. The preponderance of evidence does support the concept that the source of ammonia is from reductive dissolution reactions mobilizing ammonia present in site soils. Shallow groundwater at the site is strongly reducing favoring the process of reductive dissolution.

Total Dissolved Solids (Method SM 2540C)

TDS was detected above the GCTL of 500 mg/L in shallow monitoring wells MW-1A (800 mg/L), MW-5A (684 mg/L), MW-8A (1,200 mg/L) and MW-20A (1,320 mg/L). TDS is an indicator parameter whose value can be attributable to the presence of major cations and anions, such as calcium, magnesium, sodium, chloride, and sulfate.

Chloride (Method 300.0)

Chloride was detected above the GCTL of 250 mg/L in shallow monitoring well MW-1A (358 mg/L). This detection represents an increase from the last sampling event. Further investigation activities are currently being performed by HDR to address other constituents detected in groundwater in this area.

40 CFR Part 258, Appendix I Volatile Compounds (Method 8260)

Benzene was detected above the GCTL of 1.0 μ g/L in eleven (11) A-zone monitoring wells at concentrations ranging from 1.3 to 8.6 μ g/L, with the highest concentration from MW-11A.

As indicated in recent correspondence by HDR, (Class I Permit Renewal Request for Additional Information – January 2012) the source of benzene in groundwater is likely attributed to landfill gas. As noted in the previous discussion for detections of Ammonia-N, neither the constituents nor the concentrations of VOC's detected in groundwater appear to correlate well with leachate results. As discussed in the recent 4th Biennial Report, if detections in groundwater were due to a direct leachate release, the concentrations of various indicator constituents (such as chloride, sodium etc.) found in

groundwater should be relatively proportional to those found in leachate samples, particularly given the close proximity of the groundwater wells to the leachate sumps, however this is not the case. The VOC's (and concentrations) detected in leachate are markedly different than the VOC fingerprint at individual wells (which further supports landfill gas as the source of the benzene in groundwater).

Total Phenolics (Method 420.4)

The GCTL for total phenolic compounds (0.01 mg/L) was exceeded in seventeen (17) of the A-zone monitoring wells, with the concentrations ranging between 0.012 and 0.044 mg/L, with the highest concentration from MW-6A. Total phenolic compounds were detected above the GCTL in B-zone monitoring well MW-16B (0.016 mg/L) and all of the C-zone monitoring wells with concentrations ranging between 0.011 and 0.041 mg/L, with the highest concentration from MW-23C. Please note that this is the first semi-annual water quality monitoring event that included total phenolic analysis; and consequently, the only basis for comparison are the initial sampling events conducted in 2003 for the Phase I monitoring well network (clusters MW-1 through MW-13) and 2007 for the Phases II & III network (clusters MW-16 through MW-23). The method used for the initial sampling event for phenols in 2007 was EPA Method 8270 whereas the event utilized for total phenolics for the November 2012 event was EPA method 420.4. The distribution of the phenolics detections does not suggest a point source adjacent to waste placement areas but rather equally distributed detections which could be naturally occurring or false positives related the analytical method.

Confirmation Samples

In accordance with Chapter 62-701.510(6)(a) F.A.C. and Paragraph 4 of the MPIS, the FDEP is to be notified within 14 days after the receipt of the laboratory data of any GCTL exceedances. The notification is to also inform the FDEP if any confirmational samples will be collected from any of the wells or if the data will be accepted as indicative of groundwater conditions. Omni notified Mr. Thomas Lubozynski (FDEP) in a letter dated 28 December 2012 of all the GCTL exceedances for which certified data was received by Omni. The letter notified the FDEP that no conformational samples will be collected and the results considered as representing current conditions.

4.3 Data Validation

All analyses were performed within the method specified holding times.

Two equipment blanks were collected during the 17th semi-annual monitoring event. One (1) equipment blank was collected using the peristaltic pump used for collection of the

groundwater sample from MW-11A. The second equipment blank was collected using the stainless steel submersible pump used for collection of the groundwater sample at MW-16B. De-ionized water supplied by ALS was pumped through the decontaminated submersible pump and new tubing and analyzed for the same parameters as the groundwater samples. The same procedure was also used for the peristaltic pump and associated tubing.

Analysis of the QC sample collected through the peristaltic pump (Equipment Blank -1) resulted in a detection of chloroform (1.2 μ g/L) and methylene chloride (6.7 μ g/L); however, these parameters were not detected in any of the monitoring wells sampled with the peristaltic pump indicating this is most likely a laboratory contaminant. Chromium, sodium, and nitrate were detected in the QC sample at a concentration below the Method Reporting Limit (MRL). Total phenolic compounds were detected in the QC sample at a concentration of 0.02 mg/L; however, this parameter was also detected in the laboratory method blank. All other constituents analyzed for were not detected in the QC sample collected through the peristaltic pump.

Analysis of the QC sample collected through the submersible pump (Equipment Blank - 2) resulted in a detection of chloroform $(1.2 \ \mu g/L)$; however, chloroform was not detected in any of the monitoring wells sampled with the submersible pump indicating this is most likely a laboratory contaminant. Copper, sodium, nitrate and ammonia were detected in the QC sample at a concentration below the MRL. Total phenolic compounds were detected in the QC sample at a concentration of 0.02 mg/L; however, this parameter was detected at a lower concentration in MW-16B (0.016 mg/L), indicating this is most likely an analytical resolution issue as both results were less than the MRL. All other constituents analyzed for were not detected in the QC sample collected through the submersible pump.

4.4 Impact of Turbidity on Metals Concentrations

Turbidity levels were less than the FDEP guidance of 20 NTUs in thirty seven (37) of the thirty nine (39) wells sampled. A review of the analytical results for MW-19C and MW-22RC (the only wells sampled with a final measured turbidity level > 20 NTUs) shows no significant difference between the dissolved and total metals concentration. Historical data shows that the turbidity levels for the monitoring well network has improved over the course of the semi-annual water quality monitoring events and the need to continue collection of dissolved metal samples may no longer be necessary.

5. GROUNDWATER LEVEL MEASUREMENTS AND FLOW DIRECTION

5.1 Field Measurements

Groundwater level measurements were obtained on 5 November 2012 from all Phases 1 through 3 groundwater monitoring wells and the remaining piezometers installed as part of the original site hydrogeological investigation. All groundwater level measurements were made within an approximate 5-hr period. The groundwater level measurements from the monitoring wells and piezometers are presented in **Table 4**.

5.2 Water Level Contours

The water level contour map prepared from groundwater level measurements for the surficial aquifer in the A-zone (shallow) is presented in **Figure 1**. Water levels within the A-zone (shallow) indicate a radial horizontal groundwater flow direction from the groundwater high near MW-20A/DP-19 toward Bull Creek to the east-northeast and the borrow area to the west-northwest. Historically, the direction of the horizontal component of groundwater flow for all three zones is predominantly east-northeast towards Bull Creek.

Historically, comparison of water levels between the A, B and C wells shows a similar vertical gradient ($1E^{-3}$ ft/ft). These gradients are consistent with the regional gradient in the upper surficial aquifer and indicate an interconnected, sluggish flow regime in the saturated zone above the Intermediate Confining Unit (ICU).

6. SURFACE WATER SAMPLING

6.1 Sampling Locations and Procedures

During the November 2012 water quality monitoring event Bull Creek was dry with the exception of scattered stagnant pools; therefore a representative surface water sample could not be collected.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Sampling Locations

The existing monitoring well network is adequate for monitoring purposes and no changes are recommended.

7.2 Sample Analyses

The detections of ammonia, iron, and arsenic above the GCTLs in specific groundwater monitoring wells have been discussed in detail in the 1st, 2nd, 3rd and 4th Biennial Technical Reports on Water Quality (November 2006, September 2008, November 2010 and November 2011, respectively). As discussed in Section 4.2, it is likely that the iron, arsenic and ammonia are not related to a leachate release from the disposal boundary, but rather mobilization of these constituents due to the presence of nitrogen containing compounds under reducing conditions. Our recommendation is to continue to monitor these constituents as part of the current MPIS.

All of the monitoring wells sampled this event had total phenolic compound detections above the laboratory Method Detection Limit (MDL), with all but two (2) exceeding the GCTL. Please note however, that while the MDL was below the GCTL, all of the results were below the laboratory MRL of 0.05 mg/L, which results in concentrations that cannot be accurately quantified within the level of certainty established for these samples. Given that the JED facility is a double geosynthetically lined landfill, and the total phenolic compound detections were throughout the network, it is likely that the compounds are naturally occurring or a product of false positives and not a result of a leachate release. This is the first semi-annual water quality monitoring event that included total phenolic analysis; and, as mentioned above, the only basis for comparison are the initial sampling events. Our recommendation is to continue to monitor these constituents as part of the current MPIS.

As reported in the 4th Biennial Technical Report on Groundwater Quality it was originally thought that the prior detections of benzene were attributable to residual

contamination from the erosion caused by surface water run-off from the landfill in the vicinity of MW-9A, but as benzene has been detected in more wells around the Phase 1 area it appears that this is not the primary cause. As discussed in Section 4.2, it is more likely that the elevated benzene and other volatile organic compound (VOCs) detections may be attributable to landfill gas migration. As a result of this, Omni has initiated several investigations and corrective measures related to landfill gas migration. The most recent included augmentation of the existing methane gas recovery system with two "test" supplemental gas recovery wells which was documented in a correspondence dated June 2011. It is anticipated that the addition of these two supplemental gas recovery wells within the sump areas at Cells 2 and 5 will help mitigate the methane migration issues which will result in a reduction of VOCs in groundwater samples collected at MW-1A and MW-9A during subsequent semi-annual monitoring events. A Soil Vapor Extraction (SVE) Pilot Test Work Plan was submitted to the FDEP on 27 January 2012 and subsequently approved on 6 February 2012. In March 2012 the pilot vertical SVE wells were installed around the Cell 5 sump area. The vertical SVE system includes four (4) extraction wells and one (1) vadose zone aeration well. In April 2012 the horizontal SVE system was installed near monitoring well cluster MW-4, adjacent to Cell 1. The horizontal SVE system includes a 100-foot section of perforated pipe installed beneath the perimeter road. The vertical and horizontal pilot SVE systems are connected to the main gas collection system so that collected landfill gas is transmitted to the flare station for combustion. In May 2012 the pre-startup monitoring event of the pilot system was conducted including sampling of MW-1A and Cell 4 and Cell 5 leachate sumps for the parameters specified in the SVE Pilot Test Work Plan (please note that the SVE Pilot Test Work Plan specifies the sampling of MW-4A as well, however MW-4A was dry during this event). As per the SVE Pilot Test Work Plan, following initial startup of the pilot SVE system, monitoring of MW-1A and MW-4A will be performed on a quarterly basis with the results submitted in a status report to the FDEP.

Our recommendation is to continue semi-annual monitoring of these constituents as part of the current MPIS while the on-going gas migration investigation and SVE pilot study continues.

TABLES

Table 1 (1 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 17th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	BTOC)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
	``````	`````			(feet)	· · ·	Тор	Bottom	Тор	Bottom	· · ·	(feet BTOC)
MW-1A	28 03 48.55	81 05 59.88	19900	9-Dec-03	95.1	23.0	13.0	23.0	82.1	72.1	10.6	8.2
MW-2A	28 03 51.99	81 05 59.90	19903	10-Dec-03	95.2	22.6	12.6	22.6	82.6	72.6	10.3	8.9
MW-3A	28 03 55.34	81 05 59.91	19906	11-Dec-03	94.6	22.8	12.8	22.8	81.9	71.9	10.4	9.0
MW-4A	28 03 58.97	81 05 59.92	19909	12-Dec-03	95.5	23.1	13.1	23.1	82.4	72.4	10.8	9.4
MW-5A	28 04 02.92	81 05 59.95	19912	24-Nov-03	95.3	22.5	12.5	22.5	82.8	72.8	10.1	9.1
MW-6A	28 04 06.50	81 05 59.15	19915	25-Nov-03	94.7	22.6	12.6	22.6	82.2	72.2	10.6	8.6
MW-7A	28 04 07.13	81 05 54.78	19918	26-Nov-03	95.5	23.3	13.3	23.3	82.2	72.2	10.3	9.3
MW-8A	28 04 06.20	81 05 50.64	19921	5-Dec-03	94.7	22.5	12.5	22.5	82.2	72.2	10.2	8.6
MW-9A	28 04 04.34	81 05 46.60	19924	4-Dec-03	94.7	22.4	12.4	22.4	82.3	72.3	10.0	8.6
MW-10A	28 04 00.07	81 05 44.77	19927	3-Dec-03	96.3	22.1	12.1	22.1	84.1	74.1	9.8	7.6
MW-11A	28 03 55.43	81 05 43.27	19930	3-Dec-03	93.6	22.8	12.8	22.8	80.7	70.7	10.5	9.1
MW-12A	28 03 52.08	81 05 43.26	19933	2-Dec-03	95.1	23.0	13.0	23.0	82.1	72.1	10.7	9.3
MW-13A	28 03 48.67	81 05 43.25	19936	8-Dec-03	95.2	22.5	12.5	22.5	82.7	72.7	10.2	7.7
MW-14A					Monitoring Well	Abandoned 10 Jul	ly 2007					
MW-15A					Monitoring Well	Abandoned 10 Jul	ly 2007					
MW-16A	28 03 44.55	81 05 40.22	22342	21-Sep-07	88.7	18.6	8.1	18.1	80.6	70.6	6.1	5.1
MW-17A	28 03 42.38	81 05 35.42	22345	22-Sep-07	88.9	19.9	9.4	19.4	79.5	69.5	7.4	6.4
MW-18A	28 03 37.21	81 05 35.16	22348	11-Sep-07	87.6	17.7	7.2	17.2	80.4	70.4	5.2	4.2
MW-19A	28 03 33.40	81 05 39.60	22351	11-Sep-07	87.5	17.7	7.2	17.2	80.4	70.4	5.2	4.2
MW-20A	28 03 31.82	81 05 45.45	22354	19-Sep-07	87.1	17.9	7.4	17.4	79.7	69.7	5.4	4.4
MW-21A	28 03 32.10	81 05 52.48	22357	14-Sep-07	87.2	18.0	7.5	17.5	79.7	69.7	5.5	4.5
MW-22A					Monitoring Well At	andoned 11 Nove	mber 2011					
MW-22RA	28 03 34.703	81 06 0.622	28685	14-Mar-12	95.0	23.7	13.0	23.0	82.0	72.0	10.5	9.5
MW-23A	28 03 42.41	81 05 59.79	22363	25-Sep-07	97.9	27.8	17.3	27.3	80.7	70.7	15.3	14.3

# Table 1 (2 of 3)

#### SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 17th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	втос)	(feet E	levation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
Ū	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,			(feet)	· · · ·	Тор	Bottom	Тор	Bottom	· · · ·	(feet BTOC)
MW-1B	28 03 48.59	81 05 59.89	19901	9-Dec-03	95.0	47.9	37.9	47.9	57.1	47.1	35.6	33.1
MW-2B	28 03 51.94	81 05 59.90	19904	10-Dec-03	95.2	48.3	38.3	48.3	56.9	46.9	36.0	34.6
MW-3B	28 03 55.31	81 05 59.91	19907	11-Dec-03	94.7	47.6	37.6	47.6	57.1	47.1	35.3	33.9
MW-4B	28 03 59.01	81 05 59.92	19910	12-Dec-03	95.2	47.4	37.4	47.4	57.8	47.8	35.1	33.5
MW-5B	28 04 02.88	81 05 59.95	19913	24-Nov-03	95.3	47.1	37.1	47.1	58.2	48.2	34.4	32.7
MW-6B	28 04 06.48	81 05 59.18	19916	25-Nov-03	94.6	47.4	37.4	47.4	57.2	47.2	34.9	33.5
MW-7B	28 04 07.13	81 05 54.81	19919	26-Nov-03	95.3	47.5	37.5	47.5	57.8	47.8	34.5	33.5
MW-8B	28 04 06.19	81 05 50.60	19922	5-Dec-03	94.6	49.6	39.6	49.6	55.0	45.0	37.1	35.6
MW-9B	28 04 04.31	81 05 46.56	19925	4-Dec-03	94.6	49.1	39.1	49.1	55.5	45.5	36.8	35.3
MW-10B	28 04 00.04	81 05 44.75	19928	3-Dec-03	96.2	48.3	38.3	48.3	58.0	48.0	35.9	33.9
MW-11B	28 03 55.40	81 05 43.27	19931	2-Dec-03	93.6	47.9	37.9	47.9	55.7	45.7	35.5	34.0
MW-12B	28 03 52.05	81 05 43.27	19934	1-Dec-03	95.0	49.0	39.0	49.0	56.1	46.1	36.6	35.1
MW-13B	28 03 48.64	81 05 43.24	19937	8-Dec-03	95.1	47.2	37.2	47.2	58.0	48.0	34.8	33.4
MW-14B					Monitoring Well A	bandoned 10 July	2007					
MW-15B					Monitoring Well A	bandoned 10 July	2007					
MW-16B	28 03 44.52	81 05 40.17	22343	21-Sep-07	88.7	38.1	27.6	37.6	61.1	51.1	25.6	24.6
MW-17B	28 03 42.35	81 05 35.36	22346	20-Sep-07	88.8	40.2	29.7	39.7	59.1	49.1	27.7	26.7
MW-18B	28 03 37.16	81 05 35.19	22349	11-Sep-07	87.4	37.8	27.3	37.3	60.1	50.1	25.3	24.3
MW-19B	28 03 33.38	81 05 39.66	22352	11-Sep-07	87.6	37.7	27.2	37.2	60.4	50.4	25.2	24.2
MW-20B	28 03 31.82	81 05 45.51	22355	19-Sep-07	87.3	37.8	27.3	37.3	60.0	50.0	25.3	24.3
MW-21B	28 03 32.09	81 05 52.55	22358	17-Sep-07	87.2	37.6	27.1	37.1	60.1	50.1	25.1	24.1
MW-22B				М	onitoring Well Aban	doned 11 Novem	nber 2011					
MW-22RB	28 03 34.665	81 05 59.850	28686	15-Mar-12	94.9	46.1	35.5	45.5	59.4	49.4	33.0	28.0
MW-23B	28 03 42.46	81 05 59.79	22364	25-Sep-07	97.9	42.75	32.3	42.3	65.7	55.7	30.3	29.3

# Table 1 (3 of 3)

#### SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 17th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	BTOC)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
Ū	、 ,	、 ,			(feet)	, , , , , , , , , , , , , , , , , , ,	Тор	Bottom	Тор	Bottom	、 ,	(feet BTOC)
MW-1C	28 03 48.63	81 05 59.88	19902	9-Dec-03	95.2	75.2	65.2	75.2	30.0	20.0	62.9	61.4
MW-2C	28 03 51.90	81 05 59.89	19905	10-Dec-03	95.3	68.4	58.4	68.4	36.9	26.9	56.1	53.7
MW-3C	28 03 55.28	81 05 59.91	19908	11-Dec-03	94.7	68.7	58.7	68.7	36.0	26.0	56.3	54.8
MW-4C	28 03 59.04	81 05 59.92	19911	12-Dec-03	95.4	72.5	62.5	72.5	32.9	22.9	61.2	59.6
MW-5C	28 04 02.83	81 05 59.95	19914	24-Nov-03	95.4	73.0	63.0	73.0	32.4	22.4	60.7	58.7
MW-6C	28 04 06.46	81 05 59.22	19917	25-Nov-03	94.6	73.2	63.2	73.2	31.4	21.4	60.2	57.7
MW-7C	28 04 07.13	81 05 54.86	19920	25-Nov-03	94.9	73.3	63.3	73.3	31.6	21.6	60.3	59.3
MW-8C	28 04 06.17	81 05 50.55	19923	5-Dec-03	94.5	73.9	63.9	73.9	30.6	20.6	61.6	59.8
MW-9C	28 04 04.29	81 05 46.53	19926	4-Dec-03	94.5	73.8	63.8	73.8	30.8	20.8	61.4	59.4
MW-10C	28 04 00.01	81 05 44.74	19929	3-Dec-03	96.4	73.7	63.7	73.7	32.7	22.7	61.4	60.0
MW-11C	28 03 55.36	81 05 43.26	19932	2-Dec-03	93.7	73.4	63.4	73.4	30.3	20.3	61.0	59.6
MW-12C	28 03 52.01	81 05 43.26	19935	1-Dec-03	95.1	73.6	63.6	73.6	31.5	21.5	60.2	58.7
MW-13C	28 03 48.60	81 05 43.25	19938	8-Dec-03	95.0	73.0	63.0	73.0	32.1	22.1	60.7	58.2
MW-14C					Monitoring Well	Abandoned 10 July	y 2007					
MW-15C					Monitoring Well	Abandoned 10 July	y 2007					
MW-16C	28 03 44.50	81 05 40.11	22344	21-Sep-07	88.8	67.7	57.2	67.2	31.6	21.6	55.2	54.2
MW-17C	28 03 42.31	81 05 35.31	22347	20-Sep-07	88.9	67.3	56.8	66.8	32.0	22.0	54.8	53.8
MW-18C	28 03 37.10	81 05 35.22	22350	12-Sep-07	87.4	67.2	56.7	66.7	30.8	20.8	54.7	53.7
MW-19C	28 03 33.37	81 05 39.72	22353	10-Sep-07	87.4	66.7	56.2	66.2	31.2	21.2	54.2	53.2
MW-20C	28 03 31.82	81 05 45.57	22356	18-Sep-07	87.4	66.8	56.3	66.3	31.1	21.1	54.3	53.3
MW-21C	28 03 32.10	81 05 52.61	22359	17-Sep-07	87.1	62.6	52.1	62.1	35.1	25.1	50.1	49.1
MW-22C				Ν	Ionitoring Well Aba	ndoned 11 Nover	mber 2011					
MW-22RC	28 03 34.629	81 05 59.854	28687	15-Mar-12	95.1	66.6	56.0	66.0	39.1	29.1	50.0	49.0
MW-23C	28 03 42.51	81 05 59.80	22365	24-Sep-07	97.9	67.1	56.6	66.6	41.4	31.4	54.6	53.6

#### Table 2

#### SUMMARY OF FINAL FIELD PARAMETER RESULTS AND FIELD DATA 17th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Monitoring Well	Temperature (°C) ¹	(Standard Conductance Units) (uS/cm) ²		Turbidity (NTUs) ³	Oxidation- Reduction Potential (mV) ⁴	DO (mg/L) ⁵	Purging Method
MW-1A	25.54	4.75	1,887	0.0	9.3	0.46	Peristaltic Pump
MW-2A	24.42	5.01	228	0.3	-71.3	0.48	Peristaltic Pump
MW-3A	26.55	5.08	337	2.7	-100.5	0.36	Peristaltic Pump
MW-4A	28.10	4.73	376	0.4	-77.3	0.40	Peristaltic Pump
MW-5A	25.16	3.86	941	1.1	78.4	0.49	Peristaltic Pump
MW-6A	25.10	5.10	525	3.1	-112.4	0.42	Peristaltic Pump
MW-7A	25.43	5.28	502	0.4	-116.1	0.40	Peristaltic Pump
MW-8A	25.71	4.23	1,415	0.8	-12.1	0.29	Peristaltic Pump
MW-9A	27.14	4.16	814	4.9	-21.1	0.37	Peristaltic Pump
MW-10A	25.09	4.78	329	1.9	-113.3	0.34	Peristaltic Pump
MW-11A	28.09	5.33	432	5.0	-103.9	0.25	Peristaltic Pump
MW-12A	26.90	4.55	158	0.0	-16.5	0.61	Peristaltic Pump
MW-13A	26.97	5.31	317	0.0	-27.8	0.37	Peristaltic Pump
MW-16A	24.48	5.06	58	10.5	-9.6	0.51	Peristaltic Pump
MW-19A	25.24	5.53	170	17.0	-25.0	0.25	Peristaltic Pump
MW-20A	24.73	4.74	1,358	12.9	143.0	3.84	Peristaltic Pump
MW-21A	25.36	4.35	668	6.5	240.7	1.45	Peristaltic Pump
MW-22RA	23.69	5.62	434	0.0	-100.8	0.86	Peristaltic Pump
MW-23A	24.71	5.14	335	5.2	-70.3	0.36	Peristaltic Pump
MW-16B	24.58	4.94	42	9.3	-113.9	0.17	Submersible Pump
MW-1C	25.11	5.38	95	0.9	-56.6	0.68	Peristaltic Pump
MW-2C	23.48	4.77	52	0.1	-19.5	0.79	Peristaltic Pump
MW-3C	26.13	5.27	84	2.3	-62.6	0.53	Peristaltic Pump
MW-4C	26.84	5.93	210	0.6	-79.0	0.48	Peristaltic Pump
MW-5C	24.54	5.01	89	1.0	16.5	0.46	Peristaltic Pump
MW-6C	24.60	4.78	59	1.8	-12.2	0.53	Peristaltic Pump
MW-7C	24.56	5.15	79	0.8	-24.6	0.53	Peristaltic Pump
MW-8C	24.60	4.62	262	0.0	-77.4	0.45	Peristaltic Pump
MW-9C	25.04	5.57	182	1.8	-97.0	0.73	Peristaltic Pump
MW-10C	23.92	4.80	112	2.2	-23.4	0.63	Peristaltic Pump
MW-11C	26.07	5.31	126	1.1	-29.7	0.41	Peristaltic Pump
MW-12C	25.80	4.97	62	1.5	-8.9	0.97	Peristaltic Pump
MW-13C	25.48	4.97	90	1.6	-6.8	0.80	Peristaltic Pump
MW-16C	23.86	5.19	108	1.4	-32.1	0.61	Peristaltic Pump
MW-19C	24.68	5.41	112	72.1	-65.9	0.21	Submersible Pump
MW-20C	23.60	5.24	110	16.0	-53.9	0.18	Submersible Pump
MW-21C	23.64	5.26	111	19.2	-39.3	0.18	Submersible Pump
MW-22RC	23.32	5.32	88	208	-63.7	0.83	Submersible Pump
MW-23C	24.15	5.56	103	5.7	-67.3	0.40	Submersible Pump

Notes:

¹ °C = degrees Celsius

² uS/cm = micro Siemens per centimeter

³ NTU = Nephelometric Turbidity Units

 4  mV = millivolts

⁵ mg/L = milligrams per liter

#### Table 3

#### SUMMARY OF GROUNDWATER ANALYTICAL DATA 17th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

		1	1		1	1		1		1	1	1		1	1	1	1	1	1	1	1	1	
Well ID	Cis-1,2 Dichloroethene	1,4-Dichlorobenzene	Benzene		I Xylenes Arse		Beryllium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Nickel	Selenium	Sodium	Vanadium	Zinc	Ammonia	Chloride	Nitrate as N	Total Phenols*	TDS
	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)		TL (ug/L) GCTL			GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (mg/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (mg/L)	GCTL (mg/L)	GCTL (mg/L)	GCTL(mg/L)	GCTL (mg/L)
	70	75	1.0	30	20 10	2,000	4	5	100	420	1,000	300	15	100	50	160	49	5,000	2.8	250	10	0.01	500
MW-1A	0.36 u	1.2	2.3	0.21 u	0.35 i 0.5	u 93.1	0.04 0	u 0.10 u	4.2	1.9	0.3 i	7,360	0.12 u	2.8	1.1	u 198	6.4	4.7	9.73	358	0.03	u 0.022 i	i 800
MW-1A MW-1C	0.36 u	0.16 u	2.3 I 0.21 u		0.35 I 0.3		0.04 0	u 0.10 i	4.2 1 0.9 i	0.03	u 0.3 u	400	0.12 U 0.12 U	0.5	1.1 J 1.1 I	u 5.01	0.4 0.5 i	4.7 i 1.7 i	0.084	7.53	0.03 0	0.022 i	iv 63
10100-10	0.30 u	0.10 0	0.21 0	0.21 u	0.51 0 0.	u 0.2	0.04	0.10	0.8	0.03	u 0.5 u	400	0.12 0	0.0		0.01	0.5	1 1.7	0.004	1.55	0.05	0.030	03
MW-2A	0.36 u	0.16 u	0.26 i	0.21 u	0.31 u 1.8	11.7	0.04	u 0.10 u	2.8	1.7	0.3 u	12,900	0.12 u	0.7	1.1	u 19.5	0.8 i	i 2.6 i	1.29	18.3	0.03 1	u 0.015 i	i 140
MW-2C	0.36 u	0.16 u	0.20 I		0.31 u 0.1		0.08	i 0.10 i	u 0.6 i	0.03	u 0.3 u	470	0.12 u	0.5	1.1	u 4.84	0.3 L	2.5	0.099	6.29	0.03	0.010 i	i 31
															- 1.1								
MW-3A	0.72 i	3.4	7.7	1.5	0.26 i 1.0	29.9	0.04 0	J 0.10 (	J 0.8 i	1.1	1.1	6,310	0.22 i	0.5	u 1.1 i	u 26.4	1.4 i	i 1.6 u	6.41	60.2	0.03	u 0.023 i	i 151
MW-3C	0.36 u	0.16 u	u 0.21 u		0.31 u 0.8		0.04 1	J 0.10 U	1.2	0.03	u 0.3 u	620	0.12 u	0.5	u 1.1 i	u 5.05	0.3 u	J 1.6 U	0.095	7.34	0.03 1	u 0.017 i	i 57
MW-4A	0.36 u	0.16 u	3.8	0.21 u	0.31 u 1.0	37.1	0.04 1	u 0.10 u	J 1.8	0.2	i 0.3 u	2,830	0.12 u	0.9	i 1.1 i	u 23.2	0.3 ι	2.5	9.60	54.8	0.03 (	u 0.017 i	i 161
MW-4C	0.36 u	0.16 u	u 0.21 u	0.21 u	0.31 u 0.5	u 8.3	0.04 1	u 0.10 u	1.2	0.03	u 0.3 u	430	0.12 u	0.5	u 1.1 i	u 6.76	1.2 i	i 1.6 ι	u 0.108	9.99	0.03 (	u 0.021 i	i 123
MW-5A	0.36 u	0.16 u	1.3	0.21 u	0.31 u 0.5	u 47.4	0.04 (	μ 0.10 ι	1.2	1.0	i 0.4 i	1,670	1.25	1.3	i 1.1 i	u 30.9	4.5	2.4 i	3.66	42.2	0.03 (	u 0.04 iv	iv 684
MW-5C	0.36 u	0.16 u	ı 0.21 u	0.21 u	0.31 u 0.5	u 18.5	0.04 (	J 0.10 I	i 8.0 L	0.03	u 0.3 u	830	0.12 u	0.5	u 1.1 i	u 8.06	0.5 i	i 6.7	0.087	12.1	0.03 (	u 0.022 iv	iv 54
MW-6A	0.36 u	0.16 u	1.3		0.31 u 1.		0.04 (	u 0.10 u	u 0.9 i	0.8	i 1.0 i	41,300	0.13 i	0.5	u 1.1 i	u 43.9	4.3	2.4	7.11	91.1	0.03 (	u 0.044 iv	iv 250
MW-6C	0.36 u	0.16 u	ı 0.21 u	0.21 u	0.31 u 0.5	u 26.0	0.04 ι	μ 0.10 ι	u 0.7 i	0.03	u 0.3 u	500	0.12 u	0.5	u 1.1 i	u 5.01	1.7 i	21.1	0.137	5.61	0.03 ι	u 0.024 iv	iv 41
							0.04					15.100						1.0	0.40		0.00		
MW-7A	0.36 u	0.16 u	0.21 u		0.31 u 0.1		0.04	u 0.10 u	1.1 . 0.5	2.0	0.3 u	15,100	0.12 u	0.8	1.1	u 20.2	4.0	1.9	6.18	30.9	0.03 0	0.029 i	i 309
MW-7C	0.36 u	0.16 u	ı 0.21 u	0.21 u	0.31 u 0.8	u 21.9	0.04 (	μ 0.10 ι	u 0.5 i	0.03	u 0.3 u	730	0.12 u	0.5	u 1.1 i	u 5.88	0.9 i	i 23.7	0.119	7.30	0.03 (	u 0.013 i	i 53
MW-8A	0.36 u	1.1	6.0	0.21 u	0.85 i 0.8	i 95.7	0.51	0.10 u	2.8	5.6	0.6 i	17,700	0.12 u	11.7	1.1	u 31.5	7.7	3.9	15.8	28.7	0.03	u 0.012 i	i 1,200
MW-8C	0.36 u	0.16 u	0.0 1 0.21 u		0.31 u 0.8		0.08	i 0.10 i	u 0.4 i	0.03	u 0.3 u	5,730	0.12 U	0.5	1.1 J 1.1	u 16.5	0.6 i	i 7.4	0.308	62.9	0.03	0.012 i	i 134
	0.00 4	0.10		0.21 0	0.01 0	02.0	0.00	0.10		0.00	u 0.0 u	0,100	0.12 0			10.0	0.0		0.000	02.0	0.00		
MW-9A	0.36 u	0.16 u	1.4	0.21 u	0.31 u 1.8	75.0	0.04	J 0.10 U	1.4	1.9	1.5	9,090	0.12 u	5.2	1.1	u 33.6	2.6	5.0	22.4	23.6	0.03	u 0.018 iv	iv 494
MW-9C	0.36 u	0.16 u	0.31 i	0.21 u	0.31 u 0.8	u 30.6	0.04	i 0.10 u	i 0.9 i	0.03	u 0.3 u	700	0.12 u	3.5	1.1	u 8.11	1.2 i	i 1.9 i	0.459	15.3	0.03 (	u 0.014 i	i 93
MW-10A	1.1	0.16 u	6.5	0.21 u	2.95 1.2	22.5	0.04 1	J 0.10 U	ı <u>1.9</u>	0.5	i 0.3 u	2,260	0.12 u	1.9	i 1.1 i	u 14.8	0.3 u	1.8 i	11.5	14.9	0.03 1	u 0.024 iv	iv 212
MW-10C	0.36 u	0.16 u	ı 0.21 u	0.21 u	0.31 u 0.5	u 24.3	0.04 (	μ 0.10 ι	ı <u>1.3</u>	0.05	i 0.3 u	1020	0.12 u	0.5	u 1.1 i	u 9.79	0.3 ι	и <b>1.</b> 9 і	0.175	16.9	0.03 (	u 0.021 iv	iv 78
MW-11A	0.65 i	0.34 i	8.6		1.99 4.3		0.04 u	μ 0.10 ι	3.2	1.1	0.3 i	6,030	0.25 i	2.4	1.1 1	u 39.2	1.1 i	i 2.0 i	5.07	40.9	0.03 เ	u 0.032 iv	iv 259
MW-11C	0.36 u	0.16 u	ı 0.21 u	0.21 u	0.31 u 0.5	u 12.6	0.04 ι	μ 0.10 ι	1.1	0.04	i 0.3 u	640	0.12 u	0.5	u 1.1 i	u 11.6	0.6 i	22.0	0.084	17.1	0.03 (	u 0.016 iv	iv 75
101/ 101	0.00	0.40	4.7	0.01	0.40	107	0.05	0.40	10	10	0.0	0.070	0.40			44.0		0.4	0.000	45.0	0.00	0.004	07
MW-12A MW-12C	0.39 i 0.36 u	0.16 u 0.16 u	i 4.7 i 0.21 u		0.18 i 0.9 0.31 u 0.9		0.05	i 0.10 u i 0.10 u	1.9 1.2	1.2 0.03	0.3 u u 0.3 u	2,070 640	0.12 u 0.12 u	1 2.2 1 0.5	1.1 I	u 11.0 u 5.86	0.8 i 0.3 u	i 2.4 i 19.8	0.660	15.3 7.73	0.03	u 0.021 iv u 0.014 iv	iv 87
10100-120	0.30 u	0.10 0	0.21 U	0.21 u	0.31 u 0.8	u 20.1	0.14	0.10	1 1.2	0.03	u 0.3 u	040	0.12 0	0.5		u <u>0.00</u>	0.3 (	19.0	0.109	1.13	0.03	0.014	iv 48
MW-13A	0.57 i	0.16 u	2.1	0.21 u	0.31 u 17.	3 19.2	0.06	i 0.10 u	u 2.8	0.6	i 0.3 u	27,100	0.12 u	0.5	u 1.1 i	u 20.1	3.0	1.6 u	u 1.65	37.2	0.03	u 0.041 iv	iv 181
MW-13C	0.36 u	0.16 u	0.21 u		0.31 u 0.5		0.06	i 0.10 i	1.1	0.05	i 0.3 u	600	0.12 u	0.5	u 1.1 i	u 9.20	0.3 u	1.9 i	0.136	14.1	0.03	u 0.022 iv	iv 53
MW-16A	0.36 u	0.16 u	ı 0.21 u	0.21 u	0.31 u 0.5	u 13.6	0.04 (	0.10	1.7	0.05	i 0.3 u	80 i	0.50 i	0.5	u 1.1 i	u 2.16	7.0	1.9 i	0.191	3.09	0.19	i 0.008 i	i 45
MW-16B	0.36 u	0.16 u	u 0.21 u	0.21 u	0.31 u 0.6	i 13.4	0.04 (	μ 0.10 ι	1.6	0.2	i 0.3 u	870	0.57	0.5	u 1.1 i	u 4.82	0.3 ι	J 1.6 U	0.160	5.13	0.03 (	u 0.016 i	i 42
MW-16C	0.36 u	0.16 u	ı 0.21 u	0.22 i	0.31 u 0.5	u 13.1	0.04 0	μ 0.10 ι	u 1.1	0.03	u 0.3 u	810	0.12 u	0.6	i 1.1 i	u 11.8	0.3 ι	<b>. 2.1</b> i	0.150	19.8	0.03 (	0.012 i	i 78
MW-19A	0.36 u	0.16 u	u 0.21 u		0.31 u 2.1		0.04 (	μ 0.10 ι	5.4	0.3	i 0.5 i	2,390	1.89	0.8	i 1.1 i	u 7.06	7.0	1.9 i	2.59	8.21	0.03 (	u 0.043 i	i 175
MW-19C	0.36 u	0.16 u	ı 0.21 u	0.21 u	0.31 u 0.5	u 59.1	0.27	i 0.10 ι	J 5.1	0.1	i 0.3 u	1,270	0.52	0.5	i 1.1 ı	u 9.77	3.1	2.9 i	0.158	17.3	0.03 (	u 0.018 i	i 103
	0.00	0.42	0.01		0.01		0.01	0.15		0.0		110	107	0.1	4	40.0	-		0.007	10.1	0.00	0.010	1000
MW-20A MW-20C	0.36 u 0.36 u	0.16 u	u 0.21 u		0.31 u 0.8		0.04	0.15	0.4	0.6	i 1.9	140	1.27	3.4	1.1	u 10.3	7.1	5.8	0.007 u	18.1	0.26	0.019 i	i 1320
19199-200	U.30 U	0.16 u	ı 0.21 u	0.21 u	0.31 u 0.1	i 72.0	0.05	i 0.10	i <u>3.3</u>	0.1	i 1.0	1,920	0.79	0.8	i 1.1 i	u 9.86	2.3	2.8 i	0.219	19.6	0.03 (	u 0.023 i	<b>i</b> 96
MW-21A	0.36 u	0.16 u	ı 0.21 u	0.21 u	0.31 u 0.5	u 92.8	0.21	i 1.49	1.2	3.5	1.0	470	1.11	7.2	8.2	12.3	9.9	3.1 i	0.029	14.2	1.23	0.009 i	i 483
MW-21A	0.36 u	0.16 u	0.21 u 0.21 u		0.31 u 0.5		0.09	i 0.10 ı	3.2	0.1	i 0.8 i	2,370	1.01	0.5	i 1.1 i	u 9.99	2.6	3.3	0.245	20.0	0.03	0.009 i	i 98
MW-22RA	0.36 u	0.16 u	ı 0.21 u	0.21 u	0.31 u 1.4	14.3	0.04 0	u 0.10 u	2.0	0.4	i 0.3 u	3,990	0.12 u	0.5	u 1.1 i	u 29.0	4.2	1.8 i	i 1.78	42.5	0.03 (	u 0.012 i	i 274
MW-22RC	0.36 u	0.16 u	u 0.21 u		0.31 u 1.	159	0.71	0.11	21.0	1.9	2.5	4,800	8.68	4.0	2.0	8.29	20.8	11.3	0.124	8.52	0.03 (	u 0.039 i	i 188
MW-23A	0.36 u	0.16 u	0.33 i	0.21 u	0.31 u 0.5	u 9.7	0.04 (	μ 0.10 ι	2.4	0.3	i 0.5 i	1,100	0.12 u	0.5	u 1.1 i	u 17.2	2.0 i	i 2.3 i	6.09	19.6	0.03 (	u 0.033 i	i 219
	0.36 u	0.16 u	u 0.21 u	0.21 u	0.31 u 0.5	u 8.7	0.04 (	u 0.10 u	1.2	0.03	u 0.3 u	440	0.12 u	0.5	u 1.1 i	u 5.08	1.0 i	i 2.4 i	0.117	7.34	0.03 (	u 0.041 i	i 68

NOTES: Only parameters with detections above the Method Reporting Limit are shown (with the exception of total phenols, see note below).

i The Reported Value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL).



Exceeds GCTL

 $\mathsf{u}=\mathsf{indicates}$  that the compound was analyzed for but not detected at or above the value shown

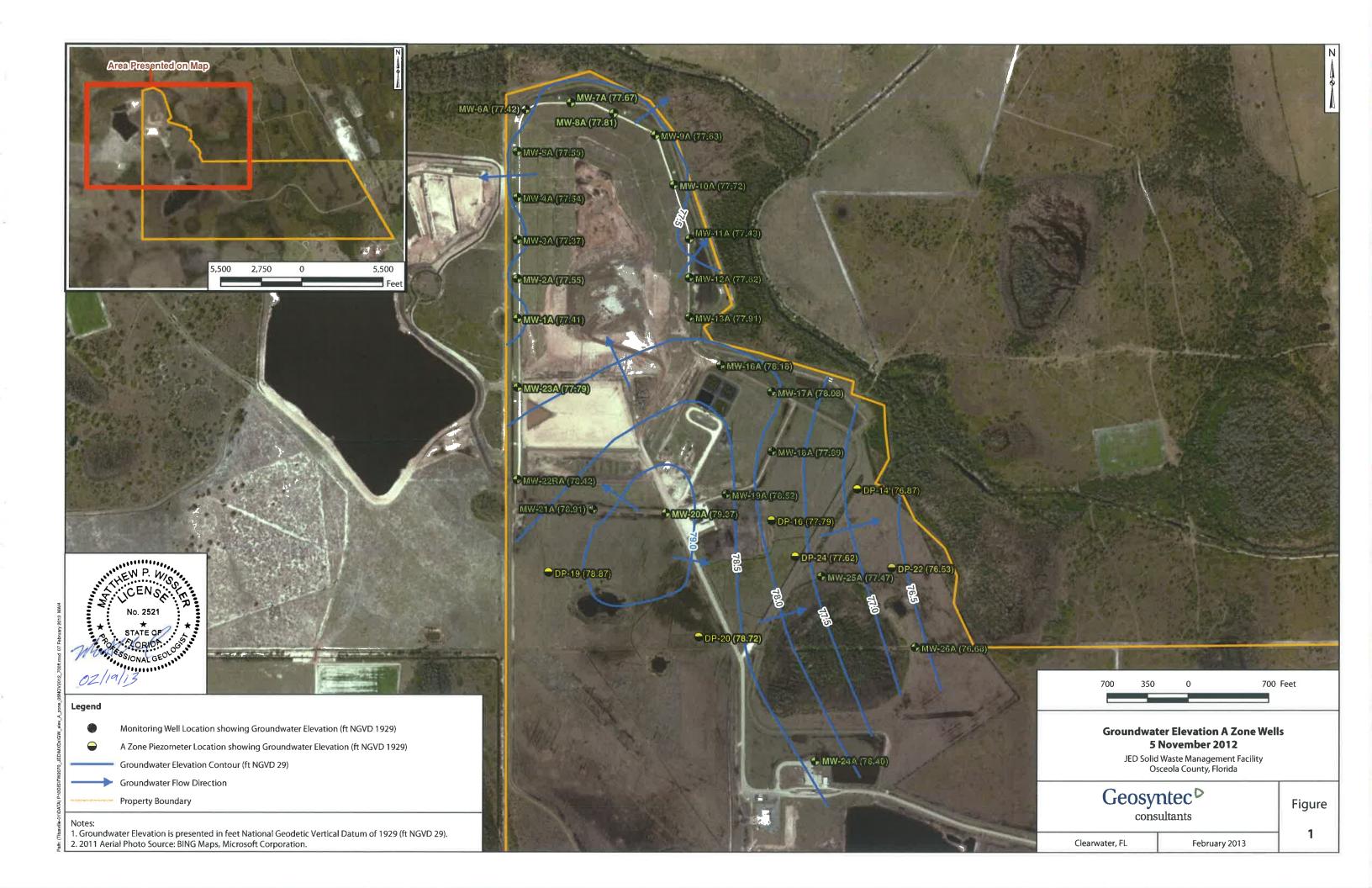
 $\mathsf{v}=\mathsf{indicates}$  that the analyte was detected in both the sample and the associated method blank

* = Total Phenol analysis by EPA Method 420.4. MDL (0.005 mg/L) is below GCTL; however the PQL (0.05 mg/L) is over the GCTL and therefore given an i qualifier.

#### Table 4 (1 of 3) GROUNDWATER LEVEL MEASUREMENTS 15th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

_	JED Solid Wa Osceola Cour	aste Manageme nty, Florida	ent Facility		ng Personnel: l Conditions:	clear, 65°F @07:45 to a high of 76°F @13:00								
Date:	5-No	v-2012												
Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations								
DP-1				Piezometer Aba										
DP-2				Piezometer Aba	andoned 3 Oc	tober 2003								
DP-3				Piezometer Aba	andoned 16 Ja	nuary 2006								
DP-4				Piezometer Aba	andoned 16 Ja	nuary 2006								
DP-5	Piezometer Abandoned 10 July 2007													
DP-6				Piezometer A	bandoned 10.	July 2007								
DP-7	Piezometer Abandoned 10 July 2007													
DP-8		Piezometer Abandoned 10 July 2007												
DP-9				Piezometer A	bandoned 10.	July 2007								
DP-10				Piezometer A	bandoned 10.	July 2007								
DP-11				Piezometer A	bandoned 10.	July 2007								
DP-12				Piezometer A	bandoned 10.	July 2007								
DP-13	Piezometer Abandoned 11 July 2007													
DP-14	11:38	81.97	5.10	18.62	76.87									
DP-15	11:38	81.98	5.08	53.70	76.90									
DP-16	12:20	82.57	4.78	18.53	77.79									
DP-17	12:20	82.58	4.81	53.75	77.77									
DP-18	11:21	84.38	5.56	52.90	78.82									
DP-19	11:21	84.34	5.47	18.40	78.87									
DP-20	11:30	83.07	4.35	18.35	78.72									
DP-21	11:30	83.00	4.40	53.68	78.60									
DP-22	10:40	81.00	4.47	18.63	76.53									
DP-23	10:40	81.27	4.29	53.73	76.98									
DP-24	12:12	82.22	4.60	18.52	77.62									
SZ-1				Piezometer A	bandoned 10.	July 2007								
SZ-2	11:30	83.16	5.85	75.39	77.31									
SZ-3	10:40	81.27	4.78	78.85	76.49									
MW-1A	9:52	95.12	17.71	23.19	77.41									
MW-1B	9:52	95.00	17.36	48.11	77.64									
MW-1C	9:52	95.18	17.58	74.63	77.60									
MW-2A	9:47	95.21	17.66	22.89	77.55									
MW-2B	9:47	95.17	17.62	48.31	77.55									
MW-2C	9:47	95.32	17.80	68.59	77.52									
MW-3A	9:41	94.64	17.27	23.02	77.37									
MW-3B	9:41	94.68	17.17	47.89	77.51									
MW-3C	9:41	94.66	17.18	69.02	77.48									

#### Table 4 (2 of 3) GROUNDWATER LEVEL MEASUREMENTS 15th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY


Location: ( Date: _		nty, Florida ov-2012		Field	l Conditions:	clear, 65°F @07:45 to a high of 76°F @13:00					
Well		тос	Depth to	Well	GW						
ID	Time	Elevation	Water (ft)	Depth (ft)	Elevation	Field Observations					
MW-4A	9:34	95.48	17.94	23.33	77.54						
MW-4B	9:34	95.18	17.71	47.69	77.47						
MW-4C	9:34	95.39	17.89	72.73	77.50						
MW-5A	9:29	95.32	17.77	22.76	77.55						
MW-5B	9:29	95.30	17.81	47.36	77.49						
MW-5C	9:29	95.39	17.94	73.32	77.45						
MW-6A	9:24	94.72	17.30	22.88	77.42						
MW-6B	9:24	94.60	17.15	47.73	77.45						
MW-6C	9:24	94.58	17.20	73.28	77.38						
MW-7A	9:19	95.48	17.81	23.58	77.67						
MW-7B	9:19	95.27	17.59	48.18	77.68						
MW-7C	9:19	94.93	17.36	73.55	77.57						
MW-8A	9:14	94.67	16.86	22.76	77.81						
MW-8B	9:14	94.58	16.88	49.50	77.70						
MW-8C	9:14	94.50	16.93	73.99	77.57						
MW-9A	9:08	94.66	17.03	22.63	77.63						
MW-9B	9:08	94.63	17.00	49.33	77.63						
MW-9C	9:08	94.54	17.05	73.99	77.49						
MW-10A	9:00	96.25	18.53	22.43	77.72						
MW-10B	9:00	96.23	18.51	48.48	77.72						
MW-10C	9:00	96.36	18.78	73.83	77.58						
MW-11A	8:53	93.56	16.13	22.89	77.43						
MW-11B	8:53	93.59	15.98	48.03	77.61						
MW-11C	8:53	93.65	16.08	73.78	77.57						
MW-12A	8:45	95.10	17.28	23.27	77.82						
MW-12B	8:45	95.01	17.29	49.19	77.72						
MW-12C	8:45	95.10	17.42	73.79	77.68						
MW-13A	8:37	95.19	17.28	22.79	77.91						
MW-13B	8:37	95.12	17.20	47.46	77.92						
MW-13C	8:37	95.04	17.20	73.26	77.84						
MW-14A				Aonitoring Wel		1 10 July 2007					
MW-14B				Aonitoring Wel		•					
MW-14C	Monitoring Well Abandoned 10 July 2007										
MW-14C MW-15A				Aonitoring Wel		•					
MW-15A MW-15B				Aonitoring Wel		•					
MW-15B MW-15C				Aonitoring Wel		•					

#### Table 4 (3 of 3) GROUNDWATER LEVEL MEASUREMENTS 15th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

	Osceola Cour	aste Manageme nty, Florida v-2012	ent Facility	-	ng Personnel: 1 Conditions:	Joe Terry clear, 65°F @07:45 to a high of 76°F @13:00
Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations
MW-16A	8:20	88.69	10.51	18.89	78.18	
MW-16B	8:20	88.73	10.85	38.38	77.88	
MW-16C	8:20	88.77	10.98	67.94	77.79	
MW-17A	8:10	88.86	10.78	20.17	78.08	
MW-17B	8:10	88.79	11.33	40.47	77.46	
MW-17C	8:10	88.85	11.43	67.55	77.42	
MW-18A	8:00	87.56	9.67	17.98	77.89	
MW-18B	8:00	87.43	9.57	38.10	77.86	
MW-18C	8:00	87.42	9.58	67.38	77.84	
MW-19A	7:54	87.54	9.02	17.93	78.52	
MW-19B	7:54	87.64	9.15	37.97	78.49	
MW-19C	7:54	87.44	9.04	66.95	78.40	
MW-20A	7:45	87.12	7.75	18.21	79.37	
MW-20B	7:45	87.27	8.20	38.05	79.07	
MW-20C	7:45	87.35	8.50	67.03	78.85	
MW-21A	10:15	87.20	8.29	18.32	78.91	
MW-21B	10:15	87.23	8.31	37.92	78.92	
MW-21C	10:15	87.13	8.31	62.48	78.82	
MW-22A			Mor	nitoring Well A	bandoned 11 N	November 2011
MW-22B			Mor	nitoring Well A	bandoned 11 N	November 2011
MW-22C			Mor	nitoring Well A	bandoned 11 N	November 2011
MW-22RA	10:05	95.00	16.58	23.66	78.42	
MW-22RB	10:05	94.86	16.44	46.13	78.42	
MW-22RC	10:05	95.13	16.67	66.58	78.46	
MW-23A	9:58	97.90	20.11	28.03	77.79	
MW-23B	9:58	97.91	20.10	43.00	77.81	
MW-23C	9:58	97.93	20.13	67.32	77.80	
MW-24A	10:30	86.97	8.57	24.21	78.40	
MW-25A	10:35	82.36	4.89	24.76	77.47	
MW-26A	11:45	82.01	5.33	24.03	76.68	
MW-27C	11:53	81.66	5.06	58.37	76.60	

Notes: Well caps removed site wide and wells allowed to stabilize prior to measurements.

FIGURE



# **APPENDIX A**

Water Quality Monitoring Certification FDEP Form 62-701.900(31)



# Florida Department of **Environmental Protection**

**Bob Martinez Center** 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form #: 62-701.900(31), F.A.C Form Title: Water Quality Monitoring Certification Effective Date: January 6, 2010 Incorporated in Rule 62-701.510(9), F.A.C.

## WATER QUALITY MONITORING CERTIFICATION

#### PART I GENERAL INFORMATION

Zip _34773	County Osceola								
Authorized Representative's Name Mike Kaiser Title Engineer									
Zip <u>32701</u>	County Seminole								

### CERTIFICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submission of false information including the possibility of fine and imprisonment.

1/11/13

(Owner or Authorized Representative's Signature)

#### PART II QUALITY ASSURANCE REQUIREMENTS

Waste Services of Florida, Inc. Sampling Organization

Analytical Lab NELAC / HRS Certification # E82502

Lab Name Columbia Analytical Services (dba ALS Environmental)

Address 9143 Philips Highway, Suite 200 Jacksonville, Florida 32256

Phone Number (904 )739-2277

Email address (if available) Craig.Myers@ALSGlobal.com

Northwest District 160 Government Cente Pensacola, FL 32501-5794 850-595-8360

Northeast District 7825 Baymeadows Way, Ste. 200 B Jacksonville, FL 32256-7590 904-807-3300

Central District 3319 Maguire Blvd., Ste. 232 Orlando, FL 32803-3767 407-894-7555

Southwest District 13051 N. Telecom Pky. Temple Terrace, FL 813-632-7600

South District 2295 Victoria Ave., Ste. 364 Fort Myers, FL 33902-2549 239-332-6975

Southeast District 400 North Congress Ave. West Palm Beach, FL 33401 561-681-6600

# **APPENDIX B**

# Monitoring Well Sampling Logs

# Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE	D. SWMF (WAC	s Facility ID	89544)			SIT LO	CATION: 150	1 Omn	i Way, St.	Cloud, Osceola	County, Flo	rida, 34773	-
WELL NO:				SAMPL	E ID:		W-14					by 15,2	012
WELL NO.	MW-1	14					SING DA				1-		-15
WELL VOL (only fill out	(inches): 2.0 UME PURGE: if applicable)	1 WELL VOL	TER (inches):0	25 DE ALWELLDE	ELL SCF PTH: ( PTH - feet -	REEN I	NTERVAL et to 23 fe TIC DEPTH TO 17.81	et T	feet) X	R (feet): / 7. ( WELL CAPACI 0.16 g	8 OF	= 0.9	eristaltic
	T VOLUME PU if applicable)	RGE: 1 EQU	IPMENT VOL		gallons			Y ns/foot		BING LENGTH) feet)			gallons
	MP OR TUBING WELL (feet):	21		IP OR TUBIN WELL (feet):	G	21	PURGIN		1025	PURGING ENDED AT:	1125	TOTAL VOI PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	(star	oH ndard hits)	TEMP. ( [°] C)	(circle µmh	DND. e units) nos/cm µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBID (NTUs	) (describ	oe) (mV)
1115	2.5	2.5	0.05	18.00	4.	74	25.521		98	0.45	0	cleg	
1120	0.25	2.75	0.05	18.00	4.	75	25.56	18	BBB	0.47	0	Clea	
1175	0.25	3.0	0.05	18.00		,75	25.54	18	387	0.46	0	cle	w 9.3
TUBING IN	PACITY (Gallons ISIDE DIA. CAP EQUIPMENT C	ACITY (Gal./	Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/10 BP = Bladder	9" = 0.0 Pump;	E	6; 2" = 0.11 1/4" = 0.002 SP = Electric	6; Subme	" = 0.37; 5/16" = 0.0 ersible Pur	mp; <b>PP</b> = P	5" = 1.02; 0.006; 1/ eristaltic Pu	1	12" = 5.88 5/8" = 0.016 Other (Specify)
SAMPLED Joe Terry	BY (PRINT) / A WSI	FFILIATION:		SAMPLER(	S) SIGN	ATUR	E(S): Que	C	2	SAMPLING INITIATED A	12	2 SAMPLIN	AT: 1140
PUMP OR DEPTH IN	TUBING WELL (feet):	21		TUBING MATERIAL	CODE:	PE	-	V		FILTERED: Y on Equipment Ty		FILTER S	SIZE:μm
	CONTAMINATIC	N: PUN	IP No	TU	BING	No	(replaced)			DUPLICATE	or EQUIPM	ENT BLANK:	YN
SAM	PLE CONTAINE	R SPECIFICA	ATION		SAM	PLE PF	RESERVATIO	N		INTEND		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED	TIVE		TOTAL VOL	nL)	FINAL pH	ANALYSIS A METHO		CODE	FLOW RATE (mL per minute)
MW-1A	3	CG	40mL	HCL		Pr	efilled by lab			8260		RFPP	<100
	3	CG	40mL	None		-	None			8011		RFPP	<100
	1	PE	500mL	HNO ₃		Pr	efilled by lab			Metal	S	APP	200
~.	1	PE	125mL	H ₂ SO.		Pr	efilled by lab			NH ₃		APP	200
	1	PE	250mL	None			None			TDS, CI,	NO ₃	APP	200
10	1	AG	1000mL	H ₂ SO.		Pr	efilled by lab			Total Phe	enols	APP	200
	overcust, 6t	AG = Amber CODES:	APP = After Pe		p;	B = Ba		Bladd	er Pump;	lene; S = Silic ESP = Elect	ric Submers	ible Pump;	Other (Specify)
	. The above o	I	RFPP = Revers	se Flow Peris	taltic Pu				-160, F.A	Gravity Drain);		er (Specify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

Revision Date: February 12, 2009

# Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE	.D. SWMF (WA		80544)			SITE	01 Omni W	lav St	Cloud, Osceola	County, Flo	rida, 34773		
	MW-1		. 09544)	SAMPLE		W-IC	or online v	uy, 01.			10015,	71117	
WELL NO	14100-1	C					ТА	_		/1	101/13,0		
(only fill out if applicable)					WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY							peristaltic	
	NT VOLUME PU	URGE: 1 EQ	= ( UIPMENT VOL	= PUMP VOI	UME + (To allons + (				0.16 g. JBING LENGTH) Q O feet)		ELL VOLUME	gallons	
				WP OR TUBING		PURGING			PURGING ENDED AT: 1055		TOTAL VO	TOTAL VOLUME PURGED (gallons): 1.75	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	CONE (circle un µmhos/ or µS/	nits) cm	DISSOLVED OXYGEN (circle units) mg/2 or % saturation	TURBIDI (NTUs)			
1045	1.25	1.25	0.05	17,99	5.39	25.09	9	4	0.96	0.9	cle	w -55.1	
1050	0.25	1.50	0.05	19.99	5.3	25.10	94	1	0.70	0.9		w -56.7	
1055	0.25	1.75	0.05	17.99	5.38	3 25.11	95	95	0.68	0.9	ch	24 -56.6	
TUBING I	PACITY (Gallon NSIDE DIA. CAP EQUIPMENT C	PACITY (Gal.		1" = 0.04; 0006; 3/16' BP = Bladder	Pump;	1/4" = 0.000 ESP = Electric	26; <b>5/16</b> Submersit	0.37; 6" = 0.0	004; 3/8" = 0	5" = 1.02; 006; 1/2 eristaltic Pun	6" = 1.47; " = 0.010; np; <b>O</b> = C	12" = 5.88 5/8" = 0.016 Other (Specify)	
					SAM	PLING D	ATA	_	1		1		
Joe Terry		FFILIATION:	SAMPLER(S) SIGNATURE(S): Joe Tuy					SAMPLING INITIATED AT: //OO SAMPLING ENDED AT: ///					
PUMP OR TUBING DEPTH IN WELL (feet): (6 9									-FILTERED: Y FILTER SIZE:μm				
FIELD DECONTAMINATION: PUMP No				TUBING No (replaced)					DUPLICATE OF EQUIPMENT BLANK: Y				
SAMPLE CONTAINER SPECIFICATION				SAMPLE PRESERVATION					INTENDE		SAMPLING	SAMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL		NAL pH	ANALYSIS AND/OR METHOD		CODE	FLOW RATE (mL per minute)	
MW-1C	3	CG	40mL	HCL	F	Prefilled by la	b	_	8260		RFPP	<100	
. 1	3	CG	40mL	None		None			8011		RFPP	<100	
	1	PE	500mL	HNO ₃	F	Prefilled by lab			Metals		APP	200	
**	1	PE	125mL	H ₂ SO ₄	F	Prefilled by lab			NH ₃		APP	200	
	1	PE	250mL	None		None			TDS, CI, NO ₃		APP	200	
	1	AG	1000mL	H ₂ SO ₄		Prefilled by lab			Total Phenols		APP	200	
odor: NU	overcust, 6		25091	Close Close	<b>PE</b> - D	Justhulopo	PP - Poly	propul			offen: 0 = /	Other (Specific)	
	G EQUIPMENT		APP = After Pe RFPP = Reven	= Clear Glass; eristaltic Pump; se Flow Perista	B = E Itic Pump;	SM = Straw	Bladder P Method (1	ump; ubing	ene; S = Silico ESP = Electri Gravity Drain);	c Submersi		Other (Specify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

# Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE	D SWME (WA	Cs Eacility ID:	89544)			SITE	01 Omn	Way St	Cloud Osceola	County, Flo	rida, 34773			
NAME: J.E.D. SWMF (WACS Facility ID: 89544) WELL NO: MW - 2A S/					SAMPLE ID: MW - 24						DATE: Nov 19, 2012			
WELL NO.	10100-	2/T				RGING DA				101	10 11,	1012		
WELL TUBING DIAMETER (inches): 2.0 DIAMETER (inches):0.25					WELL SCREEN INTERVAL STATIC D					1 2 2 2				
WELL VOI (only fill ou EQUIPME	LUME PURGE: t if applicable)	1 WELL VO	LUME = (TOT = (	72.B9	PTH - S feet -	TATIC DEPTH T	O WAT	TER) X feet) X	WELL CAPACI	TY allons/foot		3 gallons		
(only in ou	it in applicable)			= 0.0	gallons + (	0.0026 gallo	ons/foot	Х	feet)	+ 0.12	gallons =	gallons		
				WP OR TUBIN WELL (feet)	G 21		PURGING INITIATED AT: 0735			ENDED AT: 0835		LUME gallons): 3		
TIME	TIME VOLUME PURGED (gallons)		PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standa units)	rd ( [°] C)	(circle	ND. e units) os/cm iS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)				
0925	2.5	2.5	0.05	19.19	5.00	2 24.44	23	28	0.47	0.1	cle	4 -77.8		
0830	0.25	2.75	0.05	18.19	5.0	1 24.40	22	18	0.418	0.3	clea	v -71.2		
0835	0.25	3.0	0.05	18.19	5.01	24.42	20	08	0.48	0.3	clea	271.3		
			-					_						
							_							
TUBING I	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal./		1" = 0.04; .0006; 3/16 BP = Bladder	<b>1.25</b> " = 0 " = 0.0014 Pump;		6; 5	' = 0.37; 5/16'' = 0.0 rsible Pur	004; 3/8" = 0	5" = 1.02; .006; 1/2 eristaltic Pun	6" = 1.47; " = 0.010; np; O = C	<b>12"</b> = 5.88 <b>5/8"</b> = 0.016 Other (Specify)		
					SAN	IPLING DA	ATA							
SAMPLED BY (PRINT) / AFFILIATION: Joe Terry / WSI					SAMPLER(S) SIGNATURE(S): Que Tuy					SAMPLING INITIATED AT: 0835 ENDED AT: 081				
	WELL (feet):	21						-FILTERED: Y (Ν) FILTER SIZE:μm						
FIELD DE	CONTAMINATIO	DN: PUN	TUBING No (replaced)					DUPLICATE or EQUIPMENT BLANK: Y (N)						
SAMPLE CONTAINER SPECIFICATION			PRESERVA	PRESERVATIO	OTAL VOL FINAL		INTENDED ANALYSIS AND/OR METHOD		SAMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)				
MW-2A	CONTAINERS 3	CODE	40mL	USED		Prefilled by lab		рН	8260		RFPP	<100		
(	3	CG	40mL	None		None			8011		RFPP	<100		
11	1	PE	500mL	HNO ₃		Prefilled by lab		-	Metals		APP	200		
1	1	PE	125mL	H ₂ SO ₄		Prefilled by lab			NH ₃		APP	300		
11	1	PE	250mL	None		None			TDS, CI, NO3		APP	200		
	1	AG	250mL	H ₂ SO ₄		Prefilled by lab			Total Phenols		APP	200		
REMARKS weather: () odor: (?)()	overcust, 5								1			200		
MATERIA		AG = Amber	Glass; CG	= Clear Glass;	PE = F	olyethylene;	PP = P	olypropyle	ene; S = Silico	ne; T = T	eflon; O = (	Other (Specify)		
	G EQUIPMENT	F	RFPP = Reven	eristaltic Pump se Flow Perist	altic Pump;	SM = Straw	Method		ESP = Electr Gravity Drain);		ole Pump; r (Specify)			
						ired by Chapt			.C.	SECTION	1)			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

SITE NAME: J.E	E.D. SWMF (WA	Cs Facility ID	): 89544)				TE DCATION: 150	01 Omni V	Vav. St	Cloud, Osce	ola County	. Florid	a. 34773	
WELL NO		-		SA	MPLE ID		1-2C						192	(11)
	rin-	nc					GING DA	ТА	-			1000	19.0	012
WELL		TUBIN	IG		WELLS		INTERVAL	ST		DEPTH		PURC	E PUMP TY	PE
DIAMETE	R (inches): 2.0	DIAM	ETER (inches)		DEPTH	:58 fe	eet to 68 f	eet TO	WATE	ER (feet): /8	3.11			eristaltic
	LUME PURGE: it if applicable)	1 WELL VO	DLUME = (TO	TAL WELL	DEPTH	- STA	TIC DEPTH T	O WATE	R) X	WELL CAP	ACITY			
			= (	68.	SG fee	et -	18.11	fee	et) X		gallons/f	oot =	8.1	gallons
	NT VOLUME PU it if applicable)	URGE: 1 EQ	UIPMENT VO				BING CAPACI	TY X		JBING LENG				20
	JMP OR TUBIN	0		MP OR TU		ns + ( 0	PURGIN	ons/foot X	-	- PURGING			TOTAL VOL	32 gallons
	WELL (feet):	63		WELL (fe		63	INITIATE	DAT: 0	735	ENDED A	T: 08,	10		allons): 1-75-
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEP TC WAT (fee	ER (S	pH tandard units)	TEMP. (°C)	CON (circle u µmhos or (µS/	nits) /sm	OXYGEN (circle units (circle units (circle units) (circle units) (circle units) (circle units)	) TUR (N	BIDITY TUs)	COLOF (describe	
0800	1.25	1.25	0.05	18.	26 6	1.79	23.52	50	2	0.89		.1	clea	21,5
0605	0.25	1.50	0.05			1.77	23.50	51		077			clen	
0610	0.25	1.75	0.05			4.77	23:48	50		0.79	0.	1	cle	-
~														
	PACITY (Gallon:			1" = 0.0	04: 1.3 3/16" = 0	25" = 0.0	6; 2" = 0.10 1/4" = 0.002		0.37; 6" = 0.		5" = 1.0 = 0.006;			12" = 5.88 5/8" = 0.016
	EQUIPMENT C		B = Bailer;	BP = Blac			SP = Electric				Peristaltic			ner (Specify)
							LING DA			PI				(opeo))
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLE			E(S): Joi C	T		SAMPLING	6		SAMPLING	3
Joe Terry	102.00 L					BINATURI	E(S). your c	1/ .		INITIATED		10		0820
PUMP OR DEPTH IN	WELL (feet):	63	3	TUBING MATERI		E: PE				-FILTERED: on Equipment	$\sim$		FILTER SI	ΖΕ: μm
FIELD DE	CONTAMINATIO	DN: PUI	MP No		TUBING	No	(replaced)			DUPLICAT	E or EQUI	PMENT	BLANK:	Y (N)
SAM	PLE CONTAINE	R SPECIFIC	ATION		SA	MPLE PF	RESERVATIO	N		INTEN		SAI	MPLING	SAMPLE PUMP
SAMPLE	#	MATERIAL	VOLUME	PRESER			TOTAL VOL		NAL	ANALYSIS METH			CODE	FLOW RATE (mL per minute)
ID CODE	CONTAINERS 3	CODE	40mL	H			D IN FIELD (r efilled by lab		pН	826		-	REPP	<100
11	3	CG	40mL	No		-	None		-	80			REPP	<100
11	1	PE	500mL	HN		Pre	efilled by lab			Met	1	-	APP	200
-1	1	PE	125mL	H ₂ S		1	efilled by lab			NE		-	APP	200
11	1	PE	250mL	No			None			TDS, C	-	-	APP	200
11	1	AG	250mL	H ₂ S		Pre	efilled by lab			Total Pl		-	APP	200
REMARKS	2													200
weather: (	overwest, S	501-												
odor: nû					-	_	102.050.0	-						
MATERIA		AG = Amber		= Clear Gla				PP = Poly				= Teflo		her (Specify)
SAMPLIN	GEQUIPMENT		APP = After Po RFPP = Rever			B = Bai pump;		Bladder P Method (T		ESP = Ele Gravity Drain)		other (S		
TES: 1.	The above of	o not cons	stitute all of	the infor	mation	require								

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	E.D. SWMF (WA	Ce Eacility ID	89544)				1 Omni Wa	v St (	Cloud, Osceola	County El	orida 34773	
			. 09344)	SAMPLE			I Onni vva	y, 51. (			Vac 19.	2007
WELL NO	MW-3/	ł		Orivit EE	ID: MV		TA			/	000 19,	0012
14/511		TUDIN	0		LL SCREEN	GING DA		FIC DE	DTU	D	URGE PUMP T	VDE
WELL	R (inches): 2.0	TUBIN	TER (inches):			eet to 23 f	(e. 10.3)		R (feet): 17.5			peristaltic
	LUME PURGE:			TAL WELL DEP	TH - STA	TIC DEPTH T						
(only fill or	ut if applicable)		= (	23	feet -	17.58	feet)	x	0.16 g	allons/foot	= 0.9	gallons
	NT VOLUME PU	URGE: 1 EQ		L. = PUMP VOL	UME + (TUI	BING CAPACI	TY X		BING LENGTH)			guions
(only fill of	ut if applicable)			= 0.0 g	allons + ( C	.0026 gallo	ns/foot X		feet)	+ 0.12	2 gallons =	gallons
	UMP OR TUBIN	G 20		MP OR TUBINO WELL (feet):	20	PURGIN	G ED AT: 090	00	PURGING ENDED AT:	095	TOTAL VO PURGED (	LUME gallons): 2.75
TIME	VOLUME	CUMUL. VOLUME PURGED	PURGE	DEPTH TO WATER	pH (standard	TEMP. (°C)	COND. (circle unit µmhos/cr		DISSOLVED OXYGEN (circle units)	TURBIC (NTU:		
	(gallons)	(gallons)	(gpm)	(feet)	units)	( 0)	or uS/cm	1	% saturation	(1110)	(4000)	
0945	2.25	2.25	0.05	17.65	5.0B	26.53	338		0.411	2.9	Clea	101.2
0950	0.25	2.5	0.05	17.65	5.07	26.50	341		0.39	2.6	cle	101.7
0955	0.25	2.75	0.05	17.65	5,00	2655	337	_	0.36	2.7	Clea	v - 100.5
				-				_				
				-				-				
			-	-				-				
	-			-				-				
							-	-				
		-			-							
	PACITY (Gallon			1" = 0.04;	1.25" = 0.0					5" = 1.02;	6" = 1.47;	12" = 5.88
	EQUIPMENT C		B = Bailer;	BP = Bladder F	= 0.0014; Pump: E	1/4" = 0.002 SP = Electric		= 0.00		ristaltic Pu	/2" = 0.010; imp: 0 = 0	5/8" = 0.016 Other (Specify)
						LING DA						
SAMPLE	BY (PRINT) / A	FFILIATION:		SAMPLER(S)		0 -	T.		SAMPLING		SAMPLI	NG
Joe Terry					SIGNATOR	E(0). You	uz		INITIATED AT			AT: 1010
PUMP OF	WELL (feet):	20		TUBING MATERIAL C	ODE: PE				ILTERED: Y Equipment Typ		FILTER S	SIZE:μm
FIELD DE	CONTAMINATIO	DN: PUI	MP No	TUB	ING No	(replaced)			DUPLICATE o	or EQUIPM	IENT BLANK:	YN
SAN	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PI	RESERVATIO	N		INTENDE		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL	nL) FINA		ANALYSIS AN METHOD		EQUIPMENT CODE	FLOW RATE (mL per minute)
MW-3A	3	CG	40mL	HCL		efilled by lab			8260		RFPP	<100
11	3	CG	40mL	None		None			8011		RFPP	<100
	1	PE	500mL	HNO ₃	Pr	efilled by lab			Metals		APP	200
11	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab			NH ₃		APP	200
11	1	PE	250mL	None		None			TDS, CI, N	1O3	APP	200
-1	1	AG	250mL	H ₂ SO ₄	Pr	efilled by lab			Total Pher	nols	APP	200
REMARKS weather: C	s: vercust, ligh	+ brecze, s	3-°F									
odor: AD.	22					10.000		_				
						11. 11.		and an	C - Cilian	ne; T=	Toflon: 0 = /	Other (Specify)
MATERIA	L CODES:	AG = Amber		= Clear Glass;	PE = Pol		PP = Polypr					Juner (Specify)
MATERIA		CODES:	APP = After Pe	= Clear Glass; eristaltic Pump; se Flow Perista	B = Ba	iler; BP =	Bladder Pun	mp;	ESP = Electri ravity Drain);	c Submers		Other (Specity)

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Cs Facility ID	89544)				TE DCATION: 150	)1 Omni	Way, St.	Cloud, Os	sceola Cou	unty, Florid	da, 34773	
	MW-30			SAM	PLE ID:	_							19.2	212
THEE HO	Mur St	-		-			SING DA	ТΔ				10-0	17, -	
WELL DIAMETER	R (inches): 2.0		TER (inches):	0.25	WELL SC	REEN	INTERVAL	eet T	TATIC D	R (feet):	17.48	and the second se	GE PUMP T BAILER: p	YPE eristaltic
(only fill out	UME PURGE: t if applicable)		= (	69	feet	_	17.4	B f	eet) X	0.16	gallor	ns/foot =	B.Z	gallons
	t if applicable)	NOL. TEQ												2 a allons
	IMP OR TUBIN	G ( )	FINAL PU	MP OR TU	BING		.0026 gallo PURGIN	G		75 PURG	ING	0.12	TOTAL VO	
DEPTH IN	WELL (feet):	64	DEPTHIN	WELL (fee		4	INITIATE			ENDE		930	PURGED (	gallons): 1.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet	R (sta	pH andard nits)	TEMP. (°C)	μmho	s/cm	OXYG (circle u mg/L) % satura	nits) or	URBIDIT (NTUs)	Y COLO (descril	
0920	1.0	1.0	0.05	17.6	0 5	.28	26.05		3-1	0.5	B	2	clei	v -59.6
0925	0.25	1.25	0.05	17.0	0 5	.27	26.12		15	0.5	~	2.3	Clea	-61.4
0430	0.25	1.50	0.05	17.6	0 5	.27	26.13	ę	34	0.5	53	2.3	cleu	62.6
			-		-						-		-	
												-		
	PACITY (Gallon			1" = 0.0		<b>5</b> " = 0.0			= 0.37;				6" = 1.47;	<b>12"</b> = 5.88
	EQUIPMENT C		/Ft.): <b>1/8"</b> = 0 8 = Bailer;	.0006; 3 BP = Blad		; E	1/4" = 0.002 SP = Electric	Submer	/16" = 0.0 rsible Pur		8" = 0.006 P = Perista		= 0.010; o; O = C	5/8" = 0.016 ther (Specify)
	_				S	AMP	LING DA	ATA						
SAMPLED Joe Terry /	BY (PRINT) / A WSI	FFILIATION:		SAMPLE	R(S) SIG	NATUR	E(S): Jue	Tung		SAMPL	ING ED AT: (	930	SAMPLIN ENDED	IG NT: 0940
PUMP OR DEPTH IN	TUBING WELL (feet):	64		TUBING MATERIA	L CODE	PE				-FILTERED		Ň	FILTER S	IZE:μm
FIELD DEC	CONTAMINATIO	DN: PUN	MP No		TUBING	No	(replaced)			DUPLIC	CATE or E	QUIPMEN	T BLANK:	YN
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAN	IPLE PR	RESERVATIO	N			TENDED		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESER		ADDE	TOTAL VOL D IN FIELD (1		FINAL pH		SIS AND/O	JR EG	CODE	FLOW RATE (mL per minute
MW-3C	3	CG	40mL	HC	L	Pr	efilled by lab				8260		RFPP	<100
.1	3	CG	40mL	No	ne		None		_		8011		RFPP	<100
11	1	PE	500mL	HN	O ₃	Pr	efilled by lab			N	Aetals		APP	200
.1	1	PE	125mL	H ₂ S	O ₄	Pr	efilled by lab				NH ₃		APP	200
~	1	PE	250mL	No	ne		None			TDS	, CI, NO3		APP	200
	1	AG	250mL	H ₂ S	O ₄	Pr	efilled by lab			Tota	I Phenols	6	APP	200
	verist, 550	F, 1:36+ 1	bree te											
MATERIAL		AG = Amber	Glass; CG	= Clear Gla	SS; PI	E = Poly	yethylene;	PP = P	olypropyl	ene; S=	Silicone;	T = Tet	lon; O = (	Other (Specify)
1 - 2 - 2 - A - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	GEQUIPMENT	CODES:	APP = After Pe RFPP = Rever	eristaltic Pu	mp;	B = Ba		Bladder	Pump;	ESP =	Electric Si		e Pump;	
OTES: 1.	The above of													

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J	E.D. SWMF (WA	ACs Facility I	0: 89544)			TE	01 Omni Way, S	t. Cloud, Osceola	County F	lorida 34773	
	: MW-4			SAMPLE		N-44	er enna rray, e		Constant of the		2.2/2
	10001	A				GING DA	ТА		/	16, 19,	2012
WELL VO	ER (inches): 2.0 DLUME PURGE: ut if applicable)	TUBII DIAM : 1 WELL V	ETER (inches	):0.25 DEP	L SCREEN TH: /J fe TH - STA	INTERVAL	STATIC I TO WATI TO WATER) X	ER (feet): 18. WELL CAPAC	34 0		peristaltic
	ENT VOLUME P ut if applicable)	URGE: 1 EC		L. = PUMP VOL	UME + (TUE	BING CAPACI	TY X T	UBING LENGTH	+ FLOW (	CELL VOLUME	
	UMP OR TUBIN WELL (feet):	IG 21		JMP OR TUBING N WELL (feet):		.0026 gallo PURGIN INITIATE		PURGING ENDED AT:		TOTAL VO	gallons LUME gallons): 4. 4
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE	DEPTH TO	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg/b_or % saturation	TURBID (NTUs	DITY COLO	DR ORP
1145	3.6	3.6	0.08	18.48	4.73	2B.11	384	0.4	0.1	i clea	73.5
1120	0.4	41.0	0.08	18.48	4.74	28.08	375	0,21	0.1		
1125	0.4	41.4	0.08		41.73	28.10	376	0.4	0.3		
TUBING	NSIDE DIA. CA	PACITY (Gal		1" = 0.04; 0.0006; 3/16" BP = Bladder P		1/4" = 0.002		004; 3/8" = 0	5" = 1.02; .006; 1/ eristaltic Pu	6" = 1.47; 2" = 0.010; mp; O = C	12" = 5.88 5/8" = 0.016 Other (Specify)
					SAMP	LING DA	ATA				
SAMPLEI Joe Terry	) BY (PRINT) / A / WSI	FFILIATION		SAMPLER(S)	SIGNATUR	E(S): Goe	tup	SAMPLING INITIATED AT	: 1125	SAMPLIN ENDED	NG AT: 1133
PUMP OF DEPTH IN	TUBING WELL (feet):	21		TUBING MATERIAL CO	DE: PE			FILTERED: Y	(N)		SIZE:μm
FIELD DE	CONTAMINATIO	ON: PUI	MP No	TUBI	NG NO	(replaced)		DUPLICATE O	or EQUIPM	ENT BLANK:	YN
SAMPLE	PLE CONTAINE	MATERIAL	VOLUME	PRESERVATI	VE T	RESERVATION	FINAL	ANALYSIS AM	ND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS 3	CODE	40mL	USED		D IN FIELD (r		8260		RFPP	(mL per minute) <100
11	3	CG	40mL	None	PI	None		8200			
		PE	500mL	HNO ₃	Dre	efilled by lab		Metals		RFPP	<100
	1		JOUITL			efilled by lab				APP	300
11	1	PF	125ml	H-SO		since by idb		NH ₃		APP	300
**	1	PE	125mL	H ₂ SO ₄	110	None		TDO OL M	10	400	
**		PE	250mL	None		None filled by Job		TDS, CI, N		APP	300
۰۱ ۰۱ REMARK	1 1 1 Si Werwst, K	PE AG	250mL 250mL	None H ₂ SO ₄		None efilled by lab		TDS, Cl, N Total Pher		APP APP	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	.D. SWMF (WA	Cs Fi	acility ID: 8	39544)				TE DCATION: 150	1 Omr	ni Way, St.	Cloud, C	sceola	County	, Florid	a, 34773		
WELL NO:	MW-4	(			SA	MPLE I	D: MI	N-4C					DATE:	No.	19.	201	2
	1	-				-		GING DA	TA					-	. 1,		
WELL	R (inches): 2.0		TUBING	ER (inches):	0.25	WELL	SCREEN	INTERVAL		STATIC D	EPTH R (feet):	18.	20		GE PUMP T	YPE	ltic
(only fill ou	R (inches): 2.0 LUME PURGE: It if applicable)	1 W	ELL VOL	UME = (TO	72.7		H - STA	10 -		TER) X feet) X				oot =	8.7		gallons
	NT VOLUME Pl t if applicable)	JRG	E: 1 EQU		= PUMI	P VOLU	ME + (TUE	BING CAPACI	TY	X TL	BING LE	NGTH)	+ FLO	W CEL	gallons = (	0 3	
	JMP OR TUBIN WELL (feet):	G	63	FINAL PU DEPTH IN	MP OR T	UBING	68	PURGIN	G		PURC	SING	1100		TOTAL VOI PURGED (§	UME	
TIME	VOLUME PURGED (gallons)	C V P	UMUL. OLUME URGED gallons)	PURGE RATE (gpm)	DEF TC WAT (fee	TH D TER	pH (standard units)	TEMP. (°C)	C( (circl µmt	OND. le units) nos/cm µS/cm)	DISSOI OXYC (circle u mg/L % satu	EN units)		BIDITY TUs)		R	ORP (mV)
1050	1.4		1.4	0.07	18.	37	5.94	26.83	2	13	0.5	-	0.	4	clea	-	-77.3
1055	0.35		.75	0.07	1.0		5.93			09	0.5	-	0.		cles	5-	-78.1
1100	0.35	é	2.1	0.07	18		5,93	26.84	21		0,4	18	0.	6	cleu	-	-79.0
TUBING IN	PACITY (Gallon NSIDE DIA. CAP EQUIPMENT C	PACI	TY (Gal./F	.75" = 0.02; t.): 1/8" = 0 = Bailer;	1" = 0. .0006; BP = Bla	3/16" =	0.0014;	1/4" = 0.002 BP = Electric	6;	" = 0.37; 5/16" = 0.	004; 3	/8" = 0	<b>5</b> " = 1.0 .006; eristaltic	1/2"	5" = 1.47; = 0.010;	5/8"	= 5.88 = 0.016 Specify)
PURGING	EQUIPMENT	ODE	э. в	- Daller,	DP - Dia	uder Pu		LING DA		ersible Ful	np, r		enstantic	, Fump.	0-0	the (	Specity)
SAMPLED	BY (PRINT) / A	FFIL	IATION:		SAMPL	ER(S) S		E(S): Jor		2	SAMP		r: 110	012	SAMPLIN ENDED A		1110
PUMP OR		6	B		TUBING		DE: PE		1		FILTERE	D: Y	D		1.000		μm
FIELD DE	CONTAMINATIO	DN:	PUM	P No		TUBIN	IG No	(replaced)		a si	DUPLI	CATE	or EQU	IPMEN	T BLANK:	Y	N
SAMPLE	PLE CONTAINE #	_			PRESE			RESERVATIO TOTAL VOL	N	FINAL	ANAL		ND/OR	EQ		FI	MPLE PUMP OW RATE
ID CODE	CONTAINERS		ODE			SED	-	ED IN FIELD (r		рН	N	NETHO	U	-		(m)	per minute)
MU.4C	3	-	CG	40mL		CL	Pr	efilled by lab	,		-	8260	-	-	RFPP	-	<100
	3	-	PE	40mL		one	De	None ofilled by Jah			-	8011 Metals		-	APP	-	<100
	1	-	PE	500mL 125mL		NO ₃ SO ₄		efilled by lab	-			NH ₃		-	APP		250
	1	-	PE	250mL		one	FI	None	-		TD	S, CI, I	NO.	-	APP	-	250
	1	-	AG	250mL		SO4	Pr	efilled by lab			-	al Phe		-	APP	-	50
REMARKS weather: 0 odor: 1/0, MATERIAL	vercest, lig ne L CODES:	AG :	reeze, s	55°F	= Clear G	lass;		yethylene;	PP = F	Polypropyler Pump;	ene; S	= Silico		r = Tefl	on; <b>O</b> = 0		(Specify)
	G EQUIPMENT		RI	FPP = Rever	se Flow P	eristalti	c Pump;	SM = Straw	Metho	d (Tubing	Gravity D				Specify)		

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	D. SWMF (WA	Ce Eacility ID	80544)			TE	1 Omni Way	t. Cloud, Osceola	County Flori	da 34773	
WELL NO:	MW-5		00044)	SAMPLE	ID: MM		in on in truy, c		DATE: N		017
TILLE HO	14100-5	14				GING DA	ТА		10.	010,0	TIC
WELL VO	R (inches): 2.0 LUME PURGE: It if applicable)		TER (inches):	0.25 DE	TH: 12,5 f	INTERVAL eet to 22.5 f	eet TO WAT	DEPTH ER (feet): 18. WELL CAPAC	U3 ORE		YPE eristaltic
EQUIPME	NT VOLUME PL it if applicable)	JRGE: 1 EQI	= ( UIPMENT VOL					UBING LENGTH		gallons =	gallons
	JMP OR TUBINO WELL (feet):	³ 20		WP OR TUBINO WELL (feet):	3 20	PURGIN	IG ED AT: 14/10	PURGING ENDED AT:	1515	TOTAL VOI PURGED (	LUME gallons): S.85
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units)	TURBIDIT (NTUs)	Y COLO (descrit	
1505	41.95	21.95	0.09	18.61	3.85	25.15	9411	0,5	1.1	Clea.	+ 93,5
1510	0.45	5.4	0.09	18.61	3.85	25,17	942	0.51	1.1	cleu	
1515	0.45	5.85			3.86		941	0,49	1.1	Llea	
TUBING IN	PACITY (Gallons NSIDE DIA. CAP EQUIPMENT C	ACITY (Gal.	Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16 BP = Bladder I		1/4" = 0.002 SP = Electric	6; <b>5/16''</b> = 0 Submersible Pr	0.004; <b>3/8"</b> = 0		6" = 1.47; = 0.010; o; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
TUBING IN PURGING SAMPLED	BY (PRINT) / A	ODES: E	Ft.): 1/8" = 0.	0006; 3/16' BP = Bladder I	= 0.0014; Pump; E SAMF	1/4" = 0.002 SP = Electric PLING DA	6; 5/16" = 0 Submersible Po ATA	0.004; 3/8" = 0 ump; PP = Po SAMPLING	0.006; 1/2" eristaltic Pump	= 0.010; ; 0 = 0	5/8" = 0.016 ther (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A WSI TUBING	PACITY (Gal./ ODES: E	(Ft.): 1/8" = 0. 3 = Bailer;	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING	= 0.0014; Pump; E SAMF SIGNATUR	1/4" = 0.002 SP = Electric	Submersible Po ATA	SAMPLING           INITIATED A	0.006; 1/2" eristaltic Pump T: /520	= 0.010; p; 0 = 0 SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	NSIDE DÍA. CAF EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet):	PACITY (Gal. ODES: E FFILIATION: 20	(Ft.): 1/8" = 0. 3 = Bailer;	0006; 3/16 BP = Bladder I SAMPLER(S) TUBING MATERIAL C	SIGNATUR	1/4" = 0.002 ESP = Electric PLING DA E(S): Que	Submersible Po ATA	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty	0.006; 1/2" eristaltic Pump T: <u>/520</u> N pe:	= 0.010; b; 0 = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG IT: /528 IZE:μm
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./ ODES: E FFILIATION: 2.C DN: PUN	(Ft.): 1/8" = 0. 3 = Bailer; 0 //P No	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING	= 0.0014; Pump; E SAMF SIGNATUR ODE: PE ING No	1/4" = 0.002 ESP = Electric PLING DA E(S): Que (replaced)	5/16" = 0 Submersible Po ATA G FIELD Filtrat	0.004;         3/8" = 0           ump;         PP = P           SAMPLING           INITIATED A*           D-FILTERED:           DOPLICATE	0.006; 1/2" eristaltic Pump T: <u>/5.20</u> N pe: or EQUIPMEN	= 0.010; p; 0 = 0 SAMPLIN ENDED A FILTER S IT BLANK:	5/8" = 0.016 ther (Specify) IG IT: <u>1528</u> IZE:μm Y
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	NSIDE DÍA. CAF EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet):	PACITY (Gal./ ODES: E FFILIATION: 2.C DN: PUN	(Ft.): 1/8" = 0. 3 = Bailer; 0 //P No	0006; 3/16 BP = Bladder I SAMPLER(S) TUBING MATERIAL C	2 = 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING No SAMPLE PI IVE	1/4" = 0.002 ESP = Electric PLING DA E(S): Que	5/16" = 0 Submersible Po ATA FIELD Filtrat	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty	0.006; 1/2" eristaltic Pump T: /5.20 N pe: or EQUIPMEN ED SJ ND/OR EG	= 0.010; b; 0 = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG IT: <u>1528</u> IZE:μm Y
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	FFILIATION: PODES: E FFILIATION: 2.C DN: PUM R SPECIFIC/ MATERIAL	(Ft.): 1/8" = 0. 3 = Bailer; 0 //P No ATION	0006; 3/16 BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	= 0.0014;           Pump;         E           SAMF           SIGNATUR           ODE: PE           ING         No           SAMPLE P           IVE         ADDE	1/4" = 0.002 ESP = Electric PLING DA E(S): Que (replaced) RESERVATIO TOTAL VOL	16:     5/16" = 0       Submersible Private       ATA       FileL0       FileL0       FileL0       N       mL)       FINAL       pH	0.004;     3/8" = 0       ump;     PP = Pe       SAMPLING     INITIATED A"       D-FILTERED;     Y       ion Equipment Ty       DUPLICATE       INTENDE       ANALYSIS A	0.006; 1/2" eristaltic Pump T: <u>/5.20</u> N pe: or EQUIPMEN ED S, ND/OR EQ	= 0.010; p; O = O SAMPLIN ENDED A FILTER S MT BLANK: AMPLING QUIPMENT	5/8" = 0.016 ther (Specify) IG IZE:μm Y SAMPLE PUMP FLOW RATE
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: PODES: E FFILIATION: PUN R SPECIFIC/ MATERIAL CODE	(Ft.): 1/8" = 0. B = Bailer; MP No ATION VOLUME	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	= 0.0014;           Pump;         E           SAMF           SIGNATUR           ODE: PE           ING         No           SAMPLE P           IVE         ADDE	1/4" = 0.002 ESP = Electric PLING DA E(S): Que (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r	16:     5/16" = 0       Submersible Private       ATA       FileL0       FileL0       FileL0       N       mL)       FINAL       pH	0.004;     3/8" = 0       ump;     PP = Pi       SAMPLING       INITIATED A*       0-FILTERED:       Y       DUPLICATE       INTENDE       ANALYSIS A       METHO	0.006; 1/2" eristaltic Pump T: <u>/5.20</u> N pe: or EQUIPMEN ED S, ND/OR EQ	= 0.010; p; 0 = 0 SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE	5/8" = 0.016 ther (Specify) IG IZE:μm Y
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE WW-STA	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	FFILIATION: 2 C PRESE FFILIATION: 2 C DN: PUN R SPECIFIC MATERIAL CODE CG	(Ft.): 1/8" = 0. 3 = Bailer; 0 MP No ATION VOLUME 40mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	2 = 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE PI	1/4" = 0.002 SP = Electric PLING DA E(S): Que (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r refilled by lab	Submersible Portage Submersibe Submersible Portage Submersible Por	0.004;     3/8" = 0       Jmp;     PP = Pe       SAMPLING     INITIATED A'       D-FILTERED:     Y       ION Equipment Ty       DUPLICATE       INTENDI       ANALYSIS A       METHO       8260	D.006; 1/2" eristaltic Pump T: /520 N pe: or EQUIPMEN ED SJ ND/OR EG	= 0.010; p; 0 = 0 SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE RFPP	5/8" = 0.016 ther (Specify) IG IZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-SA	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3	FFILIATION: CODES: E FFILIATION: CON: PUM R SPECIFIC/ MATERIAL CODE CG CG CG	(Ft.): 1/8" = 0. B = Bailer; MP No. ATION VOLUME 40mL 40mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	E 0.0014; Pump; E SAMF SIGNATUR ODE: PE ING NO SAMPLE PI IVE ADDE Pr Pr	1/4" = 0.002 SP = Electric PLING DA E(S): Gov (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r refilled by lab None	16:     5/16" = 0       Submersible Private       ATA       Image: Strategy of the	0.004;     3/8" = 0       Jmp;     PP = Pi       SAMPLING       INITIATED A"       D-FILTERED:     Y       IOFILTERED:     Y       DUPLICATE       INTENDE       ANALYSIS A       METHO       8260       8011	D.006; 1/2" eristaltic Pump T: /520 N pe: or EQUIPMEN ED SJ ND/OR EG	= 0.010; o; O = O SAMPLIN ENDED A FILTER S NT BLANK: AMPLING DUIPMENT CODE RFPP RFPP	5/8" = 0.016 ther (Specify) IG IZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE ID CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 1	FFILIATION: PUN: R SPECIFIC/ MATERIAL CODE CG CG PE	(Ft.): 1/8" = 0. B = Bailer; MP No ATION VOLUME 40mL 40mL 500mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	E 0.0014; Pump; E SAMF SIGNATUR ODE: PE ING NO SAMPLE PI IVE ADDE Pr Pr	1/4" = 0.002 ESP = Electric PLING DA E(S): Que (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r refilled by lab None refilled by lab	16:     5/16" = 0       Submersible Private       ATA       Image: Strategy of the	0.004;     3/8" = 0       ump;     PP = Pi       SAMPLING       INITIATED A"       D-FILTERED:       Y       DUPLICATE       ANALYSIS A       METHO       8260       8011       Metals	0.006;     1/2"       eristaltic Pump       T:     /5.20       N       pe:       or EQUIPMEN       ED       ND/OR       D	= 0.010; o; O = O SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP	5/8" = 0.016 ther (Specify) IG IZE:μm Y
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-SA UC CC CC REMARKS	NSIDE DIA. CAP EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 3	PACITY (Gal.) ODES: E FFILIATION: 2.C DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE AG	Ft.): 1/8" = 0. B = Bailer; AP No ATION VOLUME 40mL 40mL 500mL 125mL 125mL 125mL 1250mL 1250mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	E 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr Pr Pr	1/4" = 0.002 SP = Electric PLING DA E(S): Gar (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r refilled by lab refilled by lab	Submersible Portage of the second sec	0.004; 3/8" = 0 Jmp; PP = Pe SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH ₃	0.006; 1/2" eristaltic Pump T: /5.20 N pe: or EQUIPMEN ED SJ ND/OR EG D S ND/0R	= 0.010; o; O = O SAMPLIN ENDED A FILTER S AT BLANK: AMPLING DUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 ther (Specify) IG IZE:μm Y
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-SA UC UC CC CC REMARKS	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 3	PACITY (Gal.) ODES: E FFILIATION: 2.C DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE AG	Ft.): 1/8" = 0. B = Bailer; AP No ATION VOLUME 40mL 40mL 500mL 125mL 125mL 125mL 1250mL 1250mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	E 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr Pr Pr	1/4" = 0.002 SP = Electric PLING DA E(S): Gov (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r refilled by lab None refilled by lab Entitled by lab	Submersible Portage of the second sec	0.004;     3/8" = 0       Jmp;     PP = Pi       SAMPLING       INITIATED A"       D-FILTERED:     Y       INTENDE       ANALYSIS A       METHO       8260       8011       Metals       NH3       TDS, CI, I	0.006; 1/2" eristaltic Pump T: /5.20 N pe: or EQUIPMEN ED SJ ND/OR EG D S ND/0R	= 0.010; o; O = O SAMPLIN ENDED A FILTER S NT BLANK: AMPLING DUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 ther (Specify) IG IZE:μm Y
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE WW-STA UC CC CC CC REMARKS weather: @	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 3 	PACITY (Gal.) ODES: E FFILIATION: 2.C DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE AG	Ft.): 1/8" = 0. B = Bailer; ATION VOLUME 40mL 40mL 500mL 125mL 250mL 125mL 250 gT	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	E 0.0014;     Pump; E     SAMF     SIGNATUR     ODE: PE     ING No     SAMPLE PI     VE ADDE     Pr     Pr     Pr     Pr     Pr     Pr     Pr	1/4" = 0.002 ESP = Electric PLING DA E(S): Gar (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r refilled by lab None refilled by lab None refilled by lab	Submersible Portage of the second sec	0.004;     3/8" = 0       ump;     PP = Pi       SAMPLING INITIATED A"       D-FILTERED:       Y       DUPLICATE       ANALYSIS A       METHO       8260       8011       Metals       NH3       TDS, CI, I       Total Phe	0.006; 1/2" eristaltic Pump T: <u>/520</u> pe: or EQUIPMEN ED S, ND/OR EC D S ND/OR EC S ND/OR EC	= 0.010; o; O = O SAMPLIN ENDED A FILTER S AT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP APP APP APP	5/8" = 0.016 ther (Specify) IG IZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 3.57 3.57 3.50

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.	D. SWMF (WAC	s Facility ID:	89544)			SITE LOCATION: 150	1 Omni Way,	St. Cloud, Osceola	County, Flori	da, 34773	
WELL NO:	MW-5			SAMPL	EID: A	1W-50			DATE: A	10015.	2012
	1 100-5				1	RGING DA	TA		1		
WELL VOLU	(inches): 2.0 UME PURGE: if applicable)	TUBIN DIAME 1 WELL VO	TER (inches):0	0.25 DI	ELL SCRE	EEN INTERVAL 3 feet to 73 fe STATIC DEPTH T	STATIC TO WA	DEPTH TER (feet): / B. X WELL CAPAC			YPE peristaltic
EQUIPMEN		RGE: 1 EQI	= ( JIPMENT VOL		DLUME +	/8.2 (TUBING CAPACI ( 0.0026 gallo	feet) TY X	X 0.16 g TUBING LENGTH		LL VOLUME	gallons
INITIAL PUN DEPTH IN V	MP OR TUBING WELL (feet):	68	1 1 1 1 100 1 100	MP OR TUBI WELL (feet):	NG	PURGIN		PURGING	1450	TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (stand units	ard (°C)	COND. (circle units) µmhos/cm or vs/cm	DISSOLVED OXYGEN (circle units)	TURBIDIT (NTUs)	Y COLO (descril	
14 35	2.0	2.0	0.09	18.3	74.6	8 24.54	93	0.48	10	cle	\$ 54.2
1440	0.4	2.4	0.08	19 37	1 5.0	24.54	90	0,49	1.0	clea	r 2412
1445	0.4	2.8	0.08	18.3	7 5.6	1 24,55	90	0.49	1.0	Cler	1 21.0
14 50	0.41	2.8 3.2	0.08	18.37			89 21	0:46	1.0	clea	16.5
TUBING INS	ACITY (Gallons SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AR	ACITY (Gal.) ODES: E	Ft.): 1/8" = 0	BP = Bladde	6" = 0.001 r Pump; SA	ESP = Electric	6; 5/16" = Submersible F	0.004; 3/8" = 0	5" = 1.02; 0.006; 1/2' eristaltic Pum	6" = 1.47; = 0.010; p; O = C SAMPLIN	12" = 5.88 5/8" = 0.016 ther (Specify)
Joe Terry / V PUMP OR T	WSI		10	TUBING	5) SIGNA	TURE(S): Jue	1	D-FILTERED: Y	- Au	ENDED /	AT: 1500
DEPTH IN V		6	e	MATERIAL	CODE: PI	E		ation Equipment Ty	pe:		
FIELD DEC	ONTAMINATIO	N: PUN	IP No	TU	BING	No (replaced)		DUPLICATE	or EQUIPME	NT BLANK:	YO
SAMPLE	#	MATERIAL	ATION VOLUME	PRESERVA	ATIVE	E PRESERVATIO	FINAL	ANALYSIS A METHO	ND/OR EC	AMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute
ID CODE	CONTAINERS 3	CODE	40mL	USED	P	DDED IN FIELD (r Prefilled by lab		8260		RFPP	<100
11	3	CG	40mL	None		None		8011		RFPP	<100
	1	PE	500mL	HNO		Prefilled by lab	)	Metal		APP	300
	1	PE	125mL	H ₂ SO		Prefilled by lab		NH ₃		APP	300
	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	300
	1	AG		H ₂ SO		Prefilled by lab		Total Phe		APP	300
11			1000mL					, starrine			10-
REMARKS: weather: c) odor: nor MATERIAL	ne ne	Soff , 90 AG = Amber	stry who	Clear Glass		Polyethylene;	PP = Polyprop	oylene; S = Silici	one; <b>T</b> = Te		Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

Revision Date: February 12, 2009

SITE NAME: J.E	.D. SWMF (WA	Cs Facility ID	: 89544)			TE DCATION: 150	1 Omni V	Vay, St.	Cloud, Osceola	County, Flo	rida, 34773	
	MW-			SAMPLE	ID: MI	N-64				DATE: N	v 15,7	2012
	10110					SING DA	TA					
WELL VO	R (inches): 2.0 LUME PURGE: t if applicable)		TER (inches):	D.25 DEF	TH:/2.5 fe	INTERVAL set to 22, 5 fe TIC DEPTH T	eet TO		WELL CAPACI	6.2 OR		YPE peristaltic
EQUIPME	NT VOLUME PI t if applicable)	URGE: 1 EQ	= ( UIPMENT VOL	= PUMP VOL	feet – UME + (TUE allons + ( 0			et) X TU	0.16 g JBING LENGTH) feet)	+ FLOW CE	= 0.9 ELL VOLUME gallons =	gallons
	JMP OR TUBIN WELL (feet):	G 21	and the second sec	MP OR TUBINO WELL (feet):	21	PURGIN		235	PURGING ENDED AT:	1340	TOTAL VO PURGED (	LUME gallons): 6.2
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	CON (circle u µmhos or µS/	D. nits) /cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)	TY COLC	OR ORP
1330	4.4	4.4	0.08	17.80	5.12	25,07	52	7	0.39	3	Clea	109.4
1335	0,4	4.0	0.08	17.80	5.09	25.07	57		0.39	3.1	clei	1-0
1340	0.4	5.2	0.08	17.80	5.10	25,10	52		0.42	3.1	cle	
	-		-	-				-			-	
											-	
TUBING IN	PACITY (Gallon NSIDE DIA. CAR EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16" BP = Bladder F	Pump; E	6; 2" = 0.10 1/4" = 0.002 SP = Electric	6; <b>5/1</b> Submersi	0.37; 6" = 0.0	004; 3/8" = 0.	5" = 1.02; 006; 1/2 eristaltic Pun	6" = 1.47; " = 0.010; np; O = C	<b>12</b> " = 5.88 <b>5/8</b> " = 0.016 Other (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)		0	-		SAMPLING INITIATED AT	121117	SAMPLIN	NG AT: 1347
PUMP OR		2	1	TUBING MATERIAL CO		-			FILTERED: Y	N		SIZE:μm
	CONTAMINATIO	V.	AP No	TUBI		(replaced)		rinduo	DUPLICATE C		NT BLANK:	YN
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	RESERVATIO	N	-	INTENDE	D	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT	and the second sec	TOTAL VOL		NAL pH	ANALYSIS AM METHOI		QUIPMENT CODE	FLOW RATE (mL per minute)
111-6A	3	CG	40mL	HCL	Pr	efilled by lab			8260		RFPP	<100
	3	CG	40mL	None		None			8011		RFPP	<100
	1	PE	500mL	HNO ₃	Pr	efilled by lab			Metals		APP	300
~	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab			NH ₃		APP	300
~*	1	PE	250mL	None		None			TDS, CI, M	NO ₃	APP	joo
10	1	AG	1000mL	H ₂ SO ₄	Pr	efilled by lab			Total Pher	nols	APP	300
REMARKS weather: () odor: ()()	vercust, 70	°F	750 97									
MATERIA	CODES:		APP = After Pe	Clear Glass; ristaltic Pump; Flow Peristal	B = Bai	ler; BP =	PP = Poly Bladder P Method ()	ump;	ene; S = Silico ESP = Electri Gravity Drain);		and the second second	Other (Specify)
OTES: 1.	The above of		And the second se								(	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	.D. SWMF (WA	Cs Facility ID	: 89544)				TE DCATION: 150	1 Omni V	Vav. St.	Cloud, Osceola	County, Flo	orida, 34773	
	MW-6			SA	MPLE ID:		N-6C					60 15,0	2017
	1	1					SING DA	ТΔ			10	00/3/0	012
	R (inches): 2.0		ETER (inches)		WELL S DEPTH:	CREEN	INTERVAL et to 73 fe	eet TO			51 OF	URGE PUMP T R BAILER:	YPE peristaltic
(only fill ou	It if applicable)		= (	73.2	e fee	-	17.57	fee	et) X		allons/foot		gallons
(only fill ou	it if applicable)				0.0 gallor	s+( 0	0026 gallo	ns/foot X		30 feet)	+ 0.12		0.4 gallons
	JMP OR TUBIN WELL (feet):	G 68		IMP OR TI	JBING	8	PURGIN			PURGING ENDED AT:	1310	TOTAL VO	1 -
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEP TC WAT (fee	TH D (st	pH andard units)	TEMP. (°C)	CONI (circle u µmhos or µS/	nits) /cm	DISSOLVED OXYGEN (circle units) Mgh or % saturation	TURBID (NTUs		
1300	1.75	1.75	0.07	17.0	51 4	73	24.62	50	1	0.63	1.3	cle	y -16.5
1305	0.35	2.1	0.07			1.78	24.58	57		0.57	1.7	cle	
1310	0.35	2.45			61 4		24,60	59		0.53	1.8	clea	
			_	_		_							
	-		-										
			-	-					-				
				-	-				-				
													-
					-								
	PACITY (Gallon			1" = 0.	04; <b>1.2</b> 3/16" = 0.	5" = 0.0 0014;	6; 2" = 0.16 1/4" = 0.002		0.37;		5" = 1.02; 006; 1/2	6" = 1.47; 2" = 0.010;	<b>12</b> " = 5.88 <b>5/8</b> " = 0.016
A	EQUIPMENT C		B = Bailer;		dder Pump	); E	SP = Electric	Submersil	ble Pum	np; PP = Pe	ristaltic Pur	mp; O = C	ther (Specify)
					S	AMP	LING DA	TA					
SAMPLED	BY (PRINT) / A WSI	FFILIATION:		SAMPLE	ER(S) SIG	NATUR	E(S): Que	Ty		SAMPLING INITIATED AT	1315	SAMPLIN ENDED	NG AT: 1323
PUMP OR DEPTH IN	TUBING WELL (feet):	68	3	TUBING MATERI	AL CODE	PE				FILTERED: Y	N) De:		ize:μm
FIELD DE	CONTAMINATIO	DN: PUM	MP No		TUBING	No (	replaced)			DUPLICATE o		ENT BLANK:	YN
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAN	IPLE PR	ESERVATION	N		INTENDE		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME		RVATIVE		OTAL VOL D IN FIELD (n		NAL pH	ANALYSIS AN METHOD		CODE	FLOW RATE (mL per minute)
MW-60	3	CG	40mL		CL		efilled by lab			8260		RFPP	<100
.1	3	CG	40mL	No	ne		None			8011		RFPP	<100
15	1	PE	500mL	HN	103	Pre	efilled by lab			Metals		APP	250
1	1	PE	125mL	H ₂ S	504	Pre	efilled by lab			NH ₃		APP	250
	1	PE	250mL	No	ne		None			TDS, CI, N	103	APP	250
¢.	1	AG	1000mL	H ₂ S	SO4	Pre	efilled by lab			Total Pher	ols	APP	250
REMARKS weather: 0	veriust, 70	=100	250 27										
MATERIAL		AG = Amber	Glass; CG	= Clear Gl	ass; P	E = Poly	ethylene;	PP = Poly	propyle	ne; S = Silicor	ne; T = T	eflon; O = 0	Other (Specify)
SAMPLING	GEQUIPMENT		APP = After P RFPP = Rever	eristaltic P	ump;	B = Bai	er; BP = I	Bladder P	ump;	ESP = Electric Gravity Drain);	c Submersi		())
DTES: 1.	The above of										e oure	(opeony)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D. SWMF (WAG	Cs Facility ID	89544)			OCATION: 150	1 Omni Way	y, St. Cl	loud, Osceola /	County, Flor	ida, 34773	
	MW-7A			SAMPLE	ID: MN						- 13,2	2012
WELL NO.	10100-17	1			-	GING DA	ТА			(00		
WELL VOI	R (inches): 2.0	TUBIN DIAME 1 WELL VO	TER (inches):0	.25 DEF	LL SCREEN	NINTERVAL	STAT TO W	VATER ( X W	(feet): 18.2	O OR	RGE PUMP TY BAILER: p	YPE eristaltic
EQUIPME	t if applicable) NT VOLUME PL t if applicable)	IRGE: 1 EQI	= ( 2 UIPMENT VOL		feet – UME + (TU gallons + (		feet) TY X ons/foot X		0.16 ga ING LENGTH) feet)			gallons gallons
	JMP OR TUBINO WELL (feet):	3 21		MP OR TUBING WELL (feet):	3 21	PURGIN	G AT: 123	35-	PURGING ENDED AT:	1335	TOTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP	COND. (circle unit: µmhos/cn or µS/cr	ts) (	DISSOLVED OXYGEN (circle units) ng/ or % saturation	TURBIDIT (NTUs)		
1325	3.5	3.5	0.07	18.27	5.2	1 25.44	503		0.85	0.4	Cler	1-111.7
1330	0.35	3 85	0.07	18.27	5.26	25,49	507	7	0.52	0.4	cleu	2 -109.1
1335	0.35	4.2	0.07	18.27	5,78	3 25.43	502	?	0.4	0.4	cle	w -116.1
TUBING I	PACITY (Gallons NSIDE DIA. CAP EQUIPMENT C	ACITY (Gal.	/Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16" BP = Bladder F		1/4" = 0.002 ESP = Electric	6; 5/16" Submersible	= 0.004	4; 3/8" = 0.	5" = 1.02; 006; <b>1/2</b> ristaltic Pum		<b>12</b> " = 5.88 <b>5/8</b> " = 0.016 other (Specify)
		10			SAME	PLING DA	TA		100 C 100 C		Lawrence	
Joe Terry /		FFILIATION:			SIGNATUR	RE(S): Joe.	U.		SAMPLING INITIATED AT	1340		17:1350
PUMP OR DEPTH IN	TUBING WELL (feet):	2	1	TUBING MATERIAL C	ODE: PE				Equipment Typ	N	FILTER S	IZE:μm
	CONTAMINATIC	N: PUN	MP No	TUB		(replaced)			DUPLICATE O		NT BLANK:	YON
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE P	RESERVATIO	N		INTENDE	DS	SAMPLING	SAMPLE PUM
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL ED IN FIELD (n	mL) FINA	AL	ANALYSIS AN METHOD		QUIPMENT	FLOW RATE (mL per minute
MW-7A	3	CG	40mL	HCL	P	Prefilled by lab			8260		RFPP	<100
	3	CG	40mL	None		None			8011		RFPP	<100
**	1	PE	500mL	HNO ₃	P	Prefilled by lab			Metals		APP	250
11	1	PE	125mL	$H_2SO_4$	P	Prefilled by lab			NH ₃		APP	250
11	1	PE	250mL	None		None			TDS, CI, N	103	APP	250
21	1	AG	1000mL 350 97	H ₂ SO ₄	P	Prefilled by lab			Total Pher	nols	APP	250
REMARKS	vercust, 82	0F=	030 91									
odor: ho	ne .	AG = Amber	Glass: CC -	Clear Glass;	PE - Do	lyethylene;	PP = Polypr	ronvlan	e: S = Silicor	ne; T = Te	aflon: 0 = 0	Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Cs Facility ID	89544)			ITE OCATION: 150	1 Omni Way	St. Cloud, Osce	eola County, F	lorida, 34773	
	MW-70		03044)	SAMPLE	ID: MU		i chui riaj.	01. 01000, 0000		Vou 13	2017
	10100 - 10	-				GING DA	ТΔ		/	000 1),	cura
WELL VO	R (inches): 2.0		TER (inches):	0.25 DEP	L SCREEN	eet to 73 f	STATIC	C DEPTH TER (feet): / X WELL CAP	7.71 c	URGE PUMP T PR BAILER: p	YPE peristaltic
EQUIPME	It if applicable) NT VOLUME PI It if applicable)	URGE: 1 EQ	= ( UIPMENT VO		<u>feet –</u> UME + (TU allons + ( (			X 0.16 TUBING LENG	gallons/foot TH) + FLOW eet) + 0.1	CELL VOLUME	gallons
	JMP OR TUBIN WELL (feet):	G 68		MP OR TUBING WELL (feet):	68	PURGIN	G DAT: 123	PURGIN	G AT: 1300	TOTAL VO PURGED (	LUME gallons): 2.4
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units µmhos/cm or µS/cm	DISSOLVE	s) TURBII		
1250	16	1.6	0.08	17.80	5.17	24.59	79	0.6	2 0.9	3 Clear	15.9
1755	0.4	2.0	0.08	17.80	5.15	241.55	79	0.55	5 0.	7 cle	
1300	0.21	2.4	0.08	17.80	5,15	24,56	79	0.5	3 0.8	3 cle	ir -241.6
TUBING I	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal.		1" = 0.04; .0006; 3/16" BP = Bladder F	oump; I	1/4" = 0.002 ESP = Electric	6; 5/16" = Submersible	0.004; 3/8"	5" = 1.02; = 0.006; 1 = Peristaltic Pi	6" = 1.47; //2" = 0.010; ump; O = C	12" = 5.88 5/8" = 0.016 Dther (Specify)
					SAMP	PLING DA	ATA	-		_	
SAMPLED	BY (PRINT) / A / WSI	FFILIATION:		SAMPLER(S)	SIGNATUR	RE(S): Jui	6		DAT: 1305		AT: 1315
PUMP OR DEPTH IN	TUBING WELL (feet):	68		TUBING MATERIAL C	ODE: PE			LD-FILTERED: ation Equipment		FILTER S	SIZE:µm
FIELD DE	CONTAMINATIO	ON: PUN	AP No	TUB	ING No	(replaced)		DUPLICA	TE or EQUIPN	MENT BLANK:	YN
SAM	PLE CONTAINE #	MATERIAL		PRESERVAT		RESERVATIO	N FINA	ANALYSI	NDED S AND/OR	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED		ED IN FIELD (r	nL) pH	MEI	HOD	CODE	(mL per minute)
MU-TC	3	CG	40mL	HCL	P	refilled by lab			260	RFPP	<100
11	3	CG	40mL	None	-	None			11	RFPP	<100
11	1	PE	500mL	HNO ₃		refilled by lab			tals	APP	300
~1	1	PE	125mL	H ₂ SO ₄	P	refilled by lab			H ₃	APP	300
11	1	PE	250mL	None	-	None			CI, NO ₃	APP	300
odor: non	overcust, B		1000mL	H ₂ SO ₄		refilled by lab			Phenols	APP	300
	L CODES: G EQUIPMENT	1	APP = After P RFPP = Rever	= Clear Glass; eristaltic Pump; se Flow Perista the informati	B = Ba Itic Pump;	ailer; BP = SM = Straw		p; ESP = El ng Gravity Drain	ectric Submer		Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	D. SWMF (WAG	Cs Facility ID	89544)			TE DCATION: 150	1 Omni Way, S	t. Cloud, Osceola	County, Flo	rida, 34773	
VVELLINU.	MW-E			SAMPLE	ID: MU					100 13	2012
	/~ W - C	//1			1	SING DA	ТА		1		
WELL VO	R (inches): 2.0 LUME PURGE: t if applicable)	TUBING DIAME 1 WELL VO	TER (inches):0 LUME = (TOT	AL WELL DEP	TH:/2 fe	INTERVAL set to 22 fe	STATIC I TO WAT O WATER) X	ER (feet): 17 WELL CAPAC	34 OF		peristaltic
	NT VOLUME PL t if applicable)	JRGE: 1 EQU	= ( JIPMENT VOL		feet – UME + (TUE allons + ( 0	BING CAPACIT		0.16 g UBING LENGTH feet)	+ FLOW C	= 0.9 ELL VOLUME gallons =	gallons gallons
	WELL (feet):	g 20		MP OR TUBING WELL (feet):		PURGIN		PURGING ENDED AT:	1125	TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/b or % saturation	TURBIDI (NTUs		
1115	3.85	3.65	0.07	18.05	4.72	25,73	1415	0.28	0.8	clei	L -13.0
1170	0.35	4.2	10.07	18.05	41.23		1417	0.28	0.8	clei	v .9.1
1135	0.35	41.55	0.07	18 05	4.23	25.71	1415	0.29	0.8	Cle	w -12.1
TUBING IN	PACITY (Gallon SIDE DIA. CAP EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16" BP = Bladder F		1/4" = 0.002 SP = Electric	6; <b>5/16''</b> = 0 Submersible Pu	.004; 3/8" = 0	5" = 1.02; 0.006; 1/2 eristaltic Pur	6" = 1.47; 2" = 0.010; np; O = C	<b>12</b> " = 5.88 <b>5/8</b> " = 0.016 Other (Specify)
TUBING IN PURGING	ISIDE DIA. CAP	PACITY (Gal./ ODES: B	Ft.): 1/8" = 0.	0006; 3/16" BP = Bladder F	= 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric LING DA	6; <b>5/16''</b> = 0 Submersible Pu	.004; 3/8" = 0 imp; PP = Pe	.006; 1/:	2" = 0.010; np; <b>O</b> = C	5/8" = 0.016 Other (Specify)
TUBING IN PURGING	BY (PRINT) / A	PACITY (Gal./ ODES: B	Ft.): 1/8" = 0.	0006; 3/16"	= 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric LING DA	6; <b>5/16''</b> = 0 Submersible Pu	.004; 3/8" = 0 imp; PP = Pe SAMPLING	0.006; 1/: eristaltic Pur	2" = 0.010; np; O = C SAMPLIN	5/8" = 0.016 Other (Specify)
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR	BY (PRINT) / A	PACITY (Gal./ ODES: B	Ft.): 1/8" = 0.	0006; 3/16" BP = Bladder F	= 0.0014; Pump; E SAMP SIGNATUR	1/4" = 0.002 SP = Electric LING DA	6: 5/16" = 0 Submersible Pu TA FIELD	.004; 3/8" = 0 imp; PP = Pe	0.006; 1/: eristaltic Pur T: //30 (N)	2" = 0.010; np; O = C SAMPLIN ENDED A	5/8" = 0.016 Other (Specify)
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	BY (PRINT) / A WSI TUBING	PACITY (Gal./ PODES: B FFILIATION: 20	Ft.): 1/8" = 0.	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	= 0.0014; Pump; E SAMP SIGNATUR ODE: PE	1/4" = 0.002 SP = Electric LING DA	6: 5/16" = 0 Submersible Pu TA FIELD	.004; 3/8" = 0 ump; PP = Pr SAMPLING INITIATED A D-FILTERED: Y	0.006; 1/: eristaltic Pur T: //30 pe:	2" = 0.010; np; O = C SAMPLIN ENDED / FILTER S	5/8" = 0.016 Other (Specify) NG AT: //4/0
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	FFILIATION: 20 PACITY (Gal./ CODES: B FFILIATION: 20 20 20 20 20 20 20 20 20 20	Ft.): 1/8" = 0. = Bailer; 1P No ATION	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT	= 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING No SAMPLE PI IVE	1/4" = 0.002 SP = Electric LING DA E(S): Q-C (replaced) RESERVATION TOTAL VOL	6: 5/16" = 0 Submersible Pu TA FIELD Filtrati	.004:     3/8" = 0       Imp;     PP = Print       SAMPLING     INITIATED A'       D-FILTERED:     Y       ION Equipment Ty       DUPLICATE       INTENDI       ANALYSIS A	T: //30 pe: Nor EQUIPME ED ND/OR E	2" = 0.010; mp: O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: //4/Ο SIZE:μm YN SAMPLE PUMF FLOW RATE
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: 20 CODES: B FFILIATION: 20 CN: PUN CODE CODE	Ft.): 1/8" = 0. I = Bailer; IP No ATION VOLUME	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT USED	= 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE	1/4" = 0.002 SP = Electric PLING DA E(S): De C (replaced) RESERVATION TOTAL VOL ED IN FIELD (r	6: 5/16" = 0 Submersible Pu TA FIELD Filtrati	.004:     3/8" = 0       imp;     PP = Pi       SAMPLING       INITIATED A'       D-FILTERED:       Y       DUPLICATE       INTENDI       ANALYSIS A       METHO	T: //30 pe: Nor EQUIPME ED ND/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: //4/Ο SIZE:μm YN SAMPLE PUMF FLOW RATE (mL per minute
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW - O A	ASIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3	FFILIATION: 20 FFILIATION: 20 DN: PUN R SPECIFIC/ MATERIAL CODE CG	Ft.): 1/8" = 0. = Bailer; IP No ATION VOLUME 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	= 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE	1/4" = 0.002 SP = Electric LING DA E(S): DC C (replaced) RESERVATION TOTAL VOL ED IN FIELD (r efilled by lab	6: 5/16" = 0 Submersible Pu TA FIELD Filtrati	.004:     3/8" = 0       Imp;     PP = Pressing       SAMPLING     INITIATED A       D-FILTERED:     Y       ION Equipment Ty       DUPLICATE       INTENDI       ANALYSIS A       METHO       8260	T: //30 pe: Nor EQUIPME ED ND/OR E	2" = 0.010; np; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: //4/Ο SIZE:μm Y N SAMPLE PUMI FLOW RATE (mL per minute <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW - O A	BY (PRINT) / A BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3	FFILIATION: 20 FFILIATION: 20 DN: PUN R SPECIFICA MATERIAL CODE CG CG	Ft.): 1/8" = 0. = Bailer; IP No ATION VOLUME 40mL 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	= 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr	1/4" = 0.002 SP = Electric LING DA E(S): QC ( (replaced) RESERVATION TOTAL VOL ED IN FIELD (r efilled by lab None	6: 5/16" = 0 Submersible Pu TA FIELD Filtrat	.004:     3/8" = 0       imp;     PP = Pi       SAMPLING     INITIATED A'       D-FILTERED:     Y       DUPLICATE       INTENDI       ANALYSIS A       METHO       8260       8011	T: <u>//30</u> pe: or EQUIPME D D/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: //4/Ο SIZE:μm YN SAMPLE PUMI FLOW RATE (mL per minute <100 <100
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-0A	ISIDE DIÀ. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 1	FFILIATION: 20 FFILIATION: 20 DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE	Ft.):         1/8" = 0.           I = Bailer;         II           IP         No           ATION         VOLUME           40mL         40mL           500mL         500mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT USED HCL None HNO ₃	= 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): De C (replaced) RESERVATION TOTAL VOL D IN FIELD (r efilled by lab None efilled by lab	6: 5/16" = 0 Submersible Pu TA FIELD Filtrati N FINAL pH	.004:     3/8" = 0       imp;     PP = Pi       SAMPLING       INITIATED A'       D-FILTERED:       Y       DUPLICATE       INTENDI       ANALYSIS A       METHO       8260       8011       Metals	T: <u>//30</u> pe: or EQUIPME D D/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: //4/Ο SIZE:µm YN SAMPLE PUMF FLOW RATE (mL per minute <100 <100 250
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW - O A	BY (PRINT) / A BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1	FFILIATION: PODES: B FFILIATION: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE	Ft.): 1/8" = 0. = Bailer; = Bailer; IP No ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): DC C (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r efilled by lab efilled by lab	6: 5/16" = 0 Submersible Pu TA FIELD Filtrati N FINAL pH	.004:     3/8" = 0       Imp;     PP = Print       SAMPLING     INITIATED A'       INITIATED C     Y       OFFILTERED:     Y       DUPLICATE     INTENDI       ANALYSIS A     METHO       8260     8011       Metals     NH3	COO6: 1// eristaltic Pur T: //30 pe: Or EQUIPME ED ND/OR D	2" = 0.010; mp: O = C SAMPLIN ENDED A FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: //4/Ο SIZE:µm YN SAMPLE PUMI FLOW RATE (mL per minute <100 <100 250 250
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW - O A	ISIDE DIÀ. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 1	FFILIATION: 20 FFILIATION: 20 DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE	Ft.):         1/8" = 0.           I = Bailer;         II           IP         No           ATION         VOLUME           40mL         40mL           500mL         500mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT USED HCL None HNO ₃	= 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): De C (replaced) RESERVATION TOTAL VOL D IN FIELD (r efilled by lab None efilled by lab	6: 5/16" = 0 Submersible Pu TA FIELD Filtrat	.004:     3/8" = 0       imp;     PP = Pi       SAMPLING       INITIATED A'       D-FILTERED:       Y       DUPLICATE       INTENDI       ANALYSIS A       METHO       8260       8011       Metals	T: //30 pe: or EQUIPME ED ND/OR D	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: //4/Ο SIZE:µm YN SAMPLE PUMF FLOW RATE (mL per minute <100 <100 250

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME: LD D: SWMF (WACE Facility ID: 89544)         LOCATION: 1501 Cmm (Way, St. Cloud, Oscial Caruny, Endia, 3473           WELL ND: (MU - BC)         SAMPLE ID: (MU - BC)         SAMPLE ID: (MU - BC)         DATE: (Mu - BC)         DAT	SITE	D SIMME (MA	Ce Eacility ID	89544)			TE	1 Omni Way	St Cloud Osceola	County Flor	ida 34773		
PURGING DATA           WELL DAME TER (inches) 2.0 DAME TER (inches) 2.0				. 09044)	SAMPLE			r onni tray, c				2/2	
UFELL DIAMETER (inches): 2:0         TUBING DIAMETER (inches): 2:0         UPELL SCREEN INTERVAL DIAMETER (inches): 2:0         STATIC OEPTH- UPERCENT         STATIC DEPTH- TUBING         PURCENT	WELL NO	- /0100 - 8	30		Or with EE	1		TA		10.	00 15, 00	12	
EQUIPMENT VOLUME PURGE:         1 EQUIPMENT VOL.         PURGING         Constraint         TUBING LENGTH)         FLOW CELL VOLUME           (only fil out if applicable)         =         0.0 galons + (         0.002 galons/fox X         Z         feel) +         0.12 galons = (         0.01 galons + (         0.002 galons/fox X         Z         feel) +         0.12 galons = (         0.01 galons + (         0.002 galons + (	DIAMETE WELL VO	LUME PURGE:	DIAME	TER (inches):	0.25 DEF	THUS STE	INTERVAL eet to 73.5 fe	STATIC TO WAT	WELL CAPAC	32 OR	BAILER: p	eristaltic	
DEPTH IN WELL (feet):         (f)         DEPTH IN WELL (feet):         (f)         INITIATED AT:         (f)/S         ENDED AT:         (f)/SCC         PURGED (galions):         2: 4'S           TIME         VOLUME PURGED (galions)         CUMUL PURGED (galions)         PURGE PURGED (galions)         PURGE PURGED         PURGED			URGE: 1 EQU			UME + (TUE		ry x 1	TUBING LENGTH	) + FLOW CE	ELL VOLUME		
TIME         VOLUME PURGED (galons)         CUMUL PURGED (galons)         PURGE RATE (galons)         DEP/H PURGED (galons)         PH (galons)         DEP/H PURGED (galons)         PH (galons)         DEP/H PURGED (galons)         PH (galons)         OVER PURGED (galons)         DEP/H PURGED (galons)         PH (galons)         DEP/H PURGED (galons)         PH (galons)         Dep/H (galons)			G 69			69				1050			
10 μ0         0.35         1.75         0.07         17.41         41.61         241.59         269         0.5         0         C//cw         -57.7           1b +15         0.35         2.1         0.07         17.41         41.62         241.59         261         0.477         0         c//car         -59.2           10 50         0.35         2.45         0.07         17.41         41.62         241.59         261         0.417         0         c//car         -59.2           10 50         0.35         2.45         0.07         17.41         41.62         241.60         262         0.415         0         c//car         -77.4           10 50         0.35         2.45         0.07         17.41         41.62         241.60         262         0.415         0         c//car         -77.4           10 50         0.35         2.415         0.07         17.41         41.62         241.60         262         0.415         0         c//car         57.7           10 50         0.35         2.415         0.006         318*<0.006	TIME	PURGED	VOLUME PURGED	RATE	TO WATER	(standard		(circle units) umhos/cm	OXYGEN (circle units) mg/L)or	1 2 4 C 7 C 1 C 1 C 1 C			
I 0 4 J       0.35       1.75       0.07       17.41       41.61       241.59       2.69       0.5       0       C/Eur       -57.7         1 b +15       0.35       2.1       0.07       17.41       41.62       241.59       2.61       0.477       0       C/Eur       -57.7         1 b +15       0.35       2.45       0.07       17.41       41.62       241.59       2.61       0.417       0       C/Eur       -59.2         1 0 50       0.35       2.45       0.07       17.41       41.62       241.60       2.62       0.415       0       C/Eur       -77.4         1 0 50       0.35       2.45       0.07       17.41       41.62       241.60       2.62       0.415       0       C/Eur       -77.4         1 0 50       0.35       2.415       0.07       17.41       41.62       241.60       2.62       0.415       0       C/Eur       -77.4         1 0 50       0.35       2.415       0.07       17.41       41.62       241.60       2.62       0.415       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <	1035	1.41	1. 41	0.07	17.411	41.218	24.63	275	0.56	0.2	- clea	v -219.3	
Ib 415       0.35       2.1       0.07       17.41       1.62       241.59       261       0.417       0       c.lear       -59.2         10 50       0.35       2.45       0.07       17.41       4.62       24.59       261       0.417       0       c.lear       -59.2         10 50       0.35       2.45       0.07       17.41       4.62       24.59       262       0.415       0       c.lear       -77.4         10       0       0.07       17.41       4.62       24.60       262       0.415       0       c.lear       -77.4         10       0       0.07       17.41       4.62       24.60       262       0.415       0       c.lear       -77.4         10       0       0.07       17.41       4.62       24.60       262       0.415       0       c.lear       -77.4         10       0       0.07       17.61       10.62       24.62       0.415       0       0.62       0.62       0.61       0.415       0.61       0.62       0.61       0.61       0.61       0.61       0.61       0.61       0.61       0.61       0.61       0.62       68       6.00.61       12		0.35	1.75	0.07	17.411				0.5	0	Cleu	v -57.7	
1050       0.355       2.45       0.07       17.41       4.62       24.60       262       0.415       0       Cdex       -77.4         Image: Construction of the state of the			2.1	0.07	17.41			261		0	ileo	600	
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)SAMPLED BY (PRINT) / AFFILIATION: Joe Terry / WSISAMPLER(S) SIGNATURE(S): JulySAMPLING INITIATED AT: /0.55SAMPLING ENDED AT: //0.5PUMP OR TUBING DEPTH IN WELL (feet):G 9TUBING MATERIAL CODE: PEFILED-FILTERED: Y FILD-FILTERED: Y FILD-FILTERED: Y FILTER SIZE:Um FILTER SIZE:UmSAMPLE CONTAMINATION: PUMP NoTUBING No (replaced)DUPLICATE or EQUIPMENT BLANK: Y NSAMPLE CONTAINER SPECIFICATIONSAMPLE PRESERVATION MATERIAL CODEFINAL ADDED IN FIELD (mL) pHSAMPLE MATERIAL CODECODEVOLUME VOLUMEPRESERVATIVE ADDED IN FIELD (mL) pHSAMPLE MATERIAL CODESAMPLE PRESERVATIONSAMPLE # MATERIAL CODEVOLUME VOLUMEPRESERVATIVE ADDED IN FIELD (mL) pHSAMPLING EQUIPMENT FINAL PH ANALYSIS AND/OR MATERIAL CODESAMPLE PUMP FILTER SIZE:UmSAMPLE CONTAINER SPECIFICATIONSAMPLE PRESERVATIONINTENDED ANALYSIS AND/OR MATERIAL CODESAMPLE PUMP FILTER SIZE:UmSAMPLE CONTAINERS <th colspa<="" td=""><td>1050</td><td>0.35</td><td>2,45</td><td>0.07</td><td>1 17.41</td><td>4.62</td><td>241.60</td><td>262</td><td>0.415</td><td>0</td><td>cle</td><td>er - 77.4</td></th>	<td>1050</td> <td>0.35</td> <td>2,45</td> <td>0.07</td> <td>1 17.41</td> <td>4.62</td> <td>241.60</td> <td>262</td> <td>0.415</td> <td>0</td> <td>cle</td> <td>er - 77.4</td>	1050	0.35	2,45	0.07	1 17.41	4.62	241.60	262	0.415	0	cle	er - 77.4
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016         PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)         SAMPLED BY (PRINT) / AFFILIATION: Joe Terry / WSI       SAMPLER(S) SIGNATURE(S): Jour W       SAMPLING DATA         SAMPLE BY (PRINT) / AFFILIATION: Joe Terry / WSI       SAMPLER(S) SIGNATURE(S): Jour W       SAMPLE ON TUBING INITIATED AT: //0.55       SAMPLING ENDED AT: //0.5         PUMP OR TUBING DEPTH IN WELL (feet):       6.9       TUBING MATERIAL CODE: PE       FIELD-FILTERED: Y       N       FILTER SIZE:				0.75" = 0.02:	4" = 0.04:	4.25" = 0.0	e: 2" = 0.14	2" = 0.27	4" = 0.65.	5 ¹¹ = 1.02	C ¹¹ = 4.47.	42" - 5.99	
SAMPLING DATA         SAMPLED BY (PRINT) / AFFILIATION: Joe Terry / WSI       SAMPLER(S) SIGNATURE(S): Jour Langer       SAMPLING INITIATED AT: /0.55       SAMPLING ENDED AT: /10.5         PUMP OR TUBING DEPTH IN WELL (feet):       6.9       TUBING MATERIAL CODE: PE       FIELD-FILTERED: Y       N       FILTER SIZE:µm         FIELD DECONTAMINATION:       PUMP No       TUBING No (replaced)       DUPLICATE or EQUIPMENT BLANK:       Y       N         SAMPLE CONTAINER SPECIFICATION       SAMPLE PRESERVATION       INTENDED ADDED IN FIELD (mL) PRESERVATIVE       TOTAL VOL ADDED IN FIELD (mL) PH       FINAL PH       SAMPLING EQUIPMENT CODE       SAMPLING EQUIPMENT CODE       SAMPLING EQUIPMENT CODE       SAMPLING PLOW RATE (mL per minute)         MW: GC       3       CG       40mL       HCL       Prefilled by lab       8260       RFPP       <100	TUBING I	NSIDE DIA. CAR	PACITY (Gal./	/Ft.): 1/8" = 0	.0006; 3/16"	= 0.0014;	1/4" = 0.002	6; 5/16" = 0	0.004; 3/8" = 0	0.006; 1/2	" = 0.010;	5/8" = 0.016	
Joe Terry /WSI     SAMPLER(S) SIGNATURE(S): Jour Y     INITIATED AT: /0.55     ENDED AT: /10.5       PUMP OR TUBING DEPTH IN WELL (feet):     6.9     TUBING MATERIAL CODE: PE     FIELD-FILTERED: Y     N     FILTER SIZE:µm       FIELD DECONTAMINATION:     PUMP No     TUBING No (replaced)     DUPLICATE or EQUIPMENT BLANK:     Y     N       SAMPLE CONTAINER SPECIFICATION     SAMPLE PRESERVATION     INTENDED ANALYSIS AND/OR ID CODE     SAMPLE PRESERVATION     SAMPLE PRESERVATION MATERIAL CODE     VOLUME     PRESERVATIVE USED     TOTAL VOL ADDED IN FIELD (mL) PH     FINAL PH     INTENDED ANALYSIS AND/OR METHOD     SAMPLE PUMP FLOW RATE (mL per minute)       MW-GC     3     CG     40mL     HCL     Prefilled by lab     8260     RFPP     <100													
PUMP OR TUBING DEPTH IN WELL (feet):       6.9       TUBING MATERIAL CODE: PE       FIELD-FILTERED: Y       Y       FILTER SIZE:       µm         FIELD DECONTAMINATION:       PUMP No       TUBING No (replaced)       DUPLICATE or EQUIPMENT BLANK:       Y       N         SAMPLE CONTAINER SPECIFICATION       SAMPLE PRESERVATION       INTENDED ANALYSIS AND/OR IDCODE       SAMPLING CODE       SAMPLE PRESERVATION USED       TOTAL VOL ADDED IN FIELD (mL)       FINAL PH       INTENDED ANALYSIS AND/OR METHOD       SAMPLING EQUIPMENT CODE       SAMPLE PUMP FLOW RATE (mL per minute)         MW-GC       3       CG       40mL       HCL       Prefilled by lab       8260       RFPP       <100			FFILIATION:		SAMPLER(S)	SIGNATURI	E(S): Joi	5	SAMPLING INITIATED A	T: 1055			
SAMPLE CONTAINER SPECIFICATION       SAMPLE PRESERVATION       INTENDED ANALYSIS AND/OR A			69			ODE: PE			D-FILTERED: Y	N	FILTER S	ZE:μm	
SAMPLE ID CODE# CONTAINERSMATERIAL CODEVOLUMEPRESERVATIVE USEDTOTAL VOL ADDED IN FIELD (mL)FINAL pHANALYSIS AND/OR METHODEQUIPMENT CODEFLOW RATE (mL per minute)MW-GC3CG40mLHCLPrefilled by lab8260RFPP<100	FIELD DE	CONTAMINATIO	ON: PUN	MP No	TUB	ING No	(replaced)		DUPLICATE	or EQUIPME	NT BLANK:	YN	
ID CODE       CODE       CODE       OSED       ADDED IN FIELD (mL)       pH       Code       Code <thcode< th=""> <thc< td=""><td>SAMPLE</td><td>#</td><td>MATERIAL</td><td></td><td></td><td>IVE</td><td>TOTAL VOL</td><td>FINAL</td><td>ANALYSIS A</td><td>ND/OR E</td><td>QUIPMENT</td><td>FLOW RATE</td></thc<></thcode<>	SAMPLE	#	MATERIAL			IVE	TOTAL VOL	FINAL	ANALYSIS A	ND/OR E	QUIPMENT	FLOW RATE	
Image: Column Sector         CG         40mL         None         None         8011         RFPP         <100           Image: Column Sector         1         PE         500mL         HNO3         Prefilled by lab         Metals         APP         250           Image: Column Sector         1         PE         125mL         H ₂ SO4         Prefilled by lab         NH3         APP         250							- 11 - 2						
CC         1         PE         500mL         HNO3         Prefilled by lab         Metals         APP         250           C5         1         PE         125mL         H2SO4         Prefilled by lab         NH3         APP         250						130							
CA     1     PE     125mL     H ₂ SO ₄ Prefilled by lab     NH ₃ APP     2SO						Pr				8			
730													
						PI				NO			
						Dr						250	
REMARKS: 250 gT weather: p Cloudy, 70°F odor: pone	REMARKS	s cloudy,	70°F	- 250 gT									
MATERIAL CODES:       AG = Amber Glass;       CG = Clear Glass;       PE = Polyethylene;       PP = Polypropylene;       S = Silicone;       T = Teflon;       O = Other (Specify)         SAMPLING EQUIPMENT CODES:       APP = After Peristaltic Pump;       B = Bailer;       BP = Bladder Pump;       ESP = Electric Submersible Pump;         RFPP = Reverse Flow Peristaltic Pump;       SM = Straw Method (Tubing Gravity Drain);       O = Other (Specify)				Classi CC.	- Clear Glass	PE = Poly	ethylene:	PP = Polyprop	vlene: S = Silico	one: T = Te	eflon: O = C	ther (Specify)	

SECTION 3)

	D. SWMF (WA	Cs Facility ID	89544)		SI	CATION 150	1 Omni Way S	t. Cloud, Osceola	County, Flori	da. 34773	
WELL NO:			000447	SAMPLE		1-9A					, 2012
TILLE TO	MW-	9A				SING DA	ТΔ		/.	100 15	, 0012
WELL VO	R (inches): 2.0 LUME PURGE: It if applicable)		TER (inches):0 LUME = (TOT	AL WELL DEF	LL SCREEN PTH: 12 fe PTH - STA	INTERVAL eet to 22 f	eet TO WAT	ER (feet): 17.4 WELL CAPACI	// OR TY		eristaltic
EQUIPME	NT VOLUME PU	JRGE: 1 EQU	= ( JIPMENT VOL		feet – .UME + (TUE allons + ( 0		feet) X TY X T ons/foot X	0.16 g UBING LENGTH) feet)	+ FLOW CE	= 0, 9 LL VOLUME gallons =	2/ gallons
	UMP OR TUBIN WELL (feet):	^G 20		MP OR TUBINO WELL (feet):		PURGIN		PURGING	0930	TOTAL VO	0
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg/L) or % saturation	TURBIDIT (NTUs)	Y COLO (descrit	
0920	3.6	3.6	0.08	17.71	41.16	27.18	815	0.42	5	clei	v -15.5
0925	0.4	41.0	0.08	17.71	4117	27.11	814	0.41	4.7	cle	w -16.0
0930	0.4	4.4	0.08	17.71	4.16	27.14	8141	0.37	4.9	cleu	v -21.1
								411 - 0.05		AN 1 17	401 - 5.00
TUBING IN PURGING SAMPLED	PACITY (Gallon NSIDE DIA. CAP EQUIPMENT C	ODES: E	Ft.): 1/8" = 0.	BP = Bladder F	SAMP	1/4" = 0.002 SP = Electric LING DA	26; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 imp; PP = Pe SAMPLING	eristaltic Pum	SAMPLIN	
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING	PACITY (Gal./ CODES: E	(Ft.): 1/8" = 0.	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	SIGNATUR	1/4" = 0.002 SP = Electric LING DA	Submersible PL	.004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT P-FILTERED: Y	.006; 1/2' eristaltic Pum	* = 0.010; p; 0 = 0 SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	NSIDE DIA. CAF EQUIPMENT C 9 BY (PRINT) / A / WSI TUBING WELL (feet):	CODES: E	(Ft.): 1/8" = 0. B = Bailer; 1	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL C	SIGNATUR	1/4" = 0.002 SP = Electric LING DA E(S): for	Submersible PL	.004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ	.006; 1/2' eristaltic Pum 1: 0935	samplin F: 0 = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG AT: 0945 IZE:μm
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	NSIDE DIA. CAF EQUIPMENT C 9 BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./ CODES: E FFILIATION: 2.0 DN: PUN	/Ft.): 1/8" = 0. 3 = Bailer; 1 //P No	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No	1/4" = 0.002 SP = Electric LING DA E(S): for ( (replaced)	5/16" = 0 Submersible Pu ATA FIELD Filtrat	.004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT P-FILTERED: Y on Equipment Tyj DUPLICATE of	.006; 1/2" eristaltic Pum T: 0935 N per EQUIPMEN	r = 0.010; p; O = 0 SAMPLIN ENDED A FILTER S NT BLANK:	5/8" = 0.016 ther (Specify) IG AT: <u>0945</u> IZE:μm YN
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	NSIDE DIA. CAF EQUIPMENT C P BY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	PACITY (Gal./ CODES: E FFILIATION: 2.0 DN: PUN	/Ft.): 1/8" = 0. 3 = Bailer; 1 //P No	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL C	2 = 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING No SAMPLE PI IVE	1/4" = 0.002 SP = Electric LING DA E(S): for ( (replaced) RESERVATIO TOTAL VOL	5/16" = 0 Submersible Pu ATA FIELD Filtrat	.004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ	1/2" eristaltic Pum 0935 or EQUIPMEN ED S ND/OR EC	samplin F: 0 = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG AT: <u>0944</u> S IZE:μm Y N SAMPLE PUMF FLOW RATE
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	ACITY (Gal./ CODES: E FFILIATION: 2.0 DN: PUM ER SPECIFIC/ MATERIAL	(Ft.): 1/8" = 0. B = Bailer; 1 MP No ATION	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	2 = 0.0014;           Pump;         E           SIGNATUR           ODE:         PE           ING         No           SAMPLE         PI           IVE         ADDE	1/4" = 0.002 SP = Electric PLING DA E(S): Doc (replaced) RESERVATIO	Submersible Pu Submersible Pu ATA FIELD Filtrat N FINAL pH	.004;     3/8" = 0       imp;     PP = Pe       SAMPLING INITIATED AT       -FILTERED:     Y       on Equipment Tyj       DUPLICATE of       INTENDE       ANALYSIS AT	1/2" eristaltic Pum 0935 or EQUIPMEN ED S ND/OR EC	P: 0 = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT	5/8" = 0.016 ther (Specify) IG AT: <u>0944</u> S IZE:μm Y N SAMPLE PUMF FLOW RATE
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C P BY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	ACITY (Gal./ CODES: E FFILIATION: 2.C DN: PUN R SPECIFIC/ MATERIAL CODE	(Ft.):         1/8" = 0.           3 = Bailer;         1           3 = Dailer;         1           0         0           MP         No           ATION         VOLUME	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	2 = 0.0014;           Pump;         E           SIGNATUR           ODE:         PE           ING         No           SAMPLE         PI           IVE         ADDE	1/4" = 0.002 SP = Electric LING DA E(S): for (replaced) RESERVATIO TOTAL VOL ED IN FIELD (0	Submersible Pu Submersible Pu ATA FIELD Filtrat N FINAL pH	.004;     3/8" = 0       imp;     PP = Pe       SAMPLING INITIATED AT       P-FILTERED:     Y       on Equipment Ty       DUPLICATE of       INTENDE       ANALYSIS AI       METHO	1/2" eristaltic Pum 0935 or EQUIPMEN ED S ND/OR EC	r = 0.010; p; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING 20IPMENT CODE	5/8" = 0.016 ther (Specify) IG AT: <u>0945</u> IZE:μm Y N SAMPLE PUMF FLOW RATE (mL per minute)
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMM SAMPLE ID CODE MW JA	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	ACITY (Gal./ CODES: E SEFILIATION: 2.C DN: PUN ER SPECIFIC/ MATERIAL CODE CG	(Ft.): 1/8" = 0. B = Bailer; 1 MP No ATION VOLUME 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr	1/4" = 0.002 SP = Electric LING DA E(S): for ( (replaced) RESERVATIO TOTAL VOL ED IN FIELD (( efilled by lab	Submersible Pu Submersible Pu ATA FIELD Filtrat N FINAL pH	.004;     3/8" = 0       mp;     PP = Pe       SAMPLING INITIATED AT       -FILTERED:     Y       on Equipment Tyj       DUPLICATE of       ANALYSIS AT       METHO       8260	1/2" eristaltic Pum (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)	r = 0.010; p; 0 = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP	5/8" = 0.016 ther (Specify) IG IZE:μm YN SAMPLE PUMF FLOW RATE (mL per minute) <100 <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW 9A	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 3	ACITY (Gal./ CODES: E FFILIATION: 2. C DN: PUN ER SPECIFIC/ MATERIAL CODE CG CG	(Ft.): 1/8" = 0. B = Bailer; 1 MP No ATION VOLUME 40mL 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	2 = 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING NO SAMPLE PI IVE ADDE Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): free (replaced) RESERVATIO TOTAL VOL ED IN FIELD (I efilled by late None	5/16" = 0           Submersible Put           ATA           FIELD           FIELD           Filtrat           IN           ML)           pH           D	.004;       3/8" = 0         imp;       PP = Pe         SAMPLING INITIATED AT         P-FILTERED:       Y         ON Equipment Tyj         DUPLICATE of         ANALYSIS AN METHO         8260         8011	1/2" eristaltic Pum (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)	r = 0.010; p; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP RFPP	5/8" = 0.016 ther (Specify) IG IZE:μm YN SAMPLE PUMF FLOW RATE (mL per minute) <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW 9A	NSIDE DIA. CAF EQUIPMENT C P BY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1	ACITY (Gal./ CODES: E FFILIATION: 2.0 DN: PUM R SPECIFIC/ MATERIAL CODE CG CG PE	(Ft.):         1/8" = 0.           3 = Bailer;         1           3 = Bailer;         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	2 = 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING NO SAMPLE PI IVE ADDE Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): for (replaced) RESERVATIO TOTAL VOL D IN FIELD (r efilled by lab efilled by lab	5/16" = 0           Submersible Put           ATA           FIELD           FIELD           Filtrat           IN           ML)           pH           D	.004;     3/8" = 0       imp;     PP = Pe       SAMPLING INITIATED AT       P-FILTERED:     Y       on Equipment Ty       DUPLICATE of       ANALYSIS AI       METHO       8260       8011       Metals	1/2" eristaltic Pum (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)	r = 0.010; p: 0 = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP RFPP APP	5/8" = 0.016           ther (Specify)           IG           NT:         09445           IZE:        µm           Y         N           SAMPLE PUMP         FLOW RATE           (mL per minute)         <100
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW 9A	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1	ACITY (Gal./ CODES: E SFFILIATION: 2.C DN: PUM CODE COB COB COB COB COB COB PE PE PE PE	(Ft.):       1/8" = 0.         8 = Bailer;       1         9       0         MP       No         ATION       VOLUME         40mL       40mL         500mL       125mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	2 = 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING NO SAMPLE PI IVE ADDE Pr Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): Are (replaced) RESERVATIO TOTAL VOL ED IN FIELD (( efilled by lab efilled by lab	5/16" = 0           Submersible Put           ATA           Image: Solution of the second	.004;     3/8" = 0       mp;     PP = Pe       SAMPLING INITIATED AT       -FILTERED:     Y       DUPLICATE of       ANALYSIS AT       METHO       8260       8011       Metals       NH3	1/2" eristaltic Pum (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)	P = 0.010; P; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 ther (Specify) IG AT: <u>09445</u> IZE:μm YN SAMPLE PUMF FLOW RATE (mL per minute <100 <100 <u>3000</u> <u>3000</u>
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW 9 A	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 5: 	ACITY (Gal./ CODES: E FFILIATION: 2.0 DN: PUM ER SPECIFIC/ MATERIAL CODE CG CG PE PE PE AG	Ft.):       1/8" = 0.         B = Bailer;       1         B = Bailer;       1         MP       No         ATION       VOLUME         40mL       40mL         500mL       125mL         250mL       250mL         S1000mL       1000mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	2 = 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING NO SAMPLE PI IVE ADDE Pr Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): Get (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r efilled by lab efilled by lab None	5/16" = 0           Submersible Put           ATA           Image: Solution of the second	.004;       3/8" = 0         imp;       PP = Pe         SAMPLING INITIATED AT         P-FILTERED:       Y         ODEquipment Typ         DUPLICATE of         ANALYSIS AI         METHO         8260         8011         Metals         NH3         TDS, CI, N         Total Phen	1/2" eristaltic Pum (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)	<ul> <li>a = 0.010;</li> <li>c = 0.010;</li> <lic 0.010;<="" =="" li=""> <li>c = 0.010;</li> </lic></ul> <li>c = 0.</li>	5/8" = 0.016 ther (Specify) IG IZE:μm YN SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 300 300 300

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA		D: 80544)				TE	01 Omr	ni Way St	. Cloud, Osceola	County Elo	rida 34773	
WELL NO:			D. 09044)	SAME		-	v-9C	1 Oni	iii vvay, ot			lav 13.	2.117
WELL NO.	/100-0	IC		O' un		-	SING DA	TA			10	av 15.	(012
	R (inches): 2.0		IETER (inches)	0.25	VELL S	CREEN	INTERVAL eet to 73.5 f	eet	STATIC D TO WATE TER) X		41 OR	RGE PUMP T BAILER: p	YPE peristaltic
EQUIPME	it if applicable) <b>NT VOLUME P</b> it if applicable)	URGE: 1 E	= ( QUIPMENT VO			E + (TUE				JBING LENGTH		ELL VOLUME	gallons
	JMP OR TUBIN WELL (feet):	G 69		= 0.0 IMP OR TUE WELL (feet	ING	59	PURGIN		0835	PURGING ENDED AT:	+ 0.12	TOTAL VO	1,32 gallons LUME gallons): 2
TIME	VOLUME PURGED (gallons)	CUMUL VOLUMI PURGEI (gallons	E PURGE D RATE	DEPTH	H (st	pH andard units)	TEMP. (°C)	C( (circl µmh	OND. le units) nos/cm	DISSOLVED OXYGEN (circle units) (mg) or % saturation	TURBIDI (NTUs)	TY COLO	R ORP
0850	1.7	1.2	0.08	17.5	15	.58	25.02	18	36	1.15	2.0	cle	w -95.41
0855	0.4	1.6	0.08	n.5		.58	25.06		BI	0.89	1.4	cles	1
0 900	0.4	2.0	0.00			.57	25.04	18	32	0.73	1.3	cleu	
TUBING IN	PACITY (Gallor NSIDE DIA. CA EQUIPMENT (	PACITY (Ga		1" = 0.04 0.0006; 3/ BP = Bladd	16" = 0. er Pump	; E	1/4" = 0.002 SP = Electric	6; Subme	" = 0.37; 5/16" = 0. ersible Put	004; 3/8" = 0	5" = 1.02; .006; 1/2 eristaltic Pun	6" = 1.47; " = 0.010; np; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED	BY (PRINT) / A		le.				LING DA			SAMPLING		SAMPLIN	10
Joe Terry		AFFILIATION		SAMPLER	(S) SIG	NATUR	E(S): for (	ing		INITIATED A	: 0905	ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet):	69		TUBING MATERIA	CODE	PE	-			FILTERED: Y	N)	FILTER S	ilZE:μm
FIELD DE	CONTAMINATI	ON: PL	JMP No	т	UBING	No	(replaced)			DUPLICATE	or EQUIPME	NT BLANK:	YN
SAM	PLE CONTAINE #	MATERIAL	1	PRESERV			RESERVATIO	N	FINAL	INTENDE ANALYSIS A	ND/OR E	SAMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USE	D		D IN FIELD (r		рН	METHO	0	CODE	(mL per minute)
mhi-9C	3	CG	40mL	HCI	-	Pr	efilled by lab		_	8260		RFPP	<100
10	3	CG	40mL	Non		-	None	_	_	8011		RFPP	<100
~1	1	PE	500mL	HNC	-		efilled by lab			Metals	i	APP	300
-1	1	PE	125mL	H ₂ SC	04	Pr	efilled by lab			NH ₃		APP	300
-1	1	PE	250mL	Non	е	-	None			TDS, CI, I	NO ₃	APP	300
v	o. cloudy, 6	AG 7°F	291000mL 97	H ₂ SC	D ₄	Pr	efilled by lab			Total Phe	nols	APP	300
odor: nor		AG = Amba	Cines: CC	- Close Clas		E - Dah	othulana:	DD - F	Columnanul			flon: 0-1	ther (Presta)
1	G EQUIPMENT		APP = After P RFPP = Reven	rse Flow Per	np; staltic P	B = Bai ump;	ler; BP = SM = Straw	Bladde	er Pump; d (Tubing	ene; S = Silico ESP = Electr Gravity Drain); C.	ic Submersit		Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	E.D. SWMF (WAG	Cs Facility ID	89544)			SIT LO		1 Omni	Way, St.	Cloud, Osceola	County, Flor	ida, 34773	
	MW-10			SAM	APLE ID:	MA	1-104				DATE: N	v 13.2	201)
0.000000	10100 101	1		_		/	SING DA	TA	-		100	v 13, c	VIL
WELL VO	R (inches): 2.0 LUME PURGE: ut if applicable)		TER (inches): DLUME = (TO	TAL WELL	WELL SC DEPTH: DEPTH	REENI	INTERVAL et to 22 fe TIC DEPTH T	eet T O WAT	ER) X	R (feet): 13, WELL CAPACI	90 OR TY	mí	eristaltic
	INT VOLUME PU ut if applicable)	JRGE: 1 EQ	= ( UIPMENT VOI	L, = PUMP	VOLUME	+ (TUB				0.16 g IBING LENGTH) feet)			gallons gallons
	UMP OR TUBING	3 21		MP OR TU I WELL (fe	BING	21	PURGIN	G		PURGING ENDED AT:		TOTAL VOI	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEP TO WATI (fee	ER (sta	pH andard nits)	TEMP. (°C)	(circle µmho	ND. e units) os/cm S/cp?	DISSOLVED OXYGEN (circle units) mg/U or % saturation	TURBIDIT (NTUs)	Y COLO (descrit	70.00
0750	3.5	3.5	0.07	19.1	15 4	.78	25.01	33	33	0-34)	1.7	cle	w116.1
0155	0.35	3.85	0.07	19.		.79	25.01	32		0.35	1.9	e les	
0900	0.35	4.2	0.07	19.	1	.78	25.09	30		0.34	1.9	clei	
TUBING II PURGING SAMPLED	PACITY (Gallons NSIDE DIA. CAP EQUIPMENT C	ODES: E		BP = Blad	3/16" = 0.0 Ider Pump S	AMP	6; 2" = 0.16 1/4" = 0.0020 SP = Electric : LING DA	6; 5 Submer	/ = 0.37; / <b>16''</b> = 0.0 rsible Pun	004; 3/8" = 0	5" = 1.02; .006; 1/2 eristaltic Pum	1	<b>12</b> " = 5.88 <b>5/8</b> " = 0.016 ther (Specify)
Joe Terry						IATURE	(S): Q.T.		-	SAMPLING		SAMPLIN	IG
		2		TUBING		NATURE	E(S): Jut		FIELD-	SAMPLING INITIATED AT	0000	ENDED A	IG AT: <u>08/5</u> IZE:μm
	WELL (feet):	2	1	TUBING MATERI	AL CODE:	PE				INITIATED AT FILTERED: Y	De:	FILTER S	IZE:μm
FIELD DE	CONTAMINATIC		MP No	TUBING MATERI	AL CODE: TUBING	PE No (	(replaced)	te		INITIATED AT	or EQUIPME	FILTER S	AT: <u>08/5</u> IZE:μm Υ
FIELD DE	in the second second			TUBING MATERI	AL CODE: TUBING SAM	PE No ( PLE PR		N		INITIATED AT FILTERED: Y	De: Dr EQUIPME D S ND/OR E	FILTER S	Y N SAMPLE PUMP FLOW RATE
FIELD DE SAM SAMPLE ID CODE	CONTAMINATIC	R SPECIFIC	ATION	TUBING MATERIA PRESER	AL CODE: TUBING SAM RVATIVE ED	PE No ( PLE PR ADDE	(replaced) RESERVATION	N mL)	FINAL	INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE O INTENDE ANALYSIS AT	De: Dr EQUIPME D S ND/OR E	FILTER S FILTER S NT BLANK: AMPLING QUIPMENT	XT: <u>0 B/S</u> IZE:μm Y N SAMPLE PUMF
FIELD DE SAM SAMPLE ID CODE	CONTAMINATIC PLE CONTAINE # CONTAINERS	R SPECIFIC MATERIAL CODE	ATION VOLUME	TUBING MATERIA PRESER US	AL CODE: TUBING SAM RVATIVE ED CL	PE No ( PLE PR ADDE	replaced) RESERVATION FOTAL VOL D IN FIELD (n	N mL)	FINAL	INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE O INTENDE ANALYSIS AI METHO	De: Dr EQUIPME D S ND/OR E	FILTER S FILTER S NT BLANK: AMPLING QUIPMENT CODE	Y N SAMPLE PUMI FLOW RATE (mL per minute
SAMPLE ID CODE	CONTAMINATIO PLE CONTAINE CONTAINERS 3	R SPECIFIC MATERIAL CODE CG	ATION VOLUME 40mL	TUBING MATERI PRESER US HO	AL CODE: TUBING SAM RVATIVE ED CL ne	PE No ( PLE PR ADDE Pre	(replaced) RESERVATION TOTAL VOL D IN FIELD (n efilled by lab	N mL)	FINAL	INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AI METHO 8260	De: Dr EQUIPME DD S ND/OR E( D	FILTER S FILTER S NT BLANK: CODE RFPP	XT: <u>OBIS</u> IZE:μm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100
FIELD DE SAM SAMPLE ID CODE MW-104	CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 3	R SPECIFIC MATERIAL CODE CG CG	ATION VOLUME 40mL 40mL	TUBING MATERI PRESER US HC No	AL CODE: TUBING SAM RVATIVE ED CL ne IO ₃	PE No ( PLE PR ADDE Pre	(replaced) RESERVATION FOTAL VOL D IN FIELD (n efilled by lab None	N mL)	FINAL	INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE O INTENDE ANALYSIS AI METHO 8260 8011	De: Dr EQUIPME DD S ND/OR E( D	FILTER S FILTER S AMPLING QUIPMENT CODE RFPP RFPP	XT: <u>OBJS</u> IZE:μm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100 25 0
FIELD DE SAM SAMPLE ID CODE MW-104 Cl	CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 3 1	R SPECIFIC MATERIAL CODE CG CG PE	ATION VOLUME 40mL 40mL 500mL	TUBING MATERI PRESER US HO No HN	AL CODE: TUBING SAM RVATIVE ED CL ne IO ₃ SO ₄	PE No ( PLE PR ADDE Pre	replaced) RESERVATION FOTAL VOL D IN FIELD (n efilled by lab None	N mL)	FINAL	INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals	De: Dr EQUIPME D/OR EC D	FILTER S FILTER S NT BLANK: CAMPLING QUIPMENT CODE RFPP RFPP APP	XT: <u>OBJS</u> IZE:µm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100 <100 QSO QSO QSO
FIELD DEC SAM SAMPLE ID CODE MW-104 CL	CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 1 1 1	R SPECIFIC MATERIAL CODE CG CG PE PE PE	ATION VOLUME 40mL 40mL 500mL 125mL	TUBING MATERI PRESER US HO No HN H2S	AL CODE: TUBING SAM RVATIVE ED CL ne IO ₃ SO ₄ ne	PE No ( PLE PR T ADDE Pre Pre	replaced) RESERVATION TOTAL VOL D IN FIELD (n efilled by lab None efilled by lab	N mL)	FINAL	INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE O INTENDE ANALYSIS AI METHO 8260 8011 Metals NH ₃	NO ₃	FILTER S FILTER S NT BLANK: COUPMENT CODE RFPP RFPP APP APP	AT: <u>0</u> <u>B</u> <u>J</u> <u>S</u> IZE:µm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100 <100 250 <u>J</u> <u>S</u> <u>D</u> J <u>S</u> <u>D</u> J <u>S</u> <u>D</u>
FIELD DE	CONTAMINATIO	R SPECIFIC MATERIAL CODE CG CG PE PE PE AG	ATION VOLUME 40mL 40mL 500mL 125mL 250mL 1000mL 350 gi	TUBING MATERIA PRESER US HC No HN H2S No	AL CODE: TUBING SAM RVATIVE ED CL ne IO ₃ SO ₄ ne SO ₄	PE No ( PLE PR T ADDE Pre Pre	replaced) RESERVATION FOTAL VOL D IN FIELD (n efilled by lab None efilled by lab None efilled by lab	N mL)	FINAL	INITIATED AT FILTERED: Y in Equipment Ty DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I Total Phe	NO3 Inols	ENDED A FILTER S NT BLANK: CAMPLING QUIPMENT CODE RFPP APP APP APP APP	XT: <u>OBJS</u> IZE:µm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100 <100 QST JST

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	.D. SWMF (WA	Cs Facility ID	: 89544)			SITE LOCATION: 150	01 Omni Way, S	t. Cloud, Osceola	a County, Flori	da, 34773	
WELL NO	mw.)	OC		SAMPLE	ID: A	1W-10C			DATE: No	172	017
	1.000 1	~				RGING DA				1,0	
WELL VO			TER (inches):	0.25 DEI	LL SCREE	EN INTERVAL	eet TO WAT	DEPTH ER (feet): 19. WELL CAPAC	15 ORE	GE PUMP TY BAILER: pe	'PE eristaltic
EQUIPME	It if applicable) <b>NT VOLUME PU</b> It if applicable)	JRGE: 1 EQ	= ( UIPMENT VOL			UBING CAPACI		UBING LENGTH		L VOLUME	gallons
	JMP OR TUBIN	G 69		MP OR TUBIN	gallons + (	PURGIN		90 feet PURGING		TOTAL VOL	
DEPTH IN	WELL (feet):		DEPTHIN	WELL (feet):	69	INITIATE	ED AT: 0655	ENDED AT: DISSOLVED	0725	PURGED (g	allons): 1.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standa units)		COND. (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUS)	Y COLOF (describ	
0715	1.0	1.0	0.05	19.23	4.81	23.91	113	0.77	2.0	Clee	~ -72.2
0720	0.25	1.25	0.05	19.23	4.8	1 23.94	112	0.7	2.2	clea	v -25.9
0725	0.25	1.5	0.05	19.23	4.80	23.92	112	0.63	2.2	clea	
			-			-				-	-
TUBING IN	PACITY (Gallon: NSIDE DIA. CAF EQUIPMENT C	ACITY (Gal.		1" = 0.04; .0006; 3/16 BP = Bladder I		: 1/4" = 0.002 ESP = Electric	26; <b>5/16''</b> = 0 Submersible Pu	.004; 3/8" = 0		= 0.010;	<b>12</b> " = 5.88 <b>5/8</b> " = 0.016 her (Specify)
TUBING IN PURGING	NSIDE DIA. CAR	ODES: E	/Ft.): 1/8" = 0	.0006; 3/16' BP = Bladder I	' = 0.0014 Pump; SAN	1/4" = 0.002 ESP = Electric	26; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 imp; PP = P	0.006; 1/2"	= 0.010; ; O = Ot	5/8" = 0.016 her (Specify)
TUBING IN PURGING SAMPLED Joe Terry /	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI	ODES: E	/Ft.): 1/8" = 0	.0006; 3/16' BP = Bladder I	' = 0.0014 Pump; SAN	: 1/4" = 0.002 ESP = Electric	26; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 imp; PP = P SAMPLING	0.006; 1/2" eristaltic Pump T: 0.730	= 0.010; ; 0 = 0t SAMPLINE ENDED A	5/8" = 0.016 her (Specify) G T: 0 740
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI	ODES: E	/Ft.): 1/8" = 0	.0006; 3/16' BP = Bladder I	' = 0.0014 Pump; SAN SIGNATU	1/4" = 0.002 ESP = Electric	Submersible Pu	.004; 3/8" = 0 imp; PP = P SAMPLING INITIATED A D-FILTERED: Y	0.006; 1/2" eristaltic Pump T: 0.73.0 (N)	= 0.010; ; 0 = 0t SAMPLINE ENDED A	5/8" = 0.016 her (Specify) G
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING	ODES: E FFILIATION:	/Ft.): 1/8" = 0	.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING	' = 0.0014 Pump: SAN SIGNATU	1/4" = 0.002 ESP = Electric	Submersible Pu	.004; 3/8" = ( imp; PP = P SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty	0.006; 1/2" eristaltic Pump T: 0.73.0 (N)	= 0.010; o; O = Ot SAMPLINI ENDED A FILTER SI	5/8" = 0.016 her (Specify) G T: 0 740
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	NSIDE DÍA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet):	PACITY (Gal.) ODES: E FFILIATION: 69 DN: PUN	/Ft.): 1/8" = 0 8 = Bailer; //P No	.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	" = 0.0014 Pump; SAN SIGNATU ODE: PE ING N	: 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): June	5/16" = 0 Submersible Pu ATA FIELD Filtrat	.004; 3/8" = ( imp; PP = P SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty	D.006; 1/2" eristaltic Pump T: 0.73.0 (N) or EQUIPMEN	= 0.010; o; O = Ot SAMPLINI ENDED A FILTER SI	5/8" = 0.016 her (Specify) G T: <u>0</u> 7 4/0 ZE:μm Y (Ñ)
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	NSIDE DÍA. CAF EQUIPMENT C BY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIO	PACITY (Gal.) ODES: E FFILIATION: 69 DN: PUN	/Ft.): 1/8" = 0 8 = Bailer; //P No	.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	SIGNATU ODE: PE ING N SAMPLE	: 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): June	5/16" = 0 Submersible Pu ATA FIELD Filtrat	.004;         3/8" = (           imp;         PP = P           SAMPLING           INITIATED A           0-FILTERED:         Y           ion Equipment Ty           DUPLICATE	D.006; 1/2" eristaltic Pump T: 0-73 0 (N) pe: or EQUIPMEN ED SJ ND/OR EC	= 0.010; p; O = Ot SAMPLINE ENDED A FILTER SI IT BLANK:	5/8" = 0.016 her (Specify) G T: <u>0</u> 7 4/0 ZE:μm
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	NSIDE DÍA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: 69 FFILIATION: 69 N: PUM R SPECIFIC, MATERIAL	/Ft.): 1/8" = 0 8 = Bailer; //P No ATION	0006; 3/16 BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	" = 0.0014 Pump; SAN SIGNATU ODE: PE ING N SAMPLE IVE AD	: 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): June No (replaced) PRESERVATIO TOTAL VOL	Submersible Pu Submersible Pu ATA FIELD FIELD Filtrat	.004;     3/8" = 0       imp;     PP = P       SAMPLING     INITIATED A       D-FILTERED:     Y       ion Equipment Ty       DUPLICATE       INTEND       ANALYSIS A	0.006; 1/2" eristaltic Pump T: 0.73.0 (N) or EQUIPMEN ED S, ND/OR EC	= 0.010; O = Ot SAMPLINE ENDED A FILTER SI IT BLANK: AMPLING DUPMENT	5/8" = 0.016 her (Specify) G T: <u>0 7 4/0</u> ZE:μm Y N SAMPLE PUMI FLOW RATE
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DÍA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: 69 FFILIATION: 69 0N: PUM R SPECIFIC, MATERIAL CODE	/Ft.): 1/8" = 0 8 = Bailer; //P No ATION VOLUME	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	" = 0.0014 Pump; SAN SIGNATU ODE: PE ING N SAMPLE IVE AD	; 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): June No (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r	Submersible Pu Submersible Pu ATA FIELD FIELD Filtrat	.004;     3/8" = 0       imp;     PP = P       SAMPLING       INITIATED A       0-FILTERED:       Y       DUPLICATE       INTEND       ANALYSIS A       METHC	0.006; 1/2" eristaltic Pump T: 0.73.0 (N) or EQUIPMEN ED S, ND/OR EC	= 0.010; o; O = Ot SAMPLINI ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE	5/8" = 0.016 her (Specify) G T: <u>0</u> .74/0 ZE:μm Y N SAMPLE PUMF FLOW RATE (mL per minute
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-/0C	NSIDE DÍA. CAF EQUIPMENT C PBY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS , 3	FFILIATION: 69 FFILIATION: 69 N: PUN R SPECIFIC: MATERIAL CODE CG	/Ft.): 1/8" = 0 8 = Bailer; //P No ATION VOLUME 40mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	' = 0.0014 Pump; SAN SIGNATI ODE: PE ING N SAMPLE IVE AD	: 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): Jule No (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab	Submersible Pu Submersible Pu ATA FIELD FILD FILD FILD FILD FILD FILD FILD	.004;     3/8" = 0       imp;     PP = P       SAMPLING     INITIATED A       D-FILTERED:     Y       ion Equipment Ty       DUPLICATE       INTEND       ANALYSIS A       METHC       8260	0.006; 1/2" eristaltic Pump T: 0.73.0 /pe: or EQUIPMEN ED S/ ND/OR EG	= 0.010; O = Ot SAMPLINE ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP	5/8" = 0.016 her (Specify) G T: 0 7 4/0 ZE:µm Y N SAMPLE PUMF FLOW RATE (mL per minute <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-/0C	NSIDE DÍA. CAF EQUIPMENT C DBY (PRINT) / A VWSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE PLE CONTAINE 3 3	FFILIATION: 6 FFILIATION: 6 0 0 0 0 0 0 0 0 0 0 0 0 0	/Ft.): 1/8" = 0 8 = Bailer; //P No ATION VOLUME 40mL 40mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	" = 0.0014 Pump: SAN SIGNATI ODE: PE ING N SAMPLE IVE AD	: 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): June No (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab None	Submersible Pu Submersible Pu ATA FIELD FIELD Filtrat	.004;     3/8" = 0       imp;     PP = P       SAMPLING       INITIATED A       0-FILTERED:       Y       DUPLICATE       INTEND       ANALYSIS A       METHC       8260       8011	0.006; 1/2" eristaltic Pump T: 0.73.0 /pe: or EQUIPMEN ED S/ ND/OR EG	= 0.010; O = Ot SAMPLINI ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP RFPP	5/8" = 0.016 her (Specify) G T: 0 7 4/0 ZE:µm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW-/DC .1	NSIDE DÍA. CAF EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 1	FFILIATION: FFILIATION: FFILIATION: CG CG CG PE	/Ft.): 1/8" = 0 8 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	" = 0.0014 Pump: SAN SIGNATI ODE: PE ING N SAMPLE IVE AD	: 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): June No (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab	Submersible Pu Submersible Pu ATA FIELD FIELD Filtrat	.004;     3/8" = 0       imp;     PP = P       SAMPLING INITIATED A       0-FILTERED:     Y       ion Equipment Ty       DUPLICATE       INTEND       ANALYSIS A       METHC       8260       8011	D.006; 1/2" eristaltic Pump T: 0-73 0 (N) pe: or EQUIPMEN ED SJ ND/OR EC DD SJ SS	= 0.010; O = Ot SAMPLINIENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP	5/8" = 0.016 her (Specify) G T: 0 7 4/0 ZE:µm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100 200
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW-/OC SI SAMPLE	NSIDE DÍA. CAF EQUIPMENT C PBY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS , 3 3 1 1 1 1 1 1	FFILIATION: FFILIATION: FFILIATION: CG CG CG PE PE PE AG	/Ft.): 1/8" = 0 8 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	' = 0.0014 Pump: SAN SIGNATI ODE: PE ING N SAMPLE IVE AD	: 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): June No (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab	Submersible Pu Submersible Pu ATA FIELD FILD Filtrat N M PH P	.004;     3/8" = 0       imp;     PP = P       SAMPLING INITIATED A       D-FILTERED:     Y       DUPLICATE       INTEND       ANALYSIS A       METHO       8260       8011       Metals       NH3	D.006; 1/2" eristaltic Pump T: 0-73 0 /pe: or EQUIPMEN ED S/ ND/OR EG S ND/OR EG	= 0.010; O = Ot SAMPLINE ENDED A FILTER SI IT BLANK: AMPLING DUIPMENT CODE RFPP APP APP	5/8" = 0.016 her (Specify) G T: 0 74/0 ZE:µm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW-/OC SI SAMPLE	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 5; clouly , 6	FFILIATION: FFILIATION: FFILIATION: CG CG CG PE PE PE AG	/Ft.): 1/8" = 0 8 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 1000mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	' = 0.0014 Pump: SAN SIGNATI ODE: PE ING N SAMPLE IVE AD	: 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): June No (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab Prefilled by lab None	Submersible Pu Submersible Pu ATA FIELD FILD Filtrat N M PH P	.004;     3/8" = 0       imp;     PP = P       SAMPLING INITIATED A       0-FILTERED:     Y       ion Equipment Ty       DUPLICATE       INTEND       ANALYSIS A       METHC       8260       8011       Metals       NH3       TDS, CI,	D.006; 1/2" eristaltic Pump T: 0-73 0 /pe: or EQUIPMEN ED S/ ND/OR EG S ND/OR EG	<ul> <li>= 0.010;</li> <li>= 0.010;</li> <li>O = Ot</li> <li>ENDED A</li> <li>FILTER SI</li> <li>TIT BLANK:</li> <li>AMPLING</li> <li>UIPMENT</li> <li>CODE</li> <li>RFPP</li> <li>RFPP</li> <li>APP</li> <li>APP</li> <li>APP</li> <li>APP</li> </ul>	5/8" = 0.016 her (Specify) G T: 0 7 4/0 ZE:µm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100 200 200 200
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW-///CC 11 11 11 11 11 11 11 11 11 11 11 11 1	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 1 1 1 1 1 1 5; clouly , 6	FFILIATION: FFILIATION: FFILIATION: CG CG CG PE PE PE AG	/Ft.): 1/8" = 0 8 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 1000mL 350 D/	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014 Pump: SAN SIGNATI ODE: PE ING N SAMPLE IVE AD	: 1/4" = 0.002 ESP = Electric IPLING DA JRE(S): June No (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab Prefilled by lab None Prefilled by lab	Submersible Pu Submersible Pu ATA FIELD FILD Filtrat N M PH P	.004:       3/8" = 0         imp;       PP = P         SAMPLING       INITIATED A         D-FILTERED:       Y         ion Equipment Ty       DUPLICATE         INTEND       ANALYSIS A         METHC       8260         8011       Metals         NH3       TDS, CI,         Total Phe	D.006; 1/2" eristaltic Pump T: 0-73 0 /pe: or EQUIPMEN ED S/ ND/OR EG S ND/OR EG	<ul> <li>= 0.010;</li> <li>= 0.010;</li> <li>O = Ot</li> <li>SAMPLINIENDED A</li> <li>FILTER SI</li> <li>TIT BLANK:</li> <li>AMPLING</li> <li>UIPMENT</li> <li>CODE</li> <li>RFPP</li> <li>APP</li> <li>APP</li> <li>APP</li> <li>APP</li> <li>APP</li> <li>APP</li> <li>APP</li> <li>APP</li> </ul>	5/8" = 0.016 her (Specify) G T: 0 7 4/0 ZE:µm Y N SAMPLE PUM FLOW RATE (mL per minute <100 <100 200 200 200

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	Mu-11	Cs Facility ID:		SAMPL	EID: MI		01 Omni Way, St.			v 12, 20	212
	10100-11	14			1	GING DA	ТΔ		100	v 12,00	12
WELL		TUBIN	G	W	ELL SCREEN		STATIC D	EPTH	PU	RGE PUMP T	YPE
DIAMETER	(inches): 2.0	DIAME	TER (inches)	:0.25 DE	PTH: 12.5 fe	eet to 22,5 f	eet TO WATE	R (feet): 16.5	/ OR		eristaltic
	if applicable)	1 WELL VO					OWATER) X	WELL CAPACI	TY		
	IT VOLUME PL	IDOE: 1 501	= (	22.39	feet -	16.31	feet) X TY X TL	0.16 g	allons/foot		gallons
	if applicable)	JRGE: 1 EQU	JIPMENT VO								
		0			gallons + ( 0		ons/foot X	feet)	+ 0.12		gallons
	MP OR TUBING WELL (feet):	20		IMP OR TUBIN WELL (feet):	20	PURGIN	ED AT: 1300	PURGING ENDED AT:	1357	TOTAL VO	gallons): 2.85
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)	COLO (descril	
348	2.4	2.4	0.05	17.2	5.31	28.14	432	0.27	5.1	clea	-104.3
1352	0.2	2.6	0.05	17.2	5.34	28.05	431	0.27	5.0	cle	
1357	0.75	2.85	0.05	17.2	5.33	28.09	432	0.25	5.0	clei	
					-						
						-					
		-	_								_
	ACITY (Gallons					<b>2</b> " = 0.1			<b>5</b> " = 1.02;	<b>6</b> " = 1.47;	<b>12</b> " = 5.88
UBING IN	SIDE DIA. CAP	PACITY (Gal./	Ft.): 1/8" = (	0.0006; 3/16	s'' = 0.0014;	1/4" = 0.002	e; <b>5/16"</b> = 0.0	004; 3/8" = 0	.006; 1/2	" = 0.010;	5/8" = 0.016
UBING IN		PACITY (Gal./			s" = 0.0014; Pump; E	1/4" = 0.002 SP = Electric	6; <b>5/16"</b> = 0.0 Submersible Pur	004; 3/8" = 0		" = 0.010;	
UBING IN: PURGING E	SIDE DIA. CAP	ODES: B	Ft.): 1/8" = (	0.0006; 3/16 BP = Bladder	S" = 0.0014; Pump; E SAMP	1/4" = 0.002	26; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0	.006; 1/2	" = 0.010; p; <b>O</b> = O	5/8" = 0.016 ther (Specify)
CUBING IN PURGING E SAMPLED F oe Terry / \	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI	ODES: B	Ft.): 1/8" = (	0.0006; 3/16 BP = Bladder SAMPLER(S	s" = 0.0014; Pump; E	1/4" = 0.002 SP = Electric PLING DA	16; 5/16" = 0.0 Submersible Pur ATA	SAMPLING	.006; 1/2 eristaltic Pum	" = 0.010;	5/8" = 0.016 ther (Specify)
CUBING IN PURGING E SAMPLED F oe Terry / N PUMP OR T	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI	ODES: B	Ft.): 1/8" = (	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING	" = 0.0014; <u>Pump; E</u> <b>SAMP</b> S) SIGNATUR	1/4" = 0.002	16; 5/16" = 0.0 Submersible Pur ATA Tay FIELD-	SAMPLING           INITIATED AT	.006; 1/2 eristaltic Pum F: 1400	" = 0.010; p; 0 = 0 SAMPLIN	5/8" = 0.016 ther (Specify) IG NT: 1412
CUBING IN PURGING E SAMPLED E loe Terry / V PUMP OR T DEPTH IN V	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING	PACITY (Gal./ ODES: E FFILIATION: 20	Ft.): 1/8" = (	0.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (	" = 0.0014; Pump: E SAMP S) SIGNATUR CODE: PE	1/4" = 0.002	16; 5/16" = 0.0 Submersible Pur ATA Tay FIELD-	SAMPLING	.006; 1/2 eristaltic Pum T: 1400 pe.	" = 0.010; p; 0 = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG NT: 1412
CUBING IN: PURGING E CAMPLED F oe Terry / V PUMP OR T DEPTH IN V FIELD DEC	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet):	PACITY (Gal./ ODES: E FFILIATION: 20 DN: PUN	Ft.): 1/8" = ( 3 = Bailer; //P No	0.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (	" = 0.0014; Pump: E SAMP S) SIGNATUR CODE: PE BING No	1/4" = 0.002 ESP = Electric PLING DA E(S): $\int U dt$	16: 5/16" = 0.0 Submersible Pur ATA TA FIELD- Filtratio	3/8" = 0           mp:         PP = Pe           SAMPLING           INITIATED AT           FILTERED:         Y           n Equipment Type	1/2 aristaltic Purr 1400 N pe. EQUIPME	" = 0.010; p; 0 = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG NT: 1412
CUBING IN: PURGING E COMPLED E COMPORT DEPTH IN V FIELD DEC SAMPLE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet): ONTAMINATIO LE CONTAINE #	PACITY (Gal./ ODES: E FFILIATION: 20 DN: PUN R SPECIFIC/ MATERIAL	Ft.): 1/8" = ( 3 = Bailer; //P No	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL (	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PF           TIVE	1/4" = 0.002 ESP = Electric PLING DA E(S): Jule (replaced) RESERVATIO TOTAL VOL	Submersible Pur ATA FIELD- Filtratio	3/8" = 0       mp;     PP = Pe       SAMPLING       INITIATED AT       FILTERED:       Y       DUPLICATE e	1/2 eristaltic Purr F: 14,00 Pe: EQUIPME ED S ND/OR E	TILTER S	5/8" = 0.016 ther (Specify) IG IZE:μm Y SAMPLE PUMP FLOW RATE
AMPLED B COMPLED B COMPLED B COMPORT DEPTHIN SAMPLE D CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet): ONTAMINATIC CLE CONTAINE	PACITY (Gal./ ODES: E FFILIATION: 20 DN: PUN R SPECIFIC/	Ft.): 1/8" = ( 3 = Bailer; 4P No ATION	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUB	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PI           TIVE         ADDE	1/4" = 0.002 SP = Electric PLING DA E(S): Jue (replaced) RESERVATIO	5/16" = 0.0           Submersible Pur           ATA           Image: Comparison of the purchase of the pu	3/8" = 0       mp:     PP = Pe       SAMPLING       INITIATED AT       FILTERED:       Y       DUPLICATE @       INTENDE       ANALYSIS AT	1/2 eristaltic Purr F: 14,00 Pe: EQUIPME ED S ND/OR E	TILTER S	5/8" = 0.016 ther (Specify) IG IZE:μm YY SAMPLE PUMP
SAMPLED B DOE TETRY / V PUMP OR T DEPTH IN V FIELD DEC SAMPLE D CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS	PACITY (Gal./ ODES: E FFILIATION: 20 DN: PUN R SPECIFIC/ MATERIAL CODE	Ft.): 1/8" = ( 3 = Bailer; MP No ATION VOLUME	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUI PRESERVA USED	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PI           TIVE         ADDE	1/4" = 0.002 ESP = Electric PLING DA E(S): Aut (replaced) RESERVATIO TOTAL VOL ED IN FIELD (1)	5/16" = 0.0           Submersible Pur           ATA           Image: Comparison of the purchase of the pu	3/8" = 0       mp:     PP = Pe       INITIATED AT       FILTERED:       Y       DUPLICATE @       ANALYSIS AT       METHO	1/2 eristaltic Purr F: 14,00 Pe: EQUIPME ED S ND/OR E	" = 0.010;       p;     O = O       SAMPLIN       ENDED A       FILTER S       NT BLANK;       CAMPLING       QUIPMENT       CODE	5/8" = 0.016 ther (Specify) IG IZE:μm YMM SAMPLE PUMP FLOW RATE (mL per minute)
CUBING IN: PURGING E CORE TERRY / V PUMP OR T DEPTH IN V FIELD DEC SAMPLE D CODE CODE VW -11/A	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING NELL (feet): ONTAMINATIO LE CONTAINERS 3	PACITY (Gal./ ODES: E FFILIATION: 20 N: PUN R SPECIFIC/ MATERIAL CODE CG	Ft.): 1/8" = ( 3 = Bailer; 4P No ATION VOLUME 40mL	0.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATER	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PF           TIVE           ADDE	1/4" = 0.002 SP = Electric PLING DA E(S): June (replaced) RESERVATIO TOTAL VOL ED IN FIELD (( refilled by lab	5/16" = 0.0           Submersible Pur           ATA           Image: Comparison of the purchase of the pu	3/8" = 0         mp:       PP = Pe         SAMPLING         INITIATED AT         FILTERED:       Y         n Equipment Tyj         DUPLICATE @         INTENDE         ANALYSIS AI         METHO         8260	1/2 eristaltic Purr F: 1400 Pe: ED S ND/OR EI D	TILTER S AMPLINE SAMPLINE SAMPLINE FILTER S NT BLANK: CODE RFPP	5/8" = 0.016 ther (Specify) IG IZE:μm SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
CUBING IN: PURGING E CAMPLED E COE Terry / V PUMP OR T DEPTH IN V CIELD DEC SAMPLE D CODE CODE VW -11/A	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet): ONTAMINATIO PLE CONTAINE CONTAINERS 3 3 3	PACITY (Gal./ ODES: E FFILIATION: 20 DN: PUM R SPECIFIC/ MATERIAL CODE CG CG	Ft.): 1/8" = ( 3 = Bailer; AP No ATION VOLUME 40mL 40mL	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATER	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PI           TIVE         ADDE           Pr           Pr	1/4" = 0.002 ESP = Electric PLING DA E(S): (replaced) RESERVATIO TOTAL VOL ED IN FIELD (0 refilled by lab None	If:         5/16" = 0.0           Submersible Pur           ATA           Image: Comparison of the purchase of t	3/8" = 0         mp:       PP = Pe         SAMPLING         INITIATED AT         FILTERED:       Y         DUPLICATE of         INTENDE         ANALYSIS AT         METHO         8260         8011	1/2 eristaltic Purr F: 1400 Pe: ED S ND/OR EI D	" = 0.010; p; O = O SAMPLIN ENDED A FILTER S NT BLANK: CODE RFPP RFPP	5/8" = 0.016 ther (Specify) IG IZE:μm SAMPLE PUMP FLOW RATE (mL per minute) <100
CUBING IN: PURGING E CAMPLED E CONTROL OF COMPORT DEPTH IN V FIELD DEC SAMPLE D CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet): ONTAMINATIO LE CONTAINE CONTAINERS 3 3 1	PACITY (Gal./ ODES: E FFILIATION: 20 DN: PUM R SPECIFIC/ MATERIAL CODE CG CG CG PE	Ft.): 1/8" = ( B = Bailer; MP No ATION VOLUME 40mL 40mL 500mL	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( None HNO ₃	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PI           TIVE         ADDE           Pr           Pr	1/4" = 0.002 SP = Electric PLING DA E(S): Aut (replaced) RESERVATIO TOTAL VOL ED IN FIELD (( efilled by lat None refilled by lat	If:         5/16" = 0.0           Submersible Pur           ATA           Image: Comparison of the purchase of t	3/8" = 0         mp:       PP = Pe         SAMPLING         INITIATED AT         FILTERED:       Y         DUPLICATE @         ANALYSIS AT         METHO         8260         8011         Metals	1/2 aristaltic Purr 1/2/00 PECUIPME ED S ND/OR EI D	" = 0.010;       p;     0 = 0       SAMPLIN ENDED A       FILTER S       NT BLANK;       CAMPLING QUIPMENT CODE       RFPP       RFPP       APP	5/8" = 0.016 ther (Specify) IG IZE:μm SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200
SAMPLED B Joe Terry / V DUMP OR T DEPTH IN V FIELD DEC SAMPLE ID CODE WW -ILA (1 (1)	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet): ONTAMINATIO DE CONTAINE CONTAINERS 3 3 1 1 1	PACITY (Gal./ ODES: E FFILIATION: 20 DN: PUM R SPECIFIC/ MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = ( B = Bailer; IP No ATION VOLUME 40mL 40mL 500mL 125mL	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( SAMPLER(S MATERIAL ( SAMPLER(S) HUBING HCL None HNO ₃ H ₂ SO ₄	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PF           TIVE           ADDE           Pr           Pr	1/4" = 0.002 SP = Electric PLING DA E(S): (replaced) RESERVATIO TOTAL VOL ED IN FIELD (0 refilled by lab None efilled by lab None	5/16" = 0.0           Submersible Pur           ATA           Image: Comparison of the purchase of the pu	3/8" = 0         mp:       PP = Pe         SAMPLING         INITIATED AT         FILTERED:       Y         DUPLICATE e         INTENDE         ANALYSIS AT         METHO         8260         8011         Metals         NH ₃ TDS, CI, M	.006;         1/2           eristaltic Purr           F:         1400           pe:         0           PE         EQUIPME           ED         S           ND/OR         E           D         0	TILTER S AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AMPLING AM	5/8" = 0.016 ther (Specify) IG IZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200
SAMPLED B Doe Terry / V DUMP OR T DEPTH IN V FIELD DEC SAMPLE D CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet): ONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1	PACITY (Gal./ ODES: E FFILIATION: 20 N: PUN R SPECIFIC/ MATERIAL CODE CG CG CG PE PE PE AG	Ft.):       1/8" = (         B = Bailer;       B         IP       No         ATION       VOLUME         40mL       40mL         500mL       125mL         250mL       Date         PL000mL       1000mL	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( NONE HNO ₃ H ₂ SO ₄ None	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PF           TIVE         ADDE           Pr           Pr           Pr           Pr           Pr           Pr           Pr	1/4" = 0.002 SP = Electric PLING DA E(S): (replaced) RESERVATIO TOTAL VOL ED IN FIELD (( refilled by lab efilled by lab efilled by lab	Image: Signal of the second	3/8" = 0         mp:       PP = Pe         SAMPLING         INITIATED AT         FILTERED:       Y         DUPLICATE 0         INTENDE         ANALYSIS AT         METHO         8260         8011         Metals         NH3         TDS, CI, M         Total Phen	NO ₃	" = 0.010; p; O = O SAMPLIN ENDED A FILTER S NT BLANK; CODE RFPP RFPP RFPP APP APP APP APP	5/8" = 0.016 ther (Specify) IG IZE:μm Y SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 200 200 200 200
SAMPLED B Joe Terry / V PUMP OR T DEPTH IN V FIELD DEC SAMPLE ID CODE WW -11/A (1 (1 (1) CODE WW -11/A	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet): ONTAMINATIO LE CONTAINE CONTAINERS 3 3 1 1 1 1 1 1	PACITY (Gal./ ODES: E FFILIATION: 20 N: PUN R SPECIFIC/ MATERIAL CODE CG CG CG PE PE PE AG	Ft.):       1/8" = (         B = Bailer;       B         IP       No         ATION       VOLUME         40mL       40mL         500mL       125mL         250mL       Date         PL000mL       1000mL	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( NONE HNO ₃ H ₂ SO ₄ None	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PF           TIVE         ADDE           Pr           Pr           Pr           Pr           Pr           Pr           Pr           Pr	1/4" = 0.002 SP = Electric PLING DA E(S): Junc (replaced) RESERVATIO TOTAL VOL ED IN FIELD (( efilled by lab efilled by lab efilled by lab series b(c) / 2	16:         5/16" = 0.0           Submersible Pur           ATA           Image: Comparison of the second sec	004:     3/8" = 0       mp:     PP = Pe       SAMPLING INITIATED AT       FILTERED:     Y       m Equipment Ty       DUPLICATE of       ANALYSIS AT       METHOD       8260       8011       Metals       NH3       TDS, CI, N       Total Phene       at 14 35	.006;         1/2           eristaltic Purr           F:         14,00           pe:	" = 0.010;         p;       0 = 0         SAMPLIN         ENDED A         FILTER S         NT BLANK;         CAMPLING         QUIPMENT         CODE         RFPP         APP         APP         APP         APP         APP         Supplied	5/8" = 0.016 ther (Specify) IG IZE:µm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200 200 DI $H_2O$ ,
SAMPLED B Joe Terry / V PUMP OR T DEPTH IN V FIELD DEC SAMPLE ID CODE WW -ILA (1 (1) (1) C REMARKS:	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI WSI TUBING WELL (feet): ONTAMINATIO LE CONTAINERS 3 3 1 1 1 1 1 1 1	PACITY (Gal./ ODES: E FFILIATION: 20 N: PUN R SPECIFIC/ MATERIAL CODE CG CG CG PE PE PE AG	Ft.):       1/8" = (         B = Bailer;       IIP No         MP No       No         ATION       VOLUME         40mL       40mL         500mL       125mL         250mL       250mL         78°F       78°F	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( TUBING MATERIAL ( NONE HNO ₃ H ₂ SO ₄ None	" = 0.0014;           Pump;         E           SAMP           S) SIGNATUR           CODE: PE           BING         No           SAMPLE PF           TIVE         ADDE           Pr           Pr           Pr           Supple           Supple           Pr           Supple           Supple	1/4" = 0.002 SP = Electric PLING DA E(S): Junc (replaced) RESERVATIO TOTAL VOL ED IN FIELD (( efilled by lab efilled by lab efilled by lab series b(c) / 2	16:         5/16" = 0.0           Submersible Pur           ATA           Image: Comparison of the second sec	3/8" = 0         mp:       PP = Pe         SAMPLING         INITIATED AT         FILTERED:       Y         DUPLICATE of         INTENDE         ANALYSIS AT         METHO         8260         8011         Metals         NH3         TDS, CI, N         Total Phene         at 1435         acu + at	NO3 nols Subj. Sup	" = 0.010;         p;       0 = 0         SAMPLIN         ENDED A         FILTER S         NT BLANK;         CODE         RFPP         RFPP         APP         APP         APP         APP         APP         JD - E	5/8" = 0.016 ther (Specify) IG IZE:μm YN SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200 200

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Ce Eacility IF	89544)				TE	01 Om	ni Way St	Cloud, Osceola	County El	orida 34773	
	MW-1		. 09044)	SAMP	LE ID:		N-11C	on one	in vvay, ot.	Cioud, Osceole			2012
TTELE ITO.	10100-11	C				*	GING DA	TA				Vev 12	, 0012
	R (inches): 2.0	and the second sec	ETER (inches):	0.25 D	EPTH:	CREEN	INTERVAL eet to 73.5 f	eet		R (feet): /6.5	5 01	JRGE PUMP T R BAILER:	YPE peristaltic
(only fill ou	LUME PURGE: t if applicable) NT VOLUME PU t if applicable)		= (	73.78	feet	-	16.5	5	feet) X	0.16 0.16 0.16	allons/foot	= 9.2	gallons
(only in ou	( in applicable)			= 0.0	gallon	s+( 0	.0026 gallo	ons/foo	t X	75 feet	) + 0.12	gallons =	0.32 gallons
	JMP OR TUBIN WELL (feet):	G 69	and the second se	WELL (feet)		59	PURGIN	G D AT:	1255	PURGING ENDED AT:	1325	TOTAL VO PURGED (	gallons): 1.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	(sta	pH andard nits)	TEMP (°C)	C( (circl µmt	OND. le units) hos/cm µS/cm	DISSOLVED OXYGEN (circle units) (mg/L or % saturation	TURBID (NTUs		
1315	1.0	1.0	0.05	16.6	15.	29	26.05	10	26	0.45	2	Cler	19.9
1370	0.75	1.25	0.05		-	30	26.08		27	0.45	1.1	cleu	
1325	0.25	1.50	0.05	16.6	-	31	26.07		26	0.41	1.1	c lei	
TUBING IN PURGING	PACITY (Gallon NSIDE DIA. CAR EQUIPMENT C BY (PRINT) / A	ODES:	./Ft.): 1/8" = 0 B = Bailer;	BP = Bladde	6" = 0.0 er Pump S	AMP	1/4" = 0.002 SP = Electric LING DA	6; Subme	" = 0.37; 5/16" = 0.0 ersible Pun	004; 3/8" = 0	5" = 1.02; 0.006; 1/ eristaltic Pu	6" = 1.47; 2" = 0.010; mp; O = C	12" = 5.88 5/8" = 0.016 other (Specify)
Joe Terry / PUMP OR	WSI			TUBING	(S) SIGI	NATUR	E(S): Joe l	y		INITIATED A		ENDED	AT: 1340
	WELL (feet):	69		MATERIAL	CODE	PE				FILTERED: Y in Equipment Ty		FILTER S	SIZE:μm
FIELD DEC	CONTAMINATIO	DN: PUI	MP No	TI	JBING	No	(replaced)			DUPLICATE	or EQUIPM	ENT BLANK:	YN
SAMPLE	PLE CONTAINE #	R SPECIFIC		PRESERV			RESERVATIO	N	FINAL	INTENDI ANALYSIS A	ND/OR	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED		1.000	D IN FIELD (r		рН	METHO		CODE	(mL per minute)
nw-11C	3	CG	40mL	HCL		Pr	efilled by lab			8260		RFPP	<100
	3	CG	40mL	None			None	-		8011		RFPP	<100
U.	1	PE	500mL	HNO			efilled by lab	-		Metals	5	APP	200
L ⁱ	1	PE	125mL	H ₂ SO	-	Pr	efilled by lab			NH ₃		APP	200
	1	PE	250mL	None			None			TDS, CI,	NO ₃	APP	200
REMARKS weather:	loudy, gust		75%=	H ₂ SO	4	Pr	efilled by lab			Total Phe	nols	APP	00
MATERIAL			APP = After Pe RFPP = Revers	se Flow Peris	p; staltic Pi	B = Bai	ler; BP = SM = Straw	Bladde		ESP = Electr Gravity Drain);	ic Submers		Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	E.D. SWMF (WA		00544		110	CATION 150	11 Omni May	St Cloud Oce	onla County	Florid	0 34773	
WELL NO	MW - 1		89544)	SAMPLE	ID: MW		on Omni vvay	St. Cloud, Osc				
WELL NO	10100-16	XA		Or will EE	-	SING DA	ТА		Drife.	1000	12,20	12
WELL VO	R (inches): 2.0 LUME PURGE: It if applicable)		TER (inches):0	AL WELL DEP	L SCREEN PTH: 1 3 fe TH - STA	INTERVAL eet to 23 fe TIC DEPTH T	eet TO W/	C DEPTH ATER (feet): / X WELL CA	7.69			YPE eristaltic
EQUIPME	INT VOLUME Plut if applicable)	URGE: 1 EQU	= ( JIPMENT VOL	. = PUMP VOL	feet – UME + (TUB allons + ( 0			X 0.16 TUBING LENG		N CEL		gallons gallons
	UMP OR TUBIN WELL (feet):	G 21		IP OR TUBING WELL (feet):	21	PURGIN	G ED AT: //00	PURGIN ENDED			TOTAL VOL PURGED (g	UME allons): 5.25
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units µmhos/cm or µS/cm	(circle un	ED N ts) TURI (N	BIDITY TUs)	COLO (describ	
1200	4.2	42	0.07	17.94	4.52	27,17	157	0.6		0	clea	v 0.5
1205	0.35	4.55	0.07	17.94	4.541	26.96	15B	0.6		)	cle	-
1210	0.35	41.9	0.07	17.94	4.54	26.94	159	0,6	6	2	clea	× -14.3
1215	0.35	5.25	0.07	17.94	4.55	26.90	158	0.6	1 0	2	c lea	-16.5
-												
TUBING I	PACITY (Gallon NSIDE DIA. CAI	PACITY (Gal./	Ft.): 1/8" = 0.0	1" = 0.04; 2006; 3/16" 3P = Bladder P	<b>1.25</b> " = 0.00 = 0.0014; Pump; E		6; 5/16" =	0.004; 3/8	; <b>5</b> " = 1.0 ' = 0.006; = Peristaltic	1/2" :		<b>12</b> " = 5.88 5/8" = 0.016 ther (Specify)
TUBING II	NSIDE DIA. CAI	PACITY (Gal./	Ft.): 1/8" = 0.0	0006; 3/16"	= 0.0014; Pump; E	1/4" = 0.002	6; 5/16" = Submersible	0.004; 3/8	= 0.006;	1/2" :	= 0.010;	5/8" = 0.016
TUBING II PURGING	BY (PRINT) / A	PACITY (Gal./ CODES: B	Ft.): 1/8" = 0.0	0006; 3/16"	= 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = Submersible	0.004; 3/8 Pump; PP	' = 0.006; = Peristaltic	1/2" : Pump;	= 0.010; 0 = 01 SAMPLIN	5/8" = 0.016 ther (Specify) G
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN	NSIDE DIA. CAI EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet):	PACITY (Gal./ CODES: B REFILIATION: 21	Ft.): <b>1/8"</b> = 0.(	30006: 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CC	= 0.0014; Pump; E SAMP SIGNATURE DDE: PE	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = Submersible	SAMPLIN INITIATE LD-FILTERED: ation Equipment	" = 0.006; = Peristaltic IG D AT: /27 Y N nt Type:	1/2" = Pump;	= 0.010; O = Of SAMPLIN ENDED A FILTER SI	5/8" = 0.016 ther (Specify) G T: /230 ZE:μm
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE	NSIDE DIA. CAI EQUIPMENT C BBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./ CODES: B FFILIATION: 21 DN: PUN	Ft.): 1/8" = 0.( = Bailer; E	30006: 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CO TUBI	= 0.0014; Pump; E SAMP SIGNATURE DDE: PE NG No (	1/4" = 0.002 SP = Electric LING DA E(S): $\int \sqrt{2} \sqrt{2}$ (replaced)	6: 5/16" = Submersible ATA Tuy FIE Filt	SAMPLIN INITIATE LD-FILTERED: ation Equipmen	IG Peristaltic IG D AT: /27 Y N Type: TE or EQUI	1/2" = Pump; 20	= 0.010; O = O SAMPLIN ENDED A FILTER SI T BLANK:	5/8" = 0.016 ther (Specify) G T: 1230 ZE:μm Y
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE	NSIDE DIA. CAI EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	ACITY (Gal./ CODES: B FFILIATION: 21 DN: PUN ER SPECIFICA MATERIAL	Ft.): 1/8" = 0.( = Bailer; E	30006: 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI	= 0.0014; Pump; E SIGNATURE DDE: PE NG No ( SAMPLE PR VE 1	1/4" = 0.002 SP = Electric LING DA E(S): $\int \partial \partial Z$ (replaced) RESERVATION	6: 5/16" = Submersible ATA FIE Filt	SAMPLIN INITIATE LD-FILTERED: ation Equipmen DUPLICA INTE ANALYS	" = 0.006; = Peristaltic IG D AT: /27 Y N nt Type:	1/2" = Pump; PDD PMEN SA EQU	= 0.010; O = Of SAMPLIN ENDED A FILTER SI	5/8" = 0.016 ther (Specify) G T: /230 ZE:μm Y SAMPLE PUMF FLOW RATE
TUBING II PURGING Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAI EQUIPMENT C BBY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	PACITY (Gal./ CODES: B AFFILIATION: 21 DN: PUN ER SPECIFICA	Ft.): 1/8" = 0.( = Bailer; E IP No ATION	30006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CO TUBI	= 0.0014; Pump; E SIGNATURE DDE: PE NG No ( SAMPLE PR VE ADE	1/4" = 0.002 SP = Electric LING DA E(S): $\int \partial \sigma Z$ (replaced) RESERVATION	6: 5/16" = Submersible ATA FIE Filt N N FINA pH	SAMPLIN INITIATE LD-FILTERED: ation Equipmen DUPLICA INTE ANALYS ME	AG Peristaltic AG D AT: /27 Y NTE or EQUI SAND/OR	1/2" = Pump; 70 PMENT SA EQU	= 0.010; O = O SAMPLIN ENDED A FILTER SI T BLANK: MPLING UIPMENT	5/8" = 0.016 ther (Specify) G T: /230 ZE:μm Y SAMPLE PUMF FLOW RATE
TUBING II PURGING Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAI EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	ACITY (Gal./ CODES: B FFILIATION: 2 L DN: PUN ER SPECIFICA MATERIAL CODE	Ft.):         1/8" = 0.0           = Bailer;         E           IP No         NO           ATION         VOLUME	30006: 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED	= 0.0014; Pump; E SIGNATURE DDE: PE NG No ( SAMPLE PR VE ADE	1/4" = 0.002 SP = Electric LING DA E(S): Jož (replaced) RESERVATION TOTAL VOL D IN FIELD (r	6: 5/16" = Submersible ATA FIE Filt N N FINA pH	SAMPLIN INITIATE LD-FILTERED: ation Equipmen DUPLICA ANALYS ME 8	I = 0.006; = Peristaltic IG D AT: /27 Y Y NTE or EQUII INDED IS AND/OR THOD	1/2" Pump; PDD PMEN SA EQU	= 0.010; O = 01 SAMPLIN ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE	5/8" = 0.016 ther (Specify) G T: /230 ZE:μm Y
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-12A	NSIDE DIA. CAI EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	AFFILIATION: 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Ft.):         1/8" = 0.(           = Bailer;         E           IP         No           ATION         VOLUME           40mL	30006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL	= 0.0014; Pump; E SIGNATURE SIGNATURE DDE: PE NG No ( SAMPLE PR VE T ADDE Pre	1/4" = 0.002 SP = Electric LING DA E(S): Got (replaced) ESERVATION TOTAL VOL D IN FIELD (replaced) (replaced)	6; 5/16" = Submersible ATA FIE Filt N M L) FINA pH	SAMPLIN INITIATE LD-FILTERED: ation Equipmen DUPLICA INTE ANALYS ME 8 8	AG Peristaltic AG D AT: /27 Y N TE or EQUI SAND/OR THOD 260	1/2" Pump; PUMP; PMEN SA EQU	= 0.010; O = O SAMPLIN ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP	5/8" = 0.016 ther (Specify) G T: /230 ZE:μm Y C SAMPLE PUMF FLOW RATE (mL per minute) <100 <100
SAMPLED Joe Terry J PUMP OR DEPTH IN FIELD DEP SAMPLE ID CODE MW- 12/A	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A / WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3	AFFILIATION: 20DES: B AFFILIATION: 21 21 21 21 21 21 21 21 21 21	Ft.):         1/8" = 0.0           I = Bailer;         E           IP No         IIP           ATION         VOLUME           40mL         40mL	0006: 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None	= 0.0014; Pump; E SIGNATURE DDE: PE NG No ( SAMPLE PR VE T ADDE Pre	1/4" = 0.002 SP = Electric LING DA E(S): Joz (replaced) RESERVATION OTAL VOL D IN FIELD (r efilled by lab None	6: 5/16" = Submersible ATA FIE Filt N N FINA pH	SAMPLIN INITIATE LD-FILTERED: ation Equipmen DUPLICA INTE ANALYS ANALYS 8 8 8	AG Peristaltic AG D AT: /27 Y NTE or EQUI SAND/OR THOD 260 011	1/2" Pump: Pump: PMEN SA EQU	= 0.010; O = O SAMPLIN ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP RFPP	5/8" = 0.016 ther (Specify) G T: /230 ZE:μm Y Φ SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING II PURGING Joe Terry J PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-12A	NSIDE DIA. CAI EQUIPMENT C P BY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1	ACITY (Gal./ CODES: B AFFILIATION: 2 L DN: PUN ER SPECIFICA MATERIAL CODE CG CG CG PE	Ft.):         1/8" = 0.0           a = Bailer;         E           a = Bailer;         E           a = Dailer;         E           b = Dailer	0006: 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃	= 0.0014; Pump; E SIGNATURE DDE: PE NG No ( SAMPLE PR VE T ADDE Pre	1/4" = 0.002 SP = Electric LING DA E(S): Joz (replaced) RESERVATION TOTAL VOL D IN FIELD (r efilled by lab None	6: 5/16" = Submersible ATA FIE Filt N N FINA pH	O.004; 3/8 Pump; PP SAMPLIN INITIATE LD-FILTERED: ation Equipmer DUPLICA INTE ANALYS ME 8 8 8 0 0	AG Peristaltic AG D AT: /27 Y Y NTE or EQUI S AND/OR THOD 260 011 etals	1/2" Pump: Pump: PMEN SA EQU	= 0.010; O = 00 SAMPLIN ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP RFPP APP	5/8" = 0.016 ther (Specify) G T: /230 ZE:μm Y
TUBING II PURGING Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-12A	NSIDE DIA. CAI EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1	ACITY (Gal./ CODES: B AFFILIATION: 21 DN: PUN R SPECIFICA MATERIAL CODE CG CG CG PE PE PE AG	Ft.):         1/8" = 0.0           a = Bailer;         E           a = Bailer	30006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; Pump; E SIGNATURE SIGNATURE DDE: PE NG No ( SAMPLE PR VE T ADDE Pre Pre	1/4" = 0.002 SP = Electric LING DA E(S): Joc (replaced) RESERVATION TOTAL VOL D IN FIELD (r efilled by lab efilled by lab	6: 5/16" = Submersible ATA FIE Filt N ML) FINA PH	SAMPLIN INITIATE LD-FILTERED: ation Equipmer DUPLICA INTE ANALYS ME 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AG Peristaltic AG D AT: /27 Y N TE or EQUI INDED IS AND/OR THOD 260 011 etals IH ₃	1/2" Pump: PUMEN PMEN SA EQU	= 0.010; O = O SAMPLIN ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP APP APP	5/8" = 0.016 ther (Specify) G T: /230 ZE:μm Y
TUBING II PURGING Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-12A	NSIDE DIA. CAI EQUIPMENT C PBY (PRINT) / A /WSI TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 5: 100 Jr () 74%	ACITY (Gal./ CODES: B AFFILIATION: 21 DN: PUN R SPECIFICA MATERIAL CODE CG CG CG PE PE PE AG	Ft.):         1/8" = 0.0           a = Bailer;         E           a = Bailer	2006: 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; Pump; E SIGNATURE SIGNATURE DDE: PE NG No ( SAMPLE PR VE T ADDE Pre Pre	1/4" = 0.002 SP = Electric LING DA E(S): Joc (replaced) RESERVATION OTAL VOL D IN FIELD (r efilled by lab None efilled by lab efilled by lab	6: 5/16" = Submersible ATA FIE Filt N ML) FINA PH	SAMPLIN INITIATE LD-FILTERED: ation Equipmer DUPLICA INTE ANALYS ME 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AG Peristaltic AG D AT: /27 Y Y NTE or EQUI SAND/OR THOD 260 011 etals IH ₃ CI, NO ₃	1/2" Pump: PUMEN PMEN SA EQU	= 0.010; O = OI SAMPLIN ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 ther (Specify) G T: /230 ZE:µm Y C SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 250 250 250 250

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Ce Eacility ID	89544)			ITE	1 Omni Way	St. Cloud, Osce	ola County Fl	orida 34773	
	MW-12		09044)	SAMPLE	ID: Mu		I Onin Way	01. 01000, 0300	DATE:		2012
WELL NO.	/~W-10	ec.		O'ANI LL	1		ТА		- Crite.	Nev 12.	2012
WELL		TUBIN			LL SCREEN	GING DA	STATI	C DEPTH		URGE PUMP T	
	R (inches): 2.0		TER (inches):0			eet to 73.5 f	eet TO WATER	ATER (feet): 17	BJ 0	R BAILER: p	eristaltic
	it if applicable)	I WELL VO	LOWE - (101							0	
FOUIPME	NT VOLUME PI	IRGE: 1 FO	= (	73.B	feet - UME + (TU	17.8 BING CAPACI		X 0.16 TUBING LENG	gallons/foot		galions
	it if applicable)	UNCE. TEG						-			
		0			gallons + ( (		ons/foot X		eet) + 0.12		1.32 gallons
	UMP OR TUBIN	69		IP OR TUBIN WELL (feet):	69	PURGIN	DAT: /04		T: 1130	TOTAL VO PURGED (	gallons): 1,75
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units µmhos/cm or µS/cm	(circle units			C 2
1120	1.25	1.25	0.05	17.93	4.96	25:78	62	1.75	1.5	cleu	v 33
1125	0.25	1.5	0.05	17.93	4.98	25.83	62	1.3	1.3		
1130	0.25	1.75	0.05	17.93			62	0.97	1.5		
	PACITY (Gallon NSIDE DIA. CAL			1" = 0.04;	<b>1.25</b> " = 0.0 ' = 0.0014;	06; 2" = 0.1 1/4" = 0.002		and the second sec	5" = 1.02; = 0.006; 1	6" = 1.47; /2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C			BP = Bladder		ESP = Electric		And and the second	Peristaltic Pu		ther (Specify)
						LING DA					
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S		T	7	SAMPLING	3	SAMPLIN	IG
Joe Terry					SIGNATUR	(E(S): Gre	1	INITIATED	1.50		1113
PUMP OR DEPTH IN	WELL (feet):	69		TUBING MATERIAL C	ODE: PE			LD-FILTERED: ation Equipment	Y N Type:	FILTER S	IZE:μm
FIELD DE	CONTAMINATIO		MP No	TUB	ING No	(replaced)		DUPLICAT	E or EQUIPN	ENT BLANK:	YN
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE P	RESERVATIO	N	INTEN	DED	SAMPLING	SAMPLE PUMP
SAMPLE	#	MATERIAL	VOLUME	PRESERVAT		TOTAL VOL	FINA	L ANALYSIS		EQUIPMENT CODE	FLOW RATE (mL per minute)
ID CODE	CONTAINERS 3	CODE	40mL	HCL		ED IN FIELD (r refilled by lab		826		RFPP	<100
MW-DC	3	CG	40mL	None		None		80		RFPP	<100
1.	1	PE	500mL	HNO ₃	P	refilled by lab		Met		APP	200
1.	1	PE	125mL	H ₂ SO ₄		refilled by lab		NH		APP	
1-	1	PE	_250mL	None	F	None		TDS, C		APP	200
	1	AG A	101000mL	H ₂ SO ₄	D	refilled by lab		Total P		APP	200
REMARKS	6:	9		112304	P	tenned by lab		Total P	ilenois	AFF	000
weather:C	louly, 74-1	P, Slight	breeze								
odor: no		AC - Arth	Class: 00	Close Olerer	DE - D-	unthulanc	DD - Dalas	aulone: 0 - 0	licone: T	Toflan: 0.	ther (Creation
MATERIA		AG = Amber		Clear Glass;			PP = Polypro				Other (Specify)
SAMPLIN	G EQUIPMENT		APP = After Pe RFPP = Revers				Bladder Pum Method (Tub	p; ESP = Ele	ctric Submers ; 0 = Oth	er (Specify)	
OTES: 1	The above of	do not cons	stitute all of t	he informat	ion require	ed by Chapt	er 62-160, F	A.C.			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D CHAME (MA	Co Englity ID	80544)			SIT		1 Omr	ni Way St	Cloud, Osceola	County Flo	orida 34773	
	E.D. SWMF (WA		69544)	SAMPL	E ID: A			I Oni	ii vvay, ot.			lev 12.	7817
WELL NO.	MW-13	A		O/IVII E			-13A	ТА			10	ev 12,	0012
WELL VO	R (inches): 2.0	TUBIN DIAME 1 WELL VO	TER (inches):	0.25 DE	ELL SCH	REEN I	NTERVAL et to 22.5 fe	eet	STATIC DI TO WATE TER) X	R (feet): / 7. (	68 OF	RGE PUMP T R BAILER: p	YPE eristaltic
EQUIPME	it if applicable) NT VOLUME PL it if applicable)	IRGE: 1 EQ	= ( UIPMENT VOL		feet DLUME + gallons	+ (TUB		3 TY ons/foot		0.16 g BING LENGTH) feet)	+ FLOW C		gallons gallons
	UMP OR TUBING	3 20		MP OR TUBIN WELL (feet):		20	PURGIN		0920	PURGING ENDED AT:	1020	TOTAL VO PURGED (	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	(star	H ndard its)	TEMP. ( ^O C)	(circl µmh	OND. le units) hos/cm µS/cm	DISSOLVED OXYGEN (circle units) mgL or % saturation	TURBID (NTUs		2 C
0101	4	4	0.09	17.90	5.	30	26.93	3	18	0.41	0	Cle	w -141.9
1015	0.41	41.41	0.08	17.9	5.	31	26.98	3	20	0.37	0	Cle	w - 28.3
1020	0.21	41.9	0.09	17.9		31	26.97	3	17	0.37	0	cle	w -27.8
TUBING I	PACITY (Gallon NSIDE DIA. CAP	ACITY (Gal.		1" = 0.04; .0006; 3/10 BP = Bladder	6" = 0.00 Pump;	E	1/4" = 0.002 SP = Electric	6; Subme	5'' = 0.37; 5/16'' = 0.0 ersible Pun	004; 3/8" = 0	5" = 1.02; .006; 1/ eristaltic Pu	6" = 1.47; 2" = 0.010; mp; O = C	12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(			LING DA	-	-	SAMPLING INITIATED AT	. Inar	SAMPLIN	NG AT: 1035
PUMP OR		20		TUBING MATERIAL			/	2		FILTERED: Y	(N)		ize:μm
	CONTAMINATIO	N: PU	IP No		BING		replaced)			DUPLICATE		ENT BLANK:	Y (N)
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMP	LE PR	ESERVATIO	N		INTENDE	D	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA			OTAL VOL D IN FIELD (1	mL)	FINAL pH	ANALYSIS AI		EQUIPMENT CODE	FLOW RATE (mL per minute)
MW-13.4	3	CG	40mL	HCL		Pre	efilled by lab		_	8260		RFPP	<100
MW-13A	3	CG	40mL	None			None			8011		RFPP	<100
mw-13.A	1	PE	500mL	HNO ₃		Pre	efilled by lab			Metals		APP	300
MW-13.4	1	PE	125mL	H ₂ SO.		Pre	efilled by lab			NH ₃		APP	300
MW-13.4	1	PE	250mL	None			None			TDS, CI, I	NO ₃	APP	500
REMARKS weather: A		AG VF, Sl. bree	1000mL 750 97	H ₂ SO.		Pre	efilled by lab	)		Total Phe	nols	APP	300
odor: AD-													
SAMPLIN	L CODES: G EQUIPMENT		Glass; CG APP = After Po RFPP = Rever		p; E	B = Bail		Bladde	Polypropyle er Pump;	ESP = Electr Gravity Drain);			Other (Specify)
NOTES: 1	. The above of					-		er 62-	-160, F.A.				

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Cs Facility ID	89544)			TE DCATION: 150	1 Omni W	/av. St.	Cloud, Osceola	County, Flor	ida, 34773	
	MW-1		00011)	SAMPLE		V-13C					ov. 12.	7017
	1-110 1	20		-		SING DA	ТА			10	N. 12,	cera.
WELL VO	R (inches): 2.0 LUME PURGE: t if applicable)		TER (inches):	0.25 DEP	L SCREEN	INTERVAL eet to 73 fe TIC DEPTH T	eet TO O WATER		WELL CAPACI	TY OR		peristaltic
EQUIPME	NT VOLUME PI t if applicable)	URGE: 1 EQI	= ( JIPMENT VOI		feet – UME + (TUE allons + ( 0				0.16 g JBING LENGTH) 75 feet)		LL VOLUME	gallons
	UMP OR TUBIN WELL (feet):	G 68		MP OR TUBING WELL (feet):		PURGIN	G DAT: ()	915	PURGING ENDED AT:	0950	TOTAL VO	Constant of the second s
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	CONI (circle u µmhos/ or (µS/	D, nits) /cm	DISSOLVED OXYGEN (circle units) (mg/) or % saturation	TURBIDIT (NTUs)	Y COLO (descril	
0935	1.6	1.6	0.08	17.70	5.03	25.55	80	1	1.55	1.9	clea	w -20.0
0945	0.8	2.4	0.09	17.70	5.00	25.48	92		0.79	2	cleu	+ .4.2
0950	0.41	2.0	0.08	17.70	4.97	25.48	90		0.8	1.6	Cler	1 0
	PACITY (Gallon NSIDE DIA. CAI			1" = 0.04; .0006; 3/16"	<b>1.25</b> " = 0.0 = 0.0014;	6; <b>2</b> " = 0.1 1/4" = 0.002		0.37; <b>6''</b> = 0.0		5" = 1.02; 006; 1/2	6" = 1.47; " = 0.010;	<b>12</b> " = 5.88 <b>5/8</b> " = 0.016
PURGING	EQUIPMENT O	ODES: E	s = Bailer;	BP = Bladder F		SP = Electric		ble Pur	mp; PP = Pe	eristaltic Pum	p; <b>O</b> = C	ther (Specify)
					SAMP	LING DA	ATA		1			
SAMPLED Joe Terry	BY (PRINT) / A WSI	FFILIATION:		SAMPLER(S)	SIGNATUR	E(S): Joe (	in		SAMPLING INITIATED AT			AT: 1005
PUMP OR DEPTH IN	TUBING WELL (feet):	68		TUBING MATERIAL CO	ODE: PE				FILTERED: Y	pe: N	FILTER S	SIZE:μm
FIELD DE	CONTAMINATIO	ON: PUN	IP No	TUB	ING No	(replaced)			DUPLICATE O	or EQUIPME	NT BLANK:	Y (N)
SAM	PLE CONTAINE #	MATERIAL		PRESERVAT		RESERVATIO		NAL	INTENDE ANALYSIS AN	ND/OR E	AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDE	D IN FIELD (r	mL)	рН	METHO		CODE	(mL per minute)
MW-13C	3	CG	40mL	HCL	Pr	efilled by lab	1		8260		RFPP	<100
MW-1.3C	3	CG	40mL	None	-	None			8011		RFPP	<100
MW-130	1	PE	500mL	HNO ₃	Pr	efilled by lab		_	Metals		APP	300
MW-13C	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab			NH ₃		APP	300
MUL Y3C	1	PE	250mL	None		None			TDS, CI, M	NO ₃	APP	300
odor: no.	n. cloudy, 7			H ₂ SO ₄		efilled by lab			Total Pher		APP	300
MATERIA	L CODES:	AG = Amber	Glass; CG	= Clear Glass;	PE = Pol	yethylene;	PP = Poly	propyle	ene; S = Silico	ne; T = Te	eflon; O = 0	Other (Specify)
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Perista	B = Ba tic Pump;		Bladder P Method (1		ESP = Electri Gravity Drain);	o = Othe		
IOTES: 1	The above	do not cons	titute all of	the informati	on require	ed by Chapte	er 62-16	0, F.A	.C.			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Cs Facility ID:	89544)			SITE LOCATION: 150	1 Omr	ni Way, St.	Cloud, Osceola	County, Fl	orida, 34773	
	MW-			SAMPLE	ID:					DATE:	Nou 14	1,2012
		· • /1			PUR	GING DA	TA					
WELL DIAMETER	R (inches): 2.0		TER (inches):	0.25 DEF	L SCREE	NINTERVAL	eet .	STATIC DE TO WATE	EPTH R (feet): //./ WELL CAPACI	1 0	URGE PUMP T R BAILER: p	YPE peristaltic
(only fill ou	t if applicable) NT VOLUME PL t if applicable)		= (	18.89	feet -	11.19	9	feet) X		allons/foot		gallons
(only ini ou	t il applicable)			= 0.0 g	allons + (	0.0026 gallo	ons/foot	t X	feet)	+ 0.13		gallons
	UMP OR TUBINO WELL (feet):	3 15		WP OR TUBING WELL (feet):	15	PURGIN	G ED AT:	0655	PURGING ENDED AT:	081	S PURGED (	gallons): 4.8
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standar units)	t TEMP. (°C)	(circl µmh	OND. e units) nos/cm µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIE (NTU		
0805	4.2	4.2	0.06	11.90	5.06	24.45	5	53	0.54	9.1	6 Ck	v - 7.0
0810	0.3	41.5	0.06	11.90	5.04	1 24.50	5	9	0.57	10	Cle	
0815	0.3	4.8	0.06	11,90	5.06			B	0.51	10.	5 cle	a -9.6
											_	
TUBING I	PACITY (Gallon SIDE DIA. CAP	PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0 8 = Bailer;	1" = 0.04; .0006; 3/16' BP = Bladder I	<b>1.25</b> " = 0 ' = 0.0014; Pump;		26;	" = 0.37; 5/16" = 0.0 ersible Pun	004; <b>3/8"</b> = 0	5" = 1.02; .006; 1 eristaltic Pu	6" = 1,47; //2" = 0.010; ump; O = C	<b>12</b> " = 5.88 <b>5/8</b> " = 0.016 Other (Specify)
1 on on o						PLING DA						
SAMPLED Joe Terry	BY (PRINT) / A WSI	FFILIATION:		SAMPLER(S)		1-	in		SAMPLING INITIATED A	1:0820	SAMPLIN ENDED	NG AT: 0832
PUMP OR DEPTH IN	TUBING WELL (feet):	15	T.	TUBING MATERIAL C	ODE: PE		0	and the second second	FILTERED: Y on Equipment Ty	N pe:	FILTER S	SIZE:µm
FIELD DE	CONTAMINATIO	DN: PUN	MP No	TUB	ING N	o (replaced)			DUPLICATE	or EQUIPM	MENT BLANK:	YN
	PLE CONTAINE		ATION			PRESERVATIO	N	FILLA	INTENDE ANALYSIS A		SAMPLING	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL DED IN FIELD (	mL)	FINAL pH	METHO		CODE	(mL per minute)
MW-164	3	CG	40mL	HCL		Prefilled by lab	0	_	8260		RFPP	<100
11	3	CG	40mL	None		None			8011		RFPP	<100
	1	PE	500mL	HNO ₃		Prefilled by lab	2		Metals	5	APP	220
	1	PE	125mL	$H_2SO_4$		Prefilled by lab	0		NH ₃		APP	220
	1	PE	250mL	None		None			TDS, CI,	NO ₃	APP	220
REMARKS	1	AG	1000mL 250 pr	H ₂ SO ₄		Prefilled by lat		-	Total Phe	nols	APP	220
odor: 10 MATERIA	The second se	AG = Amber	Glass: CG	= Clear Glass;	PE = P	olyethylene;	PP = F	Polypropyle	ene; <b>S</b> = Silico	one; T =	Teflon; O =	Other (Specify)
SAMPLIN	G EQUIPMENT	CODES:	APP = After P RFPP = Rever	eristaltic Pump; se Flow Perista	B = B Itic Pump;	Bailer; BP = SM = Straw	Bladde	er Pump; d (Tubing	ESP = Electr Gravity Drain);	ic Submer		

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.	D. SWMF (WA	Cs Fa	cility ID: 8	9544)				TE DCATION: 150	01 Omni W	lay, St.	Cloud,	Osceola	County.	Florida	a, 34773		
	MW-1				SA	MPLE	ID: MN						DATE:		00 14	20	212
							PUR	GING DA	TA			-				-	
WELL	(inches): 2.0		TUBING	ER (inches)	0.375		L SCREEN	INTERVAL eet to 39 f		WATE		11.2	23		E PUMP T		bmersible
(only fill out	UME PURGE: if applicable)			= (		L DEP	TH - STA feet -	TIC DEPTH T	O WATER	t) X	0.16	gallo	ons/foot			ga	llons
	if applicable)	JRGE	1 EQUI	PMENT VO	L. = PUM										volume	40	college
		c		FINAL PU			allons + ( 0.	006 gallon PURGIN		5		feet) +	0.12		TOTAL VO		-
	MP OR TUBIN WELL (feet):	6	33	DEPTH IN			33	INITIATE	DAT: 04	040	END	GING ED AT:	084		PURGED (		
TIME	VOLUME PURGED (gallons)	VO PU	JMUL. DLUME RGED allons)	PURGE RATE (gpm)	DEF T WA (fe	O TER	pH (standard units)	TEMP. (°C)	COND (circle ur µmhos/c or aS/c	nits) cm	OXY (circle	GEN units)		BIDITY FUs)	COLO (descrit		ORP (mV)
0940	48	4	B	0.4	115	37	4.95	24.54	412	2	0.	17	3	.9	Clea	r	-113.5
0843	1.2	LI	9.2	0.4	11.	87	4.94	24.60	42		0.	17	9	.2	cla	r	- 113 - 6
0847	1.6	5	0.8	0.4	11.	87	4.94	24.58	42	?	0.	17	9	.3	clea	r	- 113.9
TUBING IN: PURGING E	ACITY (Gallon: SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI	ODES	Y (Gal./Ft : B =		0.0006; BP = Bla	3/16" adder P	ump; E	1/4" = 0.002 SP = Electric	6; 5/16 Submersib	" = 0.0	np;	3/8" = 0	eristaltic	1/2" = Pump;	' = 1.47; 0.010; 0 = 0 SAMPLIN ENDED A	ther (S	0.016 Specify)
PUMP OR T			22		TUBING			0			FILTER	ED: Y	(N)		FILTER S		µm
DEPTH IN V		DN.	PLIME	Yes	MATER		UBING: No	(replaced)		illatio		ment Ty		MENT	BLANK:	N	N
<u></u>				1.1.10				RESERVATIO	N				-	1		0	
SAMPLE ID CODE	# CONTAINERS	MATE		VOLUME	PRESE		VE	TOTAL VOL	FIN	NAL	ANAL	NTENDE YSIS AI METHO	ND/OR	EQU	IPMENT ODE	FL	IPLE PUMP OW RATE per minute)
114-1613	3		G	40mL		ICL		efilled by lab				8260		1	ESP		<100
u	3	С	G	40mL	N	one		None				8011		I	ESP		<100
u	1	Р	E	500mL		NO ₃	Pr	efilled by lab				Metals		-	ESP	3	50
	1	P	E	125mL		SO4		efilled by lab	-			NH ₃		-	ESP		50
	1	P	E	250mL	N	one		None			TD	S, CI, I	NO ₃		ESP		50
	1	A		250mL		SO4	Pr	efilled by lab				tal Pher			ESP		50
REMARKS: weather: weather: wea	rezust 66	°F	Equi	HZU A TIVNE	3laste unped	1011	ected	cofter d	econtu	les. S	na tit	not	- pu	mp.	Labs	Upp	lical
MATERIAL	CODES:	AG =	Amber G	lass; CG	= Clear G	lass;	PE = Poly	vethylene;	PP = Polyp	propyle	ene; S	= Silico	ne; T	= Teflo	n; <b>O</b> = C	ther (	Specify)
SAMPLING	EQUIPMENT	CODE		PP = After P PP = Rever			B = Bai ic Pump;	ler; BP = SM = Straw	Bladder Pu Method (Tu			= Electri Drain);		ersible I Other (S			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE		Co Epoility ID:	80544)			SITE	01 Omni	Way St	Cloud, Osceola	County Florid	ia 34773	
	D. SWMF (WAG	1 0	69044)	SAMPL				vvay, ot.				217
WELL NO:	MW-	160		SAMPL		MW-16C				DATE: No	19,0	012
14/511		TUDING		10/6		JRGING DA		TATIC D	EDTH	PLIR	GE PUMP T	PF
WELL	R (inches): 2.0	TUBING	FER (inches):0			7 feet to 67		O WATE				eristaltic
WELL VOI	UME PURGE:					STATIC DEPTH		ER) X	WELL CAPACI	TY		
(only fill ou	t if applicable)		= (		feet -		1	feet) X	0.16 g	allons/foot =		gallons
		RGE: 1 EQU		= PUMP VO		(TUBING CAPAC		X TU	BING LENGTH)	+ FLOW CEL	L VOLUME	
(only fill ou	t if applicable)			= 0.0	gallons -	+ ( 0.0026 gall	ons/foot	x	70 feet)	+ 0.12	gallons = C	.3 gallons
	JMP OR TUBINO WELL (feet):	62		MP OR TUBIN WELL (feet):	G	PURGI		0650	PURGING ENDED AT:	0748	TOTAL VOI	UME gallons): 4.64
DEPTHIN	VVELL (leet).		DEFININ	DEPTH			T	ND.	DISSOLVED			
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pł (stan uni	dard (°C)	(circle µmh	e units) os/cm IS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)	r COLO (describ	
0740	4	41	0.00	11.65	5.	19 23.85	10	08	0.72	2.1	clea	30.2
0743	1-5.0	41.24	0.09	11.65	5.	19 23.8-	10	00	0.63	1.3	clen	31.8
0748	0.41	4.64		11.65	5.	19 23.81	> 10	18	0.61	1.4	Clea	v -32.1
-		-										
									-			
WELL CA	PACITY (Gallon:	s Per Foot):	0.75" = 0.02;	1" = 0.04;		= 0.06; 2" = 0.		" = 0.37;		-	6" = 1.47;	12" = 5.88
	NSIDE DIA. CAP				" = 0.00			5/16" = 0.0			= 0.010;	5/8" = 0.016 ther (Specify)
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder		ESP = Electric		ISIDIE FUI	np, <b>FF</b> - Fe	eristaltic Pump	<u>,</u> <u>0</u> -0	(Specity)
0.4401 50						0.			SAMPLING		SAMPLIN	IC
Joe Terry	BY (PRINT) / A WSI	FFILIATION:		SAMPLER(S	S) SIGNA	ATURE(S): Soc	y		INITIATED AT	:0750	ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet):	62		TUBING MATERIAL	CODE: F	Έ	-		FILTERED: Y		FILTER S	
	CONTAMINATIO		IP No	TU	BING	No (replaced)			DUPLICATE		T BLANK:	YN
SAM	PLE CONTAINE	R SPECIFICA	TION		SAMP	LE PRESERVATIO	N		INTENDE	ED S	AMPLING	SAMPLE PUMP
SAMPLE	#	MATERIAL	VOLUME	PRESERVA		TOTAL VOL		FINAL	ANALYSIS A		CODE	FLOW RATE (mL per minute)
ID CODE	CONTAINERS 3	CODE	40mL	USED	-	Prefilled by la		рН	8260		RFPP	<100
MW-16C	3	CG	40mL	None		None	-		8011		RFPP	<100
				HNO ₃		Prefilled by la	h		Metals		APP	300
**	1	PE	500mL							,		
	1	PE	125mL	H ₂ SO ₄		Prefilled by la	U		NH ₃		APP	300
	1	PE	250mL	None		None	-		TDS, CI, I		APP	
	1	AG	1000mL 250 97	H ₂ SO ₄		Prefilled by la	b	-	Total Phe	nois	APP	300
REMARKS	overcust, 6	69=	00001									
MATERIA	Contraction of the second second	AG = Amber	Glass; CG	= Clear Glass	PE	= Polyethylene;	PP = P	olypropyl	ene; S = Silico	one; T = Te	flon; <b>O</b> = (	Other (Specify)
	G EQUIPMENT	CODES:	APP = After Pe	eristaltic Pump	); B	= Bailer; BP	= Bladde	r Pump;	ESP = Electr	ic Submersibl		
			RFPP = Rever						Gravity Drain);	0 = Other	(Specify)	
IOTES: 1	. The above of	to not cons	titute all of	the informa	tion re	quired by Chap	ter 62-	160, F.A				

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	E.D. SWMF (WA	ACs Facility II	D: 89544)			ITE OCATION: 15	01 Omni Way, S	t. Cloud, Osceola	a County, Flor	ida, 34773	
WELL NO	MW-19	A		SAMPLE	ID: MU					w 14, 2	רומר
	1.1.0	1.				GING DA	TA		100	N/1,0	012
	R (inches): 2.0	TUBII DIAM	ETER (inches):0	.25 DEF	LL SCREEN	INTERVAL eet to /7, 5 f	STATIC I		59 OR	RGE PUMP T BAILER: p	YPE peristaltic
(only fill on EQUIPME	ut if applicable)			17.93 = PUMP VOL	feet -	9.6° BING CAPACI	feet) X		gallons/foot ) + FLOW CE	LL VOLUME	gallons
	UMP OR TUBIN	G /4		IP OR TUBING		PURGIN		PURGING ENDED AT:		gallons = TOTAL VOI PURGED (0	gallons LUME gallons): 2.8
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (S/cm)	DISSOLVED OXYGEN (circle units) (mg/L) or % saturation	TURBIDIT (NTUs)		R ORP
1010	1.75	1.75	0.07	10.05	5.51	25.25	162	0.25	14.2	clea	28.2
1015	0.35	2.1	0.07	10.05		25.26	164	0.27	15.1	Clea	
1018	0.21	2.31	0.07	10.05	5.28	25,20	165	0.26	15.7	× ×	
1020	0.14	2.415	0.07	10.05	5,51	25.19	168	0.23	16.4	clear	
1023	0.21	2.66	0.07	10.05	5,54	25.24	170	0.24	17.5	clea	
1025	0.14	2.8	0.07	10.05	5,53	25.24	170	0.25	17.0	clea	
TUBING I	PACITY (Gallon NSIDE DIA. CAR EQUIPMENT C	PACITY (Gal.	./Ft.): 1/8" = 0.0	1" = 0.04; 006; 3/16" BP = Bladder P		1/4" = 0.002				6" = 1.47; = 0.010;	<b>12"</b> = 5.88 5/8" = 0.016
		ODES.	B = Bailer; E			SP = Electric		mp: PP = Pe	eristaltic Pum	0 = 01	1
		ODES.	B = Bailer; E			SP = Electric	Submersible Pur	mp; <b>PP</b> = Pe	eristaltic Pump	o; <b>O</b> = Ot	ther (Specify)
SAMPLED Joe Terry	BY (PRINT) / A / WSI			SAMPLER(S)	SAMP	LING DA	Submersible Pur	SAMPLING		SAMPLIN	ther (Specify)
Joe Terry PUMP OR DEPTH IN	WSI TUBING WELL (feet):	FFILIATION:	1	SAMPLER(S) TUBING MATERIAL CO	SAMP SIGNATURI	LING DA	Submersible Pur TA Two FIELD	Transa and	1030	SAMPLIN	ther (Specify) G T: 1040
Joe Terry PUMP OR DEPTH IN FIELD DE	WSI TUBING WELL (feet): CONTAMINATIC	FFILIATION: / // DN: PUI	MP No	SAMPLER(S) TUBING	SAMP SIGNATURI	LING DA	Submersible Pur TA Two FIELD	SAMPLING INITIATED AT	r: 1030 N pe:	SAMPLIN ENDED A FILTER SI	ther (Specify) G T: 1040
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	VWSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	FFILIATION: / // DN: PUI R SPECIFIC MATERIAL	MP No ATION	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI	SAMP           SIGNATURI           DDE: PE           NG         No (           SAMPLE PF           VE         1	(replaced) RESERVATION	Submersible Pur TA Tuy FIELD- Filtratic	SAMPLING INITIATED A FILTERED: Y DI Equipment Ty DUPLICATE ( INTENDE ANALYSIS AI	T: 1030 PPE: DT EQUIPMEN ED SA ND/OR EQ	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT	G T: 1040 ZE:µm Y N SAMPLE PUMF FLOW RATE
Joe Terry / PUMP OR DEPTH IN FIELD DE( SAM SAMPLE ID CODE	VWSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: / // DN: PUI R SPECIFIC MATERIAL CODE	MP No ATION VOLUME	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED	SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF VE 1 ADDE	(replaced) RESERVATION TOTAL VOL D IN FIELD (n	Submersible Pur TA FIELD- Filtratic N FINAL pH	SAMPLING INITIATED AT FILTERED: Y DUPLICATE O INTENDE ANALYSIS AI METHO	T: 1030 PPE: DT EQUIPMEN ED SA ND/OR EQ	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE	G T: 104/0 ZE:μm Y N SAMPLE PUMF FLOW RATE (mL per minute)
Joe Terry / PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE MW~194	/ WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3	FFILIATION: DN: PUI R SPECIFIC MATERIAL CODE CG	MP No ATION VOLUME 40mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL	SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF VE 1 ADDE	(replaced) (replaced) RESERVATION TOTAL VOL D IN FIELD (m afilled by lab	Submersible Pur TA FIELD- Filtratic N FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AI METHO 8260	T: 1030 PPE: DT EQUIPMEN ED SA ND/OR EQ	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP	ther (Specify) G T: 104/0 ZE:μm Y N SAMPLE PUMF FLOW RATE (mL per minute) <100
Joe Terry / PUMP OR DEPTH IN FIELD DE( SAM SAMPLE ID CODE	VWSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: / // DN: PUI R SPECIFIC MATERIAL CODE	MP No ATION VOLUME 40mL 40mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None	SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF VE 1 ADDE Pre	(replaced) (replaced) RESERVATION OTAL VOL D IN FIELD (n efilled by lab None	Submersible Pur TA FIELD- Filtratic N FINAL pH	SAMPLING INITIATED AT FILTERED: Y DUPLICATE O INTENDE ANALYSIS AI METHO 8260 8011	T: 1030 PPE: DT EQUIPMEN ED SA ND/OR EG D	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP RFPP	ther (Specify) G ZE:μm Y N SAMPLE PUMF FLOW RATE (mL per minute) <100 <100
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW- IGA IL	VWSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 3	FFILIATION: / // DN: PUI R SPECIFIC MATERIAL CODE CG CG	MP No ATION VOLUME 40mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL	SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF VE 1 ADDE Pre	(replaced) (replaced) RESERVATION TOTAL VOL D IN FIELD (m afilled by lab	Submersible Pur TA FIELD- Filtratic N FINAL pH	SAMPLING INITIATED AT FILTERED: Y DUPLICATE ( INTENDE ANALYSIS AI METHO 8260 8011 Metals	T: 1030 PPE: DT EQUIPMEN ED SA ND/OR EG D	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP	ther (Specify) G T: 104/0 ZE:μm Y N SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 2.50
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW-16,4 LC	VWSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 3 1	FFILIATION: DN: PUI IR SPECIFIC MATERIAL CODE CG CG CG PE	MP No ATION VOLUME 40mL 40mL 500mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃	SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF VE 1 ADDE Pre	E(S): Joe (replaced) RESERVATION TOTAL VOL D IN FIELD (ro efilled by lab None efilled by lab	Submersible Pur TA FIELD- Filtratic N FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals NH ₃	T: 1030 PPE: DOT EQUIPMEN ED SA ND/OR EQ D	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP APP APP	ther (Specify) G T: /04/0 ZE:µm Y SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 <100 250
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE VW-16,4 IC II II II II II II II II II II II II	VWSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 3 1 1 1	FFILIATION: DN: PUI R SPECIFIC R SPECIFIC CODE CG CG PE PE PE PE	MP No ATION VOLUME 40mL 40mL 500mL 125mL 125mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF VE ADDE Pre Pre	E(S): Joe (replaced) RESERVATION OTAL VOL D IN FIELD (n efilled by lab None efilled by lab None	Submersible Pur TA FIELD- Filtratic N FINAL pH	SAMPLING INITIATED AT FILTERED: Y DUPLICATE C INTENDE ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, N	T: 1030 PPE: DT EQUIPMEN ED SA ND/OR EG D	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP APP APP	ther (Specify) G T: 1040 ZE:µm YN SAMPLE PUMF FLOW RATE (mL per minute <100 <100 250 250 250 250
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW-JGA IL IL IL IL IL IL IL IL IL IL IL IL IL	VWSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 3 1 1 1 1 1 1 1 2 Vercust, 65	FFILIATION: PUI R SPECIFIC MATERIAL CODE CG CG CG PE PE PE AG	MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 1000mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄ Coloc 2 C	SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF ADDE Pre Pre	LING DA E(S): Joe (replaced) RESERVATION TOTAL VOL D IN FIELD (n efilled by lab None efilled by lab None efilled by lab Some efilled by lab None efilled by lab Some efilled by lab	Submersible Pur TA FIELD FIELD Filtratic N FINAL pH FINAL pH	SAMPLING INITIATED AT FILTERED: Y DIPLICATE O INTENDE ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, N Total Pher 56+ 50000	T: 1030 (N) pe: or EQUIPMEN ED ND/OR EC D NO ₃ nols +.vy+	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP APP APP	ther (Specify) G T: /04/0 ZE:µm Y SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 <100 250

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	.D. SWMF (WA	Cs Facility ID	89544)			ITE OCATION: 150	01 Omni Way, Si	t. Cloud, Osceola	County, Flo	orida, 34773	
	mu-1			SAMPLE		w-190				100 14.	2017
	1					GING DA	the last of the		,		
	R (inches): 2.0		TER (inches)	0.375 DEF	TH: 56. 5	INTERVAL	STATIC C		63 OF	JRGE PUMP T R BAILER: elec	YPE tric submersible
(only fill out	t if applicable)		= (	66.95 L. = PUMP VOL	feet -	9.63	feet) X	0.16 gallo UBING LENGTH	ons/foot =	9.2 ELL VOLUME	gallons
(only fill out	t if applicable)			= 0.0 g	allons + ( 0	.006 gallon:	s/foot X 7	5 feet) +	0.12	gallons = 4	9.6 gallons
	MP OR TUBIN WELL (feet):	G 62		MP OR TUBING WELL (feet):	62	PURGIN	G ED AT: 0440		1053-	TOTAL VO PURGED (	LUME gallons): 22.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg/L)or % saturation	TURBID (NTUS		
1045	19.5	19.5	0.3	11.07	5.39	24.64	113	0.22	76.6	o elove	1, -44.2
1050	1.5	21	0.3	11.07	5.39	24.65	113	0.21	73		1 - 47.8
1053	1-5	22.5	0.3	11.07	5.41	24.68	112	0.21	72.	1	- 65.9
TUBING IN PURGING	EQUIPMENT C	ODES: E		BP = Bladder P	= 0.0014; Pump; E SAMP	ESP = Electric	6; <b>5/16"</b> = 0. Submersible Pu	.004; 3/8" = 0	<b>5</b> " = 1.02; .006; 1/2 eristaltic Pur	6" = 1.47; 2" = 0.010; mp; O = C	12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A WSI	FFILIATION:		SAMPLER(S)	SIGNATUR	<u>E(S)</u> :		SAMPLING INITIATED A	T: 1100	SAMPLIN	NG AT: 1110
PUMP OR	TUBING WELL (feet):	63	2	TUBING MATERIAL CO		2	FIELD	-FILTERED: Y	) N	FILTER S	IZE: / um
	ONTAMINATIC		MP: Yes		UBING: No	(replaced)	Thursday		and the second se	ENT BLANK:	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
SAMF	LE CONTAINE	R SPECIFIC	ATION		SAMPLE P	RESERVATIO	N	INTENDE	ED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI	and the second se	TOTAL VOL ED IN FIELD (r	nL) FINAL	ANALYSIS A	ND/OR E	EQUIPMENT CODE	FLOW RATE (mL per minute)
MW-140	3	CG	40mL	HCL	Pr	efilled by lab		8260		ESP	<100
u	3	CG	40mL	None		None		8011		ESP	<100
~	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals	3	ESP	300
~	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab		NH ₃		ESP	300
~	1	PE	250mL	None		None		TDS, CI, I	NO ₃	ESP	300
10	1	AG	250mL	H ₂ SO ₄	Pr	efilled by lab		Total Phe	nols	ESP	300
odor: NUC		Daitin	whole	1	3.4 NT	W. T	urbid, ty	ie collection	Iter: 1	1.4 NTU	unalysis
SAMPLING	CODES:		APP = After P	= Clear Glass; eristaltic Pump; se Flow Peristal	B = Ba	iler; BP =	PP = Polypropyl Bladder Pump; Method (Tubing	ESP = Electr	ic Submersi		Other (Specify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

AND MALES A.F.	.D. SWMF (WA	Cs Facility ID	89544)		SI		01 Omni	Way, St.	Cloud, Osceola	County, FI	orida, 34773		
	MW-2			SAMPL	EID: MI	1-2014				DATE:	Ner 14.	2017	
	1-100-02	OA				SING DA	TA	-				0010	
	R (inches): 2.0		TER (inches):0	.25 DE	PTH: 8 fe	INTERVAL eet to /8 f	eet T	TATIC D	EPTH R (feet): B, G WELL CAPACI	20	JRGE PUMP	TYPE peristaltic	
(only fill ou	It if applicable)		= (	18.21	feet -	8.62	fe	eet) X		allons/foot	= <u>1.54</u> ELL VOLUME		lons
()	/			= 0.0	gallons + ( 0	.0026 gallo	ons/foot )	X	feet)	+ 0.12	gallons =	gal	lons
	JMP OR TUBIN WELL (feet):	G /4/		VP OR TUBIN	G 14	PURGIN	IG ED AT: /	1140	PURGING ENDED AT:	1300	TOTAL VO	(gallons):	5.6
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	CON (circle µmho or	units) os/cm	DISSOLVED OXYGEN (circle units) (mg/L or % saturation	TURBID (NTU	3 C	2007	ORP (mV)
12410	4.2	41.2	0.07	9.21	4.72	24.78	130	63	3.72	22	Clea	w 9	4.4
1250	0.7	41.9	0.07	15.2	41.75	241,70	135	58	3.94	17	Cle		31.9
1255	0.35	5.25	0.07	9.21	1.74	241.72		357	3,77	14.5		or 1	10,4
1300	0.35	5.6	0.07	9.21	4.74	241.73	13	58	3,84	12.0	Clea	r 14	13.0
			-										
					-		-			-			
TUBING IN	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal.)	/Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16 BP = Bladder		1/4" = 0.002 SP = Electric	Submers	= 0.37; ( <b>16''</b> = 0.0 sible Pun	004; 3/8" = 0	5" = 1.02; 006; 1/ eristaltic Pu	6" = 1.47; 2" = 0.010; mp; O =	<b>12</b> " = 5.8 5/8" = 0.0 Other (Spec	016
TUBING IN PURGING	NSIDE DIA. CAI	PACITY (Gal.) CODES: E	/Ft.): 1/8" = 0.	0006; 3/16 BP = Bladder	" = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric	Submers	16" = 0.0	004; 3/8" = 0 np; PP = Pe	.006; 1/	2" = 0.010; mp; O =	5/8" = 0.0 Other (Spe	016
TUBING IN PURGING SAMPLED Joe Terry /	BY (PRINT) / A	PACITY (Gal.) CODES: E	/Ft.): 1/8" = 0.	0006; 3/16 BP = Bladder SAMPLER(S	" = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric	Submers	16" = 0.0	3/8" = 0           np;         PP = Pe           SAMPLING           INITIATED AT	.006; 1/ eristaltic Pu	2" = 0.010; mp; O = SAMPLI ENDED	5/8" = 0.0 Other (Special NG AT: /3	016 cify)
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	NSIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet):	ACITY (Gal. CODES: E AFFILIATION:	(Ft.): 1/8" = 0. 3 = Bailer;	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C	" = 0.0014; Pump; E SAMP ) SIGNATUR CODE: PE	1/4" = 0.002 SP = Electric LING DA	Submers	r16" = 0.0 sible Pun	004: 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Tyr	006; 1/ eristaltic Pu /305	2" = 0.010; mp; 0 = SAMPLI ENDED FILTER	5/8" = 0.0 Other (Special NG AT: / <u>3</u> , SIZE:	016 cify) μm
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	NSIDE DIA. CAI EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIO	AFFILIATION:	(Ft.): 1/8" = 0. 3 = Bailer; 1 MP No	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C	" = 0.0014; Pump; E SAMP SIGNATUR CODE: PE BING No	1/4" = 0.002 SP = Electric LING DA E(S): Due ( (replaced)	Submers	r16" = 0.0 sible Pun	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Tyj DUPLICATE c	1305 1305 006; 1/ 1305 005 005 005 005 005 005 005	2" = 0.010; mp; O = SAMPLI ENDED FILTER ENT BLANK:	5/8" = 0.0 Other (Special NG AT: / <u>3</u> , SIZE: Y	216 cify) μm
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	NSIDE DIA. CAI EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	AFFILIATION: ILL DN: PUM ER SPECIFIC/ MATERIAL	(Ft.): 1/8" = 0. 3 = Bailer; 1 MP No	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUB PRESERVA	" = 0.0014; Pump; E SAMP ) SIGNATUR CODE: PE BING No SAMPLE PF TIVE	1/4" = 0.002 SP = Electric LING DA E(S): Sur (replaced) RESERVATIO TOTAL VOL	N	(16" = 0.0 sible Pun FIELD- Filtratio	004: 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Tyr	1305 1305 006; 1/ 1305 05 05 05 05 05 05 05 05 05	2" = 0.010; mp; 0 = SAMPLI ENDED FILTER	5/8" = 0.0 Other (Special NG AT: / SIZE: Y SAMPL FLOW	)16 cify) μm
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAI EQUIPMENT C BBY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	AFFILIATION: 14 DN: PUN ER SPECIFIC	/Ft.): 1/8" = 0. 3 = Bailer; 1 //P No ATION	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUB	" = 0.0014;           Pump;         E           SAMP           ) SIGNATUR           CODE: PE           BING         No           SAMPLE PF           TIVE         ADDE	1/4" = 0.002 SP = Electric LING DA E(S): Sur (replaced) RESERVATIO	N ML	FIELD- Filtratio	3/8" = 0       np;     PP = Pe       SAMPLING       INITIATED AT       FILTERED:       Y       DUPLICATE of       INTENDE       ANALYSIS AT	1305 1305 006; 1/ 1305 05 05 05 05 05 05 05 05 05	2" = 0.010; mp; O = - SAMPLI ENDED FILTER ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.0 Dther (Special NG AT: / 3 SIZE: Y SAMPL FLOW (mL per	L cify) μm E PUMP RATE
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW -20A	BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATION PLE CONTAINE # CONTAINERS	AFFILIATION: ILL DN: PUM ER SPECIFIC/ MATERIAL CODE	(Ft.): 1/8" = 0. 3 = Bailer; 1 MP No ATION VOLUME	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUB PRESERVA' USED	" = 0.0014;           Pump;         E           SAMP           ) SIGNATUR           CODE: PE           BING         No           SAMPLE PF           TIVE         ADDE	1/4" = 0.002 SP = Electric LING DA E(S): Sec (replaced) RESERVATIO FOTAL VOL ED IN FIELD (r	N ML	(16" = 0.0 sible Pun FIELD- Filtratio	004;     3/8" = 0       np;     PP = Pe       INITIATED AT       FILTERED:     Y       n Equipment Typ       DUPLICATE c       INTENDE       ANALYSIS AT       METHOD	1305 1305 006; 1/ 1305 05 05 05 05 05 05 05 05 05	2" = 0.010; mp; O = SAMPLI ENDED FILTER ENT BLANK: SAMPLING EQUIPMENT CODE	5/8" = 0.0 Other (Special NG AT: /3 SIZE: Y ( SAMPL FLOW (mL per	216 cify) - μm E PUMP RATE minute)
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAI EQUIPMENT O BBY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	AFFILIATION: ILI DN: PUN ER SPECIFIC MATERIAL CODE CG	(Ft.): 1/8" = 0. 3 = Bailer; 1 MP No ATION VOLUME 40mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUB PRESERVA USED HCL	" = 0.0014; Pump: E SAMP SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR DE PE ADDE Pr	1/4" = 0.002 SP = Electric LING DA E(S): Due (replaced) RESERVATIO TOTAL VOL ED IN FIELD (r efilled by lab	N ML)	(16" = 0.0 sible Pun FIELD- Filtratio	004: 3/8" = 0 np: PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE C INTENDE ANALYSIS AT METHOD 8260	006; 1/ eristaltic Pu /305 Noe Por EQUIPM	2" = 0.010; mp; O = - SAMPLI ENDED FILTER ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	5/8" = 0.0 Other (Special NG AT: /3 SIZE: Y ( SAMPL FLOW (mL per	216 cify) 2.5 μm P P RATE minute) 00 00
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-20,A	NSIDE DIA. CAI EQUIPMENT O BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3	AFFILIATION: ILI DN: PUM ER SPECIFIC/ MATERIAL CODE CG CG	(Ft.): 1/8" = 0. 3 = Bailer; 1 MP No ATION VOLUME 40mL 40mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUB PRESERVA USED HCL None	" = 0.0014; Pump; E SAMP SIGNATUR SIGNATUR CODE: PE BING NO SAMPLE PF TIVE ADDE Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): Jour (replaced) RESERVATIO TOTAL VOL DIN FIELD (r efilled by lab None	N F	(16" = 0.0 sible Pun FIELD- Filtratio	3/8" = 0         np;       PP = Pe         SAMPLING         INITIATED A1         FILTERED:       Y         n Equipment Tyj         DUPLICATE c         INTENDE         ANALYSIS AN         METHOI         8260         8011	006; 1/ eristaltic Pu /305 Noe Por EQUIPM	2" = 0.010; mp; O = - SAMPLI ENDED FILTER ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.0           Other (Spectrum           NG           AT:         /3           SIZE:	216 cify) 2.5 μm P P RATE minute) 00 00
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW 20A	NSIDE DIA. CAI EQUIPMENT O P BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1	AFFILIATION: ILL AFFILIATION: ILL ON: PUM ER SPECIFIC/ MATERIAL CODE CG CG PE	(Ft.): 1/8" = 0. 3 = Bailer; 1 MP No ATION VOLUME 40mL 40mL 500mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (C TUB PRESERVA USED HCL None HNO ₃	" = 0.0014; Pump; E SAMP SIGNATUR SIGNATUR CODE: PE BING NO SAMPLE PF TIVE ADDE Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): Sec (replaced) RESERVATIO TOTAL VOL D IN FIELD (r efilled by lab efilled by lab	N F	(16" = 0.0 sible Pun FIELD- Filtratio	004;     3/8" = 0       np;     PP = Pe       INITIATED AT       FILTERED:     Y       n Equipment Tyj       DUPLICATE c       INTENDE       ANALYSIS AI       METHOI       8260       8011       Metals	006; 1/ eristaltic Pu 1305 Dec. ND/OR D	2" = 0.010; mp; O = SAMPLI ENDED FILTER ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.0 Other (Specific Specific Sp	25 μm μm P RATE minute) 00 00 V
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW 20A C C C C C C C C C C C C C C C C C	NSIDE DIA. CAN EQUIPMENT O BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1	ACITY (Gal.) CODES: E AFFILIATION:	/(Ft.):         1/8" = 0.           3 = Bailer;         1           //P         No           ATION         VOLUME           40mL         40mL           500mL         125mL           250mL         1000mL           3.000mL         2000mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL ( TUB PRESERVA' USED HCL None HNO ₃ H ₂ SO ₄	" = 0.0014; Pump; E SAMP SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR NO SAMPLE PF TIVE ADDE Pr Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): Sec (replaced) RESERVATIO TOTAL VOL D IN FIELD (r efilled by lab efilled by lab efilled by lab efilled by lab	N ML)	(16" = 0.0 sible Pun FIELD- Filtratio	004: 3/8" = 0 np: PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Tyi DUPLICATE C INTENDE ANALYSIS AT METHOD 8260 8011 Metals NH ₃	1305 1/305 006; 1/ 1/305 005 005 005 005 005 005 005	2" = 0.010; mp; O = - SAMPLI ENDED FILTER ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP	5/8" = 0.0 Other (Specific Specific Sp	2016 cify) 2.5 ⁻ μm RATE minute) 00 00 00 20 20
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW 20A CC CC CC CC CC CC CC CC CC CC CC CC CC	NSIDE DIA. CAI EQUIPMENT O BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3	ACITY (Gal.) CODES: E AFFILIATION:	(Ft.):       1/8" = 0.         3 = Bailer;       1         3 = Bailer;       1         40 mL       40 mL         40 mL       40 mL         125 mL       125 0 mL         125 0 mL       1000 mL         3 = 5 or 4 c	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (C TUE PRESERVA USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	" = 0.0014; Pump: E SAMP SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR NO SAMPLE PF TIVE ADDE Pr Pr Pr Pr + raw & 1 + raw & 1	1/4" = 0.002 SP = Electric LING DA E(S): Sur (replaced) RESERVATIO TOTAL VOL D IN FIELD (r efilled by lab efilled by lab efilled by lab Rone efilled by lab ALS (5, 3, 4, 4)	N mL) 3 3 3 3 3 3 3 3 3 3 3 3 3	FIELD- Filtratio	004;       3/8" = 0         np;       PP = Pe         SAMPLING       INITIATED AT         INITIATED AT       FILTERED: Y         n Equipment Tyj       DUPLICATE c         INTENDE       ANALYSIS AT         METHOI       8260         8011       Metals         NH3       TDS, CI, N         Total Phen       TH	1305 1/305 006; 1/ 1/305 005 005 005 005 005 005 005	2" = 0.010; mp; O = SAMPLI ENDED FILTER ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.0 Other (Specific Specific Sp	25 μm P P P P P P P P P P P P P
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW 20A C C C C C C C C C C C C C C C C C C C	NSIDE DIA. CAN EQUIPMENT O BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 3 3 3 3 3 3 3 1 1 1 1	AG = Amber	(Ft.):       1/8" = 0.         3 = Bailer;       1         3 = Bailer;       1         40 mL       40 mL         40 mL       40 mL         125 mL       125 0 mL         125 0 mL       1000 mL         3 = 5 or 4 c	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUE PRESERVA' USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄ None H ₂ SO ₄ Clear Glass;	" = 0.0014; Pump: E SAMP SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR PE PT PT PT PT PT PT PT PT PT PT	1/4" = 0.002 SP = Electric LING DA E(S): Jun (replaced) RESERVATIO TOTAL VOL D IN FIELD (r efilled by lab efilled by lab efilled by lab Anne efilled by lab	N mL) 3 3 3 3 3 3 3 3 3 3 3 3 3	FIELD- Filtratio	004;       3/8" = 0         np;       PP = Pe         SAMPLING       INITIATED AT         INITIATED AT       FILTERED: Y         n Equipment Tyj       DUPLICATE c         INTENDE       ANALYSIS AT         METHOI       8260         8011       Metals         NH3       TDS, CI, N         Total Phen       TH	006; 1/ eristaltic Pu 7/305 or EQUIPM D/OR D/OR D/OR D/OR D/OR D/OR D/OR D/OR	2" = 0.010; mp; O = - SAMPLI ENDED FILTER ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP	5/8" = 0.0 Other (Specific Specific Sp	25 μm μm PUMP RATE minute) 00 00 00 00 50 50 50

SITE	.D. SWMF (WA		80544)					1 Omni Wa	v St (	Cloud, Osceola	County I	Florida	34773	
	MW-2		. 09044)	SA			1-20C	OT OTTAL VVa	y, 51. 1					2/117
TILLE ITO	10100-2	00		0.			SING DA	ТА			/	000	114.	012
WELL		TUBIN	G		WELL		INTERVAL		TIC DE	PTH	1	PURGE	E PUMP TY	PF
Contraction and	R (inches): 2.0		TER (inches)	0.375			et to 67 f			R (feet): 9.14				ric submersible
	LUME PURGE:	1 WELL VO	LUME = (TO	TAL WEL					Х	WELL CAPAC	ITY			
	it if applicable)		= (			eet -		feet)			ons/foot			gallons
	NT VOLUME P it if applicable)	URGE: 1 EQ	UIPMENT VO	L. = PUM	P VOLU	ME + (TUE	BING CAPACI	TY X	TUE	BING LENGTH	) + FLOW	CELL	VOLUME	
				=	0.0 gal	lons + ( 0.	006 gallons	s/foot X	8	30 feet) +	0.12	g	allons = 0	, 6 gallons
	UMP OR TUBIN WELL (feet):	62	FINAL PU DEPTH IN			62	PURGIN	G ED AT: 112	35	PURGING ENDED AT:	1335	F	OTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)		IER	pH (standard units)	TEMP. (°C)	COND. (circle unit µmhos/cr or or S/cn	m	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBI (NTU		COLOF (describe	
1322	80.25	30.25	0.75	13.	66	5.25	23.61	110		0.21	33.	4	Clear	40.9
1330	6.00	86.25		-	.66	5.24	23,59	109		0.2	23		cley	
1335	3.75	90	0.75		66	5,24	23.60	110		0.18	16		cleu	
		10									10			
							1							
	-													
								-						
		D. D.		411 0										
	PACITY (Gallon NSIDE DIA. CAI					.25" = 0.0 0.0014;	6; <b>2</b> " = 0.10 1/4" = 0.002		= 0.00		<b>5"</b> = 1.02; .006;	1/2" =		<b>12</b> " = 5.88 5/8" = 0.016
PURGING	EQUIPMENT O	CODES: E	B = Bailer;	BP = Bla	dder Pu		SP = Electric		e Pum	p; <b>PP</b> = P	eristaltic P	ump;	O = Ot	her (Specify)
	DY (DDINT) / A	CELLATION.		CALIDI			LING DA	TA				-		
Joe Terry /	BY (PRINT) / A WSI	AFFILIATION:		SAMPL	ERISIS	IGNATURE	=(S):			SAMPLING	1. 1.21	10	SAMPLING	G 1:/348
PUMP OR	TUBING	1	2	TUBING	3	up		FI	ELD-F	INITIATED A		0		ZE:μm
	WELL (feet):	6.	2		IAL COL		0		tration	n Equipment Ty				0
	CONTAMINATIO		V	N		TUBING	U.	placed)	_	DUPLICATE	or EQUIPI	MENT	BLANK:	Y (N)
	PLE CONTAINE		ATION	DDECE			RESERVATIO			INTENDE ANALYSIS A			IPLING	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME		RVATIV SED		OTAL VOL D IN FIELD (r	nL) FIN		METHO			ODE	(mL per minute)
hw-20C	3	CG	40mL	H	CL	Pre	efilled by lab			8260		E	SP	<100
	3	CG	40mL	N	one		None			8011		E	SP	<100
r	1	PE	500mL	Н	NO ₃	Pre	efilled by lab	-		Metals	3	E	SP	350
	1	PE	125mL	H ₂	SO4	Pre	efilled by lab			NH ₃		E	SP	350
C ^L	1	PE	250mL	N	one	-	None			TDS, CI, I	NO ₃	E	SP	350
<i>c</i> ²	1	AG	1000mL	H ₂	SO4	Pre	efilled by lab			Total Phe	nols	E	SP	02E
	veriust, 78°	F, gusting		nds 1 g					1313	5)				
MATERIAL		AG = Amber	Glass: CC	= Clear G		PE = Poly	: 272/	VI U PP = Polypr	onular	no: C - Cilico		Tofler		hor (Chesife)
	G EQUIPMENT	CODES:	APP = After P RFPP = Reve	eristaltic F	ump;	B = Bai	ler; BP =	Bladder Pur	np;	ESP = Electr Fravity Drain);			Pump;	ther (Specify)
DTES: 1.	The above of						d by Chapte		-		0-01		poony)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME: J.E.	D. SWMF (WA	Cs Facility ID:	89544)			ITE OCATION: 150	1 Omni Way, S	t. Cloud, Osceola	County, Florid	da, 34773	
WELL NO:	MW-0	RIA		SAMPLE	ID: MI	w-21/	4		DATE: A	100 14	2017
						GING DA			1		10012
	(inches): 2.0 UME PURGE:	and the second sec	TER (inches):0	0.25 DEI		eet to 18 f		DEPTH ER (feet): 8. WELL CAPACI	G OR E	GE PUMP T BAILER: p	YPE eristaltic
(only fill out	if applicable) IT VOLUME PL if applicable)		= (	18.32 .= PUMP VOI	feet – UME + (TUI	BING CAPACI	feet) X TY X T		allons/foot =	L VOLUME	gallons
		-		= 0.0 g	gallons + ( 0	PURGIN	ons/foot X	feet) PURGING	+ 0.12	gallons =	gallons
	WELL (feet):	14		WELL (feet):	14	INITIATE	DAT: 14115	ENDED AT:	1450	TOTAL VOL PURGED (g	allons):2.415
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg/) or % saturation	TURBIDITY (NTUs)	Y COLO (describ	
12140	1.75	1.75	0.07	8.98	4.35	25.36	666	1.69	15	cla	v 249.9
1445	0.35	2.1	0.07	8 98	4.35	25.37	666	1.57	6.9	clea	r 240.
1450	0.35	2.45	0.07	8.98	41.35	25.36	668	1.45	6.5	clei	r 240.7
TUBING IN	ACITY (Gallons SIDE DIA. CAP EQUIPMENT C	ACITY (Gal./	Ft.): 1/8" = 0.		' = 0.0014; Pump; E	6; 2" = 0.10 1/4" = 0.002 SP = Electric	6; <b>5/16''</b> = 0.	004; 3/8" = 0		= 0.010;	<b>12</b> " = 5.88 <b>5/8"</b> = 0.016 ther (Specify)
					UAIIII	LING DA		1			
Joe Terry / \		FFILIATION:		SAMPLER(S)		0	Ty	SAMPLING INITIATED AT		SAMPLIN ENDED A	G T: 1505-
Joe Terry / \ PUMP OR 1	WSI	FFILIATION:		SAMPLER(S) TUBING MATERIAL C	SIGNATUR	0	TA	SAMPLING	N	ENDED A	
Joe Terry / V PUMP OR T DEPTH IN V	WSI TUBING	14	IP No	TUBING	SIGNATUR	0	TA	SAMPLING INITIATED AT	N)	ENDED A	T: 1505-
Joe Terry / N PUMP OR T DEPTH IN N FIELD DEC	WSI TUBING WELL (feet):			TUBING MATERIAL C	SIGNATUR ODE: PE ING No	E(S): Jue	TA Ty FIELD Filtratio	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE o INTENDE	or EQUIPMEN	ENDED A FILTER SI T BLANK:	T: /SOJ ZE:μm Y N SAMPLE PUMI
Joe Terry / \ PUMP OR T DEPTH IN V FIELD DEC SAMP SAMPLE	WSI FUBING WELL (feet): ONTAMINATIO LE CONTAINE #	N: PUN R SPECIFICA MATERIAL		TUBING MATERIAL C TUB PRESERVAT	SIGNATUR ODE: PE ING No SAMPLE PI	E(S): Que (replaced) RESERVATION TOTAL VOL	FIELD Filtration	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE of	De: Dr EQUIPMEN ED SA ND/OR EQ	ENDED A FILTER SI	T: <u>/SOJ</u> ZE:μm
Joe Terry / \ PUMP OR T DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	WSI TUBING NELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS	N: PUN	TION	TUBING MATERIAL C TUB	SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE	E(S): Jue (replaced) RESERVATION	TA FIELD Filtration N nL) FINAL pH	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AT	De: Dor EQUIPMEN ED SA ND/OR EQ D	ENDED A FILTER SI T BLANK: AMPLING UIPMENT	T: / SOJ- ZE:μm Y N SAMPLE PUMF FLOW RATE
Joe Terry / \ PUMP OR T DEPTH IN V FIELD DEC SAMP	WSI TUBING NELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS	N: PUN R SPECIFICA MATERIAL CODE	VOLUME	TUBING MATERIAL C TUB PRESERVAT USED	SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE	(replaced) RESERVATION TOTAL VOL ED IN FIELD (r	TA FIELD Filtration N nL) FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AN METHO	DDE TEQUIPMEN ED SA ND/OR EQ D	ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE	T: <u>JSOS</u> ZE:µm Y N SAMPLE PUMI FLOW RATE (mL per minute
Joe Terry / V PUMP OR 1 DEPTH IN V FIELD DEC SAMPLE ID CODE	WSI TUBING NELL (feet): ONTAMINATIC LE CONTAINE CONTAINERS 3	N: PUN R SPECIFICA MATERIAL CODE CG	VOLUME 40mL	TUBING MATERIAL C TUB PRESERVAT USED HCL	SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr	(replaced) (replaced) RESERVATION TOTAL VOL ED IN FIELD (r efilled by lab	TA FIELD Filtration N nL) FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AN METHO 8260	DOPE DOF EQUIPMEN ED SA ND/OR EQ D	ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP	T: <u>J</u> SOJ- ZE:μm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100
Joe Terry / V PUMP OR 1 DEPTH IN V FIELD DEC SAMPLE ID CODE	VSI TUBING NELL (feet): ONTAMINATIC LE CONTAINE # CONTAINERS 3 3 3	N: PUN R SPECIFICA MATERIAL CODE CG CG	VOLUME 40mL 40mL	TUBING MATERIAL C TUB PRESERVAT USED HCL None	SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr	(replaced) (replaced) RESERVATION TOTAL VOL ED IN FIELD (r efilled by lab None	N FIELD Filtration N FINAL pH	SAMPLING INITIATED AT -FILTERED: Y on Equipment Tyj DUPLICATE of INTENDE ANALYSIS AN METHO 8260 8011	DOPE DOF EQUIPMEN ED SA ND/OR EQ D	ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP RFPP	T: <u>J</u> <u>SO</u> <u>S</u> ZE:μm Y N SAMPLE PUMI FLOW RATE (mL per minute <100
Joe Terry / V PUMP OR T DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	VSI TUBING NELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS 3 3 1	N: PUN R SPECIFICA MATERIAL CODE CG CG PE	VOLUME 40mL 40mL 500mL	TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr	(replaced) (replaced) RESERVATION TOTAL VOL ED IN FIELD (r efilled by lab None efilled by lab	N FIELD Filtration N FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AN METHO 8260 8011 Metals	DDE: DT EQUIPMEN ED SA ND/OR EQ D	ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP APP	T: <u>/</u> <u></u> ZE:μm Y N SAMPLE PUM FLOW RATE (mL per minute <100 <100 250
Joe Terry / V PUMP OR T DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	VSI TUBING VELL (feet): ONTAMINATIO LE CONTAINER CONTAINERS 3 3 1 1 1	N: PUM R SPECIFICA MATERIAL CODE CG CG CG PE PE PE AG	VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr Pr Pr	(replaced) (replaced) RESERVATION TOTAL VOL ED IN FIELD (r efilled by lab None efilled by lab	TA FIELD Filtration N nL) FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AT METHO 8260 8011 Metals NH ₃	ND/OR EQUIPMEN	ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP APP APP	T: <u>J</u> <u>S</u> <u>O</u> <u>S</u> ZE:μm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100 250 250
Joe Terry / V PUMP OR 1 DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	NSI TUBING NELL (feet): ONTAMINATIO LE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1	N: PUM R SPECIFICA MATERIAL CODE CG CG CG PE PE PE AG	VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr Pr Pr	E(S): Que (replaced) RESERVATION TOTAL VOL ED IN FIELD (r efilled by lab efilled by lab efilled by lab None efilled by lab	TA FIELD Filtration N nL) FINAL pH	SAMPLING INITIATED AT -FILTERED: Y on Equipment Tyj DUPLICATE of INTENDE ANALYSIS AN METHO 8260 8011 Metals NH ₃ TDS, CI, N	ND/OR EQUIPMEN	ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP RFPP APP APP APP	T: <u>J</u> <u>S</u> <u>O</u> <u>S</u> ZE:μm Y (N) SAMPLE PUM FLOW RATE (mL per minute <100 <100 <100 250 250 250 250 250
Joe Terry / V PUMP OR 1 DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	NSI TUBING NELL (feet): ONTAMINATIO LE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	N: PUM R SPECIFICA MATERIAL CODE CG CG CG PE PE PE AG	ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 3 - 5 - 5 - 5 - 5	TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	SIGNATUR ODE: PE ING No SAMPLE PI IVE ADDE Pr Pr Pr Pr Pr	E(S): Que (replaced) RESERVATION TOTAL VOL ED IN FIELD (r efilled by lab efilled by lab efilled by lab efilled by lab	TA FIELD Filtration N FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AT METHO 8260 8011 Metals NH ₃ TDS, CI, M Total Phen	ND/OR EQUIPMEN ED SA ND/OR EQ ND/OR IN INCOMENT NO3 nols	ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP APP APP APP APP APP	T: <u>J</u> <u></u> ZE:μm Y (Ν) SAMPLE PUM FLOW RATE (mL per minute <100 <100 250 250 250 250

	D. SWMF (WA	Cs Facility ID	: 89544)			ITE OCATION: 150	01 Omni Way,	St. Cloud, Osce	ola County.	Florida	, 34773	
WELL NO:	MW-5	210		SAMPLI	EID: MU	V-21C			DATE:	11.	14	2012
	1 .00 -	1-				GING DA	TA		-	100		0012
WELL VOL			TER (inches)	:0.375 DE	TH: 52 f	INTERVAL eet to 62 f	eet TO WA	DEPTH TER (feet): 8 X WELL CAP	.S7		E PUMP TY	PE ric submersible
EQUIPMEN	if applicable) IT VOLUME PU if applicable)	JRGE: 1 EQ		62.48 L. = PUMP VO = 0.0			TY X	X 0.16 g TUBING LENG 7 0 fee		V CELL		gallons
	MP OR TUBIN WELL (feet):	G 57		MP OR TUBIN WELL (feet):	G 5-7	PURGIN	G ED AT: 146			Т	OTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (IS/cm)	DISSOLVE OXYGEN (circle units ng/b or % saturatio		BIDITY TUs)	COLOF (describ	
1512	46.8	416.B	0.9	14.83	5.27	23.67	112	15.0		1.3	huz	1-10.7
1517	4.5	51.3	0.9	14.83	5.28	23.66	112	0.19	5		huz	
1530	11.7	63	0.9	14.83	5.25	23.64	111	0.17	3	1	Clew	41.3
1540	9	72	0.9	14.83	5.26	23.64	111	0.18	19	1.2	clear	39.3
										_		-
TUBING IN PURGING E SAMPLED E Joe Terry / V PUMP OR T	TUBING	ODES: E		1" = 0.04; 0.0006; 3/16' BP = Bladder SAMPLER(S) ( TUBING MATERIAL C	SAMP SIGNATUR	1/4" = 0.002 SP = Electric	6; 5/16" = Submersible F	0.004; 3/8"	AT: 151 Y (N)	1/2" = Pump;	0.010; 4 0 = Ot	1553
TUBING INS PURGING E SAMPLED E Joe Terry / V PUMP OR T DEPTH IN V	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI FUBING	PACITY (Gal. ODES: E FFILIATION:	/Ft.): 1/8" = 0	0.0006; 3/16 BP = Bladder SAMPLER(S) C TUBING MATERIAL C	r = 0.0014; Pump; E SAMP SIGNATUR Poe (	1/4" = 0.002 SP = Electric LING DA E(S):	6; 5/16" = Submersible F	0.004; 3/8" Pump; PP = SAMPLING INITIATED D-FILTERED: tion Equipment	eristaltic Peristaltic AT: 15-4 Y (N)	1/2" = Pump; 45	0.010; 0 = Ot SAMPLING ENDED A FILTER SIZ	5/8" = 0.016 her (Specify)
TUBING INS PURGING E SAMPLED E Joe Terry / V PUMP OR T DEPTH IN V FIELD DECO SAMPLE	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI FUBING WELL (feet):	PACITY (Gal., ODES: E FFILIATION: 577 DN: PUN	/Ft.): 1/8" = 0 3 = Bailer; //P: Yes	0.0006; 3/16 BP = Bladder SAMPLER(S) C TUBING MATERIAL C	Y = 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: PE TUBING: NC SAMPLE PI TVE	1/4" = 0.002 SP = Electric LING DA E(S):	6: 5/16" = Submersible F TA FIEL Filtra N FINAL	0.004; 3/8" Pump; PP = SAMPLINC INITIATED D-FILTERED: tion Equipment DUPLICAT INTEN ANTEN	AT:	1/2" = Pump; 4/5 PMENT SAM EQUI	0.010; 0 = Ot SAMPLING ENDED A FILTER SIZ	5/8" = 0.016 her (Specify) G T: /μm ZE:μm Y N SAMPLE PUMI FLOW RATE
TUBING INS PURGING E SAMPLED E Joe Terry / V PUMP OR T DEPTH IN V FIELD DECO SAMPLE ID CODE	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI FUBING WELL (feet): ONTAMINATIC LE CONTAINE # CONTAINERS	ACITY (Gal. ODES: E FFILIATION: STON: PUN R SPECIFIC/ MATERIAL	/Ft.): 1/8" = 0 3 = Bailer; //P: Yes ATION	0.0006; 3/16 BP = Bladder SAMPLER(S) ( TUBING MATERIAL C PRESERVAT	Y = 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: PE TUBING: NO SAMPLE PI IVE ADDE	1/4" = 0.002 SP = Electric LING DA E(S): (replaced) RESERVATION TOTAL VOL	6: 5/16" = Submersible F TA FIEL Filtra N FINAL pH	0.004; 3/8" Pump; PP = SAMPLING INITIATED D-FILTERED: tion Equipment DUPLICAT INTEN ANALYSIS	AT:	1/2" = Pump: 95 PMENT SAM EQUI	0.010; 4 0 = Ot SAMPLING ENDED A FILTER SIZ BLANK: IPLING IPMENT	5/8" = 0.016 her (Specify) G T: /μm ZE:μm Y N SAMPLE PUMI FLOW RATE
TUBING INS PURGING E SAMPLED E Joe Terry / V PUMP OR T DEPTH IN V FIELD DECO SAMPLE ID CODE	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI FUBING WELL (feet): ONTAMINATIC LE CONTAINE # CONTAINERS	ACITY (Gal. ODES: E FFILIATION: STON: PUN R SPECIFIC/ MATERIAL CODE	/Ft.): 1/8" = 0 3 = Bailer; //P: Yes ATION VOLUME	0.0006; 3/16 BP = Bladder SAMPLER(S) ( TUBING MATERIAL C PRESERVAT USED	Y = 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: PE TUBING: NO SAMPLE PI IVE ADDE	1/4" = 0.002 SP = Electric LING DA E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (n	6: 5/16" = Submersible F TA FIEL Filtra N FINAL pH	0.004; 3/8" Pump; PP = SAMPLINC INITIATED D-FILTERED: tion Equipment DUPLICAT INTEN ANALYSIS METH	AT:	1/2" = Pump; 9/5 PMENT SAM EQUI CO E	0.010; 0 = Ot SAMPLING ENDED A FILTER SIJ BLANK: IPLING IPMENT ODE	5/8" = 0.016 her (Specify) G T: //S7 ZE:µm Y N SAMPLE PUMI FLOW RATE (mL per minute
TUBING INS PURGING E Joe Terry / V PUMP OR T DEPTH IN V FIELD DECO SAMPLE ID CODE WW-210	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A WSI TUBING NELL (feet): ONTAMINATIC LE CONTAINERS . 3	CODES: E FFILIATION: STO PUN: PUN R SPECIFIC, MATERIAL CODE CG	/Ft.): 1/8" = 0 3 = Bailer; //P: Yes ATION VOLUME 40mL	0.0006; 3/16' BP = Bladder SAMPLER(S) C TUBING MATERIAL C PRESERVAT USED HCL	V = 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: PE TUBING: No SAMPLE PI IVE ADDE Pr	1/4" = 0.002 SP = Electric LING DA E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (n efilled by lab	6: 5/16" = Submersible F TA FIEL Filtra N nL) FINAL pH	0.004; 3/8" Pump; PP = SAMPLING INITIATED D-FILTERED: tion Equipment DUPLICAT INTEN ANALYSIS METH 826	e o.006; Peristaltic AT: <u>5</u> Y Type: E or EQUIF DED AND/OR 10D	1/2" = Pump; 9/5 PMENT SAM EQUI CI E	0.010; 4 0 = Ot SAMPLING ENDED A FILTER SIJ BLANK: IPLING PMENT ODE SP	5/8" = 0.016 her (Specify) G T: /μm ZE:μm Y N SAMPLE PUMI FLOW RATE (mL per minute <100
TUBING INS PURGING E SAMPLED E Joe Terry / V PUMP OR T DEPTH IN V FIELD DECO SAMPLE ID CODE WW-21C	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A WSI TUBING NELL (feet): ONTAMINATIC LE CONTAINE # CONTAINERS 3 3	ACITY (Gal. ODES: E FFILIATION: 577 DN: PUN R SPECIFIC/ MATERIAL CODE CG CG	/Ft.): 1/8" = 0 3 = Bailer; //P: Yes ATION VOLUME 40mL 40mL	0.0006; 3/16 BP = Bladder SAMPLER(S) C TUBING MATERIAL C PRESERVAT USED HCL None	Y = 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: PE TUBING: NC SAMPLE PI IVE ADDE Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): (replaced) RESERVATION TOTAL VOL D IN FIELD (r efilled by lab None	6: 5/16" = Submersible F TA FIEL Filtra N nL) FINAL pH	0.004; 3/8" Pump; PP = SAMPLINC INITIATED D-FILTERED; tion Equipment DUPLICAT INTEN ANALYSIS METH 826 807	e o.006; Peristaltic AT: <u>S</u> Type: E or EQUIF DED AND/OR 10D 50 11 als	1/2" = Pump; PMENT SAM EQUI CU E	0.010; 4 0 = Ot SAMPLING ENDED A FILTER SIZ BLANK: IPLING IPMENT ODE SP SP	5/8" = 0.016 her (Specify) G T: /μm ZE:μm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100
TUBING INS PURGING E SAMPLED E Joe Terry / V PUMP OR T DEPTH IN V FIELD DECC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A WSI TUBING NELL (feet): ONTAMINATIC LE CONTAINE CONTAINERS 3 3 1	FFILIATION: FFILIATION: STORE PUN R SPECIFIC/ MATERIAL CODE CG CG PE	/Ft.): 1/8" = 0 3 = Bailer; //P: Yes ATION VOLUME 40mL 40mL 500mL	0.0006; 3/16' BP = Bladder SAMPLER(S) ( TUBING MATERIAL C PRESERVAT USED HCL None HNO ₃	Y = 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: PE TUBING: NC SAMPLE PI IVE ADDE Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): (replaced) RESERVATION TOTAL VOL D IN FIELD (n efilled by lab None efilled by lab	6: 5/16" = Submersible F TA FIEL Filtra N nL) FINAL pH	0.004; 3/8" Pump; PP = SAMPLINC INITIATED D-FILTERED: tion Equipment DUPLICAT INTEN ANALYSIS METH 826 80° Met	e 0.006; Peristaltic AT: / S AT: Y N Type: E or EQUIF DED AND/OR 10D 50 11 als 43	1/2" = Pump: 45 PMENT SAM EQUI CO E E E E	0.010; 4 0 = Ot SAMPLING ENDED A ^T FILTER SIJ BLANK: IPLING PMENT ODE SP SP SP	5/8" = 0.016 her (Specify) G T: <u>/</u> μm Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100 3 2.5
TUBING INS PURGING E SAMPLED E Joe Terry /V PUMP OR T DEPTH IN V FIELD DECO SAMPLE ID CODE WW-210	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A WSI TUBING NELL (feet): ONTAMINATIO LE CONTAINERS 3 3 1 1	PACITY (Gal.) ODES: E FFILIATION: FFILIATION: SPECIFIC/ MATERIAL CODE CG CG PE PE PE	/Ft.): 1/8" = 0 3 = Bailer; //P: Yes ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/16' BP = Bladder SAMPLER(S) C TUBING MATERIAL C PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	V = 0.0014; Pump; E SAMP SIGNATUR Vee ( ODE: PE TUBING: No SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): (replaced) RESERVATION TOTAL VOL D IN FIELD (r efilled by lab None efilled by lab	6: 5/16" = Submersible F TA FIEL Filtra N nL) FINAL pH	0.004; 3/8" Pump; PP = SAMPLINC INITIATED D-FILTERED: tion Equipment DUPLICAT INTEN ANALYSIS METH 826 807 Meth	E or EQUIF AND/OR AND/OR DED AND/OR DD AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/OR AND/O	1/2" = Pump; PMENT SAM EQUI CU E E E E	0.010; 4 0 = Ot SAMPLING ENDED A FILTER SIZ BLANK: IPLING IPMENT ODE SP SP SP	5/8" = 0.016 her (Specify) 3 7: /m 7 Y N SAMPLE PUMI FLOW RATE (mL per minute <100 <100 3 75
TUBING INS PURGING E Joe Terry /V PUMP OR T DEPTH IN V FIELD DECC SAMPLE ID CODE MW -21 C C C C C C C C C C C C C C C C C C C	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A WSI FUBING NELL (feet): ONTAMINATIC LE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 1	PACITY (Gal. ODES: E FFILIATION: STORE DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE AG	/Ft.): 1/8" = 0 3 = Bailer; ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 250mL	0.0006; 3/16' BP = Bladder SAMPLER(S) TUBING MATERIAL C PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	V = 0.0014; Pump; E SAMP SIGNATUR Vee ( ODE: PE TUBING: No SAMPLE PH IVE ADDE Pr Pr Pr	1/4" = 0.002 SP = Electric LING DA E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (n efilled by lab efilled by lab efilled by lab efilled by lab None efilled by lab	6: 5/16" = Submersible F TA FIEL Filtra N nL) FINAL pH	0.004; 3/8" Pump; PP = SAMPLINC INITIATED D-FILTERED: tion Equipment DUPLICAT INTEN ANALYSIS METH 826 807 Meth TDS, C Total Pl	e o.006; Peristaltic AT: <u>S</u> Type: E or EQUIF DED AND/OR 10D 50 11 als 1, NO ₃ henols	1/2" = Pump; PMENT SAM EQUI CU E E E E	0.010; 4 0 = Ot SAMPLING ENDED A ^T FILTER SIJ BLANK: IPLING PMENT ODE SP SP SP SP SP SP	5/8" = 0.016 her (Specify) G T: /µm Y N SAMPLE PUMF FLOW RATE (mL per minute <100 <100 3 75 3 75 3 75

WELL NO.	.D. SWMF (WA	Cs Facility ID	: 89544)		LC	DCATION: 150	1 Omni Way, St	t. Cloud, Osceola	County, Flori	ida, 34773	
WELL NO:	mu-	22RA	4	SAMPLE	ID: M	W-22	RRA		DATE: NO	v 15	2012
		1.1.1				SING DA				, ,,	0-12
WELL VOL	R (inches): 2.0 LUME PURGE: t if applicable)	TUBIN DIAME 1 WELL VC	TER (inches):	0.25 DEP	L SCREEN TH: / 3 fe TH - STA	INTERVAL set to 23 fe TIC DEPTH T	STATIC E TO WATE O WATER) X	ER (feet): /6. WELL CAPAC	91 OR	,	peristaltic
	NT VOLUME P t if applicable)	URGE: 1 EQ	= ( UIPMENT VOI	L. = PUMP VOL	UME + (TUE	.0026 gallo	ΤΥ Χ ΤΙ	0.16 g JBING LENGTH feet)			gallons
	IMP OR TUBIN WELL (feet):	G 21		MP OR TUBING WELL (feet):		PURGIN		PURGING	0-7-0	TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)	Y COLC (descri	
0700	1.25	1.25	0.05	17.06	5.61	23.70	435	0.98	0.5	Clei	r - 48 9
0705	8.25	1.50	0.05	17.06	5.62	23.69	434	0.92	0	Cle	10.0
0710	0.75	1.75	0.05		5.62	23.69	434	0.86	0	cle	
TUBING IN PURGING	PACITY (Gallon ISIDE DIA. CAR EQUIPMENT C	PACITY (Gal.) ODES: E	/Ft.): 1/8" = 0	.0006; 3/16" BP = Bladder P	= 0.0014; ump; E SAMP	LING DA	6; <b>5/16"</b> = 0. Submersible Pur	004; 3/8" = 0 mp; PP = Pe	.006; 1/2" eristaltic Pump	SAMPLIN	12" = 5.88 5/8" = 0.016 Other (Specify)
TUBING IN PURGING SAMPLED Joe Terry /	ISIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI	PACITY (Gal.) ODES: E	/Ft.): 1/8" = 0	.0006; 3/16" BP = Bladder P SAMPLER(S)	= 0.0014; ump; E SAMP	1/4" = 0.0020 SP = Electric : LING DA	6: 5/16" = 0. Submersible Pur	004: 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT	.006; 1/2" eristaltic Pump	= 0.010; p; O = 0 SAMPLIN ENDED A	5/8" = 0.016 other (Specify) NG AT: 0725
SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet):	PACITY (Gal., CODES: E FFILIATION: 21	/Ft.): 1/8" = 0	.0006; 3/16" BP = Bladder P	= 0.0014; ump; E SAMP SIGNATURI	1/4" = 0.0020 SP = Electric : LING DA	6: 5/16" = 0. Submersible Pur	004; 3/8" = 0 mp; PP = Pe	.006; 1/2" eristaltic Pump r: 07/5	= 0.010; p; O = 0 SAMPLIN ENDED A	5/8" = 0.016 Other (Specify)
SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI TUBING	PACITY (Gal., CODES: E FFILIATION: 21	/Ft.): 1/8" = 0	.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING	= 0.0014; ump; E SAMP SIGNATURI DDE: PE	1/4" = 0.0020 SP = Electric : LING DA	6: 5/16" = 0. Submersible Pur	004: 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y	.006; 1/2" eristaltic Pump r: 0715 N pe:	= 0.010; p; 0 = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) NG AT: 07,25
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMP	SIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	PACITY (Gal. CODES: E FFILIATION: 2 1 DN: PUM ER SPECIFIC,	//Ft.): 1/8" = 0 3 = Bailer; //P No	.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; E SIGNATURI DDE: PE NG No ( SAMPLE PF	1/4" = 0.0020 SP = Electric : LING DA E(S): Jour replaced) RESERVATION	6; 5/16" = 0. Submersible Pur TA FIELD Filtratio	004:     3/8" = 0       mp:     PP = Pe       SAMPLING INITIATED AT       FILTERED:       Y       DUPLICATE @       INTENDE	1/2" eristaltic Pump r: 07/5 Npe: or EQUIPMEN	= 0.010; o; O = O SAMPLIN ENDED 4 FILTER S NT BLANK: AMPLING	5/8" = 0.016 other (Specify) NG AT: 0-7,2-5 FIZE: μm Y N SAMPLE PUMP
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMP	SIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIO	PACITY (Gal. CODES: E FFILIATION: 2 1 DN: PUM ER SPECIFIC,	//Ft.): 1/8" = 0 3 = Bailer; //P No	.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; E SIGNATURI DDE: PE NG No ( SAMPLE PF VE 1	1/4" = 0.0020 SP = Electric : LING DA E(S): Jour replaced)	6; 5/16" = 0. Submersible Pur TA FIELD Filtratio	004:     3/8" = 0       mp:     PP = Pe       SAMPLING INITIATED AT       FILTERED:       Y       DUPLICATE @       INTENDE	1/2" eristaltic Pump r: 0715 pe: or EQUIPMEN ED S. ND/OR EC	= 0.010; 0; 0 = 0 SAMPLIN ENDED A FILTER S NT BLANK:	5/8" = 0.016 Other (Specify) IG AT: 0725 DIZE:μm
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FILIATION: CODES: E FFILIATION: CODES: E FILIATION: CODES: E FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FIL	//Ft.): 1/8" = 0 3 = Bailer; //P No ATION	.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI	= 0.0014; ump; E SAMP SIGNATURI DDE: PE NG NO ( SAMPLE PF VE ADDE	1/4" = 0.0020 SP = Electric : LING DA E(S): Jour replaced) RESERVATION	6; 5/16" = 0. Submersible Pur TA FIELD FIELD Filtratio N FINAL pH	004;     3/8" = 0       mp;     PP = Pe       SAMPLING INITIATED AT       FILTERED;     Y       on Equipment Ty;       DUPLICATE of       INTENDE       ANALYSIS AI	1/2" eristaltic Pump r: 0715 pe: or EQUIPMEN ED S. ND/OR EC	= 0.010; p; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT	5/8" = 0.016 other (Specify) NG AT: 0.7.2.5 SIZE: μm Y N SAMPLE PUMP FLOW RATE
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: CODES: E FFILIATION: CODE: E CODE: E COD	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME	.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI USED	= 0.0014; ump; E SAMP SIGNATURI DDE: PE NG NO ( SAMPLE PF VE ADDE	1/4" = 0.0020 SP = Electric : LING DA E(S): Jour replaced) ESERVATION OTAL VOL D IN FIELD (n	6; 5/16" = 0. Submersible Pur TA FIELD FIELD Filtratio N FINAL pH	004: 3/8" = 0 mp: PP = Pe INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AI METHO	1/2" eristaltic Pump r: 0715 pe: or EQUIPMEN ED S. ND/OR EC	= 0.010; o; O = O SAMPLIN ENDED A FILTER S NT BLANK: AMPLING UIPMENT CODE	5/8" = 0.016 ther (Specify) NG AT: 0725 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 4 3	ACITY (Gal. CODES: E SFFILIATION: 2 1 DN: PUN R SPECIFIC MATERIAL CODE CG	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME 40mL	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI USED HCL	= 0.0014; ump; E SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF VE ADDE Pre	1/4" = 0.0020 SP = Electric : LING DA E(S): Con- replaced) RESERVATION OTAL VOL D IN FIELD (m efilled by lab	6; 5/16" = 0. Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004: 3/8" = 0 mp: PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AI METHO 8260	1/2" eristaltic Pump r: 07/5 N pe: or EQUIPMEN ED S, ND/OR EC	= 0.010; p; O = 0 SAMPLIN ENDED 4 FILTER S NT BLANK: AMPLING DIPMENT CODE RFPP	5/8" = 0.016 other (Specify) AG AT: 07,25 IZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE Www-22R/	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS CONTAINERS 4 3 3	ACITY (Gal. CODES: E FFILIATION: 2 1 DN: PUM ER SPECIFIC/ MATERIAL CODE CG CG	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None	= 0.0014; ump; E SAMP SIGNATURI DDE: PE NG NO ( SAMPLE PF VE ADDE Pro- Pro-	1/4" = 0.0020 SP = Electric : LING DA E(S): Jour (replaced) EESERVATION OTAL VOL D IN FIELD (n efilled by lab None	6; 5/16" = 0. Submersible Pur TA FIELD FIELD Filtratio	004:       3/8" = 0         mp:       PP = Pe         SAMPLING INITIATED AT         FILTERED:       Y         on Equipment Ty;         DUPLICATE of         INTENDE         ANALYSIS AN         METHO         8260         8011	1/2" eristaltic Pump r: 07/5 N pe: or EQUIPMEN ED S, ND/OR EC	= 0.010; 0; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING DUIPMENT CODE RFPP RFPP	5/8" = 0.016 other (Specify) NG AT: 0725 DIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE WW-22R/	ISIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 4 3 3 1	FFILIATION: CODES: E FFILIATION: CODES: E CODES: E	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃	= 0.0014; ump; E SAMP SIGNATURI DDE: PE NG NO ( SAMPLE PF VE ADDE Pro- Pro-	1/4" = 0.0020 SP = Electric : LING DA E(S): Jour replaced) ESERVATION OTAL VOL D IN FIELD (n efilled by lab None	6; 5/16" = 0. Submersible Pur TA FIELD FIELD Filtratio	004: 3/8" = 0 mp: PP = Pe INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AT METHO 8260 8011 Metals	1/2" eristaltic Pump r: 0715 pe: or EQUIPMEN ED S. ND/OR EC	e 0.010; o; O = O SAMPLIN ENDED A FILTER S NT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP	5/8" = 0.016 other (Specify) NG AT: 0725 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-22R/ C C C C C C C C C C C C C C C C C C C	ISIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 4 3 1 1 1 1 1 1	FILIATION: FFILIATION: PUN: R SPECIFIC. MATERIAL CODE CG CG PE PE PE AG	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 1000mL 200 FT	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	= 0.0014; ump; E SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF VE ADDE Pre Pre	1/4" = 0.0020 SP = Electric : LING DA E(S): Jour replaced) RESERVATION OTAL VOL D IN FIELD (n efilled by lab efilled by lab	6; 5/16" = 0. Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004: 3/8" = 0 mp: PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AI METHO 8260 8011 Metals NH ₃	INCONTRACTOR NO CONTRACTOR NO	e 0.010; c; O = O SAMPLIN ENDED A FILTER S NT BLANK: AMPLING DUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 other (Specify) NG AT: 0725 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-22R/ C C C C C C C C C C C C C C C C C C C	SIDE DIA. CAR EQUIPMENT C BY (PRINT) / A WSI TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 4 3 1 1 1 1 1 1 1 1 2 4 3 3 3 1 1 1 1 1 1 1 1 5 4 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FILIATION: FFILIATION: PUN: R SPECIFIC. MATERIAL CODE CG CG PE PE PE AG	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 125mL 250 /T Misting for	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	= 0.0014; ump; E SAMP SIGNATURI DDE: PE NG No ( SAMPLE PF VE ADDE Pre Pre	1/4" = 0.0020 SP = Electric : LING DA E(S): Gas replaced) ESERVATION OTAL VOL D IN FIELD (n efilled by lab None efilled by lab None efilled by lab	6; 5/16" = 0. Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004: 3/8" = 0 mp: PP = Pe INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AT METHO 8260 8011 Metals NH ₃ TDS, CI, N Total Phen	INCONTRACTOR NO CONTRACTOR NO	e 0.010; o; O = O SAMPLIN ENDED A FILTER S NT BLANK: AMPLING DUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 other (Specify) NG AT: 0725 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 200 200 200 200

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Cs Facility If	0. 89544)			SITE	11 Omni Way, St	t. Cloud, Osceola	County Flor	ida 34773	
	MW.			SAMP		W-22F					2017
	1 000 -	AARC				GING DA	-		70	100 15,	COIL
WELL VOL	R (inches): 2.0 LUME PURGE: t if applicable)		ETER (inches)	:0.375 D	EPTH: 56	N INTERVAL feet to 66 f	STATIC C		7.00 OR	RGE PUMP TY BAILER: elect	PE ric submersible
EQUIPME	NT VOLUME PU t if applicable)	JRGE: 1 EC	= ( QUIPMENT VO		feet – OLUME + (TI ) gallons + (		ΤΥ Χ ΤΙ	0.16 gallo UBING LENGTH 75 feet) +		ELL VOLUME gallons = $O$	gallons
	UMP OR TUBING	G 61		IMP OR TUBI	NG /	PURGIN		PURGING		TOTAL VOL PURGED (g	UME
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	RATE	DEPTH TO WATER (feet)	Hq (standar)	t TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg/D or % saturation	TURBIDIT (NTUs)	TY COLOF (describ	
0820	120	120	1.2	21.8	3 5.3:	2 23.38	Bg	1.98	210	claud.	v -61.7
0825	6	126	1.2	21.83			89	1.47	210	cloud	/
0830	6	132	1,2	21.8			88	0.83	208	cloui	1
TUBING IN	PACITY (Gallon: ISIDE DIA. CAP EQUIPMENT C	ACITY (Gal		1" = 0.04; 0.0006; 3/1 BP = Bladde	6" = 0.0014; r Pump;	1/4" = 0.002 ESP = Electric	6; 5/16" = 0. Submersible Pur	004; 3/8" = 0	5" = 1.02; 006; 1/2' eristaltic Pum	" = 0.010;	12" = 5.88 i/8" = 0.016 her (Specify)
SAMPLED	BY (PRINT) / A	FEILIATION		SAMPLER	SAM S) SIGNATU	PLING DA	AIA			1	
Joe Terry /				5	200 Te			SAMPLING INITIATED AT	nazo	SAMPLING ENDED AT	0840
PUMP OR DEPTH IN	TUBING WELL (feet):	61	1	TUBING MATERIAL	CODE: PE			FILTERED: Y	N	FILTER SI	ZE: _/_μm
FIELD DEC	CONTAMINATIC	N: PU	MP 🕜	N	TUBING	Y Nre	placed)	DUPLICATE o	or EQUIPME	NT BLANK:	Y N
SAMPLE	#	MATERIAL	VOLUME	PRESERVA	ATIVE	PRESERVATIO	FINAL	INTENDE ANALYSIS AM METHOI	ND/OR EC	AMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute
ID CODE	CONTAINERS 3	CODE	40mL	USED		Prefilled by lab		8260		ESP	<100
LI	3	CG	40mL	None		None		8011		ESP	<100
~.	1	PE	500mL	HNO		Prefilled by lab		Metals		ESP	300
~ .	1	PE	125mL	H ₂ SO		Prefilled by lab		NH ₃		ESP	
~ .	1	PE	250mL	None		None		TDS, CI, N	NO ₂	ESP	300
	1	AG 2	SGOOOML	H ₂ SO.		Prefilled by lab		Total Pher		ESP	300
No.						refilled by h					200
REMARKS: weather:	vercust, 68	PE 301=, 1155	sourch + risting " initia	1		7 BO NT		dissolved met	after for	ESP	300

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	E.D. SWMF (W	ACs Eacility II	9. 89544)				01 Omni Way, St	Cloud Osceols	County Elo	rida 34773	
WELL NO			. 03344)	SAMPL		w-23.4	or Onin way, St	L CIUUU, OSCEUIA			- 7410
	prov-3	*).4				GING DA	ТА		Ditte.	Vau 15	, 0012
WELL		TUBI	NG	WE		N INTERVAL	STATIC	EPTH	PII	RGE PUMP T	VDE
DIAMETE	R (inches): 2.0	DIAM	ETER (inches)	0.25 DE	PTH: 19	feet to 28 1	feet TO WATE	ER (feet): 20	32 OR		eristaltic
	ULUME PURGE ut if applicable)	: 1 WELL VO	DLUME = (TO	TAL WELL DE	PTH - ST	ATIC DEPTH	TO WATER) X	WELL CAPAC	ITY	= 1.2	gallons
	INT VOLUME P ut if applicable)	URGE: 1 EG	UIPMENT VO	L. = PUMP VO	LUME + (TU	BING CAPAC	ΤΥ Χ ΤΙ	JBING LENGTH	) + FLOW CI	ELL VOLUME	
INITIAL P	UMP OR TUBIN	IG	FINAL PU	MP OR TUBIN	gallons + (	PURGIN	ons/foot X	feet PURGING	) + 0.12	gallons =	gallons
	WELL (feet):	24	DEPTH IN	WELL (feet):	24		ED AT: 07.55		0945		gallons): 5.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	pH (standard units)	TEMP. ( [°] C)	COND. (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) (mg/D or % saturation	TURBIDI (NTUs)		
0935	5	5	0.05	20.67	5.13	24.66	333	0.39	5.8	Clea	2 -71.6
0940	0.25	5.25	- 0.05	20.67	5,14		334	0.38	5.6		
0945	0.25	5.50	0.05		5.14		335	0.36	5.2		
										-	
											-
		-									
	PACITY (Gallor			1" = 0.04;	1.25" = 0.0				5" = 1.02;	<b>6</b> " = 1.47;	12" = 5.88
and the second second	EQUIPMENT		/Ft.): 1/8" = 0 B = Bailer;	.0006; 3/16' BP = Bladder I	' = 0.0014; Pump; I		6; 5/16" = 0.0 Submersible Pun		.006; 1/2 eristaltic Pum		5/8" = 0.016 her (Specify)
						LING DA					
SAMPLED	BY (PRINT) / A	AFFILIATION:		SAMPLER(S)	SIGNATUR	RE(S): Que	C.	SAMPLING INITIATED AT	nain	SAMPLIN ENDED A	G T: (000
PUMP OR DEPTH IN	TUBING WELL (feet):	24		TUBING MATERIAL C	ODE: PE	/		FILTERED: Y	N		ZE:μm
	CONTAMINATIO	ON: PUI	MP No	TUB		(replaced)	1 nu auo	DUPLICATE		NT BLANK:	Y CN
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE P	RESERVATIO	N	INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL	nL) FINAL	ANALYSIS AN METHO	ND/OR E	CODE	FLOW RATE (mL per minute)
W-23A	3	CG	40mL	HCL		refilled by lab		8260		RFPP	<100
~	3	CG	40mL	None		None		8011		RFPP	<100
~	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals		APP	200
	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab		NH ₃		APP	200
	1	PE	250mL	None		None		TDS, CI, N	NO ₃	APP	200
L	1	AG	1000mL	H ₂ SO ₄	Pr	efilled by lab		Total Pher	nois	APP	200
REMARKS weather: a	vercist, 689	-, m.5+.h	5 min								
MATERIAL	and the second s	AG = Amber	Glass; CG =	Clear Glass;	PE = Pol	yethylene;	PP = Polypropyle	ene; S = Silico	ne; T = Te	flon: O = Of	ther (Specify)
	EQUIPMENT	CODES:	APP = After Pe	eristaltic Pump; se Flow Perista	B = Ba	iler; BR = I	Bladder Pump;	ESP = Electri	c Submersib	le Pump;	and (opeony)
TES: 1.	The above of		titute all of t				Method (Tubing C er 62-160, F.A.		O = Other	(Specify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	.D. SWMF (WA	Cs Facility IE	): 89544)				TE DCATION: 150	1 Om	ni Way, Si	t. Cloud, O	sceola Cou	nty, Flori	da, 34773		
WELL NO:	MW-2	3C		SA	MPLE ID:	mu	0-230				DAT	E: N	bu 15	- 201	2
							SING DA					100		1 1 -	6
	(inches): 2.0		ETER (inches)		DEPTH	57 fe	INTERVAL et to 67 fe	eet		ER (feet):			GE PUMP T BAILER: elec		sible
(only fill our	t if applicable) NT VOLUME PI t if applicable)		= (	L. = PUMF	feet	- + (TUB	BING CAPACI	ΓY	feet) X X TI	0.16 UBING LEI	gallons/fc NGTH) + FL	OW CE		gallons	
	MP OR TUBIN WELL (feet):	G 62		JMP OR TU N WELL (fe	JBING	2	PURGIN	G	075	PURG		715	TOTAL VO	UME gallons): 7	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEP TC WAT (fee	TH D (sta	pH andard nits)	TEMP. (°C)	Cr (circl µm)	OND. le units) nos/cm µS/cm	DISSOL OXYG (circle u mg/D % satur	VED EN TU Inits)	URBIDIT (NTUs)		RO	DRP mV)
0405	63	63	0.9	20.	78 5	58	24.16	1	04	0.4		5.8	Clea	r -6	6.2
0910	41.5	67.5	5 0.9	20.			24.17	-	03	0.3		5.9	clei		6.7
0915	21,5	72	0.9	20.			24.15		03	0.1	-	5.7	Cle		7.3
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR		ODES:	/Ft.): 1/8" = 0 B = Bailer;	BP = Blac SAMPLE TUBING	3/16" = 0.0 dder Pump S R(S) SIGN		1/4" = 0.0026 SP = Electric S	6; Subme	FIELD	004; 3/ mp; P SAMPL	8" = 0.006; P = Peristal ING ED AT: ()( D: Y (N	1/2" tic Pump	SAMPLIN	T: 092	6 (y)
FIELD DEC	ONTAMINATIO	N: PUI	MP: Yes		TUBI	NG: No	(replaced)			DUPLIC	CATE or EQ	UIPMEN	T BLANK:	Y (	N)
SAMPLE	LE CONTAINE #	MATERIAL	ATION VOLUME		RVATIVE	Т	ESERVATION	T	FINAL	ANALY	TENDED SIS AND/O ETHOD			SAMPLE I	RATE
D CODE	CONTAINERS 3	CODE	40mL		ED		D IN FIELD (m	nL)	рН			-	CODE	(mL per m	-
w-23C	3	CG	40mL		ne	FIE	None	-		-	8260		ESP	<100	-
~	1	PE	500mL	HN		Dre	efilled by lab	-			8011 Netals	-	ESP	<100	
u	1	PE	125mL	H ₂ S			efilled by lab				NH ₃	-	ESP	375	-
~	1	PE	250mL	No		r i c	None			-	, CI, NO ₃	-	ESP	375	
	1	AG	250mL	H ₂ S		Pre	filled by lab	-		-	Phenols	-	ESP	375	1.00
dor: nor	vercust, 61 ne	BOF, Mis	iting rain		nitin	1+0	rbid, to		231	VTU					
	EQUIPMENT O	1	APP = After P RFPP = Rever	se Flow Pe	ump; eristaltic Pu	B = Bail		Bladde	olypropyler Pump; d (Tubing	ESP =	Electric Sub ain); 0			other (Specif	y)

## **APPENDIX C**

# **Field Instrument Calibration Logs**

Site:J.E.D. SWMF		Date: Nov 11, 2012
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06 A2173 AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

Time: 1830

	Calibra	ation Standard	Instrument Response	Percent	Allowable	Calibrated?	Type of	Calibration Performed By:
Lot No.	Expiration Date	Standard Value		Deviation	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	
C252301	April 2014	pH = 4.00	21.00	0	0.2	Y	I	QT-
C251987	March 2014	pH = 7.00	7.00	D	0.2	Y	T	OT
C150016 .	Jan 4, 2013	pH = 10.00	9.93	0.07	0.2	Y	I	AT
		Turbidity = 0.0 NTU				,		0
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU	9.96	0.4	10%	¥	C	QT
C250574	Jan 24, 2013	Conductivity = 84 µS/cm	84	0	5%	Y	I	07
C142041	March 2013	Conductivity = $500 \mu$ S/cm			5%			0
C251430	March 2013	Conductivity = 1,000 µS/cm	1006	0.6	5%	Y	C	27
	Per Table →	D.O. = Ø,5H mg/L @ 23.4 °C	3.60	0.09	0.2 mg/l	ý	C	DT

Date: Nov 12, 2017

Time: _/8 45

	Calibra	ation Standard	Instrument Response	Percent Deviation ⁽¹⁾ or Difference	Allowable	Calibrated?	Type of	Calibration Performed By:
Lot No.	Expiration Date	Standard Value			Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	
C252301	April 2014	pH = 4.00	4.03	0.03	0.2	Y	C	ØT
C251987	March 2014	pH = 7.00	7.00	0	0.2	Ý	I	07
C150016	Jan 4, 2013	pH = 10.00			0.2			0
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU	10.07	0.7	10%	Y	C	QT
C250574	Jan 24, 2013	Conductivity = $84 \mu$ S/cm	85	1.2	5%	Ý	C	DT
C142041	March 2013	Conductivity = $500 \mu$ S/cm			5%			0
C251430	March 2013	Conductivity = $1,000 \mu\text{S/cm}$	1010	1.0	5%	V	C	OT
	Per Table →	D.O. = 8.53 mg/L @ 23.3 °C	8.61	0.00	0.2 mg/l	Y	Ĩ	OT

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Site:J.E.D. SWMF		Date: Nov 13, 2012
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06 A 2173 AM
Turbidity Instrument Make: <u>LaMotte</u>	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

Time: 1745

	Calibration Standard		Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
C252301	April 2014	pH = 4.00	4.06	0.06	0.2	Y	C	DT
C251987	March 2014	pH = 7.00	7.09	0.09	0.2	Y	C	OT
C150016	Jan 4, 2013	pH = 10.00			0.2	,		
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU	10.12	1.2	10%	Y	C	T
C250574	Jan 24, 2013	Conductivity = $84 \mu$ S/cm	84	0	5%	Y	С	Ø
C142041	March 2013	Conductivity = 500 µS/cm			5%	'		0
C251430	March 2013	Conductivity = 1,000 µS/cm	991	0.9	5%	Y	C	QT
	Per Table →	D.O. = 8.53 mg/L @23.3 °C	8.60	0.07	0.2 mg/l	4	I	ØT

Date: Nov 14,2012

Time: 1845

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration Performed By:
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	
C252301	April 2014	pH = 4.00	4.00	0	0.2	У	ţ	97
C251987	March 2014	pH = 7.00	7.00	0	0.2	Y	I	OT
C150016	Jan 4, 2013	pH = 10.00			0.2			-
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU	10.01	0.1	10%	Y	C	Ot
C250574	Jan 24, 2013	Conductivity = $84 \mu$ S/cm	86	2.4	5%	ý	C	07
C142041	March 2013	Conductivity = $500 \mu$ S/cm			5%	/		0
C251430	March 2013	Conductivity = $1,000 \mu\text{S/cm}$	9941	0,6	5%	V	C	21
	Per Table →	D.O. = 8. 403mg/L @ 24. 1°C	8.44	0.037	0.2 mg/l	Ý	C	Ot

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Site:J.E.D. SWMF		Date: Nov 15, 2012
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number:06A2173AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

Time: 1830

	Calibration Standard		Instrument	Percent	Allowahla	Calibrated9	Transof	Callbardan
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C252301	April 2014	pH = 4.00	4,04	0.04	0.2	Y	C	QT
C251987	March 2014	pH = 7.00	6.98	0.0Z	0.2	Y	C	9T
C150016	Jan 4, 2013	pH = 10.00			0.2	(		
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU	10.05	0.5	10%	Y	С	QT.
C250574	Jan 24, 2013	Conductivity = 84 µS/cm	85	1.2	5%	Y	C	Ø
C142041	March 2013	Conductivity = 500 µS/cm			5%	/		-
C251430	March 2013	Conductivity = 1,000 µS/cm	991	0.9	5%	V	C	DT
	Per Table →	D.O. =8.643mg/L @ 22.3 °C	8.74	0.05	0.2 mg/l	Ý	C	DT

Date: Nov 18, 2012 Time: 1805

	Calibration Standard		Instrument	Percent	Allowable	Callbastad9	Trance	Callback
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C252301	April 2014	pH = 4.00	4.04	0.04	0.2	Y	C	ØT
C251987	March 2014	pH = 7.00	6.99	0.01	0.2	4	C	QT
C150016	Jan 4, 2013	pH = 10.00			0.2	/		0
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			1
C251755	April 2013	Turbidity = 10 NTU	10.01	0.1	10%	V	C	QT.
C250574	Jan 24, 2013	Conductivity = 84 µS/cm	65-	1.2	5%	Y	C	OT
C142041	March 2013	Conductivity = $500 \mu$ S/cm			5%	,		
C251430	March 2013	Conductivity = $1,000 \mu\text{S/cm}$	1004	0.4	5%	V	C	OF
	Per Table →	D.O. = 0,514 mg/L @ 23.4 °C	8.58	0.07	0.2 mg/l	Y	F	07

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Site: J.E.D. SWMF		Date: Nov 20, 2012
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 0642173AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

Time: 0940

	Calibration Standard		Instrument	Percent	Allowable	Calibrate 49	Town	C.Phastar
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C252301	April 2014	pH = 4.00	41.01	0.01	0.2	V	C	QT
C251987	March 2014	pH = 7.00	6.99	0.01	0.2	Ý	C	Œ
C150016	Jan 4, 2013	pH = 10.00			0.2			1
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU	10.07	0.7	10%	V	C	QT
C250574	Jan 24, 2013	Conductivity = 84 µS/cm	8.3	1.2	5%	Ý	C	OT
C142041	March 2013	Conductivity = $500 \mu$ S/cm			5%	,		
C251430	March 2013	Conductivity = 1,000 µS/cm	1008	0.8	5%	V	C	QT
	Per Table →	D.O. = 0.418mg/L @ 24.0°C	8.45	0.03	0.2 mg/l	Ý	C	OT

Date:

Time:

	Calibration Standard		Instrument	Percent	Allowable	Calibrated?	Transof	Calibratian
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C252301	April 2014	pH = 4.00			0.2			
C251987	March 2014	pH = 7.00			0.2			
C150016	Jan 4, 2013	pH = 10.00			0.2			
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU			10%			
C250574	Jan 24, 2013	Conductivity = 84 µS/cm			5%			
C142041	March 2013	Conductivity = $500 \mu$ S/cm			5%			
C251430	March 2013	Conductivity = 1,000 µS/cm			5%			
	Per Table →	D.O. = $mg/L(a)$ °C			0.2 mg/l			

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

## **APPENDIX D**

## **Chain-of-Custody Forms**



the Bank the t

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE OF

SR#

CAS Contract

Project Name JED SWDF	Project Number						A	NALYS	SIS RE	QUEST	red (li	nclude	Metho	od Nu	mber	and Co	ontain	er Pre	eservat	ive)		
Project Manager Joe Terry	Email Address	1517 (1)		PRE	SERV	ATIVE	1	0	3	0	2	2										
Company/Address	.5	2011.03		INERS		/	1	/	1	Z	100	1	1	1	7	7	/	/	7	1	0. NON	
11500 213d St Clearwater, Fl	1 33762			NUMBER OF CONTAINERS		200	10/01	15	10	Pares	F	//	//	//	//	//	//	/ /	//	/	2. HNC 3. H ₂ S 4. NaO 5. Zn. 6. MeC 7. NaH	Acetate )H
Phone # 813-943-8633 Sampler's Signature Au Curry	Sampler's Printed Nam	Terry		NUMBE	/	1	9	100	1r	tol.		/	/	/		1	/	/		F LTERN/	8. Othe	
CLIENT SAMPLE ID	LAB ID	SAMPLING DATE TIME	MATRIX	(																		
MW-13A		11.12.12 1025	GW	10	3	3	1	1	1	(												
MW-13C		095	5																			
MW-12A		122																				
MW-12C		1135																				
MW-11A		1400																				
MW-11C		1330	GW		1	1	1												-			
Equipment Blank-I		11.12.12 1435	DI H20	10	3	3	Ĩ	Ĭ	1	1												
Trip Black		10.31.12 0900	NT	2	2																	
_																						
SPECIAL INSTRUCTIONS/COMMENTS						Т				IREMEI			I. Resul	ts Only		MENT	S	Τ	IN	OICE I	NFORMA	TION
Coolu ID: 12:	317-JED						STA		TE			×	II. Resu (LCS, D			aries s required	d)	PO	#			
							UESTED	TAX DA				-	_ III. Resu Summa		C and C	alibration	1	BIL	L TO:			
						REQU	UESTED	REPOR	T DATE			_	_ IV. Data	Validat	ion Repo	ort with F	Raw Dat	a				
See QAPP						-						-	V. Spec	alized	Forms /	Custom	Report					
SAMPLE RECEIPT: CONDITION/COO	OLER TEMP:	(	USTODY SE	ALS:	YN	-							Edata	a	_Yes		No					
RELINQUISHED BY	RECEIVED BY		RELINQUISHE					RECE	IVED B	Y			Ri	ELINQ	UISHED	BY				RECE	IVED BY	
Signature Cotty	Signature	Signature				Signa	iture					Signat	ture					Sig	nature			
Printed Name Joe Terry	Printed Name	Printed Name				Printe	ed Name					Printer	d Name					Prin	ted Name	•		
	Firm	Firm				Firm						Firm						Fim	1			
Date/Time 11.12.12/1530	Date/Time	Date/Time				Date/	Time					Date/1	Time					Dat	e/Time	-		



9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE _____OF ____

SR#

CAS Contract

Project Name JED SUDF	Project Number								A	NALY	SIS RI	EQUES	TED (	Includ	e Meth	od NL	imber	and C	ontain	er Pr	eservat	ive)			
Project Manager Soe Terry	Email Address	st n	c		P	PRES	SERVA	ATIVE	1	0	3	0	2	3											
Company/Address	1 Jusiyew	511.0.5	2			ERS		/	1	1	-		1	1	/	/	/	/	/	/	1	1	0. NOI 1 HCI		y
11500 43d St. 1	U.					NUMBER OF CONTAINERS		19	)	/	1	S.	1	Ĩ	/	/	/	/	/	/	/	/	2. HNO 3. H ₂ S 4. NaC	O4 DH	
Clearwater, FL	33762					OF CO	1	2	30	X	12	15	2	/ /	/ /	1	/ /	/ /	/ /	/	/ /	/	5. Zn. 6. Me( 7. Nat	Acetate DH	
813-943-8633	FAX #					MBER	/	Y	0/	Y	4	Z	Z	/	/	/	/	1.	/	/	/		8. Oth		_
Sampler's Signature	Sampler's Printed Name	Terry				INN	/		/	10	1	1ª	1								1		REMARKS		1
CLIENT SAMPLE ID	LAB ID	SAM DATE	IPLING TIME	MATE																					
MW-10A	1	1.13.12	0805	60	N/	10	3	3	1	1	1	1													
MW-10C		1	0730																						
MW-9A			0935																						
MW-9C			0905																						
MW-BA			1130																						
MW-BC			1055																						
MW-7A		J	1340			L	V	V	N			V													
MW-7C TripBlack		13.12	1305	Gu	) /	0	3	3	I	1	1	1													
trip Black	1	0.31,12	0330	BHZ	00	2	2																		
SPECIAL INSTRUCTIONS/COMMENTS								T				UIREME		1	_ I. Resu	ults Only		EMENT	S		IN	VOICE	INFORM	ATION	
Cooler ID: 12318-	led							-	STA					<u>×</u>	LCS, I			aries s require	d)	PO	#				
								REQU	UESTED	FAX D	AIE			-	_ III. Res Summ		C and C	alibratio	n	BIL	L TO:				
								REQ	UESTED	REPO	RT DATE	E		-	_ IV. Dat	a Valida	tion Rep	ort with	Raw Dat	a					
See QAPP								-				-		-	_ V. Spe	cialized	Forms /	Custor	Report						
	PP					S: Y	N							1	Edat	la	Yes		No						
RELINQUISHED BY	RELINQUISHED BY RECEIVED BY									REC	EIVED	BY			F	RELINQ	UISHE	DBY				REC	EIVED BY	·	
Signature Out Tun	Signature	S	Signature					Signa	iture					Signa	ature					Sig	nature				
Printed Name Joe Terry	Printed Name	P	rinted Name					Printe	ed Name					Printe	ed Name					Prir	nted Nam	8			
Firm WSI	Firm	F	ïm					Firm						Firm						Firr	n				
Date/Time 11,13,12/ 1430	Date/Time	D	Date/Time					Date/	Time					Date/	Time					Dat	e/Time				



9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE OF

SR#

CAS Contract

Project Name JED SWDF	Project Number								A	NALYS	SIS RE	QUES	TED (	Includ	e Meth	od Nu	mber	and C	ontain	er Pre	eservat	ive)		
Project Manager Joe Terry	Email Address	Tusi	ius		1	PRES	SERVA	ATIVE	1	0	3	2	0	3	2									
Company/Address	1310176	,				RS		/	1	/	1	1	/	5/	T	1	1	1	1	/	//	/	Present 0. NO 1. HC	vative Key NE D3 804
11500 430 5	St N					NUMBER OF CONTAINERS		10		/	1	1	37	21/2	5	/	/	/	/	/	/	/	4. INat	Л
Clearmater, FL	33762					OF CO	/	N	6	X	(Far	13	12	1 miles	//	1	//	1	1	1	//	/	6. Me	Acetate OH HSO4
Phone # B13-94/3-8633 Sampler's Signature	Sampler's Printed Nar	ne				UMBEF		4	0	1	51	ST.	4/2	55/	/	/	/	1.	/	/	/		8. Oth	
for ten	Sampler's Printed Nan	1		-	_	Z	/	(	-	1	1	1	1	1			(	(	_	_	( 1		ATE DES	CRIPTION
CLIENT SAMPLE ID	LAB ID	DATE	TIME	MAT			0	-	-															
MW-16A		11-14-1	-	Gi	-	10	3	3	1	1	i	1	-								-			
MW-16B			0850			10					11	1							_					
MW-16C			0750			10			1															
MW-19A		V	1030		/	10	4	V	16	4	V	1												
MW-19C		11.14,	12/100	GL		11	3	3	1	1	1	1	1											
Tr.p Bluck		10.31.1	2 0900	DH	20	2	2									_								
NOT.																								
SPECIAL I NSTRUCTIONS/COMMENTS								Т				JIREME ES APPL		_	REP I. Resu			EMENT	S		IN	VOICE	INFORM	ATION
Coolu ID: 123	19- TED-7									NDARD				X	LCS, I			aries s require	d)	PO	#			
									UESTED					-	_ III. Res Summ		C and C	alibratio	n	BIL	L TO:			
								REQU	UESTED	REPOR	T DATE			-	_ IV. Dat	a Valida	tion Rep	ort with I	Raw Dat	a				
See QAPP								-						-				Custom						
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP:		CU	STODY	SEAL	S: Y	( N								Edat	ia	Yes		No					
RELINQUISHED BY	PLE RECEIPT: CONDITION/COOLER TEMP: RELINQUISHED BY RECEIVED BY									RECE	IVED B	βY			F	RELINQ	UISHE	DBY				REC	EIVED BY	(
Signature Aut Tun	Signature		Signature					Signa	iture					Sign	ature					Sig	nature			
Printed Name Soe Thriy	Printed Name		Printed Name					Printe	ed Name					Print	ed Name					Prir	nted Nam	e		
Firm WSI	Firm		Firm					Firm						Firm						Firm	n			
Date/Time 11-1-12/1700	Date/Time		Date/Time					Date/	Time					Date	/Time					Dat	e/Time			

Distribution: White - Return to Originator; Yellow - Retained by Client

*



9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE _____OF ___

SR#

CAS Contract

Project Name JED SWDF	Project Number						A	NALYS	IS RE	QUEST	TED (I	nclude	e Meth	od Nu	mber	and C	ontain	er Pre	eservat	ive)		
Project Manager Joe Terry	Email Address	Sigus		PRE	SERVA	TIVE	1	0	3	2	0	3						1				
Company/Address				INERS		/	1	/	1	15	5%-	5	7	1	1	1	/	/	1	/	Preserva 0. NON 1. HCL 2. HNO	E
11500 413d St., Clearwater, F				NUMBER OF CONTAINERS		2260	100	E	etal ?	10	Phen	1	//	//	/ /	/ /	/ /	/ /	/ /	-	2. HNO 3. H ₂ SC 4. NaOH 5. Zn. A 6. MeOI 7. NaHS	H
Phone # 813-9473-8633 Sampler's Signature	FAX # Sampler's Printed Name	a_		IUMBER	/	1	1	7:	E/2	3/F	T	/	/	/	/	1.	/	/	/		8. Other	2
goi ling	Joe 7	SAMPLING	-	2	1	-	-	(	1	-	-		-		_	(	(	(	( ·	LTERNA	TE DESCI	RIPTION
CLIENT SAMPLE ID	LAB ID	DATE TIM		-																		
MW-20A		11.14.12 130	61.	10	3	3	1	1	1	1												
MW-20C		1340												_								
MW-21A		145																	-			
MW-21C		1 1545		V	k	V	lo	4	V	1												
Equipment Black-2		11.14.12 09.15		10	5	3	1	1	1	1									_			
Trip Black		10-31-17 0930	DEH20	2	2		-									-						
			-													-			-			
TOT																						
SPECIAL INSTRUCTIONS/COMMENTS						-	RUS	H (SURC		S APPLY			_ I. Resul	ts Only			rs		IN	VOICE II	NFORMAT	ION
Cooler IN: 12319-	TELES						STA					-	II. Resu (LCS, D		C Summ S/MSD a		ed)	PO	#			
(00 W 203- 12 311-	20 D -X					HEQU	JESTED	FAX DA				-	_ III. Resi Summa		IC and C	alibratio	n	BIL	L TO:			
						REQU	JESTED	REPOR	T DATE			_	_ IV. Data	Validat	tion Rep	ort with	Raw Dat	a				
See QAPP												-	_ V. Spec	cialized	Forms /	Custom	n Report					
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP:	(	USTODY SE	ALS:	YN		_						Edata	a	Yes		No					
RELINQUISHED BY	RECEIVED BY		RELINQUISHED	) BY				RECE	IVED B	Y			R	ELINQ	UISHEI	D BY				RECE	IVED BY	
Signature Car Tun	Signature	Signature				Signat	ture					Signa	ature					Sig	nature			
Printed Name JOR TETRY	Printed Name	Printed Nam				Printe	d Name					Printe	ed Name					Prin	ited Nam	9		
Firm WSI	Firm	Firm				Firm						Firm						Fim	n			
Date/Time 11111112/1700	Date/Time	Date/Time				Date/1	Time					Date/	Time					Dat	e/Time			

Distribution: White - Return to Originator; Yellow - Retained by Client

the.



9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE OF

SR#

CAS Contract

Project Name JED SWDF	Project Number							A	NALYS	SIS RE	QUES	TED (	nclud	e Meth	od Nu	imber	and C	ontain	er Pre	eservat	ive)		
Project Manager Joe Terry	Email Address	o (usi):	us		PRE	SERV	ATIVE	1	0	3	2	0	3	2									
Company/Address	N.	<u>y</u> usin			AINERS		/	/	/	/	1	5/	20/20	- La	/	/	/	/	/	/	/	Preserva 0. NON 1. HCL 2. HNC 3. H ₂ S	3
	FAX#				NUMBER OF CONTAINERS	/	200	301	ET.	Metal	10 x	10/	Jue May	1/	//	//	//	//	//	//	/	<ol> <li>4. NaO</li> <li>5. Zn. /</li> <li>6. MeC</li> <li>7. NaH</li> <li>8. Other</li> </ol>	H Acetate H SO4 -
Sampler's Signature	Sampler's Printed Nam	Terry			NUME	1	/	1	1	YA	9/2	A	057	/	/	/	1	/	/	1		EMARKS	
CLIENT SAMPLE ID	LAB ID	SAMP	PLING TIME	MATRIX																			
MW-22RA		11.15.10	0715	GW	10	3	3	1	1	1	1												
MW-22RC			0830		11	3	3	1	1	1	1	1											
MW-23A			0950		10																		
MW-23C			0920		10																		1
MW-1A			1130		10	6	1		L		V												
MW-IC		11.15.12	1100	Gu	10	3	3	1	1	I	1												
Trip Black		10.31.12		DEHO	2	2																	
TOL																							
SPECIAL I NSTRUCTIONS/COMMENTS							-	RUS	H (SUR		IREME S APPL			_ I. Resu	its Only		EMENT	S		IN	VOICE I	NFORMA	TION
Cooler JD? 123:	20-JED-I						-	STA		TE			X	LCS, I			aries Is require	d)	PO	#			
													-	_ III. Res Summa		C and C	Calibratio	n	BIL	L TO:			
							REQ	UESTED	REPOR	T DATE			-	_ IV. Data	a Valida	tion Rep	ort with	Raw Dat	a				
See QAPP							-						-	_ V. Sper	cialized	Forms /	Custom	Report					
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP:		CU	STODY SE	ALS:	YN	-						1	Edat	a	Yes	-	No					
RELINQUISHED BY	RECEIVED BY		RE	LINQUISHED	BY				RECE	IVED B	Y			R	ELINQ	UISHEI	D BY				RECE	IVED BY	
Signature Oper Cerry	Signature	Sig	gnature				Signa	iture					Signa	ature					Sig	nature			
Printed Name Soe Terry	Printed Name	Pri	inted Name				Printe	ed Name					Printe	ed Name					Prir	nted Nam	9		
Firm WSI	Firm	Fir	m				Firm						Firm						Firm	n			
	Date/Time	Da	ate/Time				Date/	Time					Date	Time					Dat	e/Time			

Distribution: White - Return to Originator; Yellow - Retained by Client

Copyright 2012 by ALS Group



9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE OF

SR#

CAS Contract

Project Name JED SWDF	Project Number						A	NALYS	SIS RE	QUES	TED (I	nclude	e Meth	od Nu	mber	and C	ontair	er Pr	eservat	ive)		
Project Manager Joe Terry	Email Address	cusii.us		PRE	SERVA	TIVE	1	D	2	2	0	3										
Company/Address WSI	1 240176	Costi		ERS		/	1	-/	-/	1	1	5	7	/	1	1	/	/	1	1	Preservati 0. NONE 1. HCL 2. HNO ₃ 3. H ₂ SO	ive Key
11500 430d St.	N.			ONTAINE		10	1	/	1	12	73	2	/	/	/	/	/	/	/	/	4. NaUH	1
Clew water,	FL 33762			NUMBER OF CONTAINERS	/	3	0	S	C.X.	3	10	/	//	/	//	//	1	1	//		5. Zn. Ac 6. MeOH 7. NaHS	H 104
813-943-8633 Sampler's Signature	Sampler's Printed Name			NUMBE		1	1	1	E/F	7r	E/	/	/	/	/	1.	/	/	/	-	8. Other	
you up	Joere	SAMPLING	1		1	(	(	( -	( -	(	-	-	f			(	(	(	(	LTERNA	ATE DESCRI	IPTION
CLIENT SAMPLE ID	LAB ID	DATE TIME	MATRIX	-	7	3	1	1	t	1				_				-	-			
MW-GA		1.15.12 1340	Gu	10	33	3	1	1		1				-		-			-			
MW-6C		1.15.12 13/5	GW	10	-	3	1	1	1	1							-	-	-			
MW-SA		1.15.12 1520	Gu	10	3 3	3			1	1									-			
MW-SC Trip Black		1.15.12/450	GW	2	2	2	,	1	1					_			-		-			
I I IP DIMM	10	0.31.12 1030	MZO	d	1							-		-		-	-		-			
														-					-	-		
				-																		
TQL																						_
SPECIAL I NSTRUCTIONS/COMMENTS						-	RUS	H (SUR		S APPL			_ I. Resul	Its Only			S		IN	VOICE I	NFORMATI	ON
0.1-1.0000							X_ STAN					X	LCS, D		C Summa MSD as		d)	PO	#			
Cook ID: 12320	- 200-4					REQU	JESTED	FAX DA	TE			-	_ III. Resi Summa		C and C	alibratio	n	BIL	L TO:			
						REQU	JESTED	REPOR	T DATE			_	_ IV. Data	a Validat	tion Repo	ort with i	Raw Dat	a				
See QAPP						-						-			Forms /							
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP:	CU	STODY SEA	ALS:	YN								Edata	a	Yes		No					
RELINQUISHED BY	RECEIVED BY	RE	LINQUISHED	BY				RECE	IVED B	Y			R	ELINQ	UISHED	DBY				RECE	EIVED BY	
Signature and Tun	Signature	Signature				Signat	ture					Signa							nature			
Printed Name Joe Terry	Printed Name	Printed Name				Printer	d Name					Printe	ed Name					Prir	ited Nam	*		
Firm WSI	Firm	Firm				Firm						Firm						Firm	n			
Date/Time 11.15.12/1620	Date/Time	Date/Time				Date/1	Time					Date/	Time				_	Dat	e/Time			



9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE OF

SR#

CAS Contract

Project Name JED SWDF	Project Number							A	NALY	SIS RE	QUES	TED (I	nclude	e Meth	od Nu	mber	and C	ontain	er Pr	eserva	tive)		
Project Manager TRMY	Email Address	ous	it us		PRE	SERV	ATIVE	1	D	3	2	0	3										
Company/Address WSI	1.9.0.11	5000	111 000		ERS		/	1	/	-	1	1	3	7	1	7	/	1	1	/	/	O NOM	ative Key NE
11500 43125	T. N.				NTAIN		1	2/	/	K	1/2		1	/	/	/	/	/	/	/	/	1. HCL 2. HNC 3. H ₂ S 4. NaC	03 604 0H
Clearmater,	FL 3376	2			NUMBER OF CONTAINERS		12	10	X	XX	13	24	1	//	/	1	1	1	/ /	/ ,	/	5. Zn. 6. Me( 7. Nat	OH
Phone # 013-943-867	r				MBER	1/	4	00/	Y	5/*	31	2	/	/	/	/	1.	/	/	/		8. Oth	er
Sampler's Signature	Sampler's Printed Nam	len			NN	1	1	1	1	12	71	1		4					1	1		REMARKS	S/ CRIPTION
CLIENT SAMPLE ID	LAB ID	DATE	TIME	MATRIX	_					_					_								
MW-2A		11.19.1	20835	GW	10	3	3	1	1	(	1			-									
MW-2C			0810								1												
MW-3A			1000																				
MW-3C		1	0930																				
MW-LA			1125				d.				1												
MW-4C		11.19.	0011 51	Gw	10	3	3	1	1	1	1												
Tr.V Bluk			12/100	DIHZO	2	2																	
801																							
SPECIAL I NSTRUCTIONS/COMMENTS											JIREME ES APPL		-	_ I. Resu	lts Only			S			VOICE	INFORM	ATION
Cooler ID: 123:	241-JED						7		NDARD				×	(LCS, I		C Summ S/MSD a		ed)	PC	) #			
							REG	QUESTED	) FAX D	AIE			-	_ III. Res Summ		C and C	alibratio	n	BI	LL TO:			
							REC	QUESTER	REPOI	RT DATE			_			tion Rep	ort with	Raw Dat	ta				
See QAPP							-						-			Forms /							
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP:		CL	ISTODY SE	ALS:	YN								Edat	a	Yes		No				2	
RELINQUISHED BY	RECEIVED BY		RE	ELINQUISHEE	DBY				REC	EIVED E	3Y			F	RELING	UISHE	DBY				REC	EIVED BY	(
Signature	Signature		Signature				Sign	nature					Signa	ature					Sig	gnature		1	
Printed Name Joe Terry	Printed Name		Printed Name				Print	ted Name	•					ed Name					12	inted Nar	ne	2	
Firm WSI	Firm		Firm				Firm	1					Firm						Fir				_
Date/Time 11-19-12/1900	Date/Time		Date/Time				Date	e/Time					Date	/Time				V	Da	ate/Time			

## **APPENDIX E**

# **CD** Containing Analytical Laboratory Reports