

BOARD OF SUMTER COUNTY COMMISSIONERS

SUMTER COUNTY LANDFILL

GROUNDWATER MONITORING PLAN

C-103

JUNE 14, 1984

BOARD OF SUMTER COUNTY COMMISSIONERS

SUMTER COUNTY LANDFILL

GROUNDWATER MONITORING PLAN C-103

D. E. R.

APR 2 9 1988

APR 2 9 1988

ROUTH WEST DISTRICT

TAMPA

JUNE 14, 1984

DEFINITION OF THE SOURCE:

The Sumter County Landfill is located South of State Road 470, West of Sumterville, in Section 15, Township 20 South, Range 22 East, Sumter County, Florida.

Land filling is accomplished by the trench fill method of disposal. Trench work began on the Eastern side of the property in October, 1978, and is progressing Westward. Cells are opened from the North to the South.

The trenches are opened approximately 35 feet wide with excavated earth as a berm adjacent to the trench on its limited side. The exposed or dumping face stands at the angle of repose of the surface. The fill, which consists of residential and commercial wastes, begins at one end of the trench and develops progressively along its length. It is compacted and covered daily with earth. The top of the filled portion of the trench is given a heavy earthen cover while the working face is merely closed for the night with a light covering of soil.

The landfill will consist of a series of long narrow refuse cells when completed. The cells are separated longitudinally by ridges or ribs of undisturbed soil below the original ground surface. Sloped or wedge-shaped diaphragms of cover material serve as a dumping face above the original ground.

Large items, such as "white goods" or automobiles, are segregated from normal household wastes and are hauled away to metal yards for final disposal.

Industrial or other hazardous wastes, such as insecticides, are not permitted at the landfill.

Operating hours for the landfill are 8:00 A.M. to 4:00 P.M., Monday through Saturday.

Figure 1 is a diagram giving the dimensions of filled and unfilled portions of the landfill as it existed on January 13, 1984. Approximately 43% of the total usable area had been filled at that time.

Table 1 lists monthly volumes and accumulated volumes of compacted wastes received since October, 1978, when monthly activity reports were first submitted for the landfill. The average rate of waste disposal from October, 1978 to January 13, 1984 was 4,249 cubic yards of compacted waste per month.

Graph 1 is a fill projection based on past monthly activity reports. The landfill will reach its capacity by June, 1988, as estimated by this projection. The projected average rate of waste disposal between September, 1983 and June, 1988 is 6,905 cubic yards per month.

HYDROGEOLOGIC AND HYDROSTRATIGRAPHIC DEFINITION OF THE SITE

The Sumter County Landfill is located within the Withlacoochee River Basin. The Floridan Aquifer in this area of Sumter County consists primarily of rocks in the Tertiary System of the middle to late Eocene Series. Formations in this general area consist of the Lake City Limestone, Avon Park Limestone, and the Ocala Limestone. Table 2 gives the general stratigraphic section and water bearing properties of these formations.

The Floridan Aquifer is covered, except where the limestone outcroppings occur, by unconsolidated deposits. There is no evidence of limestone outcroppings in the area where the landfill is located. The thickness of these deposits in Sumter County may be as thick as one hundred feet or more. The hydraulic characteristics of these deposits range from highly permeable sand to virtually impermeable clay. The extent of recharge to the Floridan Aquifer depends greatly on the depth and hydraulic characteristics of the unconsolidated deposits.

Five exploratory test borings were made at the site in an effort to develop a detailed site lithologic description. The locations of these test borings are shown in Figure 3.

Lithologic columnar sections for the five test holes are shown in Figures 4 through 8. Soils encountered included fine sand, clay, silty sand, clayey sand, and sandy clay. Permeabilities range from 0.014 ft./min. in the fine sand to approximately .00002 ft./min. in the sandy clay.

Mr. Gray Roane of the Soil Conservation Service in Bushnell, Florida lists three types of soils present at the Sumter County Landfill. These soils are:

Candler Sand Astatula Fine Sand Apopka Fine Sand

A soils map for the site is shown in Figure 9.

The Candler Series consists of excessively drained, nearly level to moderately steep soils on Coastal Plain Uplands. The surface layer is dark gray sand to a depth of about 5 inches. The subsurface layers are yellow sand to a depth of about 23 inches. The subsoil is very pale brown sand that has white mottles and yellowish brown lamellae or bands of loamy sand between depths of 67 to 109 inches. Below this is brownish yellow sandy loam to depth of 115 inches. Slopes are predominantly 0 to 8 percent, but range to about 25 percent in dissected areas.

The Astatula Series consists of excessively drained, nearly level to steep soils that occur primarily in Central and South Florida. These soils typically have a thin grayish brown surface layer underlain by layers of brownish yellow sand to depths of 86 inches or more. Slopes range from 0 to 30 percent.

The Apopka Series consists of well drained, nearly level to steep soils in Central Florida. The surface layer, in a representative profile, is very dark gray sand about 6 inches thick. The subsurface layer is between depths of 6 to 55 inches. It is yellowish brown sand in the upper 34 inches and light yellowish brown in the lower 15 inches. Red sandy clay loam is below this to depths of 84 inches or more. Slopes are predominantly 0 to 12 percent, but range to 25 percent.

Figure 10 shows general cross-section A-A of the site from Test Hole No. 4 to Test Hole No. 5. Figure 11 shows general cross-section B-B of the site from Test Hole No. 2 to Test Hole No. 3. Cross-sections A-A and B-B are located on plan view in Figure 3. These generalized hydrogeologic sections indicate continuity of lithologic units. Typically, there is a layer of sand ranging from 1 to 20 feet thick, underlain by strata consisting of clayey sand, sandy clay, and clay.

Figure 12 shows ground contours at the landfill prior to any excavation and fill. These contours are approximate as taken from the Bushnell, U.S. Geological Survey Quadrangle Maps. Figure 13 shows the approximate ground contours at the site upon completion of the fill activities.

Figure 14 illustrates unconfined groundwater contours based on water elevations in Test Holes 2, 4, and 5. Groundwater flow is in the direction of decreasing head perpendicular to contour lines depicting the groundwater table. The unconfined groundwater under the pollution source flows toward the North.

Table 3 lists climatological data recorded by the U.S. Department of Commerce from gauging stations in Bushnell and Lisbon. These two stations are the closest gauging stations to the Sumter County Landfill. Values listed are the average for each month.

The rate of horizontal flow of water in the sand strata at the Sumter County Landfill can be estimated using Darcy's Law:

Q = KiA

Q = Flow Rate (cu.ft./min.)

K = Coefficient of Permeability (ft./min.)

 $i = \Delta h/L = Slope of Headloss$

A = (Average Depth of Sand) x (Width of Horizontal Flow)

From Permeability tests taken at Hole 1:

K Sand = 0.014 ft./min.

From Figure 15: i = 0.625%

Width of horizontal flow = 975 ft.

From Figures 10 and 11:

Average Depth of Sand = 14 ft.

Q = KiA = (0.014 ft./min)(0.00625)(975 ft.)(14 ft.)

Q = 1.19 cu.ft./min.

The estimated rate of horizontal flow in the sand layer is 1.19 cubic feet per minute.

The rate of infiltration at the site can also be estimated using Darcy's Law:

Q = KiA

(C103R,3)

K = Coefficient of permeability in clay is approximately equal to 2×10^{-5} or .00002 ft./min.

i = (average depth of sand)/(depth to groundwater)

i = (14 ft.)/(20 ft. +/-) = 0.7

A = Area of landfill

 $Q = (2 \times 10^{-5} \text{ or } .00002 \text{ ft./min.})(0.7)(1,000 \text{ ft.})(1,400 \text{ ft.})$

Q = 19.6 cu.ft./min.

The estimated rate of infiltration is 19.6 cubic feet per minute.

MASS WATER BALANCE OF THE POLLUTION SOURCE

QIN = Precipitation

QOUT = Evapotranspiration + infiltration + horizontal flow in sand layer

Values in Table 3 for precipitation and evapotranspiration are used as a basis for this mass balance.

Infiltration + horizontal flow = (19.6+1.19) = 20.79 cu.ft./min. = 0.69 Ac.Ft./Day

Surface area of landfill = 32.14 Ac.

JAN. QIN = (3.01 in./12)(32.14 Ac.) = 8.06 Ac.Ft.QOUT= (2.10 in./12)(32.14 Ac.) + (0.69 Ac.Ft./Day)(31) = 27.01 Ac.Ft.

FEB. QIN = (4.22 in./12)(32.14 Ac.) = 11.30 Ac.Ft.

QOUT= (2.60in./12)(32.14 Ac.)+(0.69 Ac.Ft./Day)(29)= 26.97 Ac.Ft.

MAR. QIN = (3.84 in./12)(32.14 Ac.) = 10.28 Ac.Ft.

(C103R,3)

```
QOUT= (4.50in./12)(32.14 Ac.)+(0.69 Ac.Ft./Day)(31)=33.44 Ac.Ft.
```

- APR. QIN = (1.87 in./12)(32.14 Ac.) = 5.00 Ac.Ft.QUUT= (4.5 in./12)(32.14 Ac.) + (0.69 Ac.Ft./Day)(30) = 32.75 Ac.Ft.
- MAY QIN = (4.51 in./12)(32.14 Ac.) = 12.08 Ac.Ft. QOUT= (5.3in./12)(32.14 Ac.)+(0.69 Ac.Ft./Day)(31)= 35.59 Ac.Ft.
- JUN. QIN = (6.56 in./12)(32.14 Ac.) = 17.57 Ac.Ft.QUUT= (4.4 in./12)(32.14 Ac.) + (0.69 Ac.Ft./Day)(30) = 32.48 Ac.Ft.
- JUL. QIN = (6.93 in./12)(32.14 Ac.) = 18.56 Ac.Ft.QOUT= (4.9 in./12)(32.14 Ac.) + (0.69 Ac.Ft./Day)(31) = 34.51 Ac.Ft.
- AUG. QIN = (7.67 in./12)(32.14 Ac.) = 20.54 Ac.Ft.QOUT= (4.8 in./12)(32.14 Ac.) + (0.69 Ac.Ft./Day)(31) = 34.25 Ac.Ft.
- SEP. QIN = (6.30 in./12)(32.14 Ac.) = 16.87 Ac.Ft.QUUT= (4.0 in./12)(32.14 Ac.) + (0.69 Ac.Ft./Day)(30) = 31.41 Ac.Ft.
- OCT. QIN = (2.04 in./12)(32.14 Ac.) = 5.46 Ac.Ft.

 QOUT= (3.60in./12)(32.14 Ac.)+(0.69 Ac.Ft./Day)(31)= 31.03 Ac.Ft.
- NOV. QIN = (1.95 in./12)(32.14 Ac.) = 5.22 Ac.Ft.QUUT= (2.7 in./12)(32.14 Ac.) + (0.69 Ac.Ft./Day)(30) = 27.93 Ac.Ft.
- DEC. QIN = (2.50 in./12)(32.14 Ac.) = 6.70 Ac.Ft.QUUT= (2.10 in./12)(32.14 Ac.) + (0.69 Ac.Ft./Day)(31) = 27.01 Ac.Ft.

The Soil Conservation Service lists the hydrologic group for the three types of soil present on site as Class A. Class A soils have fast infiltration rates and low runoff potential. A borrow ditch for on site runoff has been constructed along the edge of the filled portion of the landfill. See Figure 13. This borrow ditch will surround the landfill upon completion of fill so that all runoff will be routed to the retention area at the Northeast corner. The following runoff calculations for the landfill is based on the Soil Conservation

Service curve number method. The value used for precipitation is the average monthly rainfall derived from Table 3 which is 4.28 inches.

Area = 32.14 Ac.

S.C.S. CN: 39 (PASTURE in good condition)

s' = (1,000/39)-10 = 15.64

.2s' = 3.13

.8s' = 12.51

Runoff = $(P - .2s')^2/(P + .8s') = (4.28 - 3.13)^2/(4.28 + 12.51) = 0.08$ in.

Volume Excess Rainfall = (0.08 in./12)(32.14 Ac.) = 0.21 Ac.Ft./Month

Figures 16 and 17 show the direction of stormwater runoff prior to fill and upon completion of fill respectively.

Figure 18 is a portion of a map of the Potentiometric Surface of the Floridan Aquifer by L.A. Bradner of the Department of the Interior, U.S. Geological Survey. The potentiometric surface of the Floridan Aquifer at the Sumter County Landfill was at an elevation of about 45 feet N.G.V.D. in September, 1983.

PROPOSED MONITORING WELL CONSTRUCTION

Figure 14 shows that the unconfined groundwater at the Sumter County Landfill flows toward the North. We propose to monitor unconfined groundwater with four monitoring wells. The locations are shown in Figure 19.

Monitoring well number one will be constructed on the periphery dike on the South side of the landfill about 60 feet East of the Centel Cable Company boundary. It will provide samples at about elevation 35 N.G.V.D., which is approximately 10 feet below the unconfined groundwater table.

Monitoring well number two will be constructed on the periphery dike on the South side of the landfill, approximately 600 feet West of the East boundary of the landfill. It will provide samples at approximately elevation 35 N.G.V.D., which is approximately 10 feet below the unconfined groundwater table.

Wells one and two will monitor groundwater quality upgradient (unaffected natural background) of the pollution source.

Monitoring well number three will be constructed approximately 30 feet
South of the North property boundary and approximately 440 feet West of the East
property boundary. It will provide samples at approximately elevation 35
N.G.V.D., which is approximately 10 feet below the unconfined groundwater table.
Well number three will monitor groundwater quality downgradient (in the most
affected area) of the pollution source from the portion of the landfill that
has already been filled.

Monitoring well number four will be constructed approximately 30 feet South of the North property boundary and approximately 350 feet East of the West property boundary. It will provide samples at approximately elevation 35 N.G.V.D., which is approximately 10 feet below the unconfined groundwater table. Well number four will monitor groundwater quality downgradient (in the most affected area) of the pollution source from the portion of the landfill that has yet to be filled.

Casings used in all monitoring wells to be constructed will be 2 1/2 inch Schedule 40 P.V.C. A typical monitoring well in place is shown in Figure 20. The first two feet of casing above the end plug will be slotted to a particular width to prevent clogging. A gravel pack will be set around the screen and the remainder of the hole will be sealed with cement to prevent access of surface water down the sides of the casing. A lockable security cover will be set into the cement over the top of the monitoring well. The monitoring well will be capped with a vented well cap.

Samples will be retrieved with a standard bailer.

Confined groundwater has been monitored from 5 wells near the Sumter County Landfill since 1975. The wells in which confined groundwater samples were taken are shown as Wells 1 through 5 in Figure 21 and are identified in the well inventory.

The confined aquifer flows approximately North by Northwest in the vicinity of the landfill. See Figure 18. Wells 1 through 5 are all located North of the landfill and may all be considered as downgradient (in the most affected area) of the pollution source. See Figure 21. It is proposed to continue to use Wells 1 through 5 in Figure 21 for the monitoring of the confined groundwater downgradient of the pollution source.

SAMPLING PROTOCOL

Standard procedures of the State of Florida, Department of Environmental Regulation will be used as the sampling protocol for the monitoring program.

WELL INVENTORY

Data was available on fourteen wells within a one mile radius of the site.

The location of these wells is shown in Figure 21.

Limited information is available concerning Wells 1 through 5. These wells are less than 4 inches in diameter and are included because they are used as sampling points to monitor confined groundwater downgradient of the pollution source. They are not on file with Southwest Florida Water Management District (SWFWMD) or the U.S. Geological Survey (U.S.G.S). Available information suggests that Well 2 is the Kinard residence Well. Wells 3 and 4 are on the Mcleod ranch. Well 3 has a windmill and is 175 feet deep. Well 5 is a 2 inch Well and is located at the landfill office.

Wells 6 through 13 are on file with SWFWMD. Information on Wells 6 through 13 consists of the following:

Well 6

Latitude: 28° 44' 48"

Longitude: 82° 05' 39"

SWFWMD C.U.P. Number: 02776

Average Withdrawal Rate: 16,000 G.P.D.

Maximum Withdrawal Rate: 200,000 G.P.D.

Water Use: vegetables

Well 7

Latitude: 28° 44' 38"

Longitude: 82° 06' 11"

SWFWMD C.U.P. Number: 02806

Average Withdrawal Rate: 105,592 G.P.D.

Maximum Withdrawal Rate: 346,000 G.P.D.

Water Use: vegetables

Well 8

Latitude: 28° 44' 12"

Longitude: 82° 05' 00"

SWFWMD C.U.P. Number: 03465

Average Withdrawal Rate: 310,574 G.P.D.

Maximum Withdrawal Rate: 1,080,000 G.P.D.

Water Use: pasture - hay

Well 9

Latitude: 28° 43' 55"

Longitude: 82° 05' 01"

SWFWMD C.U.P. Number: 03465

Average Withdrawal Rate: 310,574 G.P.D.

Maximum Withdrawal Rate: 1,080,000 G.P.D.

Water Use: pasture - hay

Well 10

Latitude: 28° 44' 59"

Longitude: 82° 05' 24"

SWFWMD C.U.P. Number: 04227

Average Withdrawal Rate: 279,000 G.P.D.

Maximum Withdrawal Rate: 1,400,000 G.P.D.

Water Use: vegetables

Well 11

Latitude: 28° 45' 11"

Longitude: 82° 05' 30"

SWFWMD C.U.P. Number: 04227

Average Withdrawal Rate: 279,000 G.P.D.

Maximum Withdrawal Rate: 1,400,000 G.P.D.

Water Use: vegetables

Well 12

Size: 6 inch

Latitude: 28° 44' 00"

Longitude: 82° 04' 58"

SWFWMD C.U.P. Number: 06702

Average Withdrawal Rate: 9,000 G.P.D.

Maximum Withdrawal Rate: 144,000 G.P.D.

Water Use: irrigation

Well 13

Size: 12 inch

Depth: 382 feet

Latitude: 28° 43' 49"

Longitude: 82° 05' 15"

SWFWMD C.U.P. Number: 06926

Average Withdrawal Rate: 80,300 G.P.D.

Maximum Withdrawal Rate: 1,700,000 G.P.D.

Water Use: irrigation

Drillers Log:

0' - 30' surface sand

30' - 60' clay rock mixture

60' - 120' white limerock

120' - 382' light brown limerock

Well 14 is on file with the U.S. Geological Survey and was last known to be owned by Mark Woodard. Information on this well includes the following:

Size: 4 inch

Depth: 130 feet

(C103R,3)

Latitude: 28° 44' 49"

Longitude: 82° 05' 52"

Water Use: domestic

INVENTORY OF SURFACE WATER BODIES

Lake Panasoffkee lies approximately 3,000 feet North of the landfill and is potentially impacted by the site. The analysis listed in Table 4 are typical for the water in Lake Panasoffkee.

EXISTING GROUNDWATER MONITORING DATA

Existing groundwater monitoring data pertinent to the site consists of water quality data of samples taken from Wells 1 through 5 from May, 1975 to March, 1983. See Figure 21. Mr. Warren Anderson and Mr. Charles P. Laughlin of the U.S. Geological Survey collected water quality data from Well 14 in September, 1978. The results of all water quality data is presented in Appendix A.

BIBLIOGRAPHY

Application to Construct a Solid Waste Facility in Sumter County, Florida, Springstead and Associates, Inc., May 16, 1975.

Sumter County Landfill, Springstead and Associates, Inc., January, 1984.

Chemical Analysis of Samples from Wells 1 through 5 in Figure 21 by Flowers Chemical Laboratories, Analytical & Consulting Chemists, P. O. Box 597, Altamonte Springs, Florida 32715-0597 and by Orlando Laboratories, Inc., P. O. Box 8025A, Orlando, Florida 32806.

United States Department of the Interior Geological Survey, Geohydrology of the Floridan Aquifer in the Withlacoochee River Basin of the Southwest Florida Water Management District, by Warren Anderson and Charles P. Laughlin, Open-File Report 82-331, Tallahassee, Florida, 1982.

United States Department of the Interior Geological Survey, Hydrology of Lake Panasoffkee, Sumter County, Florida, by George T. Taylor, Open-File Report, 1977.

U.S.D.A. Soil Conservation Service, Interim Soil Survey Report, Maps and Interpretation for South Sumter Watershed, Sumter County, Florida.

U.S. Department of Commerce, Climatological Data, Florida

Department of the Interior United States Geological Survey, Potentiometric Surface of the Floridan Aquifer in Central Sumter County, Florida, September, 1983 by L.A. Bradner.

Ground Water Monitoring Technology Procedures, Equipment and Application, Robert D. Morrison, Timco Manufacturing, Inc.

Well information was obtained from the Southwest Florida Water Management District and from the United States Geological Survey in Orlando, Florida.

TABLES

SUMTER COUNTY LANDFILL C-103

Table 1 from Monthly Activity Reports

Note: Waste Received prior to October, 1978 is considered negligible.

Month	Year	Monthly Volume Cu.Yd.	Total Accumulated Volume Cu.Yd.
Oct.		3,729	3,729
Nov.		3,743	7,472
Dec.		3,828	11,300
Jan.	1979	3,904	15,204
Feb.		3,408	18,612
Mar.		4,441	23,053
Apr.		3,666	26,719
May		3,325	30,044
Jun.		3,769	33,813
Jul.		3,606	37,419
Aug.		3,183	40,602
Sep.		3,147	43,749
Oct.		3,458	47,207
Nov.		3,687	50,894
Dec.		3,797	54,691
Jan.	1980	3,456	58,147
Feb.		3,111	61,258
Mar.		3,865	65,123
Apr.		3,589	68,712
May		3,448	72,160
Jun.		3,424	75,584
Jul.	,	3,699	79,283
Aug.		3,766	83,049
Sep.		2,732	85,781
Oct.		3,260	89,041
Nov.		3,182	92,223
Dec.		3,777	96,000
Jan.	1981	3,627	99,627
Feb.		3,526	103,153
Mar.		3,919	107,072
Apr.		4,292	111,364
May		3,721	115,085
Jun.		3,628	118,713
Jul.		3,625	122,338
Aug.		3,549	125,887
Sep.		3,353	129,240
Oct.		3,918	133,158
Nov.		3,584	136,742
Dec.		3,784	140,526

SUMTER COUNTY LANDFILL C-103

Table 1 (Cont.)

Month	Year	Monthly Volume Cu.Yd.	Total Accumulated Volume Cu.Yd.
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Jul. Aug. Sep. Oct. Nov. Dec. Jan.	1982 1983	4,098 4,354 4,424 4,360 4,234 4,547 5,082 4,227 5,071 4,079 4,877 6,030 5,181 4,921 6,163 5,554 4,756 5,695 5,413 6,115 7,849 9,302 4,836 5,147 5,103	144,624 148,978 153,402 157,762 161,996 166,543 171,625 175,852 180,923 185,002 189,879 195,909 201,090 206,011 212,174 217,728 222,484 228,179 233,592 239,707 247,556 256,858 261,694 266,841 271,944

Ending January 13, 1984

TABLE 2

GENERAL STRATIOGRAPHIC SECTION

AND

WATER BEARING PROPERTIES OF THE FLORIDAN AQUIFER

SYSTEM	SERIES	FORMATION	THICKNESS (FT.)	LITHOLOGY	WATER BEARING PROPERTIES
		Ocala Limestone	0 - 200	Upper part chiefly chalky fossiliferous limestone. Lower part chiefly calcitic limestone.	One of the most productive formations of the Floridan. Upper part more productive than lower part. Contains many solution cavities.
Tertiary	Eocene	Avon Park Limestone	200-600	Cream colored to brown chalky lime-stone and dolomite. Contains gypsum and chert.	Yields moderate to large quantities of water to wells.
,		Lake Gounty Limestone	700-900	Alternating beds of dark brown chalky limestone. Contains gypsum.	Similar to Avon Park Limestone, oldest formation of the Floridan.

TABLE 3

U.S. DEPARTMENT OF COMMERCE

CLIMATOLOGICAL DATA

монтн	PRECIPITATION	EVAPORATION	EVAPOTRANSPIRATION	TEMPERATURE
	(IN.)	(IN.)	(IN.)	(°F)
JAN.	3.01	2.63	2.1	58.5
FEB.	4.22	3.23	2.6	59.8
MAR.	3.84	5.06	3.6	65.3
APR.	1.87	6.47	4.5	70.9
MAY	4.51	7.19	5.3	75.7
JUN.	6.56	6.91	4.4	79.5
JUL.	6.93	6.81	4.9	81.0
AUG.	7.67	6.35	4.8	81.1
SEP.	6.30	5.05	4.0	79.4
OCT.	2.04	4.53	3.6	72.4
NOV.	1.95	2.94	2.7	64.8
DEC.	2.50	2.41	2.1	59.9

TABLE 4
CHEMICAL ANALYSES OF WATER

FROM LAKE PANASOFFKEE

(Analyses by U.S. Geological Survey; values in milligrams per liter except where noted.)

	Date of sampling			
Property	May 1966	May 1967	May 1970	May 1973
Water temperature (OC)		28.9	27.0	28.0
Color	10	10	30	
Conductance umho/cm at 25°C.	280	210	240	212
Dissolved oxygen (DO)		11	9.0	7.9
Percent saturation		142	111	100
Hq	7.4	7.9	7.5	
Alkalinity	108	61	101	
Bicarbonate (HCO ₃)	132	74	123	
Carbonate (CO ₃)		0	.0	
Phosphate (P)			0.10	
Dissolved solids		137	167	
(residue at 180°C)				
Orthophosphate, dissolved as P	0.026	.0	.006	.010
Hardness (Ca,Mg)	124	87	120	
Noncarbonate hardness	16	26	19	
Ammonia (NH ₄) as N (nitrogen)			.03	
Oranic nitrogen			.59	.56
Calcium (Ca)	42	26	42	
Magnesium (Mg)	4.6	5.2	3.5	
Sodium (Na)	4.9	5.3	5.7	
Potassium (K)	.2	.2	.2	
Chloride (Cl)	9.0	10	8.8	
Sulfate (SO ₄)	17	20	11	
Fluoride (F)	.3	.3	.4	
Silica (Si)	8.1	3.2	4.5	3.4
Iron (Fe) .	0	.01		
Manganese (Mn)		.0		
Strontium (Sr)		.37		
Nitrate (NO3) as N	.023	.0	.0	.0
Nitrite (NO3) as N			.003	

FIGURES

SUMTER COUNTY LANDFILL C-103

AS OF JAN. 13,1984

SCALE: IN = 200 FT.

FIG. 1

SUMTER COUNTY LANDFILL	SHEETOF:
	JOB NO. <u>C-/03</u>
LOCATION MAR	RVW S DATE 6-5-84

Sandpit x
Spring
Lake Panasoffkee 16 to 15 to
16 15 15 14
SITE
SITE
Sand Pond
Marsh 21 23 0
Sawarass
Pond

FIG. 2 SUMTER COUNTY LANDFILL SCALE: I"=2000'

FIG. 3

SUMTER COUNTY LANDFILL

EXPLORATORY TEST BORINGS

(BOREHOLE LOCATIONS AND ELEVATIONS)

LEESBURG, FLORIDA

SUMTER COUNTY LANDFILL	SHEETOF
	JOB NO. <u></u>
	BY WE DATE (18 CA

	0		TOP OF GROUND EL = 64.23 N.G.V.D.
	1		GRAYISH BROWN TO
	1		YELLOWISH BROWN SAND . PERMEABILITY = 0.014 Ft./MIN. =
	Ī		, 20002 2000 1000 1000 1000 1000 1000 10
	ļ +		
	+		
	9	7.7.7.7	
	1		BROWN SILTY SAND +
FET	1		PERMEABILITY = 5,37×10 FT./MIN.
SURFACE IN FEET	†		
CE /	Ī		
IRFA	16		
	-		LIGHT BROWN SAND
BELOW			EIGHT BROWN SAID
	19		
DEPTH			
DE		1,111	
		77.7.7	.WHITE CLAYEY SAND
		• • • • •	WHITE CLATET SAND
		1	

Fig. 4 LITHOLOGIC COLUMNAR SECTION FROM TEST HOLE !

CONSULTING ENGINEERS
LEESBURG, FLORIDA

SUMTER COUNTY LANDFILL	SHEETOF
	JOB_NO. <u>C-/o</u>
	BY <u>W. S.</u> DATE <u>S-25-84</u>

	0		TOP OF GROUND EL. 56.19 BROWN SAND
- 2		11111	
-3	,		
- 4	, ,		BLUEISH GRAY SANDY CLAY
_ 5	-	1	
- 6			
- 7	,	77.7	
- 8	· }		BLUEISH GRAY CLAY
- 9	·		
F1	o .		
-1			WET BLUEISH CLAY W/BITS OF LIMEROCK
-1	2		GROUN-WATER TABLE EL. 94.13 (JAN. 1984)
-1	3		
-1	4		
1	5		SAMPLE NOT RECOVERED
+1	6		
-,	7	· · · · ·	
- 1	Δ		Fig. 5
	<i>O</i>		LITHOLOGIC COLUMNAR SECTION
-			FROM TEST HOLE 2
1		1	

SUMTER COUNTY LANDFILL	SHEETOF
•	JOB NO. <u>C-/03</u>
	BY W.S. DATE 5-25-84

		TOP OF GROUND EL = 57.94 N.G.V.D.
2		DARK BROWN SAND
-		GRAY CLAYEY SAND RED CLAY
6		Light Barrier Co.
-8		LIGHT BROWN SANDY CLAY
-10		LIGHT BROWN SAND
-/2		
-14		·
-16		PINKISH SANDY CLAY
-18		
-20		
-22		
- 24		
-26		•
- 28		PINKISH WET CLAY
-30		MINKISH WET CLAY
- 32	-	
-34		
-36		
- 38		
-40		
- 92	**	
- 44		CLAY AND LIMEROCK MIX
- 46		Fig. 6.
- 48	'	LITHOLOGIC COLUMNAR SECTION
- 50		TEST HOLE 3

SUMTER	COUNTY L	ANDFILL	SHEE	тт	OF
					103
					5-20-04

	· <u>-</u>	L	TOP OF GROUND EL. = 69.04 N.G.V.D.
	1		
	2		
	- 3	1.1.	
	4	1.7.	
	5	1.1.	
	- 6		
	7		FINE SAND
	8	1 . 1	
	9		
	10		
	11	1: :	
۲	-12		
FEET	13	7.1	
	-14		
ξ	.15		
CF	- 16		
DEPTH BELOW SURFACE IN	1		SANDY CLAY
2	17		
٧١	18		
S 0	19		
356	20		•
8	- 21		
17	-22		
).E.F	1		
7	23		GREYISH CLAY
	24		GROUND-WATER TABLE EL. 44.36 (JAN. 1984)
	25 =		
	26		
	27		Fig. 7
	-28		LITHOLOGIC COLUMNAR SECTION
	- 29		FROM TEST HOLE 4
	- 30		
	. 1 31	1	•

SUMTER	COUNTY	LANDFILL	SHEET	OF
				C-103
•				AT E 5-25-84

			TOP OF GROUND EL. = 63.11 N.G.Y.D.
			707 07 G/2000 12. 1 00/11 74.G.17, D.
- 2		1:1:	
		1.7	
- 4		1:::	
}		1, .	
- 6		1,,,	
		1.,, '	
-8		'	
10			MEDIUM COURSE SAND
			·
-12		1, 1	
-		1:11	
-14		1, 4	
[''			
-16			
Γ'°		1	
		111	
18			
		1	
20		1	
}			
-22	_		
			GROUND-WATER TABLE EL. = 44.86 (JAN. 1984)
-24	-	'	
		7	
26			
		1	
- 28			
		· / /	
30			,
			CLAYEY SAND
-32			· · · · · · · · · · · · · · · · · · ·
		7	
34		7,	
- 36			
7 35			
- 38	•	7.	·
			FIG. 8
40			LITHOLOGIC COLUMNAR SECTION
1			•
12	•		FROM TEST HOLE 5
-			
- 44		· · ·	
		•	
46		<u> </u>	
L.,			

FIG. 9
SUMTER COUNTY LANDFILL
SOILS MAP

CONSULTING ENGINEERS
LEESBURG, FLORIDA

CONSULTING ENGINEERS
LEESBURG, FLORIDA

SUMTER COUNTY	LANDFILL	SHEETOF
·		JOB NOC-/03
		BY W. S. DATE 5-26-84

HOLE "3 SANDY CLAY SANDY CLAY SANDY CLAY SANDY CLAY SANDY CLAY GROUND WATER TABLE TABLE CLAY CLAY TABLE CLAY CLAY CLAY CLAY A CLAY CLAY CLAY CLAY CLAY A CLAY CL			
SANDY CLAY SANDY CLAY SANDY CLAY SANDY CLAY SANDY CLAY GROWNS WATER TABLE CLAY CLAY SANDY CLAY CROSS-SECTION B-B HORIZONTAL SCALE; 1" 200'			House # 3
SAND SAND SAND SAND SAND CLAY SAND GROUND-WATER TABLE CLAY CLAY SAND CLAY FIG. II GENERAL HYDROGEOLOGIC SECTION CROSS-SECTION B-B HORIZONTAL SCALE: I'-200'	_	58	f
SAND SAND SANDY CLAY WASTER TABLE TABLE CLAY CLAY CLAY CLAY SANDY CLAY TABLE TAB		÷	
SAND SANDY CLAY GROUND WATER TABLE TABLE CLAY W/BITS OF LIMEROCK 26 26 27 28 29 18 FIG. II GENERAL HYDROGEDIOGIC SECTION CROSS - SECTION B -B HORIZONTAL SCALE: I'' 200'		56	
SANDY CLAY 48 46 47 48 48 49 40 40 41 41 41 42 42 42 42 42 43 44 45 46 47 48 48 48 48 48 48 48 49 40 40 40 40 40 40 40 40 40		- 54	
SANDY CLAY FIGURE - WATER TABLE GROUND - WATER TABLE GROUND - WATER TABLE CLAY GROUND - WATER TABLE CLAY GROUND - WATER TABLE FIG. II GENERAL HYDROGEDLOGIC SECTION CROSS - SECTION B -B HORIZONTAL SCALE: I" = 200'		- 52	SAND
SANDY CLAY GROUND-WATER TABLE GROUND-WATER TABLE GROUND-WATER TABLE CLAY CLAY CLAY CLAY CLAY GROUND-WATER TABLE FIG. III GENERAL HYDROGEOLOGIC SECTION CROSS-SECTION B-B HORIZONTAL SCALE: 1" = 200'		-	
SANDY CLAY SANDY CLAY GROUND-WATER TABLE CLAY CLAY CLAY CLAY FIG. 11 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1" = 200'		- 50	
GROUND WATER TABLE 14 15 16 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1"= 200'		48	
GROUND - WATER TABLE 14 15 16 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1" = 200'		- 46	SANDY CLAY
GROWNEY WASTER TABLE		-	
GO 46 36 37 38 38 39 30 30 30 30 30 30 30 30 30 30 30 30 30		-44	GROUND-WATER
GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: I" = 200'		-42	TABLE
CLAY W/BITS OF LIMEROCK. 28 26 24 22 20 IB FIG. II GENERAL HYDROGEDLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: I" = 200'	⟨,	46	
CLAY W/BITS OF LIMEROCK. 26 27 28 29 19 FIG. 11 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1" = 200'	7.7	-	
CLAY W/BITS OF LIMEROCK. 28 26 24 22 20 IB FIG. II GENERAL HYDROGEDLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: I" = 200'	Ġ	-36	
26 24 22 20 18 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1" = 200'		1	
26 24 22 20 18 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1" = 200'	> 0	74	
26 24 22 20 18 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1" = 200'	1/	1	
26 24 22 20 18 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1" = 200'	EV	32	CLAY WIBITS OF LIMEROCK.
26 24 22 -20 -18	EL	- 30	
26 24 22 -20 -18		28	
FIG. 11 FIG. 11 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1" = 200'		-	
FIG. 11 FIG. 11 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1" = 200'		26	
FIG. 11 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1"= 200'		-24	
FIG. 11 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1"= 200'		722	
FIG. 11 GENERAL HYDROGEOLOGIC SECTION CROSS - SECTION B-B HORIZONTAL SCALE: 1"= 200'			
GENERAL HYDROGEOLOGIC SECTION CROSS-SECTION B-B HORIZONTAL SCALE: I"= 200'			
CROSS-SECTION B-B HORIZONTAL SCALE: 1"= 200"		18	Fig. 11
HORIZONTAL SCALE: 1"= 200"		-16	
	•	14	HORIZONTAL SCALE: 1"= 200'
		-	
		12	

FIG. 12
SUMTER COUNTY LANDFILL:
GROUND CONTOURS
PRIOR TO FILL
SCALE: 1"=200'

NOTE: CONTOURS ARE ONLY APPROXIMATE;
TAKEN FROM U.S.G.S. QUADRANGLE
(5'CONTOURS) BUSHNELL 1958.

LOW AREA FOR RETENTION
WITH ISOLATION FROM
ADJACENT PROPERTY OWNERS

CENTEL CABLE CO.

FIG 13 SUMTER COUNTY LANDFILL ...

APPROXIMATE GROUND CONTOURS

UPON COMPETION OF FILL

SCALE: 1"= 200'

PERIFERY DIKE (BORROW DITCH FOR ON SITE RUNOFF

FIG. 14
SUMTER COUNTY LANDFILL
GROUNDWATER CONTOUR (JAN., 1984)
SCALE: 1"= 200'

SUMTER COUNTY LANDFILL

TOP OF CLAYEY SAND, SANDY CLAY CONTOUR

SCALE: 1"= 200'

FIG. 16

SUMTER COUNTY LANDFILL

DIRECTION OF STORMWATER RUNOFF
PRIOR TO FILL

- DRAINAGE DIVIDE

Note: CONTOURS ARE ONLY APPROXIMATE; TAKEN FROM U.S.G.S. QUADRANGLE (5'CONTOURE) BUSHWELL 1958.

LOW AREA FOR RETENTION
WITH ISOLATION FROM
ADJACENT PROFERTY OWNERS

ON SITE RUNOFF

FIG. 17
SUMTER COUNTY LANDFILL
DIRECTION OF STORMWATER RUNOFF
UPON COMPLETION OF FILL

Best Available Copy Springstead & Associates, Inc. SUMTER COUNTY LANDFILL _SHEET____OF _ CONSULTING ENGINEERS JOB NO. <u>C-103</u> LEESBURG, FLORIDA BY W. S. DATE 6-11-84 COLEMA MINE PUMPAGE 29 _{Dog} Fennel 33 FIG. 18 POTENTIAMETRIC SURFACE OF THE FLORIDAN AQUIFER BY: L.A. BRADNER SEPTEMBER 1983

SCALE: 1 = /MILE .

FIG. 19
SUMTER COUNTY LANDFILL
PROPOSED MONITORING WELL LOCATIONS

Springstead & Associates, Inc.

CONSULTING ENGINEERS
LEESBURG, FLORIDA

SUMTER	COUNTY	LANDFILL .	SHEET	гof	
			_JOB N	10. <u>c-103</u>	

BY W. S. DAT E 6-11-84

FIG. 20
TYPICAL MONITORING WELL

Springstead & Associates, Inc. consulting engineers LEESBURG, FLORIDA	SUMTER COUNTY LANDFILL SHEET OF JOB NO. C-103
	BY <u>₩.≤.</u> DAT E <u>6-12-84</u>
Sandpit x Sandpit x Lake Panasoffkee 93 75	Spring 65 65 (13) 15 67 14 195
16	#7 \$ITE LOCATION
555 1559 Marsh 21	Sand Pond
80 SEABOARD	Saturass Pond
[1] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
. F	FIG. 21

FIG. 21
WELL LOCATIONS
SCALE: 1"= 2000'.

GRAPHS

APPENDIX A

Established 1957

Complete Laboratory Service

P.O. Box 597 • Attamonte Springs, Fia. 32701 • Phone (305) 339-5984

Received From:

Springstead & Assoc.

Box 283

Leesburg Fla.

For:

Sumpter Co. Landfill

Laboratory Identification: 8336-39

•				
·	* \	¥3	#4.	\$5
ANALYSES	8336	<u>8337</u>	8338	8339
B O D mg/L	1	1	1	1
C O D mg/L	30	4	20	6
Nitrates mg N/L	2.8	2.4	1.5	1.1
Chlorides mg Cl/L	15	10.5	12	11
pH ·	7.6	-7.7	7.9	8.1
Lead ppm Pb	<0.05	<0.05	<0.05	<0.05
Cadmium ppm Cd	<0.01	<0.01	<0.01	<0.01
Copper ppm Cu	<0.02	0.06	<0.02	<0.02 ···
Chromium ppm Cr	<0.01	<0.01	<0.01	<0.01

FLOWER'S CHEMICAL LABORA. ORIES

ANALYTICAL & CONSULTING CHEMISTS

Established 1957

Complete Laboratory Service

P O Box 597 • Altamonte Springs, Fla. 32701 • Phone (305) 339-5984

3/13/82 Date_____

Received From:

Springstead & Assoc.

Box 283

Leesburg Fia.

For:

Sumpter County LAndfill

Sample Nos 7862-65

Laboratory Identification HRS NO 83139

<u>ANALYSES</u>	Well # 1 7862	2 7863	4 7864	5 7865
B O D mg/L	2	3	Ļ	5
C O D mg/L	9.6	41.6	8.0	12.8
Nitrates mg N/L	1.86	3.0	1.84	0.58
Chlorides mg C1/L	14.7	10.1	5.58	10.1
рH	7.7	7.98	7.93	8.2
Lead prm Pb	0.01	<0.005	0.007	0.005
Cadmium ppm Cd	0.0005	0.0005	<0.0005	<0.0005
Copper ppm Cu	0.018	0.025	0.024	0.024
Chromium ppm Cr	<0.0025	<0.0025	<0.0025	<0.0025

FLOWER'S CHEMICAL LABORA. OLIES

ANALYTICAL & CONSULTING CHEMISTS

Established 1957

Complete Laboratory Service

P O Box 597 • Altamonte Springs, Fla .32701 • Phone (305) 339-5984

Received From:

Date 4/25/81

Springstead & Associates

Box 283

Leesburg Fla.

For:

Sumpter Co. Wells #1,2,4,5

Panasoffkee Landfill

Laboratory Identification 7445-48

HRS NO 83139

	1	2	4	5
ANALYSES	7445	7446	7447	7448
B O D mg/L	2	11	4	3
COD mg/L	7.3	9.3	6.38	12.4
Nitrates mg N/L	2.3	4.0	0.97	0.91
Chlorides mg C1/L	15.2	11.9	6.55	11.5
pH	7.55	7.80	8.00	8.10
Lead ppm Pb	0.017	0.017	0.018	0.025
Copper ppm Cu	0.001	0.12	0.001	0.001
Chromium ppm Cr	<0.0025	<0.0025	<0.0025	<0.0025
Cadmium ppm Cd	<0.0005	<0.0005	<0.0005	<0.0005

Best Available Copy

ANALYTICAL & CONSULTING CHEMISTS

Established 1957

Complete Laboratory Service

P.O. Box 597 • Altamonte Springs, Fla. 32701 • Phone (305) 339-5984

5/27/80

,ived From:

Springstead & Assoc. Leesburg, Fla.

Date_

For:

Sumpter Co

7207-10 Laboratory Identification_

ANALYSES	1 _7207	3 7208	4 7209	5 7210
B O D mg/L	3	4	2	3
C O D mg/L	6.37	1.76	0.88	1.46
Nitrates mg N/L	3.20	1.17	7.97	5.85
Chlorides mg Cl/L	14.8	7.55	6.55	12.13
рН	7.20	7.50	7.85	8.20
Lead ppm Pb	<0.005	<0.005	0.006	<0.005
Cadmium ppm Cd	<0. 0005	<0.0005	<0.0005	<0.0005
Copper ppm Cu	0.004	0.020	0.011	0.003
Chromium ppm Cr	<0.0025	<0.0025	<0.0025	<0.0025

FLOWERS CHEMICAL LABORATORIES

ANALYTICAL & CONSULTING CHEMISTS

Established 1957

Complete Laboratory Service

P. O. Box 597 • Altamonte Springs, Fla. 32701 • Phone (305) 339-5984

Received From:

Springstead & Assoc.

Box 283

Leesburg, Fla.

For:

Sumpter Co.

6-100

Date 10/30/79

Laboratory Identification 6977-79

ANALYSES	#1 6977	#4 6978	#5 6979
B O D mg/L	0.3	3.3	0.9
C O D mg/L	4.5	3.9	11.0
Nitrate mg N/L	2.1	1.73	0.98
рН	7.50	7.60	7.60
Lead ppm Pb	0.011	0.018	0.010
Cadmium ppm Cd	<0.0005	<0.0005	<0.0005
Copper ppm Cu	0.0008	0.001	0.002
Chromium ppm Cr	0.005	0.004	0.003

FLOWERS CHEMICAL LABORATORIES

ANALYTICAL & CONSULTING CHEMISTS

Established 1957

Complete Laboratory Service

P.O. Box 597 ● Altamonte Springs, Fla. 32701 ● Phone (305) 339-5984

Received From: Springstead & Associates

P.O. Box 283

Leesburg, Florida

Date 7/21/78

For:

Sumpter County Landfill

Wells 1,3,4,5

Laboratory Identification 6257-60

ANALYSES	WELL 1 <u>6257</u>	3 6258	4 6259	5 <u>6260</u>
B O D mg/L	<1	<1	<1	<1
C O D mg/L	3.2	3.8	2.1	2.4
Nitrates mg N/L	0.32	0.21	1.35	1.16
Chlorides mgC1/L	9.6	8.7	10.3	9.2
pH	7.41	7.53	7.69	7.68
Lead ppm Pb	0.003	0.003	0.004	0.003
Cadmium ppm Cd	0.0004	0.0002	0.0002	0.0002
Copper ppm Cu	0.008	0.021	0.108	0.0013
Chromium ppm Cr	0.008	0.001	0.001	0.001

FLOWERS CHEMICAL LABORATORIES

ANALYTICAL & CONSULTING CHEMISTS

Established 1957

Complete Laboratory Service

P.O. Box 597 • Altamonte Springs, Fla. 32701 • Phone (305) 339-5984

Received From:

Springstead & Associates

Box 283

Leesburg, Florida

For:

Sumpter County

Date 3/13/78

Laboratory Identification 5076-5079

ANALYSES	Landfill Residence 5076	LAndfill Windmill 5077	Landfill 	Farmhouse 5079
B o D mg/L	<1.0	<1.0	<1.0	<1.0
C O D mg/L	3.6	4.8	1.2	1.2
Nitrate N mg N/L	0.02	0.01	0.04	0.03
Chlorides mg C1/L	8.5	7.5	11.0	7.0
pH	7.73	7.75	7.81	7.83
Lead ppm Pb	<0.001	0.001	0.001	0.001
Cadmium ppm Cd	<0.001	0.002	<0.001	0.007
Copper ppm Cu	<0.01	0.02	<0.01	0.01
Chromium ppm Cr	<0.005	<0.005	<0.005	<0.005

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

TO: Sumter County Commission Sumter County Courthouse

Bushnell, Florida 33513 Report # 13687

Date: Aug. 3/77

Sampled by: Client

IDENTIFICATION:

Samples submitted by Springstead & Associates.

#1-Sumter County Landfill, Well #1

#2-Sumter County Landfill, Well #3

#3-Sumter County Landfill, Well #4

#4-Sumter County Landfill, Well #5

RESULTS OF ANALYSIS:	#1	#2	#3	#4
-1				
BOD-5 day	0.6	0.4	<0.1	0.2
COD	1.8	1.2	0.5	0.7
Nitrates, NO ₃	4.43	6.56	6.73	8.86
Chlorides, Cl	8.6	8.5	7.2	11.9
Copper, Cu	<0.1	<0.1	< 0.1	<0.1
Chromium Total, Cr	<0.01	< 0.01	<0.01	<0.01
Cadmium, Cd	< 0.01	< 0.01	< 0.01	<0.01
Lead, Pb	<0.01	< 0.01	<0.01	< 0.01
рН	7.5	7.3	7.3	7.3

RESULTS EXPRESSED IN mg/l, UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Chemist/Biologist/Bacteriologist

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

TO:

Springstead & Associates

Consulting Engineers

P.O. Box 283

11

11

Leesburg, FL. 32748

Report #

Sampled by:

13196

Date:

27 April. 77

Client

IDENTIFICATION:

3 -

4 -

1 - Sumter County Landfill Sample 1

2 - 11 11 11

11 11

11

Well

Well

5

4

RESULTS OF ANALYSIS:	1	2	3	4	
BOD-5 day	1.2	0.2	3.0	0.8	
COD	1.9	<1.0	11.1	<1.0	
pН	7.5	7.8	7.8	7.5	
Nitrates, NO ₃	2.88	3.77	5.76	0.80	
Chlorides, Cl	6	9	5	5	
Copper, Cu	0.01	0.02	<0.01	0.01	
Chromium, Total, C	r < 0.01	<0.01	<0.01	<0.01	
Cadmium, Cd	<0.01	< 0.01	<0.01	<0.01	
Lead, Pb	<0.01	< 0.01	<0.01	<0.01	

RESULTS EXPRESSED IN mg/l,

UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Chemist/Biologist/Bacteriologist

P. O. Box 8008

Orlando, Florida 32856

305/843-1661

TO:

Sumter County Commission Sumter County Courthouse Bushnell, FLA. 33513 Report # 14253-1

Received: 30 Nov. 77

Reported: 5 Dec. 77

Sampled by: Client

IDENTIFICATION:

1 - Sumter County Landfill Well #1

2 - Sumter County Landfill Well #3

RESULTS OF ANALYSIS:	Storet #	1	2
BOD-5 day	00310	5.8	6.5
Chemical Oxygen Demand, COD	00340	18	51
pH	00403	7.4	7.3
Nitrates, NO ₃	71850	2.04	3.37
Chlorides, Cl	00940	8.4	8.5
Copper, Cu, ug/l	01042	< 100	< 100
Chromium Total, Cr, ug/l	01034	< 10	<10
Cadmium, Cd, ug/l	01027	< 10	<10
Lead, Pb, ug/l	01051	< 10	< 10

RESULTS EXPRESSED IN mg/I UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Chemist/Biologist/Bacteriologist

BEST AVAILABLE COPY

Orlando Laboratories, Inc.

P. O. Box 8008

Orlando, Florida 32856

305/843-1661

TO:

Sumter County Commission Sumter County Courthouse Bushnell, FLA. 33513 Report # 14253-2

Received: 30 Nov. 77
Reported: 5 Dec. 77

Sampled by: Client

IDENTIFICATION:

3 - Sumter County Landfill Well #4

4 - Sumter County Landfill Well #5

RESULTS OF ANALYSIS:	4		
BOD-5 day	00310	6.0	7.0
Chemical Oxygen Demand, COD	00340	21	63
pН	00403	7.7	7.7
Nitrates, NO ₃	71850	5.98	7.31
Chlorides, Cl	00940	6.8	12
Copper, Cu.ug/l	01042	< 100	< 100
Chromium Tota, Cr, ug/l	01034	< 10	< 10
Cadmium, Cd, ug/l	01027	< 10	< 10
Lead, Pb, ug/l	01051		

RESULTS EXPRESSED IN mg/I UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Chemist/Biologist/Bacteriologist

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

TO:

Report # 12622-1

Springstead & Associates, Inc.

Date: 14 Dec. 76

Consulting Engineers

Sampled by: Client

P.O. Box 283

Leesburg, FL 32748

IDENTIFICATION:

1 - Well #1 Sumter County Landfill

2 - Well #3 Sumter County Landfill

RESULTS OF ANALYSIS:	1	2	
Chemical Oxygen Demand, COD	<1.0	<1.0	
pН	7.4	7.5	
Chloride, Cl	. 6	6	
Nitrates, NO3	0.89	4.34	
Cadmium, Cd	<0.01	<0.01	
Chromium, Total, Cr	<0.01	<0.01	
Copper, Cu	<0.1	<0.1	
Lead. Pb	0.02	<0.01	
Biochemical Oxygen Demand, BOD-5 day	<0.1	<0.1	

RESULTS EXPRESSED IN mg/l,

UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Chemist/Biologist/Bacteriologist

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

TO:

12622-2

Springstead & Associates, Inc.

Report # 14 Dec. 76 Date:

Consulting Engineers

Client Sampled by:

P.O. Box 283

Leesburg, FL 32748

IDENTIFICATION:

3 - Well #4 Sumter County Landfill

4 - Well #5 Sumter County Landfill

RESULTS OF ANALYSIS:	3	4
Chemical Oxygen Demand, COD	<1.0	<1.0
рН	7.9	8.0
Chloride, Cl	6	9
Nitrates, NO3	6.87	7.75
Cadmium, Cd	<0.01	<0.01
Chromium, Total, Cr	<0.01	<0.01
Copper, Cu	<0.1	0.1
Lead, Pb	< 0.01	0.05
Biochemical Oxygen Demand, BOD-5 day	<0.1	<0.1

RESULTS EXPRESSED IN mg/l,

UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Chemist/Biologist/Bacteriologist

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

TO:

Springstead & Associates, Inc.

Consulting Engineers

P.O. Box 283

Leesburg, FL 32748

Report # 11725 -1

Date: 2 June 76

Sampled by: Client

IDENTIFICATION:

1 - Sumter County Landfill Well # 1

2 - Sumter County Landfill Well #5

3 - Sumter County Landfill Well #3

RESULTS OF ANALYSIS:	#1	#2
Chemical Oxygen Demand, COD	6.92	2.77
рН	7.7	7.8
Chloride, Cl	14	7
Nitrates, NO3	62.02	6.87
Cadmium, Cd	<0.01	<0.01
Chromium Total, Cr	<0.01	<0.01
Copper, Cu	<0.1	0.1
Lead, Pb	<0.01	<0.01
Biochemical Oxygen Demand, BOD-5 da	ay 4.0	4.0

RESULTS EXPRESSED IN mg/l (ppm) UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Chemist/Biologist/Bacteriologist

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

TO:

Springstead & Associates, Inc.

Consulting Engineers

P.O. Box 283

Leesburg, FL 32748

Report # 11725-2

Date: 2 June 76

Sampled by: Client

IDENTIFICATION:

1 - Sumter County Landfill Well # 1

2 - Sumter County Landfill Well # 5

3 - Sumter County Landfill Well #3

RESULTS OF ANALYSIS:	#3
Chemical Oxygen Demand, COD	8.30
pH	7.8
Chloride, Cl	4
Nitrates, NO3	8.86
Cadmium, Cd	<0.01
Chromium Total, Cr	<0.01
Copper, Cu	<0.1
Lead, Pb	<0.01
Biochemical Oxygen Demand, BOD-5 day	3.0

RESULTS EXPRESSED IN mg/l (ppm) UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Chemist/Biologist/Bacteriologist

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

(3)

TO: Springstead & Associates

1426 North Blvd.

Leesburg, Florida 32748 Report # 11271

Date: 2/16/76

(5)

Sampled by: client

(4)

RESULTS OF ANALYSIS:

IDENTIFICATION: (1) Well site #1

(2) Well site #2 (kinard)

(3) Well site #3 (windmill)

(4) Well site #4

(5) Well site #5 (Landfill)

(1)

BOD- 5 day	2 6	6	8	8	15
COD	<2	<2	6.12	<2	<2
pН	7.5	7.8	7.5	7.9	7.9
Nitrates, NO ₂	0.150	5.50	0.305	2.10	0.167
Chlorides, Cl	5	8	5	3	6
Copper, Cu	0.02	0.02	0.05	< 0.01	0.03
Chromium, Total, Ci	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium, Cd	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Lead, Pb	0.031	< 0.001	0.002	0.003	0.006

(2)

RESULTS EXPRESSED IN mg/l (ppm) UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

T0: Mr. Clark Crueger
P.O. Box 283
Leesburg FL 32745

Report #
Date: July 16, 1975
Sampled by: J. V. Rooks

IDENTIFICATION: Windmill pump on McLeod Ranch

Central Landfill C-103, Sumter County

Well Depth 175'

RESULTS OF ANALYSIS:	ppm		
hydrolyzable PO_4	1.5		٠
so ₄	67		
Cl	7	·	

RESULTS EXPRESSED IN mg/l (ppm) UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Chemist/Biologist/Bacteriologist

REPORT OF ANALYSIS

Best Available Copy

Orlando Laboratories, Inc.

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

TO:

Board of County Commissioners

Sumter County, Florida

P.O. Drawer A

Bushnell, Florida

33513

Report # 10307

Date: 5/6/75

Sampled by: client

IDENTIFICATION:

Re: Sumter County Landfill

(3) Windmill

RESULTS OF ANALYSIS:

(3)

Specific Conductance/umhos

479

Nitrate Nitrogen, N

0.07

Cadmium, Cd

< 0.001

Chromium, Total, Cr

< 0.001

Lead, Pb

0.003

Chemical Oxygen Demand

41.6

RESULTS EXPRESSED IN mg/l (ppm) UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

Best Available Copy

STANDARD WATER ANALYSIS REPORT

Orlando Laboratories, Inc.

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

Report to: Board of County Commissioners	Clear
Date:June 5, 1975	Sampled by: Client
Report Number: 10307	Identification: Windmill, #3

METHODS

This water was analyzed according to "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

	. Data Significance	RESUL	_TS	Data Significance	
Determination	_	p.p.m.	Determination		p.p.m.
Total Dissolved Solids, @ 105°C.	x.	335	Total Hardness, as CaCO ₃	x.	<u> </u>
Phenolphthalein Alkalinity, as CaCO3	×.		Calcium Hardness, as CaCO ₃	x.	<u> </u>
Total Alkalinity, as CaCO ₃	x.	156	Magnesium Hardness, as CaCO ₃	x.	18
Carbonate Alkalinity, as CaCO3	x.		Calcium, as Ca	x.	_ 84_
Bicarbonate Alkalinity, as CaCO ₃	x.	156	Magnesium, as Mg	.x	4.4
Carbonates, as CO ₃	x.	_0_	Sodium, as Na	x.	5.7
Bicarbonates, as HCO ₃	x.	190	Iron, as Fe	.x	(1.0)
Hydroxides, as OH	x.	O	Manganese, as Mn	.x	<0.05
Carbon Dioxide, as CO ₂	x.	8	Copper, as Cu /	.x	<0.1
Chloride, as C1 \	x.	(1.0)	Silica, as SiO ₂	x.	_6_
Sulfate, as SO ₄ +	x.	76	Color, Standard Platinum Cobalt	Scale	
Fluoride, as F	· *	0.9	Odor Threshold	x.	_0_
Phosphate, as PO ₄	.x		Turbidity, Jackson Units	x. •	4.9
pH (Laboratory)	.x	7.6	•		
pHs	.ж	7.5			
Stability Index	.х	7.4			
Saturation Index	.ж	<u>-0.T</u>)			

Signed: John Turbish Chemist

(To convert ppm to grains per gallon, divide ppm by 17.1 — p.p.m. = mg/l)
INTERNATIONAL ANALYSIS OF WATER, SEWAGE & INDUSTRIAL WASTEWATER-ENVIRONMENTAL IMPACT STUDIES

WEWREK OF THE NATIONAL SOCIETY OF

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

TO:

Board of County Commissioners

Sumter County, Florida

P.O. Drawer A

Bushnell, Florida

33513

10282 Report #

5/29/75 Date:

client Sampled by:

IDENTIFICATION:

Sumter County Landfill

(1) Dairy

(2) Kinard

(4) McLeod

1				
RESULTS OF ANALYSIS:	(1)	(2)	(4)	
Specific Conductance/umhos	280	215	170	
Nitrate Nitrogen, N	2.00	1.15	0.96	
Cadmium, Cd	<0.001	<0.001	<0.001	
Chromium, Total, Cr	<0.001	<0.001	<0.001	
Lead, Pb	<0.001	<0.001	<0.001	
Chemical Oxygen Demand	3.3	6.7	4.6	

RESULTS EXPRESSED IN mg/l (ppm) UNLESS OTHERWISE DESIGNATED

Respectfully submitted,

ORLANDO LABORATORIES, INC.

STANDARD WATER ANALYSIS REPORT

Orlando Laboratories, Inc.

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

Report to: Board of Co	ounty Commissioners	Appearance:	Clear
Date: May 29, 197	5	Sampled by:	Client
Report Number:102			Dairy

METHODS

This water was analyzed according to "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

		Data Significance	R	ESULTS	Data Significance	
	Determination	0.3	p.p.m.	Determination		p.p.m.
	Total Dissolved Solids, @ 105°C.	x.	195	Total Hardness, as CaCO ₃	x.	108
	Phenolphthalein Alkalinity, as CaCO ₃	x.	0	Calcium Hardness, as CaCO ₃	x.	708
	Total Alkalinity, as CaCO ₃	x.	78	Magnesium Hardness, as CaCO	3 ×.	41.0
	Carbonate Alkalinity, as CaCO ₃	x.	_0_	Calcium, as Ca	x.	<u>43</u>
	Bicarbonate Alkalinity, as CaCO3	×.	78	Magnesium, as Mg	.x	<0.1
	Carbonates, as CO ₃	x.	_0	Sodium, as Na	x.	7.1
	Bicarbonates, as HCO ₃	x.	95	Iron, as Fe	.x	40.1
	Hydroxides, as OH	x.	_0_	Manganese, as Mn	.x	<0.05
	Carbon Dioxide, as CO ₂	x.	8	Copper, as Cu	.x	<u><0.1</u>
	Chloride, as C1	x.	18	Silica, as SiO ₂	x.	_5
	Sulfate, as SO ₄	x.	_(o	Color, Standard Platinum Cob	alt Scale	_0_
}	Fluoride, as F	.x	0.1	Odor Threshold	x.	_0_
1	Phosphate, as PO ₄	ж.	9.5	Turbidity, Jackson Units	x.	_0.4
ı	pH (Laboratory)	.x	7.3			
}	pHs	.x	8.1			
	Stability Index	.x	8.9			·
1	Saturation Index	.x	-0.8			

Signed: Lonna Furbish

Chemist

STANDARD WATER ANALYSIS REPORT

Orlando Laboratories, Inc.

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

Report to:	Board of County Commissioners	Appearance:	Clear
Date:	May 29, 1975	Sampled by:	Client
Report Nun	nber:	Identification: _	Kinard

METHODS

This water was analyzed according to "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

	Data Significance		RESULTS	Data Significance	
Determination		p.p.m.	Determination		p.p.m.
Total Dissolved Solids, @ 105°C.	x.	160	Total Hardness, as CaCO ₃	x.	108
Phenolphthalein Alkalinity, as CaCO ₃	x.	_0_	Calcium Hardness, as CaCO ₃	x.	_90_
Total Alkalinity, as CaCO ₃	x.	_84	. Magnesium Hardness, as CaCO ₃	x.	_18_
Carbonate Alkalinity, as CaCO3	x.	_0_	Calcium, as Ca	x.	<u>36</u>
Bicarbonate Alkalinity, as CaCO3	x.	_84_	Magnesium, as Mg	.x	<u>4.4</u>
Carbonates, as CO ₃	x. .	_0_	. Sodium, as,Na	x.	3.9
Bicarbonates, as HCO ₃	x.	103	. Iron, as Fe	,x	د٥.١
Hydroxides, as OH	x.	_0_	Manganese, as Mn	.x	10.05
Carbon Dioxide, as CO ₂	x.	_5_	Copper, as Cu	.x	40.1
Chloride, as C1	x.	_6	. Silica, as SiO ₂	. x.	<u>le</u>
Sulfate, as SO ₄	x.	6	Color, Standard Platinum Cobalt	Scale	0
Fluoride, as F	.x	0.1	Odor Threshold	x.	
Phosphate, as PO ₄	.x	19_	Turbidity, Jackson Units	ж.	0.5
pH (Laboratory)	.х	7.6			
vHs	.x	8.1	· •		
Stability Index	.х	8.6	· •		
Saturation Index	.x	-0.5	_	•	

Signed: John Subish

Chemist

STANDARD WATER ANALYSIS REPORT

Orlando Laboratories, Inc.

P. O. Box 8025A • Orlando, Florida 32806 • 305/843-1661

Report to: Board of County Commissioners	Appearance: Clear
Date: May 29, 1975	Sampled by: Client
	Identification: McLeod

METHODS

This water was analyzed according to "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

		Data Significance		RESULTS	Data Significance	
	Determination		p.p.m.	Determination		p.p.m.
	Total Dissolved Solids, @ 105°C.	x.	135	Total Hardness, as CaCO ₃	x.	_90_
	Phenolphthalein Alkalinity, as CaCO ₃	x.		Calcium Hardness, as CaCO ₃	x.	90_
	Total Alkalinity, as CaCO ₃	x.	78	Magnesium Hardness, as CaCO ₃	х.	<1.0
	Carbonate Alkalinity, as CaCO ₃	x,	_0_	Calcium, as Ca	x.	<u> 36</u>
	Bicarbonate Alkalinity, as CaCO3	x.	78	Magnesium, as Mg	. x	<0.1
ı	Carbonates, as CO ₃	x.	_0_	Sodium, as Na	x.	3.1
	Bicarbonates, as HCO ₃	x.	95	Iron, as Fe	.х	<0.L
, 1	Hydroxides, as OH	x.	_0_	Manganese, as Mn	x.	<0.05
	Carbon Dioxide, as CO ₂	x.	_3_	Copper, as Cu	x.	<0.L
	Chloride, as C1	x.	_3	Silica, as SiO ₂	x.	_4_
	Sulfate, as SO ₄	x.	6_6	Color, Standard Platinum Cobalt S	Scale	
h	Fluoride, as F	.x	0.1	Odor Threshold	x.	
	Phosphate, as PO ₄	.x	3.5	. Turbidity, Jackson Units	x .	_ت.و_
-	pH (Laboratory)	.x	77			
	pHs	.x	8.2	•		
	Stability Index	.х	8.7			
	Saturation Index	.x	-0.5			

signed: Johns Jurbish

Chemist

WATER QUALITY DATA FROM WELL 14

File No.: 284449082055201

Date: September 20, 1978

Specific Conductance per centimeter at 25°C, in micromhos: 482

pH, in standard units: 7.2

Hardness as CaCO₃, mg/1: 240

Chloride, mg/l: 7.5

Fluoride, mg/l: 0.1

Sulfate, mg/l: 110

Sulfide, mg/l: 0.3

Iron, micrograms per liter: 200

Dissolved solids, residue at 1800, mg/l: 312