

January 27, 2013

F. Thomas Lubozynski, P.E. Waste & Air Resource Programs Administrator Florida Department of Environmental Protection Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Subject: Groundwater Contamination Assessment

Well Installation and Initial Sampling Report (Q1)

J.E.D. Solid Waste Management Facility

Osceola County, Florida

Permit Nos. 0199726-023-SC-MM and SO49-0199726-022

Dear Mr. Lubozynski:

On behalf of Omni Waste of Osceola County, LLC (Omni), HDR is submitting this well installation and initial sampling report for the three newly installed wells – CW-1A, CW-2A and CW-3A. The wells were installed to address volatile organic compound (VOC) detections in groundwater samples collected from select groundwater monitoring wells at the J.E.D. Solid Waste Management Facility (Facility) located at 1501 Omni Way, St. Cloud, Florida. Routine groundwater monitoring has at times detected Benzene in groundwater at levels slightly above the Primary Drinking Water Standard (PDWS) in samples collected from eleven shallow groundwater monitoring wells and vinyl chloride from three shallow groundwater monitoring wells located along the disposal boundary of the northern portion of the landfill. To evaluate these detections, Omni conducted several investigations which indicated the probable source of these VOCs was landfill gas migration beyond the lined disposal boundary.

Omni subsequently implemented a Soil Vapor Extraction (SVE) pilot test study in March 2013. As discussed in a July 23, 2013 meeting with the Florida Department of Environmental Protection (Department) (and subsequent July 30, 2013 letter from Omni), based on the groundwater quality data collected since installation of the SVE pilot system Omni recommended that the SVE pilot test study be discontinued and instead focus continued efforts on proactively expanding the Landfill Gas Collection Control System (GCCS) within the landfill disposal footprint. Additionally, as summarized in an August 6, 2013 letter to the Department, Omni prepared a contamination evaluation Work Plan to delineate the extent of the impacts and predict the likelihood that water quality standards will be violated outside the zone of discharge (ZOD) (if any) and evaluate potential preventative methods. The Work Plan, dated October 31, 2013, outlined the installation procedures for three new temporary delineation wells - CW-1A, CW-2A and CW-3A.

Well Installation

The three temporary groundwater quality evaluation monitoring wells were installed on November 14th and November 20th, 2013. The well locations are shown in Attachment 1 - Figures. The Site Plan (Figure 1) shows the proposed locations, and the survey (Figure 2) shows the locations as installed. The wells were installed by a Florida Licensed Drilling Contractor (Environmental Drilling) using a drilling rig turning a 4.25 inch ID hollow-stem auger, producing an approximately 8 inch diameter borehole. Each well was installed to 15 feet below ground surface (bgs) and constructed with10 feet of 2 inch diameter flush joint Schedule 40 PVC 0.010 inch slot well screen and approximately 8 feet of flush joint Schedule 40 PVC solid riser (including stick-up). Each well was completed with a 4 inch x 4 inch locking protective casing set into a 2 feet x 2 feet concrete pad. The well construction details and lithological information are included in Attachment 2 – Well Logs and FDEP Well Completion Reports (Form 62-701.900(30).

The wells were installed in accordance with Chapter 62-701.510 (3)(d) FAC and SOP PCS-006 Design, Installation, and Placement of Monitoring Wells (2005). All down-hole tools and supplies were steam cleaned prior to use and between each well installation. An HDR geoscientist observed drilling and well installation activities and recorded the information listed in the well logs and completion reports.

After installation, each monitoring well was developed using a submersible pump to remove fine particles from the screen and filter pack. Turbidity was measured during development until stability was reached, with a target level of less than 20 NTU. After installation & development, the wells were surveyed by a Florida licensed Professional Land Surveyor (Peavey and Associates) to determine the horizontal (latitude/longitude), and vertical (NGVD 1929 or NAVD 1983) locations of each well (Attachment 1 – Figure 2).

Well Sampling and Analysis

Evaluation monitoring requires compliance wells to be sampled quarterly. After installation, the wells were sampled on December 16th 2013 and analyzed by ALS Environmental. The samples were analyzed for parameters required for the initial sampling event (Q1) including parameters listed in Chapter 62-701.510(7)(a) and (c).

Note that the subsequent sampling events (Q2, Q3 and Q4) will require the wells to be sampled and analyzed for the parameters listed in Chapter 62-701.510(7)(a) only. The parameter lists have been provided below for reference.

Chapter 62-701.510(7)(a)

Field Parameters
Static water level before purge

Laboratory Parameters
Total ammonia – N

Specific conductivity Chlorides pH Iron
Dissolved Oxygen Mercury
Turbidity Nitrate
Temperature Sodium

Colors and sheens by observation Total dissolved solids (TDS)

Those parameters listed in 40 CFR

Part 258 Appendix I

Chapter 62-701.510(7)(c)

Those parameters listed in 40 CFR Part 258 Appendix II.

Results

The lab analysis results for the initial sampling event (Q1) are provided in Attachment 3 – Laboratory and Field Data. The detected parameters have been listed in Table 1 below.

Table 1. Summary of Parameters detected during Lab Analysis

Paramters		Result	MCL	MDL	PQL	Units	
Paramers	CW-1A	CW-2A	CW-3A	WICL	MDL	PQL	Units
Chloride	21.7	76.3	62	250**	0.11	0.5	mg/L
Ammonia as Nitrogen	1.05	6.72	11.1	2.8***	0.007	0.01	mg/L
Iron, Total Recoverable	11,900	8,070	126,000	300**	3	100	ug/L
Sodium, Total Recoverable	20.4	50.4	65.5	160*	0.03	0.5	mg/L
Arsenic, Total Recoverable	278	1 I	2.1	10*	0.5	1	ug/L
Barium, Total Recoverable	55.2	54	173	2000*	0.5	2	ug/L
Beryllium, Total Recoverable	0.15 l	0.54	0.63	4*	0.04	0.5	ug/L
Cadmium, Total Recoverable	0.87	ND	ND	5*	0.1	0.4	ug/L
Cobalt, Total Recoverable	3.2	2.6	12.9	420	0.03	1	ug/L
Chromium, Total Recoverable	11.1	1.5	12.5	100*	0.2	1	ug/L
Copper, Total Recoverable	0.8 I	0.4 l	0.6 I	1000**	0.3	1	ug/L
Nickel, Total Recoverable	6.1	2.5	3.1	100*	0.5	2	ug/L
Lead, Total Recoverable	1.05	ND	2.08	15*	0.12	0.5	ug/L
Selenium, Total Recoverable	2.8	ND	1.8 I	50*	1.1	2	ug/L

Thallium, Total Recoverable	0.05 I	ND	ND	2*	0.05	0.2	ug/L
Vanadium, Total Recoverable	12.3	9.2	15	49***	0.3	2	ug/L
Zinc, Total Recoverable	2.8 I	3.7 I	3.7 I	5000**	1.6	5	ug/L
Mercury, Total	ND	0.03 I	0.05 I	2*	0.02	0.1	ug/L
Toluene	0.23 I	ND	ND	1000**	0.19	1	ug/L
Solids, Total Dissolved	445	918	1190	500**	10	10	mg/L

Notes:

ND = Not Detected

MDL = Method Detection Limit

PQL = Practical Quantitation Limit

I = The reported value is between the laboratory MDL and the laboratory PQL.

MCL = Maximum Contaminant Level (PDWS*, SDWS**, GCTL***)

PDWS = Primary Drinking Water Standard

SDWS = Secondary Drinking Water Standard

GCTL = Groundwater Cleanup Target Level

VOCs were not detected during the initial sampling event with the exception of very low level toluene in CW-1A. The toluene concentration (0.23 I ug/L) was between the MDL and the PQL and well below the SDWS of 1000 ug/L. Ammonia (N), iron, TDS, and arsenic were the only parameters detected above groundwater standards. Each of these parameters has been historically detected in the "A" Zone wells. Both arsenic and TDS levels are typically associated with high iron concentrations. Iron exceeded the SDWS in each of the three evaluation monitoring wells, however with the exception of CW-3A, levels were within the historical range. The reported iron concentration of 126,000 ug/L in CW-3A could possibly be the result of a laboratory error, and this will be verified in upcoming sampling events. Note that turbidity in CW-3A (32 to 35 NTU) was also higher than the other evaluation monitoring wells.

Arsenic was also reported at what appears to be an anomalous level (278 ug/L) in CW-1A. CW-1A was installed at a location west of the landfill to delineate of MW-3A, however MW-3A rarely reports arsenic levels above 2 ug/L. The anomalously high arsenic level in CW-1A could possibly be due to a laboratory error which will be verified in the upcoming sampling events. Another possible source is an electrical power pole near CW-1A that may have been treated with an arsenic compound such as CCA. The indications should become more apparent with the additional data collected during the next three quarters.

Based on historical detections, arsenic, which has a geochemical association with iron, is frequently detected in "A" Zone monitoring wells. Arsenic is occasionally detected above the MCL, but when reported above the MCL the range is typically between 10 and 20 ug/L in two wells (MW-11A and MW-13A)

on the east side of the landfill. However, arsenic was barely detected in the wells downgradient of MW-11A and MW-13A. TDS levels reported exceeding the SDWS in CW-2A and CW-3A and just below the MCL in CW-1A are attributable to the high iron levels in these wells

In summary, the three evaluation monitoring wells were installed to delineate VOCs (primarily benzene and vinyl chloride) that have been reported from samples collected in the shallow ("A" Zone) wells. Neither of these VOCs has been detected in the evaluation monitoring wells. Additionally, chloride, which is an excellent conservative indicator of leachate in groundwater, was detected at levels and well balanced with sodium. These findings support the suggestion that the VOCs which have been detected above groundwater standards in upgradient wells were likely associated with landfill gas.

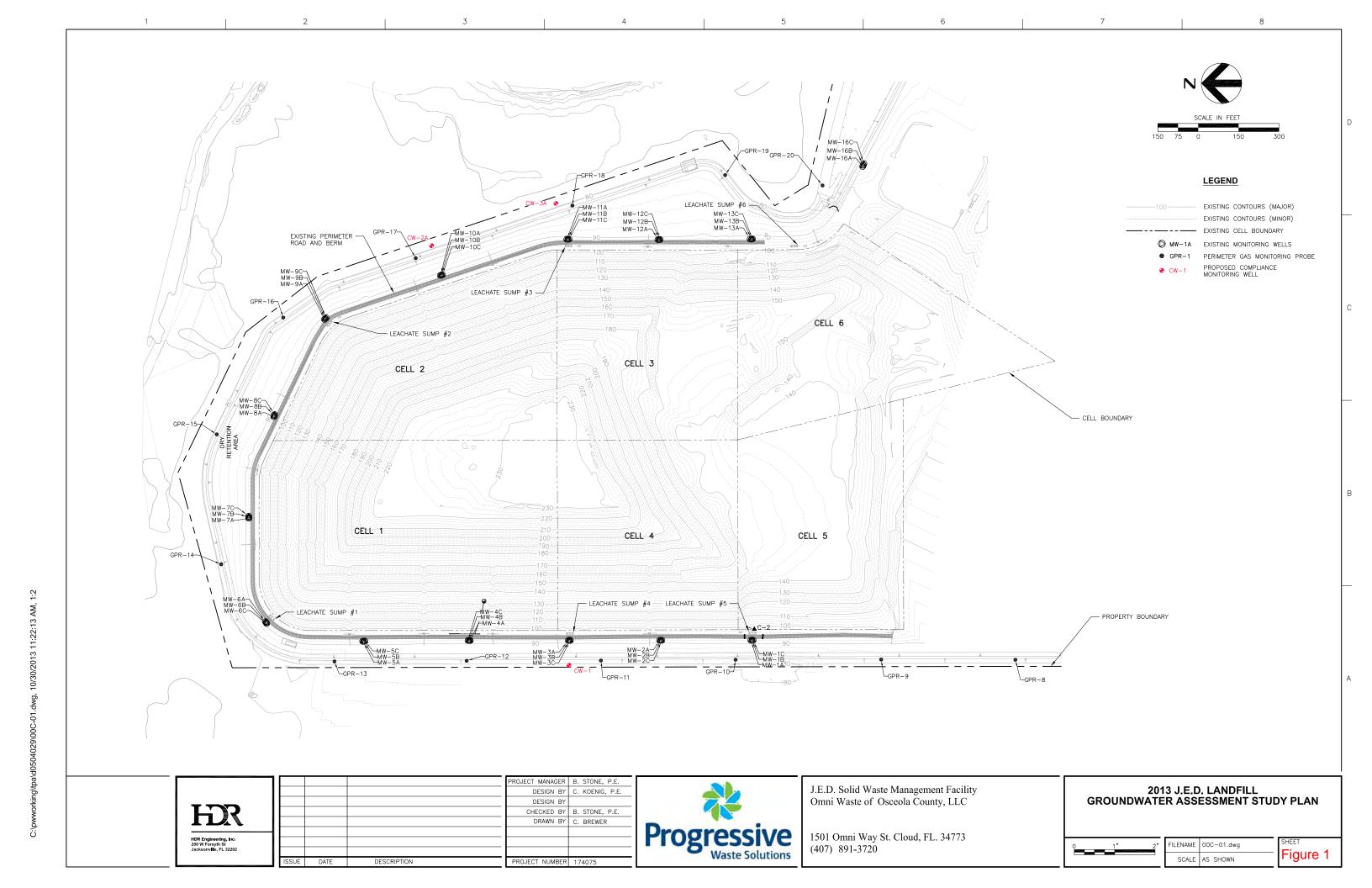
Recommendations

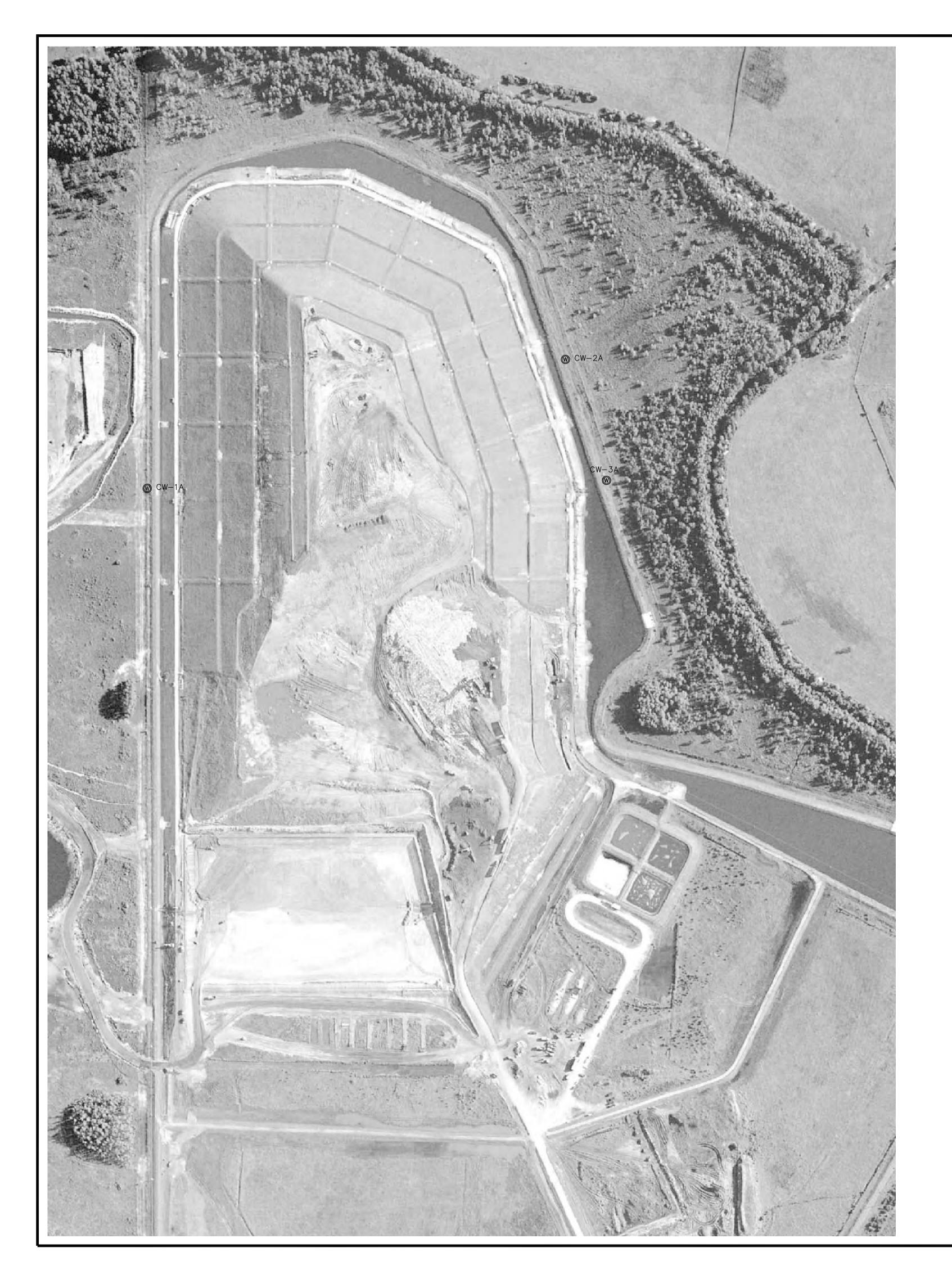
The Work Plan submitted October 31, 2013 required installing the three evaluation monitoring wells described herein. The Work Plan requires sampling and analyzing groundwater from the three wells for the purpose of delineating VOCs, primarily benzene and vinyl chloride, within the landfill compliance zone. This report is the first of four quarterly reports required for submittal during the evaluation monitoring described in the Work Plan. Based on the results of this first quarterly sampling event, it is recommended to continue as outlined in the Work Plan. The Q2 sampling event will be scheduled in March 2014, and the FDEP will be notified at least 14 days prior to sampling. The wells will be sampled for those parameters listed in Chapter 62-701.510(7)(a) during next three quarterly sampling events (Q2, Q3 and Q4). Moreover we recommend sampling CW-1A for Arsenic and CW-3A for Iron in the next guarterly event (Q2) to verify that the Q1 results were anomalous. We also recommend that groundwater elevations be taken in all "A" zone wells to produce groundwater contour maps for each quarterly event that does not coincide with a semi-annual sampling event. Attachment 1, Figure 3 includes Figure 1 of the 19th Semiannual Water Quality Monitoring Report as reference to groundwater flow for this event.

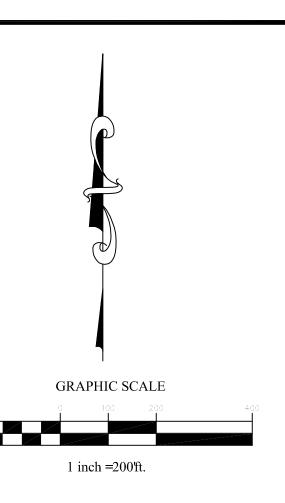
Closing

HDR has prepared this report on behalf of Omni to maintain compliance with the Florida Water Quality Regulations. Thank you in advance for your review. If you have any questions or comments, please contact the individuals below at (904) 598-8900 or Mr. Mike Kaiser at (904) 673-0446.

Sincerely,


John S. Catches, P.G. Sr. Project Manager


Attachments


Cc: Mike Kaiser, Progressive Waste Solutions, Inc.

ATTACHMENT 1

Figures

SURVEYOR'S NOTES:

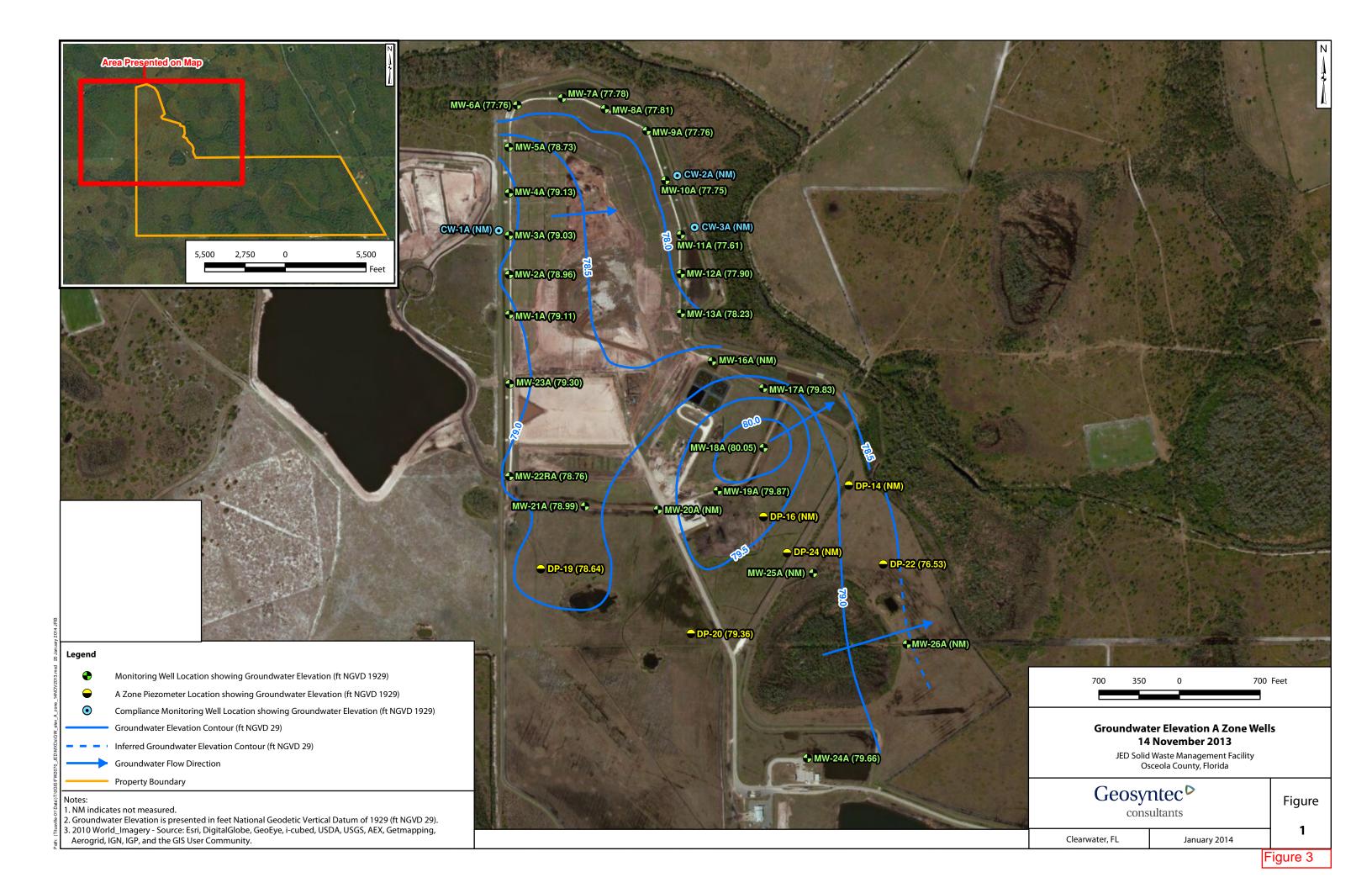
- 1.) North and coordinate basis is the East Zone of the Florida State Plane Coordinate System, and are based on NGS Control Station Numbers AJ7660(J496) and verified Pickett & Associates Targets 1 and 2 from Topographic Survey dated 12/13/01 as provided. The published values used for this survey are NAD 83 2007 adjustment
- 2.) Underground improvements, encroachments, foundations and/or utilities were not located as a part of this survey.
- 3.) This map is intended to be displayed at a scale of 1"=200' or smaller.
- 4.) Environmental concerns, if existent, were not assessed as part of this survey.
- 5.) Vertical information depicted on this report are GPS derived elevations based on the National Geodetic Vertical Datum of 1929 (NGVD29) utilizing site control as provided PK13 with an elevation of 92.92 (91.83NAVD88) and OC1406 with an elevation of 80.91 (79.82NAVD88) and converted to North American Vertical Datum 1988 (NAVD88) using vertcon.
- 6.) Symbols shown hereon are not to scale.
- 7.) This is not a boundary survey.
- 8.) This survey was prepared to show the horizontal and vertical location of newly installed compliance monitor wells on site. Image shown hereon is 2010 photography provided by client.

LEGEND:

CONC. CONCRETE
ELEV. ELEVATION

WELL

PROFESSIONAL
SURVEYOR
& MAPPER


WELLS ID	SURVEY POINT NUMBER	CASING LATITUDE	CASING LONGITUDE	CASING NORTHING	CASING EASTING	TOP OF STEEL CASING ELEVATION NGVD1929	2" PVC MARK ELEVATION NGVD1929	XMARK/ GROUND ELEVATION NGVD1929	TOP OF STEEL CASING ELEVATION NAVD88	TOP 2" PVC ELEVATION NAVD88	GROUND / XMARK ELEVATION NAVD88
CW-1A	90006	28°03'55.76"	-81°06'00.93"	1356526.77	623834.34	84.73	84.53	82.3	83.64	83.44	81.2
X-MARK	90003	28°03'55.76"	-81°06'00.93"	1356526.89	623834.30	-	-	82.43	-	-	81.34
CW-2A	90002	28°04'00.51"	-81°05'43.63"	1357004.41	625383.70	83.03	82.81	80.5	81.94	81.72	79.4
X-MARK	90014	28°04'00.51"	-81°05'43.64"	1357004.61	625383.61	-	-	80.61	-	-	79.52
CW-3A	90013	28°03'56.07"	-81°05'41.93"	1356556.47	625535.80	82.16	81.89	79.8	81.07	80.80	90.8
X-MARK	90010	28°03'56.08"	-81°05'41.93"	1356556.87	625535.61	-	-	79.93	-	-	78.84

ASSOCIATES
AND MAPPING, PA

∞

JED SOILD WASTE MANAGEMENT FACILITY **MONITORING WELLS 1**

DEBORAH L. PEAVEY, P.S.M. FLORIDA REGISTRATION NO. 6345 PEAVEY & ASSOCIATES SURVEYING & MAPPING PA LICENSE BUSINESS NO. 7779 12/5/2013 SURVEY DATE SCALE 1"=200' PROJECT NO. 616 1

ATTACHMENT 2

Well Logs and FDEP Well Completion Reports

Florida Department of **Environmental Protection**

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form # 62-701.900(30)

Form Title: Monitoring Well Completion Report

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(3), F.A.C.

MONITORING WELL COMPLETION REPORT

DATE: 12/12/13					
FACILITY NAME: J.E.D. Solid Waste Management Facility					
DEP PERMIT NO.: <u>SO49-0199726-022</u>	WACS FACILITY ID NO.: 89544				
WACS MONITORING SITE NUM.: 29157 WACS WELL NO.: CW-1A					
WELL TYPE: BACKGROUND DETECTION	□ COMPLIANCE □x				
LATITUDE: 28° 03' 55.76" LON	IGITUDE: <u>-81</u> ° <u>06'</u> <u>0.93</u> "				
(see back for LAT / LONG requirements):					
Coordinate Accuracy 0.05 ft. Datum NAD	1983 Elevation Datum NGVD 1929				
Collection Method RTK and Level	Collection Date 12/5/2013				
Collector Name Deborah Peavey Colle	ector Affiliation Peavey Surveying				
AQUIFER MONITORED: Shallow Surficial					
DRILLING METHOD: Hollow Stem Auger (Size: 4.25")	DATE INSTALLED: 11/14/13				
INSTALLED BY: Environmental Drilling; QC Person - Kara	mjit Singh (HDR)				
BORE HOLE DIAMETER: 8.25" TOTAL DEPTI	H: <u>15'</u> (BLS)				
CASING TYPE: Schd 40 PVC CASING DIAMETER:	2' CASING LENGTH: 5'				
SCREEN TYPE: Schd 40 PVC SCREEN SLOT SIZE:	0.006" SCREEN LENGTH: 10'				
SCREEN DIAMETER: 2' SCREEN INTE	ERVAL: 15' TO 5' (BLS)				
FILTER PACK TYPE: Quartz Sand FILTE	R PACK GRAIN SIZE: 30/45				
INTERVAL COVERED: 15' TO 3'	(BLS)				
SEALANT TYPE: <u>Qrtz. Sand 45/65</u> SEALANT INTERVAL:	<u>3'</u> TO 1' (BLS)				
GROUT TYPE: Portland Cement GROUT INTERVAL	: <u>1'</u> TO <u>0'</u> (BLS)				
TOP OF CASING ELEVATION (NGVD): 84.53 ft GRO	OUND SURFACE ELEVATION (NGVD): 82.30 ft				
DESCRIBE WELL DEVELOPMENT: Pumped for 20 mins of	on 11/20. Final Turb. < 20 NTU				
POST DEVELOPMENT WATER LEVEL ELEVATION (NG)	VD): 79.22 ft				
DATE AND TIME MEASURED: 11/20/13 at 3:00 p.m.					
REMARKS:					
NAME OF PERSON PREPARING REPORT: Karamjit Sing	h, HDR Engineering Inc., (904) 598 8930				
Karamjit.Singh@hdrinc.com (Name, Organization, Phone No., E-mail)					
(Name, Organization, Friend No., L-mail)					

HDR Engineering, Inc.

Borehole and Well Construction Log

Site Name: JED Solid Waste Management Facility

HDR Project No.: 100-220474

Site Location: St. Cloud, FL

Boring ID: CW-1A

Date Begin: 11/14/2013

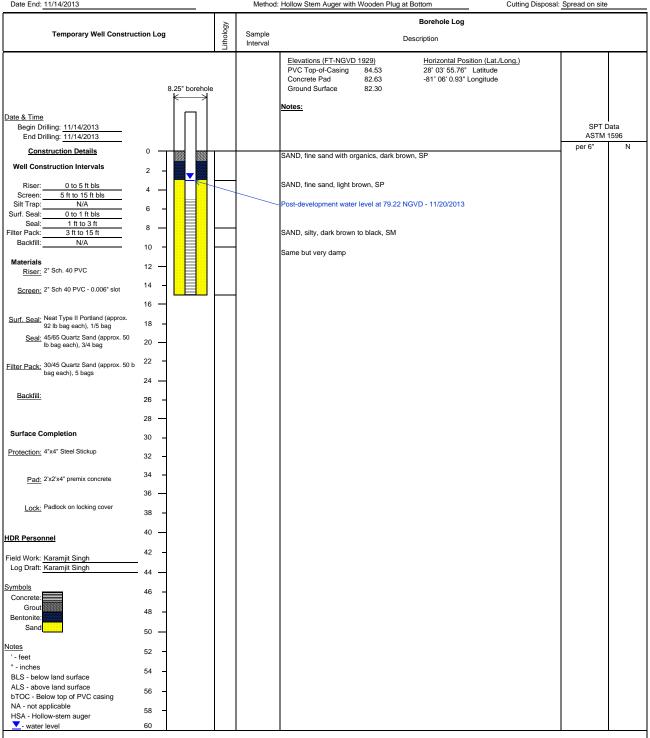
Date End: 11/14/2013

Date End: 11/14/2013

Date End: 11/14/2013

Date Stem: 11/14/2013

Method: Hollow Stem Auger with Wooden Plug at Bottom


Site Location: St. Cloud, FL

Total Depth Drilled: 15 feet

Sample Method/Size: Auger Cuttings by Observation

Cutting Disposal: Spread on site

Page 1 of 1

Florida Department of **Environmental Protection**

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form # 62-701.900(30)

Form Title: Monitoring Well Completion Report

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(3), F.A.C.

MONITORING WELL COMPLETION REPORT

DATE: 12/12/13					
FACILITY NAME: J.E.D. Solid Waste Management Facility					
DEP PERMIT NO.: <u>SO49-0199726-022</u>	WACS FACILITY ID NO.: 89544				
WACS MONITORING SITE NUM.: 29158 WACS WELL NO.: CW-2A					
WELL TYPE: BACKGROUND DETECTION	□ COMPLIANCE □x				
LATITUDE: 28° 04' 0.51" LON	NGITUDE: <u>-81</u> ° <u>05</u> ' 43.63"				
(see back for LAT / LONG requirements):					
Coordinate Accuracy0.05 ft Datum NAD	1983 Elevation Datum NGVD 1929				
Collection Method RTK and Level	Collection Date 12/5/2013				
Collector Name Deborah Peavey Collector	ector Affiliation Peavey Surveying				
AQUIFER MONITORED: Shallow Surficial					
DRILLING METHOD: Hollow Stem Auger (Size: 4.25")	DATE INSTALLED: 11/20/13				
INSTALLED BY: Environmental Drilling; QC Person - Kara	amjit Singh (HDR)				
BORE HOLE DIAMETER: 8.25" TOTAL DEPT	H: <u>15'</u> (BLS)				
CASING TYPE: Schd 40 PVCCASING DIAMETER:	2' CASING LENGTH: 5'				
SCREEN TYPE: Schd 40 PVC SCREEN SLOT SIZE:	0.010" SCREEN LENGTH: 10'				
SCREEN DIAMETER: 2' SCREEN INT	ERVAL: 15' TO 5' (BLS)				
FILTER PACK TYPE: Quartz Sand FILTE	ER PACK GRAIN SIZE:				
INTERVAL COVERED: 15' TO 3'	(BLS)				
SEALANT TYPE: Qrtz. Sand 45/65_SEALANT INTERVAL	: <u>3'</u> TO 1' (BLS)				
GROUT TYPE: Portland Cement GROUT INTERVAL	: <u> 1' </u>				
TOP OF CASING ELEVATION (NGVD): 82.81 ft GRO	OUND SURFACE ELEVATION (NGVD): 80.50 ft				
DESCRIBE WELL DEVELOPMENT: Pumped for 40 mins of	on 11/20. Final Turb. < 20 NTU				
POST DEVELOPMENT WATER LEVEL ELEVATION (NG	VD): <u>77.42 ft</u>				
DATE AND TIME MEASURED: 11/20/13 at 10:30 a.m.					
REMARKS:					
NAME OF PERSON PREPARING REPORT: Karamjit Sing	gh, HDR Engineering Inc., (904) 598 8930				
NAME OF PERSON PREPARING REPORT: Karamjit Sing Karamjit.Singh@hdrinc.com (Name, Organization, Phone No., E-mail)	gh, HDR Engineering Inc., (904) 598 8930				

HDR Engineering, Inc.

Borehole and Well Construction Log

Site Name: JED Solid Waste Management Facility

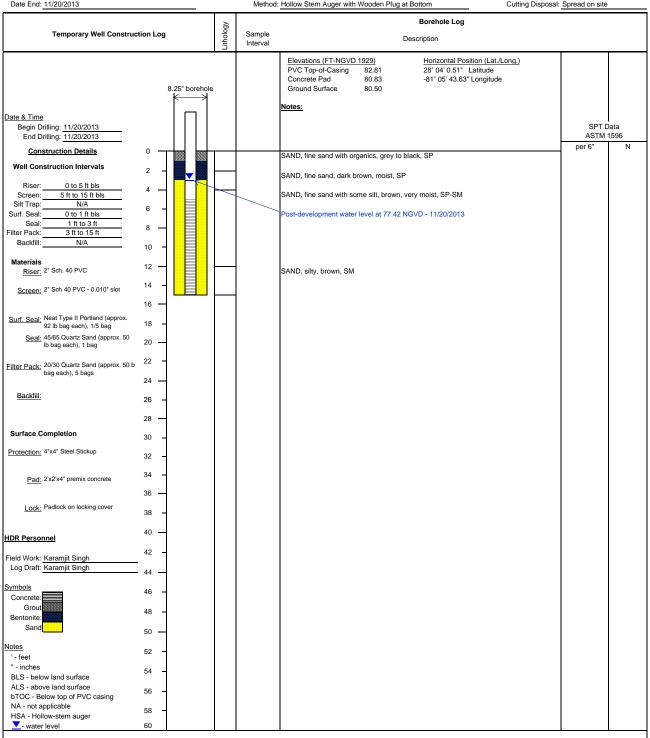
Boring ID: CW-2A

Contractor/Driller: Environmental Drilling

Date Begin: 11/20/2013

Date End: 11/20/2013

Method: Hollow Stem Auger with Wooden Plug at Bottom


Site Location: St. Cloud, FL

Total Depth Drilled: 15 feet

Sample Method/Size: Auger Cuttings by Observation

Cutting Disposal: Spread on site

Page 1 of 1

Florida Department of **Environmental Protection**

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form # 62-701.900(30)

Form Title: Monitoring Well Completion Report

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(3), F.A.C.

MONITORING WELL COMPLETION REPORT

DATE: 12/12/13			
FACILITY NAME: J.E.D. Solid Waste Management Facility			
DEP PERMIT NO.: <u>SO49-0199726-022</u>	WACS FACILITY	/ ID NO.: <u>89544</u>	
WACS MONITORING SITE NUM.: 29159	_WACS WELL NO	D.: <u>CW-3A</u>	
WELL TYPE: BACKGROUND □ DETECTION		COMPLIANCE 🔀	
LATITUDE: 28° 03' 56.07" LONG	GITUDE:	-81° 05'	41.93"
(see back for LAT / LONG requirements):			
Coordinate Accuracy 0.05 ft. Datum NAD 2	1983	Elevation Datum NG	SVD 1929
Collection Method RTK and Level	_ Collection Date	12/5/2013	
Collector Name Deborah Peavey Collector	ctor Affiliation Pea	avey Surveying	
AQUIFER MONITORED: Shallow Surficial			
DRILLING METHOD: Hollow Stem Auger (Size: 4.25")	_ DATE IN	ISTALLED: <u>11/20/13</u>	
INSTALLED BY: Environmental Drilling; QC Person - Karar	njit Singh (HDR)		
BORE HOLE DIAMETER: 8.25" TOTAL DEPTH	I: <u>15'</u>	(BLS)	
CASING TYPE:Schd 40 PVCCASING DIAMETER:_	2'	CASING LENGTH:	5'
SCREEN TYPE: Schd 40 PVC SCREEN SLOT SIZE:_	0.010"	SCREEN LENGTH:_	10'
SCREEN DIAMETER: 2' SCREEN INTE	RVAL: 15'	TO5'	(BLS)
FILTER PACK TYPE: Quartz Sand FILTER	R PACK GRAIN S	IZE: 20/30	
INTERVAL COVERED: 15' TO 3'	(BLS)		
SEALANT TYPE: Qrtz. Sand 45/65 SEALANT INTERVAL:	3'	TO1'	(BLS)
GROUT TYPE: Portland Cement GROUT INTERVAL:	1'	TO0'	(BLS)
TOP OF CASING ELEVATION (NGVD): 81.89 ft GROU			
	JND SURFACE E	LEVATION (NGVD):	79.80 ft
DESCRIBE WELL DEVELOPMENT: Pumped for 25 mins or			79.80 ft
DESCRIBE WELL DEVELOPMENT: Pumped for 25 mins of POST DEVELOPMENT WATER LEVEL ELEVATION (NGV	n 11/20. Final Turl		79.80 ft
	n 11/20. Final Turl		79.80 ft
POST DEVELOPMENT WATER LEVEL ELEVATION (NGV	n 11/20. Final Turl		79.80 ft
POST DEVELOPMENT WATER LEVEL ELEVATION (NGV DATE AND TIME MEASURED: 11/20/13 at 12:20 p.m.	n 11/20. Final Turl		79.80 ft
POST DEVELOPMENT WATER LEVEL ELEVATION (NGV DATE AND TIME MEASURED: 11/20/13 at 12:20 p.m.	n 11/20. Final Turl D): <u>76.55</u> ft	o. < 20 NTU	
POST DEVELOPMENT WATER LEVEL ELEVATION (NGV DATE AND TIME MEASURED: 11/20/13 at 12:20 p.m. REMARKS:	n 11/20. Final Turl D): <u>76.55</u> ft	o. < 20 NTU	

HDR Engineering, Inc.

Borehole and Well Construction Log

Site Name: JED Solid Waste Management Facility

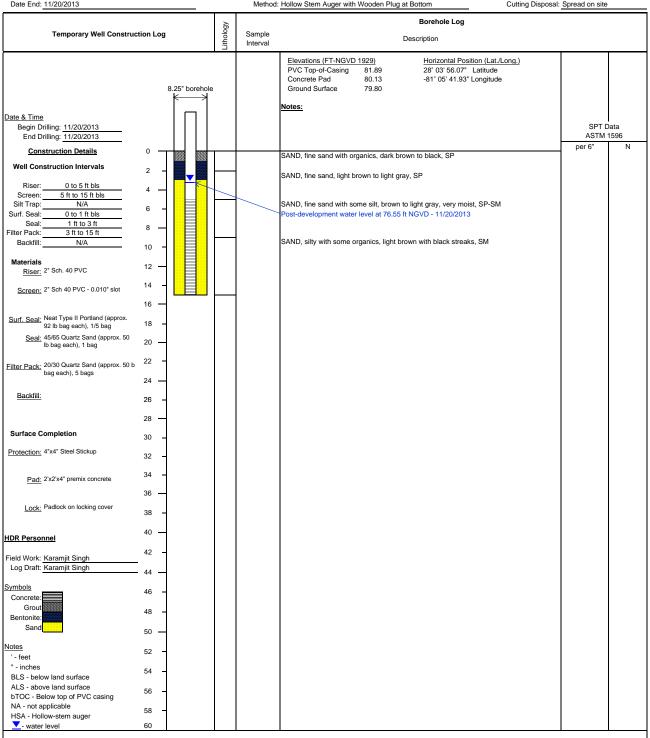
HDR Project No.: 100-220474

Site Location: St. Cloud, FL

Boring ID: CW-3A

Contractor/Driller: Environmental Drilling

Total Depth Drilled: 15 feet


Sample Method/Size: Auger Cuttings by Observation

Date End: 11/20/2013

Method: Hollow Stem Auger with Wooden Plug at Bottom

Cutting Disposal: Spread on site

Page 1 of 1

ATTACHMENT 3

Laboratory and Field Data

Service Request No:J1307670

Mike Kaiser Waste Services of Florida, Inc. 1501 Omni Way St Cloud, FL 34773

Laboratory Results for: JED SWDF - Compliance Wells

Dear Mike,

Enclosed are the results of the sample(s) submitted to our laboratory December 17, 2013 For your reference, these analyses have been assigned our service request number **J1307670**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at Craig.Myers@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Can Poly

Craig Myers

Project Manager

SAMPLE DETECTION SUMMARY

CLIENT ID: CW-1A	Lab ID: J1	307670-	001			
Analyte	Results	Flag	MDL	PQL	Units	Method
Chloride	21.7		0.11	0.50	mg/L	300.0
Ammonia as Nitrogen	1.05		0.007	0.010	mg/L	350.1
Iron, Total Recoverable	11900		3	100	ug/L	6010B
Sodium, Total Recoverable	20.4		0.03	0.50	mg/L	6010B
Arsenic, Total Recoverable	278		0.5	1.0	ug/L	6020
Barium, Total Recoverable	55.2		0.5	2.0	ug/L	6020
Beryllium, Total Recoverable	0.15	1	0.04	0.50	ug/L	6020
Cadmium, Total Recoverable	0.87		0.10	0.40	ug/L	6020
Cobalt, Total Recoverable	3.2		0.03	1.0	ug/L	6020
Chromium, Total Recoverable	11.1		0.2	1.0	ug/L	6020
Copper, Total Recoverable	0.8	1	0.3	1.0	ug/L	6020
Nickel, Total Recoverable	6.1		0.5	2.0	ug/L	6020
Lead, Total Recoverable	1.05		0.12	0.50	ug/L	6020
Selenium, Total Recoverable	2.8		1.1	2.0	ug/L	6020
Thallium, Total Recoverable	0.05	1	0.05	0.20	ug/L	6020
Vanadium, Total Recoverable	12.3		0.3	2.0	ug/L	6020
Zinc, Total Recoverable	2.8	1	1.6	5.0	ug/L	6020
Toluene	0.23	1	0.19	1.0	ug/L	8260B
Solids, Total Dissolved	445		10	10	mg/L	SM 2540 C

CLIENT ID: CW-2A	Lab ID: J1	307670-	002			
Analyte	Results	Flag	MDL	PQL	Units	Method
Chloride	76.3		0.11	0.50	mg/L	300.0
Ammonia as Nitrogen	6.72		0.007	0.010	mg/L	350.1
Iron, Total Recoverable	8070		3	100	ug/L	6010B
Sodium, Total Recoverable	50.4		0.03	0.50	mg/L	6010B
Arsenic, Total Recoverable	1.0	1	0.5	1.0	ug/L	6020
Barium, Total Recoverable	54.0		0.5	2.0	ug/L	6020
Beryllium, Total Recoverable	0.54		0.04	0.50	ug/L	6020
Cobalt, Total Recoverable	2.6		0.03	1.0	ug/L	6020
Chromium, Total Recoverable	1.5		0.2	1.0	ug/L	6020
Copper, Total Recoverable	0.4	1	0.3	1.0	ug/L	6020
Nickel, Total Recoverable	2.5		0.5	2.0	ug/L	6020
Vanadium, Total Recoverable	9.2		0.3	2.0	ug/L	6020
Zinc, Total Recoverable	3.7	1	1.6	5.0	ug/L	6020
Mercury, Total	0.03	1	0.02	0.10	ug/L	7470A
Solids, Total Dissolved	918		20	20	mg/L	SM 2540 C

CLIENT ID: CW-3A	Lab ID: J13	Lab ID: J1307670-003						
Analyte	Results	Flag	MDL	PQL	Units	Method		
Chloride	62.0		0.11	0.50	mg/L	300.0		
Ammonia as Nitrogen	11.1		0.07	0.10	mg/L	350.1		

SAMPLE DETECTION SUMMARY

CLIENT ID: CW-3A	Lab ID: J1	307670-0	003			
Analyte	Results	Flag	MDL	PQL	Units	Method
Iron, Total Recoverable	126000		3	100	ug/L	6010B
Sodium, Total Recoverable	65.5		0.03	0.50	mg/L	6010B
Arsenic, Total Recoverable	2.1		0.5	1.0	ug/L	6020
Barium, Total Recoverable	173		0.5	2.0	ug/L	6020
Beryllium, Total Recoverable	0.63		0.04	0.50	ug/L	6020
Cobalt, Total Recoverable	12.9		0.03	1.0	ug/L	6020
Chromium, Total Recoverable	12.5		0.2	1.0	ug/L	6020
Copper, Total Recoverable	0.6	I	0.3	1.0	ug/L	6020
Nickel, Total Recoverable	3.1		0.5	2.0	ug/L	6020
Lead, Total Recoverable	2.08		0.12	0.50	ug/L	6020
Selenium, Total Recoverable	1.8	I	1.1	2.0	ug/L	6020
Vanadium, Total Recoverable	15.0		0.3	2.0	ug/L	6020
Zinc, Total Recoverable	3.7	I	1.6	5.0	ug/L	6020
Mercury, Total	0.05	I	0.02	0.10	ug/L	7470A
Solids, Total Dissolved	1190		20	20	mg/L	SM 2540 C

Client:Waste Services of Florida, Inc.Service Request:J1307670Project:JED SWDF - Compliance WellsDate Received:12/17/13

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

Three water samples and one trip blank were received for analysis at ALS Environmental on 12/17/2013. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at ≤6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatile Organic Analyses:

Method 8260B: The upper control criterion was exceeded for the following analyte in Laboratory Control Sample (LCS) JQ1309276-01: Vinyl Acetate. The analyte in question was not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected and no further corrective action was appropriate.

Semi-Volatile Organic Analyses:

No significant data anomalies were noted with this analysis.

Metals Analyses:

No significant data anomalies were noted with this analysis.

General Chemistry Analyses:

No significant data anomalies were noted with this analysis.

Approved by Date 12/31/2013 4 of 44

State Certifications, Accreditations, and Licenses

Agency	Number	Expire Date
Florida Department of Health	E82502	6/30/2014
Virginia Environmental Accreditation Program	460191	12/14/2014
Louisiana Department of Environmental Quality	02086	6/30/2014
Georgia Department of Natural Resources	958	6/30/2014
Kentucky Division of Waste Management	63	6/30/2014
South Carolina Department of Health and Environmental Control	96021001	6/30/2014
Texas Commision on Environmental Quality	T104704197-13-5	5/31/2014
Maine Department of Health and Human Services	2011006	2/3/2015
Department of Defense	66206	5/31/2014
Pennsylvania Department of Environmental Protection	68-04835	8/31/2014

Data Qualifiers

Florida-DEP

- ! Data deviates from historically established concentration ranges
- * Not reported due to interference
- ? Data is rejected and should not be used
- A Value reported is the arithmetic mean of two or more determininations
- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- E Extra samples were taken at composite stations
- H Value based on field kit determination; results may not be accurate.
- I The reported value is between the laboratory method detection limit and the laboratory POL.
- J Estimated value.
- K Off scale low. The value is less than the lowest calibration standard.
- L Off scale high. The analyte is above the acceptable level of quantitation.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified.
- N Presumptive evidence of presence of material.
- O Sampled, but analysis lost or not performed
- Q Sample held beyond the acceptable holding time.
- R Significant rain in the past 48 hours (typically in excess of 0.5 inches)
- T Estimated value, less than the MDL
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- X Insufficient individuals were present in the sample to achieve a minimum of 280 organisms for identification (Stream Condition Index Analysis only)
- Y The laboratory analysis was from an unpreserved or improperly preserved sample.
- Z Too many colonies were present, the numeric value represents the filtration volume

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

POL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring
TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Client: Waste Services of Florida, Inc. Service Request:J1307670

Project: JED SWDF - Compliance Wells

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
J1307670-001	CW-1A	12/16/2013	1220
J1307670-002	CW-2A	12/16/2013	1125
J1307670-003	CW-3A	12/16/2013	1300
J1307670-004	Trip Blank	12/16/2013	0000

Analytical Report

Client:Waste Services of Florida, Inc.Service Request:J1307670Project:JED SWDF - Compliance WellsDate Collected:12/16/13 12:20Sample Matrix:WaterDate Received:12/17/13 09:35

 Sample Name:
 CW-1A
 Units: ug/L

 Lab Code:
 J1307670-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1,2-Tetrachloroethane	0.19 U	1.0	0.19	1	12/23/13 14:47	
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/23/13 14:47	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/23/13 14:47	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/23/13 14:47	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/23/13 14:47	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/23/13 14:47	
1,2,3-Trichloropropane	0.42 U	2.0	0.42	1	12/23/13 14:47	
1,2-Dibromo-3-chloropropane (DBCP)	2.3 U	5.0	2.3	1	12/23/13 14:47	
1,2-Dibromoethane (EDB)	0.46 U	1.0	0.46	1	12/23/13 14:47	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/23/13 14:47	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/23/13 14:47	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/23/13 14:47	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/23/13 14:47	
2-Butanone (MEK)	3.8 U	10	3.8	1	12/23/13 14:47	
2-Hexanone	2.2 U	25	2.2	1	12/23/13 14:47	
4-Methyl-2-pentanone (MIBK)	1.1 U	25	1.1	1	12/23/13 14:47	-
Acetone	5.6 U	50	5.6	1	12/23/13 14:47	
Acrylonitrile	1.5 U	10	1.5	1	12/23/13 14:47	
Benzene	0.21 U	1.0	0.21	1	12/23/13 14:47	
Bromochloromethane	0.27 U	5.0	0.27	1	12/23/13 14:47	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/23/13 14:47	
Bromoform	0.42 U	2.0	0.42	1	12/23/13 14:47	
Bromomethane	0.23 U	5.0	0.23	1	12/23/13 14:47	
Carbon Disulfide	2.4 U	10	2.4	1	12/23/13 14:47	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/23/13 14:47	
Chlorobenzene	0.16 U	1.0	0.16	1	12/23/13 14:47	
Chloroethane	0.52 U	5.0	0.52	1	12/23/13 14:47	
Chloroform	0.35 U	1.0	0.35	1	12/23/13 14:47	
Chloromethane	0.36 U	1.0	0.36	1	12/23/13 14:47	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/23/13 14:47	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/23/13 14:47	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/23/13 14:47	
Dibromomethane	0.36 U	5.0	0.36	1	12/23/13 14:47	
Ethylbenzene	0.21 U	1.0	0.21	1	12/23/13 14:47	
Iodomethane	2.7 U	5.0	2.7	1	12/23/13 14:47	
m,p-Xylenes	0.31 U	2.0	0.31	1	12/23/13 14:47	-
Methylene Chloride	0.21 U	5.0	0.21	1	12/23/13 14:47	
o-Xylene	0.14 U	1.0	0.14	1	12/23/13 14:47	
Styrene	0.29 U	1.0	0.29	1	12/23/13 14:47	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/23/13 14:47	
Toluene	0.23 I	1.0	0.19	1	12/23/13 14:47	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/23/13 14:47	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/23/13 14:47	
and 1,5 Diemoropropone	0.20	1.0	0.20	•	1=, =0, 10 1 1117	

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells Date Collected: 12/16/13 12:20

Sample Matrix: Water Date Received: 12/17/13 09:35

 Sample Name:
 CW-1A
 Units: ug/L

 Lab Code:
 J1307670-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
trans-1,4-Dichloro-2-butene	2.2 U	20	2.2	1	12/23/13 14:47	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/23/13 14:47	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/23/13 14:47	
Vinyl Acetate	1.9 U	10	1.9	1	12/23/13 14:47	*
Vinyl Chloride	0.36 U	1.0	0.36	1	12/23/13 14:47	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	105	72 - 121	12/23/13 14:47	
4-Bromofluorobenzene	100	86 - 113	12/23/13 14:47	
Dibromofluoromethane	97	86 - 112	12/23/13 14:47	
Toluene-d8	99	88 - 115	12/23/13 14:47	

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells Date Collected: 12/16/13 12:20

Sample Matrix: Water Date Received: 12/17/13 09:35

 Sample Name:
 CW-1A
 Units: ug/L

 Lab Code:
 J1307670-001
 Basis: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by Microextraction and Gas Chromatography

Analysis Method: 8011 **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Extracted		
1,2-Dibromo-3-chloropropane (DBCP)	0.00705 U	0.0201	0.00705	1	12/20/13 12:04	12/19/13	
1.2-Dibromoethane (EDB)	0.00705 U	0.0201	0.00705	1	12/20/13 12:04	12/19/13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,1,1,2-Tetrachloroethane	94	70 - 130	12/20/13 12:04		

Analytical Report

Client: Waste Services of Florida, Inc.

Project: JED SWDF - Compliance Wells

Sample Matrix: Water

Date Received: 12/17/13 09:35

Service Request: J1307670

Date Collected: 12/16/13 12:20

Sample Name: CW-1A Basis: NA

Lab Code: J1307670-001

Inorganic Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony, Total Recoverable	6020	0.2 U	ug/L	1.0	0.2	1	12/19/13 16:32	12/18/13	
Arsenic, Total Recoverable	6020	278	ug/L	1.0	0.5	1	12/19/13 16:32	12/18/13	
Barium, Total Recoverable	6020	55.2	ug/L	2.0	0.5	1	12/19/13 16:32	12/18/13	
Beryllium, Total Recoverable	6020	0.15 I	ug/L	0.50	0.04	1	12/19/13 16:32	12/18/13	
Cadmium, Total Recoverable	6020	0.87	ug/L	0.40	0.10	1	12/19/13 16:32	12/18/13	
Chromium, Total Recoverable	6020	11.1	ug/L	1.0	0.2	1	12/19/13 16:32	12/18/13	
Cobalt, Total Recoverable	6020	3.2	ug/L	1.0	0.03	1	12/19/13 16:32	12/18/13	
Copper, Total Recoverable	6020	0.8 I	ug/L	1.0	0.3	1	12/19/13 16:32	12/18/13	
Iron, Total Recoverable	6010B	11900	ug/L	100	3	1	12/18/13 23:21	12/18/13	
Lead, Total Recoverable	6020	1.05	ug/L	0.50	0.12	1	12/19/13 16:32	12/18/13	
Mercury, Total	7470A	0.02 U	ug/L	0.10	0.02	1	12/19/13 16:16	12/18/13	
Nickel, Total Recoverable	6020	6.1	ug/L	2.0	0.5	1	12/19/13 16:32	12/18/13	
Selenium, Total Recoverable	6020	2.8	ug/L	2.0	1.1	1	12/19/13 16:32	12/18/13	
Silver, Total Recoverable	6020	0.06 U	ug/L	0.50	0.06	1	12/20/13 00:03	12/18/13	
Sodium, Total Recoverable	6010B	20.4	mg/L	0.50	0.03	1	12/18/13 23:21	12/18/13	
Thallium, Total Recoverable	6020	0.05 I	ug/L	0.20	0.05	1	12/19/13 16:32	12/18/13	
Vanadium, Total Recoverable	6020	12.3	ug/L	2.0	0.3	1	12/19/13 16:32	12/18/13	
Zinc, Total Recoverable	6020	2.8 I	ug/L	5.0	1.6	1	12/19/13 16:32	12/18/13	

Analytical Report

Service Request: J1307670

Client: Waste Services of Florida, Inc.

Project: JED SWDF - Compliance Wells Date Collected: 12/16/13 12:20

Sample Matrix: Water Date Received: 12/17/13 09:35

Sample Name: CW-1A Basis: NA

Lab Code: J1307670-001

General Chemistry Parameters

Analysis Analyte Name Method Result Units **MRL MDL** Dil. **Date Analyzed** Q 1.05 mg/L 0.010 12/20/13 16:12 Ammonia as Nitrogen 350.1 0.007 mg/L Chloride 300.0 21.7 0.50 0.11 1 12/17/13 21:35 Nitrate as Nitrogen 300.0 0.03 U mg/L 0.20 0.03 1 12/17/13 21:35 Solids, Total Dissolved 445 mg/L 10 1 12/19/13 11:19 SM 2540 C 10

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670 **Date Collected:** 12/16/13 11:25 **Project:** JED SWDF - Compliance Wells **Sample Matrix:** Water **Date Received:** 12/17/13 09:35

Sample Name: CW-2A Units: ug/L Lab Code: J1307670-002 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1,2-Tetrachloroethane	0.19 U	1.0	0.19	1	12/23/13 15:13	
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/23/13 15:13	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/23/13 15:13	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/23/13 15:13	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/23/13 15:13	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/23/13 15:13	
1,2,3-Trichloropropane	0.42 U	2.0	0.42	1	12/23/13 15:13	
1,2-Dibromo-3-chloropropane (DBCP)	2.3 U	5.0	2.3	1	12/23/13 15:13	
1,2-Dibromoethane (EDB)	0.46 U	1.0	0.46	1	12/23/13 15:13	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/23/13 15:13	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/23/13 15:13	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/23/13 15:13	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/23/13 15:13	
2-Butanone (MEK)	3.8 U	10	3.8	1	12/23/13 15:13	
2-Hexanone	2.2 U	25	2.2	1	12/23/13 15:13	
4-Methyl-2-pentanone (MIBK)	1.1 U	25	1.1	1	12/23/13 15:13	
Acetone (MBR)	5.6 U	50	5.6	1	12/23/13 15:13	
Acrylonitrile	1.5 U	10	1.5	1	12/23/13 15:13	
Benzene	0.21 U	1.0	0.21	1	12/23/13 15:13	
Bromochloromethane	0.27 U	5.0	0.27	1	12/23/13 15:13	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/23/13 15:13	
Bromoform	0.42 U	2.0	0.42	1	12/23/13 15:13	
Bromomethane	0.23 U	5.0	0.23	1	12/23/13 15:13	
Carbon Disulfide	2.4 U	10	2.4	1	12/23/13 15:13	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/23/13 15:13	
Chlorobenzene	0.16 U	1.0	0.16	1	12/23/13 15:13	
Chloroethane	0.52 U	5.0	0.52	1	12/23/13 15:13	
Chloroform	0.35 U	1.0	0.35	1	12/23/13 15:13	
Chloromethane	0.36 U	1.0	0.36	1	12/23/13 15:13	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/23/13 15:13	
cis-1,3-Dichloropropene	0.30 U	1.0	0.20	1	12/23/13 15:13	
Dibromochloromethane	0.20 U	1.0	0.20	1	12/23/13 15:13	
Dibromomethane	0.21 U	5.0	0.21	1	12/23/13 15:13	
Ethylbenzene	0.30 U 0.21 U	1.0	0.30	1	12/23/13 15:13	
Iodomethane	2.7 U	5.0	2.7	1	12/23/13 15:13	
m,p-Xylenes	0.31 U	2.0	0.31	1	12/23/13 15:13	
Methylene Chloride	0.21 U	5.0	0.31	1	12/23/13 15:13	
o-Xylene	0.21 U 0.14 U	1.0	0.21	1	12/23/13 15:13	
Styrene	0.14 U 0.29 U	1.0	0.14	1	12/23/13 15:13	
Tetrachloroethene (PCE)	0.29 U 0.22 U	1.0	0.29	1	12/23/13 15:13	
Toluene	0.22 U 0.19 U	1.0	0.22	1	12/23/13 15:13	
	0.19 U 0.19 U	1.0	0.19		12/23/13 15:13	
trans-1,2-Dichloroethene				1		
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/23/13 15:13	

Analytical Report

Client:Waste Services of Florida, Inc.Service Request: J1307670Project:JED SWDF - Compliance WellsDate Collected: 12/16/13 11:25

Sample Matrix: Water Date Received: 12/17/13 09:35

 Sample Name:
 CW-2A
 Units: ug/L

 Lab Code:
 J1307670-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
trans-1,4-Dichloro-2-butene	2.2 U	20	2.2	1	12/23/13 15:13	_
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/23/13 15:13	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/23/13 15:13	
Vinyl Acetate	1.9 U	10	1.9	1	12/23/13 15:13	*
Vinyl Chloride	0.36 U	1.0	0.36	1	12/23/13 15:13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	105	72 - 121	12/23/13 15:13	
4-Bromofluorobenzene	97	86 - 113	12/23/13 15:13	
Dibromofluoromethane	99	86 - 112	12/23/13 15:13	
Toluene-d8	100	88 - 115	12/23/13 15:13	

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells

Date Collected: 12/16/13 11:25

Sample Matrix: Water Date Received: 12/17/13 09:35

 Sample Name:
 CW-2A
 Units: ug/L

 Lab Code:
 J1307670-002
 Basis: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by Microextraction and Gas Chromatography

Analysis Method: 8011 **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed I	Date Extracted	Q
1,2-Dibromo-3-chloropropane (DBCP)	0.00711 U	0.0203	0.00711	1	12/20/13 13:08	12/19/13	
1.2-Dibromoethane (EDB)	0.00711 U	0.0203	0.00711	1	12/20/13 13:08	12/19/13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,1,1,2-Tetrachloroethane	89	70 - 130	12/20/13 13:08		

Analytical Report

Service Request: J1307670

Date Collected: 12/16/13 11:25

Date Received: 12/17/13 09:35

Client: Waste Services of Florida, Inc.

Project: JED SWDF - Compliance Wells

Sample Matrix: Water

Sample Name:

CW-2A Basis: NA

Lab Code: J1307670-002

Inorganic Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony, Total Recoverable	6020	0.2 U	ug/L	1.0	0.2	1	12/19/13 16:37	12/18/13	
Arsenic, Total Recoverable	6020	1.0 I	ug/L	1.0	0.5	1	12/19/13 16:37	12/18/13	
Barium, Total Recoverable	6020	54.0	ug/L	2.0	0.5	1	12/19/13 16:37	12/18/13	
Beryllium, Total Recoverable	6020	0.54	ug/L	0.50	0.04	1	12/19/13 16:37	12/18/13	
Cadmium, Total Recoverable	6020	0.10 U	ug/L	0.40	0.10	1	12/19/13 16:37	12/18/13	
Chromium, Total Recoverable	6020	1.5	ug/L	1.0	0.2	1	12/19/13 16:37	12/18/13	
Cobalt, Total Recoverable	6020	2.6	ug/L	1.0	0.03	1	12/19/13 16:37	12/18/13	
Copper, Total Recoverable	6020	0.4 I	ug/L	1.0	0.3	1	12/19/13 16:37	12/18/13	
Iron, Total Recoverable	6010B	8070	ug/L	100	3	1	12/18/13 23:25	12/18/13	
Lead, Total Recoverable	6020	0.12 U	ug/L	0.50	0.12	1	12/19/13 16:37	12/18/13	
Mercury, Total	7470A	0.03 I	ug/L	0.10	0.02	1	12/19/13 16:17	12/18/13	
Nickel, Total Recoverable	6020	2.5	ug/L	2.0	0.5	1	12/19/13 16:37	12/18/13	
Selenium, Total Recoverable	6020	1.1 U	ug/L	2.0	1.1	1	12/19/13 16:37	12/18/13	
Silver, Total Recoverable	6020	0.06 U	ug/L	0.50	0.06	1	12/20/13 00:08	12/18/13	
Sodium, Total Recoverable	6010B	50.4	mg/L	0.50	0.03	1	12/18/13 23:25	12/18/13	
Thallium, Total Recoverable	6020	0.05 U	ug/L	0.20	0.05	1	12/19/13 16:37	12/18/13	
Vanadium, Total Recoverable	6020	9.2	ug/L	2.0	0.3	1	12/19/13 16:37	12/18/13	
Zinc, Total Recoverable	6020	3.7 I	ug/L	5.0	1.6	1	12/19/13 16:37	12/18/13	

Analytical Report

Client: Waste Services of Florida, Inc.

Project: JED SWDF - Compliance Wells

Sample Matrix: Water

Service Request: J1307670

Date Collected: 12/16/13 11:25

Date Received: 12/17/13 09:35

Sample Name: CW-2A Basis: NA

Lab Code: J1307670-002

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Ammonia as Nitrogen	350.1	6.72	mg/L	0.010	0.007	1	12/20/13 16:13	
Chloride	300.0	76.3	mg/L	0.50	0.11	1	12/17/13 21:51	
Nitrate as Nitrogen	300.0	0.03 U	mg/L	0.20	0.03	1	12/17/13 21:51	
Solids, Total Dissolved	SM 2540 C	918	mg/L	20	20	2	12/19/13 11:19	

Analytical Report

Client:Waste Services of Florida, Inc.Service Request:J1307670Project:JED SWDF - Compliance WellsDate Collected:12/16/13 13:00Sample Matrix:WaterDate Received:12/17/13 09:35

 Sample Name:
 CW-3A
 Units: ug/L

 Lab Code:
 J1307670-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

Printed 12/31/2013 11:46:20 AM

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1,2-Tetrachloroethane	0.19 U	1.0	0.19	1	12/23/13 15:38	
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/23/13 15:38	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/23/13 15:38	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/23/13 15:38	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/23/13 15:38	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/23/13 15:38	
1,2,3-Trichloropropane	0.42 U	2.0	0.42	1	12/23/13 15:38	
1,2-Dibromo-3-chloropropane (DBCP)	2.3 U	5.0	2.3	1	12/23/13 15:38	
1,2-Dibromoethane (EDB)	0.46 U	1.0	0.46	1	12/23/13 15:38	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/23/13 15:38	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/23/13 15:38	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/23/13 15:38	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/23/13 15:38	
2-Butanone (MEK)	3.8 U	10	3.8	1	12/23/13 15:38	
2-Hexanone	2.2 U	25	2.2	1	12/23/13 15:38	
4-Methyl-2-pentanone (MIBK)	1.1 U	25	1.1	1	12/23/13 15:38	
Acetone	5.6 U	50	5.6	1	12/23/13 15:38	
Acrylonitrile	1.5 U	10	1.5	1	12/23/13 15:38	
Benzene	0.21 U	1.0	0.21	1	12/23/13 15:38	
Bromochloromethane	0.27 U	5.0	0.27	1	12/23/13 15:38	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/23/13 15:38	
Bromoform	0.42 U	2.0	0.42	1	12/23/13 15:38	
Bromomethane	0.23 U	5.0	0.23	1	12/23/13 15:38	
Carbon Disulfide	2.4 U	10	2.4	1	12/23/13 15:38	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/23/13 15:38	
Chlorobenzene	0.16 U	1.0	0.16	1	12/23/13 15:38	
Chloroethane	0.52 U	5.0	0.52	1	12/23/13 15:38	
Chloroform	0.35 U	1.0	0.35	1	12/23/13 15:38	
Chloromethane	0.36 U	1.0	0.36	1	12/23/13 15:38	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/23/13 15:38	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/23/13 15:38	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/23/13 15:38	
Dibromomethane	0.36 U	5.0	0.36	1	12/23/13 15:38	
Ethylbenzene	0.21 U	1.0	0.21	1	12/23/13 15:38	
Iodomethane	2.7 U	5.0	2.7	1	12/23/13 15:38	
m,p-Xylenes	0.31 U	2.0	0.31	1	12/23/13 15:38	
Methylene Chloride	0.21 U	5.0	0.21	1	12/23/13 15:38	
o-Xylene	0.14 U	1.0	0.14	1	12/23/13 15:38	
Styrene	0.29 U	1.0	0.29	1	12/23/13 15:38	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/23/13 15:38	
Toluene	0.19 U	1.0	0.19	1	12/23/13 15:38	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/23/13 15:38	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/23/13 15:38	
/ I I '						

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells Date Collected: 12/16/13 13:00

Sample Matrix: Water Date Received: 12/17/13 09:35

 Sample Name:
 CW-3A
 Units: ug/L

 Lab Code:
 J1307670-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
trans-1,4-Dichloro-2-butene	2.2 U	20	2.2	1	12/23/13 15:38	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/23/13 15:38	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/23/13 15:38	
Vinyl Acetate	1.9 U	10	1.9	1	12/23/13 15:38	*
Vinyl Chloride	0.36 U	1.0	0.36	1	12/23/13 15:38	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	105	72 - 121	12/23/13 15:38	
4-Bromofluorobenzene	99	86 - 113	12/23/13 15:38	
Dibromofluoromethane	95	86 - 112	12/23/13 15:38	
Toluene-d8	101	88 - 115	12/23/13 15:38	

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells Date Collected: 12/16/13 13:00

Sample Matrix: Water Date Received: 12/17/13 09:35

 Sample Name:
 CW-3A
 Units: ug/L

 Lab Code:
 J1307670-003
 Basis: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by Microextraction and Gas Chromatography

Analysis Method: 8011 **Prep Method:** Method

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed I	Date Extracted	Q
1,2-Dibromo-3-chloropropane (DBCP)	0.00707 U	0.0202	0.00707	1	12/20/13 13:30	12/19/13	
1.2-Dibromoethane (EDB)	0.00707 U	0.0202	0.00707	1	12/20/13 13:30	12/19/13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,1,1,2-Tetrachloroethane	107	70 - 130	12/20/13 13:30		

Analytical Report

Client: Waste Services of Florida, Inc.

Project: JED SWDF - Compliance Wells

Sample Matrix: Water

Date Received: 12/17/13 09:35

Service Request: J1307670

Date Collected: 12/16/13 13:00

Sample Name: CW-3A Basis: NA

Lab Code: J1307670-003

Inorganic Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony, Total Recoverable	6020	0.2 U	ug/L	1.0	0.2	1	12/19/13 16:42	12/18/13	
Arsenic, Total Recoverable	6020	2.1	ug/L	1.0	0.5	1	12/19/13 16:42	12/18/13	
Barium, Total Recoverable	6020	173	ug/L	2.0	0.5	1	12/19/13 16:42	12/18/13	
Beryllium, Total Recoverable	6020	0.63	ug/L	0.50	0.04	1	12/19/13 16:42	12/18/13	
Cadmium, Total Recoverable	6020	0.10 U	ug/L	0.40	0.10	1	12/19/13 16:42	12/18/13	
Chromium, Total Recoverable	6020	12.5	ug/L	1.0	0.2	1	12/19/13 16:42	12/18/13	
Cobalt, Total Recoverable	6020	12.9	ug/L	1.0	0.03	1	12/19/13 16:42	12/18/13	
Copper, Total Recoverable	6020	0.6 I	ug/L	1.0	0.3	1	12/19/13 16:42	12/18/13	
Iron, Total Recoverable	6010B	126000	ug/L	100	3	1	12/18/13 23:29	12/18/13	
Lead, Total Recoverable	6020	2.08	ug/L	0.50	0.12	1	12/19/13 16:42	12/18/13	
Mercury, Total	7470A	0.05 I	ug/L	0.10	0.02	1	12/19/13 16:18	12/18/13	
Nickel, Total Recoverable	6020	3.1	ug/L	2.0	0.5	1	12/19/13 16:42	12/18/13	
Selenium, Total Recoverable	6020	1.8 I	ug/L	2.0	1.1	1	12/19/13 16:42	12/18/13	
Silver, Total Recoverable	6020	0.06 U	ug/L	0.50	0.06	1	12/20/13 00:13	12/18/13	
Sodium, Total Recoverable	6010B	65.5	mg/L	0.50	0.03	1	12/18/13 23:29	12/18/13	
Thallium, Total Recoverable	6020	0.05 U	ug/L	0.20	0.05	1	12/19/13 16:42	12/18/13	
Vanadium, Total Recoverable	6020	15.0	ug/L	2.0	0.3	1	12/19/13 16:42	12/18/13	
Zinc, Total Recoverable	6020	3.7 I	ug/L	5.0	1.6	1	12/19/13 16:42	12/18/13	

Analytical Report

Service Request: J1307670

Client: Waste Services of Florida, Inc.

Project: JED SWDF - Compliance Wells Date Collected: 12/16/13 13:00

Sample Matrix: Water Date Received: 12/17/13 09:35

Sample Name: CW-3A Basis: NA

Lab Code: J1307670-003

General Chemistry Parameters

Analysis Method Analyte Name Result Units **MRL MDL** Dil. **Date Analyzed** Q mg/L 0.10 12/20/13 17:42 Ammonia as Nitrogen 350.1 11.1 0.07 10 mg/L 12/17/13 22:22 Chloride 300.0 62.0 0.50 0.11 1 Nitrate as Nitrogen 300.0 0.03 U mg/L 0.20 0.03 1 12/17/13 22:22 2 Solids, Total Dissolved 1190 mg/L 12/19/13 11:19 SM 2540 C 20 20

Analytical Report

Client:Waste Services of Florida, Inc.Service Request:J1307670Project:JED SWDF - Compliance WellsDate Collected:12/16/13 00:00Sample Matrix:WaterDate Received:12/17/13 09:35

 Sample Name:
 Trip Blank
 Units: ug/L

 Lab Code:
 J1307670-004
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1,2-Tetrachloroethane	0.19 U	1.0	0.19	1	12/23/13 16:03	
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/23/13 16:03	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/23/13 16:03	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/23/13 16:03	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/23/13 16:03	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/23/13 16:03	
1,2,3-Trichloropropane	0.42 U	2.0	0.42	1	12/23/13 16:03	
1,2-Dibromo-3-chloropropane (DBCP)	2.3 U	5.0	2.3	1	12/23/13 16:03	
1,2-Dibromoethane (EDB)	0.46 U	1.0	0.46	1	12/23/13 16:03	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/23/13 16:03	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/23/13 16:03	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/23/13 16:03	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/23/13 16:03	
2-Butanone (MEK)	3.8 U	10	3.8	1	12/23/13 16:03	
2-Hexanone	2.2 U	25	2.2	1	12/23/13 16:03	
4-Methyl-2-pentanone (MIBK)	1.1 U	25	1.1	1	12/23/13 16:03	-
Acetone	5.6 U	50	5.6	1	12/23/13 16:03	
Acrylonitrile	1.5 U	10	1.5	1	12/23/13 16:03	
Benzene	0.21 U	1.0	0.21	1	12/23/13 16:03	
Bromochloromethane	0.27 U	5.0	0.27	1	12/23/13 16:03	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/23/13 16:03	
Bromoform	0.42 U	2.0	0.42	1	12/23/13 16:03	
Bromomethane	0.23 U	5.0	0.23	1	12/23/13 16:03	
Carbon Disulfide	2.4 U	10	2.4	1	12/23/13 16:03	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/23/13 16:03	
Chlorobenzene	0.16 U	1.0	0.16	1	12/23/13 16:03	-
Chloroethane	0.52 U	5.0	0.52	1	12/23/13 16:03	
Chloroform	0.35 U	1.0	0.35	1	12/23/13 16:03	
Chloromethane	0.36 U	1.0	0.36	1	12/23/13 16:03	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/23/13 16:03	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/23/13 16:03	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/23/13 16:03	
Dibromomethane	0.36 U	5.0	0.36	1	12/23/13 16:03	
Ethylbenzene	0.21 U	1.0	0.21	1	12/23/13 16:03	
Iodomethane	2.7 U	5.0	2.7	1	12/23/13 16:03	
m,p-Xylenes	0.31 U	2.0	0.31	1	12/23/13 16:03	
Methylene Chloride	0.21 U	5.0	0.21	1	12/23/13 16:03	
o-Xylene	0.14 U	1.0	0.14	1	12/23/13 16:03	
Styrene	0.29 U	1.0	0.29	1	12/23/13 16:03	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/23/13 16:03	
Toluene	0.19 U	1.0	0.19	1	12/23/13 16:03	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/23/13 16:03	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/23/13 16:03	
and 1,5 Diemoropropone	J.25 C	1.0	0.20	•	12, 20, 10 10.00	

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells Date Collected: 12/16/13 00:00

Sample Matrix: Water Date Received: 12/17/13 09:35

 Sample Name:
 Trip Blank
 Units: ug/L

 Lab Code:
 J1307670-004
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
trans-1,4-Dichloro-2-butene	2.2 U	20	2.2	1	12/23/13 16:03	_
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/23/13 16:03	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/23/13 16:03	
Vinyl Acetate	1.9 U	10	1.9	1	12/23/13 16:03	*
Vinyl Chloride	0.36 U	1.0	0.36	1	12/23/13 16:03	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	107	72 - 121	12/23/13 16:03		
4-Bromofluorobenzene	99	86 - 113	12/23/13 16:03		
Dibromofluoromethane	98	86 - 112	12/23/13 16:03		
Toluene-d8	99	88 - 115	12/23/13 16:03		

Analytical Report

Client:Waste Services of Florida, Inc.Service Request:J1307670Project:JED SWDF - Compliance WellsDate Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1309276-02
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1,2-Tetrachloroethane	0.19 U	1.0	0.19	1	12/23/13 11:24	
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/23/13 11:24	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/23/13 11:24	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/23/13 11:24	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/23/13 11:24	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/23/13 11:24	
1,2,3-Trichloropropane	0.42 U	2.0	0.42	1	12/23/13 11:24	
1,2-Dibromo-3-chloropropane (DBCP)	2.3 U	5.0	2.3	1	12/23/13 11:24	
1,2-Dibromoethane (EDB)	0.46 U	1.0	0.46	1	12/23/13 11:24	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/23/13 11:24	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/23/13 11:24	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/23/13 11:24	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/23/13 11:24	
2-Butanone (MEK)	3.8 U	10	3.8	1	12/23/13 11:24	
2-Hexanone	2.2 U	25	2.2	1	12/23/13 11:24	
4-Methyl-2-pentanone (MIBK)	1.1 U	25	1.1	1	12/23/13 11:24	
Acetone	5.6 U	50	5.6	1	12/23/13 11:24	
Acrylonitrile	1.5 U	10	1.5	1	12/23/13 11:24	
Benzene	0.21 U	1.0	0.21	1	12/23/13 11:24	
Bromochloromethane	0.27 U	5.0	0.27	1	12/23/13 11:24	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/23/13 11:24	
Bromoform	0.42 U	2.0	0.42	1	12/23/13 11:24	
Bromomethane	0.23 U	5.0	0.23	1	12/23/13 11:24	
Carbon Disulfide	2.4 U	10	2.4	1	12/23/13 11:24	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/23/13 11:24	
Chlorobenzene	0.16 U	1.0	0.16	1	12/23/13 11:24	
Chloroethane	0.52 U	5.0	0.52	1	12/23/13 11:24	
Chloroform	0.35 U	1.0	0.35	1	12/23/13 11:24	
Chloromethane	0.36 U	1.0	0.36	1	12/23/13 11:24	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/23/13 11:24	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/23/13 11:24	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/23/13 11:24	
Dibromomethane	0.36 U	5.0	0.36	1	12/23/13 11:24	
Ethylbenzene	0.21 U	1.0	0.21	1	12/23/13 11:24	
Iodomethane	2.7 U	5.0	2.7	1	12/23/13 11:24	
m,p-Xylenes	0.31 U	2.0	0.31	1	12/23/13 11:24	
Methylene Chloride	0.21 U	5.0	0.21	1	12/23/13 11:24	
o-Xylene	0.14 U	1.0	0.14	1	12/23/13 11:24	
Styrene	0.29 U	1.0	0.29	1	12/23/13 11:24	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/23/13 11:24	
Toluene	0.19 U	1.0	0.19	1	12/23/13 11:24	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/23/13 11:24	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/23/13 11:24	
and 1,0 Diemoropropone	0.25	1.0	0.20	•	12, 20, 10 11,2 1	

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1309276-02
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
trans-1,4-Dichloro-2-butene	2.2 U	20	2.2	1	12/23/13 11:24	-
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/23/13 11:24	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/23/13 11:24	
Vinyl Acetate	1.9 U	10	1.9	1	12/23/13 11:24	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/23/13 11:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	106	72 - 121	12/23/13 11:24	
4-Bromofluorobenzene	100	86 - 113	12/23/13 11:24	
Dibromofluoromethane	97	86 - 112	12/23/13 11:24	
Toluene-d8	101	88 - 115	12/23/13 11:24	

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1309181-01
 Basis: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by Microextraction and Gas Chromatography

Analysis Method: 8011 **Prep Method:** Method

Analyte Name Result MRL MDL Dil. Date Analyzed Date Extracted Q 0.00700 U 0.00700 12/20/13 11:21 12/19/13 1,2-Dibromo-3-chloropropane (DBCP) 0.0200 1 0.00700 U 0.00700 1 12/20/13 11:21 12/19/13 1,2-Dibromoethane (EDB) 0.0200

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,1,1,2-Tetrachloroethane	98	70 - 130	12/20/13 11:21		

Analytical Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project:JED SWDF - Compliance WellsDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

Lab Code: J1307670-MB

Inorganic Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony, Total Recoverable	6020	0.2 U	ug/L	1.0	0.2	1	12/19/13 15:21	12/18/13	
Arsenic, Total Recoverable	6020	0.6 I	ug/L	1.0	0.5	1	12/19/13 15:21	12/18/13	
Barium, Total Recoverable	6020	0.5 U	ug/L	2.0	0.5	1	12/19/13 15:21	12/18/13	
Beryllium, Total Recoverable	6020	0.04 U	ug/L	0.50	0.04	1	12/19/13 15:21	12/18/13	
Cadmium, Total Recoverable	6020	0.10 U	ug/L	0.40	0.10	1	12/19/13 15:21	12/18/13	
Chromium, Total Recoverable	6020	0.2 U	ug/L	1.0	0.2	1	12/19/13 15:21	12/18/13	
Cobalt, Total Recoverable	6020	0.03 U	ug/L	1.0	0.03	1	12/19/13 15:21	12/18/13	
Copper, Total Recoverable	6020	0.3 U	ug/L	1.0	0.3	1	12/19/13 15:21	12/18/13	
Iron, Total Recoverable	6010B	3 U	ug/L	100	3	1	12/18/13 23:13	12/18/13	
Lead, Total Recoverable	6020	0.12 U	ug/L	0.50	0.12	1	12/19/13 15:21	12/18/13	
Mercury, Total	7470A	0.02 U	ug/L	0.10	0.02	1	12/19/13 16:13	12/18/13	
Nickel, Total Recoverable	6020	0.5 U	ug/L	2.0	0.5	1	12/19/13 15:21	12/18/13	
Selenium, Total Recoverable	6020	1.1 U	ug/L	2.0	1.1	1	12/19/13 15:21	12/18/13	
Silver, Total Recoverable	6020	0.06 U	ug/L	0.50	0.06	1	12/19/13 15:21	12/18/13	
Sodium, Total Recoverable	6010B	0.03 U	mg/L	0.50	0.03	1	12/18/13 23:13	12/18/13	
Thallium, Total Recoverable	6020	0.05 U	ug/L	0.20	0.05	1	12/19/13 15:21	12/18/13	
Vanadium, Total Recoverable	6020	0.3 U	ug/L	2.0	0.3	1	12/19/13 15:21	12/18/13	
Zinc, Total Recoverable	6020	1.6 U	ug/L	5.0	1.6	1	12/19/13 15:21	12/18/13	

Analytical Report

Service Request: J1307670

Client: Waste Services of Florida, Inc.

JED SWDF - Compliance Wells

Project: Date Collected: NA **Sample Matrix:** Water Date Received: NA

Basis: NA **Sample Name:** Method Blank

J1307670-MB Lab Code:

General Chemistry Parameters

Analysis Analyte Name Method Result Units **MRL MDL** Dil. **Date Analyzed** Q 0.007 U mg/L 0.010 12/20/13 15:34 Ammonia as Nitrogen 350.1 0.007 0.11 U mg/L 12/17/13 18:07 Chloride 300.0 0.50 0.11 1 Nitrate as Nitrogen 300.0 0.03 U mg/L 0.20 0.03 1 12/17/13 18:07 Solids, Total Dissolved 10 U mg/L 1 12/19/13 11:19 SM 2540 C 10 10

QA/QC Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

		1,2-Dichloroethane-d4	4-Bromofluorobenzene	Dibromofluoromethane
Sample Name	Lab Code	72 - 121	86 - 113	86 - 112
CW-1A	J1307670-001	105	100	97
CW-2A	J1307670-002	105	97	99
CW-3A	J1307670-003	105	99	95
Trip Blank	J1307670-004	107	99	98
Lab Control Sample	JQ1309276-01	107	99	98
Method Blank	JQ1309276-02	106	100	97

QA/QC Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Toluene-d8					
Sample Name	Lab Code	88 - 115			
CW-1A	J1307670-001	99			
CW-2A	J1307670-002	100			
CW-3A	J1307670-003	101			
Trip Blank	J1307670-004	99			
Lab Control Sample	JQ1309276-01	99			
Method Blank	JQ1309276-02	101			

QA/QC Report

Client:Waste Services of Florida, Inc.Service Request:J1307670Project:JED SWDF - Compliance WellsDate Analyzed:12/23/13

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analysis Method: 8260B Units: ug/L Basis: NA

Analysis Lot: 374162

Lab Control Sample JQ1309276-01

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
1,1,1,2-Tetrachloroethane	22.0	20.0	110	77-118
1,1,1-Trichloroethane (TCA)	20.4	20.0	102	70-122
1,1,2,2-Tetrachloroethane	20.0	20.0	100	66-135
1,1,2-Trichloroethane	19.9	20.0	100	75-122
1,1-Dichloroethane (1,1-DCA)	19.5	20.0	98	79-117
1,1-Dichloroethene (1,1-DCE)	19.9	20.0	99	72-128
1,2,3-Trichloropropane	20.3	20.0	101	70-123
1,2-Dibromo-3-chloropropane (DBCP)	18.5	20.0	92	60-122
1,2-Dibromoethane (EDB)	19.3	20.0	96	76-118
1,2-Dichlorobenzene	19.7	20.0	98	81-115
1,2-Dichloroethane	20.5	20.0	102	70-117
1,2-Dichloropropane	19.2	20.0	96	79-117
1,4-Dichlorobenzene	19.8	20.0	99	82-115
2-Butanone (MEK)	102	100	102	62-138
2-Hexanone	105	100	105	74-127
4-Methyl-2-pentanone (MIBK)	104	100	104	77-120
Acetone	95.5	100	95	42-161
Acrylonitrile	101	100	101	63-132
Benzene	19.2	20.0	96	80-117
Bromochloromethane	19.3	20.0	96	78-118
Bromodichloromethane	21.3	20.0	106	75-118
Bromoform	19.0	20.0	95	63-121
Bromomethane	14.0	20.0	70	31-153
Carbon Disulfide	93.7	100	94	72-128
Carbon Tetrachloride	22.3	20.0	112	67-124
Chlorobenzene	19.2	20.0	96	83-118
Chloroethane	18.7	20.0	94	68-132
Chloroform	19.8	20.0	99	77-116
Chloromethane	17.9	20.0	90	60-128
cis-1,2-Dichloroethene	19.4	20.0	97	78-117
cis-1,3-Dichloropropene	20.7	20.0	103	80-119
Dibromochloromethane	21.9	20.0	110	74-121
Dibromomethane	20.5	20.0	102	76-117
Ethylbenzene	20.0	20.0	100	82-119
Iodomethane	96.2	100	96	51-137
m,p-Xylenes	40.3	40.0	101	79-122
Methylene Chloride	19.0	20.0	95	75-123
o-Xylene	20.5	20.0	102	80-119
Styrene	19.4	20.0	97	80-121
Tetrachloroethene (PCE)	20.5	20.0	102	75-126
Toluene	19.7	20.0	99	52-152

QA/QC Report

Client:Waste Services of Florida, Inc.Service Request:J1307670Project:JED SWDF - Compliance WellsDate Analyzed:12/23/13

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analysis Method: 8260B Units: ug/L

Basis: NA **Analysis Lot:** 374162

Lab Control Sample JQ1309276-01

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
trans-1,2-Dichloroethene	19.8	20.0	99	75-121
trans-1,3-Dichloropropene	21.2	20.0	106	76-118
trans-1,4-Dichloro-2-butene	21.2	20.0	106	10-198
Trichloroethene (TCE)	19.0	20.0	95	78-122
Trichlorofluoromethane	21.2	20.0	106	58-134
Vinyl Acetate	170	100	170 *	36-169
Vinyl Chloride	20.2	20.0	101	69-138

QA/QC Report

Client: Waste Services of Florida, Inc. Service Request: J1307670

Project: JED SWDF - Compliance Wells

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by Microextraction and Gas Chromatography

Analysis Method: 8011 **Extraction Method:** Method

1,1,1,2-Tetrachloroethane

Sample Name	Lab Code	70 - 130	
CW-1A	J1307670-001	94	
CW-2A	J1307670-002	89	
CW-3A	J1307670-003	107	
Method Blank	JQ1309181-01	98	
Lab Control Sample	JQ1309181-02	102	
CW-1A	JQ1309181-03	95	
CW-1A	JQ1309181-04	81	

QA/QC Report

Client: Waste Services of Florida, Inc. **Service Request:** J1307670 **Project:** JED SWDF - Compliance Wells **Date Collected:** 12/16/13 **Sample Matrix:** Water **Date Received:** 12/17/13 **Date Analyzed:** 12/20/13 **Date Extracted:** 12/19/13

Duplicate Matrix Spike Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by Microextraction and Gas Chromatography

 Sample Name:
 CW-1A
 Units:
 ug/L

 Lab Code:
 J1307670-001
 Basis:
 NA

Analysis Method: 8011 **Prep Method:** Method

Matrix SpikeDuplicate Matrix SpikeJQ1309181-03JQ1309181-04

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,2-Dibromo-3-chloropropane (DBCP)	0.00703 U	0.243	0.251	97	0.190	0.252	75	65-135	25	30
1.2-Dibromoethane (EDB)	0.00703 U	0.259	0.251	103	0.187	0.252	74	65-135	32*	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Waste Services of Florida, Inc.Service Request:J1307670Project:JED SWDF - Compliance WellsDate Analyzed:12/20/13Sample Matrix:WaterDate Extracted:12/19/13

Lab Control Sample Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by Microextraction and Gas Chromatography

Analysis Method:8011Units:ug/LPrep Method:MethodBasis:NA

Analysis Lot: 373961

Lab Control Sample JQ1309181-02

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
1,2-Dibromo-3-chloropropane (DBCP)	0.264	0.250	105	70-130
1,2-Dibromoethane (EDB)	0.264	0.250	106	70-130

QA/QC Report

Client: Waste Services of Florida, Inc.

Project: JED SWDF - Compliance Wells

Sample Matrix: Water

Date Collected: 12/16/13 Date Received: 12/17/13 Date Analyzed: 12/18/13

Service Request:J1307670

Duplicate Matrix Spike Summary Inorganic Parameters

Sample Name: Lab Code:

CW-3A

J1307670-003

Units:ug/L

Basis:NA

Matrix Spike J1307670-003MS **Duplicate Matrix Spike**

J1307670-003DMS

		Sample		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Iron, Total Recoverable	6010B	126000	129000	5000	60 #	131000	5000	106#	75-125	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Waste Services of Florida, Inc.

Project: JED SWDF - Compliance Wells

Sample Matrix: Water

Service Request:J1307670

Date Collected:12/16/13

Date Received:12/17/13 **Date Analyzed:**12/18/13

Duplicate Matrix Spike Summary Inorganic Parameters

Sample Name:

Lab Code:

CW-3A

J1307670-003

2W-3A

Units:mg/L

Basis:NA

Matrix Spike J1307670-003MS **Duplicate Matrix Spike**

J1307670-003DMS

		Sample		Spike			Spike		% Rec		RPD	
Analyte Name	Method	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit	
Sodium Total Recoverable	6010B	65.5	90.2	25.0	99	91.1	25.0	102	75-125	<1	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Waste Services of Florida, Inc. Service Request:J1307670

Project: JED SWDF - Compliance Wells **Date Analyzed:**12/18/13 - 12/19/13

Sample Matrix: Water

Lab Control Sample Summary Inorganic Parameters

Units:ug/L Basis:NA

Lab Control Sample

J1307670-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony, Total Recoverable	6020	52.5	50.0	105	80-120
Arsenic, Total Recoverable	6020	48.9	50.0	98	80-120
Barium, Total Recoverable	6020	103	100	103	80-120
Beryllium, Total Recoverable	6020	23.8	25.0	95	80-120
Cadmium, Total Recoverable	6020	20.3	20.0	101	80-120
Chromium, Total Recoverable	6020	52.0	50.0	104	80-120
Cobalt, Total Recoverable	6020	51.0	50.0	102	80-120
Copper, Total Recoverable	6020	51.3	50.0	103	80-120
Iron, Total Recoverable	6010B	5110	5000	102	80-120
Lead, Total Recoverable	6020	25.6	25.0	102	80-120
Mercury, Total	7470A	1.18	1.25	94	80-120
Nickel, Total Recoverable	6020	101	100	101	80-120
Selenium, Total Recoverable	6020	96.8	100	97	80-120
Silver, Total Recoverable	6020	25.5	25.0	102	80-120
Thallium, Total Recoverable	6020	10.2	10.0	102	80-120
Vanadium, Total Recoverable	6020	101	100	101	80-120
Zinc, Total Recoverable	6020	248	250	99	80-120

QA/QC Report

Client:Waste Services of Florida, Inc.Service Request:J1307670Project:JED SWDF - Compliance WellsDate Analyzed:12/18/13

Sample Matrix: Water

Lab Control Sample Summary Inorganic Parameters

Units:mg/L Basis:NA

Lab Control Sample

J1307670-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Sodium, Total Recoverable	6010B	25.5	25.0	102	80-120

QA/QC Report

Client: Waste Services of Florida, Inc. Service Request:J1307670

Project: JED SWDF - Compliance Wells **Date Analyzed:**12/17/13 - 12/20/13

Sample Matrix: Water

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample

J1307670-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Ammonia as Nitrogen	350.1	0.965	1.00	96	90-110
Chloride	300.0	50.1	50.0	100	90-110
Nitrate as Nitrogen	300.0	5.25	5.00	105	90-110
Solids, Total Dissolved	SM 2540 C	296	300	99	85-115

Client: 🏳	2 24 24 5 N 1 2	was e	Service Requ	est#:	5/	307670		
Project:	- 	<u> </u>	· WEUS					
Cooler rec	eived on 😥 👍 🗷		and opened of	n(3)(4)	by	<u>O</u> AKE	2	
COURIE	R: ALS UPS FEDE	Client C	other	_ Airbill #	# <u>804</u> 4	6(2,)		
1	Were custody seals of	n outside of co	oler?		Yes	No		
	If yes, how many and				#: on	lid	other	
2	Were seals intact and	I signature and	date correct?		Yes	No	N/A	
3	Were custody papers	properly filled	out?		Yes	No	N/A	
4	Temperature of cooler	s) upon receipt	(Should be > 0°C and < 6°C)	Let C	·			
5	Thermometer ID			-124	***************************************			
6	Temperature Blank F	resent?			Yes	No .		
7	Were Ice or Ice Pack	s present			Ice	Ice Pack	cs No	
8	Did all bottles arrive	in good condit	ion (unbroken, etc)?		Yes	No	N/A	
9	Type of packing mate	erial present			Netting	Vial Hold	er ∈Bubble W	rap
					Paper	Styrofoam	Other	N/A
10	Were all bottle labels	complete (san	nple ID, preservation, e	etc)?	Yes	No	N/A	
11	Did all bottle labels a	and tags agree v	with custody papers?		Yes	No	N/A	
12	Were the correct bott	les used for the	e tests indicated?		(Yes	No	N/A	
13	Were all of the preserved HNO3 pH<2 H2SO4 Preservative additions noted bel	pH<2 ZnAc	with the appropriate preserve 2/NaOH pH>9 NaOH	ative? pH>12	Yes HCl pH<2	No	N/A	*******
14	Were all samples rec	eived within an	nalysis holding times?		(Yes.	No .	N/A	
15	Were all VOA vials free	of air bubbles? If p	present, note below		(Yes.)	No	N/A	
16	Where did the bottles	originate?			ALS	Client		
	Sample ID	Reagent	Lot #	ml add	ed [Initials I	Date/Time		
							-	
				<u> </u>		······································		
				1		······································		

Client approval to run samples if discrepancies noted:

Date:

SMF-1 Page 1 of 1

10/11/2013

ALS) Environmental

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

> 9 9143 Philipa Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

1. HCL 2. HNO3 3. H2SO4 5. Zn. Acetate 6. MeOH 7. NaHSO4 REMARKS/ ALTERNATE DESCRIPTION 8, Other_ ANALYSIS REQUESTED (Include Method Number an J1307670 Waste Services of Florida, Inc. | Vaste Services of Florida, Inc. | JED SWDF - Compliance Weils \mathcal{C} C 0 PRESERVATIVE NUMBER OF CONTAINERS OF HO 3 3 3 MATRIX 300 8:8 12.16.0 1320 TIME 1125 SAMPLING DATE TIM mkarson @ wsii. 2) 13.76.13 Sampler's Printed Name
Soc Terry SEDSUAF- COMPICANCE Dell 3-1773 LAB ID YOU 1020 1051 7 OTTO! Project Manages Karry CLIENT SAMPLE ID たか 区域 1000 C A8-181 4 レリスでもの 573 - MOD -730 Semplor's Signature

SAMPLE RECEIPT. CONDITION/COOLER TEMP: CUSTODY SEALS: Y N RELINQUISHED BY RELINQUISHED BY RECEIVED	See QAPP				Took of the North	
QUISHED BY RECEIVED BY RELINQUISHED BY Signature Printed Name Printed Name <t< td=""><td>SAMPLE RECEIPT CONDITION/C</td><td>COOLER TEMP:</td><td>CUSTODY SEALS: Y N</td><td></td><td>ON</td><td></td></t<>	SAMPLE RECEIPT CONDITION/C	COOLER TEMP:	CUSTODY SEALS: Y N		ON	
Signature Signature Signature Signature Signature Signature Signature Signature Signature Printed Name Printed Name Printed Name Firm Firm Firm Firm Part Firm Date/Time Date/Time Date/Time	REUNQUISHED BY	RECEIVED BY	RELINQUISHED BY	RECEIVED BY	RELINQUISHED BY	RECEIVED BY
Common State Printed Name Printed Name Printed Name Section State Firm Firm Firm Split Firm Date/Time Date/Time	Signature	Signature	Signature	Signature	Signature	Signature
Firm Firm	Printed Name /	Printed Name	Printed Name	Printed Name	Printed Name	Printed Name
Date/Time Date/Time Date/Time	7		E-ITT	Firm	Fifth	Firm
	Date/fine 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date/Ime 2 4 75 25	Date/Time	Date/Time	Date/Time	Date/Time

INVOICE INFORMATION

REPORT REQUIREMENTS

TURNAROUND REQUIREMENTS
RUSH (SURCHARGES APPLY)

SPECIAL INSTRUCTIONS/COMMENTS

BILL TO:

(LCS, DUP, MSAMSD as required).

III. Results + QC and Calibration.
Summaries

X II. Results + QC Summaries

1. Results Only

... IV. Data Validation Report with Raw Data ... V. Specialized Forms / Custom Report

REQUESTED REPORT DATE

STANDARD
REQUESTED FAX DATE

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE	NAME: J.E.D. SWMF (WACs Facility ID: 89544) LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773													
WELL NO:		•	. 69544)	SAMPLE	ID: Clu		1 Ollilli VVa	ly, Ot. O				1- 11 7013		
WELL NO.	Cw-	IA		107 WH EE		SING DA	ТА			1)6	renbi	r 16, 2013		
WELL		TUBIN	G	WEI	L SCREEN			TIC DEF	PTH	PUF	RGE PUMP T	YPE		
DIAMETER	R (inches): 2.0	DIAME	TER (inches):	0.25 DEP	TH: E fe	et to 19 fe	et TO V	VATER	(feet): 5, C	3 OR		peristaltic		
	LUME PURGE: t if applicable)	1 WELL VO	LUME = (TO		TH - STA	TIC DEPTH T	O WATER)	X V	VELL CAPACI	TY				
			= (18.46	feet -	5.03	feet)	X	0.16 ga	allons/foot	= 2.2	gallons		
	NT VOLUME PO t if applicable)	URGE: 1 EQ	UIPMENT VOL						ING LENGTH)			0 2		
INITIAL DI	IMP OF TURIN		FINIAL DUI		allons + (0	.0026 gallo	ns/foot X	4	PURGING	+ 0.12	gallons = (9,2 gallons		
	JMP OR TUBIN WELL (feet):	13		MP OR TUBING WELL (feet):	13	INITIATE	D AT: /0	35	ENDED AT:	1215	PURGED (
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)		OXYGEN (mg/L)	TURBIDIT (NTUs)	COLO (descri			
1205	11.7	11.7	0.13	5.13	5.05	24.04	626	,	1.57	2.8	clea	101.8		
1210	0.65	1235	0.13	5.13	5.02	24.07	626		1.52	2.9	cles			
1215	0.65	13.0	0.13	5.13	5.00	24.10	628	-	1.16	2.6	-			
WELL CAI	PACITY (Gallon NSIDE DIA. CAI	is Per Foot): PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0	1" = 0.04; .0006; 3/16"	1.25 " = 0.0 = 0.0014;	6; 2 " = 0.16 1/4 " = 0.002	6; 3 " = 0 6; 5/16 "	.37; = 0.004		5" = 1.02; .006; 1/2	6" = 1.47; " = 0.010;	12" = 5.88 5/8" = 0.016		
PURGING	EQUIPMENT C	CODES:	B = Bailer;	BP = Bladder F		SP = Electric		e Pump	; PP = Pe	eristaltic Pum	p; O = 0	ther (Specify)		
					SAMP	LING DA	ATA							
SAMPLED Joe Terry /	BY (PRINT) / A	AFFILIATION:		SAMPLER(S)	SIGNATUR	E(S): Que	Con		SAMPLING INITIATED AT	:1220	SAMPLIN ENDED A	IG AT: 1230		
PUMP OR		17		TUBING MATERIAL C	ODE: BE			ELD-FI	LTERED: Y	N	FILTER S			
	WELL (feet): CONTAMINATION	ON: PUI	MP No	TUB		(replaced)	FI		DUPLICATE of		NT BLANK:	Y (N)		
	PLE CONTAINE					RESERVATIO	N		INTENDE		SAMPLING	SAMPLE PUMP		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	IVE	TOTAL VOL	FIN	AL	ANALYSIS AN METHOL	ND/OR E	CODE	FLOW RATE (mL per minute)		
CW-14	3	CG	40mL	HCL		efilled by lab			8260		RFPP	<100		
CW-1A	3	CG	40mL	None		None			8011		RFPP	<100		
CW-IA	1	PE	500mL	HNO ₃	Pr	efilled by lab			Metals		APP	500		
CW.jA	1	PE	125mL	H₂SO₄	Pr	efilled by lab			NH ₃		APP	500		
CW-1A	1	PE	250mL	None		None			TDS, CI, N	NO ₃	APP	500		
REMARKS weather: c	lew, ~530F	, 1,34+ br	eeze											
odor: 📭 🔿						18.46								
MATERIAL		AG = Amber		= Clear Glass;		-	PP = Polyp					Other (Specify)		
SAMPLING	G EQUIPMENT		RFPP = Rever	eristaltic Pump; se Flow Peristal		SM = Straw		bing Gr		o = Other				

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE	SITE NAME: J.E.D. SWMF (WACs Facility ID: 89544) SITE LOCATION: 1501 Omni Way, St. Cloud, Osceola County, Florida, 34773													
			09544)	SAMPLE			or Orinii vvay, v				11 2013			
WELL NO.	CW.2	/†		SAMPLE	000	1.2A	TA		Sec	emser	16,2013			
			•	14/51	L SCREEN	SING DA		DEPTH	DURC	E PUMP T	VDE			
DIAMETER	(inches): 2.0	TUBIN	TER (inches):				eet TO WAT		3/ OR BA		eristaltic			
WELL VOL	UME PURGE:	1 WELL VO	LUME = (TOT	AL WELL DEP		TIC DEPTH T	O WATER)	X WELL CAPACI		2)			
, ,		IDOE: 4 FOI	= (18.48 = PUMP VOLI	feet -	4.8		X 0.16 g TUBING LENGTH)	allons/foot =	2.2	gallons			
	if applicable)	JRGE: 1 EQ	JIPMENT VOL		allons + (0.		ons/foot X	35 feet)			0.2 gallons			
INITIAL PU	MP OR TUBIN	G	FINAL PUI	MP OR TUBING	,	PURGIN		PURGING		TOTAL VO				
	WELL (feet):	13	DEPTH IN	WELL (feet):	13	INITIATE	DAT: /0/5		1125	PURGED (gallons):			
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLO (descril				
1110	5.5	5.5	0.1	4.91	4.45	23.74	1222	0.84	/	clew	- 91.2			
1115	0.5	6	0.1	4.91	4.50	23.78	1223	0.81	0.5	clen	000			
1120	0.5	6.5	0.1	4.91	4.51	23.77	1222	0.78	1	clen	-			
1175	0.5	7	0.1	4.91	41.49	23.80	1222	0.73	0.6	C lew	89.5			
1135 U.S 7 U.T 2 ST 77. 17 35.00 1223 U.70 U. O CIEW 91.3														
	ACITY (Gallon			1" = 0.04; .0006; 3/16"	1.25 " = 0.00					' = 1.47; 0.010;	12 " = 5.88 5/8 " = 0.016			
	EQUIPMENT O		,	BP = Bladder P			Submersible P		eristaltic Pump;		ther (Specify)			
					SAMP	LING DA	ATA							
SAMPLED Joe Terry /	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATURE	E(S): Oré	Tunk	SAMPLING INITIATED AT	1125	SAMPLIN ENDED A	_ /			
PUMP OR				TUBING		you		D-FILTERED: Y	(N)	FILTER S	1131			
	WELL (feet):	13		MATERIAL CO	DDE: PE			ation Equipment Ty	pe:					
FIELD DEC	ONTAMINATIO	ON: PUN	IP No	TUBII	NG No	(replaced)		DUPLICATE	or EQUIPMENT	BLANK:	YN			
	PLE CONTAINE		ATION			RESERVATIO		INTENDE ANALYSIS AI		MPLING JIPMENT	SAMPLE PUMP FLOW RATE			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL ED IN FIELD (I	mL) FINAL	METHO		ODE	(mL per minute)			
CW-DA	3	CG	40mL	HCL	Pre	efilled by lab)	8260	F	RFPP	<100			
CW-JA	3	CG	40mL	None		None		8011	F	RFPP	<100			
CW-JA	1	PE	500mL	HNO ₃		efilled by lab		Metals	3	APP	400			
CW-JA	1	PE	125mL	H₂SO₄	Pre	efilled by lab)	NH ₃		APP	400			
CW-2A	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	400			
DEMINISTRA														
REMARKS: weather: È	ew, ~55°+	=, lights	reeze											
odor: aga	e					.48 B								
MATERIAL		AG = Amber		Clear Glass;	PE = Poly		PP = Polyprop				Other (Specify)			
SAMPLING	EQUIPMENT			eristaltic Pump; se Flow Peristalt	B = Bai tic Pump;		Bladder Pump Method (Tubin	g Gravity Drain);	o = Other (S					

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE	D CIAME AMA	Co Facility ID:	90544)			TE CATION: 150	1 Omni W	av St	Cloud, Osceola	County Florid	a 34773	
	C. N. O. O.		89344)	SAMPLE	ID: Ch		Olimii VV	ay, Ot.				16 2013
WELL NO.	CW-3,	4		OAIVII EE		SING DA	TΛ			Dec	erso	16,2013
WELL		TUBING	`	WE	LL SCREEN			TIC DE	PTH	PURC	GE PUMP TY	/PE
DIAMETER	R (inches): 2.0	DIAMET	TER (inches):	0.25 DEF	PTH: 8 fe	et to 19 f	eet TO	WATER	R (feet): 4,19	9 ORB		eristaltic
	LUME PURGE: it if applicable)	1 WELL VOL	.UME = (TOT	AL WELL DEF	PTH - STA	TIC DEPTH T) X	WELL CAPACI	TY allons/foot =		gallons
EQUIPME	NT VOLUME P	URGE: 1 EQU	IPMENT VOL	= PUMP VOI	UME + (TUE	BING CAPACI	TY X		BING LENGTH)			ganono
(only fill ou	it if applicable)			= 0.0 0	gallons + (0	.0026 gallo	ons/foot X	4	(O feet)	+ 0.12	gallons = 6	9.2 gallons
	JMP OR TUBIN WELL (feet):	G 13		MP OR TUBING	3 13	PURGIN	IG ED AT: /6	000	PURGING ENDED AT:	1255	TOTAL VOL PURGED (9	UME gallons): 17.5
	VOLUME	CUMUL.	PURGE	DEPTH	рН	TEMP.	COND		DISSOLVED	TURBIDITY	COLO	R ORP
TIME	PURGED (gallons)	VOLUME PURGED (gallons)	RATE (gpm)	TO WATER (feet)	(standard units)	(°C)	(μS/cm	1)	(mg/L)	(NTUs)	(describ	pe) (mV)
1050	5	5	0.1	4.45	4.78	23.52	1409		1.00	32	clea	70.8
1240	11	16	0.1	21.45	41.74	23.6	1426	,	1.52	34.2	clea	
1245	0.5	16.5	0.1	4.45	4.71	23.59	142		1.36	33	Cleu	
1250	0.5	17	0.1	41.45	4.73	23.6	14118		1.32	34	Clear	-
1255 0.5 17.5 0.1 4.45 4.74 23.58 1417 1.24 35 Clear B5.											85.3	
7,53												
						-		-			_	
								_				
				<u> </u>				_				
WELL CA	PACITY (Gallon	s Per Foot): (75" = 0.02	1" = 0.04;	1.25" = 0.0	6: 2 " = 0.1	6: 3" =	0.37:	4" = 0.65;	5" = 1.02; 6	5" = 1.47:	12 " = 5.88
	NSIDE DIA. CA	PACITY (Gal./	Ft.): 1/8" = 0		" = 0.0014;	1/4" = 0.002	26; 5/16	" = 0.0	004; 3/8" = 0	.006; 1/2"	= 0.010;	5/8" = 0.016
PURGING	EQUIPMENT	CODES: B	= Bailer;	BP = Bladder		SP = Electric		le Pum	np; PP = Pe	eristaltic Pump	; 0 = 0	ther (Specify)
					SAIVIP	LING DA	AIA		044454440		0445145	
Joe Terry) BY (PRINT) / A / PWSFL	AFFILIATION:		SAMPLER(S	SIGNATUR	E(S): (ve	ley		SAMPLING INITIATED AT	:1300	SAMPLIN ENDED A	A comment of the comm
PUMP OR DEPTH IN	TUBING WELL (feet):	13		TUBING MATERIAL C	ODE: PE				FILTERED: Y n Equipment Ty		FILTER S	IZE: μm
FIELD DE	CONTAMINATIO	ON: PUM	IP No	TUB	SING No	(replaced)			DUPLICATE	or EQUIPMEN	T BLANK:	YN
	PLE CONTAINE		TION			RESERVATIO			INTENDE ANALYSIS AN		AMPLING UIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL ED IN FIELD (I		NAL H	METHO		CODE	(mL per minute)
CW3A	3	CG	40mL	HCL	Pr	efilled by lab)		8260		RFPP	<100
CW-3A	3	CG	40mL	None		None			8011		RFPP	<100
CW-3A	1	PE	500mL	HNO ₃	Pr	efilled by lab			Metals		APP	400
cw-34	1	PE	125mL	H₂SO₄	Pr	efilled by lab			NH ₃		APP	400
cw-3A	1	PE	250mL	None		None			TDS, CI, I	NO ₃	APP	400
DE1												
	lew, 55°F,	lightbreen	se			,						
	Lw-like	10. 1	01			2' BTOC	DD 5					
MATERIA		AG = Amber		= Clear Glass;		yethylene;	- ,		ene; S = Silico			Other (Specify)
	G EQUIPMENT	R	FPP = Rever	eristaltic Pump; se Flow Perista	altic Pump;	SM = Straw		ubing (Gravity Drain);	O = Other (

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Field Instrument Calibration Record

Site: 283 SWAF			Date:	Dec. 16, 2013	
Water Quality Instrument Make: YSI	Instrument Model Number:	556	Instr	rument Serial Number: <u>06A2173AL</u>	

ME12953

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number:

Time: 0600

		tion Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
C359207	Feb 15, 2015	pH = 4.00	4.03	0.03	0.2	Y	C	QT
C358930	Feb 7, 2015	pH = 7.00	7.11	0.11	0.2	Ý	C	DT
C256078	Oct 2014	pH = 10.00			0.2	,		0
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C256861	Jan. 2014	Turbidity = 10 NTU	10.07	0.7	10%	V	C	ST
3AJ929	Oct 2014	Conductivity = 84 µS/cm	85	1.2	5%	(C	9T
C250309	Jan. 20, 2014	Conductivity = 500 μS/cm	501	0.2	5%	ý	C	QT
C257964	Jan. 2014	Conductivity = 1,000 µS/cm	990	1	5%	ý	C	97
	Per Table →	D.O. = 6.482 mg/L @ 23.6 °C	8.51	0.03	0.2 mg/l	V	I	27

Date: Dec 17, 2013 Time: 1830

LatNia		tion Standard	Instrument	Percent Deviation ⁽¹⁾ or	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
C359207	Feb 15, 2015	pH = 4.00	4.02	0.07	0.2	У	C	QT
C358930	Feb 7, 2015	pH = 7.00	7.05	0.05	0.2	Y	C	21
C256078	Oct 2014	pH = 10.00			0.2	,		
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C256861	Jan.2014	Turbidity = 10 NTU	9.97	1.3	10%	Y	C	OT
3AJ929	Oct 2014	Conductivity = 84 μS/cm	23	1,2	5%	'	C	OT
C250309	Jan. 20, 2014	Conductivity = 500 μS/cm	500	0	5%	Ý	(OT
C257964	Jan. 2014	Conductivity = 1,000 μS/cm	1006	0.6	5%	Y	C	97
	Per Table →	D.O. = 8.74 mg/L @ 22 °C	8.83	0.09	0.2 mg/l	V	F	27

Note (1): Percent Deviation = (Standard Value – Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: $pH \pm 0.2$ of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; $DO \pm 0.2$ mg/L;

 $Turbidity~0.1-10~NTU~\pm~10\%~of~Standard~Value,~11-40~NTU~\pm~8\%~of~Standard~Value,~41-100~NTU~\pm~6.5\%~of~Standard~Value,~2100~NTU~\pm~5\%~of~Standard~Value,~2100~NTU~\pm~25\%~of~Standa$

Note (3): Initial, Continual, Final

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#	
CAS Contract	

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE ___/_OF __/

	Project Number																						
Project Name SED SWDF- Complian	ce Wells Project Number							A	NALYS	IS RE	QUEST	TED (I	nclude	e Meth	od Nu	mber	and C	ontain	er Pre	servat	ive)		
Project Manager Mike Kuiser	Email Address MKaiser @	wsii.	1)		PRES	SERVA	TIVE	N _{1,0} pm ¹ N	0	3	2	0											
Company/Address PWSFL					NERS						1/5	1							/			Preservativ 0. NONE 1. HCL 2. HNO ₃	
St. Cloud F	,				NUMBER OF CONTAINERS	/	260	150	12	1 mg	1	//	/ /	/ /	/ /	/ /	/ /	/ /	/	//		 H₂SO₄ NaOH Zn. Acc MeOH 	etate
1-904-673-0441					MBER O		03/	2	7	7	7						/.					7. NaHSC 8. Other_	04
Sampler's Signature	lot les soe Terry									17					_					/ A		EMARKS/ ITE DESCRI	PTION
CLIENT SAMPLE ID																							
CW-IA		2.16.81	220	GW	9	3	3		1	1													
CW-2A		-	125	GW	9	3	3	(1	E P													
CW-3A	1-3A 1, 1300 GW					3	3	1	1	1													
Trip Blank	N S					4000																	
VIV.																							
									611115			170	_	550					_		(0)05.11	UEODI MATI	ON
SPECIAL I NSTRUCTIONS/COMMENTS							TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY)				REPORT REQUIREMENTS I. Results Only II. Results + QC Summaries							INVOICE INFORMATION					
								STAN					1-7	_		/MSD as		d)	PO	#			
							REQU	ESTED	FAX DA	- -			-	_ III. Resi		C and C	alibration	1	BILI	TO:			
							REQU	ESTED	REPOR	T DATE			_	_ IV. Data	Validati	ion Repo	ort with F	Raw Data	a				
See QAPP													_			Forms /			L				
SAMPLE RECEIPT: CONDITION/COO	OLER TEMP:		cus	TODY SEA	LS: Y	N								Edata	a	_Yes		No					
RELINQUISHED BY					BY				RECE	VED B	Y			R	ELINQ	UISHED	BY				RECE	IVED BY	
Signature Que Tun	gnature Signature Signature						Signatu	ure					Signa	ture					Sign	ature			
Printed Name Socterly	Printed Name	Printe	ed Name				Printed	Name					Printe	d Name						Printed Name			
Firm PUSEL	Firm	Firm			Firm Firm				Firm														
Date/Time 12.16.13/ 1400	Date/Time	Date/	Time				Date/T	ime					Date/	Time					Date	/Time			