

Omni Waste of Osceola County, LLC

1501 Omni Way St. Cloud, Florida 34773

19th SEMI-ANNUAL WATER QUALITY MONITORING REPORT

J.E.D. Solid Waste Management Facility 1501 Omni Way St. Cloud, Osceola County, Florida 34773

Prepared by:

50 South Belcher Road, Suite 116 Clearwater, FL 33765

Project No. FR2220

31 January 2014

TABLE OF CONTENTS

1. 1	NTRODUCTION	1
1.1	Terms of Reference	1
1.2	Overview	1
1.3	Site Description	1
2. I	MONITORING WELL DETAILS	4
2.1	Well Layout and Construction	4
2.2	Turbidity Issues	5
3. I	MONITORING WELL SAMPLING	6
3.1	Sampling Locations and Procedures	6
3.2	Sample Analyses	7
4. A	ANALYTICAL RESULTS	8
4.1	Field Parameters	8
4.2	Groundwater Monitoring Wells	8
4.3	Data Validation1	2
4.4	Impact of Turbidity on Metals Concentrations1	2
5. (GROUNDWATER LEVEL MEASUREMENTS AND FLOW	
1	DIRECTION 1	.3
5.1	Field Measurements	3
5.2	Water Level Contours	3
6. 8	SURFACE WATER SAMPLING1	4
6.1	Sampling Locations and Procedures	4
7. (CONCLUSIONS AND RECOMMENDATIONS1	5
7.1	Sampling Locations	.5
7.2	Sample Analyses 1	5

LIST OF TABLES

Table 1 Summary of Monitoring Well Construction Details

Table 2 Summary of Final Field Parameter Results and Field Data

Table 3 Summary of Groundwater Analytical Results

Table 4 Groundwater Level Measurements

LIST OF FIGURES

Figure 1 "A" Zone (Shallow) Wells – Water Level Contours

LIST OF APPENDICES

Appendix A: Water Quality Monitoring Certification – FDEP Form 62-701.900(31)

Appendix B: Field Sampling Logs

Appendix C: Field Instrument Calibration Logs

Appendix D: Chain-of-Custody Forms

Appendix E: CD Containing Analytical Laboratory Reports

1. INTRODUCTION

1.1 Terms of Reference

On behalf of Omni Waste of Osceola County, LLC (Omni), Geosyntec Consultants (Geosyntec) has prepared the 19th semi-annual water quality monitoring report for the J.E.D. Solid Waste Management (JED) facility. This report summarizes and provides interpretation of the water quality monitoring performed in accordance with the Water Quality Monitoring Plan (Plan) prepared as part of the JED facility permit application. The requirements for executing the Plan were presented in Appendix 3 - Monitoring Plan Implementation Schedule (MPIS) of the current Permit (Permit Number SO49-0199726-022) that authorizes the development of Phases 1 through 4 at the JED facility issued by the Florida Department of Environmental Protection (FDEP) on 12 July 2012.

This report was prepared on behalf of Progressive Waste Solutions of FL, Inc. (PWS), parent company of Omni Waste of Osceola County, LLC, owner and operator of the JED facility by Geosyntec. A completed water quality certification form (FDEP Form 62-701.900[31]) is included in **Appendix A**.

1.2 Overview

The Plan and the MPIS describe a water quality monitoring program at the JED facility that has as its intent to: (i) measure and report groundwater and surface water conditions for the monitoring network; (ii) monitor the groundwater flow direction; and (iii) monitor the groundwater and surface water quality on a semi-annual basis. The 19th semi-annual water quality monitoring event was completed from 18 November through 5 December 2013. This report includes presentation and discussions of the sample locations, sampling procedures, laboratory analyses and results, field data measurements, groundwater level measurements, groundwater flow direction and surface water quality monitoring. In addition, this report includes a comparison of the analytical results of this sampling event to applicable Groundwater Cleanup Target Levels (GCTLs) as promulgated in Chapter 62-777, Florida Administrative Code (FAC).

1.3 Site Description

The JED facility is located in eastern Osceola County, Florida, west of highway U.S. 441, and approximately 6.5 miles south of Holopaw. The facility is a Class I landfill which is linked to highway U.S. 441 by a 2.9-mile access road. The JED facility comprises a total of approximately 2,179 acres. The landfill footprint at build-out will be approximately 360 acres and consist of 23 landfill cells that will provide available waste capacity for a period of approximately 30 years. The FDEP issued a permit to construct and operate Phase 1 development of the JED facility in October 2003. Phase 1 development includes four landfill

cells (Cells 1 through 4), located in the northern part of the landfill encompassing approximately 54 acres. As part of Phase 1, forty-five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. The baseline water quality report for the Phase 1 monitoring well network was submitted to FDEP in May 2004. All components of the Phase 1 development have been constructed.

The FDEP issued a permit to construct and operate Phases 2 and 3 at the JED facility in March 2007. The development of Phases 2 and 3 includes six cells (Cells 5 through 10) with a total footprint of approximately 72 acres. As part of Phases 2 and 3 development, and as approved by FDEP, six (6) existing Phase 1 monitoring wells (MW-14 A, B, and C, and MW-15 A, B, and C), and ten (10) piezometers were decommissioned. The wells and piezometers were decommissioned to allow for construction of future cells, construction of a storm water retention basin located within Phases 2 and 3, and due to the close proximity of piezometers to the new network wells installed. The decommissioning of the monitoring wells and piezometers was discussed in the Phases 2 and 3 baseline water quality report. For the development of Phases 2 and 3, twenty-four (24) additional groundwater monitoring wells were installed in eight (8) well clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas in September 2007. The baseline water quality report for the Phases 2 and 3 monitoring well network was submitted to FDEP in January 2008.

The FDEP issued a permit to construct and operate Phases 1 through 3 with vertical expansion at the JED facility in April 2008. In April 2009, the MPIS for the semi-annual water quality monitoring well network and sampling schedule were updated for Phases 1, 2 and 3. The modification included a reduction of the Phase 3 monitoring wells required to be sampled semi-annually until such time that waste placement commences in one of the Phase 3 cells (i.e., Cells 8, 9 and 10) and the sampling schedule was modified for the B-zone (intermediate) and C-zone (deep). These monitoring wells are now sampled on an alternating annual basis. The C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and B-zone monitoring well MW-16B are sampled in November and reported in January; B-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring well MW-16C are sampled in May and reported in July.

Cell 1 was completed in January 2004, Cell 4 was completed in May 2005, Cell 2 was completed in April 2006, Cell 3 was completed in October 2006, Cell 5 was completed in October 2007, Cell 6 was completed in July 2008 and Cell 7 was completed in August 2010. The FDEP issued a permit to construct a lateral expansion of the facility on 8 August 2011, which authorizes construction of Phases 3-8, Cells 8-23. Cell 8 was completed in April 2012. During construction startup of Cell 8 in November 2011, monitoring well cluster MW-22 (A, B and C) was decommissioned to accommodate the perimeter road access to Cell 8. The MW-22 cluster abandonment report was submitted to the FDEP in April 2012. The well cluster was replaced in March 2012 and located on the perimeter access road approximately 800 feet south of well

cluster MW-23. The shallow, intermediate and deep monitoring wells were designated MW-22RA, MW-22RB and MW-22RC, respectively. The baseline water quality report for cluster MW-22R was submitted to the FDEP in July 2012.

The Cell 9 disposal area construction was completed in October 2013 and approved by the FDEP in November 2013. As with previous construction and expansion efforts (i.e., Cell 8 disposal area) well cluster MW-20 was installed in a temporary location on the Phase 3 stormwater berm. Cell 9 construction activities included substantial modifications to the berm and as such, a request was made to abandon the well cluster. In addition, the MW-16 cluster was abandoned at its temporary location and replaced in a permanent location on the backside of the perimeter berm near the Cell 9 sump. Monitoring well clusters MW-16 and MW-20 were abandoned on 24 June 2013. Replacement monitoring wells MW-16RA, MW-16RB and MW-16RC were installed in October 2013. The monitoring well abandonment and installation report was submitted to the FDEP in November 2013.

An update to the MPIS was recently approved by the FDEP in January 2014. The major changes include the

- Installation and sampling schedule of monitoring wells for the Phase 4 construction (includes Cells 10, 11, 12 and 13),
- Removal of the "C" zone wells from the semi-annual sampling schedule, and
- Installation of only "A" and "B" zone wells at the new monitoring well cluster locations.

The January 2014 MPIS revision will be implemented during the 20th semi-annual groundwater sampling event in May 2014.

2. MONITORING WELL DETAILS

2.1 Well Layout and Construction

For the Phase 1 development, forty five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. In accordance with the FDEP permit requirements monitoring well clusters were located such that the spacing between well clusters was no greater than 500 feet. For development of Phases 2 and 3, twenty four (24) groundwater monitoring wells were installed in eight (8) clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas. In accordance with the FDEP permit requirements, the monitoring well clusters were located such that the spacing between detection well clusters (MW-16 through MW-21) was approximately 500 feet, and the spacing between background well clusters (MW-22R and MW-23) was approximately 800 feet. Each monitoring well cluster consisted of three (3) groundwater monitoring wells installed: (i) across the water table to monitor the upper limit of the surficial aquifer (identified as A-zone [shallow] wells); (ii) within the lower limit of the upper surficial aquifer above the intermediate clay layer (identified as C-zone [deep] wells); and (iii) at an intermediate depth between the shallow and deep wells (identified as B-zone [intermediate] wells).

A layout depicting the location of groundwater monitoring wells installed for Phases 2 and 3, and the previously installed groundwater monitoring wells for Phase 1 are shown for the shallow zone ("A" wells) on **Figure 1**. As shown, groundwater monitoring well clusters MW-1 through MW-13, MW-22R, MW-23, and MW-16R were installed along the top of the outer edge of the landfill perimeter berm. The ground surface at the location of the wells in the perimeter berm is at approximately elevation 92 ft with respect to National Geodetic Vertical Datum of 1929 (NGVD, 1929). Groundwater monitoring well cluster MW-17 was installed along the outer edge of the landfill perimeter berm that serves as the initial storm water berm. The ground surface at these two well locations is at approximately elevation 85 ft NGVD, 1929. Monitoring well clusters MW-18, MW-19 and MW-21 were installed along the interim Phase 3 storm water berm at the southern limit of the Phase 3 development at approximately elevation 84 ft NGVD, 1929. The locations of each well, in Florida state plane coordinates and latitude/longitude, and elevation NGVD, 1929 were surveyed by professional land surveyors licensed in the State of Florida.

Wells were constructed with 2-inch diameter schedule (SCH) 40 polyvinyl chloride (PVC) casing. The well screens were 10-ft in length with #6-slot (0.006-in.). A 30/45 graded silica sand was placed around the screen to a height of 2 to 3 ft above the top of the screen. A seal of 30/65 graded fine silica sand was placed above the sand filter around the screen. The remaining annular space from the top of the fine sand filter seal to the existing ground surface was grouted using a tremie pipe with a cement/bentonite mixture containing no more than 5 percent bentonite by dry weight. The PVC well casings were extended approximately 2.5 to 3 ft above the existing

ground surface. Surface completion consisted of a protective aluminum casing with a lockable cover set in a concrete pad. Each well was provided with a well cap, padlock, and an identification label. A summary of the monitoring well construction details are presented in **Table 1**.

2.2 Turbidity Issues

As discussed in the baseline water quality reports for the Phase 1, and Phases 2 and 3 monitoring networks, the formation around the screened intervals consists primarily of a fine, brown to dark brown, silty sand. Due to the subsurface formation properties, fine-grained and colloidal material are able to pass through the sand filter pack in many wells, primarily in the B-zone and C-zone wells. This is the case even though the wells are constructed using the smallest screen slot size (0.006 in.) commonly available. Most of the intermediate and deep wells had turbidity values in excess of the 20 nephelometric turbidity unit (NTU) criterion even after extended well development and the removal of multiple well volumes.

The difficulty in attaining the desired turbidity criterion was originally discussed at a meeting between Geosyntec and FDEP on 12 January 2004 during the well development activities associated with the wells installed as part of the Phase 1 development. Geosyntec notified FDEP again on 14 September 2007 of the elevated turbidity levels even after extended well development during development of the Phases 2 and 3 monitoring wells. In accordance with these discussions, it was agreed to collect field-filtered (1-micron) and unfiltered samples for metals analyses for any sample with a turbidity value greater than 20 NTU. The data generated by the dual sampling is expected to help demonstrate: (i) what effect turbidity may have on metal analyses (i.e., compare total and dissolved metals concentrations); and (ii) whether groundwater samples with turbidities greater than 20 NTU showed higher concentrations of metals than those samples with turbidities less than 20 NTU.

3. MONITORING WELL SAMPLING

3.1 Sampling Locations and Procedures

In accordance with the MPIS, twenty-six (26) monitoring wells installed as part of the Phase 1 development and seventeen (17) of the monitoring wells installed as part of the Phase 2 and 3 development were sampled during the 19th semi-annual sampling event. Monitoring wells sampled this monitoring event included A and C-zone monitoring wells MW-1 through MW-13, MW-16R, MW-17 through MW-19, and MW-21, MW-22R, MW-23 and B-zone monitoring wells MW-16RB, MW-17B, and MW-18B. Low-flow sampling techniques were used for groundwater sample collection. Except for the turbidity considerations as described in the previous section, all groundwater sampling was performed in accordance with the current applicable FDEP Standard Operating Procedures (DEP-SOP-001-01, December 2008) for groundwater sampling. Additionally, for quality control (QC) purposes, two blind duplicate samples were collected and analyzed.

Peristaltic pumps were used to purge and sample all A-zone (shallow) and the majority of the C-zone (deep) groundwater monitoring wells. Because of continued issues relative to turbidity levels, a stainless steel submersible pump was used to purge and sample B-zone monitoring wells MW-16RB through MW-18B and C-zone monitoring wells MW-16RC through MW-19C and MW-21C through MW-23C. A submersible pump is utilized in select monitoring wells where the pump rate of the peristaltic pump is not sufficient to adequately purge the wells. New tubing (silicone and/or polyethylene) was used at each monitoring well.

During the purging process, a YSI 556 water quality meter equipped with a flow-through cell was used to monitor the following field parameters: pH; temperature; field conductivity; oxidation-reduction potential (ORP); and dissolved oxygen. Turbidity levels were measured using a LaMotte 2020e turbidity meter. Field parameters were recorded on sample collection forms, which are contained in **Appendix B**. Observations pertaining to the color of the groundwater samples collected were also noted on the sample collection forms. When the field parameters stabilized within the acceptable tolerances required by the FDEP SOP, well purging was considered complete and groundwater samples were collected. For wells where the turbidity was not less than 20 NTU, stability was established by purging at least three well volumes and observing variations in the measured turbidity. For problematic wells, once the turbidity had stabilized and all other parameters conformed to the guidance set forth in the FDEP SOP's, samples were collected. Filtered and unfiltered samples were collected from the newly installed monitoring wells MW-16RB and MW-22RC due to elevated turbidity levels observed during purging.

For monitoring wells where peristaltic pumps were used, volatile organic compound (VOC) sample vials were filled by removing the down well sample tubing, disconnecting the tubing from the water quality meter flow through cell, and reversing the flow direction on the peristaltic

pump. For the monitoring wells that were purged and sampled with the stainless steel submersible pump, all sample aliquots were filled directly from the down-well tubing.

The calibration of the water quality monitoring instruments was checked daily and re-calibrated when necessary. Water quality instrument calibration forms are presented in **Appendix C**. Samples were placed in coolers and packed with bagged ice for transport to the analytical laboratory. Chain-of-Custody (COC) forms were completed and accompanied the samples to the analytical laboratory. All COC forms are included in **Appendix D**. Trip blank samples accompanied all sample coolers with VOC samples. Temperature blanks were packed in each sample cooler and security seals were affixed to every cooler shipped.

3.2 Sample Analyses

Samples were analyzed by ALS Environmental (formerly Columbia Analytical Services) of Jacksonville, Florida (ALS) in accordance with the National Environmental Laboratory Accreditation Conference (NELAC) standards. ALS holds certification from the Florida Department of Health (FDOH) for the analytical test methods used for this project and is certified in the State of Florida for analysis of environmental samples.

Groundwater samples were analyzed by ALS for total ammonia as nitrogen (N), chlorides, nitrate, total dissolved solids (TDS), iron, mercury, sodium, total phenolic compounds and the 40 Code of Federal Regulations (CFR) Part 258 Appendix I parameters. Other required parameters (i.e., pH; temperature; conductivity; turbidity; ORP; and dissolved oxygen) were measured in the field during collection of the groundwater samples.

4. ANALYTICAL RESULTS

4.1 Field Parameters

Table 2 provides a summary of the field measurements of selected water quality parameters utilized for determining sample stability for this semi-annual monitoring event.

4.2 Groundwater Monitoring Wells

The analytical laboratory results for this groundwater sampling event have been transferred to a compact disc (CD) and are included in **Appendix E**. Analytical results have been summarized in **Table 3** to show all parameters where a constituent concentration was reported above the applicable FDEP Groundwater Cleanup Target Level (GCTL). Any parameter exceeding the GCTL has been highlighted orange. The following discussion regarding groundwater quality is limited to those parameters where the GCTL was exceeded in at least one groundwater monitoring well and has been organized by analytical method.

Total Metals (Methods 6020 and 6010B)

<u>Arsenic</u>

Arsenic was reported above the GCTL of 10 μ g/L at only MW-13A (10.5 μ g/L). Please note in the MPIS under item 5, the FDEP has accepted a background arsenic concentration of 20 μ g/L in MW-13A.

<u>Iron</u>

Iron was reported above the GCTL of 300 μ g/L in all twenty (20) of the A-zone monitoring wells sampled with the concentrations ranging between 360 and 28,500 μ g/L, with the highest concentration from MW-13A. Iron was detected above the GCTL in all three (3) of the B-zone monitoring wells sampled this event with concentrations ranging between 520 and 8,290 μ g/L, with the highest concentration from MW-16RB. Iron was reported above the GCTL in all twenty (20) of the C-zone monitoring wells sampled with the concentrations ranging between 490 and 11,000 μ g/L, with the highest concentration from MW-8C. Iron has historically exceeded the GCTL in all wells at the site for all monitoring events including the baseline events. The iron concentrations reported for the 19th semi-annual event are consistent with period of record data.

<u>Lead</u>

Lead was reported above the GCTL of 15 μ g/L at monitoring well MW-16RB at a concentration of 31.4 μ g/L in the unfiltered (total) sample and at a concentration of 0.82 μ g/L in the filtered (dissolved) sample. Comparison of the filtered and unfiltered samples indicates the elevated turbidity was causing the exceedance of lead at the newly installed MW-16RB. The lead concentrations reported for the 19th semi-annual event are consistent with period of record data.

Sodium

Sodium was detected above the GCTL of 160 mg/L in shallow monitoring well MW-1A (336 mg/L). This result indicates an increase in sodium concentration in MW-1A since the May 2013 sampling event. With the previous exception, the sodium concentrations reported for the 19th semi-annual event are consistent with period of record data.

Ammonia-N (Method 350.1)

Ammonia-N was reported above the GCTL of 2.8 mg/L in twelve (12) of the A-zone monitoring wells sampled this event with the concentrations ranging between 4.19 and 16.4 mg/L, with the highest concentration from MW-1A. The GCTL for Ammonia-N was not exceeded in any samples collected from B or C-zone monitoring wells. The ammonia-N concentrations reported for the 19th semi-annual event are consistent with period of record data with the exceptions of an increase in MW-1A and decrease in MW-9A.

As indicated in recent correspondence by HDR, (Class I Permit Renewal Request for Additional Information – January 2012), given that the JED facility is a double geosynthetically lined landfill including a witness zone (secondary liner), an alternative and probable source of ammonia in groundwater at the JED facility includes naturally occurring sources of nitrogen containing compounds present in the organic rich soils. Under the right biogeochemical conditions, nitrogen containing compounds can be converted to ammonia under reducing geochemical conditions. Reducing conditions can be formed in a variety of ways including, shadow effect due to reduction of oxygen rich precipitation infiltration over a large area, displacement of oxygen by landfill gas immediately above the water table, and release of organic matter which promotes the growth of microorganisms which can consume oxygen.

As HDR noted, reductive dissolution is a plausible explanation for the detection of ammonia at the facility. Researchers have recently found good correlation with arsenic and ammonia with iron which supports the concept of reductive dissolution of iron hydroxide as a dominant reaction mobilizing these compounds in groundwater. The

reductive dissolution of iron and the associated mobilization of iron in groundwater are well documented in literature. More recent research demonstrates this same mechanism can explain the release of arsenic at landfills. The mechanisms of iron and arsenic chemistry are well established; however, the presence of ammonia in groundwater at landfills has only recently been evaluated.

It has been reported that ammonium will co-precipitate with iron. Conversely as a result of reductive dissolution, ammonium would be mobilized in the groundwater if no other adsorption sites are readily available for the ammonium cation. As a cation, ammonium may be bound to soil particles through ion exchange. If high concentrations of Fe⁺² are released (such as those that occur during reductive dissolution), an increase in ammonium ion concentrations in groundwater would be expected.

A large scale leachate release would produce pronounced concentration increases in groundwater, but the increases in ammonia seem to occur at the onset of construction without correlation to the filling sequence. Neither the constituents nor the concentrations detected in groundwater appear to correlate well with leachate. As discussed in the recent 4th Biennial Report, if detections in groundwater were due to a direct leachate release, the concentrations of various indicator constituents (such as chloride, sodium etc.) found in groundwater should be relatively proportional to those found in leachate samples, particularly given the close proximity of the groundwater wells to the leachate sumps, however this is not the case. The VOC's (and concentrations) detected in leachate are markedly different than the VOC fingerprint at individual wells (which further supports landfill gas as the source of the benzene in groundwater). A direct release of leachate should also indicate proportional levels of other indicator compounds such as sodium, chloride and metals concurrent with ammonia.

Although ammonia is considered a common leachate indicator, no definitive evidence of a leachate discharge exists. The preponderance of evidence does support the concept that the source of ammonia is from reductive dissolution reactions mobilizing ammonia present in site soils. Shallow groundwater at the site is strongly reducing favoring the process of reductive dissolution.

Total Dissolved Solids (Method SM 2540C)

TDS was detected above the GCTL of 500 mg/L in shallow monitoring wells MW-1A (1,460 mg/L), MW-8A (1,210 mg/L) and MW-21A (597 mg/L). TDS is an indicator parameter whose value can be attributable to the presence of major cations and anions, such as calcium, magnesium, sodium, chloride, and sulfate. An increase in TDS was observed in monitoring wells MW-1A, MW-4A, and MW-9A while a decrease in TDS was observed in monitoring well MW-19A. The remaining monitoring wells are consistent with period of record data.

Chloride (Method 300.0)

Chloride was detected above the GCTL of 250 mg/L in shallow monitoring well MW-1A (617 mg/L). This result represents an increase since the May 2013 semi-annual sampling event. The remaining monitoring wells are consistent with period of record data.

40 CFR Part 258, Appendix I Volatile Compounds (Method 8260)

Benzene was detected above the GCTL of 1.0 μ g/L in eleven (11) A-zone monitoring wells at concentrations ranging from 1.3 to 8.6 μ g/L, with the highest concentration from MW-1A.

As indicated in recent correspondence by HDR (Class I Permit Renewal Request for Additional Information – January 2012) and by Geosyntec (Groundwater Contamination and Landfill Gas Migration Investigation and Assessment – December 2013) the source of benzene in groundwater is likely attributed to landfill gas. As noted in the previous discussion for detections of Ammonia-N, neither the constituents nor the concentrations of VOC's detected in groundwater appear to correlate well with leachate results. As discussed in the recent 4th Biennial Report, if detections in groundwater were due to a direct leachate release, the concentrations of various indicator constituents (such as chloride, sodium etc.) found in groundwater should be relatively proportional to those found in leachate samples, particularly given the close proximity of the groundwater wells to the leachate sumps, however this is not the case with the exception of at MW-1A. The VOC's (and concentrations) detected in leachate are markedly different than the VOC fingerprint at individual wells (which further supports landfill gas as the source of the benzene in groundwater).

Total Phenolics (Method 420.4)

Total phenolics were detected above the phenol GCTL of 10 μ g/L in monitoring wells MW-11C (15 μ g/L) and MW-17A (11 μ g/L). It also should be noted that a GCTL is not established for total phenolics but rather only phenol. EPA Method 420.4 determines the level of total phenolics and does not quantify the level of phenol. The concentration of total phenolics has decreased in each monitoring well since the 18th semiannual sampling event for the A-zone and the 17th semiannual sampling event for the C-zone. Given that the results show the concentrations are similar and equally distributed in facility monitoring wells, the detections are likely a result of naturally occurring compounds.

4.3 Data Validation

All analyses were performed within the method specified holding times.

Two blind duplicate samples were collected during the 19th semi-annual monitoring event. The first duplicate sample was collected at monitoring well MW-1A; the second at MW-19A. Results of the duplicate samples are included in **Table 3**. Duplicate sample bottles were collected immediately following the original samples to assure near identical conditions were maintained during sampling.

To confirm sample validity, a relative percent difference (RPD) calculation was performed between the original samples and the duplicate samples. The average RPD for both duplicate samples was below five percent which indicates a strong correlation. This analysis shows that the laboratory analytical results are validated.

Additionally, the surrogate recovery, trip blanks, method blanks, matrix spike and matrix spike duplicates were within acceptable criterion on each laboratory report.

4.4 Impact of Turbidity on Metals Concentrations

Turbidity levels were less than the FDEP guidance of 20 NTUs in forty (40) of the forty three (43) wells sampled. Monitoring wells MW-16RB, MW-19C and MW-22RC had turbidity levels of 350, 61.6 and 101 NTU, respectively. More than three (3) well volumes were purged from MW-16RB, MW-19C and MW-22RC. Turbidity levels remained above one hundred (100) NTU in MW-16RB and MW-22RC which necessitated the use of a 0.45 micron filter to remove the suspended solids from the sample. The resulting turbidity in MW-16RB (28 NTU) and MW-22RC (1.0 NTU) were sufficiently low to collect a dissolved metals sample.

5. GROUNDWATER LEVEL MEASUREMENTS AND FLOW DIRECTION

5.1 Field Measurements

Groundwater level measurements were obtained on 14 November 2013 from all Phases 1 through 3 groundwater monitoring wells and the remaining piezometers installed as part of the original site hydrogeological investigation. All groundwater level measurements were made within an approximate 4-hr period. The groundwater level measurements from the monitoring wells and piezometers are presented in **Table 4**.

5.2 Water Level Contours

The water level contour map prepared from groundwater level measurements for the surficial aquifer in the A-zone (shallow) is presented in **Figure 1**. Historically, the direction of the horizontal component of groundwater flow for all three zones is predominantly east-northeast towards Bull Creek. The groundwater level elevation data collected on 14 November 2013 from the A-zone monitoring well network indicate the direction of the horizontal component of groundwater flow is predominantly east-northeast toward Bull Creek.

Historically, comparison of water levels between the A, B and C wells shows a similar vertical gradient (1E⁻³ feet per foot [ft/ft]). These gradients are consistent with the regional gradient in the upper surficial aquifer and indicate an interconnected, sluggish flow regime in the saturated zone above the Intermediate Confining Unit (ICU).

6. SURFACE WATER SAMPLING

6.1 Sampling Locations and Procedures

During the November/December 2013 water quality monitoring event Bull Creek was dry with the exception of scattered stagnant pools; therefore a representative surface water sample could not be collected.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Sampling Locations

The existing monitoring well network is adequate for monitoring purposes and no changes are recommended.

7.2 Sample Analyses

The detections of ammonia, iron, and arsenic above the GCTLs in specific groundwater monitoring wells have been discussed in detail in the 1st, 2nd, 3rd and 4th Biennial Technical Reports on Water Quality (November 2006, September 2008, November 2010 and November 2011, respectively). As discussed in Section 4.2, it is likely that the iron, arsenic and ammonia are not related to a leachate release from the disposal boundary, but rather mobilization of these constituents due to the presence of nitrogen containing compounds under reducing conditions. Our recommendation is to continue to monitor these constituents as part of the current MPIS.

The detections of sodium and chloride above the GCTLs in groundwater monitoring well MW-1A have increased since the 18th semi-annual water quality monitoring event. Sodium and chloride are leachate indicator parameters; however the concentrations seen in MW-1A are well below those observed in past leachate analyses. A release of leachate is not suspected to be the cause of the increased sodium and chloride. Rather, these detections are likely due to stormwater runoff and cover soil erosion from uncapped areas that occurred within the past year directly upslope of the Cell 5 sump area and MW-1A. Omni has assessed the stormwater drainage issues in this area and is in the process of installing additional stormwater downpiping and an outfall structure in this area. These improvements are expected to correct stormwater drainage issues in the vicinity of MW-1A and therefore, the concentrations of sodium and chloride are expected to decrease in the well over time. Our recommendation is to continue to monitor these constituents as part of the current MPIS.

Since total phenolics were added to the MPIS, this is the first sampling event were the majority of the monitoring well sample results were below the phenol GCTL of $10~\mu g/L$ with detections above the GCTL observed in MW-11C and MW-17A. It should be noted that a GCTL is not established for total phenolics but rather only phenol. EPA Method 420.4 determines the level of total phenolics and does not quantify the level of phenol.

It is likely that the total phenolic compounds are naturally occurring and not a result of a leachate release that the JED facility based upon two observations. The first is that the total phenolic compound detections were throughout the network at similar

concentrations. The second is that the most recent total phenolics results were at the lowest concentrations across the three zones historically observed. Since other leachate indicator parameters such as sodium, chloride and TDS are a part of the current monitoring requirements and have been since the baseline events, this may not be an appropriate indicator parameter. It is our recommendation to eliminate the total phenolic analysis from the monitoring parameter list.

Monitoring activities were initiated in November 2013 to further assess groundwater conditions adjacent to MW-3A, MW-10A and MW-11A. These activities included the installation of compliance assessment wells CW-1A, CW-2A and CW-3A at the locations indicated on **Figure 1**. The monitoring well installation details and sample analyses will be provided under separate cover.

Our recommendation is to continue semi-annual monitoring as stipulated in the current MPIS and continuation of the quarterly monitoring at the newly installed CW-1A, CW-2A and CW-3A.

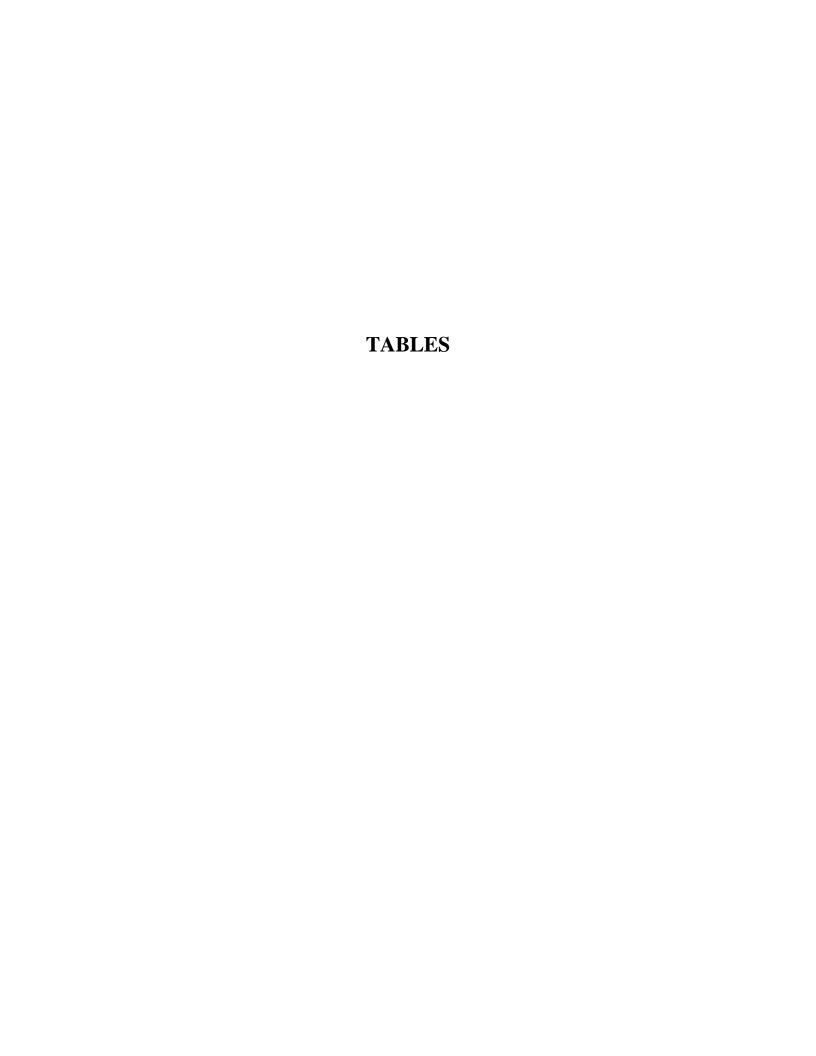


Table 1

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS

19th SEMI-ANNUAL WATER QUALITY MONITORING EVENT

J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	втос)	(feet El	levation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
3	(((feet NGVD 29)	(111)	Тор	Bottom	Тор	Bottom	(111)	(feet BTOC)
MW-1A	28 03 48.55	81 05 59.88	19900	9-Dec-03	95.12	23.0	13.0	23.0	82.1	72.1	10.6	8.2
MW-2A	28 03 51.99	81 05 59.90	19903	10-Dec-03	95.21	22.6	12.6	22.6	82.6	72.6	10.3	8.9
MW-3A	28 03 55.34	81 05 59.91	19906	11-Dec-03	94.64	22.8	12.8	22.8	81.9	71.9	10.4	9.0
MW-4A	28 03 58.97	81 05 59.92	19909	12-Dec-03	95.48	23.1	13.1	23.1	82.4	72.4	10.8	9.4
MW-5A	28 04 02.92	81 05 59.95	19912	24-Nov-03	95.32	22.5	12.5	22.5	82.8	72.8	10.1	9.1
MW-6A	28 04 06.50	81 05 59.15	19915	25-Nov-03	94.72	22.6	12.6	22.6	82.2	72.2	10.6	8.6
MW-7A	28 04 07.13	81 05 54.78	19918	26-Nov-03	95.48	23.3	13.3	23.3	82.2	72.2	10.3	9.3
MW-8A	28 04 06.20	81 05 50.64	19921	5-Dec-03	94.67	22.5	12.5	22.5	82.2	72.2	10.2	8.6
MW-9A	28 04 04.34	81 05 46.60	19924	4-Dec-03	94.66	22.4	12.4	22.4	82.3	72.3	10.0	8.6
MW-10A	28 04 00.07	81 05 44.77	19927	3-Dec-03	96.25	22.1	12.1	22.1	84.1	74.1	9.8	7.6
MW-11A	28 03 55.43	81 05 43.27	19930	3-Dec-03	93.56	22.8	12.8	22.8	80.7	70.7	10.5	9.1
MW-12A	28 03 52.08	81 05 43.26	19933	2-Dec-03	95.10	23.0	13.0	23.0	82.1	72.1	10.7	9.3
MW-13A	28 03 48.67	81 05 43.25	19936	8-Dec-03	95.19	22.5	12.5	22.5	82.7	72.7	10.2	7.7
MW-14A					Monitoring Well A	Abandoned 10 Ju	ıly 2007					
MW-15A					Monitoring Well A	Abandoned 10 Ju	ıly 2007					
MW-16A					Monitoring Well A	bandoned 24 Ju	ne 2013					
MW-16RA	28 03 44.56	81 05 40.18	22342	15-Oct-13	95.01	23.9	13.5	23.5	81.5	71.5	9.0	8.0
MW-17A	28 03 42.38	81 05 35.42	22345	22-Sep-07	88.86	19.9	9.4	19.4	79.5	69.5	7.4	6.4
MW-18A	28 03 37.21	81 05 35.16	22348	11-Sep-07	87.56	17.7	7.2	17.2	80.4	70.4	5.2	4.2
MW-19A	28 03 33.40	81 05 39.60	22351	11-Sep-07	87.54	17.7	7.2	17.2	80.4	70.4	5.2	4.2
MW-20A					Monitoring Well A	bandoned 24 Ju	ne 2013					
MW-21A	28 03 32.10	81 05 52.48	22357	14-Sep-07	87.20	18.0	7.5	17.5	79.7	69.7	5.5	4.5
MW-22A					Monitoring Well Aba	ndoned 11 Nove	mber 2011					
MW-22RA	28 03 34.703	81 06 0.622	28685	14-Mar-12	95.00	23.7	13.0	23.0	82.0	72.0	10.5	9.5
MW-23A	28 03 42.41	81 05 59.79	22363	25-Sep-07	97.90	27.8	17.3	27.3	80.7	70.7	15.3	14.3

Table 1

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS

19th SEMI-ANNUAL WATER QUALITY MONITORING EVENT

J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	втос)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
	,	,			(feet NGVD 29)	,	Тор	Bottom	Тор	Bottom	,	(feet BTOC)
MW-1B	28 03 48.59	81 05 59.89	19901	9-Dec-03	95.00	47.9	37.9	47.9	57.1	47.1	35.6	33.1
MW-2B	28 03 51.94	81 05 59.90	19904	10-Dec-03	95.17	48.3	38.3	48.3	56.9	46.9	36.0	34.6
MW-3B	28 03 55.31	81 05 59.91	19907	11-Dec-03	94.68	47.6	37.6	47.6	57.1	47.1	35.3	33.9
MW-4B	28 03 59.01	81 05 59.92	19910	12-Dec-03	95.18	47.4	37.4	47.4	57.8	47.8	35.1	33.5
MW-5B	28 04 02.88	81 05 59.95	19913	24-Nov-03	95.30	47.1	37.1	47.1	58.2	48.2	34.4	32.7
MW-6B	28 04 06.48	81 05 59.18	19916	25-Nov-03	94.60	47.4	37.4	47.4	57.2	47.2	34.9	33.5
MW-7B	28 04 07.13	81 05 54.81	19919	26-Nov-03	95.27	47.5	37.5	47.5	57.8	47.8	34.5	33.5
MW-8B	28 04 06.19	81 05 50.60	19922	5-Dec-03	94.58	49.6	39.6	49.6	55.0	45.0	37.1	35.6
MW-9B	28 04 04.31	81 05 46.56	19925	4-Dec-03	94.63	49.1	39.1	49.1	55.5	45.5	36.8	35.3
MW-10B	28 04 00.04	81 05 44.75	19928	3-Dec-03	96.23	48.3	38.3	48.3	58.0	48.0	35.9	33.9
MW-11B	28 03 55.40	81 05 43.27	19931	2-Dec-03	93.59	47.9	37.9	47.9	55.7	45.7	35.5	34.0
MW-12B	28 03 52.05	81 05 43.27	19934	1-Dec-03	95.01	49.0	39.0	49.0	56.1	46.1	36.6	35.1
MW-13B	28 03 48.64	81 05 43.24	19937	8-Dec-03	95.12	47.2	37.2	47.2	58.0	48.0	34.8	33.4
MW-14B					Monitoring Well A	Abandoned 10 Ju	ıly 2007					
MW-15B					Monitoring Well A	Abandoned 10 Ju	ıly 2007					
MW-16B					Monitoring Well A	bandoned 24 Ju	ne 2013					
MW-16RB	28 03 44.54	81 05 40.14	22343	15-Oct-13	94.97	46.6	36.5	46.5	58.5	48.5	33.0	31.0
MW-17B	28 03 42.35	81 05 35.36	22346	20-Sep-07	88.79	40.2	29.7	39.7	59.1	49.1	27.7	26.7
MW-18B	28 03 37.16	81 05 35.19	22349	11-Sep-07	87.43	37.8	27.3	37.3	60.1	50.1	25.3	24.3
MW-19B	28 03 33.38	81 05 39.66	22352	11-Sep-07	87.64	37.7	27.2	37.2	60.4	50.4	25.2	24.2
MW-20B					Monitoring Well A	bandoned 24 Ju	ne 2013					
MW-21B	28 03 32.09	81 05 52.55	22358	17-Sep-07	87.23	37.6	27.1	37.1	60.1	50.1	25.1	24.1
MW-22B					Monitoring Well Aba	ndoned 11 Nove	mber 2011					
MW-22RB	28 03 34.665	81 05 59.850	28686	15-Mar-12	94.86	46.1	35.5	45.5	59.4	49.4	33.0	28.0
MW-23B	28 03 42.46	81 05 59.79	22364	25-Sep-07	97.91	42.75	32.3	42.3	65.7	55.7	30.3	29.3

Table 1

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS

19th SEMI-ANNUAL WATER QUALITY MONITORING EVENT

J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	втос)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
3	(((feet NGVD 29)	D 29) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Bottom	Тор	Bottom	(111)	(feet BTOC)
MW-1C	28 03 48.63	81 05 59.88	19902	9-Dec-03	95.18	75.2	65.2	75.2	30.0	20.0	62.9	61.4
MW-2C	28 03 51.90	81 05 59.89	19905	10-Dec-03	95.32	68.4	58.4	68.4	36.9	26.9	56.1	53.7
MW-3C	28 03 55.28	81 05 59.91	19908	11-Dec-03	94.66	68.7	58.7	68.7	36.0	26.0	56.3	54.8
MW-4C	28 03 59.04	81 05 59.92	19911	12-Dec-03	95.39	72.5	62.5	72.5	32.9	22.9	61.2	59.6
MW-5C	28 04 02.83	81 05 59.95	19914	24-Nov-03	95.39	73.0	63.0	73.0	32.4	22.4	60.7	58.7
MW-6C	28 04 06.46	81 05 59.22	19917	25-Nov-03	94.58	73.2	63.2	73.2	31.4	21.4	60.2	57.7
MW-7C	28 04 07.13	81 05 54.86	19920	25-Nov-03	94.93	73.3	63.3	73.3	31.6	21.6	60.3	59.3
MW-8C	28 04 06.17	81 05 50.55	19923	5-Dec-03	94.50	73.9	63.9	73.9	30.6	20.6	61.6	59.8
MW-9C	28 04 04.29	81 05 46.53	19926	4-Dec-03	94.54	73.8	63.8	73.8	30.8	20.8	61.4	59.4
MW-10C	28 04 00.01	81 05 44.74	19929	3-Dec-03	96.36	73.7	63.7	73.7	32.7	22.7	61.4	60.0
MW-11C	28 03 55.36	81 05 43.26	19932	2-Dec-03	93.65	73.4	63.4	73.4	30.3	20.3	61.0	59.6
MW-12C	28 03 52.01	81 05 43.26	19935	1-Dec-03	95.10	73.6	63.6	73.6	31.5	21.5	60.2	58.7
MW-13C	28 03 48.60	81 05 43.25	19938	8-Dec-03	95.04	73.0	63.0	73.0	32.1	22.1	60.7	58.2
MW-14C					Monitoring Well A	Abandoned 10 Ju	ıly 2007					
MW-15C					Monitoring Well A	Abandoned 10 Ju	ıly 2007					
MW-16C					Monitoring Well A	bandoned 24 Ju	ne 2013					
MW-16RC	28 03 44.52	81 05 40.11	22344	16-Oct-13	95.03	75.3	65.0	75.0	30.0	20.0	60.0	59.0
MW-17C	28 03 42.31	81 05 35.31	22347	20-Sep-07	88.85	67.3	56.8	66.8	32.0	22.0	54.8	53.8
MW-18C	28 03 37.10	81 05 35.22	22350	12-Sep-07	87.42	67.2	56.7	66.7	30.8	20.8	54.7	53.7
MW-19C	28 03 33.37	81 05 39.72	22353	10-Sep-07	87.44	66.7	56.2	66.2	31.2	21.2	54.2	53.2
MW-20C					Monitoring Well A	bandoned 24 Ju	ne 2013					
MW-21C	28 03 32.10	81 05 52.61	22359	17-Sep-07	87.13	62.6	52.1	62.1	35.1	25.1	50.1	49.1
MW-22C					Monitoring Well Aba	ndoned 11 Nove	mber 2011					_
MW-22RC	28 03 34.629	81 05 59.854	28687	15-Mar-12	95.13	66.6	56.0	66.0	39.1	29.1	50.0	49.0
MW-23C	28 03 42.51	81 05 59.80	22365	24-Sep-07	97.93	67.1	56.6	66.6	41.4	31.4	54.6	53.6

Table 2

SUMMARY OF FINAL FIELD PARAMETER RESULTS AND FIELD DATA 19th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Monitoring Well	Temperature (°C) ¹	pH (Standard Units)	Specific Conductance (uS/cm) ²	Turbidity (NTUs) ³	Oxidation- Reduction Potential (mV) ⁴	Dissolved Oxygen (mg/L) ⁵	Purging Method
MW-1A	27.32	4.77	2,655	1.2	-87.9	0.32	Peristaltic Pump
MW-2A	28.02	4.80	311	0.8	-44.8	0.27	Peristaltic Pump
MW-3A	27.57	5.24	654	2.1	-43.4	0.42	Peristaltic Pump
MW-4A	28.10	5.15	756	6.3	-107.7	0.37	Peristaltic Pump
MW-5A	26.79	5.18	487	11.6	-74.0	0.39	Peristaltic Pump
MW-6A	25.47	4.89	429	1.2	-39.4	0.38	Peristaltic Pump
MW-7A	24.64	4.94	339	0.7	-42.5	0.42	Peristaltic Pump
MW-8A	25.30	4.09	1,447	1.5	11.3	0.46	Peristaltic Pump
MW-9A	27.29	4.89	244	17.8	-32.2	0.49	Peristaltic Pump
MW-10A	24.65	4.93	174	4.6	-32.0	0.62	Peristaltic Pump
MW-11A	26.95	4.66	399	4.6	-7.3	0.49	Peristaltic Pump
MW-12A	26.68	4.24	153	0.9	66.1	0.57	Peristaltic Pump
MW-13A	27.33	4.79	601	1.1	50.6	0.48	Peristaltic Pump
MW-16RA	25.85	5.04	187	5.1	103.5	0.99	Peristaltic Pump
MW-17A	24.49	4.13	123	2.1	105.4	1.03	Peristaltic Pump
MW-18A	26.00	4.67	161	5.3	30.0	0.59	Peristaltic Pump
MW-19A	25.67	4.64	121	4.4	108.7	0.48	Peristaltic Pump
MW-21A	25.72	3.82	745	2.8	307.7	0.79	Peristaltic Pump
MW-22RA	26.21	5.18	635	1.9	21.1	0.55	Peristaltic Pump
MW-23A	26.22	5.32	668	3.0	-12.8	0.45	Peristaltic Pump
MW-16RB	24.64	4.89	74	350 (filtered to 28)	0.4	0.41	Submersible Pump
MW-17B	24.33	4.46	258	1.9	10.8	0.65	Submersible Pump
MW-18B	25.00	4.42	112	2.1	40.3	0.44	Submersible Pump
MW-1C	26.30	5.04	67	7.2	-8.2	0.63	Peristaltic Pump
MW-2C	26.21	4.47	56	1.9	34.6	0.47	Peristaltic Pump
MW-3C	26.93	4.52	67	3.8	132.2	0.53	Peristaltic Pump
MW-4C	28.30	5.47	143	2.8	17.5	0.57	Peristaltic Pump
MW-5C	25.99	4.75	79	1.8	24.4	0.56	Peristaltic Pump
MW-6C	24.74	4.46	54	1.6	77.2	0.63	Peristaltic Pump
MW-7C	23.94	4.92	62	1.2	49.6	0.63	Peristaltic Pump
MW-8C	24.56	4.31	431	1.3	2.4	0.59	Peristaltic Pump
MW-9C	25.90	5.41	348	3.2	-45.5	0.56	Peristaltic Pump
MW-10C	24.04	4.76	152	2.6	11.2	0.95	Peristaltic Pump
MW-11C	25.91	5.13	115	1.4	50.3	0.60	Peristaltic Pump
MW-12C	25.91	4.68	58	2.2	55.8	1.09	Peristaltic Pump
MW-13C	26.21	4.44	78	2.4	83.7	0.69	Peristaltic Pump
MW-16RC	24.06	5.32	164	10.0	65.7	0.69	Submersible Pump
MW-17C	23.69	4.81	96	7.0	79.5	0.62	Submersible Pump
MW-18C	23.82	4.45	117	12.7	77.8	0.35	Submersible Pump
MW-19C	25.18	4.99	113	61.6	78.0	0.76	Submersible Pump
MW-21C	24.12	4.98	117	16.9	50.8	0.32	Submersible Pump
MW-22RC	24.19	4.77	84	101 (filtered to 1.6)	72.5	0.35	Submersible Pump
MW-23C	25.01	5.30	102	10.0	39.6	0.49	Submersible Pump

Notes:

¹ °C = degrees Celsius

² uS/cm = micro Siemens per centimeter

³ NTU = Nephelometric Turbidity Units

⁴ mV = millivolts

⁵ mg/L = milligram per liter

Table 3

SUMMARY OF GROUNDWATER ANALYTICAL DATA 19th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Property state	Well ID	1,4-Dichlorobenzene	Benzene	Chlorobenzene	cis-1,2-Dichloroethene		Total Xylenes	Arsenic	Barium	Beryllium		Chromium	Cobalt	Copper	Iron	Lead	Mercury	Nickel	Selenium	Sodium	Vanadium	Zinc	Ammonia	Chloride		Total Phenois*	TDS
Part		GCTL (ug/L)	GCTL (ug/L)		GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)													1	GCTL (mg/L)	GCTL (mg/L)	GCTL (mg/L)	GCTL(μg/L)	GCTL (mg/L)
Section 1. 10		73		100	70	700	10000	10	2000	-	, , , , , , , , , , , , , , , , , , ,	100	420	1000	300	13		100	30	100	43	3000	2.0	230	10	10	300
Section 1.		3.3	8.6	0.59 i		i 0.91 i	4.1	3.3	92.2	0.06 i	0.1 u	3.5	4.5	0.5 i	20,100	0.12 ι	u 0.02 u	11.6	1.8 i	336	10.1	2.5 i	16.4	617	0.03 u	9 i	1,460
Part																											
Method Me	MW-1C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	14.2	0.07 i	0.1 u	0.5 i	0.03 i	0.4 i	500	0.12 ι	u 0.02 u	0.5	1.1 u	4.76	0.6 i	2.8 i	0.078	6.28	0.03 u	5 i	51
Method Me	MW-2A	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	32.6	0.08 i	0.1 u	1.6	1.7	0.3 u	6.280	0.12	u 0.02 u	2.8	11 U	17.4	2.1	2.2 i	2.30	25.4	0.03 u	5 i	198
Method Me						_																				5 i	
Method Me																											
Column																											
Section 1. Control 1.	MW-3C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	11.2	0.06	0.1 u	0.4 1	0.03 u	0.3 1	750	0.12	u 0.02 u	0.5	1.1 u	5.12	1.0 I	1.8 1	0.13	7.52	0.03 u	10 1	48
Part	MW-4A	0.16 u	4.1	0.16 u	0.36	u 0.21 u	0.31 u	2.2	45.6	0.05 i	0.1 u	1.8	1.5	1.9	5,840	1.29	0.02 i	2.8	1.1 u	42.3	3.5	1.8 i	10.9	71.6	0.03 u	4 u	475
March Marc	MW-4C		0.21 u					0.5 u				0.4 i	0.03 u	0.3 u	680			0.5		7.40	0.9 i		0.099	11.3	0.03 u	4 u	98
March Marc																											
Column			1.00									110		111			_										
Martin	MW-5C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	16.5	0.05 i	0.1 u	0.2 u	0.03 u	0.3 u	680	0.12	u 0.02 u	0.5	1.1 u	7.86	0.5 1	24.3	0.087	11.7	0.03 u	4 u	65
Column	MW-6A	0.16 u	2.6	0.16 u	0.36	u 0.24 i	0.31 u	1.6	6.6	0.04 u	0.1 u	0.8 i	0.7 i	1.1	21,500	0.12	u 0.02 u	0.5	2.3	41.0	2.2	2.8 i	6.01	81.9	0.03 u	4 i	197
Mathematical Control	MW-6C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	25.0	0.09 i	0.1 u	0.5 i	0.03 u	1.5	520	0.12 ι	u 0.02 u	0.5	1.5 i	5.23	0.5 i	1.6 u	0.132	6.41	0.03 u	5 i	43
Mathematical Control																											
Martin																											
Meller Me	IVIVV-7C	U.16 U	∪.∠1 u	U.16 U	0.36	u 0.21 U	U.31 U	U.S U	21.9	0.09	U.1 U	0.3 1	0.03 U	2.5	740	0.12	u 0.02 U	U.5 I	1.3 1	5.83	U.6 I	1.8 1	0.086	8.16	0.03 U	1	38
Meller Me	MW-8A	0.16 u	4.1	0.16 u	0.36	u 0.21 u	0.31 u	1.3	35.6	0.33 i	0.1 u	2.3	2.6	0.7 i	6,690	0.12 u	u 0.02 u	7.1	2.4	24.2	4.2	3.3 i	5.74	19.2	0.03 u	9 i	1,210
Section 1	MW-8C		0.21 u					0.5 u				0.2 u				0.12 ι		0.5	1.5 i		0.6 i		0.408			9 i	235
Section 1																											
Column			0.7									0.0															
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	WW-9C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	01.1	0.13 1	0.1 u	0.5 1	0.04 1	1.3	2,030	0.12	u 0.02 u	4.0	1.7 1	10.0	1.6 1	20.4	0.734	21.3	0.03 u	4 u	170
No. 15	MW-10A	0.16 u	5.1	0.16 u	0.62	i 0.21 u	0.40 i	1.5	8.2	0.04 u	0.1 u	1.9	0.03 u	0.5 i	830	0.12 u	u 0.02 i	1.0	1.1 u	10.8	0.7 i	1.6 u	4.96	14.1	0.03 u	4 u	126
000-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	MW-10C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.6 i	39.1	0.06 i	0.1 u	0.9 i	0.03 u	0.3 u	1,500	0.12 ι	u 0.02 u	0.5	ı 1.1 u	14.9	1.0 i	45.0	0.193	25.6	0.03 u	5 i	101
000-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-																											
Month 1																	_										
Ministry Min	WW-11C	0.10 0	0.21 u	0.10 u	0.30	u 0.21 u	0.31 u	0.5 u	10.0	0.04 u	0.1 u	0.0 1	0.03 u	0.5 u	310	0.12	u 0.02 u	0.5	1.1 0	11.5	0.0 1	1.5	0.071	10.1	0.03 u	13	70
More the control of t	MW-12A	0.16 u	4.2	0.16 u	0.36	u 0.45 i	0.57 i	1.6	17.8	0.08 i	0.1 u	1.2	1.1	0.3 u	2,260	0.12 t	u 0.02 u	2.3	1.1 u	11.6	1.3 i	1.6 u	0.425	18.8	0.03 u	4 u	91
Month	MW-12C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	19.4	0.13 i	0.1 u	0.7 i	0.03 u	0.3 u	620	0.12 ι	u 0.02 u	0.5	1.1 u	5.82	0.3 u	1.6 u	0.089	8.50	0.03 u	4 u	46
Month																											
M-HAM OFFI U O OFFI U OFFI U O OFFI																											
Modelle (Parishelle)	WIV 150	0.10	0.21 0	0.10 0	0.30	u 0.21 u	0.01 u	0.5 u	21.0	0.07	0.1 u	0.0 1	0.00 u	0.5 u	300	0.12	0.02 0	0.5	1.1 0	0.72	0.0 1	1.0 0	0.100	17.2	0.00 u	7 0	50
Modelle Modell	MW-16RA	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	27.2	0.04 u	0.1 u	1.1	0.03 u	0.3 u	360	0.12 t	u 0.02 u	0.6	1.1 u	8.16	3.9	1.6 u	0.934	9.37	0.17 i	4 u	128
MATTER MATTER	MW-16RB (Total)					_																					
MATTAL OLIG WORLD	MW-16RB (Dissolved)																										
MAY-TPS	IVIVV-10KC	U.16 U	∪.∠1 u	U.16 U	0.36	u 0.21 U	U.31 U	3.4	42.3	0.07	U.1 U	2.2	0.1	U.3 U	1,300	0.12	u 0.02 U	1.5	1.1 U	15.8	3.3	3.9 I	0.141	22.9	0.03 U	4 U	101
MAY-TPS	MW-17A	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	57.4	0.14 i	0.15 i	1.0 i	0.5 i	0.3 u	970	0.83	0.03 i	2.0	i 1.1 u	4.75	3.8	1.6 u	0.717	8.46	0.45	11	75
NN-18A		0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u			0.05 i	0.1 u	0.8 i	0.4 i	0.9 i		0.12 t	u 0.03 i	0.5	1.1 u				0.435	36.6			
MW-18B	MW-17C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	15.2	0.04 i	0.1 u	1.6	0.04 i	0.3 u	750	0.12 ι	u 0.02 i	0.5	1.1 u	10.9	1.6 i	1.6 u	0.146	15.2	0.03 u	9 i	72
MW-18B	NAV 404	0.16	0.24	0.16	0.36	u 0.24 ···	0.24	0.7	16.0	0.04	0.1	1.0	0.2	0.2	620	0.00	0.04	1.2	14	12.4	2.2	16	1.20	22.0	0.03	10	122
MW-19C 0.16 U 0.21 U 0.16 U 0.21 U 0.16 U 0.31 U 1.8 S39 0.6 I 0.1 U 1.9 0.3 I 0.3 U 2.870 0.12 U 0.03 I 0.5 U 1.1 U 7.8 2.8 1.7 I 0.377 18.5 0.03 U 4 U 0.8 W 9 I 0.8						_																					
MW-19A	MW-18C																_										
MW-19A (Duplicate-2) 1.16 0 1.21 0 1.16 0 1.16 0 1.16 0 1.16 0 1.16 0 0.16 0																											
MW-19C 0.16 U 0.21 U 0.16 U 0.36 U 0.21 U 0.31 U 0.31 U 0.5 U 599 0.40 I 0.1 U 0.5 U 599 0.40 I 0.5 U	MW-19A																										
MW-21A 0.16 U 0.21 U 0.16 U 0.36 U 0.21 U 0.36 U 0.21 U 0.31 U 0.5 U 41.4 0.64 1.3 2.0 46.1 0.3 U 3.20 1.01 U 0.5 U 78.5 0.2 I 0.3 U 2.650 0.96 0.03 I 0.8 I 1.1 U 10.7 5.1 2.8 I 0.200 22.0 0.03 U 9 I 90																											
MW-21C 0.16 0 0.21 0 0.16 0 0.21 0 0.16 0 0.21 0 0.16 0 0.21 0 0.36 0 0.21 0 0.31 0 0.5 0 78.5 0.32 0 0.32		0.10 u	0.£1 U	0.10 u	0.00	U.Z.I U	0.51 u	0.5 u	55.5	0.40	0.1 U	7.3	0.1	0.5 u	1,200	0.23	. 0.00	0.0	1.1 0	3.33	4.5	1.0	0.000	10.1	0.00 u	- u	, ,
MW-22RA 0.16 U 0.21 U 0.16 U 0.36 U 0.21 U 0.16 U 0.36 U 0.21 U 0.31 U 0.31 U 0.31 U 0.31 U 0.35 U 0.21 U 0.31 U 0.35 U 0.21 U 0.31 U 0.35 U 0.31 U 0.35 U 0.31 U 0.35 U 0.31 U 0.35 U 0.35 U 0.31 U 0.35 U 0.35 U 0.31 U 0.35 U 0	MW-21A	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	41.4	0.64	1.3	2.0	46.1	0.3 u	3,220	1.01	0.03 i	26.9	1.1 u	15.8	7.2	16.7	0.541	21.7	0.31	6 i	597
MW-22RC (Total) 0.16 u 0.21 u 0.16 u 0.21 u 0.16 u 0.36 u 0.21 u 0.31 u 0.8 i 71.4 0.35 i 0.11 i 9.8 0.8 i 0.6 i 2,510 2.65 0.03 i 2.0 i 1.1 u 6.88 10.3 3.9 i 0.111 9.16 0.03 u 4 u 117 MW-22RC (Dissolved) NA	MW-21C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	78.5	0.32 i	0.1 u	5.5	0.2 i	0.3 u	2,650	0.96	0.03 i	0.8	i 1.1 u	10.7	5.1	2.8 i	0.230	22.0	0.03 u	9 i	90
MW-22RC (Total) 0.16 u 0.21 u 0.16 u 0.21 u 0.16 u 0.36 u 0.21 u 0.31 u 0.8 i 71.4 0.35 i 0.11 i 9.8 0.8 i 0.6 i 2,510 2.65 0.03 i 2.0 i 1.1 u 6.88 10.3 3.9 i 0.111 9.16 0.03 u 4 u 117 MW-22RC (Dissolved) NA	MM 00D A	0.4-	0.51	0.45	0.7-		0.01		0.15	0.0:		0.5	0.6	0.5	0.077	0:-	0.55		1	00.7			0.07	-	0.07		007
MW-22RC (Dissolved) NA																											
MW-23A 0.16 u 0.21 u 0.16 u 0.36 u 0.21 u 0.31 u 0.7 i 21.1 0.04 u 0.1 u 2.1 0.3 i 0.3 u 1,190 0.12 u 0.02 u 1.0 i 1.1 u 25.3 3.4 1.6 u 5.60 21.9 0.03 u 4 u 444						_																					
	(2.222.24)							., .						., .					1								
MW-23C 0.16 ul 0.21 ul 0.16 ul 0.36 ul 0.21 ul 0.31 ul 0.5 u <mark> 8.8 0.04 ul 0.1 ul 1.2 0.03 ul 520 0.12 ul 0.02 ul 0.5 ul 1.1 ul 5.40 0.9 il 1.6 ul 0.102 7.87 0.03 ul 5 il 68</mark>	MW-23A			0.16 u		_			21.1			2.1										1.6 u	5.60			4 u	
	MW-23C	0.16 u	0.21 u	0.16 u	0.36	u 0.21 u	0.31 u	0.5 u	8.8	0.04 u	0.1 u	1.2	0.03 u	0.3 u	520	0.12 ι	u 0.02 u	0.5	1.1 u	5.40	0.9 i	1.6 u	0.102	7.87	0.03 u	5 i	68

NOTES

- u = indicates that the compound was analyzed for but not detected at or above the value shown
- v = indicates that the analyte was detected in both the sample and the associated method blank
- * = Total Phenol analysis by EPA Method 420.1. MDL (5 µg/L) is below GCTL; however the PQL (10 µg/L) is equivalent to the GCTL and therefore given an i qualifier.

 Please note GCTL is for concentration of Phenol per 62-777 and not Total Phenols which may include additional compounds.

Table 4

GROUNDWATER LEVEL MEASUREMENTS 19th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Site Name: JED Solid Waste Management Facility
Location: Osceola County, Florida
Date: 14-Nov-2013

Sampling Personnel: Joe Terry
Field Conditions: m. sunny, ~60°F in the a.m.

Date:	14-No	ov-2013				
Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations
DP-1				Piezometer Aba	andoned 3 O	ctober 2003
DP-2				Piezometer Aba	andoned 3 O	ctober 2003
DP-3]	Piezometer Aba	andoned 16 Ja	nnuary 2006
DP-4]	Piezometer Aba	andoned 16 Ja	nnuary 2006
DP-5				Piezometer A	bandoned 10	July 2007
DP-6				Piezometer A	bandoned 10	July 2007
DP-7				Piezometer A	bandoned 10	July 2007
DP-8				Piezometer A	bandoned 10	July 2007
DP-9				Piezometer A	bandoned 10	July 2007
DP-10				Piezometer A	bandoned 10	July 2007
DP-11				Piezometer A	bandoned 10	July 2007
DP-12				Piezometer A	bandoned 10	July 2007
DP-13				Piezometer A	bandoned 11	July 2007
DP-14	NM	81.97	NM	18.62	NM	inaccesible due to flooding
DP-15	NM	81.98	NM	53.70	NM	inaccesible due to flooding
DP-16	NM	82.57	NM	18.53	NM	inaccesible due to flooding
DP-17	NM	82.58	NM	53.75	NM	inaccesible due to flooding
DP-18	15:25	84.38	5.77	52.90	78.61	
DP-19	15:25	84.34	5.70	18.40	78.64	
DP-20	13:55	83.07	3.71	18.35	79.36	
DP-21	13:55	83.00	3.65	53.68	79.35	
DP-22	8:15	81.00	2.37	18.63	78.63	
DP-23	8:15	81.27	2.71	53.73	78.56	
DP-24	NM	82.22	NM	18.52	NM	inaccesible due to flooding
SZ-1				Piezometer A	bandoned 10	July 2007
SZ-2	13:55	83.16	5.94	75.39	77.22	
SZ-3	8:15	81.27	4.80	78.85	76.47	
MW-1A	13:30	95.12	16.01	23.19	79.11	
MW-1B	13:30	95.00	15.95	48.11	79.05	
MW-1C	13:30	95.18	16.19	74.63	78.99	
MW-2A	13:20	95.21	16.25	22.89	78.96	
MW-2B	13:20	95.17	16.22	48.31	78.95	
MW-2C	13:20	95.32	16.42	68.59	78.90	
MW-3A	13:10	94.64	15.61	23.02	79.03	
MW-3B	13:10	94.68	15.63	47.89	79.05	
MW-3C	13:10	94.66	15.67	69.02	78.99	

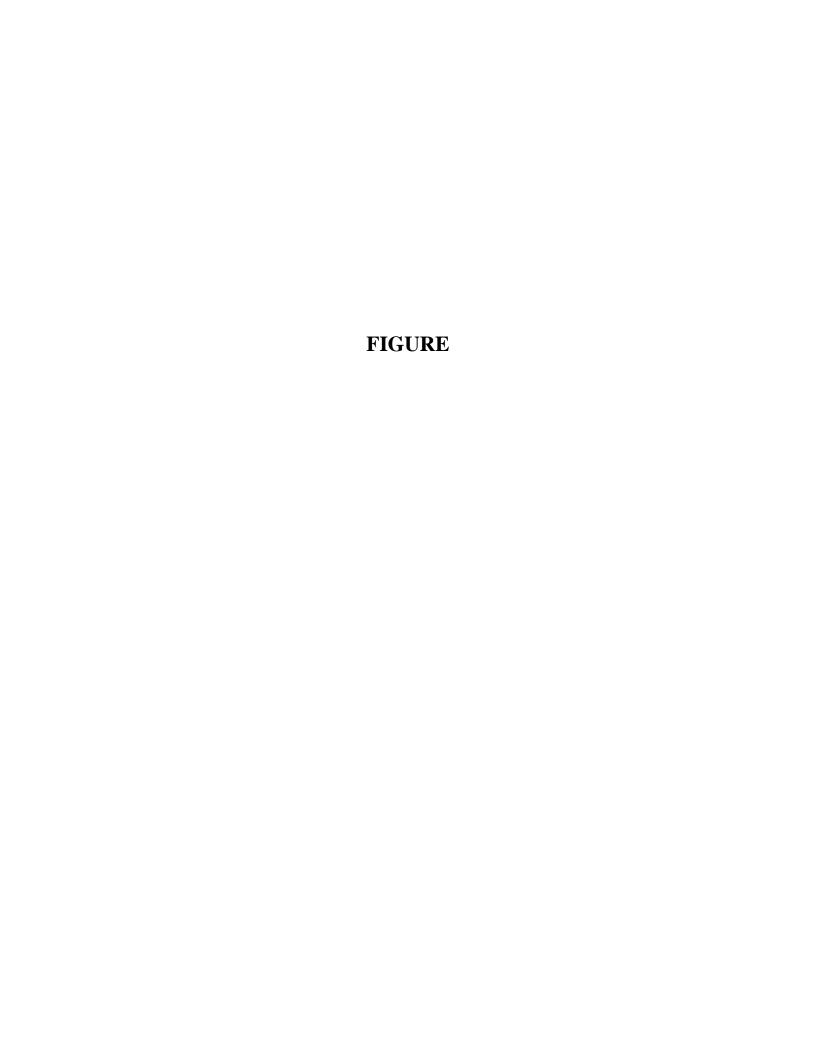
Table 4

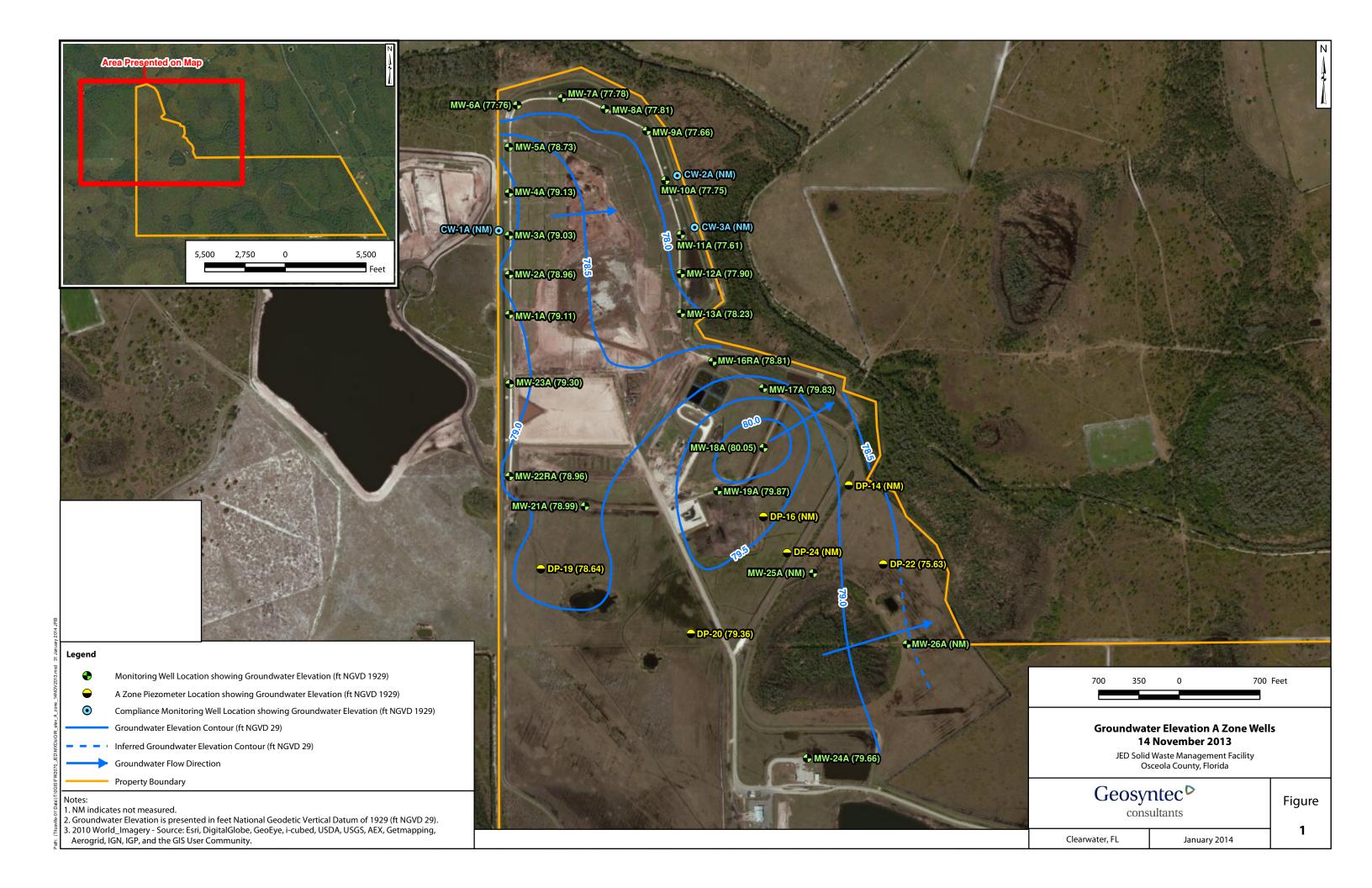
GROUNDWATER LEVEL MEASUREMENTS 19th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Site Name: JED Solid Waste Management Facility
Location: Osceola County, Florida
Date: 14-Nov-2013

Sampling Personnel: Joe Terry
Field Conditions: m. sunny, ~60°F in the a.m.

Well		TOC	Depth to	Well	GW						
ID	Time	Elevation	Water (ft)	Depth (ft)	Elevation	Field Observations					
MW-4A	13:00	95.48	16.35	23.33	79.13						
MW-4B	13:00	95.18	16.06	47.69	79.12						
MW-4C	13:00	95.39	16.41	72.73	78.98						
MW-5A	11:20	95.32	16.59	22.76	78.73						
MW-5B	11:20	95.30	16.65	47.36	78.65						
MW-5C	11:20	95.39	17.05	73.32	78.34						
MW-6A	11:10	94.72	16.96	22.88	77.76						
MW-6B	11:10	94.60	16.82	47.73	77.78						
MW-6C	11:10	94.58	16.91	73.28	77.67						
MW-7A	11:00	95.48	17.70	23.58	77.78						
MW-7B	11:00	95.27	17.47	48.18	77.80						
MW-7C	11:00	94.93	17.27	73.55	77.66						
MW-8A	10:40	94.67	16.86	22.76	77.81						
MW-8B	10:40	94.58	16.83	49.50	77.75						
MW-8C	10:40	94.50	16.93	73.99	77.57						
MW-9A	10:30	94.66	17.00	22.63	77.66						
MW-9B	10:30	94.63	17.03	49.33	77.60						
MW-9C	10:30	94.54	17.10	73.99	77.44						
MW-10A	10:20	96.25	18.50	22.43	77.75						
MW-10B	10:20	96.23	18.50	48.48	77.73						
MW-10C	10:20	96.36	18.83	73.83	77.53						
MW-11A	10:10	93.56	15.95	22.89	77.61						
MW-11B	10:10	93.59	16.10	48.03	77.49						
MW-11C	10:10	93.65	16.18	73.78	77.47						
MW-12A	10:00	95.10	17.20	23.27	77.90						
MW-12B	10:00	95.01	17.23	49.19	77.78						
MW-12C	10:00	95.10	17.37	73.79	77.73						
MW-13A	9:50	95.19	16.96	22.79	78.23						
MW-13B	9:50	95.12	16.89	47.46	78.23						
MW-13C	9:50	95.04	16.89	73.26	78.15						
MW-14A			N	Ionitoring Wel	l Abandoned	10 July 2007					
MW-14B	Monitoring Well Abandoned 10 July 2007										
MW-14C			N	Ionitoring Wel	l Abandoned	10 July 2007					
MW-15A			N	Ionitoring Wel	l Abandoned	10 July 2007					
MW-15B			N	Ionitoring Wel	l Abandoned	10 July 2007					
MW-15C			N	Ionitoring Wel	l Abandoned	10 July 2007					


GROUNDWATER LEVEL MEASUREMENTS 19th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY


Site Name: JED Solid Waste Management Facility
Location: Osceola County, Florida
Date: 14-Nov-2013

Sampling Personnel: Joe Terry
Field Conditions: m. sunny, ~60°F in the a.m.

Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations
MW-16A			M	Ionitoring Well	Abandoned 2	24 June 2013
MW-16B			M	Ionitoring Well	Abandoned 2	24 June 2013
MW-16C			M	Ionitoring Well	Abandoned 2	24 June 2013
MW-16RA	9:00	95.01	16.20	21.00	78.81	
MW-16RB	9:00	94.97	16.19	44.00	78.78	
MW-16RC	9:00	95.03	16.34	73.00	78.69	
MW-17A	8:30	88.86	9.03	20.17	79.83	
MW-17B	8:30	88.79	9.31	40.47	79.48	
MW-17C	8:30	88.85	9.59	67.55	79.26	
MW-18A	14:55	87.56	7.51	17.98	80.05	
MW-18B	14:55	87.43	7.46	38.10	79.97	
MW-18C	14:55	87.42	7.45	67.38	79.97	
MW-19A	15:05	87.54	7.67	17.93	79.87	
MW-19B	15:05	87.64	7.75	37.97	79.89	
MW-19C	15:05	87.44	7.57	66.95	79.87	
MW-20A			M	Ionitoring Well	Abandoned 2	24 June 2013
MW-20B			M	Ionitoring Well	Abandoned 2	24 June 2013
MW-20C			M	Ionitoring Well	Abandoned 2	24 June 2013
MW-21A	15:15	87.20	8.21	18.32	78.99	
MW-21B	15:15	87.23	8.17	37.92	79.06	
MW-21C	15:15	87.13	8.25	62.48	78.88	
MW-22A			Mon	itoring Well A	oandoned 11	November 2011
MW-22B			Mon	itoring Well Al	oandoned 11	November 2011
MW-22C			Mon	itoring Well Al	oandoned 11	November 2011
MW-22RA	13:45	95.00	16.04	23.66	78.96	
MW-22RB	13:45	94.86	15.85	46.13	79.01	
MW-22RC	13:45	95.13	16.15	66.58	78.98	
MW-23A	13:38	97.90	18.60	28.03	79.30	
MW-23B	13:38	97.91	18.59	43.00	79.32	
MW-23C	13:38	97.93	18.66	67.32	79.27	
MW-24A	15:35	86.97	7.31	24.21	79.66	
MW-25A	NM	82.36	NM	24.76	NM	inaccesible due to flooding
MW-26A	NM	82.01	NM	24.03	NM	inaccesible due to flooding
MW-27C	NM	81.66	NM	58.37	NM	inaccesible due to flooding

Notes: Well caps removed site wide and wells allowed to stabilize prior to measurements.

APPENDIX A

Water Quality Monitoring Certification FDEP Form 62-701.900(31)

PARTIGENERAL INFORMATION

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form #: 62-701.900(31), F.A.C

Form Title: Water Quality Monitoring Certification

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(9), F.A.C.

WATER QUALITY MONITORING CERTIFICATION

TAIL TOURIST THE STATE OF THE S		
(1) Facility Name J.E.D. Soild Waste Management Facility		
Address 1501 Omni Way		
City Saint Cloud	Zip _34773	County Osceola
Telephone Number (407) 891-3720		
(2) WACS Facility ID 89544		
(3) DEP Permit Number <u>SO49-0199726-022</u>		
(4) Authorized Representative's Name Mike Kaiser	Titl	e Engineer
Address 1099 Miller Drive		
City Altamonte Springs	Zip <u>32701</u>	County Seminole
Telephone Number (904) 673-0446		
Email address (if available) mkaiser@wsii.us		
I certify under penalty of law that I have personally examine document and all attachments and that, based on my inquiry the information, I believe that the information is true, accurate penalties for submission of false information including the possible.	ed and am familiar with of those individuals imr te, and complete. I ar	nediately responsible for obtaining n aware that there are significant
1-20-2014 Joseph Cen (Date) (Owner or A)	y for Miki athorized Representativ	e's Signature)
PART II QUALITY ASSURANCE REQUIREMENTS		
Sampling Organization Waste Services of Florida, Inc.		
Analytical Lab NELAC / HRS Certification # E82502		
Lab Name _ALS Environmental		
Address 9143 Philips Highway, Suite 200 Jacksonville, Florida	32256	
Phone Number (904) 739-2277		
Email address (if available) Craig.Myers@ALSGlobal.com		

APPENDIX B Monitoring Well Sampling Logs

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE	D SIAME MAIAC	e Facility ID:	89544)		SIT	TE CATION: 150	1 Omni Wav	, St. Cloud	. Osceola	County, Florid	da, 34773	
	MW- IA	o racility ID:	03044)	SAMPLE I						DATE: 18		?
WELL NO.	MM-1/1			Or will EE		ING DA	ГЛ			10	1000 201)
WELL VOL	(inches): 2.0 UME PURGE: if applicable)	TUBING DIAME 1 WELL VO	TER (inches):0	0.25 DEPT	SCREEN TH: 13 fe TH - STA	INTERVAL et to 23 fe TIC DEPTH TO	STAT eet TO W O WATER)	X WEL	t): 15.	95 OR B		YPE eristaltic
EQUIPMEN		RGE: 1 EQL	= (JIPMENT VOL	= PUMP VOLU	JME + (TUB		Y X	X 0		+ FLOW CEI		gallons
	MP OR TUBING	20	The second secon	= 0.0 ga MP OR TUBING WELL (feet):	20	PURGIN	ns/foot X G D AT: 084	PL EN	JRGING	0955	TOTAL VO	LUME
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISS	SOLVED (YGEN mg/L)	TURBIDIT (NTUs)	Y COLO (descril	be) (mV)
0945	6.6	6.6	0.11	16.41	4.78	27.27	2673	0.	39	1.3	clear	-83.9
0950	0.55	7.15	0.11	16.41	4.78	27.30	2652	0	35	1.3	clear	
0955	0.55	7.7	0.11	16.41	11.77	27.32	2655	0	.32	1.2	c lea	r -87.9
			1									
TUBING IN	PACITY (Gallons SIDE DIA. CAP	ACITY (Gal./	Ft.): 1/8" = 0	1" = 0.04; .0006; 3/16" BP = Bladder P	= 0.0014;	6; 2 " = 0.10 1/4 " = 0.002 SP = Electric	6; 5/16"	= 0.004;	3/8" = 0		6" = 1.47; ' = 0.010; o: Q = C	12" = 5.88 5/8" = 0.016 Other (Specify)
TORONO	EQUI MENT O	ODEO. E	- Baller,	Di Diadaci I		LING DA		,				and (Speed)
SAMPLED Joe Terry /	BY (PRINT) / AI PWSFL	FFILIATION:		SAMPLER(S)	SIGNATUR	E(S): Que	Tuy	SA	MPLING TIATED A	T: 1000	SAMPLIN ENDED	NG AT: 1015
PUMP OR DEPTH IN	TUBING WELL (feet):	20		TUBING MATERIAL CO	DE: PE			ELD-FILTE tration Equ	RED: Y	(N)	FILTER S	SIZE: µm
FIELD DEC	ONTAMINATIO	N: PUN	MP No	TUBII	NG No	(replaced)		DU	PLICATE	or EQUIPME	NT BLANK:	Ý N
SAMPLE	PLE CONTAINE	R SPECIFICA		PRESERVATI	10.777 17 2 3 3	RESERVATIO	N FIN	AL AN	INTEND ALYSIS A	ND/OR E	AMPLING	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD (r		1	METHO		CODE	(mL per minute)
MW-IA	3	CG	40mL	HCL	Pr	efilled by lab		-	8260		RFPP	<100
MW-IA	3	CG	40mL	None		None			8011	_	RFPP	<100
MW-1A	1	PE	500mL	HNO₃		efilled by lab			Metal:	•	APP	405
MW-1A	1	PE	125mL	H ₂ SO ₄	PI	efilled by lab			TDS, CI,	NO		4015
MW-1A	1	PE	250mL	None	D-	None efilled by lab		_	Total Phe		APP	425
REMARKS weather:	leir, 73°F	AG	250mL	H ₂ SO ₄	P		00 006			illois	AFF	425
MATERIAL	CODES	AG = Amber	Glass; CG	= Clear Glass;	PE = Poly	yethylene;	PP = Polypr	opylene;	S = Silico	one; T = Te	flon; $O = 0$	Other (Specify)
SAMPLING	EQUIPMENT (F	RFPP = Revers	eristaltic Pump; se Flow Peristalt		SM = Straw		bing Gravit		o = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME: LE	D. SWMF (WAG	Cs Facility ID:	89544)		SIT LO		Omni Way, S	t. Cloud, Osceola	County, Florid	ia, 34773	
	MW-2/		00011/	SAMPLE	ID: ML				DATE: 18		2013
100000	1-100 7/				_	ING DAT	Δ		,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-0
WELL VOL	(inches): 2.0 UME PURGE: if applicable)	TUBING DIAME	TER (inches):0 LUME = (TOT	.25 DEF	PTH:/2.6 fe PTH - STA	INTERVAL et to 22.6 fee TIC DEPTH TO	STATIC I	WELL CAPACIT	ORE		YPE eristaltic gallons
	IT VOLUME PU	JRGE: 1 EQL	JIPMENT VOL	. = PUMP VOL	UME + (TUB	ING CAPACIT	Y X T	UBING LENGTH)	+ FLOW CEL	L VOLUME	gallons
	MP OR TUBING	3 20		MP OR TUBINO WELL (feet):		PURGING		PURGING	1315	TOTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLO (describ	The state of the s
1305	3.5	3.5	0.05	16.35	4.77	27.99	307	0.29	0.9	clea	n -43.3
1310	0.25	3.75	0.05	16.35	4.80	28.06	311	0.27	0.7	cle	r -43.5
1315	0.25	4	0.05	16.35	4.80	28.02	311	0.27	0.8	Clea	44.8
TUBING IN	PACITY (Gallon: ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16' BP = Bladder I	Pump; E	6; 2" = 0.16 1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0 Submersible Pu	.004; 3/8" = 0			12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)			inj	SAMPLING INITIATED AT	1315	SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet):	20		TUBING MATERIAL C	ODE: PE	-		D-FILTERED: Y	(N)	FILTER S	IZE: μm
FIELD DEC	CONTAMINATIO	DN: PUN	IP No	TUB	ING No	(replaced)		DUPLICATE (r EQUIPMEN	IT BLANK:	YN
SAMPLE	# #	MATERIAL	VOLUME	PRESERVAT	IVE 1	RESERVATION	FINAL	INTENDE ANALYSIS AN METHO	ND/OR EC	AMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
MW 2A	CONTAINERS 3	CODE	40mL	HCL		D IN FIELD (mefilled by lab	L) pH	8260		RFPP	<100
nu 24	3	CG	40mL	None	- 1	None		8011		RFPP	<100
1w-24	1	PE	500mL	HNO ₃	Pro	efilled by lab		Metals		APP	200
hw-24	1	PE	125mL	H₂SO₄		efilled by lab	7	NH ₃		APP	200
1w-2A	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	200
nw:24	1	AG	250mL	H ₂ SO ₄	Pre	efilled by lab		Total Pher		APP	200
REMARKS	isumy, 78	AG = Amber	Glass; CG =	: Clear Glass;	PE = Poly	vethylene; F	PP = Polypropy	vlene; S = Silico	ne; T = Tef	lon; O = 0	Other (Specify)
	EQUIPMENT	F	APP = After Pe RFPP = Revers	e Flow Perista	Itic Pump;		the second secon	Gravity Drain);	c Submersible 0 = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE NAME: LE	.D. SWMF (WA	Cs Facility ID	89544)			TE CATION: 150:	1 Omni Way St	. Cloud, Osceola	County Flori	da 34773		
	MW-34		. 09344)	SAMPLE	ID: MW		T Offini Way, Of	. Oloda, Oscola	2.122.1	Nou Z	013	
11	10(W = 3 A	†		75.218.3			ΓΛ		14	1000 6	013	
WELL DIAMETER (inches): 2.0 WELL VOLUME PURGE: 1 WELL VOLUME = (TOTA				0.25 DEF	WELL SCREEN INTERVAL DEPTH: 12.8 feet to 22.6 feet ELL DEPTH - STATIC DEPTH TO W			STATIC DEPTH TO WATER (feet): /57. 55 OR BAILER:			YPE eristaltic	
EQUIPME	t if applicable) NT VOLUME P t if applicable)	URGE: 1 EQ	= (UIPMENT VOL		feet - LUME + (TUB gallons + (0			0.16 g JBING LENGTH feet		= 1.2 LL VOLUME gallons =	gallons	
				MP OR TUBING		PURGING		PURGING		TOTAL VOLUME PURGED (gallons): 3. 6		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)		R ORP	
0850	3	3	0.06	15.67	5.22	27.51	632	0.41	2.1	clea	- 39.7	
0855	0.3	3.3	0.06	15.67	5.23	27.51	649	0.42	2.2	cles		
0857	0.12	3.42	0.06	15.67	5.23	27.60	653	0.41	2.1	cle		
0900	0.18	3.6	0.06	15.67	5.24	27.57	654	0.42	2.1	Lle		
TUBING IN	PACITY (Gallon ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16" BP = Bladder F	Pump; E	1/4" = 0.0026	5/16" = 0. Submersible Pur	004; 3/8" = 0			12" = 5.88 5/8" = 0.016 ther (Specify)	
SAMPLED Joe Terry /	BY (PRINT) / A	FFILIATION:		SAMPLER(S)		2	7	SAMPLING INITIATED AT: 0 900		SAMPLIN	SAMPLING ENDED AT: 0922	
PUMP OR TUBING								LD-FILTERED: Y N FILTER SIZE: µm ation Equipment Type:				
FIELD DEC	CONTAMINATIO	ON: PUN	MP No	TUB	JBING No (replaced)			DUPLICATE OF EQUIPMENT BLANK: Y				
SAMPLE CONTAINER SPECIFICATION					SAMPLE PRESERVATION				INTENDED S		AMPLING SAMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	- C	TOTAL VOL ED IN FIELD (m	FINAL L) pH	ANALYSIS AI METHO		CODE	FLOW RATE (mL per minute)	
MW-3A	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100	
	3	CG	40mL	None		None		8011		RFPP	<100	
	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals A		APP	225	
	1	PE	125mL	H₂SO₄	Pre	efilled by lab		NH ₃		APP	225	
V	1	PE	250mL	None		None		TDS, CI, NO ₃		APP	225	
REMARKS	1	AG	250mL	H₂SO ₄	Pre	efilled by lab		Total Phenois		APP	225	
odor: Sul	r. Cloudy, Hu-like	AG = Amber	APP = After Pe	Clear Glass;	PE = Poly	A CONTRACTOR OF	P = Polypropyle		ne; T = Tefl		ther (Specify)	
		F	RFPP = Revers	e Flow Peristal	tic Pump;	SM = Straw M	lethod (Tubing	Gravity Drain);	O = Other (

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D SWAME (MA	Ce Encility ID:	80544)		-	TE CATION: 150:	1 Omni Way S	t. Cloud, Osceola	County Florid	da 34773	
	MW-4		09344)	SAMPLE	ID: MV		Olimi VVay, O		DATE: 10		2013
WELL NO.	10100.0	/4		0/1111 22		SING DAT	ΓΛ		1	1 1000	200
WELL VOL	(inches): 2.0	TUBINO DIAME	TER (inches):	0.25 DEF	LL SCREEN PTH: /3 fe	INTERVAL eet to 23 fe	et TO WAT	DEPTH ER (feet): /6.	32 OR E	GE PUMP T BAILER: #	YPE peristaltic
(only fill out	if applicable) NT VOLUME PU if applicable)		= (23	feet -	16.32	feet) X		allons/foot =		gallons
4 1 1 1 1 1 1 1 1 1		2	FINIAL DUI		allons + (0	.0026 gallor	ns/foot X	feet)	+ 0.12	gallons = TOTAL VO	gallons
	MP OR TUBING WELL (feet):	20		MP OR TUBINO WELL (feet):	20		DAT: 0955	ENDED AT:	1050	PURGED (
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLC (descri	
1040	2.25	2.25	0.05	16.58	5.12	28.09	758	0.4	5,4	cle	w -106.4
1045	0.25	2.5	0.05	16.58	5.13	28.09	757	0.39	6.5	ck	u -107.0
1050	0.25	2.75	0.05	16.58	5.15	28.10	756	0.37	6.3	clei	w -107.7
WELLCAR	PACITY (Gallon	s Per Footh:	75" = 0.02.	1" = 0.04;	1.25" = 0.0	6: 2 " = 0.16	3" = 0.37;	4 " = 0.65;	5" = 1.02;	6" = 1.47;	12" = 5.88
TOTAL TOTAL STREET, ST	EQUIPMENT C		= t.): 1/8" = 0 = Bailer;	.0006; 3/16" BP = Bladder F	Pump; E	SP = Electric S	Submersible Pu		.006; 1/2" eristaltic Pump	= 0.010; o; O = 0	5/8" = 0.016 Other (Specify)
SAMPLED.	BY (PRINT) / A	EEU IATION:	1		SAMP	LING DA	IA	CAMPLING		CAMPILI	10
Joe Terry /		FFILIATION.		SAMPLER(S)	SIGNATUR	E(S): Joe	ley	SAMPLING INITIATED A	1: 1050	SAMPLII ENDED	
PUMP OR DEPTH IN	TUBING WELL (feet):	20		TUBING MATERIAL C	ODE: PE			D-FILTERED: Y		FILTER S	SIZE: µm
FIELD DEC	CONTAMINATIO		P No	TUB	ING No	(replaced)		DUPLICATE	or EQUIPMEN	IT BLANK:	Y (N)
	PLE CONTAINE		TION		20.300	RESERVATION		INTENDI ANALYSIS A		AMPLING UIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL ED IN FIELD (m	FINAL pH	METHO		CODE	(mL per minute)
MW-4A	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100
MW-4A	3	CG	40mL	None		None		8011		RFPP	<100
MW-4A	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals	3	APP	200
MW-414	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	200
4W-4A	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	200
nw-4/A	1	AG	250mL	H ₂ SO ₄	Pr	efilled by lab		Total Phe	nols	APP	200
	verust, 71 furlike	AG = Amber		= Clear Glass;	PE = Poly	yethylene; F	PP = Polypropy	rlene; S = Silico	one; T = Tef	lon; O = 0	Other (Specify)
	EQUIPMENT	R	FPP = Revers	eristaltic Pump; se Flow Peristal		SM = Straw N		Gravity Drain);	o = Other		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: 1 F	D. SWMF (WA	Cs Facility ID:	89544)			TE DCATION: 150	1 Omni Way.	St. Cloud, Osceol	a County, Florid	a, 34773	
	MW-5			SAMPLE	ID: Mh				DATE: 19	Nova	0017
	7 00 0) PI				SING DA	TA		11	1000	V/3
WELL VOL	(inches): 2.0 UME PURGE: if applicable)	TUBIN DIAME 1 WELL VO	TER (inches):0	AL WELL DEP	L SCREEN PTH: 25 fe PTH - STA	INTERVAL set to 22.5 fe TIC DEPTH T	eet TO WA	C DEPTH ATER (feet): 16 X WELL CAPAC	ST ORB	10	eristaltic
	IT VOLUME PU if applicable)	JRGE: 1 EQ	= (UIPMENT VOL	. = PUMP VOL	feet - .UME + (TUE allons + (0		ry X ns/foot X	TUBING LENGTH			gallons
	MP OR TUBIN	G 20		MP OR TUBINO WELL (feet):		PURGIN		PURGING		TOTAL VOL PURGED (g	UME
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLO (describ	e) (mV)
1230	3.6	3.6	0.06	16.92	5.12	26.84	485	0.37	11.8	yellow	34-71.0
1235	0.3	3.9	0.06	16.92	5.18	26.18	487	0.37	11.6	1	1 -73.8
1240	0,3	41.7	0.06	16.92	5.18	26:79	4187	0.39	11.6	, c	174.0
TUBING IN	PACITY (Gallon SIDE DIA. CAR EQUIPMENT O	PACITY (Gal.	/Ft.): 1/8" = 0.		1.25" = 0.0 ' = 0.0014; Pump; E	6; 2" = 0.16 1/4" = 0.002	6; 5/16" =	0.004; 3/8" =		7 7 7 7 7	12" = 5.88 5/8" = 0.016 ther (Specify)
						LING DA					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)	SIGNATUR	E(S): Joe	tery	SAMPLING INITIATED A	AT: 1245		T: 1258
PUMP OR DEPTH IN	TUBING WELL (feet):	2	0	TUBING MATERIAL C	ODE: PE			LD-FILTERED: Yation Equipment T		FILTER S	ZE: μm
	ONTAMINATIO	ON: PUN	MP No	TUB	UV N	(replaced)			or EQUIPMEN	T BLANK:	Y (N)
SAME	LE CONTAINE	R SPECIFIC	ATION		SAMPLE PI	RESERVATION	N	INTEND	DED SA	MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	ADDE	TOTAL VOL ED IN FIELD (n		METHO	DD	UIPMENT CODE	FLOW RATE (mL per minute)
MW-5A	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100
nw.5A	3	CG	40mL	None		None		801		RFPP	<100
MW-SA	1	PE	500mL	HNO ₃		efilled by lab	_	Meta		APP	225
MW-SA	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NHa		APP	225
MW-SA	1	PE	250mL	None		None		TDS, CI,		APP	225
REMARKS	1	AG	250mL	H₂SO₄	Pr	efilled by lab		Total Ph	enols	APP	225
weather: va	.cloudy, -										
SAMPLING	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Poly		PP = Polypro Bladder Pum		cone; T = Tefletric Submersible		ther (Specify)
Crim Line		-	RFPP = Revers	e Flow Perista	Itic Pump;	SM = Straw	Method (Tubi	ng Gravity Drain);	0 = Other (

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Ce Eacility ID	80544)			ITE OCATION: 150	1 Omni Way S	t. Cloud, Osceola	County Flor	rida 34773	
	MW-6		. 09344)	SAMPL	EID: MU		Ollilli VVay, C				.0
WELL NO.	10100-6	М		O/ WIII E		GING DA	ТА		×	Dec. 2	0/3
WELL VOI			TER (inches):	0.25 DE	ELL SCREEN	INTERVAL eet to 22.6 fe	STATIC eet TO WAT	DEPTH ER (feet): /6.0	06 OR	RGE PUMP T BAILER: ;	YPE peristaltic
EQUIPME	t if applicable) NT VOLUME Pl t if applicable)	URGE: 1 EQ	= (UIPMENT VOL		feet - LUME + (TU			UBING LENGTH) + FLOW CE	= 1.05 ELL VOLUME gallons =	gallons
	IMP OR TUBIN WELL (feet):	G 20		MP OR TUBIN WELL (feet):	G 20	PURGIN		PURGING ENDED AT:	1005	TOTAL VO	-
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	TY COLO	OR ORP
0955	4.05	41.05	0.09	16.22	4.91	25.50	435	0.42	1.3	cle	v -39.5
1000	0.45	4.5	0.09	16.22	4.89	25.45	425	0.4	1.2	cles	
1005	0.45	4.95	0.09	16.22	4.89	25,47	429	0.38	1.2	L le	
TUBING IN	PACITY (Gallon ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0.	1" = 0.04; .0006; 3/16 BP = Bladder			Submersible Pu	.004; 3/8" = 0	5" = 1.02; 0.006; 1/2 eristaltic Pum	6" = 1.47; " = 0.010; p; O = 0	12" = 5.88 5/8" = 0.016 Other (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A	FFILIATION:		SAMPLER(S		E(S): Que	_	SAMPLING INITIATED A	T: 1005	SAMPLIN	NG AT: 1020
PUMP OR		20		TUBING MATERIAL C		700	FIELD	D-FILTERED: Y	(N)		SIZE: μm
FIELD DEC	ONTAMINATIO	ON: PU	MP No	TUE	BING No	(replaced)		DUPLICATE		NT BLANK:	YN
SAMPLE	PLE CONTAINE	The state of the s	ATION	PRESERVA		RESERVATION		INTENDE ANALYSIS A		SAMPLING	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	USED		TOTAL VOL ED IN FIELD (n	FINAL pH	METHO		CODE	(mL per minute)
MW-GA	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100
nw-6A	3	CG	40mL	None		None		8011		RFPP	<100
nw-6.4	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals	S	APP	350
nw-64	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	350
4W-6A	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	350
NW-6A	1	AG	250mL	H ₂ SO ₄	Pr	efilled by lab		Total Phe	nols	APP	352
odor: sul-	verust, 68 fw.like		01	01							
SAMPLING	EQUIPMENT		Glass; CG = APP = After Pe RFPP = Revers		B = Ba	iler; BP = E	PP = Polypropy Bladder Pump;	ESP = Electri Gravity Drain);		le Pump;	Other (Specify)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: LE	.D. SWMF (WA	Cs Facility ID:	89544)			TE OCATION: 1501	Omni Way, St.	Cloud, Osceola	County, Florid	da, 34773	
			30044)	SAMPLE	ID: MV				and the state of t	Der Zo	217
WELL ING.	MW-7/	1				SING DAT	٠,٨		X	500 0	-1)
WELL	(inches): 2.0	TUBING	ER (inches):0		LL SCREEN		STATIC D		4 4 4	GE PUMP T	/PE eristaltic
WELL VOL (only fill out	C (inches): 2.0 LUME PURGE: t if applicable) NT VOLUME PURCE:	1 WELL VOL	UME = (TOT	23.3	PTH - STA	TIC DEPTH TO	(WATER) X feet) X	WELL CAPACI	TY allons/foot =	1.1	gallons
	t if applicable)				gallons + (0		s/foot X	feet)	+ 0.12	gallons =	gallons
	IMP OR TUBING	G 20		P OR TUBIN		PURGING		PURGING ENDED AT:	1155	TOTAL VOI	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	. Com	R ORP
1145	2.75	2.75	0.05	16.74	4.92	24.62	338	0.42	0.9	cles	- 39.1
1150	0.25	3	0.05	16.74	4.94	24.62	340	0.41	0.7	clear	-41.6
1155	0.25	3.25	0.05	16.74	4,94	24.64	339	0.42	0.7	Cleur	
TUBING IN	PACITY (Gallon: ISIDE DIA. CAR EQUIPMENT C	PACITY (Gal./F	t.): 1/8" = 0.	1" = 0.04; 0006; 3/16 BP = Bladder	Pump; E	1/4" = 0.0026	Submersible Pur	004; 3/8" = 0		6" = 1.47; = 0.010; o; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S) SIGNATUR	E(S): Que (in	SAMPLING INITIATED A	T: //53-	SAMPLIN ENDED A	IG IT: 1215
PUMP OR DEPTH IN	TUBING WELL (feet):	7	.0	TUBING MATERIAL C	ODE: PE		The second secon	FILTERED: Y	N		IZE: μm
FIELD DEC	CONTAMINATIO	ON: PUM	P No	TUE	BING No	(replaced)		DUPLICATE	or EQUIPMEN	IT BLANK:	Y
SAMPLE	PLE CONTAINE #	R SPECIFICA MATERIAL	TION	PRESERVAT		RESERVATION TOTAL VOL	FINAL	INTENDE ANALYSIS A	ND/OR EQ	AMPLING	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	***************************************	USED		D IN FIELD (m	L) pH	METHO		CODE	(mL per minute)
nw-7A	3	CG	40mL	HCL	Pi	None		8260		RFPP	<100
hw7A	1	CG PE	40mL 500mL	None HNO ₃	D	refilled by lab		8011		APP	<100 200
nw-7A	1	PE	125mL	H ₂ SO ₄		refilled by lab		Metals NH ₃		APP	
nw-74	1	PE	250mL		PI	None None			NO.		200
MW-7A	1	AG	250mL	None H₂SO₄	D.	refilled by lab		TDS, CI, I		APP	200
REMARKS weather: or			1000000000	112304	PI	enned by lab		Total Phe	11015	APP	200
odor: non	2										
MATERIAL	CODES	AG = Amber (Glass; CG =	Clear Glass;	PE = Pol	yethylene; F	PP = Polypropyl	ene; S = Silico	one; T = Tef	lon; $O = C$	Other (Specify)
SAMPLING	EQUIPMENT		PP = After Pe FPP = Revers				Bladder Pump; Method (Tubing		o = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Cs Facility ID	80544)			TE CATION: 150	1 Omni Way	, St. Cloud, Osceol	a County, Florida	34773	
			. 09344)	SAMPLE	ID: Mu		T OHIII VVay	, 61. 0.000, 03000	8005	u 20,	/1
WEEE NO.	MW-8	A		0, ,,,,		SING DA	ТА		21	ic w	13
WELL	R (inches): 2.0		TER (inches):0	0.25 DEF	LL SCREEN	INTERVAL eet to 22.5 fe	STATI	IC DEPTH ATER (feet): 15.	61 OR BA	E PUMP T	YPE eristaltic
(only fill out	if applicable)		= (22.5	feet -	15.61	feet)		gallons/foot =	1.1	gallons
	NT VOLUME PI t if applicable)	URGE: 1 EQ	UIPMENT VOL		.UME + (TUE allons + (0		ry X ns/foot X	TUBING LENGTH		volume	gallons
	MP OR TUBIN	G 19		MP OR TUBINO		PURGIN		PURGING ENDED AT	1220	TOTAL VOL PURGED (9	UME
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLO (describ	
1325	3.5	3.5	0.07	16.14	4.09	25.26	1452	0.5	1.5	clea	- 11.5
1330	0.35	3.85	0.07	16.14	41.09	25.24	1451	0.49	1.5	ckir	
1335	0.35	41.2	0.07	16.14	4.09	25.30	1447		1.5	clea	
				-							
	PACITY (Gallon ISIDE DIA. CAI			1" = 0.04; 0006; 3/16"	1.25" = 0.0 = 0.0014;	6; 2 " = 0.16 1/4 " = 0.002		37; 4 " = 0.65; = 0.004; 3/8 " =		' = 1.47; 0.010;	12 " = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: E	B = Bailer;	BP = Bladder F		SP = Electric		Pump; PP = F	Peristaltic Pump;	0 = 0	ther (Specify)
40000		U. W. Carrier			SAMP	LING DA	TA				
Joe Terry /		FFILIATION:	4	SAMPLER(S)	SIGNATUR	E(S): Ju	lug		IT: 1335	SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet):	1	9	TUBING MATERIAL C	ODE: PE			LD-FILTERED: Y		FILTER S	IZE: μm
FIELD DEC	CONTAMINATIO	ON: PUN	MP No	TUB	NG No	(replaced)		DUPLICATE	or EQUIPMENT	BLANK:	YN
	PLE CONTAINE		ATION			RESERVATIO	,	INTEND ANALYSIS A		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	20 TH 1 10 TH 2 TH 2	TOTAL VOL D IN FIELD (r	nL) FINA	METHO		ODE	FLOW RATE (mL per minute)
MW-84	3	CG	40mL	HCL	Pr	efilled by lab		8260) F	RFPP	<100
MW-BA	3	CG	40mL	None		None		8011	F	RFPP	<100
MW-81	1	PE	500mL	HNO ₃	Pr	efilled by lab		Meta	s	APP	250
W BA	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab		NH ₃		APP	250
NB-WN	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	250
nw-BA	1	AG	250mL	H ₂ SO ₄	Pr	efilled by lab		Total Phe	enols	APP	250
REMARKS weather: O	veriust, 70°	F									
MATERIAL		AG = Amber	Glass; CG =	Clear Glass;	PE = Poly	vethylene;	PP = Polypro	opylene; S = Silic	one; T = Teflo	n; O = C	ther (Specify)
SAMPLING	EQUIPMENT	CODES:	APP = After Pe	ristaltic Pump;	B = Bai		Bladder Pum		ric Submersible		(-1,30,1)
OTES: 1	The chave			e Flow Peristal				ing Gravity Drain);	O = Other (S	specify)	

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D. SWMF (WA	Ce Escility ID:	89544)		SIT		Omni Way. St	t. Cloud, Osceola	County, Florid	da. 34773	
	The state of the state of		09344)	SAMPLE	ID: MW					Dec Z	0/7
VVLLL NO.	MW-9	A		4. 0.00		ING DAT	-Δ		0	5000	73
WELL VOL		TUBING DIAME	TER (inches):	0.25 DEP	L SCREEN	NTERVAL et to 22 fee	STATIC D	DEPTH ER (feet): 150 WELL CAPACI	95 ORE	GE PUMP T	YPE eristaltic
EQUIPMEN	if applicable) IT VOLUME PU if applicable)	IRGE: 1 EQU	= (JIPMENT VOL	= PUMP VOL		/5.95 ING CAPACIT	Y X T	0.16 g UBING LENGTH)			gallons
	MP OR TUBINO	3 19	0.000	MP OR TUBING		PURGING		PURGING ENDED AT:	1515	TOTAL VOI	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO (describ	
1505	2.75	2.75	0.05	16.18	41.89	27.31	245	0.48	17.8	yellow	1.54 -30.4
1510	0.25	3	0.05	16.18	41.90	27.30	244	0.46	17.9	14	" -32.5
1515	0.25	3.25	0.05		4.89	27.24	244	0.49	17.8	(6	11 -32.2
TUBING IN	PACITY (Gallon: SIDE DIA. CAP EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0	1" = 0.04; 0006; 3/16" BP = Bladder P	= 0.0014;	6; 2" = 0.16 1/4" = 0.0026 SP = Electric S	5/16" = 0	.004; 3/8" = 0		6" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT	ODES. B	- baller,	br - bladdel r		LING DA		mp, FF-F6	enstante Funn	0, 0-0	ther (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)				SAMPLING INITIATED A	r: 1515	SAMPLIN ENDED A	
PUMP OR	TUBING WELL (feet):	1	q	TUBING MATERIAL CO	DE: PE			FILTERED: Y		FILTER S	
TAXES TO SELECT	ONTAMINATIO		1P No	TUBI	March - March	(replaced)	7 110 40	DUPLICATE		NT BLANK:	Y (N)
52770	PLE CONTAINE	CINCULATION CEL	ATION			RESERVATION	FINAL	INTENDE ANALYSIS A		AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI		D IN FIELD (m		METHO		CODE	(mL per minute)
MW-9A	3	CG	40mL	HCL	Pre	efilled by lab		8260		RFPP	<100
nw-GA	3	CG	40mL	None		None		8011		RFPP	<100
MW-9A	1	PE	500mL	HNO ₃	Pre	efilled by lab		Metals	5	APP	200
MW-94	1	PE	125mL	H₂SO₄	Pre	efilled by lab		NH ₃		APP	200
uw-94	1	PE	250mL	None		None		TDS, CI,		APP	200
MW-94	1	AG	250mL	H₂SO₄	Pre	efilled by lab		Total Phe	nols	APP	900
	verust, 700 hv.l.ke	i=									
MATERIAL	7777	AG = Amber	Glass; CG :	Clear Glass;	PE = Poly	ethylene; F	PP = Polypropy	rlene; S = Silico	one; T = Tel	flon; O = 0	Other (Specify)
	EQUIPMENT	F	RFPP = Revers	eristaltic Pump; se Flow Peristal		SM = Straw N	A CONTRACTOR OF THE PARTY OF TH	Gravity Drain);	ic Submersibl O = Other	e Pump;	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	.D. SWMF (WA	Cs Facility ID:	89544)			TE CATION: 1501	Omni Way, St	. Cloud, Osceola	County, Florio	ia, 34773	
WELL NO:	MW-16			SAMPLE	ID: MU				DATE: 3 b		7
100000	1000 10	×11				SING DAT	Δ.		5 -		
WELL VO	R (inches): 2.0 LUME PURGE: t if applicable)	DIAMET	TER (inches):0	.25 DEP	L SCREEN	INTERVAL set to 22 fee TIC DEPTH TO	STATIC D TO WATE WATER) X	ER (feet): /7, G	ORB		PE eristaltic
EQUIPME	NT VOLUME PL t if applicable)	JRGE: 1 EQU	= (JIPMENT VOL	. = PUMP VOL	feet – UME + (TUB allons + (0.		Y X TI	0.16 g JBING LENGTH; feet)			gallons
	JMP OR TUBING	G 20		MP OR TUBING		PURGING		PURGING ENDED AT:	0825	TOTAL VOL PURGED (9	UME ,
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLO (describ	
0815	3	3	0.05	17.75	490	24.69	174	0.72	4.7	cleur	-31.9
0920	0.75	3.25	0.05	17.75	4.93	24.69	173	0.61	4.5	cleu	-
0825	0.25	3.5	0.05	17.75	4.93	24.65	174	0.62	4.6	clen	
TUBING II PURGING	PACITY (Gallon: SIDE DIA, CAF EQUIPMENT C	PACITY (Gal./F	Ft.): 1/8" = 0.	0006; 3/16" BP = Bladder F	SAMP		ubmersible Pu	004; 3/8" = 0	.006; 1/2" eristaltic Pump		
PUMP OR			2.02	TUBING		/		FILTERED: Y	(N)		ZE: μm
DEPTH IN	WELL (feet):		20	MATERIAL CO	DDE: PE			on Equipment Ty		, in the second	
	CONTAMINATIO	N: PUM	IP No	TUBI	NG No	(replaced)		DUPLICATE	or EQUIPMEN	T BLANK:	Y (N)
FIELD DE		2000							and the same of th		T (N)
SAM	# CONTAINERS	MATERIAL	VOLUME	PRESERVATI	VE 1	RESERVATION FOTAL VOL D IN FIELD (m	FINAL	INTENDE ANALYSIS AI METHO	ND/OR EQ	AMPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE
SAM SAMPLE ID CODE	# CONTAINERS	THE COURT OF THE CO.	17.50000.7		VE ADDE		FINAL	ANALYSIS A	ND/OR EQ	UIPMENT	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	VE ADDE	TOTAL VOL D IN FIELD (m	FINAL	ANALYSIS AI METHO	ND/OR EQ	UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
SAMPLE ID CODE MW-10A	CONTAINERS 3	MATERIAL CODE CG	VOLUME 40mL	PRESERVATI USED HCL	VE ADDE	OTAL VOL D IN FIELD (m efilled by lab	FINAL	ANALYSIS AI METHO 8260	ND/OR EQ	UIPMENT CODE RFPP	SAMPLE PUMF FLOW RATE (mL per minute) <100
SAMPLE ID CODE MW-IVA MW-IVA	CONTAINERS 3	MATERIAL CODE CG	VOLUME 40mL 40mL	PRESERVATI USED HCL None	VE ADDE	FOTAL VOL ED IN FIELD (m efilled by lab None	FINAL	ANALYSIS AI METHO 8260 8011	ND/OR EQ	UIPMENT CODE RFPP	SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
SAMPLE ID CODE MW-JUA MW-JUA MW-JUA MW-JUA	CONTAINERS 3 3	MATERIAL CODE CG CG PE	VOLUME 40mL 40mL 500mL	PRESERVATI USED HCL None HNO ₃	VE ADDE	FOTAL VOL ED IN FIELD (m efilled by lab None efilled by lab	FINAL	ANALYSIS AI METHO 8260 8011 Metals	ND/OR EQ	UIPMENT CODE RFPP RFPP APP	SAMPLE PUMF FLOW RATE (mL per minute) <100
SAM	# CONTAINERS 3 3 1 1 1 1	MATERIAL CODE CG CG PE PE	VOLUME 40mL 40mL 500mL 125mL	PRESERVATI USED HCL None HNO ₃	Pre	FOTAL VOL D IN FIELD (m efilled by lab None efilled by lab efilled by lab	FINAL	ANALYSIS AI METHO 8260 8011 Metals NH ₃	ND/OR EQ	UIPMENT CODE RFPP RFPP APP	SAMPLE PUMF FLOW RATE (mL per minute) <100 <100

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	.D. SWMF (WA	Cs Facility ID	89544)		1	TE DCATION: 1501	Omni Wav. S	t. Cloud, Osceola	County, Flor	rida, 34773	
WELL NO:			. 00044)	SAMPLE	ID: MW					Du 20,	/2
	/*\W-11	H			_	SING DAT	Δ		2	Du 20,	
WELL VOI		TUBIN DIAME 1 WELL VO	TER (inches):	0.25 DEF	LL SCREEN	INTERVAL	STATIC I	DEPTH ER (feet): /5	07 OR	RGE PUMP TO BAILER: p	YPE eristaltic
EQUIPME	nt if applicable) NT VOLUME PU It if applicable)	URGE: 1 EQ	= (UIPMENT VOL					UBING LENGTH)		LL VOLUME	gallons
	JMP OR TUBIN	G 19	100000000000000000000000000000000000000	= 0.0 g MP OR TUBING WELL (feet):	gallons + (0	PURGING	S/foot X	PURGING ENDED AT:	+ 0.12	gallons = TOTAL VOL PURGED (c	gallons UME gallons): 3.2
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	ry colo	R ORP
1000	2.75	2.75	/	16.11	41.66	27.01	4100	0.49	5	clea	-3.9
1005	0.25	3	0.05	16.11	4.65	26.96	400	0.49	5	Clea	
1010	0.25	3.25	0.05	16.11	41.66	26.95	399	0.49	4.6	clea	
PURGING SAMPLED	PACITY (Gallon NSIDE DIA. CAR EQUIPMENT O	PACITY (Gal.		1" = 0.04; .0006; 3/16' BP = Bladder SAMPLER(S)	SAMP	1/4" = 0.0026 SP = Electric S PLING DA	5/16" = 0 ubmersible Pu	.004; 3/8" = 0 mp; PP = Pe	eristaltic Pum	SAMPLIN	
Joe Terry /	200 CONT			TUBING	Oloranion	- Gue	T SIELD	INITIATED AT	-		T: 1030
	WELL (feet):	10	1	MATERIAL C	ODE: PE			on Equipment Ty		FILTER S	IZE: μm
FIELD DEC	CONTAMINATIO	ON: PUN	MP No	TUB	ING No	(replaced)		DUPLICATE (or EQUIPME	NT BLANK:	YN
	PLE CONTAINE #	MATERIAL	ATION VOLUME	PRESERVAT	IVE	RESERVATION TOTAL VOL	FINAL	INTENDE ANALYSIS AN METHO	ND/OR E	SAMPLING QUIPMENT CODE	SAMPLE PUM FLOW RATE
	CONTAINERS	CODE	40mL	HCL		efilled by lab	L) pH	8260		RFPP	(mL per minute
D CODE	3		TOTTLE		-	None	+	8011		RFPP	<100
D CODE			40ml	None				0011		TALLE	-100
D CODE	3	CG	40mL 500mL	None HNO ₃	Pr			Metals		APP	200
D CODE NW-IVA NW-IIA	3	CG PE	500mL	HNO ₃		efilled by lab		Metals		APP	200
D CODE NW-IVA NW-IIA NW-IIA	3	CG						NH ₃		APP	200
SAMPLE ID CODE NW-ILA NW-ILA NW-ILA NW-ILA NW-ILA NW-ILA	3 1 1	CG PE PE	500mL 125mL	HNO ₃	Pr	efilled by lab			NO ₃		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.F.	D. SWMF (WA	Cs Facility ID	89544)		SI		Omni Way, S	t. Cloud, Osceola	County, Florid	la, 34773	
WELL NO		oo r domey to		SAMPLE	D: MW				2024	Su 20	0/7
11221191	W HA			34.500		SING DAT	ΓΔ		3 1	sa a	13
WELL DIAMETER	(inches): 2.0	TUBIN	TER (inches):	0.25 DEP	L SCREEN	INTERVAL et to 23 fe	STATIC I	ER (feet): /6.4	43 ORB	GE PUMP T	YPE peristaltic
(only fill out	if applicable)		= (23	feet -	16.43	feet) X		allons/foot =		gallons
	if applicable)	JRGE: 1 EQ	UIPMENT VOI	= 0.0 ga	IME + (TUE		Y X T	UBING LENGTH) feet)		gallons =	gallons
	MP OR TUBING	g 20	120000000000000000000000000000000000000	MP OR TUBING WELL (feet):	20	PURGING		PURGING	1155	TOTAL VO	LUME O
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLC (descri	
1145	L\	L)	0.08	16.78	4.27	26.74	153	0.61	1.1	cle	w 61.7
1150	0.4	41.4	0.00	16.78	41.23	26.71	153	0.57	1.1	cle	
1155	0.4	4.8			4134	26.68	153	0.57	0.9	CR	- 1
										1	
		-		_							
	PACITY (Gallon: SIDE DIA. CAF				1.25" = 0.0 = 0.0014;					6" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES:	B = Bailer;	BP = Bladder P		SP = Electric S		imp; PP = Pe	eristaltic Pump	; O = C	ther (Specify)
					SAMP	LING DA	TA				
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)	SIGNATUR	E(S): Joe	ty	SAMPLING INITIATED AT	11/55	SAMPLIN ENDED	
PUMP OR T	TUBING WELL (feet):	20)	TUBING MATERIAL CO	DE: PE			o-FILTERED: Y ion Equipment Ty		FILTER S	SIZE: µm
FIELD DEC	ONTAMINATIO	ON: PUI	MP No	TUBI	NG No	(replaced)		DUPLICATE (or EQUIPMEN	T BLANK:	Y
SAMPLE	PLE CONTAINE	R SPECIFIC		PRESERVATION		RESERVATION	FINAL	INTENDE ANALYSIS AI	ND/OR EQ	AMPLING UIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDE	D IN FIELD (m	214	METHO		CODE	(mL per minute)
MW 12A	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100
ACI-WM	3	CG	40mL	None	-	None		8011		RFPP	<100
MW DA	1	PE	500mL	HNO ₃		efilled by lab		Metals	3	APP	300
MW-12A	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	300
MW-13A	1	PE	250mL	None	-	None		TDS, CI, I		APP	300
MW DA	1	AG	250mL	H₂SO₄	Pr	efilled by lab		Total Phe	nois	APP	300
weather: n	150771,75	F									
MATERIAL		AG = Amber	Glass; CG	= Clear Glass;	PE = Poly	vethylene; F	PP = Polypropy	rlene; S = Silico	one; T = Tef	on; O = 0	Other (Specify)
SAMPLING	EQUIPMENT		RFPP = Rever	eristaltic Pump; se Flow Peristalt		SM = Straw N		Gravity Drain);	ic Submersible O = Other		

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D CIMME (MA	Cs Escility ID:	80544\		17.0	TE CATION: 150:	1 Omni Way	St. Cloud, Osceo	la County, Flori	da. 34773	
	MW-13		09344)	SAMPLE	ID: MW		Ollin Way,	ot. oloud, obodo	Carried Control	Dec 20	2/2
WELL NO.	10100-13	H		Or will EE		SING DAT	ГА		3	1322 11	0
WELL VOL	(inches): 2.0 UME PURGE: if applicable)	TUBIN DIAME 1 WELL VO	TER (inches):0	AL WELL DEF	LL SCREEN PTH:/2:5 fe PTH - STA	INTERVAL	et TO WA O WATER)	TER (feet): /6.	38 OR		eristaltic
	T VOLUME PU	URGE: 1 EQI	= (UIPMENT VOL	= PUMP VOL	feet – .UME + (TUE gallons + (0	BING CAPACIT	Y X	TUBING LENGT	gallons/foot H) + FLOW CE et) + 0.12	LL VOLUME	gallons
	MP OR TUBIN	G 20	7. 7. 7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	MP OR TUBING		PURGING		PURGING	121.0	TOTAL VOI	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO (describ	5.5 (A. 10.5
1330	4.8	4.8	0.08	16.58	4.76	27.32	598	0.51	0.8	cle	v 64.5
1335	0.4	5.2	0.08	16.58	4.83	27.33	600	0.49	1.1	cles	r 53.9
1340	0.4	6.6	0.08	16.58	4.79	27.33	601	0.48	1.1	cles	
PURGING SAMPLED	PACITY (Gallon ISIDE DIA. CAI EQUIPMENT O	PACITY (Gal.		BP = Bladder I	SAMP	6; 2" = 0.16 1/4" = 0.0026 SP = Electric S LING DA	Submersible I	0.004; 3/8" = Pump; PP =	Peristaltic Pum	SAMPLIN	
Joe Terry / PUMP OR	TUBING		20	TUBING		-(0)	-	INITIATED:	AT: 1340	FILTER S	1000
	WELL (feet):		20	MATERIAL C		(- 1 - 1 H	Filtr	ation Equipment			v 60
	CONTAMINATIO		MP No	TUB		(replaced)			or EQUIPME		YN
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	IVE	RESERVATION TOTAL VOL ED IN FIELD (m	FINAL	ANALYSIS METH	AND/OR E	AMPLING QUIPMENT CODE	FLOW RATE (mL per minute)
4w-13A	3	CG	40mL	HCL	0.00	efilled by lab		826	0	RFPP	<100
nw-13.4	3	CG	40mL	None		None		801	1	RFPP	<100
nw-13A	1	PE	500mL	HNO ₃	Pr	efilled by lab		Meta	als	APP	300
1W-13.A	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH	3	APP	300
1W-13A	1	PE	250mL	None		None		TDS, CI	, NO ₃	APP	300
W-13A	1	AG	250mL	H ₂ SO ₄	Pr	efilled by lab		Total Ph		APP	700
weather: nodor: no	n. sunny, B	30°F									
MATERIAL	CODES	AG = Amber	TO COST TO COST	Clear Glass;			PP = Polypro				Other (Specify)
	The above	1	RFPP = Revers	eristaltic Pump; se Flow Perista		SM = Straw I		ng Gravity Drain);	ortric Submersib O = Other		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D CIAMAE MAIA	Co Facility ID:	20544)		1 779	TE	Omni Way St	Cloud, Osceola	County Flor	rida 34773	
	D. SWMF (WA		89544)	SAMPLE			Offilii vvay, St				
WELL NO:	MW-16	RA		SAMPLE		1-16RA	- A		2	Dec- 2	015
		TUDIN		10/51	L SCREEN	SING DAT	STATIC		12-3-13	RGE PUMP T	VDE
WELL DIAMETER	(inches): 2.0	TUBING DIAME:	ΓER (inches):0					R (feet):	79 OR		peristaltic
WELL VOL	UME PURGE: if applicable)	1 WELL VOI	_UME = (TOT.	AL WELL DEP	TH - STA	TIC DEPTH TO	WATER) X	WELL CAPACI	TY allons/foot	= 1.3	gallons
	T VOLUME PU if applicable)	JRGE: 1 EQL	IPMENT VOL	= PUMP VOL	UME + (TUE	BING CAPACIT	Y X TI	JBING LENGTH	+ FLOW CE	LL VOLUME	
NITIAL DIII	MP OR TUBING	G	FINAL PLIN	= 0.0 g	allons + (0	PURGING	is/foot X	PURGING	+ 0.12	gallons =	gallons
	WELL (feet):	20		WELL (feet):	20		AT: 1420	ENDED AT:		PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	OXYGEN (mg/L)	TURBIDIT (NTUs)		
1440	1.6	1.6	0.08	16.02	5.04	25.90	187	1.89	5.4	cle	103.8
14145	0.4	2	0.08	16.02	5.03	25.87	188	1.50	5.3	clea	
1450	0.4	2.4	0.08		5.04	25.85	187	0,99	5.1	cle	
TUBING IN	ACITY (Gallon: SIDE DIA. CAR EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0.		ump; E	1/4" = 0.0026 SP = Electric S	5/16" = 0. Submersible Pu	004; 3/8" = 0	5" = 1.02; .006; 1/2 eristaltic Pum	6" = 1.47; " = 0.010; np; O = 0	12" = 5.88 5/8" = 0.016 Other (Specify)
					SAMP	LING DA	TA	_			
SAMPLED E Joe Terry / F	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)	SIGNATUR	E(S): Que	ty	SAMPLING INITIATED AT	1450	SAMPLIN ENDED	NG AT: 1505
PUMP OR T	TUBING VELL (feet):	20)	TUBING MATERIAL CO	DDE: PE			FILTERED: Y on Equipment Ty	pe: N	FILTER S	SIZE: µm
FIELD DEC	ONTAMINATIO	ON: PUM	P No	TUBI	NG No	(replaced)		DUPLICATE	or EQUIPME	NT BLANK:	YN
SAMP	LE CONTAINE	R SPECIFICA	TION		SAMPLE PE	RESERVATION		INTENDE		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL D IN FIELD (m	FINAL L) pH	METHO		QUIPMENT CODE	FLOW RATE (mL per minute
1W-16RA		CG	40mL	HCL		efilled by lab		8260		RFPP	<100
	3	CG	40mL	None		None		8011		RFPP	<100
	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals		APP	300
	1	PE	125mL	H ₂ SO ₄	Pro	efilled by lab		NH ₃		APP	300
V	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	300
WIGRA	1	AG	250mL	H ₂ SO ₄	Pre	efilled by lab		Total Phe	nols	APP	300
REMARKS:	. surry, t	32°F									J
odor: non						7.9 NT	-				
MATERIAL	AND A COLUMN AND A STREET	AG = Amber (make make a second	Clear Glass;			P = Polypropyl				Other (Specify)
	EQUIPMENT	R		e Flow Peristal				ESP = Electr Gravity Drain);	O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

					PURC	ING DAT	ΓΑ		DATE: 5		
WELL DIAMETER	R (inches): 2.0	TUBING	TER (inches):0.	25 DEP	L SCREEN	INTERVAL et to 19.46	STATIC et TO WAT	ER (feet): 8,60	1 ORB	GE PUMP TY AILER: pe	PE eristaltic
t. Ell	if analizable)							WELL CAPACI O.16 g UBING LENGTH)		J. 7	gallons
	t if applicable)	JRGE: 1 EQU	IPMENT VOL.			0026 gallor		feet)		gallons =	gallons
	IMP OR TUBING	G 14	FINAL PUM DEPTH IN V	P OR TUBING		PURGING		PURGING		TOTAL VOL PURGED (g	UME ,
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLOF (describ	And the second s
0725	2.4	2.4	0.08	10.31	4.11	24.48	173	1.06	1.5	clen	- 107.0
0735	0.8	3.2	0.08	10.31	4.13	24.50	123	1.06	2.1	clea	
0750		4	0.08	10.31	4.13	24.49	123	1.03	2.1	clen	105.4
PURGING	PACITY (Gallon ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal./F	Ft.): 1/8" = 0.0	1" = 0.04; 0006; 3/16" BP = Bladder F	Pump; E	6; 2" = 0.16 1/4" = 0.0026 SP = Electric S	5; 5/16" = 0	0.004; 3/8" = 0 ump; PP = Pe	The state of the s	= 0.010; ; O = Ot	12" = 5.88 5/8" = 0.016 ther (Specify)
PURGING IN PURGING SAMPLED Joe Terry /	BY (PRINT) / A	PACITY (Gal./F	Ft.): 1/8" = 0.0 = Bailer; E	3/16" BP = Bladder F SAMPLER(S)	= 0.0014; Pump; E	1/4" = 0.0026 SP = Electric S	Submersible Po	0.004; 3/8" = 0 ump; PP = Pe SAMPLING INITIATED A	0.006; 1/2" eristaltic Pump	= 0.010; (c) = 0.0	5/8" = 0.016 ther (Specify) G T: 0807
SAMPLED Joe Terry /	BY (PRINT) / A	PACITY (Gal./F	Ft.): 1/8" = 0.0 = Bailer; E	0006; 3/16" BP = Bladder F	= 0.0014; Pump; E SAMP SIGNATUR	1/4" = 0.0026 SP = Electric S	Submersible Portal	0.004; 3/8" = 0 ump; PP = Po	0.006; 1/2" eristaltic Pump	= 0.010; (c) = 0.0	5/8" = 0.016 ther (Specify)
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN	BY (PRINT) / A PWSFL TUBING	PACITY (Gal./FODES: B	Ft.): 1/8" = 0.0 = Bailer; E	3/16" BP = Bladder F SAMPLER(S) TUBING	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE	1/4" = 0.0026 SP = Electric S	Submersible Portal	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty	0.006; 1/2" eristaltic Pump	SAMPLING ENDED A	5/8" = 0.016 ther (Specify) G T: 0807
SAMPLED DOE TERRY / PUMP OR DEPTH IN	BY (PRINT) / A PWSFL TUBING WELL (feet):	PACITY (Gal./F CODES: B FFILIATION: SON: PUM	Ft.): 1/8" = 0.0 = Bailer;	SAMPLER(S) TUBING MATERIAL CO	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No	SP = Electric S LING DA	Submersible Port	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE	0.006; 1/2" eristaltic Pump T: 0 75 0 (N) ppe: or EQUIPMEN	SAMPLING SAMPLING SAMPLING	5/8" = 0.016 ther (Specify) G T: 0807 ZE:µm Y
SAMPLED DEC SAMPLED SAMPLED DEC SAMPLED DEC SAMPLE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./F CODES: B FFILIATION: SON: PUM	Ft.): 1/8" = 0.0 = Bailer; E	SAMPLER(S) TUBING MATERIAL CO	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF	1/4" = 0.0026 SP = Electric S LING DA E(S): Que	Submersible Portage TA FIELD Filtral	SAMPLING INITIATED A D-FILTERED: Y DUPLICATE	0.006; 1/2" eristaltic Pump T: 0 75 0 N ppe: or EQUIPMEN ED SA ND/OR EQ	= 0.010; O = Ot SAMPLINI ENDED A' FILTER SI T BLANK:	SAMPLE PUM FLOW RATE
FURGING SAMPLED JOE TETTY / PUMP OR DEPTH IN FIELD DEC SAMPLE D CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE	PACITY (Gal./F DODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL	Ft.): 1/8" = 0.0 = Bailer;	SAMPLER(S) TUBING MATERIAL CO TUBING PRESERVATI	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PR VE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL	Submersible Portage TA FIELD Filtral	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE INTENDIA ANALYSIS A	D.006; 1/2" eristaltic Pump T: 0 75 0 (N) ppe: or EQUIPMEN ED SA ND/OR EQ	SAMPLINE ENDED A FILTER SI T BLANK:	SAMPLE PUM FLOW RATE
FURGING SAMPLED JOE TETTY / PUMP OR DEPTH IN FIELD DEC SAMPLE D CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./F DODES: B FFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0.0 = Bailer;	SAMPLER(S) TUBING MATERIAL CO TUBING PRESERVATI USED	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PR VE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m	Submersible Portage TA FIELD Filtral	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE INTENDE ANALYSIS A METHO	0.006; 1/2" eristaltic Pump T: 0 75 0 pe: or EQUIPMEN ED SA ND/OR EQ	SAMPLING UPMENT CODE	SAMPLE PUMI FLOW RATE (mL per minute
FURGING SAMPLED JOE TETTY / PUMP OR DEPTH IN FIELD DEC SAMPLE D CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	PACITY (Gal./F DODES: B FFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0.0 = Bailer;	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PE IVE ADDE Pr	I/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION FOTAL VOL D IN FIELD (mefilled by lab	FIELD FINAL PH	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE INTENDE ANALYSIS A METHO 8260	D.006; 1/2" eristaltic Pump T: 0 75 0 (N) pe: or EQUIPMEN ED SA ND/OR EQ	SAMPLING ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE RFPP	SAMPLE PUMI FLOW RATE (mL per minute <100
SAMPLED DOE TETRY / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3	PACITY (Gal./F DODES: B FFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG CG	P No TION VOLUME 40mL 40mL	SAMPLER(S) TUBING MATERIAL CO TUBING PRESERVAT USED HCL None	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE Pr	I/A" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None	FIELD FINAL PH	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011	D.006; 1/2" eristaltic Pump T: 0 75 0 (N) pe: or EQUIPMEN ED SA ND/OR EQ	SAMPLING UIPMENT CODE REPP	SAMPLE PUMI FLOW RATE (mL per minute <100 <100
SAMPLED DOE TETRY / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1	PACITY (Gal./F DODES: B FFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG CG CG PE	P No TION VOLUME 40mL 40mL 500mL	SAMPLER(S) TUBING MATERIAL CO TUBING MATERIAL CO TUBING HCL None HNO ₃	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE Pr	I/4" = 0.0026 SP = Electric S LING DA (replaced) RESERVATION TOTAL VOL D IN FIELD (mefilled by lab None	FIELD FINAL PH	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals	0.006; 1/2" eristaltic Pump T: 0 75 0 N) ppe: or EQUIPMEN ED SA ND/OR EQ	SAMPLING ENDED A' FILTER SI T BLANK: MPLING UIPMENT CODE RFPP RFPP APP	SAMPLE PUMI FLOW RATE (mL per minute <100
SAMPLED DEC SAMPLE DEC	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1	PACITY (Gal./F DODES: B FFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG CG PE PE	P No TION VOLUME 40mL 500mL 125mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE Pr Pr	I/A" = 0.0026 SP = Electric S LING DA E(S): Over (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab	FIELD FINAL PH	D.004; 3/8" = 0 ump; PP = Po SAMPLING INITIATED A' D-FILTERED: Y tion Equipment Ty DUPLICATE INTENDI ANALYSIS A METHO 8260 8011 Metals NH ₃	D.006; 1/2" eristaltic Pump T: 0 75 0 Ppe: or EQUIPMEN ED SA ND/OR EQ ND/OR S NO ₃	SAMPLINE ENDED A' FILTER SI T BLANK: MPLING UIPMENT CODE RFPP APP APP	SAMPLE PUM FLOW RATE (mL per minute <100 300 300 300 300 300 56 feet (ME)
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1 1 1 1	PACITY (Gal./F CODES: B FFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG CG PE PE PE AG	P No TION VOLUME 40mL 40mL 125mL 250mL	SAMPLER(S) TUBING MATERIAL CO TUBING HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PR VE ADDE Pr Pr	All III = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab None efilled by lab	FIELD FINAL PH	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH3 TDS, CI, I	D.006; 1/2" eristaltic Pump T: 0 75 0 Ppe: or EQUIPMEN ED SA ND/OR EQ ND/OR S NO ₃	SAMPLING UIPMENT CODE REPP APP APP	SAMPLE PUM FLOW RATE (mL per minute <100 300 300 300 300 300 300 300 300 300
SAMPLED JOE TERRY / SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1 1 1 1 1	PACITY (Gal./F CODES: B FFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG CG PE PE PE AG	P No TION VOLUME 40mL 40mL 125mL 250mL	SAMPLER(S) TUBING MATERIAL CO TUBING HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	= 0.0014; Pump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PR VE ADDE Pr Pr	I/A" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab None efilled by lab	FIELD FINAL PH	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, I Total Phe	D.006; 1/2" eristaltic Pump T: 0 75 0 Ppe: or EQUIPMEN ED SA ND/OR EQ ND/OR S NO ₃	SAMPLING UIPMENT CODE REPP APP APP	SAMPLE PUM FLOW RATE (mL per minute <100 300 300 300 300 300 300 300 300 300

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

WELL NO		Cs Facility ID:	89544)		LC	CATION, 150	omni vvay, S	t. Cloud, Osceola	County, Florida	a, 34//3	
	MW-19			SAMPLE	ID: Mh	1-18A			DATE: 57	Der 200	(7
	/ 110					ING DA	TA		ر د	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
WELL VO			TER (inches):	0.25 DEP	L SCREEN TH: 7 fe	INTERVAL et to / 7 fe	STATIC TO WAT	DEPTH ER (feet): 7, 4	OR BA	SE PUMP TY AILER: p	YPE eristaltic
EQUIPME	t if applicable) NT VOLUME PU t if applicable)	JRGE: 1 EQU	= (JIPMENT VOL	= PUMP VOL	feet – UME + (TUE allons + (0		feet) X TY X T	0.16 g UBING LENGTH			gallons gallons
	JMP OR TUBING WELL (feet):	3 13	The second second	MP OR TUBING WELL (feet):		PURGIN	G ED AT: 0935	PURGING ENDED AT:	1055	TOTAL VOL PURGED (9	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLO (describ	
1045	4.2	4.7	0.06	7.60	4.62	25.98	160	0.58	9.6	cleu	2 34.5
10 50	0.3	41.5	0.06	7.60	4.65	25.99	161	0.59	6.8	cle	
1055	0.3	4.8	0.06	7.60	4.67	26.00	161	0.59	5.3	cles	n 30.0
				12.00	C 1						
PURGING SAMPLED	PACITY (Gallon: NSIDE DIA, CAF EQUIPMENT C BY (PRINT) / A PWSFL	PACITY (Gal./I			= 0.0014; Pump; E SAMP	LING DA	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0	eristaltic Pump;		
PURGING SAMPLED Joe Terry PUMP OR	BY (PRINT) / A	PACITY (Gal./I	Ft.): 1/8" = 0	.0006; 3/16" BP = Bladder P	= 0.0014; Pump; E SAMP SIGNATURI	1/4" = 0.0026 SP = Electric S	Submersible Pu	sampling initiated a	1.006; 1/2" = eristaltic Pump;	0.010; 0 = 0:	5/8" = 0.016 ther (Specify)
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN	BY (PRINT) / A PWSFL TUBING	PACITY (Gal./I	Ft.): 1/8" = 0	.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	= 0.0014; Pump; E SAMP SIGNATURI	1/4" = 0.0026 SP = Electric S	Submersible Pu	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A* 0-FILTERED: Y on Equipment Ty	1.006; 1/2" = eristaltic Pump;	SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
PUMP OR DEPTH IN	BY (PRINT) / A PWSFL TUBING WELL (feet):	PACITY (Gal./I ODES: B FFILIATION: \ 3 ON: PUM	Ft.): 1/8" = 0 = Bailer;	SAMPLER(S) TUBING MATERIAL CO	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE NG No	1/4" = 0.0026 SP = Electric S LING DA	Submersible Pu	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A* 0-FILTERED: Y on Equipment Ty	2.006; 1/2" = eristaltic Pump; T: /05-3- pe: or EQUIPMENT	SAMPLIN ENDED A	5/8" = 0.016 ther (Specify) IG IT: ///2 IZE: μm
PUMP OR DEPTH IN	NSIDE DÍA, CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./I ODES: B FFILIATION: \ 3 ON: PUM	Ft.): 1/8" = 0 = Bailer;	SAMPLER(S) TUBING MATERIAL CO	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE NG No SAMPLE PF VE	1/4" = 0.0026 SP = Electric S LING DA E(S): Jule	Submersible Pu	SAMPLING INITIATED A D-FILTERED: Y ON Equipment Ty DUPLICATE	2.006; 1/2" = eristaltic Pump; T: /05-3- D: /05-3- D: /05-3- ED SAI ND/OR EQUIPMENT	SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG IT: /// IZE:µm Y
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE	PACITY (Gal./I ODES: B FFILIATION: \ \ \ 3 ON: PUM R SPECIFICA MATERIAL	Ft.): 1/8" = 0 = Bailer; IP No	SAMPLER(S) TUBING MATERIAL CO TUBI	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE NG No SAMPLE PR VE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION	Submersible Pu	SAMPLING INITIATED A OFFILTERED: Y ON Equipment TY DUPLICATE ANALYSIS A	DOOG; 1/2" = eristaltic Pump; T: /05-3- pe: or EQUIPMENT ED SAI ND/OR EQU	SAMPLIN ENDED A FILTER SI	5/8" = 0.016 ther (Specify) IG IT: /// IZE:µm Y
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./I ODES: B FFILIATION: V 3 ON: PUM R SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 = Bailer; IP No ATION VOLUME	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE NG No SAMPLE PR VE ADDE	I/4" = 0.0026 SP = Electric S LING DA E(S): Jule (replaced) RESERVATION TOTAL VOL D IN FIELD (n	Submersible Pu	SAMPLING INITIATED AT O-FILTERED: Y ON Equipment Ty DUPLICATE INTENDE ANALYSIS AI METHO	D.006; 1/2" = eristaltic Pump; T: /05 3 N pe: or EQUIPMENT ED SAI ND/OR EQU D F	SAMPLIN ENDED A FILTER SI BLANK: MPLING JIPMENT CODE	5/8" = 0.016 ther (Specify) IG IT: /// IZE: Y SAMPLE PUMP FLOW RATE (mL per minute)
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	PACITY (Gal./I ODES: B FFILIATION: V 3 ON: PUM R SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0 = Bailer; IP No ATION VOLUME 40mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE NG No SAMPLE PF VE ADDE Pri	I/4" = 0.0026 SP = Electric S LING DA E(S): July (replaced) RESERVATION FOTAL VOL D IN FIELD (nefilled by lab	Submersible Pula TA FIELD Filtrati N FINAL pH	SAMPLING INITIATED AT OFFILTERED: YOU Equipment TY DUPLICATE ANALYSIS ALMETHO 8260	DOOG; 1/2" = eristaltic Pump; T: /05" D pe: or EQUIPMENT ED SAI ND/OR EQUIPMENT C F	SAMPLINENDED A FILTER SI BLANK: MPLING JIPMENT CODE RFPP	5/8" = 0.016 ther (Specify) IG IT: /// IZE:µm Y
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3	PACITY (Gal./I ODES: B FFILIATION: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ft.): 1/8" = 0 = Bailer; IP No ATION VOLUME 40mL 40mL	SAMPLER(S) TUBING MATERIAL CO	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE NG No SAMPLE PF VE ADDE Pri	(replaced) RESERVATION TOTAL VOL D IN FIELD (nefilled by lab	Submersible Pula TA FIELD Filtrati N FINAL pH	SAMPLING INITIATED AT DEPLICATE ANALYSIS AI METHO 8260 8011	DOOG: 1/2" = eristaltic Pump; T: /05-3- pe: or EQUIPMENT ED SAI ND/OR EQU D F	SAMPLIN ENDED A FILTER S MPLING JIPMENT CODE RFPP	5/8" = 0.016 ther (Specify) IG IT: /// IZE: Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 205
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1	PACITY (Gal./I ODES: B FFILIATION: \ \ \ \ \ \ \ \ \ \ \ \ \	Ft.): 1/8" = 0 = Bailer; IP No ATION VOLUME 40mL 40mL 500mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE NG No SAMPLE PF VE ADDE Pri	(replaced) RESERVATION TOTAL VOL D IN FIELD (nefilled by lab	Submersible Pula TA FIELD Filtrati N FINAL pH	SAMPLING INITIATED AT DEPLICATE ANALYSIS AI METHO 8260 8011 Metals	D SAI ND/OR EQUIPMENT	SAMPLIN ENDED A FILTER SI BLANK: MPLING JIPMENT CODE RFPP RFPP APP	5/8" = 0.016 ther (Specify) IG IT: /// IZE:µm Y
SAMPLED JOE TERRY A PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1 1 1 1	PACITY (Gal./I) ODES: B FFILIATION: N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE	Ft.): 1/8" = 0 = Bailer; IP No ATION VOLUME 40mL 40mL 500mL 125mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE NG NO SAMPLE PF VE ADDE Pri Pri	(replaced) RESERVATION TOTAL VOL D IN FIELD (n efilled by lab efilled by lab	Submersible PulaTA FIELD Filtrati N FINAL pH	SAMPLING INITIATED AT STATE OF EQUIPMENT TY DUPLICATE OF ANALYSIS AI METHO 8260 8011 Metals NH ₃	DOOG: 1/2" = eristaltic Pump; T: /05" S PPE: ON PPE: OF EQUIPMENT ED SAI ND/OR EQUIPMENT ED SAI ND/OR EQUIPMENT ED SAI ND/OR EQUIPMENT	SAMPLINENDED A FILTER SI BLANK: MPLING JIPMENT CODE RFPP APP APP	5/8" = 0.016 ther (Specify) IG IT: /// IZE: Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 205

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D SIMME MAIA	Cs Eacility ID	89544)		SI		Omni Way S	t. Cloud, Osceola	County, Flori	da, 34773	
	D. SWMF (WA		09044)	SAMPLE	D: Mu		Jillin Way, O			Der 20	217
WELL NO.	10100-1	1/1		Orden EE I		SING DAT	ΓΛ.			buu	70
			•	100011		24-12-21-21	STATIC	DEDTU	DUD	GE PUMP T	VDE
WELL	(inches): 2.0	TUBIN	G TER (inches):		SCREEN fe	et to 17 fe		ER (feet): 7.3			peristaltic
WELL VOL (only fill out	UME PURGE: if applicable)	1 WELL VO	LUME = (TOT	TAL WELL DEPT	H - STA	TIC DEPTH TO	WATER) X	WELL CAPACI	TY allons/foot		gallons
	IT VOLUME PU if applicable)	JRGE: 1 EQI	JIPMENT VOL	= PUMP VOLU	IME + (TUB		Y X T	UBING LENGTH)			gallons
INITIAL DIL	MP OR TUBIN	G	FINAL PLI	MP OR TUBING	nons + (o.	PURGING		PURGING	0.12	TOTAL VO	
	WELL (feet):	12	10 10 10 10 10 10	WELL (feet):	12		DAT: 1440	ENDED AT:	1515	PURGED (gallons): 2.4
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO (descri	
1505	1.6	1.6	0.08	7.76	4.61	25.63	121	0.49	4.4	Cky	- 111.4
1510	0.4	2	0.08	7-76	4.63	25,69		0.48	4.2	clea	
1515	0.4	2.4	0.09	7.76	4.64	25.67	1721	0.48	4.4	clea	
			-						-	_	_
	PACITY (Gallon SIDE DIA. CAI				1.25" = 0.00 = 0.0014;	6; 2" = 0.16 1/4" = 0.0026				6" = 1.47; ' = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: E	B = Bailer;	BP = Bladder Pt			Submersible Pu	imp; PP = P	eristaltic Pum	p; 0 = 0	Other (Specify)
					SAMP	LING DA	TA				
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)	SIGNATURI	E(S): Joe (Ten	SAMPLING INITIATED A	1:1515	SAMPLIN ENDED	NG AT: 15-45
PUMP OR	TUBING WELL (feet):	12		TUBING MATERIAL CO	DE PE			o-FILTERED: Y		FILTER S	SIZE: µm
TOTAL OF THE PARTY.	ONTAMINATIO		MP No	TUBIN		(replaced)	Thirds		or EQUIPMEN	NT BLANK:	(Y) N
Andreas Street	LE CONTAINE				100	RESERVATION	ı.	INTEND	FD S	AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED	VE :	TOTAL VOL	FINAL	ANALYSIS A METHO	ND/OR E	CODE	FLOW RATE (mL per minute)
MW-1914	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100
nw-KA	3	CG	40mL	None		None		8011		RFPP	<100
nw-194	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals	S	APP	300
MW-19A	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab		NH ₃		APP	300
nw-14A	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	300
MW-194	1	AG	250mL	H₂SO₄	Pr	efilled by lab		Total Phe		APP	300
REMARKS	.cloudy	80°F									
odor: non	R		ih	itial turbi	dity: 3	11.5 NTC	1				
MATERIAL		AG = Amber	Glass; CG	= Clear Glass;	PE = Poly	vethylene;	PP = Polypropy	lene; S = Silico	one; T = Te	flon; $O = 0$	Other (Specify)
SAMPLING	EQUIPMENT			eristaltic Pump; se Flow Peristalt	B = Bai ic Pump;		Bladder Pump; Method (Tubing	ESP = Electron Gravity Drain);	o = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D SWME ANA	Ce Eacility ID	80544)		1,77,0	TE CATION: 150	1 Omni Way S	t. Cloud, Osceola	County Flor	ida 34773	
	D. SWMF (WA		09344)	SAMPLE	and a special					Du Z	017
WELL NO.	10100-0	+14		Orani EE	/ 11	N-21/2				134 0	013
	(inches): 2.0		TER (inches):	0.25 DEP	L SCREEN TH: 7,5 fe	INTERVAL et to 17.5 fe	et TO WAT	ER (feet): 7.6	25 OR	RGE PUMP T	YPE peristaltic
(only fill out	if applicable)		= (17.5	feet -	7.25	feet) X		allons/foot		gallons
	IT VOLUME PI if applicable)	URGE: 1 EQ	JIPMENT VOI	= PUMP VOL	UME + (TUB allons + (0.		Y X T	UBING LENGTH)		gallons =	gallons
	MP OR TUBIN WELL (feet):	G 13		MP OR TUBING WELL (feet):		PURGINO		PURGING	1315	TOTAL VO	-
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)		OR ORP
1305	1.4	1.4	8.07	7.70	3.81	25.71	744	0.85	3.6	cke	r 308.1
1310	0.35	1.75	0.07	7.70	3.81	25.75	744	0.80	3.4	cle	-
1315	0.35	2-1	0.07		3,82	25.72	745	0.79	2,8	cle	
			+								
	PACITY (Gallon ISIDE DIA, CAI			1" = 0.04; .0006; 3/16"	1.25" = 0.06 = 0.0014				5" = 1.02; 006: 1/2'	6" = 1.47; " = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C		B = Bailer;	BP = Bladder P			Submersible Pu		eristaltic Pum		Other (Specify)
					SAMP	LING DA	TA				
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	AFFILIATION:		SAMPLER(S)	SIGNATURE	(S) goe (in	SAMPLING INITIATED AT	1320	SAMPLIN ENDED A	
PUMP OR T	TUBING WELL (feet):	1	3	TUBING MATERIAL CO	DE: PE			on Equipment Ty	pe. N	FILTER S	
FIELD DEC	ONTAMINATIO	ON: PUN	IP No	TUBI	NG No (replaced)		DUPLICATE (or EQUIPME	NT BLANK:	YN
	LE CONTAINE	100000000000000000000000000000000000000	ATION			RESERVATION		INTENDE ANALYSIS AN		AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (m	FINAL pH	МЕТНО		CODE	(mL per minute)
nw-214	3	CG	40mL	HCL	Pre	efilled by lab		8260		RFPP	<100
1W-21A	3	CG	40mL	None		None		8011		RFPP	<100
nw-24	1	PE	500mL	HNO ₃	Pre	efilled by lab		Metals		APP	275
MWDIA	1	PE	125mL	H₂SO₄	Pre	efilled by lab		NH ₃		APP	275
MWZIA	1	PE	250mL	None		None		TDS, CI, N		APP	275
REMARKS:	1	AG	250mL	H ₂ SO ₄	Pre	efilled by lab		Total Pher	nols	APP	275'
weather: p	. cloudy,	78°F			, ,	1 - 1 -					
odor: MU		10 - 1	01				: 16.11				
MATERIAL SAMPLING	EQUIPMENT	AG = Amber	ALTERNATION CO.	Clear Glass;	PE = Poly B = Bail			lene; S = Silico		150/1	Other (Specify)
		F	RFPP = Revers	se Flow Peristalt	ic Pump;	SM = Straw N		ESP = Electri Gravity Drain);	O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.	D. SWMF (WA	Cs Facility ID	: 89544)		SI		Omni Way, St	. Cloud, Osceola	County, Florid	da, 34773	
	MW-			SAMPLE	ID: Mu	-22RA			DATE: 4	Dec 201	3
	,	0141				ING DAT	Α				
WELL VOL	(inches): 2.0 UME PURGE: if applicable)	TUBIN DIAME 1 WELL VO	TER (inches):	0.25 DEF	LL SCREEN	INTERVAL et to 23 fee TIC DEPTH TO	STATIC D	ER (feet): /5. WELL CAPACI	41 OR 8		PE eristaltic
EQUIPMEN	IT VOLUME PU if applicable)	JRGE: 1 EQ	= (UIPMENT VOI		feet - .UME + (TUB		feet) X Y X TI	0.16 g JBING LENGTH) feet)			gallons
	MP OR TUBINO	G 19		MP OR TUBING		PURGING		PURGING ENDED AT:	1130	TOTAL VOL PURGED (9	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO (describ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1120	2	2	0.1	15.60	5.17	26.27	635	0.59	1.7	clea	24.0
1125	0.5	2.5	0.1	15.60	5.19	26.20	635	0.58	1.7	clea	1 22.1
1130	0.5	3	0.1	15.60		26.21	635	0.55	1.9	cles	- 1
TUBING IN	ACITY (Gallon: SIDE DIA. CAR EQUIPMENT C	PACITY (Gal.		1" = 0.04; .0006; 3/16' BP = Bladder	Pump; E	6; 2" = 0.16 1/4" = 0.0026 SP = Electric S	Submersible Pu	004; 3/8" = 0		6" = 1.47; = 0.010; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S	SIGNATUR	E(S): Jae	Ty	SAMPLING INITIATED A	1: 1/30	SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet):	19		TUBING MATERIAL C	ODE: PE			-FILTERED: Y on Equipment Ty	N	FILTER S	
FIELD DEC	ONTAMINATIO	ON: PUI	MP No	TUB	ING No	(replaced)		DUPLICATE	or EQUIPMEN	NT BLANK:	Y (N)
SAMPLE	PLE CONTAINE	R SPECIFIC		PRESERVAT		RESERVATION	FINAL	INTENDE ANALYSIS A	ND/OR EC	AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD (m	L) pH	METHO	U	CODE	(mL per minute
W-22R4	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100
	3	CG	40mL	None		None		8011		RFPP	<100
	1	PE	500mL	HNO ₃		efilled by lab		Metals	3	APP	375
	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	375
4	1	PE	250mL	None		None		TDS, CI, I		APP	375
w. DRA	1	AG	250mL	H₂SO₄	Pr	efilled by lab		Total Phe	nols	APP	375
REMARKS: weather: C	1ew, 78°	'I ⁼									
MATERIAL		AG = Amber	Glass; CG	= Clear Glass;	PE = Poly	vethylene; F	P = Polypropy	lene; S = Silico	ne; T = Te	flon; $O = C$	Other (Specify)
	EQUIPMENT			eristaltic Pump; se Flow Perista	Itic Pump;	SM = Straw N		Gravity Drain);	ic Submersibl O = Other		

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	.D. SWMF (WA	Cs Facility	D: 89544)			SITE LOCATION: 150	1 Omni Wav. S	t. Cloud, Osceola	County, Flor	ida. 34773	
	MW.2			SAMPL		W-23A				Der 70	13
	1 00 0	113				GING DA	TA		- 7	Dec 0	,
	R (inches): 2.0		METER (inches)	0.25 DE	ELL SCREE	N INTERVAL feet to 27,3 fe	STATIC I	ER (feet): /8.	23 OR	RGE PUMP T BAILER: p	YPE peristaltic
(only fill ou	t if applicable)		= (27.3	feet -	18.23	feet) X	WELL CAPACI	allons/foot	= 1.5	
	t if applicable)	URGE: 1 E	QUIPMENT VO		gallons + (Ti	JBING CAPACIT	Y X T	UBING LENGTH			
	IMP OR TUBIN WELL (feet):	G 23		MP OR TUBIN		PURGING		PURGING ENDED AT:		gallons = TOTAL VO PURGED (gallons LUME gallons): 5.4
TIME	VOLUME PURGED (gallons)	CUMUL VOLUM PURGE (gallons	E PURGE D RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)		R ORP
1000	4.5	4.5		18.63	5.31	26.14	667	0.46	3	clea	-9.41
1005	0.45	49	-	18.63	5.3		668	0.45	3	Cles	
1010	0.45	5.1		-			668	0.45	3	cleu	
			-								
			_								
WELL CAP	PACITY (Gallon	s Per Foot)	0.75" = 0.02;	1" = 0.04;	1.25" = 0	06; 2" = 0.16	3" = 0.37	4" = 0.65;	5" = 1.02;	6" = 1.47;	12 " = 5.88
TUBING IN	SIDE DIA. CAR	PACITY (Ga	I./Ft.): 1/8" = 0 B = Bailer:	.0006; 3/16 BP = Bladder	" = 0.0014;	1/4" = 0.0026 ESP = Electric S	5, 5/16" = 0	.004; 3/8" = 0		= 0.010;	5/8" = 0.016
			D Daller,	Di Biaddei		PLING DA		mp, FF-Fe	installic Fulli	ρ, υ-ο	ther (Specify)
SAMPLED Joe Terry /	BY (PRINT) / A	FFILIATION	li .	SAMPLER(S		RE(S): Que	_	SAMPLING	1000	SAMPLIN	
PUMP OR		2	3	TUBING MATERIAL (you	FIELD	-FILTERED: Y on Equipment Typ	(N)		IZE: µm
	ONTAMINATIO	ON: PL	JMP No			(replaced)	Filtrati	DUPLICATE O		NT BI ANK	Y (N)
SAME	LE CONTAINE	R SPECIFI	CATION			PRESERVATION	ı	INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED	Control of the Contro	TOTAL VOL ED IN FIELD (m	FINAL L) pH	ANALYSIS AN METHOI		QUIPMENT CODE	FLOW RATE (mL per minute)
MW-23/4	3	CG	40mL	HCL		refilled by lab		8260		RFPP	<100
nw.234	3	CG	40mL	None		None		8011		RFPP	<100
nw-23A	1	PE	500mL	HNO₃	P	refilled by lab		Metals	r La l	APP	350
4W-23A	1	PE	125mL	H₂SO₄	P	refilled by lab		NH ₃		APP	350
nw-234	1	PE	250mL	None		None		TDS, CI, N	1O ₃	APP	350
nw.234	1	AG	250mL	H ₂ SO ₄	P	refilled by lab		Total Pher	nols	APP	250
REMARKS: weather: C	eir, 70°F										
odor:	4			initial.	trebidi	44:3.2					
MATERIAL	CODES:	AG = Ambe	er Glass; CG	Clear Glass;	PE = Po	lyethylene; P	P = Polypropyl	ene; S = Silicon	ne; T = Te	flon; O = C	other (Specify)
	EQUIPMENT (111111111111111111111111111111111111111	APP = After Pe RFPP = Revers	se Flow Perista	altic Pump;			ESP = Electric Gravity Drain);	C Submersibl O = Other		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E	E.D. SWMF (WA	ACs Facility	D: 89544)			SI		Omni Way, S	t. Cloud, Osceola	County, FI	orida, 34773	
WELL NO	MW-161	RB		SAM	MPLE ID:	nw.	-16RB			DATE: 4	1 Der 2	2013
		3.7					ING DAT	Α				
WELL DIAMETE	R (inches): 2.0	TUB	NG METER (inches):0.375	WELL S	CREEN	INTERVAL et to 46 5 fee	STATIC	DEPTH ER (feet): 15-9		URGE PUMP	TYPE
(only fill ou	ut if applicable)	1 WELL V	OLUME = (TO	TAL WELL	DEPTH 3 feet	- STA	15-91	(WATER) X feet) X	WELL CAPAC	ITY ons/foot =		gallons
	NT VOLUME P ut if applicable)	URGE: 1 E	QUIPMENT VO		VOLUME				UBING LENGTH)	+ FLOW C	ELL VOLUME	
	UMP OR TUBIN	IG 412		JMP OR TU	BING ,		PURGING		PURGING		TOTAL VO	, -
TIME	VOLUME PURGED (gallons)	CUMUL VOLUM PURGE (gallons	E PURGI	, , ,	TH (sta	pH andard nits)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBID (NTUs	ITY COL	OR ORP
0005	30	30	0.5	16.		.90	24.65	74	0.42	3-18	3 clou	dy -0.7
0810	2.5 32.5 0.5 16.65 41.69						24.64	74	0.41	35	_	1, +0,8
0615	2.5	35	0.5	16.	-	.89	24.64	74	0.41	350		" +0.4
				-	+							
TUBING IN	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Ga	0.75" = 0.02; 1./Ft.): 1/8" = B = Bailer;	1" = 0.0 0.0006; 3 BP = Blad	3/16" = 0.0 der Pump	ES	1/4" = 0.0026; SP = Electric St		004; 3/8" = 0	5" = 1.02; .006; 1/.	6" = 1.47; 2" = 0.010; mp; O = 0	12" = 5.88 5/8" = 0.016 Other (Specify)
SAMPLED	BY (PRINT) / A	FEILIATION		SAMPLE	R(S) SIGN	AMP	LING DAT	Α				
loe Terry /				CANILLE	ne T	MIOKE	.(3).		SAMPLING INITIATED AT	nais	SAMPLII	NG AT: 0830
PUMP OR DEPTH IN	TUBING WELL (feet):	L	2	TUBING MATERIA	L CODE:	PE			-FILTERED: Y) N		SIZE: _/_ µm
IELD DE	CONTAMINATIO	ON: PU	MP: Yes		TUBIN	IG: No	(replaced)		DUPLICATE O	r EQUIPME	ENT BLANK:	Y (N)
SAME	PLE CONTAINE	R SPECIFIC	CATION		SAM	PLE PR	ESERVATION		INTENDE	D	SAMPLING	SAMPLE PUN
SAMPLE D CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESER USE			OTAL VOL D IN FIELD (mL	FINAL pH	ANALYSIS AN METHOL		CODE	FLOW RATE (mL per minut
	3	CG	40mL	НС	L	Pre	filled by lab		8260		ESP	<100
10.773		CG	40mL	Nor	ne		None		8011		ESP	<100
v-16RB	3	CG				Pre	filled by lab		Metals		ESP	400
w-16RB	3	PE	500mL	HN	O ₃	1 10			Hiotalo			10
w-16RB w-16RB w-16RB			500mL 125mL	HN∘ H₂S			filled by lab		NH ₃		ESP	
v-16RB w-16RB w-16RB w-16RB	1	PE	2000000		O ₄							400
W-16RB W-16RB W-16RB W-16RB	1 1 1	PE PE	125mL	H₂S	O ₄	Pre	filled by lab		NH ₃	1O ₃	ESP	400
NV-16RB NW-16RB NW-16RB NW-16RB NW-16RB NW-16RB	1 1 1 1 1 1 1 1	PE PE PE AG	125mL 250mL 250mL	H₂S Nor	04 ne 04	Pre Pre duty	filled by lab None filled by lab	Coile u	NH3 TDS, CI, N Total Phen Hed I-Som Hit for d Filtered +	103 nois later	ESP ESP ESP widpre dretals y; 28 N	400 400 400 soved analysis

2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

NAME. J.E	D CIAME (MA)	Co Facility ID:	90544)		SIT		Omni May St	Cloud Oscoola	County Flori	10 34773	
	MW-1		89544)	SAMPLE		V-17B	Omni vvay, St	Cloud, Osceola			1/2
VVELL NO.	7-100-1	113		OAWI EE		SING DAT	٨		DATE: 5	Der Co	13
WELL	2 (5-26-22): 0.0	TUBING			L SCREEN I	NTERVAL	STATIC D			GE PUMP TY	/PE ric submersible
WELL VO	R (inches): 2.0 LUME PURGE: It if applicable)		TER (inches):0 LUME = (TOT = (AL WELL DEP	TH - STA	et to 39.7fee TIC DEPTH TO	WATER) X feet) X	WELL CAPACI		5	gallons
	NT VOLUME PU it if applicable)	RGE: 1 EQU		= PUMP VOL		ING CAPACITY	X TU	JBING LENGTH) feet) +	+ FLOW CEI		9.4 gallons
	JMP OR TUBINO	35	FINAL PUN DEPTH IN	MP OR TUBING WELL (feet):		PURGING	AT: 07/5	PURGING ENDED AT:		TOTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO	70.
0810	20.4	20.4	0.37	10.30	41.416	24.28	258	0.65	2	cla	- 10.6
0815	1.9	72.3	0.37	10.30	4.45	24.32	75B	0.65	2	cleu	- 11.2
0620	1,9	24.2		_	4.46	24.33	258	0.65	1.9	cles	
TUBING IN	PACITY (Gallons NSIDE DIA. CAP EQUIPMENT C	ACITY (Gal./F	Ft.): 1/8" = 0.		ump; E	1/4" = 0.0026; SP = Electric St		004; 3/8" = 0			12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED	BY (PRINT) / AI	FFILIATION:		SAMPLER(S)		LING DAT	A				
Joe Terry /	PWSFL					(5):		CAMPLING		CAMPLIN	^
ooc reny				Ch	e Tu	:(8):		SAMPLING INITIATED AT	0820	SAMPLIN ENDED A	
PUMP OR	TUBING WELL (feet):	35		TUBING MATERIAL CO	me Tu	7		SAMPLING INITIATED AT FILTERED: Y on Equipment Ty	N		T: 0832
PUMP OR DEPTH IN		35	P: Yes	MATERIAL CO	me Tu	7		FILTERED: Y	pe. O	FILTER S	T: 0832
PUMP OR DEPTH IN FIELD DEC SAMI	WELL (feet): CONTAMINATIO PLE CONTAINE	N: PUMI R SPECIFICA MATERIAL	P: Yes	MATERIAL CO	DDE: PE UBING: No SAMPLE PR	(replaced) ESERVATION	FINAL	INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE C INTENDE ANALYSIS AN	pre EQUIPMEN ED SAND/OR EQ	ENDED A FILTER SI IT BLANK: AMPLING	T: 0 & 3 2 ZE:µm Y N SAMPLE PUMP FLOW RATE
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	WELL (feet): CONTAMINATIO PLE CONTAINE # CONTAINERS	N: PUMI R SPECIFICA MATERIAL CODE	P: Yes	PRESERVATION USED	DDE: PE UBING: No SAMPLE PR VE T ADDE	(replaced) ESERVATION OTAL VOL D IN FIELD (mL	FINAL	INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE O INTENDE ANALYSIS AN METHOI	pre EQUIPMEN ED SAND/OR EQ	FILTER SI T BLANK: AMPLING JUIPMENT CODE	Y N SAMPLE PUMP FLOW RATE (mL per minute)
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	WELL (feet): CONTAMINATIO PLE CONTAINE # CONTAINERS 3	N: PUM R SPECIFICA MATERIAL CODE CG	P: Yes TION VOLUME 40mL	PRESERVATII USED HCL	DDE: PE UBING: No SAMPLE PR VE T ADDE	(replaced) ESERVATION OTAL VOL D IN FIELD (mL	Filtratio	INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE (INTENDE ANALYSIS AN METHOI	pre EQUIPMEN ED SAND/OR EQ	ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE ESP	Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3	N: PUMI R SPECIFICA MATERIAL CODE CG	P: Yes OTION VOLUME 40mL 40mL	PRESERVATI USED HCL None	DDE: PE TUBING: No SAMPLE PR VE T ADDE	(replaced) (ESERVATION OTAL VOL D IN FIELD (mL efilled by lab None	Filtratio	INITIATED AT FILTERED: Y IN Equipment Tyl DUPLICATE C INTENDE ANALYSIS AT METHOD 8260 8011	ppe Nor EQUIPMENT ED S/ND/OR EQ	ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE ESP ESP	Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	WELL (feet): CONTAMINATIO PLE CONTAINE # CONTAINERS 3 3 1	N: PUMI R SPECIFICA MATERIAL CODE CG CG CG	P: Yes TION VOLUME 40mL 40mL 500mL	PRESERVATI USED HCL None HNO ₃	DDE: PE TUBING: No SAMPLE PR VE T ADDE: Pre	(replaced) ESERVATION OTAL VOL D IN FIELD (mL effilled by lab None	Filtratio	INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE of INTENDE ANALYSIS AT METHOD 8260 8011 Metals	ppe Nor EQUIPMENT ED S/ND/OR EQ	ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE ESP ESP ESP	Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 1	N: PUMI R SPECIFICA MATERIAL CODE CG CG PE	P: Yes TION VOLUME 40mL 40mL 500mL 125mL	PRESERVATI USED HCL None HNO ₃	DDE: PE TUBING: No SAMPLE PR VE T ADDE: Pre	(replaced) ESERVATION OTAL VOL D IN FIELD (mL efilled by lab None efilled by lab	Filtratio	INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE of INTENDE ANALYSIS AN METHO 8260 8011 Metals NH ₃	pe Por EQUIPMEN SAND/OR EQ	ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE ESP ESP ESP ESP	T: 0 & 3 2 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 350 350
PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 1 1 1	N: PUMI R SPECIFICA MATERIAL CODE CG CG PE PE	P: Yes TION VOLUME 40mL 40mL 500mL 125mL 250mL	PRESERVATION USED HCL None HNO3 H2SO4 None	DDE: PE TUBING: No SAMPLE PR VE T ADDE Pre	(replaced) (ESERVATION OTAL VOL D IN FIELD (mL efilled by lab None efilled by lab None None	Filtratio	INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE of INTENDE ANALYSIS AT METHOD 8260 8011 Metals NH ₃ TDS, CI, N	ppe Nor EQUIPMEN S/ND/OR EQ	ENDED A FILTER SI IT BLANK: AMPLING IUIPMENT CODE ESP ESP ESP ESP ESP	T: 0 & 3 2 ZE: µM Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 350 350
PUMP OR DEPTH IN FIELD DEC SAMILE ID CODE MW-178	WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1	N: PUMI R SPECIFICA MATERIAL CODE CG CG PE PE PE AG	P: Yes TION VOLUME 40mL 40mL 500mL 125mL	PRESERVATI USED HCL None HNO ₃	DDE: PE TUBING: No SAMPLE PR VE T ADDE Pre	(replaced) ESERVATION OTAL VOL D IN FIELD (mL efilled by lab None efilled by lab	Filtratio	INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE of INTENDE ANALYSIS AN METHO 8260 8011 Metals NH ₃	ppe Nor EQUIPMEN S/ND/OR EQ	ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE ESP ESP ESP ESP	T: 0832 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 350
SAMPLE ID CODE MW-17B REMARKS Weather: C	WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1 1	N: PUMI R SPECIFICA MATERIAL CODE CG CG PE PE PE AG	P: Yes TION VOLUME 40mL 40mL 500mL 125mL 250mL	PRESERVATION USED HCL None HNO3 H2SO4 None H2SO4	DDE: PE TUBING: No SAMPLE PR VE ADDE Pre Pre	(replaced) ESERVATION OTAL VOL D IN FIELD (mL effilled by lab None effilled by lab None effilled by lab None	Filtratic	INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE of INTENDE ANALYSIS AT METHOD 8260 8011 Metals NH ₃ TDS, CI, N	ppe Nor EQUIPMEN S/ND/OR EQ	ENDED A FILTER SI IT BLANK: AMPLING IUIPMENT CODE ESP ESP ESP ESP ESP	T: 0 & 3 2 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 350 350
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE MW-178	WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1	N: PUMI R SPECIFICA MATERIAL CODE CG CG PE PE PE AG	P: Yes TION VOLUME 40mL 40mL 500mL 125mL 250mL	PRESERVATION USED HCL None HNO3 H2SO4 None H2SO4	DDE: PE TUBING: No SAMPLE PR VE ADDE Pre Pre	(replaced) ESERVATION OTAL VOL D IN FIELD (mL effilled by lab None effilled by lab None effilled by lab None effilled by lab	Filtratic	INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE of ANALYSIS AN METHO 8260 8011 Metals NH ₃ TDS, CI, N Total Phen	ppe Nor EQUIPMEN S/ND/OR EQ	ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE ESP ESP ESP ESP ESP ESP ESP	T: 0 & 3 2 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 350 350

TIES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	.D. SWMF (WA	Ce Facility ID	80544)			SI		1 Omni W	av St	. Cloud, Osceola	County Flori	da 34773	
			, 09344)	SAM	PLE ID: /		1-18B	1 Omin VV	ay, or		1122		42
1100	MW-18	013		10,000	_		ING DA	ТА			2	Durzo	U
WELL		TUBIN	G	- 10			INTERVAL		TIC D	EPTH	PUR	GE PUMP T	YPE
DIAMETER	(inches): 2.0	DIAME	TER (inches):	0.375	DEPTH:	77 fe	et to 37 fe	et TO	WATE	R (feet): 7.3	ORE		tric submersible
	UME PURGE: if applicable)	1 WELL VO		37.8	DEPTH -	STA	TIC DEPTH TO	O WATER		WELL CAPACIT			
	NT VOLUME PL	JRGE: 1 EQ	= (UIPMENT VOI				ING CAPACIT			0.16 gallo JBING LENGTH)	ns/foot = + FLOW CEI	L VOLUME	gallons
(only fill out	if applicable)			= 0	0 gallons	+ (0.0	006 gallons	/foot X	5	o feet) +	0.12	gallons =	0.4 gallons
	MP OR TUBIN	32		MP OR TUE WELL (fee	RING	2	PURGINO			PURGING ENDED AT:	1145	TOTAL VOI	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet)	R (star	oH ndard nits)	TEMP. (°C)	COND (μS/cm		DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)		R ORP
1120	И2	42	0.4	10,5	8 3.	88	24.84	112		0.73	3.5	CK	ca 77.1
1125	2	44	0.4	10,5		94	24.90	112	. 1	0.62	3.2	cless	- 72.2
1130	2	46	0.41	10.5	3 4	32	25.00	112		0.55	3.5	lle	2 49.7
1135	2	418	0.4	10.5		42	25.01	112		0.47	2.9	clen	
1140	2	50	0,4	10.5	B 4.	413	25.01	112		0.44	2.2	clea	2 40.6
1145	2	52	0.4	10.5	B 4	4/2	25.00	112	2	0.44	2.1	Clea	~ 40.3
TUBING IN	PACITY (Gallon ISIDE DIA. CAR EQUIPMENT C	PACITY (Gal.		1" = 0.04 .0006; 3 BP = Blade	/16" = 0.00 der Pump;	E	1/4" = 0.0026 SP = Electric S	Submersib	0.37; " = 0.0	004; 3/8" = 0.			12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED	BY (PRINT) / A	EEII IATION:		SAMPLER			LING DA	IA				Part of	
Joe Terry /		FFILIATION.		SAIVIPLE	(3) 31614	TORE	(0):			SAMPLING INITIATED AT	1145	SAMPLIN ENDED A	IG IT: 1/5-7
PUMP OR DEPTH IN	TUBING WELL (feet):	37		TUBING MATERIA	L CODE: I	PE				FILTERED: Y	(N)	FILTER S	
FIELD DEC	ONTAMINATIO	N: PUI	MP: Yes		TUBIN	G: No	(replaced)			DUPLICATE o	r EQUIPMEN	IT BLANK:	YN
SAME	LE CONTAINE	R SPECIFIC	ATION		SAME	LE PR	ESERVATION	1		INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERV			OTAL VOL D IN FIELD (m		NAL H	ANALYSIS AN METHOD		CODE	(mL per minute)
MW-1613	3	CG	40mL	HC	L	Pre	efilled by lab			8260		ESP	<100
	3	CG	40mL	Non	е		None			8011		ESP	<100
	1	PE	500mL	HNO)3	Pre	efilled by lab			Metals		ESP	400
	1	PE	125mL	H ₂ S0	O ₄	Pre	efilled by lab			NH ₃		ESP	400
V	1	PE	250mL	Non	е		None			TDS, CI, N	IO ₃	ESP	400
MW-183	1	AG	250mL	H₂S0	04	Pre	efilled by lab			Total Phen	ols	ESP	400
REMARKS: weather: C	lew, 83°F												
odor: nu			,h,	tial tu	billit	1:3	9 NTU						
MATERIAL		AG = Amber		Clear Glas		,				ene; S = Silicor			ther (Specify)
	EQUIPMENT		APP = After Pe RFPP = Revers	se Flow Per	istaltic Pur	-			ubing (ESP = Electric Gravity Drain);	O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D CIAME AMA	Co Fooility IF	90544)		SI		1 Omni Way	St. Cloud, Osceo	la County El	orida 34773	
	D. SWMF (WA		. 09344)	SAMPLE		CATION. 150	Ollin VVay	Ot. Oloda, Oscel		160 20	0/2
11222110.	101W - 10			1,37,010,34		ING DAT	ΓΔ		10	7000 20	
WELL	(inches): 2.0	TUBIN	ETER (inches):0	0.25 DEP	L SCREEN	INTERVAL et to 75 fe	et TO WA	C DEPTH ATER (feet): /6.	08 0	URGE PUMP T R BAILER:	TYPE peristaltic
(only fill out	if applicable)		= (75	feet -	16.08	feet)		gallons/foot	= 9.4	gallons
	if applicable)					.0026 gallor		85 fe	et) + 0.12	gallons =	0.34 gallons
	MP OR TUBING	G 70	The second secon	MP OR TUBINO WELL (feet):		PURGING		PURGING ENDED A	T: 0920	TOTAL VO	OLUME (gallons): 3. 6
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μS/cm)	OXYGEN (mg/L)	TURBIE (NTU		
0910	2.7	2.7	0.09	16.28	5.02	26.31	67	0.72	7	c le	er -6.1
0915	0.45	3.13	0.09	16.28	5.07	26.38	67	0.67	7.	7 cle	n -9.1
0920	0.415	3.6	0.09	16.28	5.04	26.30	67	0.63	7.0	2 cle	w -8.2
			111111111111111111111111111111111111111						-		
								+			-
				-				-			
	-		-								
WELL CAP	PACITY (Gallon ISIDE DIA. CAR	s Per Foot):	0.75" = 0.02; /Ft \: 1/8" = 0	1" = 0.04; 0006: 3/16"	1.25 " = 0.00				5" = 1.02; : 0.006; 1	6" = 1.47; /2" = 0.010;	12" = 5.88 5/8" = 0.016
July John Wall Co.	EQUIPMENT C	COLUMN TO STATE OF THE PARTY OF		BP = Bladder F		SP = Electric S			Peristaltic Pu		Other (Specify)
					SAMP	LING DA	TA				
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION		SAMPLER(S)	SIGNATURE	E(S): Jue T	eny	SAMPLING INITIATED	AT: 0920	SAMPLI	NG AT: 0940
PUMP OR DEPTH IN	TUBING WELL (feet):	70)	TUBING MATERIAL CO	ODE: PE			LD-FILTERED: ation Equipment		FILTER	
FIELD DEC	ONTAMINATIO	ON: PU	MP No	TUB	NG No	(replaced)		DUPLICAT	E or EQUIPM	ENT BLANK:	YN
C1.795	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	RESERVATION	١	INTEN		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD (m	FINA pH	ANALYSIS METH		CODE	(mL per minute)
mu-1e	3	CG	40mL	HCL		efilled by lab		826	0	RFPP	<100
mw-IC	3	CG	40mL	None		None		801	1	RFPP	<100
MW-IC	1	PE	500mL	HNO ₃	Pre	efilled by lab		Meta	als	APP	350
nw-1c	1	PE	125mL	H ₂ SO ₄	Pre	efilled by lab		NH	3	APP	350
MW-1C	1	PE	250mL	None		None		TDS, C	I, NO ₃	APP	350
MW-1C	1	AG	250mL	H ₂ SO ₄	Pre	efilled by lab		Total Ph	nenols	APP	350
odor: CO	lear, 72°F fur.like		Class: CC	Class Class	DE - Del	ath.dana.	D - Daline		-	T-0	011-10-11
MATERIAL SAMPLING		AG = Ambe		Clear Glass;	PE = Poly		PP = Polypro				Other (Specify)
SAMPLING	EQUIPMENT		APP = After Pe RFPP = Revers		B = Bai tic Pump;		Bladder Pum Method (Tubi	ng Gravity Drain)	o = Oth	er (Specify)	
OTES: 4	The shows	do not con	stitute all of	ho informati	on roquiro	d by Chanto	- 62 460 E	10			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J F	D. SWMF (WA	Cs Facility ID:	89544)		-	TE CATION: 150	1 Omni Wav.	St. Cloud, Osceola	County, Florid	a. 34773	
	MW-2C	ioo i domity ib.		SAMPLE	ID: MW				DATE: 18 /		2
	1-100 00			77.00		SING DAT	ΓΑ		10 10		1
WELL DIAMETER	R (inches): 2.0		TER (inches):0	.25 DEF	LL SCREEN PTH: 58 fe	INTERVAL eet to 66 fe	et TO WA	DEPTH TER (feet): 16	30 OR B	E PUMP T	YPE peristaltic
(only fill ou	LUME PURGE: it if applicable)		= (feet -		feet)	X WELL CAPAC X 0.16 g TUBING LENGTH	allons/foot =	VOLUME	gallons
	it if applicable)	URGE: 1 EQ	JIPMENT VOL					60 feet			7.3 gallons
	JMP OR TUBIN WELL (feet):	G 63		P OR TUBING	gallons + (0	PURGINO	ns/foot X D AT: /200	PURGING		TOTAL VOI PURGED (6	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)		R ORP
1230	1.5	1.5	0.05	16.46	4.37	26.23	56	0.63	2.2	cka	52.8
1235	0.25	1.75	0.05	16.46	4.47	26.20	57	0.55	2.2	cka	
1240	0.25	2	0.05	16.46	41.48	26,20	56	0.419	1.9	1 leu	- 35.0
1745	0.25	2.75	0.05	16.46	4,47	26.21	56	0.47	1.9	cle	0 1 .
					1						
					1						
	PACITY (Gallon NSIDE DIA. CAI			1" = 0.04; 0006; 3/16"	1.25 " = 0.0	6; 2" = 0.16 1/4" = 0.0026				" = 1.47; = 0.010;	12 " = 5.88 5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: B	B = Bailer;	BP = Bladder F		SP = Electric S		Pump; PP = Pe	eristaltic Pump;	0 = 0	ther (Specify)
					SAMP	LING DA	TA				
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)	SIGNATURI	E(S): Joe	Tuy	SAMPLING INITIATED AT	:1245	SAMPLIN ENDED A	IG AT: / 300
PUMP OR DEPTH IN	TUBING WELL (feet):	63		TUBING MATERIAL C	ODE: PE			D-FILTERED: Y ation Equipment Ty		FILTER S	
FIELD DEC	CONTAMINATIO	ON: PUM	MP No	TUB	ING No	(replaced)		DUPLICATE	or EQUIPMENT	BLANK:	YN
SAM	PLE CONTAINE	R SPECIFICA	ATION		SAMPLE PF	RESERVATION		INTENDE	ACT - CIT CALLS CO. T. C.	MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	A A STATE OF THE S	TOTAL VOL D IN FIELD (m	FINAL pH	ANALYSIS AI METHO		CODE	(mL per minute)
muze	3	CG	40mL	HCL	Pro	efilled by lab		8260	F	RFPP	<100
nwac	3	CG	40mL	None		None		8011	F	RFPP	<100
m 20	1	PE	500mL	HNO ₃	Pre	efilled by lab		Metals		APP	200
MW-2C	1	PE	125mL	H ₂ SO ₄	Pre	efilled by lab		NH ₃		APP	200
um 20	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	200
MWZC	1	AG	250mL	H ₂ SO ₄	Pre	efilled by lab	4	Total Phe	nols	APP	200
REMARKS weather:	isvny, 7	19°F									
odor: 101			4,70	2000		(-0.00)					
MATERIAL	F 165	AG = Amber		Clear Glass;	PE = Poly		P = Polyprop		1120 1 1100		Other (Specify)
	EQUIPMENT	F	APP = After Per RFPP = Reverse	e Flow Perista	7 9 7 7 7 7 7 7	SM = Straw N		ng Gravity Drain);	o = Other (S		
OTES: 1	The above of	to not cons	titute all of t	he informati	on require	d by Chanto	- 62 160 E	A.C.			

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.F.	D. SWMF (WA	Cs Facility ID:	89544)			ITE OCATION: 150	1 Omni Way,	St. Cloud, Osceola	County, Florio	ia, 34773	
	MW-3C	oo i dointy i.b.	00011	SAMPLI	EID: NW				1000	Nov 201	/?
77.70.70.70.70	10.00-3C					GING DAT	ΓΔ		11	700000	
WELL VOL	R (inches): 2.0 UME PURGE: If applicable)	TUBIN DIAME 1 WELL VO	TER (inches): LUME = (TO	0.25 DE	ELL SCREEN PTH:587 fo PTH - STA	INTERVAL eet to 66.7 fe	et TO WA	C DEPTH TER (feet): /5.3 X WELL CAPACI	OR B		eristaltic
	NT VOLUME PL	IRGE: 1 EQI	JIPMENT VO			BING CAPACIT		X 0.16 g TUBING LENGTH;		L VOLUME	gallons 33 gallons
	MP OR TUBINO	64		MP OR TUBIN		PURGING		PURGING		TOTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLOR (describ	e) (mV)
1820	1.5	1.5	0.06	15.70	4.49	26.88	67	0.7	4.1	clear	121.9
0825	0.3	1.8	0.06	15.70	41.45	26.88	67	0.63	3.7	clea	
0830	0.3	2.1	0.06	15.70	4,52	26.93	67	0.53	3.8	cka	
PURGING	PACITY (Gallon: ISIDE DIA. CAF EQUIPMENT C	ODES: E	0.75" = 0.02; Ft.): 1/8" = 0 B = Bailer;	BP = Bladder	SAME		5; 5/16" = Submersible F	9.004; 3/8" = 0 Pump; PP = Po	0.006; 1/2" eristaltic Pump	= 0.010; o; O = Of	12" = 5.88 5/8" = 0.016 ther (Specify)
Joe Terry /	PWSFL) SIGNATUR	E(S): Goe	7	INITIATED A			T: 0847
PUMP OR DEPTH IN	TUBING WELL (feet):	64		TUBING MATERIAL (CODE: PE			LD-FILTERED: Y ation Equipment Ty		FILTER S	ZE: μm
FIELD DEC	CONTAMINATIO	N: PUN	MP No	TUI	BING No	(replaced)		DUPLICATE	or EQUIPMEN	IT BLANK:	YN
SAME	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE P	RESERVATION	N	INTEND		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED		TOTAL VOL ED IN FIELD (m	nL) FINAL			CODE	(mL per minute)
nw 3c	3	CG	40mL	HCL		refilled by lab		8260		RFPP	<100
MW-3C	3	CG	40mL	None		None		8011		RFPP	<100
nw-3c	1	PE	500mL	HNO ₃	P	refilled by lab		Metals	5	APP	725
mn-3C	1	PE	125mL	H₂SO₄	P	refilled by lab		NH ₃		APP	225
mw.3C	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	225
mw.3C	1	AG	250mL	H₂SO₄	P	refilled by lab		Total Phe	nols	APP	225
odor: ∧≬∩ MATERIAL	c CODES:	AG = Amber		= Clear Glass;			PP = Polyprop		CING I TO DIM CO		ther (Specify)
	The shave	1	RFPP = Reve	eristaltic Pump se Flow Perist	altic Pump;	SM = Straw M		ng Gravity Drain);	o = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D CIAME ANA	Co Facility ID:	90544\		-	TE	Omni Way S	t. Cloud, Osceola	County Florid	a 34773	
	MW-40		89344)	SAMPLE	ID: MW		Ollilli VVay, S		200	NUJ ZO	13
WEEE NO.	1-110-10			Or avii EE		SING DAT	٠,		111	005 20	
WELL	R (inches): 2.0		TER (inches):	0.25 DEF	LL SCREEN	INTERVAL eet to 72,5 fe	STATIC I	ER (feet): 16.3	8 ORB	GE PUMP TO AILER: p	YPE eristaltic
(only fill ou	LUME PURGE: at if applicable)		= (feet -		feet) X	WELL CAPACI 0.16 g UBING LENGTH)	allons/foot =		gallons
	it if applicable)	RGE. TEQU	DIFMENT VOL		allons + (0		is/foot X	80 feet)			·33 gallons
	JMP OR TUBINO	68		MP OR TUBING		PURGINO		PURGING ENDED AT:		TOTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	11000	R ORP
1010	1.4	1.4	0.07	16.52	5:413	28.20	133	0.95	2.2	clear	29,7
1015	0.35	1.75	0.07	16.52	5.48	28.28	141	0.68	2.1	C 18W	- 19.7
1020	0.35	2.1	0.07	16.52	5.47	28.30	142	0.61	2.3	clea	v 20.9
1025	0.35	2.45	0.07	16.57	5.47	28.30	143	0,57	2.8	cleu	- 17.5
TUBING II	PACITY (Gallons NSIDE DIA. CAP EQUIPMENT C	ACITY (Gal./		1" = 0.04; .0006; 3/16' BP = Bladder F	Pump; E	1/4" = 0.0026 1/4" = 0.0026 ESP = Electric S	5/16" = 0 Submersible Pu	.004; 3/8" = 0			12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED Joe Terry	BY (PRINT) / AI	FFILIATION:		SAMPLER(S)		0	_	SAMPLING INITIATED AT	: 1025	SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet):	68	3	TUBING MATERIAL C	ODE: PE			O-FILTERED: Y	N	FILTER S	
FIELD DE	CONTAMINATIO	N: PUN	IP No	TUB	ING No	(replaced)		DUPLICATE (or EQUIPMEN	T BLANK:	YN
	PLE CONTAINE	1,20,000	ATION	Loston I	The same of the sa	RESERVATION		INTENDE		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	100	TOTAL VOL ED IN FIELD (m	FINAL pH	ANALYSIS AI METHO		CODE	(mL per minute)
MW-41C	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100
MW-41C	3	CG	40mL	None		None		8011		RFPP	<100
MW. LIC	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals		APP	275
MW-40	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	275
MW-11C	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	275
AW-4C REMARKS	1	AG	250mL	H ₂ SO ₄	Pr	efilled by lab		Total Phe		APP	275
odor: non MATERIA	veraut, 74%	AG = Amber	Glass; CG	= Clear Glass; eristaltic Pump;	PE = Poly		PP = Polypropy	ALLOW FOR THE RESERVE OF THE PERSON OF THE P	ine; T = Teflic Submersible	9	Other (Specify)
Parama Para	. The above d	F	RFPP = Revers	se Flow Perista	Itic Pump;	SM = Straw M	Method (Tubing	Gravity Drain);	O = Other (

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: LE	D. SWMF (WA	Cs Facility ID:	89544)			SITE LOCATION: 15	501 Omni V	Vav. St	Cloud, Osceola	County, Flori	da, 34773	
	MW-5	10377	000117	SAMP	LE ID: 11	W-5C					Nov 20,	12
TTEEE ITO	10100-2	<u></u>		50770		RGING DA	ΔΤΔ			11	10.0 00	9
WELL VOL			TER (inches):	0.25	WELL SCRE	EN INTERVAL feet to 73	feet TC	ATIC D WATE	EPTH ER (feet): / 6.99 WELL CAPACI	7 OR	RGE PUMP T BAILER: p	YPE peristaltic
EQUIPMEN	t if applicable) NT VOLUME PU t if applicable)	URGE: 1 EQU	= (JIPMENT VOI		feet – /OLUME + (TUBING CAPAC	fe CITY X lons/foot X		0.16 g JBING LENGTH)		LL VOLUME	gallons 9,34 gallons
200000000000000000000000000000000000000	IMP OR TUBIN	G 68		MP OR TUB	ING / n	PURGI		Jan Gar	PURGING ENDED AT:	1205	TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	PH (standa	ard TEMP.	CON (μS/c	ID.	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO (descril	
1150	1.2	1.2	0.06	17.15	5 4.5	9 26.07	80	2	0.84	1.8	clear	56.0
1155	0.3	1.5	0.06	17.15	5 41.6	30 25.95	70	Î	0.66	1.8	c len	23.4
1200	0.3	1,8	0.06	17.15	5 4.7	5 25.95	70	j	0.55	1.9	clea	24.7
1205	0-3	2.1	0.06	17.1					0.56	1.8	cleu	
SAMPLED Joe Terry / PUMP OR DEPTH IN	TUBING WELL (feet):	PACITY (Gal./ CODES: B	Ft.): 1/8" = 0 3 = Bailer;	SAMPLER TUBING MATERIAL	16" = 0.001: er Pump; SAI R(S) SIGNAT	One Rose Services	26; 5/1 c Submers	ible Pur	MP; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty	.006; 1/2' eristaltic Pum	SAMPLIN ENDED A	AT: 1225 SIZE: µm
FIELD DEC	CONTAMINATIO	ON: PUN	IP No	T	UBING	No (replaced)			DUPLICATE	or EQUIPME	NT BLANK:	Y N
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERV	ATIVE	TOTAL VOL	F	INAL pH	INTENDE ANALYSIS AI METHO	ND/OR E	AMPLING QUIPMENT CODE	SAMPLE PUMF FLOW RATE (mL per minute)
MW-5C	3	CG	40mL	HCL		Prefilled by la	2		8260		RFPP	<100
MW-5C	3	CG	40mL	None	е	None			8011		RFPP	<100
MW-5C	1	PE	500mL	HNC)3	Prefilled by la	b		Metals		APP	225
MW-5C	1	PE	125mL	H₂SC	D ₄	Prefilled by la	ıb		NH ₃		APP	205
MW.5C	1	PE	250mL	None	е	None			TDS, CI, I	NO ₃	APP	225
nw.5C	1	AG	250mL	H₂SC	D ₄	Prefilled by la	ıb		Total Phe	nols	APP	225
MATERIAL	CODES:	AG = Amber	Glass; CG	= Clear Glas		Polyethylene;	PP = Pol			one; T = Te		Other (Specify)
	The above	F	APP = After Pe RFPP = Rever	se Flow Peri	istaltic Pump			Tubing	Gravity Drain);	o = Other		

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.F.	D. SWMF (WA	Cs Facility ID	89544)			TE CATION: 150	1 Omni Way, St	. Cloud, Osceola	County, Flor	ida, 34773	
WELL NO:	MW-			SAMPLE	ID: Mu				DATE: 2		17
77=00 7100	101W-	60				SING DAT	ΓΔ		~	500 00	
WELL VOL	(inches): 2.0 UME PURGE: if applicable)	TUBIN DIAME 1 WELL VO	LUME = (TOT	.25 DEF	LL SCREEN PTH: 63 fe PTH - STA	INTERVAL et to 77 fe	STATIC D et TO WATE D WATER) X	WELL CAPACI	O7 OR		peristaltic
	IT VOLUME PI	URGE: 1 EQ	= (UIPMENT VOL					JBING LENGTH		LL VOLUME	gallons
			1		gallons + (0		ns/foot X	80 feet)	+ 0.12		0-33 gallons
	MP OR TUBIN WELL (feet):	68		MP OR TUBING WELL (feet):	68	PURGING	DAT: 0900	PURGING ENDED AT:	0940	TOTAL VO PURGED (gallons): 3.6
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO	
0930	2.7	2.7	0.09	16.14	4.49	24.79	54	0.73	16	cle	v 75.1
0 935	0.45	3.15	0.09	16.14	4.46	24.77	54	0.64	1.6	cles	-
0940	0.45	3.6	0.09	16,14	4.46	24.74	54	0.63	1.6	cle	
TUBING IN PURGING I	EQUIPMENT O BY (PRINT) / A PWSFL	PACITY (Gal., CODES: E	/Ft.): 1/8" = 0.	1" = 0.04; 00006; 3/16' BP = Bladder I SAMPLER(S)	SAMP	1/4" = 0.0026 SP = Electric S	5: 5/16" = 0. Submersible Pur	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT	eristaltic Pum	SAMPLIN ENDED	AT: 0952
	WELL (feet):	68		MATERIAL C	ODE: PE			-FILTERED: Y on Equipment Ty	pe: N	FILTER S	SIZE: µm
FIELD DEC	ONTAMINATIO	ON: PUN	AP No	TUB	ING No	(replaced)		DUPLICATE	or EQUIPME	NT BLANK:	Y (N)
SAMP	LE CONTAINE	ER SPECIFICA	ATION		SAMPLE PE	RESERVATION	1	INTENDE	D S	AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD (m	FINAL pH	ANALYSIS AI METHO	POR CR COMMISSION	CODE	FLOW RATE (mL per minute)
MW 60	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100
4w-6C	3	CG	40mL	None		None		8011		RFPP	<100
nw-GC	1	PE	500mL	HNO ₃	Pre	efilled by lab		Metals		APP	350
nw-6C	11	PE	125mL	H ₂ SO ₄	Pre	efilled by lab		NH ₃		APP	350
nw-60	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	350
mw-60	1	AG	250mL	H ₂ SO ₄	Pro	efilled by lab		Total Phe	nols	APP	350
REMARKS: weather: 0 v	ierast, 68%	=									
MATERIAL	CODES	AG = Amber	Glass; CG =	Clear Glass;	PE = Poly	rethylene; F	PP = Polypropyl	ene; S = Silico	ne; T = Te	flon; O = 0	Other (Specify)
	EQUIPMENT	F	APP = After Per RFPP = Revers	e Flow Perista	Itic Pump;	ler; BP = E SM = Straw N	Bladder Pump; Method (Tubing	ESP = Electri Gravity Drain);	ic Submersib O = Other	le Pump;	

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: LE	.D. SWMF (WA	Cs Facility ID	89544)			ITE OCATION: 150	1 Omni Wav. S	St. Cloud, Osceola	County, Fl	orida, 34773	
	MW-7C	oo r domey re		SAMPLE	ID: Mu					Der 2013	,
110000	101W - 1C					GING DA	ΤΔ			Sec con	
WELL	R (inches): 2.0	TUBIN	TER (inches):0	0.25 DEF	LL SCREEN	INTERVAL eet to 73 fe	STATIC ret TO WAT	ER (feet): /6.	24 0	JRGE PUMP T R BAILER:	YPE peristaltic
	LUME PURGE: it if applicable)	1 WELL VO	LUME = (TOT	AL WELL DEF	PTH - STA	ATIC DEPTH T	feet) X	WELL CAPAC	ITY gallons/foot	=	gallons
	NT VOLUME PU it if applicable)	JRGE: 1 EQ	UIPMENT VOL		UME + (TU			UBING LENGTH			0.33 gallons
	JMP OR TUBIN	G 68		MP OR TUBING		PURGIN		PURGING ENDED AT:	1000	TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBID (NTUs	ITY COLO	OR ORP
1105	0.75	0.75	0.05	16.32	5.33	23.76	75	1.45	1.8	Cle	~ 88.6
1110	0.25	1	0.05	16.37	5.04	23.82	67	1.01	1.2	Clea	1
1115	0.25	1.25	0.05	16.32	4.92	23,90	63	0.7	1.3	Clea	- 53.2
1120	0.25	1.5	0.05	16:32	4192	23.92	63	0.63	1./	cle	~ 50.2
1125	0.25	1.75	0.05	16.32	41.92	23.94	62	0.63	1.2	clea	- 49.6
				7.1.20							
								-			
MELLICA	DACITY (Caller	Day Feeth	0.75" - 0.00	1" = 0.04;	4.05" - 0.4	06; 2" = 0.16	211 - 0.07	411 - 0.05	511 - 4.00	0" - 1 17	1011 5.00
TUBING IN	PACITY (Gallon NSIDE DIA. CAF	PACITY (Gal.	/Ft.): 1/8" = 0.02;	0006; 3/16'	1.25" = 0.0 = 0.0014;	1/4" = 0.002	3" = 0.37; 5; 5/16" = 0		5" = 1.02; 0.006; 1/	6" = 1.47; 2" = 0.010;	12 " = 5.88 5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: E	B = Bailer;	BP = Bladder F		ESP = Electric		ump; PP = P	eristaltic Pu	mp; O = 0	Other (Specify)
					SAME	PLING DA	TA				
Joe Terry	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)	SIGNATUR	RE(S): Que	Tup	SAMPLING INITIATED A	T: 1125	SAMPLII ENDED	NG AT: //38
PUMP OR DEPTH IN	TUBING WELL (feet):	68		TUBING MATERIAL C	ODE: PE			D-FILTERED: Y		FILTER S	SIZE: µm
	CONTAMINATIO		AP No	TUB		(replaced)	1	DUPLICATE	THE PARTY OF THE P	ENT BLANK:	Y (N)
SAM	PLE CONTAINE	R SPECIFICA	ATION		SAMPLE P	RESERVATION	N	INTEND	ED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL ED IN FIELD (n	FINAL pH	ANALYSIS A METHO		CODE	FLOW RATE (mL per minute)
MW-7C	3	CG	40mL	HCL	P	refilled by lab		8260		RFPP	<100
nw-70	3	CG	40mL	None		None		8011		RFPP	<100
MW-7C	1	PE	500mL	HNO ₃	P	refilled by lab		Metals	S	APP	200
mw-7C	1	PE	125mL	H₂SO₄	P	refilled by lab		NH ₃		APP	200
MW-75	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	200
MW-7C	1	AG	250mL	H ₂ SO ₄	P	refilled by lab		Total Phe	nols	APP	200
REMARKS weather: 3	verws, 68	F, slight	breeze								
MATERIAL	Value Services	AG = A====	Class: CC	Class Class	DE - D	undbula	DD - D-1	ALDE A AME	Car 12 74		-W 12 3-1
	G EQUIPMENT	AG = Amber	APP = After Pe	Clear Glass;	B = Ba		PP = Polypropy Bladder Pump;	/lene; S = Silico		The state of the s	Other (Specify)
OTES: 4			RFPP = Revers					ESP = Electr Gravity Drain);		er (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: LE	.D. SWMF (WA	Cs Facility ID:	89544)		SI		Omni Way	St. Cloud, Osceola	County, Florida	34773	
	MW-81		09344)	SAMPLE	ID: MW		Omm way,		Service Land	105 m	2
//	101W-00	_				SING DAT	Δ		~ ~	ice cor	5
WELL DIAMETER	R (inches): 2.0		TER (inches):0	0.25 DEP	L SCREEN TH: 64 fe	INTERVAL et to 74 fee	STATIC et TO WAT	DEPTH TER (feet): /5,	78 OR BA	E PUMP TY	/PE eristaltic
(only fill ou	t if applicable)		= (AL WELL DEP	TH - STA	TIC DEPTH TO	feet)		gallons/foot =		gallons
	NT VOLUME PU t if applicable)	JRGE: 1 EQL	JIPMENT VOL		UME + (TUB allons + (0.		Y X	TUBING LENGTH			7,33 gallons
	JMP OR TUBIN WELL (feet):	G 69	S 24 (4) (4) (4) (5)	MP OR TUBING WELL (feet):	69	PURGING	AT: 1235	PURGING		OTAL VOL	UME gallons): 2.1
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLOI (describ	
1250	1.05	1.05	0.07	15.88	4.27	24.66	392	1.03	1.3	elecr	22.9
1255	0.35	1.4	0.07	15.88	4.32	24.57	420	0.87	1.5	clew	7.5
1300	0.35	1.75	0.07	15.88	41.32	24,55	4137	0.69	1,3	clear	
1305	0.35	2.10	0.07	15.88	4,31	24.56	4131	0.59	1.3	clen	
								-			
4.1.1									CT 1-		
	PACITY (Gallon NSIDE DIA. CAR					6; 2" = 0.16 1/4" = 0.0026				' = 1.47; 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder F		SP = Electric S		rump; PP = P	eristaltic Pump;	0 = 0	ther (Specify)
					SAMP	LING DA	TA				
SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)	SIGNATURE	E(S): Joe (ing	SAMPLING INITIATED A	T: 1305	SAMPLIN ENDED A	G T: /3/5
PUMP OR DEPTH IN	TUBING WELL (feet):	69		TUBING MATERIAL CO	DDE: PE			D-FILTERED: Y		FILTER S	
FIELD DEC	CONTAMINATIO		IP No	TUBI	NG No	replaced)		DUPLICATE	or EQUIPMENT	BLANK:	YO
SAM	PLE CONTAINE	R SPECIFICA	ATION		SAMPLE PR	RESERVATION		INTENDI		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		OTAL VOL D IN FIELD (m	FINAL L) pH	ANALYSIS A METHO		ODE	FLOW RATE (mL per minute)
MW-BC	3	CG	40mL	HCL	Pre	efilled by lab		8260	R	FPP	<100
MW.EC	3	CG	40mL	None		None		8011	R	FPP	<100
nw-ec	1	PE	500mL	HNO ₃	Pre	efilled by lab		Metals	5	APP	250
nu-BC	1	PE	125mL	H₂SO₄	Pre	efilled by lab		NH ₃		APP	250
MW-BC	1	PE	250mL	None		None		TDS, CI,	NO ₃	APP	250
MW-BC	1	AG	250mL	H₂SO₄	Pre	efilled by lab		Total Phe	nols /	APP	250
	veriast, 70	F									
odor: NOn		10 - 1	01	0101		are recovering					No. Section 1
MATERIAL		AG = Amber	mineral trans	Clear Glass;	PE = Poly		P = Polyprop		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		other (Specify)
	The above	F	RFPP = Revers	ristaltic Pump; se Flow Peristal the informati		SM = Straw N	The second second	g Gravity Drain);	o = Other (S		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: LE	.D. SWMF (WA	Cs Facility ID:	89544)			ITE OCATION: 150	1 Omni W	Jav St.	Cloud, Osceola	County, Florida	34773	
	MW-90		00044)	SAMPLE	ID: MI		, • • • • • • • • • • • • • • • • • • •				n 20	13
	/- 100[(_		20070 100		GING DA	ΤΔ			X L		, ,
	R (inches): 2.0		TER (inches):	0.25 DEF	LL SCREEN	INTERVAL eet to 73, 5 fe	STA		R (feet): 15	90 OR BA	E PUMP T	/PE eristaltic
(only fill ou	it if applicable)		= (73.8	feet -		fee	et) X	WELL CAPACI 0.16 g	allons/foot =		gallons
	NT VOLUME Port if applicable)	URGE: 1 EQI	JIPMENT VO		gallons + (TU		ry X ns/foot X		BING LENGTH) 60 feet)			2.33 gallons
	JMP OR TUBIN WELL (feet):	69		MP OR TUBING WELL (feet):	69	PURGIN	G DAT: /4	10	PURGING ENDED AT:		OTAL VOL	UME pallons): 2.45
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	CONE (μS/cn		OXYGEN (mg/L)	TURBIDITY (NTUs)	COLO (describ	The state of the s
14130	1.4	1.4	0.07	16.10	5.52	25.95	364		0.74	3.2	Clea	-53.8
1435	0.35	1.75	0.07	16.10	5.47	25.94	340	$\overline{}$	0.66	3.3	C les	
1440	0.35	2.1	0.07	16.10	5.47	25.93	350		0-62	3.2	cky	-49.9
14145	0.35	2.415	0.07	16.10	5.41	25.90	348	3	0.56	3.2	clei	v -45.5
					-							
	PACITY (Gallon			1" = 0.04;	1.25" = 0.0	06; 2 " = 0.16 1/4 " = 0.0026		0.37; 6" = 0.0			= 1.47; 0.010;	12 " = 5.88 5/8 " = 0.016
	EQUIPMENT O	-	= Bailer;	BP = Bladder I	A second	ESP = Electric				eristaltic Pump;		ther (Specify)
					SAME	LING DA	TA					
SAMPLED Joe Terry	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)	SIGNATUR	RE(S): Que l	Tuy		SAMPLING INITIATED AT	1445	SAMPLIN ENDED A	G T: 1468
PUMP OR DEPTH IN	TUBING WELL (feet):	6	9	TUBING MATERIAL C	ODE: PE				FILTERED: Y n Equipment Typ	oe: N	FILTER S	
FIELD DE	CONTAMINATIO	ON: PUN	IP No	TUB	ING No	(replaced)			DUPLICATE O	r EQUIPMENT	BLANK:	Y
SAMPLE	PLE CONTAINE	MATERIAL	10.5 7.00	PRESERVAT		RESERVATION		NAL	INTENDE ANALYSIS AN	Committee of the second	IPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED		ED IN FIELD (n	100	pH	METHO		ODE	(mL per minute)
MW-CK	3	CG	40mL	HCL	P	refilled by lab	2.		8260	R	FPP	<100
mugc	3	CG	40mL	None		None			8011	R	FPP	<100
mwac	1	PE	500mL	HNO ₃	Pi	refilled by lab			Metals	,	APP	250
MW-90	1	PE	125mL	H₂SO₄	P	refilled by lab			NH ₃		APP	250
MW-GC	1	PE	250mL	None		None			TDS, CI, N	NO ₃	\PP	250
MWGC	1	AG	250mL	H₂SO ₄	Pi	refilled by lab			Total Pher	nols /	APP	250
	verust, 70%	7										
odor: NO		AC = A=====	Class: 05	- Class Of	PE - 5		DD . 5 :				T - 1	
SAMPLING	G EQUIPMENT		APP = After Pe	= Clear Glass; eristaltic Pump; se Flow Perista	B = Ba	iler; BP = I	Bladder Poly	ump;	ESP = Electri	c Submersible I	Pump;	ther (Specify)
IOTES: 4	The above							_	Gravity Drain);	O = Other (S	респу)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D. SWMF (WAC	e Eacility ID:	89544)		S	ITE OCATION: 1501	Omni Way, S	St. Cloud, Osceola	County, Flori	da, 34773	
			03544)	SAMPLE	ID: MU					Der Zoi	7
WELL NO.	MW-100	_		51,937(3-)		GING DAT	ΓΔ		3	ou con	
WELL VOL	(inches): 2.0 UME PURGE: if applicable)	TUBIN DIAME 1 WELL VO	TER (inches):0	AL WELL DEF	LL SCREEN	INTERVAL eet to 73.7 fee	STATIC et TO WAT	DEPTH ER (feet): /7.0 WELL CAPACI	98 OR 1	GE PUMP TY BAILER: pe	PE eristaltic
EQUIPMEN		RGE: 1 EQI	= (. = PUMP VO	feet - LUME + (TU	BING CAPACIT	feet) X Y X T ns/foot X	(0.16 g FUBING LENGTH) $\mathcal{B}^{\mathcal{O}}$ feet)			gallons 33 gallons
	MP OR TUBING	69		MP OR TUBIN	0	PURGING		PURGING	0.71	TOTAL VOL PURGED (g	UME
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLOF (describ	200
0740	1.25	1.25	0.05	17.93	4.80	24.03	156	1.15	2.7	cleur	2.9
0745	0,25	1.5	0.05	17.93	4175	24.05	154	0,93	2.5	cka	
0750	0.25	1.75	0.05	17.93	4.77	24.05	152	0.97	2.7	clea	8.9
0755	0.25	2	0.05	17.93	4.76	24,04	152	0.95	2.6	clea	11,2
SAMPLED Joe Terry / PUMP OR DEPTH IN		ACITY (Gal. ODES: E	/Ft.): 1/8" = 0.	SAMPLER(S TUBING MATERIAL (SAMI S) SIGNATUR CODE: PE	1/4" = 0.0026 ESP = Electric S PLING DA	Submersible P	0.004; 3/8" = 0	T: 0.755	SAMPLIN ENDED A	The state of the s
SAMPLE	# #	R SPECIFIC MATERIAL		PRESERVA		PRESERVATION TOTAL VOL	FINAL	ANALYSIS A	ND/OR E	AMPLING QUIPMENT	SAMPLE PUM FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADD	ED IN FIELD (n	nL) pH	METHO		CODE	(mL per minute
hw-100	3	CG	40mL	HCL	P	refilled by lab		8260	_	RFPP	<100
mw-10c	3	CG	40mL	None		None		8011		RFPP	<100
W-10C	1	PE	500mL	HNO ₃	_	refilled by lab	_	Metals	5	APP	200
nw-100	1	PE	125mL	H₂SO₄	P	refilled by lab		NH ₃	NO	APP	200
10C	1	PE AG	250mL 250mL	None H₂SO₄		None refilled by lab		TDS, CI,		APP	300
REMARKS: weather: p	cloudy, 6		ZOUNE	112004		, crimed by idb		, otal i ne		78.5	300
MATERIAL	5.16.17.11.11	AG = Amber	Glass; CG	Clear Glass;	PE = Po	lyethylene;	PP = Polyprop	ylene; S = Silico	one; T = Te	flon; $\mathbf{O} = \mathbf{C}$	ther (Specify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D. CLAMAT MAIA	0- 511-15	. 00544)			TE	1 Omni Mou St	t. Cloud, Osceola	County Ele	rida 34773	
	D. SWMF (WA		: 89544)	SAMPLE			Offini vvay, Si				0/3
WELL NO.	MW-11	_		OAWII EE	ID: MW	SING DAT	ГА		3	Der ?	015
WELL		TUBIN	ıc	WEI	L SCREEN		STATIC [DEPTH	PI	IRGE PUMP T	YPE
DIAMETER	(inches): 2.0	DIAME	ETER (inches)	:0.25 DEP	TH:63.4 fe	eet to 73.4 fe	et TO WATE	ER (feet): /5.	23 OF		peristaltic
WELL VOL	UME PURGE: if applicable)	1 WELL VO	DLUME = (TO	TAL WELL DEP	TH - STA	TIC DEPTH TO	O WATER) X feet) X	WELL CAPACI	TY allons/foot	_	gallons
	IT VOLUME PU	JRGE: 1 EQ		L. = PUMP VOL	UME + (TUI		Y X TI	UBING LENGTH)	+ FLOW C	ELL VOLUME	
INITIAL DU	MP OR TUBINO	0	FINAL DI	= 0.0 g	allons + (C	PURGINO		PURGING	+ 0.12	TOTAL VO	, ,
	WELL (feet):	68		WELL (feet):	68	INITIATE	DAT: 0905	ENDED AT:	0940		gallons): 3.15
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBID (NTUs		
0930	2.75	7.75	0.09	15.35	5,13	25.94	114	0.64	1.3	cle	cr 49.1
0935	0.45	2.7	0.09	15.35	5.16	25.93	114	0.62	1.6	cles	4 4
0940	0.45	3.15	0.09	-	5.13	25.91	115	0.6	1.4		
			-								
				1 4 1 1 1							
WELL CAR	PACITY (Gallons	o Bor Footh:	0.75" - 0.00	1" = 0.04:	1.25" = 0.0	6; 2 " = 0.16	3" = 0.37:	4 " = 0.65;	5" = 1.02;	6" = 1.47;	12" = 5.88
	SIDE DIA. CAF				= 0.0014;	1/4" = 0.0026	5; 5/16" = 0.	.004; 3/8" = 0		2" = 0.010;	5/8" = 0.016
PURGING	EQUIPMENT C	ODES:	B = Bailer;	BP = Bladder P			Submersible Pu	mp; PP = Pe	eristaltic Pur	mp; O = 0	Other (Specify)
	annis augus a				SAME	LING DA	IA				
Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S)	SIGNATUR	E(S): Que	Ces	SAMPLING INITIATED AT	: 0940	SAMPLII	NG AT: 0954
PUMP OR		68		TUBING				-FILTERED: Y	(N)		SIZE: µm
	WELL (feet): ONTAMINATION		MP No	MATERIAL CO		(roaloood)	Filtrati	on Equipment Ty	1	ENT DI ANIK	v 6
	PLE CONTAINE	4 TA R 1 TO 1		TUBI	11 A B B B F F F F F F F F F F F F F F F F	(replaced)		DUPLICATE		VY-V-703 (*)	Y N
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT	VE	RESERVATION TOTAL VOL ED IN FIELD (m	FINAL	ANALYSIS AI METHO	ND/OR E	SAMPLING EQUIPMENT CODE	FLOW RATE (mL per minute)
11-MN	3	CG	40mL	HCL		efilled by lab		8260		RFPP	<100
MW-11C	3	CG	40mL	None		None		8011	1	RFPP	<100
hw-11C	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals	3	APP	350
MW-11C	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	750
MW-11C	1	PE	250mL	None		None		TDS, CI, I	NO ₃	APP	350
nw-11c	1	AG	250mL	H ₂ SO ₄	Pr	efilled by lab		Total Phe	nols	APP	350
	lew. 75%										
MATERIAL		AG = Amber	Glass CG	= Clear Glass;	PF = Pol	vethylene; F	P = Polypropyl	lene; S = Silico	ne T-T	eflon: O =	Othor (Specify)
	EQUIPMENT (CODES:	APP = After P	eristaltic Pump;	B = Ba	iler; BP = E	Bladder Pump;	ESP = Electr	ic Submersi	ble Pump;	Other (Specify)
	The above of		RPP - Keve	se Flow Peristal	uc Pump;	SIM = Straw N	vietnoa (Tubing	Gravity Drain);	U = Othe	er (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.F.	D. SWMF (WA	Cs Facility ID	89544)		SI		Omni Way. S	t. Cloud, Osceola	County, Florid	da, 34773	
	MW-12			SAMPLE	ID: Mu					Dec 20.	17
1/00/161	1.100 12					ING DAT	Δ		2 (sa w	
WELL VOL		TUBIN DIAME 1 WELL VO	TER (inches):	0.25 DEF	LL SCREEN	INTERVAL et to 73.6 fee	STATIC I	DEPTH ER (feet): /6, S WELL CAPACI	9 ORE	GE PUMP T	YPE eristaltic
EQUIPMEN	if applicable) IT VOLUME PI if applicable)	URGE: 1 EQ	= (UIPMENT VOL		feet - UME + (TUB		feet) X Y X T	0.16 g UBING LENGTH)		L VOLUME	gallons
	MP OR TUBIN	G 69		MP OR TUBING		PURCING		PLIRGING	1120	TOTAL VOI	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	Y COLO (describ	
1110	0.15	0.75	0.05	16.68	4.67	25.89	58	1.12	2.5	clea	55.5
1115	0.75		0.05	16.68	4.68	25.94	57	1.1	2.6	cleu	55.5
1120	0.25	1.25	0.05	16.68	4,68	25.91	58	1.09	2.2	clea	- 55.8
TUBING IN	PACITY (Gallon SIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0	1" = 0.04; 0006; 3/16' BP = Bladder F	Pump; E	6; 2" = 0.16; 1/4" = 0.0026 SP = Electric S	submersible Pu	.004; 3/8" = 0		6" = 1.47; = 0.010; o; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
Joe Terry /	C. A. Lind Marin	FFILIATION:		SAMPLER(S)	SIGNATURE	E(S):	ten	SAMPLING INITIATED A	1120	SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet):	60	7	TUBING MATERIAL C	ODE: PE			O-FILTERED: Y ion Equipment Ty		FILTER S	IZE: μm
	ONTAMINATIO	ON: PUI	MP No	TUB	ING No	(replaced)			or EQUIPMEN	IT BLANK:	YW
SAME	LE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	RESERVATION		INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	0.5	OTAL VOL D IN FIELD (m	FINAL L) pH	ANALYSIS AI METHO	The second second	CODE	(mL per minute)
MW.DC	3	CG	40mL	HCL	Pre	efilled by lab		8260		RFPP	<100
MW-12C	3	CG	40mL	None		None		8011		RFPP	<100
nw-126	1	PE	500mL	HNO ₃	Pre	efilled by lab		Metals	3	APP	200
mw-12c	1	PE	125mL	H₂SO ₄	Pre	efilled by lab		NH ₃		APP	200
nuisc	11	PE	250mL	None		None		TDS, CI, I		APP	200
REMARKS:	1	AG	250mL	H₂SO₄	Pre	efilled by lab		Total Phe	nols	APP	200
weather: A	.sumy,75	AG = Amber	Glass: CG =	- Clear Glass;	PE = Poly	ethylene: P	P = Polypropy	rlene; S = Sílico	one: T = Tef	lon: Q = C	Other (Specify)
SAMPLING	EQUIPMENT	CODES:	APP = After Pe RFPP = Revers	eristaltic Pump; se Flow Perista	B = Bai Itic Pump;	ler; BP = B SM = Straw M	ladder Pump; lethod (Tubing	ESP = Electr Gravity Drain);	ic Submersible O = Other	e Pump;	(opcony)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.I	D. SWMF (WA	Cs Facility ID): 89544)			TE CATION: 1501	Omni Way, St	. Cloud, Osceola	County, Flor	rida, 34773	
	MW-1			SAMPLE	ID: MI	N-13C			DATE: 7	Der 20	17
	10100-1	3C				SING DAT	Α			Dec -	
WELL DIAMETER	(inches): 2.0	TUBIN	ETER (inches):	0.25 DEP	L SCREEN TH: 63 fe	INTERVAL et to 73 fee	STATIC D	ER (feet): /6.0 WELL CAPAC	20 OR	RGE PUMP T BAILER: p	YPE peristaltic
only fill out	if applicable)		= (= PUMP VOL	feet – UME + (TUE	BING CAPACIT	feet) X Y X TI	0.16 g JBING LENGTH	gallons/foot) + FLOW CE	LL VOLUME	gallons
					allons + (0		s/foot X	80 feet) + 0.12		0.33gallons
DEPTH IN V	MP OR TUBINO VELL (feet):	68		MP OR TUBING WELL (feet):	68	PURGING	AT: 1230	PURGING ENDED AT:	1305	PURGED (gallons): 2.8
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)		1 T 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
1255	2	2	0.08	16.37	4.48	26.20	79	0.85	1.8	clea	r 84.2
1300	0.4	2.4	0.08	16.37	4.40	26.24	78	0.76	2.2	cleu	
1305	0,4	2.0	0.08	16.37	4,44	26.21	78	0.69	2.41	clev	83.
UBING IN		ACITY (Gal		1" = 0.04; .0006; 3/16" BP = Bladder P	= 0.0014; ump; E		ubmersible Pu			6" = 1.47; " = 0.010; np; O = C	12" = 5.88 5/8" = 0.016 other (Specify)
SAMPLED F	BY (PRINT) / A	EEII IATION		23.4.2.000		01	TA .	SAMPLING		SAMPLIN	ıc
Joe Terry / F	PWSFL	THEATION		SAMPLER(S)	SIGNATUR	E(S): (pe	de	INITIATED A	T: 1310	ENDED A	
PUMP OR T	UBING VELL (feet):	68		TUBING MATERIAL CO	DE PE			-FILTERED: Y		FILTER S	IZE: μm
	ONTAMINATIO		MP No	TUBI	E 81	(replaced)	Tillian	DUPLICATE		NT BLANK	YO
SAMP	LE CONTAINE	R SPECIFIC	ATION	-	district to the	RESERVATION		INTEND		SAMPLING	SAMPLE PUM
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL D IN FIELD (m	FINAL L) pH	ANALYSIS A METHO	ND/OR E	QUIPMENT CODE	FLOW RATE (mL per minute
NW 13C	3	CG	40mL	HCL	Pr	efilled by lab		8260		RFPP	<100
1W-13C	3	CG	40mL	None		None		8011		RFPP	<100
W-13C	1	PE	500mL	HNO ₃	Pr	efilled by lab		Metals	S	APP	300
1W-13C	1	PE	125mL	H₂SO₄	Pr	efilled by lab		NH ₃		APP	300
W-130	1	PE	250mL	None		None		TDS, CI,		APP	300
W-13C	1	AG	250mL	H₂SO₄	Pr	efilled by lab		Total Phe	nols	APP	300
REMARKS: weather: γς odor: Λοιο	e sunny, 1	BOF									
MATERIAL	E A VALUE OF	AG = Ambe	Glass; CG	= Clear Glass;	PE = Poly	vethylene; P	P = Polypropyl	ene; S = Silico	one; T = Te	eflon; O = (Other (Specify)
0.500	EQUIPMENT (eristaltic Pump; se Flow Peristal	B = Bai tic Pump;		ladder Pump; lethod (Tubing	ESP = Electric Gravity Drain);		ole Pump; r (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D SIMME MAIN	Co Escility ID	90544\			TE CATION: 150	11 Omni Way S	St. Cloud, Osceola	County E	lorida 34773	
A 1 / / / /	D. SWMF (WA		. 69544)	SAMPLE			of Offini vvay, S	St. Cloud, Osceola	10 July 1		7/1/2
WEEE NO.	MW-16	KC		Oravii EE		-16RC GING DA	ΤΛ.		DATE.	4 Der	wis
WELL		TUBIN	G	WEI	LL SCREEN		STATIC	DEPTH	P	URGE PUMP 1	YPE
	R (inches): 2.0		TER (inches):	0.375 DEF	TH: 65 fe	eet to 75 fe		TER (feet): 16-		R BAILER: elec	ctric submersible
	LUME PURGE: t if applicable)	1 WELL VO	LUME = (TO			TIC DEPTH T	O WATER)	WELL CAPAC	ITY		
EOLIIDME	NT VOLUME D	UPGE: 1 EO	= (75-33 L. = PUMP VOL		RING CAPACIT		X 0.16 gall	lons/foot =		gallons
	t if applicable)	ONGE. TEQ	OIF WIE INT VO								
INITIAL DI	JMP OR TUBIN	0	FINAL DI	= 0.0 g	allons + (0.	9006 gallons		95 feet)	+ 0.12	gallons = (0.6 gallons
	WELL (feet):	10		WELL (feet):	70	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D AT: 0703	ENDED AT:	0735		(gallons): 12
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIE (NTU	177.7	
0720	6	6	0.4	21.47	5.38	24.06	166	1.49	20.	1 elec	w 56.4
0725	2	8	0.4	21.41	5.36	24.01	165	1.03	13	c le	
0730	2	10	0,4	21.47	5.33	241.06	164	0.76	10.	6 c/e	
0735	2	12	0.4	21,47	5.32	24.06	164	0.69	10.	o cle	w 65.7
WELL CAL	PACITY (Gallon	s Per Foot)	0.75" = 0.02	1" = 0.04;	1.25" = 0.0	6; 2 " = 0.16	3" = 0.37	4" = 0.65;	5" = 1.02;	6 " = 1.47;	12" = 5.88
	ISIDE DIA. CAI					1/4" = 0.0026				/2" = 0.010;	5/8" = 0.016
PURGING	EQUIPMENT C	CODES: E	B = Bailer;	BP = Bladder F			Submersible P	ump; PP = P	eristaltic Pu	ump; O = 0	Other (Specify)
SAMPLED	BY (PRINT) / A	EEII IATION:		SAMPLER(S)		LING DA	TA				
Joe Terry /		AFFILIATION.		SAMPLER(S)	Que	(5).		SAMPLING INITIATED A	T: 0735	SAMPLI	NG AT: 0750
PUMP OR		70		TUBING	fre	4		D-FILTERED: Y	(N)		SIZE: µm
	WELL (feet):		V	MATERIAL CO	F 7. 2.3 A - 17.	Contract II	Filtrat	tion Equipment Ty			
11/40	CONTAMINATIO	The second second	MP: Yes		UBING: No	A CONTRACTOR		10.33	2 2 2 3 1 1	IENT BLANK:	YN
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI	VE 1	RESERVATION FOTAL VOL ED IN FIELD (n	FINAL	ANALYSIS A METHO	ND/OR	SAMPLING EQUIPMENT CODE	FLOW RATE (mL per minute)
4W-16RC	3	CG	40mL	HCL		efilled by lab	-	8260	-	ESP	<100
nn-1680	3	CG	40mL	None		None		8011	-	ESP	<100
MW-16RC	1	PE	500mL	HNO ₃	Pre	efilled by lab		Metals	s	ESP	400
nw-ILRE	1	PE	125mL	H ₂ SO ₄	Pre	efilled by lab		NH ₃		ESP	400
mw-16RC	1	PE	250mL	None		None		TDS, CI,	NO ₃	ESP	400
MW-16RE	1	AG	250mL	H ₂ SO ₄	Pre	efilled by lab	4	Total Phe	nols	ESP	400
REMARKS weather: C	10mly, 630F										
odor: nun				el turbi	dity:						
MATERIAL		The second		Clear Glass;	PE = Poly	15 TO		ylene; S = Silico			Other (Specify)
	EQUIPMENT	F	RFPP = Rever	eristaltic Pump; se Flow Peristal		SM = Straw M	Bladder Pump; Method (Tubing	g Gravity Drain);		sible Pump; er (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: LE	D. SWMF (WA	Cs Facility ID:	89544)			ITE OCATION: 150	1 Omni Way	St. Cloud, O	sceola County	y, Florida	a, 34773	
	MW-1		00044)	SAMPLI		1-17C			DATE:		Dec 20	7/7
	, , , ,	-				GING DA	ТΔ					13
WELL VOL	(inches): 2.0 UME PURGE: if applicable)	TUBING DIAME 1 WELL VO	TER (inches):	0.375 DE	PTH:5% Br	INTERVAL eet to 66.8 fe	STATI		9.46 APACITY		GE PUMP TY AILER: elect	PE ric submersible
EQUIPMEN	IT VOLUME PL if applicable)	JRGE: 1 EQ	= (JIPMENT VOL				TY X	X 0.16 TUBING LE	gallons/foot NGTH) + FLO feet) + 0.7	W CELI		gallons Gallons
	MP OR TUBINO	62		MP OR TUBIN	gallons + (0)	PURGIN	G D AT: 07	PURC			TOTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOI OXYO (mg/	EN TUF	RBIDITY		R ORP
0840	47	47	0.47	10.85	4.80	23.68	96	0.6	5 -	7	clear	79.9
0845	2.4	49.4	-	10.85	4.81		96	0.6		1,2	clen	
0850	2.4	51.8	0.47	10.85	4.81	23.69	96	0.6	,2	7	Cleu	
17												
TUBING IN PURGING	PACITY (Gallon: SIDE DIA. CAF	PACITY (Gal./		BP = Bladder	Pump; E	1/4" = 0.002 ESP = Electric PLING DA	6; 5/16" = Submersible	= 0.004; 3	65; 5" = 1. 6/8" = 0.006; PP = Peristalti	1/2"	= 0.010;	12" = 5.88 5/8" = 0.016 her (Specify)
Joe Terry /	BY (PRINT) / A PWSFL	FFILIATION:		SAMPLER(S	S) SIGNATUR	Tuy		SAMP	LING TED AT: 08	50	SAMPLIN ENDED A	G T: 0905
PUMP OR	TUBING WELL (feet):	62		TUBING MATERIAL (CODE: PE			LD-FILTERE ration Equipm)	FILTER SI	ZE: μm
	ONTAMINATIO	CA TO S	MP: Yes		TUBING: No	(replaced)	1.7.10		CATE or EQU	IPMEN'	T BLANK:	Y (N)
SAME	LE CONTAINE	R SPECIFICA	ATION		1 - 1 - 1 - 1	RESERVATIO	N		TENDED		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED		TOTAL VOL ED IN FIELD (r	nL) FINA	L N	YSIS AND/OR METHOD		CODE	(mL per minute
uw-17C	3	CG	40mL	HCL		refilled by lab			8260		ESP	<100
	3	CG	40mL	None		None			8011		ESP	<100
	1	PE	500mL	HNO ₃	Pi	refilled by lab			Metals		ESP	450
	1	PE	125mL	H ₂ SO ₄	Pi	refilled by lab			NH ₃		ESP	450
V	1	PE	250mL	None		None		TD	S, CI, NO ₃		ESP	450
NW-170	1	AG	250mL	H ₂ SO ₄	Pi	refilled by lab		Tota	al Phenois		ESP	450
material	lew, 69°F	AG = Amber	7	al turbid	1	yethylene;	PP = Polypro	opylene; S	= Silicone;	T = Teflo	on; O = O	ther (Specify)
	EQUIPMENT	F	APP = After Pe	se Flow Perist	altic Pump;			ing Gravity D	Electric Subrrain); O =	mersible Other (

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	WMF (WAC	s Facility ID:	89544)			CATION: 1501	Omni Way, St	Cloud, Osceola	County, Flori	ida, 34773	
WELL NO: /V	lw-18	C		SAMPLE ID	Mh	-18C			DATE: 5	Decz	013
					PURG	ING DAT	A				
WELL VOLUMI (only fill out if ap	PURGE:	TUBING DIAME 1 WELL VO	TER (inches):	0.375 DEPTH	SCREEN II 1:56. Tee 1 - STAT	et to 66.5 feet	STATIC D t TO WATE WATER) X feet) X	WELL CAPACI	3/ OR TY	RGE PUMP TY BAILER: elect	ric submersible
EQUIPMENT V (only fill out if ap		RGE: 1 EQU	JIPMENT VOI	L. = PUMP VOLUM	ME + (TUBI ons + (0.0		X TU	JBING LENGTH) feet) +			gallons Gallons
INITIAL PUMP DEPTH IN WEL		62		MP OR TUBING WELL (feet):	62	PURGING	AT: 0935	PURGING		TOTAL VOL PURGED (9	UME
TIME F	OLUME URGED gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLOI (describ	
1205	105	105	0.7	9.07	-1.45	23.84	117	0.45	12.7	Clea	76.3
	3.5	108.5		9-07	4.45	23.83	118	0.4	12.7	Cles	2 76.8
	3.5	112	0.7		41.45	23.82	117	0.35	12.		-
WELL CAPACI TUBING INSIDI PURGING EQU SAMPLED BY (Joe Terry / PWS	E DÍA. CAPA IPMENT CO PRINT) / AFI SFL	CITY (Gal./		.0006; 3/16" = BP = Bladder Pur SAMPLER(S) SI TUBING	O.0014; np; ES SAMPI GNATURE	; 2" = 0.16; 1/4" = 0.0026; SP = Electric Su LING DAT (S):	Α	004; 3/8" = 0	.006; 1/2" eristaltic Pum	SAMPLINENDED A	
DEPTH IN WEL			- 127	MATERIAL COD	TA TA		Filtratio	on Equipment Typ	- THE CASE A PROPERTY	ELECTRIC VALUE	-
FIELD DECON		V. N. Sh. vi.	IP: Yes	-	BING: No	- 200 /nm 1111		DUPLICATE O	or EQUIPMEN	NT BLANK:	Y (N)
SAMPLE	# ITAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	T	ESERVATION OTAL VOL O IN FIELD (mL)	FINAL pH	ANALYSIS AN METHO	ND/OR E	AMPLING QUIPMENT CODE	FLOW RATE (mL per minute
10 0000	3	CG	40mL	HCL	100	filled by lab		8260		ESP	<100
4	0	CG	40mL	None		None		8011		ESP	<100
4	3		500mL	HNO ₃	Pre	filled by lab		Metals	7 - 7	ESP	425
4	1	PE	COULTE		-	filled by lab		NH ₃		ESP	425
4		PE PE	125mL	H ₂ SO ₄	Pre	illion by inb					
4	1			H₂SO₄ None	Pre	None	1	TDS, CI, N	NO ₃	ESP	
MW-18C	1	PE	125mL					TDS, CI, N		ESP ESP	425

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.	D. SWMF (WA	Cs Facility ID:	89544)			SITE LOCATION: 150	1 Omni Way, S	t. Cloud, Osceola	County, Flo	orida, 34773	
WELL NO:		100		SAMPLE	ID: MU	U-19C			DATE:	4 Dec	2013
					PUR	GING DAT	ΓΑ	•			
WELL	(inches): 2.0	TUBIN	G TER (inches):			N INTERVAL feet to 6 C fe	et TO WAT	DEPTH ER (feet): 7.	25 PL	JRGE PUMP T R BAILER: elec	YPE ctric submersible
	UME PURGE: if applicable)	1 WELL VO	= (TOT	AL WELL DEP	TH - ST	ATIC DEPTH TO	O WATER) X	WELL CAPAC	ITY ons/foot =		gallons
	NT VOLUME PU	IRGE: 1 EQ		= PUMP VOL		JBING CAPACIT	YXT	UBING LENGTH) + FLOW C	ELL VOLUME	
				= 0.0 g	allons + (75 feet)	0.12	1	0. Cgallons
	MP OR TUBINO WELL (feet):	61		MP OR TUBING WELL (feet):	61	PURGING	DAT: 144		1606	PURGED (LUME gallons): 32
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBID (NTUs		
1550	28	28	0.4	8.97	5.05	25,26	114	1.09	61.2	clea	69.7
1535	2	30	0.4	8.97	5.03	25.17	114	0.96	61.6		
1600	2	32	0,4	8.97	4,99		113	0.76	61.	0 -	
-											
	15										
TUBING IN	PACITY (Gallons ISIDE DIA. CAP EQUIPMENT C	ACITY (Gal.	/Ft.): 1/8" = 0.			06; 2" = 0.16 1/4" = 0.0026 ESP = Electric S	5, 5/16" = 0	.004; 3/8" = 0	5" = 1.02; 0.006; 1/ eristaltic Pui	6" = 1.47; 2" = 0.010; mp; O = 0	12" = 5.88 5/8" = 0.016 Other (Specify)
						PLING DA	TA				
SAMPLED Joe Terry /	BY (PRINT) / AI PWSFL	FFILIATION:		SAMPLER(S)	SIGNATUL	RE(S):		SAMPLING INITIATED A	T:/600	SAMPLII ENDED	NG AT: 1609
PUMP OR T	TUBING WELL (feet):	61		TUBING MATERIAL CO	ODE: PE)-FILTERED: Y	N		SIZE: μm
FIELD DEC	OITAMINATIO	N: PUN	MP: Yes	1	UBING: N	lo (replaced)		DUPLICATE	or EQUIPM	ENT BLANK:	Y CD
	PLE CONTAINE		ATION			PRESERVATION		INTEND ANALYSIS A		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	ADD	TOTAL VOL ED IN FIELD (m	FINAL pH	METHO		CODE	(mL per minute)
uw-19K	3	CG	40mL	HCL	P	refilled by lab		8260		ESP	<100
	3	CG	40mL	None		None		8011		ESP	<100
	1	PE	500mL	HNO ₃	P	refilled by lab		Metal	S	ESP	4/50
	1	PE	125mL	H ₂ SO ₄	P	refilled by lab		NH ₃		ESP	450
1	1	PE	250mL	None		None		TDS, CI,	NO ₃	ESP	450
MW-190	1	AG	250mL	H ₂ SO ₄	P	refilled by lab		Total Phe	nols	ESP	450
REMARKS	ich ody,	80°1=			1 4						
odor: nun					rustid	1	5 NTU	t			
MATERIAL		AG = Amber	A. C.	Clear Glass;			PP = Polypropy	World The Print	one; T = T		Other (Specify)
SAMPLING	EQUIPMENT			ristaltic Pump; se Flow Peristal	B = B		Bladder Pump; Method (Tubing	ESP = Electric Gravity Drain);		ble Pump; er (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	D. GVVIVII TVVA	Cs Facility ID:	89544)		LO	Ortificiti. 1001	Offili vvay, S	St. Cloud, Osceola	County, Floric	ia, 04770	
WELL NO:	MW-2	10		SAMPLE ID	: MU	U-21C			DATE: L	Der	2013
					PURG	ING DAT	Α				
VELL VOL	R (inches): 2.0 LUME PURGE: t if applicable)		TER (inches):0	0.375 DEPTH AL WELL DEPTH	1: 52fe	NTERVAL et to 62 fee TIC DEPTH TO	WATER) X	ER (feet): 7.0	7 OR E	GE PUMP TY AILER: elect	PE ric submersible gallons
	NT VOLUME PU	JRGE: 1 EQU	JIPMENT VOL	. = PUMP VOLUM			YXT	UBING LENGTH	+ FLOW CEL		.5 gallons
	IMP OR TUBING	G 57		MP OR TUBING	57	PURGING		PURGING		TOTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH standard units)	TEMP. (°C)	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLOF (describ	
1312	2.7	2.7	0.1						279	Cloud	ly
1318	increa	٨	or rule +	10 0.75	GOM	Cun	ul-pur	re @ 1316	3 - 39	ullong	/
1340	16.5	19.5	0.75		5.21	24.16	117	0.51	90	Slig Syl	2 68.8
1350	7.5	27	0.75		41.99	24.10	116	0.34	31	clear	
1355	3.75	30.75	0.75		41.97	24.08	115	0.33	23	clea	1 -9
1400	3.75	34.5	0.75		41.98	24.12	117	0.32	16.9	cle	1000
UBING IN	PACITY (Gallon:	PACITY (Gal./	Ft.): 1/8" = 0.0	0006; 3/16" =	.25" = 0.06 0.0014;	1/4" = 0.0026	5/16" = 0	0.004; 3/8" = 0	.006; 1/2"	= 0.010;	12" = 5.88 5/8" = 0.016
UBING IN		PACITY (Gal./	Ft.): 1/8" = 0.0	0006; 3/16" = BP = Bladder Pur	0.0014; mp; E	1/4" = 0.0026 SP = Electric S	5/16" = 0 Submersible Po	0.004; 3/8" = 0		= 0.010;	
UBING IN PURGING I	EQUIPMENT C BY (PRINT) / A	PACITY (Gal./i	Ft.): 1/8" = 0.0	0006; 3/16" = BP = Bladder Pur	0.0014; np; E: SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0 Submersible Po	0.004; 3/8" = 0	eristaltic Pump	= 0.010;	5/8" = 0.016 ther (Specify)
CAMPLED ON THE PUMP OR THE	ISIDE DÍA. CAF EQUIPMENT C BY (PRINT) / A PWSFL	PACITY (Gal./i	Ft.): 1/8" = 0.0	0006; 3/16" = BP = Bladder Pur	O.0014; mp; E: SAMP GNATURE	1/4" = 0.0026 SP = Electric S LING DA	Submersible Po	0.004; 3/8" = 0 ump; PP = Po	0.006; 1/2" eristaltic Pump	= 0.010; ; O = Ot SAMPLING ENDED A	5/8" = 0.016 ther (Specify)
CUBING IN PURGING I SAMPLED oe Terry / PUMP OR TOPPITH IN V	BY (PRINT) / A PWSFL TUBING	PACITY (Gal./I	Ft.): 1/8" = 0.0	3/16" = BP = Bladder Pur SAMPLER(S) SI TUBING MATERIAL COD	O.0014; mp; E: SAMP GNATURE	1/4" = 0.0026 SP = Electric S LING DA	Submersible Po	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty	0.006; 1/2" eristaltic Pump	= 0.010; ; O = Ot SAMPLINI ENDED A	5/8" = 0.016 ther (Specify) G T: /4/0
SAMPLED DEC SAMPLED SAMPLED DEC	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./III CODES: B FFILIATION: 57 DN: PUM	Ft.): 1/8" = 0.1 = Bailer; I	3/16" = BP = Bladder Pur SAMPLER(S) SI TUBING MATERIAL COD	0.0014; mp; E: SAMP GNATURE DE: PE BING: NO	1/4" = 0.0026 SP = Electric S LING DA	submersible Po	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A	2.006; 1/2" eristaltic Pump T: / 4/0 0 N pe: or EQUIPMEN ED SA ND/OR EQ	SAMPLING UIPMENT	SAMPLE PUM FLOW RATE
CAMPLED OF THE PROPERTY OF T	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./II CODES: B FFILIATION: 57 DN: PUM ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0.1 = Bailer; I IP: Yes ATION VOLUME	SAMPLER(S) SI TUBING MATERIAL COD TUI SA PRESERVATIVE USED	O.0014; mp; E: SAMP GNATURE DE: PE BING: NO AMPLE PR ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): (replaced) ESERVATION OTAL VOL D IN FIELD (m	Submersible Port FIELD Filtrat	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE INTENDE ANALYSIS AI METHO	2.006; 1/2" eristaltic Pump T: / 4/0 / 0 pe: or EQUIPMEN ED SA ND/OR EQ	SAMPLING UIPMENT CODE	SAMPLE PUM FLOW RATE (mL per minut
SAMPLED DEC SAMPLED SAMPLED DEC	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	PACITY (Gal./III CODES: B FFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0.1 = Bailer; I IP: Yes ATION VOLUME 40mL	SAMPLER(S) SI TUBING MATERIAL COD TUI SA PRESERVATIVE USED HCL	O.0014; mp; E: SAMP GNATURE DE: PE BING: NO AMPLE PR ADDE	1/4" = 0.0026 SP = Electric S LING DA (replaced) ESERVATION OTAL VOL D IN FIELD (m. efilled by lab	Submersible Port FIELD Filtrat	SAMPLING INITIATED A' D-FILTERED: Y ION Equipment Ty DUPLICATE INTENDE ANALYSIS A METHO 8260	2.006; 1/2" eristaltic Pump T: / 4/0 / 0 pe: or EQUIPMEN ED SA ND/OR EQ	SAMPLINENDED A FILTER SI T BLANK: MPLING UIPMENT CODE ESP	SAMPLE PUN FLOW RATE (mL per minut)
SAMPLED DEC SAMPLED SAMPLED DEC	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3	PACITY (Gal./III RODES: B FFILIATION: DN: PUM RR SPECIFICA MATERIAL CODE CG CG	Territor Volume 40mL 40mL	SAMPLER(S) SI TUBING MATERIAL COD TUI SA PRESERVATIVE USED HCL None	O.0014; mp; E: SAMP GNATURE DE: PE BING: No AMPLE PR ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): (replaced) ESERVATION OTAL VOL D IN FIELD (m efilled by lab None	Submersible Port FIELD Filtrat	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE INTENDE ANALYSIS AI METHO	2.006; 1/2" eristaltic Pump T: / 4/0 / 0 pe: or EQUIPMEN ED SA ND/OR EQ	SAMPLING UIPMENT CODE	SAMPLE PUN FLOW RATE (mL per minut <100 <100
SAMPLED DEC	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1	PACITY (Gal./II CODES: B FFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG CG PE	TIP: Yes ATION VOLUME 40mL 40mL 500mL	SAMPLER(S) SI TUBING MATERIAL COD TUI SA PRESERVATIVE USED HCL None HNO ₃	O.0014; mp; E: SAMP GNATURE DE: PE BING: No AMPLE PR ADDE Pre	(replaced) (replaced) (TOTAL VOL D IN FIELD (mefilled by lab) (replaced by lab)	Submersible Port FIELD Filtrat	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals	2.006; 1/2" eristaltic Pump T: / 4/0 / N pe: or EQUIPMEN ED SA ND/OR EQ	SAMPLING HENDED A FILTER SI T BLANK: MPLING UIPMENT CODE ESP ESP ESP	5/8" = 0.016 ther (Specify) G T: / // O ZE: µm Y SAMPLE PUN FLOW RATE (mL per minut) <100 <100
SAMPLED DEC SAMPLED SAMPLED DEC	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1	PACITY (Gal./III DODES: B FFILIATION: 5 DN: PUM ER SPECIFICA MATERIAL CODE CG CG PE PE	TION VOLUME 40mL 500mL 125mL	SAMPLER(S) SI TUBING MATERIAL COD TUI SA PRESERVATIVE USED HCL None HNO ₃ H ₂ SO ₄	O.0014; mp; E: SAMP GNATURE DE: PE BING: No AMPLE PR ADDE Pre	1/4" = 0.0026 SP = Electric S LING DA (replaced) ESERVATION OTAL VOL D IN FIELD (m efilled by lab None efilled by lab	Submersible Port FIELD Filtrat	SAMPLING INITIATED A' D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH ₃	eristaltic Pump T: / 4/0 0 N pe: or EQUIPMEN ED SA ND/OR D	SAMPLING UIPMENT CODE ESP	5/8" = 0.016 ther (Specify) G T: / 4/0 ZE: µm Y SAMPLE PUN FLOW RATE (mL per minut <100 <100 380
SAMPLED DEC	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1 1 1	PACITY (Gal./II CODES: B FFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG CG PE	TIP: Yes TION VOLUME 40mL 40mL 500mL 125mL 250mL	SAMPLER(S) SI TUBING MATERIAL COD TUI SA PRESERVATIVE USED HCL None HNO ₃ H ₂ SO ₄ None	O.0014; mp; E: SAMP GNATURE DE: PE BING: No AMPLE PR ADDE Pre	(replaced) (replaced) (TOTAL VOL D IN FIELD (mefilled by lab) (replaced by lab)	Submersible Port FIELD Filtrat	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals	eristaltic Pump T: / 4/0 0 N pe: or EQUIPMEN ED SA ND/OR D	SAMPLING HENDED A FILTER SI T BLANK: MPLING UIPMENT CODE ESP ESP ESP	5/8" = 0.016 ther (Specify) G T: / 4/0 ZE: µm Y SAMPLE PUM FLOW RATE (mL per minut <100 <100 380 380 380
AMPLED DEC SAMPLE D CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1	PACITY (Gal./III CODES: B FFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG CG PE PE PE AG	TION VOLUME 40mL 500mL 125mL	SAMPLER(S) SI TUBING MATERIAL COD TUI SA PRESERVATIVE USED HCL None HNO ₃ H ₂ SO ₄	O.0014; mp; E: SAMP GNATURE DE: PE BING: No AMPLE PR Pre	1/4" = 0.0026 SP = Electric S LING DA (replaced) ESERVATION OTAL VOL D IN FIELD (m efilled by lab None efilled by lab	Submersible Port FIELD Filtrat	SAMPLING INITIATED A' D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH ₃	2.006; 1/2" eristaltic Pump T: / L/O O N pe: or EQUIPMEN ED ND/OR D S NO ₃	SAMPLINENDED A FILTER SI T BLANK: MPLING UIPMENT CODE ESP ESP ESP	5/8" = 0.016 ther (Specify) G T: / 4/0 ZE: µm Y SAMPLE PUN FLOW RATI (mL per minut <100 <100 380 380
SAMPLED DEC SAMPLE D CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1 1 1 1 1 1 1	PACITY (Gal./III CODES: B FFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG CG PE PE PE AG	TIP: Yes ATION VOLUME 40mL 40mL 500mL 125mL 250mL	SAMPLER(S) SI TUBING MATERIAL COD TUI SA PRESERVATIVE USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	O.0014; mp; E: SAMP GNATURE DE: PE BING: No AMPLE PR Pre Pre	(replaced) (replaced) (replaced) (Total VOL D IN FIELD (mefilled by label None efilled b	FIELD FINAL DH	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, I	pe: or EQUIPMEN ED SA ND/OR EQ NO3 nols	SAMPLINI ENDED A FILTER SI T BLANK: MPLING UIPMENT CODE ESP ESP ESP ESP ESP ESP	5/8" = 0.016 ther (Specify) G T: / 4/0 ZE: µm Y SAMPLE PUN FLOW RAT (mL per minu <100 <100 380 380 380

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: J.E.D. SWMF	MACs Facility IF	· 80544\		SIT	7	Omni Way S	t. Cloud, Osceola	County Flori	ida 34773	
WELL NO: MW		7. 09544)	SAMPLE		N-22R				Dec 201	2
70(0)	- FORC			/-11	ING DAT			- / /	va al	3
WELL DIAMETER (inches): 2 WELL VOLUME PUR (only fill out if applicab	GE: 1 WELL VO	ETER (inches):	0.375 DEP	L SCREEN I	NTERVAL et to 66 fe	et TO WAT	ER (feet): 15.	45 OR	RGE PUMP TY BAILER: electr	
EQUIPMENT VOLUM (only fill out if applicab	E PURGE: 1 EG	= (UIPMENT VOI	L. = PUMP VOLU				UBING LENGTH)			gallons
INITIAL DUMP OF TH	DINIC	FINAL BUI		illons + (0.0			75 feet) +	0.12	gallons = C	
DEPTH IN WELL (feet			MP OR TUBING WELL (feet):	61	PURGING	AT: 1055	PURGING ENDED AT:	1205	TOTAL VOLI PURGED (ga	
TIME VOLUM PURGE (gallons	D PURGED		DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLOR (describe	VA
1155 24	24	0,4	17.08	4.76	24,13	84	0.35	104	Cloud	\$ 89.4
1200 7	26	0.4	17.08	4.78	24.20	84	0.35	97.6	clou	
1205 2	20	0.4	17.08	4.77	24.19	84	0.35	101	Cloud	1
WELL CAPACITY (GATUBING INSIDE DIA. PURGING EQUIPMEN SAMPLED BY (PRINT JOE TERRY / PWSFL PUMP OR TUBING DEPTH IN WELL (feet FIELD DECONTAMIN.	CAPACITY (Gal IT CODES:) / AFFILIATION:): (a) (b) (c) (c) (d) (d)	//Ft.): 1/8" = 0 B = Bailer; / MP: Yes	.0006; 3/16": BP = Bladder Po SAMPLER(S): TUBING MATERIAL CO	SAMP SIGNATURE DE: PE UBING: No	1/4" = 0.0026 SP = Electric S LING DA :(S):	5/16" = 0 Submersible Pu TA FIELD Filtrati	.004; 3/8" = 0	D.006; 1/2" eristaltic Pump T: /205 N pe:	SAMPLING ENDED AT FILTER SIZ	E: _/ μm
SAMPLE CONTA	MATERIAL		PRESERVATIV		OTAL VOL	FINAL	INTENDE ANALYSIS AN	ND/OR EC	AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE CONTAINER	RS CODE	VOLUME	USED	ADDE	D IN FIELD (m		METHO	D	CODE	(mL per minute)
MW-22PC 3	CG	40mL	HCL	Pre	filled by lab		8260		ESP	<100
3	CG	40mL	None		None		8011		ESP	<100
1	PE	500mL	HNO ₃	Pre	filled by lab		Metals	3	ESP	300
1	PE	125mL	H₂SO₄	Pre	filled by lab		NH ₃		ESP	300
1	PE	250mL	None		None		TDS, CI, N	NO ₃	ESP	300
nw-zzec 1	AG	250mL	H₂SO₄	Pre	filled by lab		Total Pher	The same of the sa	ESP	300
weather: Clear, 78	PE 1	500.761	HNO	1 11	χ.(Dresolved Mi	etals 1	ESP 1	310
odor: ついつと MATERIAL CODES: SAMPLING EQUIPME	AG = Amber	APP = After Pe	= Clear Glass;	PE = Polye	er; BP = B	P = Polypropy		ne; T = Tet	e Pump;	her (Specify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME: J.F	E.D. SWMF (WA	ACs Facility IF	9: 89544)		1 2	OCATION: 150	1 Omni Way S	St. Cloud, Osceola	County Florida	a 34773	
	MW-23		. 00044)	SAMPL	EID: Mu		T Onlin Vidy, C		DATE: 4/ C		7
22 - 22 - 182	10100 73	C		39 3 4 1 1 1 3		GING DA	ΤΔ		7 (secon)
WELL VO	R (inches): 2.0 LUME PURGE: It if applicable)		ETER (inches)	0.375 DE	ELL SCREEN	NINTERVAL	STATIC TO WAT	DEPTH ER (feet): /8.	25 OR BA	SE PUMP T' AILER: elect	YPE tric submersible
EQUIPME	NT VOLUME P ut if applicable)	URGE: 1 EQ	= (TY X T	UBING LENGTH			gallons
	UMP OR TUBIN	G 62		MP OR TUBIN	gallons + (0	PURGIN		PURGING ENDED AT:		TOTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE	DEPTH	pH (standard units)	TEMP.	COND. (μS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLO (describ	R ORP
0925	6	6	0.3	18.73	5.28	34.98	102	0.51	11.1	clear	49.2
0930	1.5	7.5		18.73	5.31	25.00	103	0.5	11	cle	
0938	1.5	9	0.3	18.73	5.30	25.01	102	0.49	10	Clear	7.0
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN	TUBING WELL (feet):	PACITY (Gal. CODES: 1	/Ft.): 1/8" = 0 B = Bailer;	.0006; 3/16 BP = Bladder	Pump; SAMF S) SIGNATUR	1/4" = 0.0026 ESP = Electric S PLING DA	Submersible Pu	SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Ty	.006; 1/2" = eristaltic Pump; T: 0940 N pe:	O = Of SAMPLIN ENDED A FILTER SI	T: 0955 ZE:μm
FIELD DE	CONTAMINATIO	ON: PUI	MP: Yes		TUBING: N	o (replaced)		DUPLICATE	or EQUIPMENT	BLANK:	Y (N)
SAMPLE	PLE CONTAINE	MATERIAL	ATION VOLUME	PRESERVA	TIVE	RESERVATION TOTAL VOL	FINAL	INTENDE ANALYSIS AI METHO	ND/OR EQU	MPLING IIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
MW-)3C	CONTAINERS 3	CODE	40mL	HCL		ED IN FIELD (m refilled by lab	iL) pH	8260		ESP	<100
hw-230	3	CG	40mL	None		None		8011		ESP	<100
NW-23C	1	PE	500mL	HNO ₃	P	refilled by lab		Metals		ESP	-601.X
nw-23C	1	PE	125mL	H ₂ SO ₄		refilled by lab		NH ₃		ESP	350
nw.232	1	PE	250mL	None		None		TDS, CI, N		ESP	350
MW-230	1	AG	250mL	H₂SO ₄	Pi	refilled by lab		Total Pher		ESP	350
odor: n %	lew, 78°F	AG = Amber		Clear Glass;	PE = Pol	yethylene; F	PP = Polypropy		ne; T = Teflo	W. S. S.	ther (Specify)
			RFPP = Reven	se Flow Perist	altic Pump;		Method (Tubing	Gravity Drain);	O = Other (S		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

APPENDIX C Field Instrument Calibration Logs

Site: JED SWMF	Date: Nov 17	2013
----------------	--------------	------

Water Quality Instrument Make: YSI Instrument Model Number: 556 Instrument Serial Number: 06A2173AL

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME12953

Time: 1830

	Calibra	ation Standard	To de constant	Percent		0.10		4 7. 2
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	4.00	0	0.2	V	I	OT
C358930	Feb 7, 2015	pH = 7.00	7.00	0	0.2	1/	I	27
C256078	Oct 2014	pH = 10.00			0.2	1		7.
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C256861	Jan. 2014	Turbidity = 10 NTU	10.02	0.2	10%	V	I	OT
		Conductivity = 84 µS/cm			5%	1		1
C250309	Jan. 20, 2014	Conductivity = 500 µS/cm	500	0	5%	V	I	ar
C257964	Jan. 2014	Conductivity = 1,000 µS/cm			5%	1		N/
	Per Table →	D.O. = 8.48 mg/L @ 23.6 °C	8.51	0.03	0.2 mg/l	V	T	OT

Date: Nov 19, 2013 Time: 0600

	Calibra	ation Standard	T. A. Contract	Percent	60 10	0 111 10	21727	
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	4.06	0.06	0.2	V	C	Q+
C358930	Feb 7, 2015	pH = 7.00	7.05	0.05	0.2	V	C	2T
C256078	Oct 2014	pH = 10.00			0.2	1		1.
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C256861	Jan.2014	Turbidity = 10 NTU	10.12	1.2	10%	V	C	OT
		Conductivity = 84 µS/cm			5%	/		-
C250309	Jan. 20, 2014	Conductivity = 500 µS/cm	498	0.4	5%	V	C	07
C257964	Jan. 2014	Conductivity = 1,000 µS/cm			5%	7		1
	Per Table →	D.O. = 8.36 mg/L @ 24.4 °C	8.3	0.06	0.2 mg/l	V	C	OT

Note (1): Percent Deviation = (Standard Value – Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Note (3): Initial, Continual, Final

Site: TEB SWAF		Date: 1 Dec. 70/3	
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AL	
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: MF12053	

Time: 1930

	Calibra	tion Standard	Lestenment	Percent	A.O	0.17 . 10		0.111
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	4.00	0	0.2	V	I	0-
C358930	Feb 7, 2015	pH = 7.00	7.00	0	0.2	V	I	QT.
C256078	Oct 2014	pH = 10.00			0.2			1
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C256861	Jan. 2014	Turbidity = 10 NTU	10.09	0.9	10%	V	C	97
3AJ929	Oct 2014	Conductivity = 84 µS/cm	83	1.2	5%	ý	C	ØT.
C250309	Jan. 20, 2014	Conductivity = 500 µS/cm			5%	1		1
C257964	Jan. 2014	Conductivity = 1,000 µS/cm	992	0.0	5%	V	C	OT
	Per Table →	D.O. = 8.325 mg/L @ 24.6°C	8.35	0.03	0.2 mg/l	4	I	BT

Date: 2 Dec 2013 Time: 1855

	Calibra	ntion Standard	Instrument	Percent	ATT	0.17 4.10	T 6	0.10
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	3.99	0.01	0.2	V	C	07
C358930	Feb 7, 2015	pH = 7.00	6.96	0.04	0.2	(,	C	91
C256078	Oct 2014	pH = 10.00			0.2	,		,
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C256861	Jan.2014	Turbidity = 10 NTU	9.83	1.7	10%	V	C	QT
3AJ929	Oct 2014	Conductivity = 84 µS/cm	84	0	5%	4	C	OT
C250309	Jan. 20, 2014	Conductivity = 500 µS/cm			5%	7		4
C257964	Jan. 2014	Conductivity = 1,000 µS/cm	1,012	1.2	5%	У	C	Of
	Per Table →	D.O. = 8.514 mg/L @ 33 4 °C	8.52	0.006	0.2 mg/l	'	I	OT

Note (1): Percent Deviation = (Standard Value – Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU \pm 10% of Standard Value, 11-40 NTU \pm 8% of Standard Value, 41-100 NTU \pm 6.5% of Standard Value, >100 NTU \pm 5% of Standard Value

Note (3): Initial, Continual, Final

Site: JEB SWBF		Date: 5 Dec 2013	
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AL	
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME12953	

Time: 2030

	Calibra	ation Standard	To de const	Percent	4011	0.17 . 10	T	0.19
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	3.95	0.05	0.2	V	C	07
C358930	Feb 7, 2015	pH = 7.00	6-91	0.09	0.2	Ý	C	OT
C256078	Oct 2014	pH = 10.00			0.2	-1		0
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C256861	Jan. 2014	Turbidity = 10 NTU	9.8	2	10%	y	C	OT
3AJ929	Oct 2014	Conductivity = 84 µS/cm	86	2.4	5%	V	2	97
C250309	Jan. 20, 2014	Conductivity = 500 µS/cm			5%			
C257964	Jan. 2014	Conductivity = 1,000 µS/cm	1017	1.7	5%	V	C	Or
	Per Table →	D.O. = 8.42 mg/L @ 24,0 °C	8.44	0.02	0.2 mg/l	\v	I	101

Date: 1 Dec 2013 Time: 2000

Calibration Standard		ation Standard	Instrument	Percent	Allemaki	C-11 10	т с	O PL A
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	3.97		0.2			
C358930	Feb 7, 2015	pH = 7.00	6.96		0.2			
C256078	Oct 2014	pH = 10.00			0.2			
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C256861	Jan.2014	Turbidity = 10 NTU	9.9		10%			
3AJ929	Oct 2014	Conductivity = 84 µS/cm	86		5%			
C250309	Jan. 20, 2014	Conductivity = 500 µS/cm			5%			
C257964	Jan. 2014	Conductivity = 1,000 µS/cm	1014	1/=	5%			
	Per Table →	D.O. = mg/L @ 24,6°C	8.38		0.2 mg/l			

Note (1): Percent Deviation = (Standard Value – Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

 $Turbidity~0.1-10~NTU~\pm~10\%~of~Standard~Value,~11-40~NTU~\pm~8\%~of~Standard~Value,~41-100~NTU~\pm~6.5\%~of~Standard~Value,~2100~NTU~\pm~5\%$

Note (3): Initial, Continual, Final

Site: SUSP		Date: Dec 5, 2013	_
Water Quality Instrument Make: YSI	Instrument Model Number:556	Instrument Serial Number: 06A2173AL	
Turbidity Instrument Make:LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME12953	

Time: /730

Calibration Standard				Percent	411 11	0 10 10		100000000000000000000000000000000000000
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	4.07	0.07	0.2	У	C	OT
C358930	Feb 7, 2015	pH = 7.00	7.03	0.03	0.2	Ý	C	97
C256078	Oct 2014	pH = 10.00			0.2	/		7
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C256861	Jan. 2014	Turbidity = 10 NTU	9.87	1.3	10%	Y	C	OT
3AJ929	Oct 2014	Conductivity = 84 µS/cm	86	2.4	5%	4	C	DT
C250309	Jan. 20, 2014	Conductivity = 500 µS/cm			5%	/		4
C257964	Jan. 2014	Conductivity = 1,000 µS/cm	1013	1.3	5%	V	C	OT
	Per Table →	D.O. = 8 . 28mg/L @ 24.9 °C	831	0.03	0.2 mg/l	4	E	97

Date:	Time:

	Calibra	tion Standard	Instrument	Percent	40-16	0.17 . 10		50.00
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00			0.2			
C358930	Feb 7, 2015	pH = 7.00			0.2			V
C256078	Oct 2014	pH = 10.00		/	0.2			
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%	1 = = = =		
C256861	Jan.2014	Turbidity = 10 NTU			10%			
3AJ929	Oct 2014	Conductivity = 84 µS/cm			5%			
C250309	Jan. 20, 2014	Conductivity = 500 µS/cm			5%			
C257964	Jan. 2014	Conductivity = 1,000 µS/cm			5%			
	Per Table →	D.O. = mg/L @ °C			0.2 mg/l			

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value Note (3): Initial, Continual, Final

APPENDIX D

Chain-of-Custody Forms

CHAIN OF CUST

CHAIN OF CUSTODY/LABORATORY ANALYSIS R	EQUEST FORM	SR#
9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011	PAGE/ OF _/	CAS Contract

Project Name		Project Number					_															-		_
JEO SWAF		Project Number							Al	NALYS	SIS RE	QUEST	TED (I	nclud	e Meth	od Nu	mber	and C	ontain	ainer Preservative)				
Project Manager Joe Terry		Email Address	ustil	us		PRE	SERVA	ATIVE	1	0	2	3	0	3										
Company/Address PWSFL		3				ERS		/	//	/	/	1	1	1	1	1	/	/	/	/	//	/	Preservative Key 0. NONE 1. HCL 2. HNO3	1
11457 CR 672						NUMBER OF CONTAINERS		19	1	1		1	3	1								/	 HNO₃ H₂SO₄ NaOH Zn. Acetate 	
2. vovieu, FL	3356					OFC	/	03/	8	2	27	3/	Tel	/	//	/	/	/	/	/	/ /		6. MeOH 7. NaHSO ₄	
Phone # 813-943-8633		FAX #				MBER	/	1	A.	4	4	3/	1	/	/	/	/	/.	/	/	/		8. Other	-
Sampler's Signature		Sampler's Printed Nam	erry			N			/		/F	12	/		/	/		/			/ A		EMARKS/ TE DESCRIPTION	
CLIENT SAMPLE ID		LAB ID	SAM	IPLING TIME	MATRIX																			
MW-1A		LAD ID	11.18.13		60	10	3	3	1	1	1	1												
MW-IC				0920					1															
MW-2A				1315																				
MW-2C				1245	4	6	V	W	1	4	V	V												
Duplicate			¥	0000	GW	10	3	3	1	7	î	1												
Trip Bluk-I			11-18-13	0000	DEHZO	1	1														-			
																					-			
																					1			
307																								
SPECIAL I NSTRUCTIONS/COMMENTS				1				Т	URNAF	ROUND	REQU	IREMEN	NTS	T	REPO	ORT RE	QUIRE	MENT	s	T	IN	OICE	NFORMATION	
								_	RUS	H (SURC	CHARGE	S APPLY)	-	_ I. Resu	ts Only								
Cook ID: 133.	99-76	50							_ STAN						LCS, E		Summa /MSD as		d)	РО	#			
								REQU	JESTED	FAX DA	IE.			-	_ III. Resi		C and Ca	alibration	n	BIL	L TO:			
								REQU	JESTED	REPOR	T DATE			_			ion Repo	ort with F	Raw Data	1				
See QAPP								_			_			-	_ V. Spec					L				
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP	:		CUS	STODY SEA	ALS: \	N								Edata	· —	_Yes		No					
RELINQUISHED BY RECEIVED BY RELINQUISHED						BY				RECE	IVED B	Y			R	ELINQ	JISHED	BY		RECEIVED BY				
Signature Signature Signature								Signat	ture					Signa	ture					Sign	nature			
Printed Name Printed Name Printed Name								Printed	d Name					Printe	d Name					Prin	ted Name	9		
FIRM PWSFL,	Firm		F	îrm				Firm						Firm						Firm	1			
Date/Time 11-18-13/1700	Date/Time		C	Date/Time				Date/T	Time					Date/	Time					Date	e/Time			
The Art of the State of the Sta																								

SR#		
CAS Contract		

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

QUEST TONIN	
AGE/OF/	CAS Contract

Project Name Project Number								ANALYSIS REQUESTED (Include Method Number and Container Preservative)																
Project Name JED SWDF									Al	MALTS	NO RE	WUES	ובט (וו	Tionade metriod Number and Containe							er rieservative)			
Project Manager TO 1/4		Email Address	wsi	us		PRE	SERV	ATIVE	1	0	2	3	0	3										
Company/Address		3				VERS		/		/		/	1	7	/	/			/	/		/	1. HCL	tive Key E
11457 C.R. 672						NUMBER OF CONTAINERS		13	9/3	1	1/2	12	100	1	/ /	/	/	/			/		 HNC H₂S NaO Zn. / 	H cetate
Riverien, FL	335	69 FAX#				OF	1	10	07	2	5/	8	7	/	/	/			/	/	//		6. MeC 7. NaH	H SO ₄
B13-943. 8633		PAX#				MBEF	/	/	/	Y	1	1/10	#/	/		/	/	/-	/	/	/		8. Othe	r
Sampler's Signature		Sampler's Printed Nam	eny			N		/	/		/F	15	1	/	/	/					/ A		EMARKS TE DESC	
CLIENT SAMPLE ID		LAB ID	SAM	PLING TIME	MATRIX																			
MW-3A			11.19.13	0900	GLU	10	3	3	1	1	1	1												
MW-3C				0830		- April	1		-															
MW-4A				1050							- SPESSO													
MW-4C				1025	1																			
MW-SA				12:15	4	V	1	1	1		6	-												
MW-5C			1	1705	GW	10	3	3	1	1	Ī	1												
Trip Black-2			11.19.13	0000	DITO	-	1																	
1																								
1.																								
297																								
SPECIAL I NSTRUCTIONS/COMMENTS								Т	URNAF		REQU				REPO		EQUIRE	EMENT	S		IN	OICE I	NFORMA	TION
Cooler In: 13	323-3	SED							_ STAN		TE			X	II. Resu (LCS, D			aries s require	d)	РО	#			
														_	_ III. Resi		C and C	alibration	1	BIL	L TO:			
								REQU	JESTED	REPOR	T DATE			_	_ IV. Data	validati	tion Repo	ort with I	Raw Dat	a				
See QAPP								-			_			-	_ V. Spec	cialized I	Forms /	Custom	Report					
SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEA						ALS: \	Y N								Edata	a	Yes	_	No					
RELINQUISHED BY	ED BY RECEIVED BY RELINQUISHE									RECE	IVED B	′			R	ELINQ	UISHE	D BY				RECE	IVED BY	
Signature Que Lun	Signature Signature							Signat	ture					Signa	ture					Sigr	nature			
Printed Name Joe Ferry	Printed Name		Pr	rinted Name				Printed	d Name					Printed Name					Printed Name					
Fim PWSFL	Firm Firm						Firm Firm						Firm											
Date/Time 11-19-13/14100	13/14/00 Date/Time Date/Time						Date/Time Date/Time									Date	e/Time							

SR#	
CAS Contract	

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

GE	1	OF	1
UL.		01	2

Project Name	Project Number						А	NALY	SIS RE	QUES	TED (Includ	e Meth	od Nu	ımber	and C	ontair	er Pr	eserva	ive)			
Project Manager	Email Address	21 - 11			PRE	SERV	ATIVE	1	0	3	2	0	7										
Company/Address	THELLY	pusi;	u)				-	1	-)	1))						-			Preserva	ative Key
PWSFL					ERS		/		/	/ /	/		/	/	/	/	/	/	/		/	0. NON 1. HCL	E
11457 CR 672					NTAIN		10)/	/	/	1	3/3	7		/	/	/	/	/	/	/	 HNO. H₂SC NaOH 	04
Riverien, FL	37569				NUMBER OF CONTAINERS		12	16/	1	1 5	13/	100	/	/ /	/ /	/ /	/ /	/ /	/	/ /	/	 Zn. A MeO 	Acetate H
Phone # 813 - 943 - 8633	FAX #				BERG	1/	d	00/	19	50/	4	-/	/	/	/	/		/	/	/		7. NaHS 8. Other	
Sampler's Signature	Sampler's Printe	d Name			NOM	/	/	/	/	YF	7/	3/	/	/	/		/	/	/	/		REMARKS/	
you any	1 30	- /	AMPLING				1											$\overline{}$	$\overline{}$	(LIERN	ATE DESCR	RIPTION
CLIENT SAMPLE ID	LAB ID	DATE		MATRIX	_		2		-	-										-			
MW-6A		12.7.	-	GW	10	3	3	1	1	1	1									-			
MW-6C			0940				-	-											_	-			
MW-7A			1155			1	1		\perp											-			
MW-7C			1125	1		1		-		11										-			
MW-8A			1335				11	1	H	-	1												
MW-8C			1305		1		11			11										-			
MW-9A			1515	V	V	1	V	V	4	1	V												
MW-9C			14145	GW	10	3	3	1	1	,	1									_			
TripBlank-3		1	00:00	DI HO	4	1																	
Trip Black-4		12.7.	13 00:00	DEHEO	1	1				_													
													_						_				
Coolers: 13336- JED	- 7 / MW-LA, C & M	w-7A,C)	(Trip Black	-3)			_			ID REQU RCHARGE			_	REP		EQUIRI	EMENT	S		IN	VOICE	INFORMAT	TION
(coolers: 133)6-310	20.		VITILEIM	4-41			_>	STA	NDAR	D			×	_ II. Resi				-0	PO	#			
13336-250	-2 (MW-BA,C & 1	- 1 / , - ,	/Cirib one	- 4			REQ	UESTED	FAX D	DATE			_		sults + Q		s require		BIL	L TO:			
							REQ	UESTED	REPO	ORT DATE						tion Rep	ort with	Raw Dat	a				
See QAPP													_ V. Spe	cialized	Forms /	Custom	Report						
	OLER TEMP:		CII	STODY SEA	AIS:	y N	+		_				+	Edat	a	Yes	_	No					
RELINQUISHED BY										EIVED B	ΙΥ		T	P	RELINQ	UISHE	D BY		T		REC	EIVED BY	
Signature Che Cara				Signa	ature					Signa	iture					Sig	nature						
Printed Name Toe Terry	you and a second												Printe	ed Name					Printed Name				
Fim PWSFL	Firm		Firm				Firm						Firm					Firm					
Date/Time 12-2-13/1615	Date/Time												Date/	Time					Dat	e/Time			

Project Name

Project Manager

CHAIN OF CHOTODY A PODATODY ANALYSIS DECLIEST FORM

SR#	
CAS Contract	

ALS Environmental	CHAIN OF CUS	STODY	IUI	ORT ANALTSIS REQUEST FURIN												0						
9143 Phil	lips Highway, Ste 200 • Jackson	ville, FL 32256 (9	904) 739-2277 • 800	0-695-7	7222 x	06 • F	AX (904	4) 739-	2011	PA	GE _	/	(OF _	/	_	CAS	Contr	act			
Project Name JESSWSF	Project Number						AN	IALYS	IS RE	QUES"	TED (I	nclude	Meth	od Nu	mber	and C	ontair	er Pre	eservat	ive)		
Project Manager Terry	Email Address	ewsi: u	5	PRES	SERVA	TIVE	1	0	3	0	2	3										
Company/Address PWS TL				RS					/		1	5						/	//	/	Preservative Key 0. NONE 1. HCL	
11457 C.R. 6	72			CONTAINERS		/	/	/	1	3/	100	000			/	/		/	/	/	2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH	
Piverview.		P P	/	3	1	37	3	14	3	//	//	/	//	//	/ /	/ /	//	/	 Zn. Acetate MeOH NaHSO₄ 			
Phone # 913 -943 - 9637		NUMBER	/	20/	D	Y	J.	5/2	5	/		/		/.	/	/	/		8. Other			
Sampler's Signature	Sampler's Printed Nan	Z				1	/_		/	/	/	_					/ 1		REMARKS/ ATE DESCRIPTION			
CLIENT SAMPLE ID	LAB ID		TIME MATRIX																			
MW-10A		123.13 01	825 GW	10	3	3	ra e	1	1	ŧ												
MW-10C		0	755	1			-			1												
MW-11A		10	010	- According	and an		ALCOHOL:		1						1							
MW-IIC		00	940			- Contract				1												
MW-12A		11	155		-																	
MW-12C		11	120			and the same	and de															
MW-13A		13	340					1	-													
MW-13C		1 13	310 4	(1)	V	V	V	V	V	1												
MW-16RA		14 14	150 GW	10	3	3	į	1	1	1												
Trip Blatt-5	024 CO 000	1	1																			
SPECIAL I NSTRUCTIONS/COMMENTS			JRNAR			REMEIS APPLY			REPO			EMENT	S		IN	VOICE	INFORMATION					
Coolers: 13337-T	COOLUS: 13337-TED-I (MW-DA,C: MW-1846: MW-12A,C: TID											X	II. Resu			aries		PO				

		27	RUSH (SURCHARGES APPLY)	I. Results Only	
		Ex; MW-12A, C; TIDITEHS	STANDARD REQUESTED FAX DATE	LCS, DUP, MS/MSD as required)	PO #
13337-36	28-5 (mn. 134, c) mm	IGRAY MW-11A)		III. Results + QC and Calibration Summaries	BILL TO:
			REQUESTED REPORT DATE	IV. Data Validation Report with Raw Data	
See QAPP				V. Specialized Forms / Custom Report	
SAMPLE RECEIPT: CONDITION/COO	OLER TEMP:	CUSTODY SEALS: Y N		EdataYesNo	
RELINQUISHED BY	RECEIVED BY	RELINQUISHED BY	RECEIVED BY	RELINQUISHED BY	RECEIVED BY
Signature Que lin	Signature	Signature	Signature	Signature	Signature
Printed Name Joe Terry	Printed Name	Printed Name	Printed Name	Printed Name	Printed Name
Firm puses	Firm	Firm	Firm	Firm	Firm
Date/Time 12-3-13/1630	Date/Time	Date/Time	Date/Time	Date/Time	Date/Time
Distribution: White Between to Originator: Valle	Batained by Client				Converight 2012 by ALC Group

Λ		
ALS ENU	ironmental	

CHAIN OF CUSTODY/LABORATORY ANALYSIS R	EQUEST FORM	SR#
9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011	PAGEOF	CAS Contract

Project Name	Project Number	\$		_		At	VALYS	IS RE	OUES	TED (nclud	e Meth	od Ni	ımber	and C	ontain	er Pre	servat	ive)		
JED SWOF						-	-	, o me	GOLO	1	ricida	- Wictin	ou ive	1	und o	I	1	Jorvan	10,		
Project Manager Joe Terry	Email Address	ewsi, us	PRE	SERV	ATIVE	, and the	0	3	2	0	3	2									
Company/Address PWSFL	3 1		AINERS				/	1	1	34	Tas	July 1	/						/	Preserva 0. NONI 1. HCL 2. HNO 3. H ₂ SC 4. NaOI	
Phone # 0 1 2 2 1 2 4 / 3	FAX#		NUMBER OF CONTAINERS	/	1960	000	MA	yex	19	10	Solve	//	//	//	//	//	/-/	//		6. MeOl 7. NaHS	cetate H 6O ₄
813-943-863 Sampler's Signature Que (4)	0 1 1 0 1 1 1 1 1	Terry	NUMBI		1			12	71	7	5/				/ .			/	R	8. Other	
CLIENT SAMPLE ID	LAB ID	SAMPLING DATE TIME MATRIX																			
MW-16RB		12.4.13 0815 GW		3	3	1	1	1	1	-1344											
MW. 16RC		1 0735	10	1	1			-	-												
MW-23A		1010	10	-		1															
MW-23C		10																			
MW-22RA		10	J	4	1	10	16	Ja													
MW-22RC		11	3	3	1	1	1	1	1												
Teip Blank-6	l.	1205 ONW	1	1																	
1																					
301																					
SPECIAL I NSTRUCTIONS/COMMENTS					TI	JRNAR	OUND	REQU	IREME	NTS	T	REPO	ORT RI	EQUIRE	MENT	S	T	IN	OICE IN	NFORMAT	ION
	× -7				_	RUSH	(SURC	HARGE	S APPLY	0	_	_I. Resul	Its Only								
Cooler ID: 13338	1-7ED-T					STAN	DARD				×	II. Resu			aries s required	-11	PO #	,			
					REQU	ESTED I	FAX DAT	ΓE									BILL	TO:			_
											-	_ III. Resi		C and C	alibration	n	BILL	. 10.			
					REQU	ESTED	REPORT	DATE				_ IV. Data	Validat	ion Repo	ort with F	Raw Data	a				
See QAPP					_			_			IV. Data Validation Report with Raw Data V. Specialized Forms / Custom Report										
SAMPLE RECEIPT: CONDITION/COO	OLER TEMP:	CUSTODY SEA	ALS: Y	N							1	Edata	a	Yes		No					
RELINQUISHED BY	RELINQUISHED					RECEI	VED BY	1			R	ELINQ	UISHED	BY				RECE	VED BY		
Signature A	Signature			Signatu	ıre					Signa	ture					Sign	ature				
Printed Name Toe Terry	for the											d Name					Print	ed Name			
Fim DWSEL	Firm	Firm			Firm						Firm					Firm					
Date/Time 12-4-13/1700	Date/Time	Date/Time			Date/Ti	ime					Date/	Гime					Date	/Time			
14	Time 12-1-13/1700 Date/Time Date/Time																_				

	SR#	
1	CAS Contract	

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE _____OF

Project Name JED SWDF		Project Number							A	NALYS	IS RE	QUEST	red (I	nclude	Metho	od Nu	mber	and Co	ontain	er Pre	servat	ive)			
Project Manager 50e Terry		Email Address	pus	siius		PRES	SERVA	TIVE	1	0	3	2	0	3											
Company/Address PWSFL	_	9				ERS				/		1	13	2/	1	/	/			/			Preserve 0. NON 1. HCL 2. HNC 3. H ₂ S 4. NaC	ative Ke	эу
						NTAINE		10	/	/ 10	Li	1	3/1/2	1	/				/	/		/	 HNC H₂S NaC 	03 O4 IH	
						NUMBER OF CONTAINERS	/	20/	5/	1/9	12	3	1	//	//	/	//	//	//	//	//		 Zn. / MeC NaH 	Acetate)H	
Phone # 917 -943 - 963	33	FAX #				MBER	/	2)	2)/	/	2/K	3/	\$	/		/	/	/.	/	/	/		8. Othe	er	-
Sampler's Signature		Sampler's Printed Name	Ter	y		N					1	1	/								/ A		REMARKS ATE DESC		N
CLIENT SAMPLE ID	i	AB ID	SAN	IPLING TIME	MATRIX																				
MW-19A			12.4.1	3 1515	600	10	3	3	1	(1	1													
MW-19C				1600		10	1		1	1	(1													
MW-21A				1320		10					and the same	-													
MW-21C			1400	4	10	4	4	4	V	6	4														
Duplicate-2			V	00:00	66	10	3	3	-	1	1	1													
Trip Black-7			12.44	3 00:00	DPHZO	1	1																		
291	1																								
SPECIAL I NSTRUCTIONS/COMMENTS								TU				S APPLY		_	REPO		QUIRE	EMENT	S		IN	OICE	NFORMA	TION	
Coolun In: 13338	1-760	-3.						×	STAN	IDARD	re			×	_ II. Resu (LCS, D			aries require	d)	PO	•				
								- NEQU	ESTED	TAX DA	_				_ III. Resu Summa		C and C	alibration	1	BILL	то:				
								REQU	ESTED	REPOR	T DATE			-	_ IV. Data	Validat	ion Repo	ort with F	Raw Data	4					
See QAPP								_			_			-	_ V. Spec	ialized	Forms /	Custom	Report						
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP	:		CUS	STODY SEA	LS: Y	N								Edata	_	_Yes		No						
RELINQUISHED BY RELINQUIS										RECEI	VED B	Y			RI	ELINQ	UISHE	BY				RECE	EIVED BY		
Signature Signature Signature								Signatu	ure					Signa	ture					Sign	ature				
Printed Name Joe Terry	ed Name For Terry Printed Name Printed Name							Printed	Name					Printed Name						Printed Name					
Firm PLUSFL	Firm		F	Firm				Firm						Firm						Firm					
Date/Time 12.41-13 / 1740	Date/Time				Date/T	ime	Date/Time Date/Time Date/										Date	/Time							

	SR#
1	CAS Contract

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

		4
GE	OF	CAS

Project Name JED SWDF	Project Number		ANALYSIS REQUESTED (Include Method Number and Contain											ontain	er Preservative)									
Project Manager Toe Terry	Email Address	usiji	us		PRES	SERVA	TIVE	1	0	3	2	0	3											
Company/Address					TAINERS		/		/	1	1	1	5/2/	/	/			/	/	//	/	Preserva 0. NON 1. HCL 2. HNC 3. H ₂ S	ative Key NE 03 04 NH	
Phone # (2) 2 (2) 2 (2) 2	FAX#				NUMBER OF CONTAINERS	/	3	108	E E	子子	10	18	1	//	//	//	//	//	/	//	/	5. Zn. / 6. MeC 7. NaH 8. Othe	SO ₄	
813 - 943 - 863 - Sampler's Signature	Sampler's Printed Name	Tarid	,		NUMB		/	/		12	9/2	1	/	/	/	/	1.	/	/	/	R	EMARKS	·/	
you can	Joe 7	SAM	PLING																\vdash	(LTERNA	TE DESC	RIPTION	
CLIENT SAMPLE ID MW-17A	LAB ID	DATE 2.5.13	1750	GW	10	3	3	1	1	1	1									-				
MW-17B	lo	1 311)	0820	1		1	1	ì	1		Ì													
MW-17C			0850		1																			
MW-13A																								
MW-18B		V	1	+	6	1	1	1	4															
MW-13C		1	1215	GW	10	3	3	1	1	1	1													
Trip Bluk-8	17	2.5.13	0000	DE HOU	1	1																		
V																								
391																			_					
SPECIAL I NSTRUCTIONS/COMMENTS	a TEN						X	RUS	H (SUR		S APPLY			_ I. Resu	ults Only			S		IN	VOICE II	NFORMA	TION	
Cook ID: 1333	1-20							STAI	NDARD					_ II. Res (LCS,		S/MSD a		d)	PO	#				
							HEUC	DESTED	FAX DA	_			-	_ III. Res		C and C	alibratio	n	BIL	L TO:				
							REQU	JESTED	REPOR	T DATE			_	_ IV. Dat	a Valida	tion Rep	ort with	Raw Dat	a					
See QAPP							_			_			-			Forms /								
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP:		CU	STODY SEA	LS: Y	N								Edat	ta	Yes	_	No						
RELINQUISHED BY	RECEIVED BY	LINQUISHED	BY				RECE	IVED B	Υ			F	RELING	UISHE	DBY				RECE	IVED BY				
Signature (Jan Ly	Signature Signature						Signat	ture					Signa	ture					Sig	nature				
Printed Name Joe Terry	Printed Name					d Name						ed Name						ited Nam)					
Fim PLUSFL	Firm				Firm						Firm						Firm	n						
Date/Time 12.5-13/1330	Date/Time		Date/Time Date/Time							Date/Time						e/Time								

APPENDIX E

CD Containing Analytical Laboratory Reports