

14 August 2014

Mr. F. Thomas Lubozynski, P.E. Waste Program Administrator Solid and Hazardous Waste Program Florida Department of Environmental Protection, Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Re: 20th Semi-Annual Water Quality Monitoring Report J.E.D. Solid Waste Management Facility, Osceola County, Florida Permit No. SO49-0199726-024 WACS Facility ID #89544

Dear Mr. Lubozynski:

Submitted herewith is the subject report documenting the 20th semi-annual water quality monitoring event conducted at the J.E.D. Solid Waste Management (JED) Facility located in Osceola County, Florida. This report is being submitted as required for compliance with the conditions contained within the Monitoring Plan Implementation Schedule (MPIS) for the above referenced permit. In accordance with the permit conditions, this semi-annual water quality monitoring event was performed in May 2014. This report satisfies the semi-annual water quality monitoring compliance requirements as described in the Permit.

As noted in the revised MPIS, one electronic copy (Adobe pdf format) of the 20th semi-annual water quality monitoring report is being submitted to FDEP via email along with the ADaPT compatible electronic data deliverable (EDD) in .zip file format.

If you have any questions or need additional information, please do not hesitate to contact Matthew Wissler at (727) 330-9954.

Sincerely,

Matthew P. Wissler Senior Hydrogeologist

Attachments

Copy: Mike Kaiser, WSI Clark Moore, FDEP Tallahassee

Prepared For:

Omni Waste of Osceola County, LLC 1501 Omni Way St. Cloud, Florida 34773

20th SEMI-ANNUAL WATER QUALITY MONITORING REPORT

J.E.D. Solid Waste Management Facility 1501 Omni Way St. Cloud, Osceola County, Florida 34773

Prepared by:

Geosyntec^D consultants

50 South Belcher Road, Suite 116 Clearwater, FL 33765

Project No. FR2220A

14 August 2014

Matthew Wissler, P.G. Florida Registration No. 2521

TABLE OF CONTENTS

1.	IN	TRODUCTION	1
	1.1	Terms of Reference	1
	1.2	Overview	1
	1.3	Site Description	1
2.	M	ONITORING WELL DETAILS	4
	2.1	Well Layout and Construction	4
	2.2	Turbidity Issues	5
3.	M	ONITORING WELL SAMPLING	6
	3.1	Sampling Locations and Procedures	6
	3.2	Sample Analyses	6
4.	AN	VALYTICAL RESULTS	8
	4.1	Field Parameters	8
	4.2	Groundwater Monitoring Wells	8
	4.3	Data Validation	11
	4.4	Impact of Turbidity on Metals Concentrations	11
5.	GF	ROUNDWATER LEVEL MEASUREMENTS AND FLOW DIRE	CTION12
	5.1	Field Measurements	12
	5.2	Water Level Contours	12
6.	SU	RFACE WATER SAMPLING	
	6.1	Sampling Locations and Procedures	13
	6.2	Sample Analyses	13
	6.3	Field Measurements and Analytical Results	13
7.	CC	ONCLUSIONS AND RECOMMENDATIONS	
	7.1	Sampling Locations	15
	7.2	Sample Analyses	15

LIST OF TABLES

Table 1	Summary of Monitoring Well Construction Details
Table 2	Summary of Final Field Parameter Results and Field Data
Table 3	Summary of Groundwater Analytical Results
Table 4	Groundwater Level Measurements
Table 5	Summary of Surface Water Field Measurements and Analytical Results

LIST OF FIGURES

Figure 1 Groundwater Elevation – A Zone Wells

LIST OF APPENDICES

- Appendix A: Water Quality Monitoring Certification FDEP Form 62-701.900(31)
- Appendix B: Field Sampling Logs
- Appendix C: Field Instrument Calibration Logs
- Appendix D: Chain-of-Custody Forms
- Appendix E: CD Containing Analytical Laboratory Reports

1. INTRODUCTION

1.1 Terms of Reference

On behalf of Omni Waste of Osceola County, LLC (Omni), Geosyntec Consultants (Geosyntec) has prepared the 20th semi-annual water quality monitoring report for the J.E.D. Solid Waste Management (JED) facility. This report summarizes and provides interpretation of the water quality monitoring performed in accordance with the Water Quality Monitoring Plan (Plan) prepared as part of the JED facility permit application. The requirements for executing the Plan were presented in Appendix 3 - Monitoring Plan Implementation Schedule (MPIS) of the current Permit (Permit Number SO49-0199726-022) that authorizes the development of Phases 1 through 4 at the JED facility issued by the Florida Department of Environmental Protection (FDEP) on 12 July 2012.

This report was prepared by Geosyntec on behalf of Omni, a Progressive Waste Solutions Company, owner and operator of the JED facility. A completed water quality certification form (FDEP Form 62-701.900[31]) is included in **Appendix A**.

1.2 Overview

The Plan and the MPIS describe a water quality monitoring program at the JED facility that has as its intent to: (i) measure and report groundwater and surface water conditions for the monitoring network; (ii) monitor the groundwater flow direction; and (iii) monitor the groundwater and surface water quality on a semi-annual basis. The 20th semi-annual water quality monitoring event was completed from 5 May through 15 May 2014. This report includes presentation and discussions of the sample locations, sampling procedures, laboratory analyses and results, field data measurements, groundwater level measurements, groundwater flow direction and surface water quality monitoring. In addition, this report includes a comparison of the analytical results of this sampling event to applicable Groundwater Cleanup Target Levels (GCTLs) as promulgated in Chapter 62-777, Florida Administrative Code (FAC).

1.3 Site Description

The JED facility is located in eastern Osceola County, Florida, west of highway U.S. 441, and approximately 6.5 miles south of Holopaw. The facility is a Class I landfill which is linked to highway U.S. 441 by a 2.9-mile access road. The JED facility comprises a total of approximately 2,179 acres. The landfill footprint at build-out will be approximately 360 acres and consist of 23 landfill cells that will provide available waste capacity for a period of approximately 30 years. The FDEP issued a permit to construct and operate Phase 1 development of the JED facility in October 2003. Phase 1 development includes four landfill cells (Cells 1 through 4), located in the northern part of the landfill encompassing

approximately 54 acres. As part of Phase 1, forty-five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. The baseline water quality report for the Phase 1 monitoring well network was submitted to FDEP in May 2004. All components of the Phase 1 development have been constructed.

The FDEP issued a permit to construct and operate Phases 2 and 3 at the JED facility in March 2007. The development of Phases 2 and 3 includes six cells (Cells 5 through 10) with a total footprint of approximately 72 acres. As part of Phases 2 and 3 development, and as approved by FDEP, six (6) existing Phase 1 monitoring wells (MW-14 A, B, and C, and MW-15 A, B, and C), and ten (10) piezometers were decommissioned. The wells and piezometers were decommissioned to allow for construction of future cells and construction of a storm water retention basin located within Phases 2 and 3. The decommissioning of the monitoring wells and piezometers was discussed in the Phases 2 and 3 baseline water quality report. For the development of Phases 2 and 3, twenty-four (24) additional groundwater monitoring wells were installed in eight (8) well clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas in September 2007. The baseline water quality report for the Phases 2 and 3 monitoring well network was submitted to FDEP in January 2008.

The FDEP issued a permit to construct and operate Phases 1 through 3 with a vertical expansion at the JED facility in April 2008. In April 2009, the MPIS for the semi-annual water quality monitoring well network and sampling schedule were updated for Phases 1, 2 and 3. The modification included a reduction of the Phase 3 monitoring wells required to be sampled semi-annually until such time that waste placement commences in one of the Phase 3 cells (i.e., Cells 8, 9 and 10) and the sampling schedule was modified for the B-zone (intermediate) and C-zone (deep). These monitoring wells were sampled on an alternating annual basis. The C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and B-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring wells MW-1 through MW-13, MW-16, MW-19 through MW-23 and C-zone monitoring wells MW-16C were sampled in May and reported in July.

Cell 1 was completed in January 2004, Cell 4 was completed in May 2005, Cell 2 was completed in April 2006, Cell 3 was completed in October 2006, Cell 5 was completed in October 2007, Cell 6 was completed in July 2008 and Cell 7 was completed in August 2010. The FDEP issued a permit to construct a lateral expansion of the facility on 8 August 2011, which authorizes construction of Phases 3-8, Cells 8-23. Cell 8 was completed in April 2012. During construction startup of Cell 8 in November 2011, monitoring well cluster MW-22 (A, B and C) was decommissioned to accommodate the perimeter road access to Cell 8. The MW-22 cluster abandonment report was submitted to the FDEP in April 2012. The well cluster was replaced in March 2012 and located on the perimeter access road approximately 800 feet south of well cluster MW-23. The shallow, intermediate and deep monitoring wells

were designated MW-22RA, MW-22RB and MW-22RC, respectively. The baseline water quality report for cluster MW-22R was submitted to the FDEP in July 2012.

The Cell 9 disposal area construction was completed in October 2013 and approved by the FDEP in November 2013. As with previous construction and expansion efforts (i.e., Cell 8 disposal area) well cluster MW-20 was installed in a temporary location on the Phase 3 stormwater berm. Cell 9 construction activities included substantial modifications to the berm and as such, a request was made to abandon the well cluster. In addition, MW-16 cluster was abandon at its temporary location and replaced in a permanent location on the backside of the perimeter berm near the Cell 9 sump. Monitoring well clusters MW-16 and MW-20 were abandoned on 24 June 2013. Replacement monitoring wells MW-16AR, MW-16BR and MW-16CR were installed in October 2013. The monitoring well abandonment and installation report was submitted to the FDEP in November 2013.

A permit minor modification application was submitted to the FDEP on December 24, 2013. The minor modification application was a request to modify the MPIS prior to the initiation of construction of Cell 10 of Phase 3 and Cells 11-13 of Phase 4 as discussed with the FDEP during a 19 November 2013 meeting. The minor modification was approved by the FDEP in January 2014. The major changes include:

- Installation and sampling schedule of monitoring wells for the Phase 4 construction (includes Cells 10, 11, 12 and 13),
- Removal of the "C" zone wells from the semi-annual sampling schedule, and
- Installation of only "A" and "B" zone wells at the new monitoring well cluster locations.

Construction of the Cell 10 disposal area began in March 2014 which necessitated the abandonment of temporary groundwater monitoring well clusters MW-17, 18, 19 and 21. The wells were located on the Phase 3 interim storm water berm and were abandoned during Cell 10 construction on 5 March 2014. The monitoring well abandonment report was submitted to the FDEP on 13 March 2014.

The January 2014 MPIS revision was implemented during the 20th semi-annual groundwater sampling event in May 2014. In an email dated 14 May 2014, the FDEP, based on review of past semi-annual water quality monitoring reports, removed total phenols analysis from the laboratory parameters list in requirement 9 of the MPIS.

2. MONITORING WELL DETAILS

2.1 Well Layout and Construction

For the Phase 1 development, forty five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. In accordance with the FDEP permit requirements monitoring well clusters were located such that the spacing between well clusters was no greater than 500 feet. For development of Phases 2 and 3, twenty four (24) groundwater monitoring wells were installed in eight (8) clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas. In accordance with the FDEP permit requirements, the monitoring well clusters were located such that the spacing between detection well clusters (MW-16 through MW-21) was approximately 500 feet, and the spacing between background well clusters (MW-22R and MW-23) was approximately 800 feet. Each monitoring well cluster consisted of three (3) groundwater monitoring wells installed: (i) across the water table to monitor the upper limit of the surficial aquifer (identified as A zone [shallow] wells); (ii) within the lower limit of the upper surficial aquifer above the intermediate clay layer (identified as C-zone [deep] wells); and (iii) at an intermediate depth between the shallow and deep wells (identified as B-zone [intermediate] wells).

A layout depicting the location of groundwater monitoring wells installed for Phases 2 and 3, and the previously installed groundwater monitoring wells for Phase 1 are shown for the A zone wells on **Figure 1**. As shown, groundwater monitoring well clusters MW-1 through MW-13, MW-16R, MW-22R and MW-23 were installed along the top of the outer edge of the landfill perimeter berm. The ground surface at the location of the wells in the perimeter berm is at approximately elevation 92 ft with respect to National Geodetic Vertical Datum of 1929 (NGVD, 1929). The locations of each well, in Florida state plane coordinates and latitude/longitude, and elevation NGVD, 1929 were surveyed by professional land surveyors licensed in the State of Florida.

Wells were constructed with 2-inch diameter schedule (SCH) 40 polyvinyl chloride (PVC) casing. The well screens were 10-ft in length with #6-slot (0.006-in.). A 30/45 graded silica sand was placed around the screen to a height of 2 to 3 ft above the top of the screen. A seal of 30/65 graded fine silica sand was placed above the sand filter around the screen. The remaining annular space from the top of the fine sand filter seal to the existing ground surface was grouted using a tremie pipe with a cement/bentonite mixture containing no more than 5 percent bentonite by dry weight. The PVC well casings were extended approximately 2.5 to 3 ft above the existing ground surface. Surface completion consisted of a protective aluminum casing with a lockable cover set in a concrete pad. Each well was provided with a well cap, padlock, and an identification label. A summary of the monitoring well construction details are presented in **Table 1**.

2.2 Turbidity Issues

As discussed in the baseline water quality reports for the Phase 1, and Phases 2 and 3 monitoring networks, the formation around the screened intervals consists primarily of a fine, brown to dark brown, silty sand. Due to the subsurface formation properties, fine-grained and colloidal material are able to pass through the sand filter pack in many wells, primarily in the B-zone and C-zone wells. This is the case even though the wells are constructed using the smallest screen slot size (0.006 in.) commonly available. Most of the intermediate and deep wells had turbidity values in excess of the 20 nephelometric turbidity unit (NTU) criterion even after extended well development and the removal of multiple well volumes.

The difficulty in attaining the desired turbidity criterion was originally discussed at a meeting between Geosyntec and FDEP on 12 January 2004 during the well development activities associated with the wells installed as part of the Phase 1 development. Geosyntec notified FDEP again on 14 September 2007 of the elevated turbidity levels even after extended well development during development of the Phases 2 and 3 monitoring wells. In accordance with these discussions, it was agreed to collect field-filtered (1-micron) and unfiltered samples for metals analyses for any sample with a turbidity value greater than 20 NTU. The data generated by the dual sampling is expected to help demonstrate: (i) what effect turbidity may have on metal analyses (i.e., compare total and dissolved metals concentrations); and (ii) whether groundwater samples with turbidities greater than 20 NTU showed higher concentrations of metals than those samples with turbidities less than 20 NTU.

3. MONITORING WELL SAMPLING

3.1 Sampling Locations and Procedures

In accordance with the MPIS, twenty-six (26) monitoring wells installed as part of the Phase 1 development and six (6) of the monitoring wells installed as part of the Phase 2 and 3 development were sampled during the 20th semi-annual sampling event. Monitoring wells sampled this monitoring event included A and B-zone monitoring wells MW-1 through MW-13, MW-16R, MW-22R and MW-23. Low-flow sampling techniques were used for groundwater sample collection. All groundwater sampling was performed in accordance with the current applicable FDEP Standard Operating Procedures (DEP-SOP-001-01, December 2008) for groundwater sampling. Additionally, for quality control (QC) purposes, one blind duplicate sample and one equipment blank were collected and analyzed. Peristaltic pumps were used to purge and sample each monitoring well using new tubing (silicone and/or polyethylene) at each well.

During the purging process, a YSI 556 water quality meter equipped with a flow-through cell was used to monitor the following field parameters: pH; temperature; field conductivity; oxidation-reduction potential (ORP); and dissolved oxygen. Turbidity levels were measured using a LaMotte 2020e turbidity meter. Field parameters were recorded on sample collection forms, which are contained in **Appendix B**. Observations pertaining to the color of the groundwater samples collected were also noted on the sample collection forms. When the field parameters stabilized within the acceptable tolerances required by the FDEP SOP, well purging was considered complete and groundwater samples were collected.

Volatile organic compound (VOC) sample vials were filled by removing the down well sample tubing, disconnecting the tubing from the water quality meter flow through cell, and reversing the flow direction on the peristaltic pump. The calibration of the water quality monitoring instruments was checked daily and re-calibrated when necessary. Water quality instrument calibration forms are presented in **Appendix C**. Samples were placed in coolers and packed with bagged ice for transport to the analytical laboratory. Chain-of-Custody (COC) forms were completed and accompanied the samples to the analytical laboratory. All COC forms are included in **Appendix D**. Trip blank samples accompanied all sample coolers with VOC samples. Temperature blanks were packed in each sample cooler and security seals were affixed to every cooler shipped.

3.2 Sample Analyses

Samples were analyzed by ALS Environmental of Jacksonville, Florida (ALS) in accordance with the National Environmental Laboratory Accreditation Conference (NELAC) standards. ALS holds certification from the Florida Department of Health (FDOH) for the analytical test

methods used for this project and is certified in the State of Florida for analysis of environmental samples.

Groundwater samples were analyzed by ALS for total ammonia as nitrogen, chlorides, nitrate as nitrogen, total dissolved solids (TDS), iron, mercury, sodium and the 40 Code of Federal Regulations (CFR) Part 258 Appendix I parameters. Other required parameters (i.e., pH; temperature; conductivity; turbidity; ORP; and dissolved oxygen) were measured in the field during collection of the groundwater samples.

4. ANALYTICAL RESULTS

4.1 Field Parameters

Table 2 provides a summary of the field measurements of selected water quality parameters utilized for determining sample stability for this semi-annual monitoring event.

4.2 Groundwater Monitoring Wells

The analytical laboratory results for this groundwater sampling event have been transferred to a compact disc (CD) and are included in **Appendix E**. Analytical results have been summarized in **Table 3** to show all parameters where a constituent concentration was reported above the applicable FDEP Groundwater Cleanup Target Level (GCTL). Any parameter exceeding the GCTL has been highlighted orange. The following discussion regarding groundwater quality is limited to those parameters where the GCTL was exceeded in at least one groundwater monitoring well and has been organized by analytical method.

Total Metals (Methods 6020 and 6010B)

<u>Arsenic</u>

Arsenic was reported above the GCTL of 10 micrograms per liter (μ g/L) at MW-13A (10.4 μ g/L). Please note in the MPIS under item 5, the FDEP has accepted a background arsenic concentration of 20 μ g/L in MW-13A.

<u>Iron</u>

Iron was reported above the GCTL of 300 μ g/L in each of the sixteen (16) A-zone monitoring wells sampled with the concentrations ranging between 690 and 24,200 μ g/L, with the highest concentration from MW-13A. Iron was detected above the GCTL in each of the sixteen (16) B-zone monitoring wells sampled this event with concentrations ranging between 330 and 50,600 μ g/L, with the highest concentration from MW-9B. Iron has historically exceeded the GCTL in all wells at the site for all monitoring events including the baseline events. The iron concentrations reported for the 20th semi-annual event are consistent with period of record data.

<u>Sodium</u>

Sodium was detected above the GCTL of 160 milligrams per liter (mg/L) in shallow monitoring well MW-1A (297 mg/L) which is lower than the result from the previous event (336 mg/L). The remaining monitoring wells are consistent with period of record data.

Ammonia-N (Method 350.1)

Ammonia-N was reported above the GCTL of 2.8 mg/L in eleven (11) of the A-zone monitoring wells sampled this event with the concentrations ranging between 3.62 and 19.6 mg/L, with the highest concentration from MW-1A. The GCTL for Ammonia-N was exceeded in B-zone monitoring wells MW-5B (2.94 mg/L) and MW-10B (4.64 mg/L).

As indicated in correspondence by HDR, (Class I Permit Renewal Request for Additional Information – January 2012), given that the JED facility is a double geosynthetically lined landfill including a witness zone (secondary liner), an alternative and probable source of ammonia in groundwater at the JED facility includes naturally occurring sources of nitrogen containing compounds present in the organic rich soils. Under the right biogeochemical conditions, nitrogen containing compounds can be converted to ammonia under reducing geochemical conditions. Reducing conditions can be formed in a variety of ways including, shadow effect due to reduction of oxygen rich precipitation infiltration over a large area, displacement of oxygen by landfill gas immediately above the water table, and release of organic matter which promotes the growth of microorganisms which can consume oxygen.

As HDR noted, reductive dissolution is a plausible explanation for the detection of ammonia at the facility. Researchers have recently found good correlation with arsenic and ammonia with iron which supports the concept of reductive dissolution of iron hydroxide as a dominant reaction mobilizing these compounds in groundwater. The reductive dissolution of iron and the associated mobilization of iron in groundwater are well documented in literature. More recent research demonstrates this same mechanism can explain the release of arsenic at landfills. The mechanisms of iron and arsenic chemistry are well established; however, the presence of ammonia in groundwater at landfills has only recently been evaluated.

It has been reported that ammonium will co-precipitate with iron. Conversely as a result of reductive dissolution, ammonium would be mobilized in the groundwater if no other adsorption sites are readily available for the ammonium cation. As a cation, ammonium may be bound to soil particles through ion exchange. If high concentrations of Fe^{+2} are released (such as those that occur during reductive dissolution), an increase in ammonium ion concentrations in groundwater would be expected.

A large scale leachate release would produce pronounced concentration increases of leachate indicator parameters (i.e. TDS, chloride, sodium) in groundwater, but the increases in ammonia seem to occur at the onset of construction without correlation to the filling sequence. Neither the constituents nor the concentrations detected in groundwater appear to correlate well with leachate. As discussed in the recent 4th Technical Report on Water Quality, if detections in groundwater were due to a direct leachate release, the concentrations of various indicator constituents (such as chloride, sodium etc.) found in groundwater should be relatively proportional to those found in leachate samples, particularly given the close

proximity of the groundwater wells to the leachate sumps, however this is not the case. The VOC's (and concentrations) detected in leachate are markedly different than the VOC fingerprint at individual wells (which further supports landfill gas as the source of the benzene in groundwater). A direct release of leachate should also indicate proportional levels of other indicator compounds such as sodium, chloride and metals concurrent with ammonia.

Although ammonia is considered a common leachate indicator, no definitive evidence of a leachate discharge exists. The preponderance of evidence does support the concept that the source of ammonia is from reductive dissolution reactions mobilizing ammonia present in site soils. Shallow groundwater at the site is strongly reducing favoring the process of reductive dissolution.

Total Dissolved Solids (Method SM 2540C)

TDS was detected above the GCTL of 500 mg/L in A-zone monitoring wells MW-1A (1,200 mg/L), MW-4A (678 mg/L) and MW-8A (1,570 mg/L) and in B-zone monitoring wells MW-3B (1,090 mg/L), MW-4B (1,520 mg/L), MW-7B (600 mg/L), MW-9B (1,240 mg/L) and MW-10B (627 mg/L). TDS is an indicator parameter whose value can be attributable to the presence of major cations and anions, such as calcium, magnesium, sodium, chloride, and sulfate.

Chloride (Method 300.0)

Chloride was detected above the GCTL of 250 mg/L in shallow monitoring well MW-1A (544 mg/L) which is lower than the result from the previous event (617 mg/L). The remaining monitoring wells are consistent with period of record data.

40 CFR Part 258, Appendix I Volatile Compounds (Method 8260)

Benzene was detected above the GCTL of $1.0 \,\mu\text{g/L}$ in eleven (11) A-zone monitoring wells at concentrations ranging from 1.2 to 7.8 $\mu\text{g/L}$, with the highest concentration from MW-1A.

As indicated in correspondence by HDR (Class I Permit Renewal Request for Additional Information – January 2012) and by Geosyntec (Groundwater Contamination and Landfill Gas Migration Investigation and Assessment – December 2013) the source of benzene in groundwater is likely attributed to landfill gas. As noted in the previous discussion for detections of Ammonia-N, neither the constituents nor the concentrations of VOC's detected in groundwater appear to correlate well with leachate results. As discussed in the 4th Technical Report, if detections in groundwater were due to a direct leachate release, the concentrations of various indicator constituents (such as chloride, sodium etc.) found in groundwater should be relatively proportional to those found in leachate samples, particularly given the close proximity of the groundwater wells to the leachate sumps, however this is not

the case with the exception of at MW-1A. The VOC's (and concentrations) detected in leachate are markedly different than the VOC fingerprint at individual wells (which further supports landfill gas as the source of the benzene in groundwater).

4.3 Data Validation

All analyses were performed within the method specified holding times.

One blind duplicate sample was collected during the 20th semi-annual monitoring event. The duplicate sample was collected at monitoring well MW-2A. Results of the duplicate samples are included in **Table 3**. Duplicate sample bottles were collected immediately following the original samples to assure near identical conditions were maintained during sampling. In addition, an equipment blank was collected in the field using a peristaltic pump with new tubing (silicone and polyethylene). De-ionized water supplied by ALS was pumped through the tubing and analyzed for the same parameters as the groundwater samples. Analysis of the equipment blank sample resulted in a detection of 1,4-Dichlorobenzene (0.16 μ g/L), acetone (9.1 μ g/L) and methylene chloride (4.5 μ g/L) at concentrations below the Practical Quantitation Limit (PQL). All other constituents analyzed for were not detected in the equipment blank sample.

To confirm sample validity, a relative percent difference (RPD) calculation was performed between the original sample and a blind duplicate sample. The average RPD for the duplicate sample was below two percent which indicates a strong correlation. This analysis shows that the laboratory analytical results are validated.

Additionally, the surrogate recovery, trip blanks, method blanks, matrix spike and matrix spike duplicates were within acceptable criterion on each laboratory report.

4.4 Impact of Turbidity on Metals Concentrations

The use of a peristaltic pump and the minimum purge requirements were adequate to achieve turbidity levels less than the FDEP guidance of 20 NTUs in all of the wells sampled this event. Historical data shows that the turbidity levels for the monitoring well network has improved over the course of the semi-annual groundwater sampling events. The need to collect dissolved metal samples in the current well network may no longer be necessary; however, newly installed monitoring wells may still require the collection of a sample for dissolved metals analysis.

5. GROUNDWATER LEVEL MEASUREMENTS AND FLOW DIRECTION

5.1 Field Measurements

Groundwater level measurements were obtained on 5 May 2014 from all Phases 1 through 3 groundwater monitoring wells and the remaining piezometers installed as part of the original site hydrogeological investigation. All groundwater level measurements were made within an approximate 4-hr period. The groundwater level measurements from the monitoring wells and piezometers are presented in **Table 4**.

5.2 Water Level Contours

The water level contour map prepared from groundwater level measurements for the surficial aquifer in the A-zone (shallow) is presented in **Figure 1**. Historically, the direction of the horizontal component of groundwater flow for all three zones is predominantly east-northeast towards Bull Creek. The groundwater level elevation data collected on 5 May 2014 from the A-zone monitoring well network indicate the direction of groundwater flow is consistent with the historic data.

Historically, comparison of water levels between the A, B and C wells shows a similar vertical gradient ($6E^{-3}$ ft/ft). These gradients are consistent with the regional gradient in the upper surficial aquifer and indicate an interconnected, sluggish flow regime in the saturated zone above the Intermediate Confining Unit (ICU).

6. SURFACE WATER SAMPLING

6.1 Sampling Locations and Procedures

Two (2) surface water sampling locations established during the initial hydrogeological investigation were selected by FDEP for routine water quality monitoring. As stated in the Permit, surface water samples are only to be collected when there is flow in Bull Creek.

At the time of completion of the 20th semi-annual water quality monitoring event, flow was observed in Bull Creek at the upstream monitoring station (SW-4) and the downstream monitoring location (SW-3), as a result two surface water samples were collected. Surface water samples were collected from the approximate center of Bull Creek. A YSI 556 water quality meter was used to measure field parameters including temperature, pH, dissolved oxygen and specific conductance at each sampling location. Turbidity levels were measured using a LaMotte 2020e turbidity meter. Surface water samples were collected in accordance with FDEP surface water sampling SOPs.

6.2 Sample Analyses

Surface water samples were analyzed by ALS in accordance with the NELAC (National Environmental Laboratory Accreditation Conference) standards for unionized ammonia, total hardness as CaCO₃, total organic carbon (TOC), chlorides, nitrate, total dissolved solids (TDS), total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen as N, nitrate as N, total phosphates as P, chlorophyll A, iron, mercury, fecal coliform, and the 40 CFR, Part 258 Appendix I parameters. Other required parameters (e.g., pH; temperature; specific conductance; turbidity; and dissolved oxygen) were field measured during collection of the surface water samples.

6.3 Field Measurements and Analytical Results

Table 5 provides a summary of the final field parameter values and laboratory analytical results for the surface water samples. The analytical laboratory results have been transferred to a CD and are included in **Appendix E**.

Parameters exceeding the Surface Water Quality Criteria (SWQC) Class III concentrations are discussed below:

Dissolved Oxygen

The dissolved oxygen reading observed in SW-4 was above the SWQC of 5 mg/L. It should be noted that the detected concentration in the background monitoring station (SW-4) is greater than the down-gradient monitoring location (SW-3), indicating that the landfill is most likely not contributing to the exceedance for dissolved oxygen.

<u>pH</u>

The pH concentrations at SW-3 and 4 were both lower than the SWQC range of 6-8.5 standard units, but are consistent with normal ranges of pH as measured in rainfall (i.e., precipitation).

<u>Iron</u>

The SWQC for iron of 1 mg/L was exceeded in SW-3 and SW-4 at concentrations of 1.33 mg/L and 1.78 mg/L, respectively. For this constituent it should be noted that the detected concentration in the background monitoring station (SW-4) and the down-gradient monitoring location are similar, indicating that the landfill is not contributing to the exceedance for iron.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Sampling Locations

The existing monitoring well network is adequate for monitoring purposes and no changes are recommended.

7.2 Sample Analyses

The detections of ammonia, iron, and arsenic above the GCTLs in specific groundwater monitoring wells have been discussed in detail in the 1st, 2nd, 3rd and 4th Technical Reports on Water Quality (November 2006, September 2008, November 2010 and November 2011, respectively). As discussed in Section 4.2, it is likely that the iron, arsenic and ammonia are not related to a leachate release from the disposal boundary, but rather mobilization of these constituents due to the presence of nitrogen containing compounds under reducing conditions. Our recommendation is to continue to monitor these constituents as part of the current MPIS and provide a review of the data collected during the prior six sampling events in the upcoming 5th Technical Report.

The detections of sodium and chloride above the GCTLs in groundwater monitoring well MW-1A have decreased since the 19th semi-annual water quality monitoring event. Sodium and chloride are leachate indicator parameters; however the concentrations seen in MW-1A are well below those observed in past leachate analyses. A release of leachate is not suspected to be the cause of the increased sodium and chloride. Rather, these detections are likely due to stormwater runoff and cover soil erosion from uncapped areas that occurred within the past year directly upslope of the Cell 5 sump area and MW-1A. Omni has assessed the stormwater drainage issues in this area and is in the process of installing additional stormwater downpiping and an outfall structure in this area. These improvements are expected to correct stormwater drainage issues in the vicinity of MW-1A and therefore, the concentrations of sodium and chloride are expected to decrease in the well over time. Our recommendation is to continue to monitor these constituents as part of the current MPIS.

Compliance monitoring activities were initiated in November 2013 to further assess groundwater conditions adjacent to MW-3A, MW-10A and MW-11A. These activities included the installation of compliance assessment wells CW-1A, CW-2A and CW-3A at the locations indicated on **Figure 1**. The monitoring well installation details and sample analyses will be provided under separate cover.

Our recommendation is to continue semi-annual monitoring as stipulated in the current MPIS and continuation of the quarterly monitoring at CW-1A, CW-2A and CW-3A.

TABLES

Table 1 (1 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 20th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

							Screen Setting					
Well Designation	Latitude (NAD83)	Longitude (NAD83)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet l	втос)	•	levation /D29)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
-					(feet NGVD29)		Тор	Bottom	Тор	Bottom		(feet BTOC)
MW-1A	28 03 48.55	81 05 59.88	19900	9-Dec-03	95.12	23.0	13.0	23.0	82.1	72.1	10.6	8.2
MW-2A	28 03 51.99	81 05 59.90	19903	10-Dec-03	95.21	22.6	12.6	22.6	82.6	72.6	10.3	8.9
MW-3A	28 03 55.34	81 05 59.91	19906	11-Dec-03	94.64	22.8	12.8	22.8	81.9	71.9	10.4	9.0
MW-4A	28 03 58.97	81 05 59.92	19909	12-Dec-03	95.48	23.1	13.1	23.1	82.4	72.4	10.8	9.4
MW-5A	28 04 02.92	81 05 59.95	19912	24-Nov-03	95.32	22.5	12.5	22.5	82.8	72.8	10.1	9.1
MW-6A	28 04 06.50	81 05 59.15	19915	25-Nov-03	94.72	22.6	12.6	22.6	82.2	72.2	10.6	8.6
MW-7A	28 04 07.13	81 05 54.78	19918	26-Nov-03	95.48	23.3	13.3	23.3	82.2	72.2	10.3	9.3
MW-8A	28 04 06.20	81 05 50.64	19921	5-Dec-03	94.67	22.5	12.5	22.5	82.2	72.2	10.2	8.6
MW-9A	28 04 04.34	81 05 46.60	19924	4-Dec-03	94.66	22.4	12.4	22.4	82.3	72.3	10.0	8.6
MW-10A	28 04 00.07	81 05 44.77	19927	3-Dec-03	96.25	22.1	12.1	22.1	84.1	74.1	9.8	7.6
MW-11A	28 03 55.43	81 05 43.27	19930	3-Dec-03	93.56	22.8	12.8	22.8	80.7	70.7	10.5	9.1
MW-12A	28 03 52.08	81 05 43.26	19933	2-Dec-03	95.10	23.0	13.0	23.0	82.1	72.1	10.7	9.3
MW-13A	28 03 48.67	81 05 43.25	19936	8-Dec-03	95.19	22.5	12.5	22.5	82.7	72.7	10.2	7.7
MW-14A					Monitoring Well	Abandoned 10 Ju	uly 2007					
MW-15A					Monitoring Well	Abandoned 10 Ju	uly 2007					
MW-16A					Monitoring Well	Abandoned 24 Ju	ine 2013					
MW-16AR	28 03 44.56	81 05 40.18	22342	15-Oct-13	95.01	23.9	13.5	23.5	81.5	71.5	9.0	8.0
MW-17A					Monitoring Well	Abandoned 5 Mar	rch 2014					
MW-18A					Monitoring Well	Abandoned 5 Mar	rch 2014					
MW-19A					Monitoring Well	Abandoned 5 Mar	rch 2014					
MW-20A					Monitoring Well	Abandoned 24 Ju	ine 2013					
MW-21A					Monitoring Well	Abandoned 5 Mar	rch 2014					
MW-22A	Monitoring Well Abandoned 11 November 2011											
MW-22AR	28 03 34.703	81 06 0.622	28685	14-Mar-12	95.00	23.7	13.0	23.0	82.0	72.0	10.5	9.5
MW-23A	28 03 42.41	81 05 59.79	22363	25-Sep-07	97.90	27.8	17.3	27.3	80.7	70.7	15.3	14.3
MW-24A	28 03 10.54	81 05 30.92	27860	26-Aug-10	86.97	23.34	23.3	23.3	63.6	63.6	23.3	23.3
MW-25A	28 03 26.45	81 05 30.47	27861	26-Aug-10	82.36	23.49	23.5	23.5	58.9	58.9	23.5	23.5
MW-26A	28 03 20.38	81 05 21.22	27862	26-Aug-10	82.01	23.83	23.8	23.8	58.2	58.2	23.8	23.8

Notes:

NAD83 indicates the North American Datum of 1983

NGVD29 indicates the National Geodetic Vertical Datum of 1929

TOC indicates top of casing

BTOC indicates below top of casing

Table 1 (2 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 20th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD83)	Longitude (NAD83)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	BTOC)	•	levation /D29)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
Ū	· · ·				(feet NGVD29)		Тор	Bottom	Тор	Bottom	((feet BTOC)
MW-1B	28 03 48.59	81 05 59.89	19901	9-Dec-03	95.00	47.9	37.9	47.9	57.1	47.1	35.6	33.1
MW-2B	28 03 51.94	81 05 59.90	19904	10-Dec-03	95.17	48.3	38.3	48.3	56.9	46.9	36.0	34.6
MW-3B	28 03 55.31	81 05 59.91	19907	11-Dec-03	94.68	47.6	37.6	47.6	57.1	47.1	35.3	33.9
MW-4B	28 03 59.01	81 05 59.92	19910	12-Dec-03	95.18	47.4	37.4	47.4	57.8	47.8	35.1	33.5
MW-5B	28 04 02.88	81 05 59.95	19913	24-Nov-03	95.30	47.1	37.1	47.1	58.2	48.2	34.4	32.7
MW-6B	28 04 06.48	81 05 59.18	19916	25-Nov-03	94.60	47.4	37.4	47.4	57.2	47.2	34.9	33.5
MW-7B	28 04 07.13	81 05 54.81	19919	26-Nov-03	95.27	47.5	37.5	47.5	57.8	47.8	34.5	33.5
MW-8B	28 04 06.19	81 05 50.60	19922	5-Dec-03	94.58	49.6	39.6	49.6	55.0	45.0	37.1	35.6
MW-9B	28 04 04.31	81 05 46.56	19925	4-Dec-03	94.63	49.1	39.1	49.1	55.5	45.5	36.8	35.3
MW-10B	28 04 00.04	81 05 44.75	19928	3-Dec-03	96.23	48.3	38.3	48.3	58.0	48.0	35.9	33.9
MW-11B	28 03 55.40	81 05 43.27	19931	2-Dec-03	93.59	47.9	37.9	47.9	55.7	45.7	35.5	34.0
MW-12B	28 03 52.05	81 05 43.27	19934	1-Dec-03	95.01	49.0	39.0	49.0	56.1	46.1	36.6	35.1
MW-13B	28 03 48.64	81 05 43.24	19937	8-Dec-03	95.12	47.2	37.2	47.2	58.0	48.0	34.8	33.4
MW-14B					Monitoring Well	Abandoned 10 Ju	uly 2007					
MW-15B	Monitoring Well Abandoned 10 July 2007											
MW-16B					Monitoring Well	Abandoned 24 Ju	ine 2013					
MW-16RBR	28 03 44.54	81 05 40.14	22343	15-Oct-13	94.97	46.6	36.5	46.5	58.5	48.5	33.0	31.0
MW-17B					Monitoring Well	Abandoned 5 Ma	rch 2014					
MW-18B					Monitoring Well	Abandoned 5 Ma	rch 2014					
MW-19B					Monitoring Well	Abandoned 5 Ma	rch 2014					
MW-20B	Monitoring Well Abandoned 24 June 2013											
MW-21B	Monitoring Well Abandoned 5 March 2014											
MW-22B	Monitoring Well Abandoned 11 November 2011											
MW-22BR	28 03 34.665	81 05 59.850	28686	15-Mar-12	94.86	46.1	35.5	45.5	59.4	49.4	33.0	28.0
MW-23B	28 03 42.46	81 05 59.79	22364	25-Sep-07	97.91	42.75	32.3	42.3	65.7	55.7	30.3	29.3

Notes:

NAD83 indicates the North American Datum of 1983

NGVD29 indicates the National Geodetic Vertical Datum of 1929

TOC indicates top of casing

BTOC indicates below top of casing

Table 1 (3 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 20th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD83)	Longitude (NAD83)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet l	втос)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
Ū		、 <i>,</i>			(feet NGVD29)		Тор	Bottom	Тор	Bottom	((feet BTOC)
MW-1C	28 03 48.63	81 05 59.88	19902	9-Dec-03	95.18	75.2	65.2	75.2	30.0	20.0	62.9	61.4
MW-2C	28 03 51.90	81 05 59.89	19905	10-Dec-03	95.32	68.4	58.4	68.4	36.9	26.9	56.1	53.7
MW-3C	28 03 55.28	81 05 59.91	19908	11-Dec-03	94.66	68.7	58.7	68.7	36.0	26.0	56.3	54.8
MW-4C	28 03 59.04	81 05 59.92	19911	12-Dec-03	95.39	72.5	62.5	72.5	32.9	22.9	61.2	59.6
MW-5C	28 04 02.83	81 05 59.95	19914	24-Nov-03	95.39	73.0	63.0	73.0	32.4	22.4	60.7	58.7
MW-6C	28 04 06.46	81 05 59.22	19917	25-Nov-03	94.58	73.2	63.2	73.2	31.4	21.4	60.2	57.7
MW-7C	28 04 07.13	81 05 54.86	19920	25-Nov-03	94.93	73.3	63.3	73.3	31.6	21.6	60.3	59.3
MW-8C	28 04 06.17	81 05 50.55	19923	5-Dec-03	94.50	73.9	63.9	73.9	30.6	20.6	61.6	59.8
MW-9C	28 04 04.29	81 05 46.53	19926	4-Dec-03	94.54	73.8	63.8	73.8	30.8	20.8	61.4	59.4
MW-10C	28 04 00.01	81 05 44.74	19929	3-Dec-03	96.36	73.7	63.7	73.7	32.7	22.7	61.4	60.0
MW-11C	28 03 55.36	81 05 43.26	19932	2-Dec-03	93.65	73.4	63.4	73.4	30.3	20.3	61.0	59.6
MW-12C	28 03 52.01	81 05 43.26	19935	1-Dec-03	95.10	73.6	63.6	73.6	31.5	21.5	60.2	58.7
MW-13C	28 03 48.60	81 05 43.25	19938	8-Dec-03	95.04	73.0	63.0	73.0	32.1	22.1	60.7	58.2
MW-14C					Monitoring Well	Abandoned 10 Ju	uly 2007					
MW-15C					Monitoring Well	Abandoned 10 Ju	uly 2007					
MW-16C				-	Monitoring Well	Abandoned 24 Ju	ne 2013					
MW-16CR	28 03 44.52	81 05 40.11	22344	16-Oct-13	95.03	75.3	65.0	75.0	30.0	20.0	60.0	59.0
MW-17C					Monitoring Well	Abandoned 5 Mar	rch 2014					
MW-18C					0	Abandoned 5 Ma						
MW-19C					\$	Abandoned 5 Ma						
MW-20C	Monitoring Well Abandoned 24 June 2013											
MW-21C	, , , , , , , , , , , , , , , , , , ,											
MW-22C				N	Monitoring Well Ab	andoned 11 Nove	mber 2011					
MW-22CR	28 03 34.629	81 05 59.854	28687	15-Mar-12	95.13	66.6	56.0	66.0	39.1	29.1	50.0	49.0
MW-23C	28 03 42.51	81 05 59.80	22365	24-Sep-07	97.93	67.1	56.6	66.6	41.4	31.4	54.6	53.6
MW-27C	28 03 12.45	81 05 17.15	27863	27-Aug-10	81.66	58.3	48.3	58.3	33.4	23.4	46.3	45.3

Notes:

NAD83 indicates the North American Datum of 1983

NGVD29 indicates the National Geodetic Vertical Datum of 1929

TOC indicates top of casing

BTOC indicates below top of casing

SUMMARY OF FINAL FIELD PARAMETER RESULTS AND FIELD DATA 20th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Monitoring Well	Temperature (°C)	pH (Standard Units)	Specific Conductance (uS/cm)	Turbidity (NTUs)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Purging Method
MW-1A	25.92	4.66	2,344	1.3	-1.1	0.54	Peristaltic Pump
MW-2A	24.14	3.80	398	0.8	69.0	0.74	Peristaltic Pump
MW-3A	28.89	5.25	768	2.3	11.3	0.51	Peristaltic Pump
MW-4A	28.83	5.07	1,054	7.2	-13.6	0.51	Peristaltic Pump
MW-5A	25.30	5.20	370	18.7	12.6	0.74	Peristaltic Pump
MW-6A	26.05	4.89	473	0.5	15.4	1.06	Peristaltic Pump
MW-7A	25.85	4.67	284	0.7	23.9	0.63	Peristaltic Pump
MW-8A	24.89	4.29	1,698	0.3	18.3	0.69	Peristaltic Pump
MW-9A	25.83	4.99	310	8.8	22.2	0.66	Peristaltic Pump
MW-10A	25.04	4.81	249	1.7	42.3	0.83	Peristaltic Pump
MW-11A	26.07	4.88	428	4.4	24.6	0.60	Peristaltic Pump
MW-12A	26.92	4.29	180	0.0	60.4	0.78	Peristaltic Pump
MW-13A	27.10	5.08	545	0.0	49.3	0.60	Peristaltic Pump
MW-16AR	25.15	5.37	164	2.3	34.7	1.18	Peristaltic Pump
MW-22AR	22.68	5.15	357	0.6	46.5	0.67	Peristaltic Pump
MW-23A	25.64	5.26	651	1.5	2.2	0.66	Peristaltic Pump
MW-1B	25.84	4.42	106	1.5	58.6	0.67	Peristaltic Pump
MW-2B	24.93	4.34	66	0.6	65.5	0.71	Peristaltic Pump
MW-3B	27.78	4.09	1,395	0.6	26.9	0.56	Peristaltic Pump
MW-4B	28.92	3.73	1,844	2.5	120.5	0.65	Peristaltic Pump
MW-5B	25.54	3.81	945	2.1	68.7	1.37	Peristaltic Pump
MW-6B	26.40	4.79	95	0.0	41.9	0.78	Peristaltic Pump
MW-7B	24.91	4.30	827	0.0	34.0	1.52	Peristaltic Pump
MW-8B	24.47	4.43	465	1.8	34.1	1.34	Peristaltic Pump
MW-9B	25.92	4.10	1,435	0.0	67.4	0.80	Peristaltic Pump
MW-10B	25.38	4.10	869	0.3	65.9	1.17	Peristaltic Pump
MW-11B	25.80	4.62	117	2.1	59.0	1.05	Peristaltic Pump
MW-12B	26.74	4.38	120	0.2	82.7	0.82	Peristaltic Pump
MW-13B	26.11	4.42	140	0.4	66.1	0.58	Peristaltic Pump
MW-16BR	24.71	4.88	93	12.0	39.6	1.28	Peristaltic Pump
MW-22BR	22.91	4.40	106	2.1	40.6	1.05	Peristaltic Pump
MW-23B	25.04	4.09	407	0.4	53.2	0.89	Peristaltic Pump

Notes:

°C indicates degrees Celsius

uS/cm indicates micro Siemens per centimeter

NTU indicates Nephelometric Turbidity Units

mV indicates millivolts

mg/L indicates milligram per liter

SUMMARY OF GROUNDWATER ANALYTICAL DATA 20th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

	1,4-Dichlorobenzene	Benzene	Ethylbenzene	Toluene	Total Xylenes	Arsenic	Barium	Beryllium	Cobalt	Chromium	Copper	Iron	Nickel	Lead	Selenium	Sodium	Vanadium	Zinc	Ammonia	Chloride	TDS
Well ID	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (mg/L)	GCTL (ug/L)	GCTL (ug/L)	GCTL (mg/L)	GCTL (mg/L)	GCTL (mg/L)
	75	1	700	40	10,000	10	2,000	4	420	100	1,000	300	100	15	50	160	49	5,000	2.8	250	500
					,		_,				.,							-,			
MW-1A	2.6	7.8	0.48 i	0.19 u	2.2	i 3.2	71.9	0.04 i	3.0	3.1	0.5 i	16,200	6.6	0.21 i	2.3	297	12.2	4.2 i	19.6	544	1,200
MW-1B	0.16	u 0.21 u	ı 0.21 u	0.19 u	u 0.31	u 0.6 i	12.0	0.04 u	0.07 i	i 0.5 i	0.3 u	330	0.5 u	ι 0.12 ι	1.1 u	12.0	0.3 ι	4.3 i	0.462	21.8	73
MW-2A	0.16	u 0.21 u	ı 0.21 u	0.19 u	u 0.31	u 0.5 u	43.0	0.12 i	2.1	2.1	0.3 u	6,900	3.1	0.12 ι	1.1 ^u	20.7	2.4	3.2 i	1.92	39.2	255
Dup (MW-2A)	0.16	u 0.21 u	ı 0.21 u	0.19 u	J 0.31	u 0.5 u	41.7	0.11 i	2.1	2.0	0.3 u	6,930	3.1	0.12 ι	1.1 ^u	21.0	2.4	3.2 i	1.93	38.9	241
MW-2B	0.16	u 0.21 u	i 0.21 u	0.19 u	u 0.31	u 0.5 u	9.0	0.04 i	0.3 i	i 0.3 i	0.3 u	870	0.5 u	ι 0.12 ι	1.1 ^u	6.26	0.4	i 1.6 u	0.106	11.5	40
MW-3A	1.2	6.5	1.1	0.19 u	J 0.19	i 1.5	22.1	0.04 u	1.2	3.1	0.8 i	6,580	1.1 i	0.17 i	1.1 u	60.1	14.1	1.6 u	7.89	98	382
MW-3A	0.16	u 1.1	0.21 u	0.19	0.19	u 0.8 i	181	0.69	8.3	0.2 i	0.3 u	32,700	3.1	0.17 I	1.1 u	41.9	1.8	1.0 0	0.703	26.2	1,090
	0110		0.21 4	0.110	0.01			0.00	0.0	0.2 .	0.0 4	02,100	0.1	0.12 0						20.2	1,000
MW-4A	0.16	u 2.9	0.21 u	0.19 (J 0.31	u 1.8	54.4	0.04 u	1.3	1.6	0.7 i	4,440	3.0	0.22 i	1.1 u	38.4	2.8	1.6 u	8.33	57.8	678
MW-4B	0.16	u 0.41 i	0.21 u	0.19 u	J 0.31	u 0.5 u	94.0	1.26	2.2	1.0	0.4 i	17,900	3.2	0.12 u	1.1 u	28.3	6.0	2.2 i	1.76	32.2	1,520
MW-5A	0.16	u 1.2	0.21 u	1.5	0.31	u 2.8	7.9	0.04 u	0.3 i	2.4	2.4	690	1.0 i	0.92	1.1 u	15.4	1.9	i 1.6 u	12.1	24.6	294
MW-5B	0.16	u 0.32 i	0.21 u	0.19 u	u 0.31	u 0.5 i	186	0.89	2.2	1.1	0.3 u	6,060	3.6	0.12 i	1.1 u	33.1	2.3	1.6 u	2.94	33.3	736
MW-6A MW-6B	0.16	u 2.3 u 0.21 u	0.21 u	0.19 0	0.31	u 1.5	11.0	0.04 u 0.07 i	0.9 i	0.9 i	0.3 u	18,600	0.6 i 0.5 u	0.12 u	1.1 u	40.7	2.2	1.6 u	6.93	97.5	200 57
IVIVV-0D	0.16	u 0.21 u	ı 0.21 u	0.19 ι	J 0.31	u 0.5 u	20.9	0.07 1	0.2 i	i 0.8 i	0.3 u	920	0.5 u	ι 0.12 ι	1.1 u	7.80	1.3	1.6 u	0.103	14.5	57
MW-7A	0.16	u 0.21 u	ı 0.21 u	0.19 (u 0.31	u 1.1	17.0	0.04 u	1.9	1.6	0.3 u	12,000	0.9 i	0.12 u	1.1 u	16.8	2.1	1.7 i	6.80	34.8	155
MW-7B	0.16	u 0.21 u	0.21 u	0.19 1	0.31	u 0.5 u	87.6	0.44 i	4.2	0.6 i	0.3 u	23,100	2.8	0.12 u	1.1 u	54.8	1.9	3.3 i	0.546	42.9	600
MW-8A	1.3	4.4	0.21 u	0.19 u	0.22	i 0.7 i	49.7	0.26 i	3.4	2.0	0.5 i	11,700	10.3	0.13 i	1.1 u	26.8	4.1	2.2 i	0.231	17.1	1,570
MW-8B	0.16	u 0.21 u	ı 0.21 u	0.19 u	u 0.31	u 0.7 i	137	0.12 i	2.0	0.3 i	0.3 u	9,860	1.2 i	0.25 i	1.1 u	28.3	2.1	3.1 i	0.350	58.0	283
MW-9A	1.5	6.6	0.21 u	0.21	0.35	i 2.7	8.4	0.04 u	0.5 i	2.3	2.1	1,820	1.7 i	0.37 i	1.1 u	26.8	1.6	i 2.9 i	5.57	20.5	205
MW-9B	0.16	u 0.21 u	i 0.21 u	0.19 u	J 0.31	u 0.6 i	41.0	2.32	16.6	1.8	0.3 u	50,600	6.4	0.12 ι	1.1 u	49.1	5.3	9.3	1.92	40.4	1,240
MW-10A	0.16	u 7.7	0.21 u	0.45	2.57	i 0.8 i	8.2	0.04 u	0.2 i	1.4	0.3 u	960	0.6 i	0.12 u	1.1 u	12.9	0.3	1.6 u	5.10	24.0	136
MW-10A	0.16	u 0.21 u	0.21 u	0.19	0.31	u 0.8 i	38.9	0.91	11.9	0.9 i	0.3 u	17,500	2.8	0.12 U	1.1 u	47.7	1.7	i 1.9 i	4.64	44.2	627
												,									
MW-11A	1.5	6.3	0.4 i	0.19 u	0.61	i 2.1	53.2	0.1 i	1.0 i	3.0	1.2	4,660	2.5	0.48 i	1.1 u	34.5	4.6	2.0 i	3.62	29.8	271
MW-11B	0.16	u 0.9 i	0.21 u	0.19 u	u 0.31	u 1.4	18.0	0.04 u	0.07 i	1.4	0.3 u	460	0.5 u	ı 0.39 i	1.1 u	16.9	1.8	i 1.6 u	0.042	17.9	80
MW-12A	0.16	u 4.3	0.21 u	0.19 u	0.56	i 1.4	20.7	0.11 i	1.4	1.1	0.3 u	2,520	2.6	0.12 ι	1.1 u	13.6	1.2	i 2.3 i	0.499	28.5	108
MW-12B	0.16	u 0.21 u	0.21 u	0.19 u	J 0.31	u 0.5 u	32.5	0.04 u	0.2 i	i 0.5 i	0.3 u	1,210	0.5 u	ι 0.12 ι	1.1 u	9.76	0.6	i 1.6 u	0.102	24.2	79
	0.40	4.7	0.04	0.40	0.04	10.1	00.0	0.00 ·		0.1		0.4.000				50.0			1.50	101	
MW-13A MW-13B	0.16	u 1.7 u 0.21 u	0.21 u 0.21 u	0.19 u 0.19 u	u 0.31 u 0.31	u 10.4 u 0.5 u	36.0 19.2	0.06 i 0.04 i	0.6 i 0.4 i	i 2.1 i 0.5 i	0.3 u 0.3 u	24,200 1,790	0.6 i 0.5 u	0.39 i 0.12 u	1.1 u 1.1 u	50.8 14.4	3.6 0.3 u	2.2 i 1.6 u	1.56 0.156	104 32.2	309 86
10100-130	0.16	u 0.21 u	0.21 u	0.19	0.31	u 0.5 u	19.2	0.04 1	0.4 1	0.5 1	0.3 u	1,790	0.5 u	0.12 0	1.1 U	14.4	0.3 (1 1.0 0	0.150	52.2	80
MW-16AR	0.16	u 0.21 u	u 0.21 u	0.43	0.31	u 0.7 i	15.4	0.04 u	0.1 i	1.4	0.3 u	770	0.7 i	0.18 i	1.1 u	5.90	1.8	i 2.3 i	1.41	9.7	114
MW-16BR	0.16	u 0.21 u	0.21 u	0.90	0.31	u 0.5 u	14.3	0.04 u	0.2 i	1.3	0.4 i	870	0.5 u	0.68	1.1 u	7.52	2.0	1.6 u	0.141	8.9	61
					1																
MW-22AR	0.16	u 0.21 u	ı 0.21 u	0.19 เ	u 0.31	u 0.9 i	27.0	0.04 u	0.1 i	2.4	0.3 u	7,600	0.5 u	ι 0.12 ι	1.1 u	21.2	3.2	4.1 i	5.00	27.5	231
MW-22BR	0.16	u 0.21 u	ı 0.21 u	0.19 ι	u 0.31	u 0.6 i	14.3	0.04 u	0.5 i	i 0.8 i	0.3 u	1,270	0.6 i	0.29 i	1.1 u	15.3	0.8	i 4.2 i	0.107	24.9	74
MW-23A	0.16	u 0.32 i	0.21 u	0.19 ι	J 0.31	u 1.1	15.2	0.04 u	0.3 i	2.1	0.3 u	930	1.1 i	0.12 u	1.1 u	23.9	3.3	5.1	4.74	23.1	433
MW-23B	0.16	u 0.21 u	ı 0.21 u	0.19 u	u 0.31	u 0.5 u	114	0.15 i	0.6 i	i 0.7 i	0.3 u	1,860	0.5 u	ι 0.12 ι	1.1 u	40.4	1.2	i 3.2 i	2.23	43.3	234

NOTES: Only parameters with detections above the Method Reporting Limit are shown.

GCTL indictates groundwater cleanup target level

μg/L indicates micrograms per liter

mg/L indicates milligrams per liter

u indicates that the compound was analyzed for but not detected at or above the value shown

i indicates the Reported Value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL)

indicates that the compond was detected above the PQL indicates that the compond was detected above the GCTL

(1 of 3) GROUNDWATER LEVEL MEASUREMENTS 20th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Location:	Osceola Count	ste Managemen ty, Florida	t Facility		ng Personnel: Id Conditions:	Joe Terry, Jon Lake clear, 72°F			
	5-May-2014			-					
Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations			
DP-1		•	Pie	zometer Abando	oned 3 October	2003			
DP-2			Pie	zometer Abando	oned 3 October	2003			
DP-3			Pie	zometer Abando	ned 16 January	/ 2006			
DP-4			Pie	zometer Abando	ned 16 January	/ 2006			
DP-5			F	iezometer Aban	doned 10 July 2	2007			
DP-6			P	iezometer Aban	doned 10 July 2	2007			
DP-7			P	iezometer Aban	doned 10 July 2	2007			
DP-8			P	iezometer Aban	doned 10 July 2	2007			
DP-9			P	iezometer Aban	doned 10 July 2	2007			
DP-10				iezometer Aban	,				
DP-11			F	iezometer Aban	doned 10 July 2	2007			
DP-12				ezometer Abandoned 10 July 2007					
DP-13			2007						
DP-14	10:10	81.97	2.91	18.62	79.06				
DP-15	10:10	81.98	3.12	53.70	78.86				
DP-16	10:21	82.57	3.11	18.53	79.46				
DP-17	10:21	82.58	3.14	53.75	79.44				
DP-18	10:37	84.38	4.10	52.90	80.28				
DP-19	10:37	84.34	3.97	18.40	80.37				
DP-20	10:30	83.07	3.26	18.35	79.81				
DP-21	10:30	83.00	3.29	53.68	79.71				
DP-22	10:00	81.00	2.36	18.63	78.64				
DP-23	10:01	81.27	2.45	53.73	78.82				
DP-24	NM	82.22	NM	18.52	NM	Not Measured, inaccesible, area flooded			
SZ-1		I		iezometer Aban					
SZ-2	10:30	83.16	5.12	75.39	78.04				
SZ-3	9:59	81.27	3.79	78.85	77.48				
MW-1A	11:00	95.12	14.42	23.19	80.70				
MW-1B	11:00	95.00	14.30	48.11	80.70				
MW-1C	11:00	95.18	14.55	74.63	80.63				
MW-2A	11:10	95.21	14.29	22.89	80.92				
MW-2B	11:10	95.17	14.28	48.31	80.89				
MW-2C	11:10	95.32	14.61	68.59	80.71				
MW-3A	11:15	94.64	13.73	23.02	80.91				
MW-3B	11:15	94.68	13.75	47.89	80.93				
MW-3C	11:15	94.66	13.85	69.02	80.81	<u> </u>			

(2 of 3) GROUNDWATER LEVEL MEASUREMENTS 20th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

-		ste Managemen	t Facility	-		Joe Terry, Jon Lake			
-	Osceola Cour	nty, Florida		Fie	ld Conditions:	clear, 72°F			
Date:	5-May-2014			-					
Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations			
MW-4A	11:20	95.48	14.55	23.33	80.93				
MW-4B	11:20	95.18	14.29	47.69	80.89				
MW-4C	11:20	95.39	14.75	72.73	80.64				
MW-5A	11:25	95.32	14.61	22.76	80.71				
MW-5B	11:25	95.30	14.77	47.36	80.53				
MW-5C	11:25	95.39	15.40	73.32	79.99				
MW-6A	11:30	94.72	15.35	22.88	79.37				
MW-6B	11:30	94.60	15.20	47.73	79.40				
MW-6C	11:30	94.58	15.42	73.28	79.16				
MW-7A	11:35	95.48	15.89	23.58	79.59				
MW-7B	11:35	95.27	15.71	48.18	79.56				
MW-7C	11:35	94.93	15.70	73.55	79.23				
MW-8A	11:45	94.67	14.76	22.76	79.91				
MW-8B	11:45	94.58	14.75	49.50	79.83				
MW-8C	11:45	94.50	16.11	73.99	78.39				
MW-9A	11:50	94.66	15.19	22.63	79.47				
MW-9B	11:50	94.63	15.22	49.33	79.41				
MW-9C	11:50	94.54	15.52	73.99	79.02				
MW-10A	12:00	96.25	17.32	22.43	78.93				
MW-10B	12:00	96.23	17.31	48.48	78.92				
MW-10C	12:00	96.36	17.60	73.83	78.76				
MW-11A	12:05	93.56	14.80	22.89	78.76				
MW-11B	12:05	93.59	15.00	48.03	78.59				
MW-11C	12:05	93.65	15.08	73.78	78.57				
MW-12A	12:15	95.10	16.30	23.27	78.80				
MW-12B	12:15	95.01	16.32	49.19	78.69				
MW-12C	12:15	95.10	16.45	73.79	78.65				
MW-13A	12:20	95.19	16.40	22.79	78.79				
MW-13B	12:20	95.12	16.32	47.46	78.80				
MW-13C	12:20	95.04	16.30	73.26	78.74				
MW-14A		ı		nitoring Well Aba	indoned 10 July	/ 2007			
MW-14B			Мо	nitoring Well Aba	indoned 10 July	/ 2007			
MW-14C				nitoring Well Aba					
MW-15A			Мо	nitoring Well Aba	indoned 10 July	/ 2007			
MW-15B				nitoring Well Aba					
MW-15C	Monitoring Well Abandoned 10 July 2007								

(3 of 3) GROUNDWATER LEVEL MEASUREMENTS 20th SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Site Name:	JED Solid Was	ste Managemen	t Facility	Sampling Personnel: Joe Terry, Jon Lake						
Location:	Osceola Count	ty, Florida		Fie	Id Conditions:	clear, 72°F				
Date:	5-May-2014									
Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations				
MW-16A			Mor	nitoring Well Aba	ndoned 24 June	e 2013				
MW-16B			Mor	itoring Well Aba	ndoned 24 June	e 2013				
MW-16C			Mor	itoring Well Aba	ndoned 24 June	e 2013				
MW-16AR	12:25	95.01	15.95	21.00	79.06					
MW-16BR	12:25	94.97	15.95	44.00	79.02					
MW-16CR	12:25	95.03	16.04	73.00	78.99					
MW-17A			Mor	itoring Well Aba	ndoned 5 March	n 2014				
MW-17B			Mor	itoring Well Aba	ndoned 5 Marcl	n 2014				
MW-17C			Mor	itoring Well Aba	ndoned 5 March	n 2014				
MW-18A			Mor	itoring Well Aba	ndoned 5 Marcl	n 2014				
MW-18B			Mor	itoring Well Aba	ndoned 5 Marcl	n 2014				
MW-18C			Mor	itoring Well Aba	ndoned 5 Marcl	1 2014				
MW-19A			Mor	oring Well Abandoned 5 March 2014						
MW-19B	Monitoring Well Abandoned 5 March 2014									
MW-19C	Monitoring Well Abandoned 5 March 2014									
MW-20A			Mor	itoring Well Aba	ndoned 24 June	e 2013				
MW-20B			Mor	itoring Well Aba	ndoned 24 June	e 2013				
MW-20C			Mor	nitoring Well Aba	ndoned 24 June	e 2013				
MW-21A			Mor	toring Well Abandoned 5 March 2014						
MW-21B			Mor	itoring Well Aba	ndoned 5 Marcl	2014				
MW-21C			Mor	itoring Well Aba	ndoned 5 Marcl	2014				
MW-22A			Monito	ring Well Aband	oned 11 Novem	ber 2011				
MW-22B			Monito	ring Well Aband	oned 11 Novem	ber 2011				
MW-22C			Monito	ring Well Aband	oned 11 Novem	ber 2011				
MW-22AR	10:45	95.00	14.78	23.66	80.22					
MW-22BR	10:45	94.86	14.65	46.13	80.21					
MW-22CR	10:45	95.13	14.95	66.58	80.18					
MW-23A	10:55	97.90	17.41	28.03	80.49					
MW-23B	10:55	97.91	17.33	43.00	80.58					
MW-23C	10:55	97.93	17.40	67.32	80.53					
MW-24A	9:12	86.97	7.44	24.21	79.53					
MW-25A	9:12	82.36	3.26	24.76	79.10					
MW-26A	NM	82.01	NM	24.03	NM	Not Measured, inaccesible, area flooded				
MW-27C	NM	81.66	NM	58.37	NM	Not Measured, inaccesible, area flooded				
CW-1A	15:40	84.53	3.55	18.46	80.98					
CW-2A	14:40	82.81	4.30	18.48	78.51					
CW-3A	13:35	81.89	3.58	18.42	78.31					

Notes:

Elevation presented in North American Vertical Datum of 1929 (NAVD29)

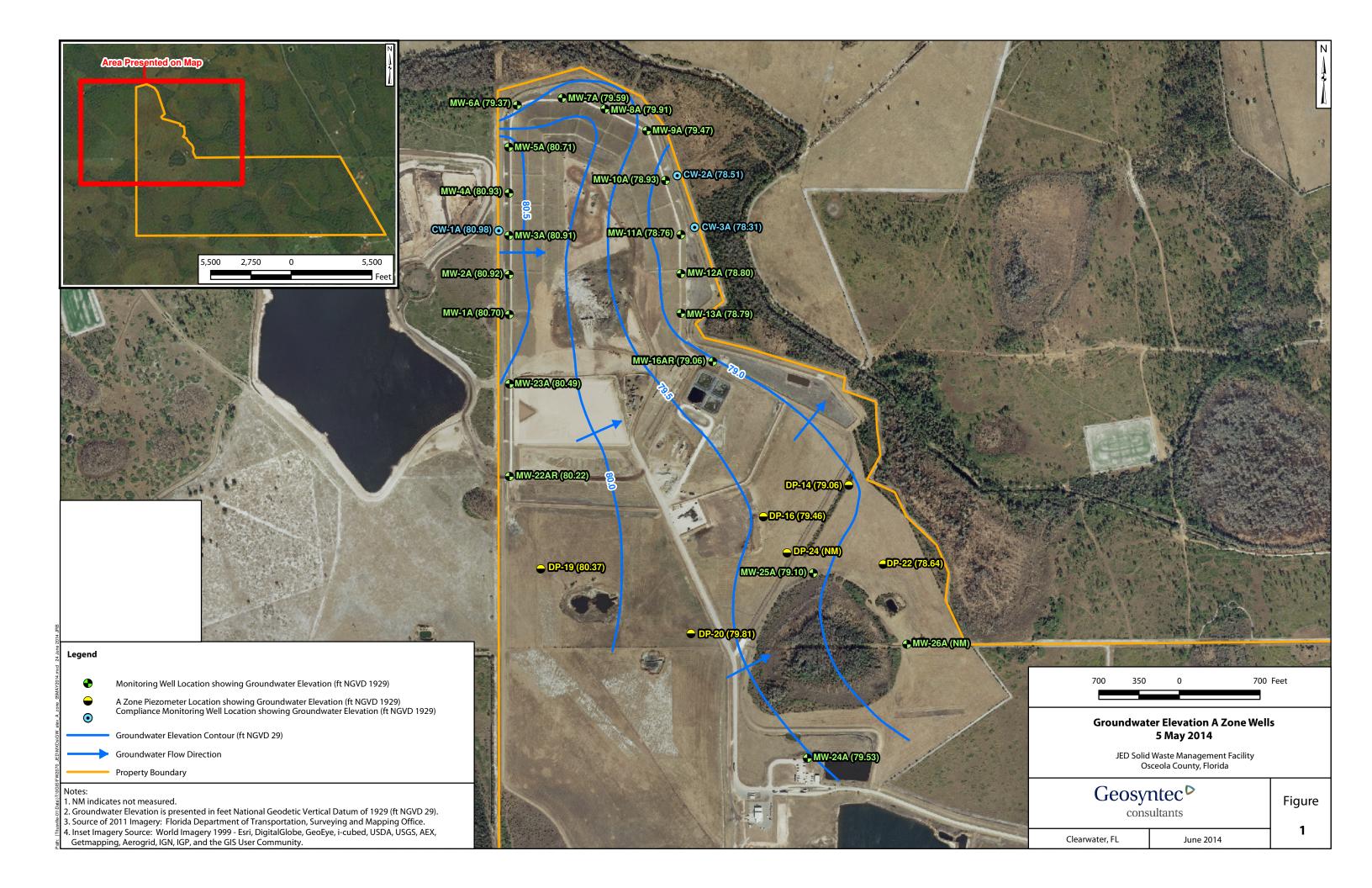
Well caps removed site wide and wells allowed to stabilize prior to measurements.

SUMMARY OF SURFACE WATER FIELD MEASUREMENTS AND ANALYTICAL RESULTS 20th SEMI-ANNUAL WATER QUALITY MONITORING REPORT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Bananatan			FL-SWQC	Monitorin	g Location
Parameter	Analytical Method	Units	Class III	SW-3	SW-4
Barium	6020	ug/L	-	27.2	26.6
Biochemical Oxygen Demand	405.1	mg/L	-	4.0 u	2.1
Chlorophyll A	SM 10200H	mg/m ³	-	12.9	8.2 u
Chemical Oxygen Demand	410.2	mg/L	-	77	87
Fecal Coliform	SM 9222D	#/100mL	800	340	430
Hardness as CaCO3	SM 2340B	mg/L	-	58.5	39.9
Iron	6010B	mg/L	1	1.33	1.78
Nitrogen, Total as N	351.2/300.0	mg/L	-	1.61	2.24
Organic Carbon, Total	415.1	mg/L	-	27.1	26.1
Phosphorus, Total	365.1	mg/L	-	0.137	0.159
Total Dissolved Solids	160.1	mg/L	-	167	138
Total Suspended Solids	160.2	mg/L	-	5.0 u	5.5
Zinc	6020	ug/L	37*	3.6 i	18.0
Dissolved Oxygen	Field Measurement	mg/L	5	2.65	6.67
рН	Field Measurement	std units	6-8.5	5.76	3.79
Temperature	Field Measurement	°C	-	23.31	21.19
Conductivity	Field Measurement	uS/cm	< 50% above background or 1275, whichever is >	196	171
Turbidity	Field Measurement	NTU	< 29 above background	1.0	1.1
Water Elevation ⁽¹⁾	Field Measurement	ft	-	73.00	77.35

Notes:

Only parameters with detetctions above the Method Reporting Limit are shown.


(1): Surface Water Elevations referenced to NGVD 1929

* = Zinc criteria is less than or equal to: e(0.8473[InH]+0.884) where InH is the natural logarithm of total hardness as mg/L CaCO ₃

i indicate the Reported Value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL). indicate the detected in surface water sample

indicate the detection exceeds the FL-SWQC Class III concentration

FIGURE

APPENDIX A

Water Quality Monitoring Certification FDEP Form 62-701.900(31)

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400

DEP Form #: 62-70	1.900(31), F.A.C
-------------------	------------------

Form Title: Water Quality Monitoring Certification

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(9), F.A.C.

WATER QUALITY MONITORING CERTIFICATION

PART I GENERAL INFORMATION

(1) Facility Name J.E.D. Soild Waste Management Facility

Address 1501 Omni Way		
City Saint Cloud	Zip _ 34773	_ County Osceola
Telephone Number (407) 891-3720		
2) WACS Facility ID <u>89544</u>		
3) DEP Permit Number SO49-0199726-022		
4) Authorized Representative's Name Mike Kaiser	Title	Engineer
Address 1099 Miller Drive		
City Altamonte Springs	Zip _32701	County Seminole
Telephone Number (904) 673-0446		
Email address (if available) michael.kaiser@progress	ivewaste.com	

CERTIFICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submission of false information including the possibility of fine and imprisonment.

6/18/14

Whe Kan

(Owner or Authorized Representative's Signature)

PART II QUALITY ASSURANCE REQUIREMENTS

Sampling Organization Progressive Waste Solutions of FL, Inc.

Analytical Lab NELAC / HRS Certification # E82502

Lab Name ALS Environmental

Address 9143 Philips Highway, Suite 200 Jacksonville, Florida 32256

Phone Number (904) 739-2277

Email address (if available) Craig.Myers@ALSGlobal.com

Northwest District 160 Government Center Pensacola, FL 32501-5794 850-595-8360 Northeast District 7825 Baymeadows Way, Ste. 200 B Jacksonville, FL 32256-7590 904-807-3300 Central District 3319 Maguire Blvd., Ste. 232 Orlando, FL 32803-3767 407-894-7555 Southwest District 13051 N. Telecom Pky. Temple Terrace, FL 813-632-7600 South District 2295 Victoria Ave., Ste. 364 Fort Myers, FL 33902-2549 239-332-6975 Southeast District 400 North Congress Ave. West Palm Beach, FL 33401 561-681-6600

2893 Executive Park Drive, Suite 305, Weston, Florida 33331

January 24, 2011

RE: Omni Waste of Osceola County, LLC

To Whom It May Concern:

This is to confirm that Michael Kaiser is an authorized signatory of Omni Waste of Osceola County, LLC (the "Corporation"), with authority to execute and deliver all documents and instruments required in connection with environmental matters for the Corporation, including without limitation, permit applications, modifications and financial assurances for permits issued to the Corporation.

Omni Waste of Osceola County, LLC

William P. Hulligan Manager

Waste Services, Inc.

il 1. Hell

William P. Hulligan Executive Vice President, U.S. Operations

APPENDIX B

Monitoring Well Sampling Logs

Form FD 9000-24 GROUNDWATER SAMPLING LOG

VVPI N()	E.D. SWMF (WA	Cs Facility ID	: 89544)	SAMD			01 Omni Way, St	. Cloud, Osceola		 10.1 		
WELL NO	-14 - 14			SAMP	LE ID: Mh				DATE:	6 May 2014		
WELL		TUBIN	C	14		GING DA						
DIAMETE	R (inches): 2.0	DIAME	TER (inches)	0.25 D	WELL SCREEN INTERVAL STATIC DI DEPTH: 1,3 feet to 23 feet TO WATE			R (feet): 14,45 OR BAILE			PUMP TYPE ER: peristaltic	
WELL VO	LUME PURGE:	1 WELL VO	DLUME = (TO	TAL WELL D	EPTH - ST	ATIC DEPTH T	OWATER) X	WELL CAPAC	ITY			
	it if applicable)		= (23	feet -	14.45	feet) X	0.16	allons/foot	= 1.4	gallons	
EQUIPME (only fill ou	NT VOLUME Plut if applicable)	URGE: 1 EQ	UIPMENT VO		OLUME + (TU	BING CAPACI	ΤΥ Χ ΤΙ	JBING LENGTH) + FLOW (CELL VOLUME		
	JMP OR TUBIN	G		MP OR TUBI					et) + 0.12 gallons = gallons TOTAL VOLUME			
		WELL (feet): 19		INITIATE	INITIATED AT: 1040				PURGED (gallons): 5.2			
and a	VOLUME	CUMUL. VOLUME	PURGE	DEPTH			COND.	DISSOLVED	1			
TIME	PURGED	PURGED	RATE	TO WATER	(standard	TEMP. (°C)	(µS/cm)	OXYGEN (mg/L)	TURBIE (NTU			
	(gallons)	(gallons)	(gpm)	(feet)	units)							
1135	4.4	4.4	0.08	14.85		25.37	2782	0.57	3.3			
1140	0.4	41.8	0.08	14-85	-	25.89	2345	0.53	1.3		v -1,0	
1143	0.74	5.04	0.00	14.85	4.65	25.90	23-15	0.51	1.2	clei	4 -0.5	
1145	0.16	5.2	0.03	14.85	-1.66	25.92	2344	0.54	1.3	clen	× -1.1	
			1012									
	1											
					-	-						
	-								-			
_			-						-			
WELLCA	PACITY (Gallon	e Per Footh	0.75" - 0.02	1" - 0.04	1 25" - 0	06; 2 " = 0.16	6; 3" = 0.37;	4" = 0.65;	5 " = 1.02;	6" = 1.47;	12" = 5.88	
	SIDE DIA. CAP									2 " = 0.010;	5/8" = 0.016	
PURGING	EQUIPMENT C	ODES: E	B = Bailer;	BP = Bladde	r Pump;	ESP = Electric	Submersible Pur	mp; PP = Pe	eristaltic Pu	mp; O = C	Other (Specify)	
					SAME	LING DA	ATA					
SAMPLED	BY (PRINT) / A	FFILIATION:			S) SIGNATUR	1000	-	SAMPLING		SAMPLI	NG	
UNIT LLU	PWSFI			SAMPLER(5) SIGNATUR		/	SAMPLING				
						(E(S): You (lung	INITIATED AT	1. 1145	ENDED		
Joe Terry / PUMP OR	TUBING	. 0		TUBING		(E(S): You !		FILTERED: Y	R	FILTER S	AT: 1200	
Joe Terry / PUMP OR DEPTH IN	TUBING WELL (feet):	19	10 11	MATERIAL	CODE: PE	yu.		INITIATED A FILTERED: Y on Equipment Ty	pe:	FILTER S	AT: / 200 SIZE:μm	
Joe Terry / PUMP OR DEPTH IN FIELD DEC	TUBING WELL (feet): CONTAMINATIO	DN: PUN	1P No	MATERIAL	CODE: PE JBING No	(replaced)	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE	pe: or EQUIPM	FILTER S	AT: / 200 SIZE:μm	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMI	TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	N: PUN	211 B.151	MATERIAL	CODE: PE JBING No SAMPLE P	(replaced)	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTENDE	pe: or EQUIPM	FILTER S ENT BLANK: SAMPLING	AT: / 200 SIZE:μm Y N SAMPLE PUMP	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE	TUBING WELL (feet): CONTAMINATIO PLE CONTAINE #	R SPECIFIC	211 B.151	MATERIAL TU PRESERVA	CODE: PE JBING No SAMPLE P	(replaced) RESERVATION	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE	pe: or EQUIPM ED ND/OR	FILTER S	AT: / 200 SIZE:µm Y N SAMPLE PUMP FLOW RATE	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	TUBING WELL (feet): CONTAMINATIO PLE CONTAINE # CONTAINERS	N: PUN R SPECIFIC MATERIAL CODE	ATION VOLUME	MATERIAL TU PRESERVA USED	CODE: PE JBING No SAMPLE P ATIVE ADD	(replaced) RESERVATION TOTAL VOL ED IN FIELD (n	Filtratio	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE O INTENDE ANALYSIS A METHO	pe: or EQUIPM ED ND/OR	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	AT: / 200 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute)	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMI	TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3	DN: PUN R SPECIFIC, MATERIAL CODE CG	ATION VOLUME 40mL	MATERIAL TU PRESERVA USED HCL	CODE: PE JBING No SAMPLE P ATIVE ADD P	(replaced) RESERVATION TOTAL VOL ED IN FIELD (m refilled by lab	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE o INTENDI ANALYSIS AI METHO 8260	pe: or EQUIPM ED ND/OR	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	AT: 1 200 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	TUBING WELL (feet): CONTAMINATIO PLE CONTAINE # CONTAINERS 3 3	DN: PUN R SPECIFIC MATERIAL CODE CG CG	ATION VOLUME 40mL 40mL	MATERIAL TU PRESERVA USED HCL None	CODE: PE JBING No SAMPLE P ATIVE ADD P	(replaced) RESERVATION TOTAL VOL ED IN FIELD (n refilled by lab None	Filtratio	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011	pe: or EQUIPM ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	AT: / 200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 3 1	DN: PUN R SPECIFIC MATERIAL CODE CG CG CG PE	ATION VOLUME 40mL 40mL 500mL	MATERIAL TU PRESERVA USED HCL None HNO ₃	CODE: PE JBING No SAMPLE P ATIVE ADD P 3 P	(replaced) RESERVATION TOTAL VOL ED IN FIELD (n refilled by lab None	Filtratio	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE (ANALYSIS A METHO 8260 8011 Metals	pe: or EQUIPM ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	АТ: <u>/ 200</u> SIZE:µm Y N SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 300	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 3 1 1	DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE	ATION VOLUME 40mL 40mL 500mL 125mL	MATERIAL TU PRESERVA USED HCL None HNO ₃ H ₂ SO	CODE: PE JBING No SAMPLE P ATIVE ADD P 3 P 4 P	refilled by lab	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE o INTENDI ANALYSIS AI METHO 8260 8011 Metals NH ₃	ppe: pr EQUIPM ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	AT: / 200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 3 1	DN: PUN R SPECIFIC MATERIAL CODE CG CG CG PE	ATION VOLUME 40mL 40mL 500mL	MATERIAL TU PRESERVA USED HCL None HNO ₃	CODE: PE JBING No SAMPLE P ATIVE ADD P 3 P 4 P	(replaced) RESERVATION TOTAL VOL ED IN FIELD (n refilled by lab None	Filtratio	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE (ANALYSIS A METHO 8260 8011 Metals	ppe: pr EQUIPM ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	AT: / 200 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE AW-1A	TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 3 1 1	DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE	ATION VOLUME 40mL 40mL 500mL 125mL	MATERIAL TU PRESERVA USED HCL None HNO ₃ H ₂ SO	CODE: PE JBING No SAMPLE P ATIVE ADD P 3 P 4 P	refilled by lab	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE o INTENDI ANALYSIS AI METHO 8260 8011 Metals NH ₃	ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	AT: / 2000 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE INW-IA	TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 1 1 1 1 1 1	DN: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE PE	ATION VOLUME 40mL 40mL 500mL 125mL 250mL	MATERIAL TU PRESERVA USED HCL None HNO ₃ H ₂ SO ₄ None	CODE: PE JBING No SAMPLE P ATIVE ADD P 3 P 4 P	refilled by lab refilled by lab	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, I	ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	AT: / 200 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE INW-1A	TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DN: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE PE	ATION VOLUME 40mL 40mL 500mL 125mL 250mL	MATERIAL TU PRESERVA USED HCL None HNO ₃ H ₂ SO ₄ None	CODE: PE JBING No SAMPLE P ATIVE ADD P 3 P 4 P	refilled by lab refilled by lab	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, I	ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	AT: / 200 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE INW-1A NW-1A REMARKS weather: 2 odor: 5 v 1	TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 1 5 6 cm, 70°1 ⁼ fur- \ike	DN: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE PE PE AG	ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	MATERIAL TU PRESERVA USED HCL None HNO ₃ H ₂ SO, None H ₂ SO,	CODE: PE JBING No SAMPLE P ATIVE ADD P ADD ADD	refilled by lab None refilled by lab	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE (ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I Total Phe	PPE: PDF EQUIPM ED ND/OR D S NO ₃ nols	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP	AT: / 200 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300 300	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE ID CODE IN -1A	TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1 5 kw, 70°1 ⁼ fur- \ike CODES:	DN: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE PE AG AG = Amber	ATION VOLUME 40mL 500mL 125mL 250mL 250mL Glass; CG	MATERIAL TU PRESERVA USED HCL None HNO ₃ H ₂ SO, None H ₂ SO,	CODE: PE JBING No SAMPLE P ATIVE ADD P ATIVE ADD P 4 P 4 P 4 P	refilled by lab None refilled by lab None refilled by lab	PP = Polypropyle	INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDIF ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I Total Phe ene; S = Silico	PPE: PPE: PDF EQUIPM ED ND/OR D S NO ₃ nols PDF = 1	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP	AT: / 200 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300	
Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE ID CODE IN -1A	TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 1 5 6 cm, 70°1 ⁼ fur- \ike	DN: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE PE AG AG = Amber CODES:	ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	MATERIAL TU PRESERVA USED HCL None HNO ₃ H ₂ SO, None H ₂ SO,	CODE: PE JBING No SAMPLE P ADD P ADD P ADD P ADD P <	(replaced) RESERVATION TOTAL VOL ED IN FIELD (m refilled by lab None refilled by lab None refilled by lab None	Filtratio	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE of INTENDIO ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I Total Phe ene; S = Silico ESP = Electr	PPE: PPE: PDF EQUIPM ED ND/OR D ND/OR D S NO ₃ nols PDF = 1 ic Submers	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP	AT: / 200 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300 300	

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

	MW-11	8		SAME	PLE ID: MU		i onni vvdy, c	St. Cloud, Osceola	DATE: (May 2014	
	1-100 11	9				GING DA	ТА		GALL G	May 2014	
WELL		TUBIN	G	l v	VELL SCREE		STATIC	DEPTH	DI	IRGE PUMP 1	TYPE .
DIAMETE	R (inches): 2.0	DIAME	TER (inches):0.2	25 C	DEPTH: 37.5	feet to 47.5 fe	et TO WAT	ER (feet): 141.	36, OF		peristaltic
WELL VO	LUME PURGE: ut if applicable)	1 WELL VO	LUME = (TOTA	L WELL D	DEPTH - ST	ATIC DEPTH TO	OWATER) X	WELL CAPACI	TY		
			= (feet -		feet) >		allons/foot		gallons
	NT VOLUME PU ut if applicable)	URGE: 1 EQU	JIPMENT VOL.					UBING LENGTH)			1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -
	UMP OR TUBIN	G	FINAL PUMP		gallons + (PURGING	ns/foot X	53 feet) PURGING	+ 0.12	1	.26 gallons
	WELL (feet):	43	DEPTH IN W				DAT: 1040	ENDED AT:	1120	TOTAL VO PURGED ((gallons): 3.2
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	H pH	TEMP.	COND.	DISSOLVED	TUDDID		
TIME	PURGED	PURGED	RATE	WATER	(standard units)	(°C)	(µS/cm)	OXYGEN (mg/L)	TURBIDI (NTUs)		
100	(gallons)	(gallons)	(gpm)	(feet)		25.02	11.0	0012 598	1.01		127
100	1.6	1.6	03	14.4		25.83	110	0.8 12.5 5	1.86		
1105	0.4	2.4	.08	14.4		25.89	109	0.71 +2.5 5/1	1.47		1-1
1110				14.4			106	0.7 9 9 36	2.00		
1115	0.4	2.8	. 08	14.4	4.43	25.85	106	0.7	1.62	2 2/00	
1120	0.4	3.2	,08	19.7	4.42	25.84	106	0.67	1.5	clea	r 58.6
					-	-				_	
			-		-					-	_
							_				
		- Des Faction									
	PACITY (Gallons			1" = 0.04; 006; 3/1					" = 1.02; 006; 1/2	6 " = 1.47; " = 0.010;	12 " = 5.88 5/8 " = 0.016
TUBING I		PACITY (Gal./	Ft.): 1/8" = 0.00		16" = 0.0014;		5/16" = 0	.004; 3/8" = 0.		2" = 0.010;	
TUBING I	NSIDE DIA. CAP	PACITY (Gal./	Ft.): 1/8" = 0.00	006; 3/1	16" = 0.0014; er Pump;	1/4" = 0.0026	5/16" = 0 Submersible Pu	.004; 3/8" = 0.	006; 1/2	2" = 0.010;	5/8" = 0.016
TUBING II PURGING	EQUIPMENT C	FFILIATION:	Ft.): 1/8" = 0.00 = Bailer; BF	006; 3/1 P = Bladde	16" = 0.0014; er Pump; SAM	1/4" = 0.0026 ESP = Electric S PLING DA	5/16" = 0 Submersible Pu	<u>.004;</u> 3/8" = 0. imp; PP = Pe SAMPLING	006; 1/2 ristaltic Pun	e" = 0.010; np; O = C SAMPLIN	5/8" = 0.016 Other (Specify)
FUBING II PURGING SAMPLED Joe Terry	BY (PRINT) / A	PACITY (Gal./I	Ft.): 1/8" = 0.00 = Bailer: BF	DO6; 3/1 P = Bladde	16" = 0.0014; er Pump; SAM	1/4" = 0.0026 ESP = Electric S	5/16" = 0 Submersible Pu TA	.004; 3/8" = 0. .mp; PP = Pe SAMPLING INITIATED AT	006; 1/2 ristaltic Pun : 1120	2" = 0.010; np; O = C SAMPLIN ENDED	5/8" = 0.016 Other (Specify) NG AT: //35-
SAMPLED Joe Terry	BY (PRINT) / A	FFILIATION:	Ft.): 1/8" = 0.00 = Bailer; BF	DOG; 3/1 P = Bladde SAMPLER	16" = 0.0014; er Pump; SAM	1/4" = 0.0026 ESP = Electric S PLING DA	5/16" = 0 Submersible Pu TA Ta FIELD	<u>.004;</u> 3/8" = 0. imp; PP = Pe SAMPLING	006; 1/2 ristaltic Pun : 1120	e" = 0.010; np; O = C SAMPLIN	5/8" = 0.016 Other (Specify) NG AT: //35-
SAMPLED Joe Terry PUMP OR DEPTH IN	BY (PRINT) / A PWSFL	FFILIATION: Son Laka	Ft.): 1/8" = 0.00 = Bailer; BF	DOG; 3/4 P = Bladde GAMPLER UBING MATERIAL	16" = 0.0014; er Pump; SAMI (S) SIGNATUI	1/4" = 0.0026 ESP = Electric S PLING DA	5/16" = 0 Submersible Pu TA Ta FIELD	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y	1/2 ristaltic Pun 1120 H20	" = 0.010; np; 0 = 0 SAMPLIN ENDED FILTER \$	5/8" = 0.016 Other (Specify) NG AT: //35-
SAMPLED Joe Terry / PUMP OR DEPTH IN	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet):	FFILIATION: SON Cata 43 DN: PUM	Ft.): 1/8" = 0.00 = Bailer; BF / Pwsj=L S T N IP No	DOG; 3/4 P = Bladde GAMPLER UBING MATERIAL	16" = 0.0014; er Pump; SAMI (S) SIGNATUI . CODE: PE JBING NO	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que	5/16" = 0 Submersible Pu TA TA FIELD Filtrat	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT 0-FILTERED: Y DUPLICATE o INTENDE	1/2 D H 2 D H	" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING	5/8" = 0.016 Other (Specify) NG AT: // 35- SIZE:μm
CUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	FFILIATION: SON Cutra 43 DN: PUM R SPECIFICA	Ft.): 1/8" = 0.00 = Bailer; BF / PwsiEL S T N IP NO NTION T	DOG; 3/4 P = Bladde GAMPLER UBING MATERIAL	16" = 0.0014; er Pump; SAMI (S) SIGNATUI . CODE: PE JBING NO SAMPLE F ATIVE	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Dec (replaced) PRESERVATION TOTAL VOL	Submersible Pu Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT INITIATED AT Y on Equipment Typ DUPLICATE o UNTENDE ANALYSIS AN	1/2 D H 2 D r EQUIPME D ID/OR E	"" = 0.010; mp; 0 = 0 SAMPLINE FILTER S ENT BLANK: SAMPLING QUIPMENT	5/8" = 0.016 Other (Specify) NG AT: // 35- DZE:μm Y N SAMPLE PUMP FLOW RATE
FUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE/ SAMPLE ID CODE	NSIDE DIA. CAP EQUIPMENT C PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: SON Cutra 43 DN: PUM R SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0.00 = Bailer; BF / Pwsj=L S / Pwsj=L S IP No N NTION VOLUME	AMPLERI AMPLERI UBING MATERIAL TU VRESERV, USE	16" = 0.0014; er Pump; SAMI (S) SIGNATUI . CODE: PE JBING SAMPLE F ATIVE . ADE	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que o (replaced) PRESERVATION TOTAL VOL ED IN FIELD (m	Submersible Pu Submersible Pu TA FIELD Filtrat	SAMPLING INITIATED AT O-FILTERED: Y DUPLICATE o INTENDE ANALYSIS AN METHOD	1/2 D H 2 D r EQUIPME D ID/OR E	SAMPLIN SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING GUIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: ///3C- SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
FUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE/ SAM SAMPLE ID CODE	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAINATION PLE CONTAINE # CONTAINERS 3	FFILIATION: Son Cala 43 DN: PUM R SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0.00 = Bailer; BF / PwsiEL S / PwsiEL S IP No T NTION VOLUME 40mL P	BAMPLER BAMPLER UBING MATERIAL TU PRESERV USEL HCL	16" = 0.0014; er Pump; SAMI (S) SIGNATUR .CODE: PE JBING SAMPLE F ATIVE	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m Prefilled by lab	Submersible Pu Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD 8260	1/2 D H 2 D r EQUIPME D ID/OR E	Pri = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING GUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: // 35- SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
FUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE/ SAM SAMPLE ID CODE	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3	FFILIATION: SON Cafe 43 DN: PUM R SPECIFICA MATERIAL CODE CG CG	Ft.): 1/8" = 0.00 = Bailer; Bf / Pwsjrt S / Pwsjrt S IP No T NIP No N VOLUME P 40mL 40mL	DOG: 3/1 P = Bladde CAMPLER UBING MATERIAL TU PRESERV. USED HCL None	16" = 0.0014; er Pump; SAMI (S) SIGNATUI . CODE: PE JBING SAMPLE F ATIVE 0 ATIVE 0	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m Prefilled by lab None	Submersible Pu Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011	ILZD PARENE PURPHE PARENE PURPHE PUPPE	I" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: // 3C- SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
FUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE/ SAMPLE ID CODE	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1	FFILIATION: SONE B FFILIATION: SONE UN 43 DN: PUM R SPECIFICA MATERIAL CODE CG CG PE	Ft.): 1/8" = 0.00 = Bailer; BF / Pwsj=L S / Pwsj=L S IP No T MIP No NTION VOLUME P 40mL 500mL	27 Bladde BAMPLERI UBING MATERIAL TU PRESERV. USEC HCL None HNO	16" = 0.0014; er Pump; SAMI (S) SIGNATUI .CODE: PE JBING JBING No SAMPLE F ATIVE .ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que o (replaced) PRESERVATION TOTAL VOL ED IN FIELD (m Prefilled by lab Prefilled by lab	Submersible Pu Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0. Jmp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals	ILZD PARENE PURPHE PARENE PURPHE PUPPE	Imp: 0 = 0 App: 0 = 0 SAMPLINE SAMPLINE ENT BLANK: SAMPLING: QUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: // 3C- SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 3αQ
FUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE 10W - 113	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1	FFILIATION: SON Cala FFILIATION: SON Cala 43 DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE	Ft.): 1/8" = 0.00 = Bailer; BF / PwsjrL S / PwsjrL S IP No T NO TON VOLUME P 40mL 500mL 125mL	CAMPLER CAMPLER CAMPLER CUBING MATERIAL TU CRESERV, USEL HCL None HNO H2SC	16" = 0.0014; er Pump; SAMI (S) SIGNATUI .CODE: PE JBING JBING SAMPLE F ATIVE .D .ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que (replaced) PRESERVATION PRESERVATION TOTAL VOL ED IN FIELD (m Prefilled by lab Prefilled by lab	Submersible Pu Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT >-FILTERED: Y DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3	ILZD	Pri = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: // 3C- SIZE:µm Y (N) SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 30.0 30.0
SAMPLED SAMPLED Joe Terry J PUMP OR DEPTH IN FIELD DE SAM SAMPLE D CODE	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1	FFILIATION: SON Cafe FFILIATION: SON Cafe Y3 DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0.00 = Bailer; Bf / Pwsjrt S / Pwsjrt S / Pwsjrt S / Pwsjrt S VDLUME P 40mL 500mL 125mL 250mL	BAMPLER Bladde BAMPLER UBING MATERIAL TU PRESERV. USEL HCL None HNO H2SO None	16" = 0.0014; er Pump; SAMI (S) SIGNATUI . CODE: PE JBING JBING SAMPLE F ATIVE . ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m Prefilled by lab Prefilled by lab Prefilled by lab	Submersible Pu Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT P-FILTERED: Y ion Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N	ID/OR E	I" = 0.010; np; 0 = 0 SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING: QUIPMENT CODE RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: // 3C- SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 3αQ
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE SAMPLE	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1	FFILIATION: SON Cala FFILIATION: SON Cala 43 DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE	Ft.): 1/8" = 0.00 = Bailer; BF / PwsjrL S / PwsjrL S IP No T NO TON VOLUME P 40mL 500mL 125mL	CAMPLER CAMPLER CAMPLER CUBING MATERIAL TU CRESERV, USEL HCL None HNO H2SC	16" = 0.0014; er Pump; SAMI (S) SIGNATUI .CODE: PE JBING JBING SAMPLE F ATIVE .D .ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que (replaced) PRESERVATION PRESERVATION TOTAL VOL ED IN FIELD (m Prefilled by lab Prefilled by lab	Submersible Pu Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT >-FILTERED: Y DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3	ILZD	Pri = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: //3(- SIZE:µm Y N SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 300 300
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE SAMPLE ID CODE	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: SON Cala FFILIATION: SON Cala 43 DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE	Ft.): 1/8" = 0.00 = Bailer; BF / PwsjrL S / PwsjrL S IP No T NO TON VOLUME P 40mL 500mL 125mL	CAMPLER CAMPLER CAMPLER CUBING MATERIAL TU CRESERV, USEL HCL None HNO H2SC	16" = 0.0014; er Pump; SAMI (S) SIGNATUI . CODE: PE JBING JBING SAMPLE F ATIVE . ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que (replaced) PRESERVATION PRESERVATION TOTAL VOL ED IN FIELD (m Prefilled by lab Prefilled by lab	Submersible Pu Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT >-FILTERED: Y DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3	ID/OR E	Pri = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: // 3C- SIZE:µm Y (N) SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 30.0 30.0
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEF SAM SAMPLE ID CODE WW -1B WW -1B REMARKS weather: () odor:	NSIDE DIA. CAP EQUIPMENT C PBY (PRINT) / A (PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 3	FFILIATION: SON Cafe FFILIATION: SON Cafe Y3 DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0.00 = Bailer; BF / Pwsj=L S / PN0 T IP N0 NO NTION VOLUME 40mL 500mL 125mL 250mL 250mL 2	BAMPLER Bladde BAMPLER UBING MATERIAL TU PRESERV. USEL HCL None HNO H2SO None	16" = 0.0014; er Pump; SAMI (S) SIGNATUI .CODE: PE JBING JBING No SAMPLE F ATIVE ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Que o (replaced) PRESERVATION TOTAL VOL ED IN FIELD (m Prefilled by lab None Prefilled by lab None	Submersible Pu Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0. imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N Total Pher	006; 1/2 ristaltic Pun : 1120 	Imp: 0 = 0 APP APP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: // 3C- SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 30.0 30.0 30.0

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

WELL NO: MW-2A	oor doning to.	89544)		SI	CATION: 150	1 Omni Way S	t. Cloud, Osceola	County Flor	ida 34773	
			SAMPLE	ID: MW-					May 2014	
			and Salaria		SING DAT	-		Unite: O	May 2014	
NELL DIAMETER (inches): 2.0 NELL VOLUME PURGE: only fill out if applicable)	TUBING DIAMET 1 WELL VOL	ER (inches):0	AL WELL DEP	LL SCREEN	INTERVAL	STATIC I	R (foot) ILI	17 00	RGE PUMP T BAILER: p	YPE veristaltic
EQUIPMENT VOLUME PU only fill out if applicable)	JRGE: 1 EQU	= (IPMENT VOL.		UME + (TUB	ING CAPACIT 0026 gallor		0.16 g UBING LENGTH feet)		LL VOLUME	gallons
NITIAL PUMP OR TUBING DEPTH IN WELL (feet):	3 19		IP OR TUBINO WELL (feet):		PURGING		PURGING ENDED AT:		TOTAL VOL	gallons LUME gallons): 2, 8
TIME VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)		R ORP
0925 2	2	0.08	14.85	3.78	24.14	398	1.02	1.32	Clear	71.8
0930 0.4	2.4	0.08	14.85	3.80	24.16	397	0.81	1.85	ciea	
0935 2.4	2.8	0.08	14.85		24.14	398	0.74	0.82		1
PUMP OR TUBING DEPTH IN WELL (feet):	ACITY (Gal./FI DDES: B FILIATION: CT Lake/P	t.): 1/8" = 0.0 = Bailer; B PWSFL	3006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CO	SAMPI	1/4" = 0.0026 SP = Electric S LING DA (S): for 0	5/16" = 0.0 ubmersible Pur TA	SAMPLING INITIATED AT FILTERED: Yon Equipment Typ	006; 1/2" eristaltic Pump :: 0940 Noe:	= 0.010; b; O = Ot SAMPLIN ENDED A FILTER SI	Τ: 1005 ZE:μm
UBING INSIDE DIA. CAPA URGING EQUIPMENT CO AMPLED BY (PRINT) / AF oe Terry / PWSFL UMP OR TUBING EPTH IN WELL (feet): IELD DECONTAMINATION	ACITY (Gal./FI DDES: B FILIATION: Con Lake/P VG N: PUMF	t.): 1/8" = 0.0 = Bailer; B BWSFC	3006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r	1/4" = 0.0026; SP = Electric S LING DA (S): Dec (replaced)	5/16" = 0.0 ubmersible Pur TA	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Type DUPLICATE co	1/2" eristaltic Pump CO940 N De: DF EQUIPMEN	= 0.010; p; O = Ot SAMPLINI ENDED A FILTER SI IT BLANK: (5/8" = 0.016 ther (Specify) G T: 1005
UBING INSIDE DIA. CAPA URGING EQUIPMENT CO AMPLED BY (PRINT) / AF oe Terry / PWSFL UMP OR TUBING EPTH IN WELL (feet): IELD DECONTAMINATION SAMPLE #	ACITY (Gal./FI DDES: B FILIATION: Ch Lake/P N: PUMF R SPECIFICAT	t.): 1/8" = 0.0 = Bailer; B PWSFL PNO TION	3006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE T	1/4" = 0.0026 SP = Electric S LING DA (S): for 0	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratic	3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Yon Equipment Typ	interior in the second	= 0.010; b; O = Ot SAMPLIN ENDED A FILTER SI	5/8" = 0.016 ther (Specify) G T: 1005 ZE:μm
UBING INSIDE DIA. CAPA URGING EQUIPMENT CO AMPLED BY (PRINT) / AF De Terry / PWSFL UMP OR TUBING EPTH IN WELL (feet): IELD DECONTAMINATION SAMPLE CONTAINERS	ACITY (Gal./FI DDES: B FILIATION: Con Lake/P N: PUMF R SPECIFICAT MATERIAL	t.): 1/8" = 0.0 = Bailer; B 2WSFC P No FION	3006; 3/16" SP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDEL	1/4" = 0.0026 SP = Electric S LING DA (S): Dec (replaced) ESERVATION OTAL VOL	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y On Equipment Typ DUPLICATE c INTENDE ANALYSIS AN	interior in the second	= 0.010; p; O = Ot SAMPLINI ENDED A FILTER SI IT BLANK: (AMPLING DUIPMENT	5/8" = 0.016 ther (Specify) G T: 1005 ZE:μm Y N SAMPLE PUMP FLOW RATE
UBING INSIDE DIA. CAPA URGING EQUIPMENT CO AMPLED BY (PRINT) / AF De Terry / PWSFL UMP OR TUBING EPTH IN WELL (feet): IELD DECONTAMINATION SAMPLE CONTAINERS	ACITY (Gal./FI DDES: B FILIATION: Con Lake/P N: PUMF R SPECIFICAT MATERIAL CODE	t.): 1/8" = 0.0 = Bailer; B 2005 FC = No FION VOLUME	3006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDEL	1/4" = 0.0026; SP = Electric S LING DA (S): Dec (S):	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y OUPLICATE C INTENDE ANALYSIS AN METHOI	interior in the second	= 0.010; p; O = Ot SAMPLINI ENDED A FILTER SI IT BLANK: (AMPLING UIPMENT CODE	5/8" = 0.016 ther (Specify) G T: 1005 ZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
UBING INSIDE DIA. CAPA URGING EQUIPMENT CC AMPLED BY (PRINT) / AF De Terry / PWSFL UMP OR TUBING EPTH IN WELL (feet): IELD DECONTAMINATION SAMPLE CONTAINERS AMPLE CONTAINERS AW-24 3	ACITY (Gal./FI DDES: B FILIATION: CT Lake/P N: PUMF R SPECIFICAT MATERIAL CODE CG	t.): 1/8" = 0.0 = Bailer; B 2WSF/C P No FION VOLUME 40mL	3006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDEL Pre	1/4" = 0.0026; SP = Electric S LING DA (S): for (C) replaced) ESERVATION OTAL VOL D IN FIELD (mil filled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE C INTENDE ANALYSIS AN METHOI 8260	interior in the second	= 0.010; p; O = Ot SAMPLINI ENDED A FILTER SI IT BLANK: (AMPLING UIPMENT CODE RFPP	5/8" = 0.016 ther (Specify) G T: 1005 ZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
UBING INSIDE DIA. CAPA URGING EQUIPMENT CC AMPLED BY (PRINT) / AF De Terry / PWSFL UMP OR TUBING EPTH IN WELL (feet): IELD DECONTAMINATION SAMPLE CONTAINEF AMPLE # D CODE CONTAINERS 	ACITY (Gal./FI DDES: B = FILIATION: CD Lake/P N: PUMF R SPECIFICAT MATERIAL CODE CG CG	t.): 1/8" = 0.0 = Bailer; B 2005 FC 2 No TION VOLUME 40mL 40mL	3006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDE! Pre Pre	1/4" = 0.0026; SP = Electric S LING DA (S): (S): replaced) ESERVATION OTAL VOL D IN FIELD (mil filled by lab None	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y OUPLICATE C INTENDE ANALYSIS AN METHOI 8260 8011	interior in the second	= 0.010; p; O = Ot SAMPLINIENDED A FILTER SI IT BLANK: (AMPLING DUIPMENT CODE RFPP RFPP	5/8" = 0.016 ther (Specify) G T: 1005 ZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
UBING INSIDE DIA. CAPA URGING EQUIPMENT CC AMPLED BY (PRINT) / AF Dee Terry / PWSFL UMP OR TUBING EPTH IN WELL (feet): IELD DECONTAMINATION SAMPLE CONTAINERS SAMPLE CONTAINERS SAMPLE 3 1 3 1	ACITY (Gal./FI DDES: B FILIATION: Con Lake/P N: PUMF R SPECIFICAT MATERIAL CODE CG CG CG PE	t.): 1/8" = 0.0 = Bailer; B 2WSFC 2 PNO FION 40ML 40ML 500ML	3006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDE! Pre Pre	1/4" = 0.0026; SP = Electric S LING DA (S): Dec (S):	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y OUPLICATE C INTENDE ANALYSIS AN METHOI 8260 8011 Metals	in the second se	= 0.010; o; O = Ot SAMPLINIENDED A FILTER SI IT BLANK: (AMPLING UIPMENT CODE RFPP RFPP APP	5/8" = 0.016 ther (Specify) G T: 1005 ZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 3.00 3.00
TUBING INSIDE DIA. CAPA PURGING EQUIPMENT CC SAMPLED BY (PRINT) / AF CONTAINED SAMPLED BY (PRINT) / AF COMPORTUBING DEPTH IN WELL (feet): TIELD DECONTAMINATION SAMPLE CONTAINERS THE CON	ACITY (Gal./FI DDES: B FILIATION: CT Lake/P N: PUMF R SPECIFICAT MATERIAL CODE CG CG PE PE	t.): 1/8" = 0.0 = Bailer; B 2005 FC P No FION VOLUME 40mL 40mL 500mL 125mL	3006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDEI Pre Pre	1/4" = 0.0026; SP = Electric S LING DA (S): for (C) replaced) ESERVATION OTAL VOL D IN FIELD (mil filled by lab None filled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004: 3/8" = 0. mp: PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Type DUPLICATE C INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH3	NO ₃	= 0.010; D; O = Ot SAMPLINIENDED A FILTER SI IT BLANK: (AMPLING UIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 ther (Specify) G T: 1005 ZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 ζ ο Φ

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	- MW-2B	3		SAMPLE	ID: MU	-2B		t. Cloud, Osceola	Contraction of the second	May 2014	
						SING DAT	A				
WELL	-	TUBIN			LL SCREEN	INTERVAL	STATIC I		PU	RGE PUMP T	YPE
	R (inches): 2.0		ETER (inches)	:0.25 DEF	TH: 30 fe	et to HO fee	t TO WAT	ER (feet): 14, WELL CAPAC	61 OR	BAILER: p	eristaltic
(only fill ou	ut if applicable)	I WELL VO		TAL WELL DEP		TIC DEPTH TC	WATER) X	WELL CAPAC	ITY		
EQUIPME	NT VOLUME PI	URGE: 1 EQ	= (L. = PUMP VOL	feet -		feet) X Y X T	0.16 g	gallons/foot	=	gallons
(only fill ou	it if applicable)										
INITIAL PL		0		= 0.0 g	allons + (0.		s/foot X	50 feet) + 0.12	- V	
	WELL (feet):	43		N WELL (feet):	43	PURGING	AT: 0900	PURGING ENDED AT:	1005	TOTAL VOI PURGED (0	June gallons): 5.2
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pН		COND.	DISSOLVED	1.2.2.2.2		
TIME	PURGED	PURGED	RATE	WATER	(standard units)	TEMP. (°C)	(µS/cm)	OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO (describ	
0.000	(gallons)	(gallons) 4	(gpm)	(feet)							
0950	4	-	0.08	14.69	4.29	24.90	121	0.69	0.9	Clea	
0956	0.5	4.5	0.08		-	24.94	67	0.60	0.9	Clea	
1000	0.3	4.8	0.00		4.35	24.96	66	0.72	0.6	clea	66.7
1005	0.4	5.2	0.00	14.69	4.34	24.93	66	0.71	0.6	clear	
				-							
WELL CAP	ACITY (Gallons	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0.06	; 2 " = 0.16;	3 " = 0.37;				12 " = 5.88
TUBING IN	SIDE DIA. CAP	PACITY (Gal./	Ft.): 1/8" = 0	0.0006; 3/16"	= 0.0014;	1/4" = 0.0026;	5/16" = 0.	004; 3/8" = 0.	.006; 1/2"	= 0.010;	5/8" = 0.016
TUBING IN	PACITY (Gallons ISIDE DIA. CAP EQUIPMENT C	PACITY (Gal./	0.75" = 0.02; (Ft.): 1/8" = 0 8 = Bailer;	1" = 0.04; 0.0006; 3/16" BP = Bladder P	= 0.0014; ump; ES	1/4" = 0.0026; SP = Electric Su	5/16" = 0.1 ubmersible Pur	004; 3/8" = 0.		= 0.010;	
TUBING IN PURGING	ISIDE DIA. CAP	PACITY (Gal./ ODES: B	Ft.): 1/8" = 0	0.0006; 3/16" BP = Bladder P	= 0.0014; ump; ES SAMPL	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.1 ubmersible Pur	004; 3/8" = 0, np; PP = Pe	.006; 1/2"	= 0.010; p; 0 = Ot	5/8" = 0.016 her (Specify)
TUBING IN PURGING	ISIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI	PACITY (Gal./ ODES: B	Ft.): 1/8" = 0 B = Bailer;	0.0006; 3/16" BP = Bladder P	= 0.0014; ump; ES SAMPL	1/4" = 0.0026; SP = Electric Su	5/16" = 0.1 ubmersible Pur	004; 3/8" = 0.	.006; 1/2" eristaltic Pump	= 0.010; p; O = Ot	5/8" = 0.016 her (Specify)
SAMPLED Joe Terry /	ISIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING	FFILIATION: Joh Laley	Ft.): 1/8" = 0 B = Bailer;	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING	= 0.0014; ump; ES SAMPI SIGNATURE	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.1 ubmersible Pur TA	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y	.006; 1/2" eristaltic Pump	= 0.010; p; O = Ot	5/8" = 0.016 her (Specify) G T: /025
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet):	FFILIATION: Joh Laley	Ft.): 1/8" = 0 8 = Bailer; PWSPL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE	1/4'' = 0.0026; SP = Electric Si LING DAT (S): for Ca	5/16" = 0.1 ubmersible Pur TA	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ	.006; 1/2" eristaltic Pump	= 0.010; p; O = 01 SAMPLIN ENDED A FILTER SI	5/8" = 0.016 her (Specify) G T: <u>/025</u> ZE:μm
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO	FFILIATION: 500 Luley 500 Luley 613 0N: PUM	Ft.): 1/8" = 0 B = Bailer; PWSPL IP No	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r	1/4" = 0.0026; SP = Electric St LING DAT (S): for Co replaced)	5/16" = 0.1 ubmersible Pur TA	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c	.006; 1/2" eristaltic Pump F: / 0 / 0 pp Nor EQUIPMEN	s 0.10; c 0 = 01 SAMPLIN ENDED A FILTER SI	5/8" = 0.016 her (Specify) G T: <u>/025</u> ZE:μm Y N
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMF	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINEI	FFILIATION: Jon Larley L13 DN: PUM R SPECIFICA	Ft.): 1/8" = 0 B = Bailer; PWSPL IP No ATION	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PRI	1/4" = 0.0026; BP = Electric Su LING DAT (S): for Co replaced) ESERVATION	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ	.006; 1/2" eristaltic Pump F: / 0/0 por EQUIPMEN ED S	= 0.010; p; O = 01 SAMPLIN ENDED A FILTER SI	5/8" = 0.016 her (Specify) G T: /025 ZE:μm Y N SAMPLE PUMP
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINEI	FFILIATION: 500 Luley 500 Luley 613 0N: PUM	Ft.): 1/8" = 0 B = Bailer; PWSPL IP No ATION	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(1/4" = 0.0026; BP = Electric Su LING DAT (S): for Co replaced) ESERVATION	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE c INTENDE	1/2" eristaltic Pump T: / 0/0 por EQUIPMEN ED S ND/OR EC	= 0.010; D; O = O1 SAMPLIN ENDED A FILTER SI NT BLANK: AMPLING	5/8" = 0.016 her (Specify) G T: <u>/025</u> ZE:μm Y N
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINEI #	FFILIATION: 500 ES: B FFILIATION: 500 Ludrey 413 DN: PUM R SPECIFICA MATERIAL	Ft.): 1/8" = 0 B = Bailer; PWSPL IP No ATION	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC	1/4" = 0.0026; SP = Electric St LING DAT (S): Jour Co replaced) ESERVATION OTAL VOL	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE c INTENDE ANALYSIS AN	1/2" eristaltic Pump Tr / 0/0 por EQUIPMEN ED S ND/OR EC	= 0.010; D; O = O1 SAMPLIN ENDED A FILTER SI MT BLANK: AMPLING DUIPMENT	5/8" = 0.016 her (Specify) G T: <u>/025</u> ZE:μm Y N SAMPLE PUMP FLOW RATE
TUBING IN PURGING Joe Terry / PUMP OR T DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINER # CONTAINERS	FFILIATION: 500 ES: B FFILIATION: 500 Ludrey 413 DN: PUM R SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 B = Bailer; PWSPL MP No ATION VOLUME	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC	1/4" = 0.0026; SP = Electric St LING DAT (S): for Co replaced) ESERVATION OTAL VOL D IN FIELD (mL	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c ANALYSIS AN METHOL	1/2" eristaltic Pump Tr / 0/0 por EQUIPMEN ED S ND/OR EC	= 0.010; D; O = 01 SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE	5/8" = 0.016 her (Specify) G T: <u>025</u> ZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
TUBING IN PURGING Joe Terry / PUMP OR T DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	FFILIATION: Jon Later	Ft.): 1/8" = 0 B = Bailer; B IP NO NO ATION VOLUME 40mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC Pre	1/4" = 0.0026; SP = Electric Si LING DAT (S): Jour Co replaced) ESERVATION OTAL VOL D IN FIELD (mL filled by lab	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of NUTENDE ANALYSIS AN METHOI 8260	1/2" eristaltic Pump F: / 0/0 pe Por EQUIPMEN ED S ND/OR EC	= 0.010; p; O = Ot SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP	5/8" = 0.016 her (Specify) G T: /025 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
TUBING IN PURGING Joe Terry / PUMP OR T DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 3	FFILIATION: Jon Lautey L13 DN: PUM R SPECIFICA MATERIAL CODE CG CG	Ft.): 1/8" = 0 B = Bailer; PINSPL IP No ATION VOLUME 40mL 40mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC Pre Pre	1/4" = 0.0026; BP = Electric St LING DAT (S): for Con- (S): for Con- replaced) ESERVATION OTAL VOL D IN FIELD (mL filled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y PUPLICATE c INTENDE ANALYSIS AN METHOD 8260 8011	1/2" eristaltic Pump F: / 0/0 pe Por EQUIPMEN ED S ND/OR EC	= 0.010; D; O = O1 SAMPLIN ENDED A FILTER SI NT BLANK: AMPLING DUIPMENT CODE RFPP RFPP	5/8" = 0.016 her (Specify) G T: <u>025</u> ZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300
TUBING IN PURGING Joe Terry / PUMP OR T DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1	PACITY (Gal./ CODES: B FFILIATION: Jon Later La	Ft.): 1/8" = 0 B = Bailer; PWSPL IP No ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC Pre Pre	1/4" = 0.0026; BP = Electric Si LING DAT (S): Jour Co replaced) ESERVATION OTAL VOL D IN FIELD (mL filled by lab filled by lab filled by lab	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y PUPLICATE C INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃	1/2" eristaltic Pump T: / 0/0 por EQUIPMEN ED S ND/OR EC	= 0.010; D = 010; D = 010; D = 010 ENDED A FILTER SI IT BLANK: AMPLING DUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 her (Specify) G T: /025 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR 7 DEPTH IN FIELD DEC SAMPLE ID CODE WW -2B	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1	FFILIATION: Jon Ladrey HIZ DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0 B = Bailer; PINSEC IP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC Pre Pre	1/4" = 0.0026; BP = Electric St LING DAT (S): Jour Co (S): Jour Co replaced) ESERVATION OTAL VOL D IN FIELD (mL filled by lab filled by lab filled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH3 TDS, CI, N	In the second se	 = 0.010; O = 01 SAMPLIN ENDED A FILTER SI AT BLANK: AMPLING DUIPMENT CODE RFPP APP APP APP APP 	5/8" = 0.016 her (Specify) G T: /025 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300 300
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1	PACITY (Gal./ CODES: B FFILIATION: Jon Later La	Ft.): 1/8" = 0 B = Bailer; PWSPL IP No ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC Pre Pre	1/4" = 0.0026; BP = Electric Si LING DAT (S): Jour Co replaced) ESERVATION OTAL VOL D IN FIELD (mL filled by lab filled by lab filled by lab	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y PUPLICATE C INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃	In the second se	= 0.010; D = 010; D = 010; D = 010 ENDED A FILTER SI IT BLANK: AMPLING DUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 her (Specify) G T: /025 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: Jon Ladrey HIZ DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0 B = Bailer; PINSEC IP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC Pre Pre	1/4" = 0.0026; BP = Electric St LING DAT (S): Jour Co (S): Jour Co replaced) ESERVATION OTAL VOL D IN FIELD (mL filled by lab filled by lab filled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH3 TDS, CI, N	In the second se	 = 0.010; O = 01 SAMPLIN ENDED A FILTER SI AT BLANK: AMPLING DUIPMENT CODE RFPP APP APP APP APP 	5/8" = 0.016 her (Specify) G T: /025 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300 300
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1 1	FFILIATION: Jon Ladrey HIZ DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0 B = Bailer; PINSEC IP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC Pre Pre	1/4" = 0.0026; BP = Electric St LING DAT (S): Jour Co (S): Jour Co replaced) ESERVATION OTAL VOL D IN FIELD (mL filled by lab filled by lab filled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH3 TDS, CI, N	In the second se	 = 0.010; O = 01 SAMPLIN ENDED A FILTER SI AT BLANK: AMPLING DUIPMENT CODE RFPP APP APP APP APP 	5/8" = 0.016 her (Specify) G T: /025 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300 300
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE WW -2B REMARKS: weather: C1	ISIDE DIA. CAP EQUIPMENT CA BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1	FFILIATION: Jon Ladrey HIZ DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0 B = Bailer; IP No ATION VOLUME 40mL 500mL 125mL 250mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (r SAMPLE PRI VE T(ADDEC Pre Pre	1/4" = 0.0026; SP = Electric Su LING DAT (S): Jour Co replaced) ESERVATION OTAL VOL D IN FIELD (mL filled by lab None filled by lab None filled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE of ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N Total Pher	In the second se	 = 0.010; O = 01 SAMPLIN ENDED A FILTER SI TIT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP APP APP APP APP APP 	5/8" = 0.016 her (Specify) G T: /025 ZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300 300

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-31	1		SAMPLE	EID: Mh				DATE: 8	3 May 2014	
_		_			PUR	GING DAT	A				
WELL	R (inches): 2.0	TUBING	G TER (inches):0		LL SCREEN		STATIC D			JRGE PUMP 1	
	LUME PURGE:	1 WELL VO	LUME = (TOT	AL WELL DEF	PTH - STA	TIC DEPTH TO	WATER) X	ER (feet): 14		R BAILER:	peristaltic
(only fill ou	ut if applicable)		_ /	22.5		14.5					2
EQUIPME	NT VOLUME PU	RGE: 1 EQU	JIPMENT VOL	. = PUMP VOI	LUME + (TUE	BING CAPACIT		0.16 JBING LENGTH) + FLOW C		gallons
only fill ou	ut if applicable)				gallons + (0		s/foot X				
NITIAL P	UMP OR TUBING	3	FINAL PUN	AP OR TUBIN		PURGING		PURGING) + 0.12	gallons =	gallons
DEPTH IN	WELL (feet):	19		WELL (feet):	19		DAT: 1115	ENDED AT:	1205	PURGED	(gallons): 3,5-
-	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pH	TEMP.	COND.	DISSOLVED OXYGEN	TURBID	ITY COLO	DR ORP
TIME	PURGED (gallons)	PURGED	RATE	WATER	(standard units)	(⁰ C)	(µS/cm)	(mg/L)	(NTUs		
1100	2.8	(gallons) 2.0	(gpm)	(feet)		20.01	207	1	22	10	
1155			0.07	14.67	5.24	28.86	793	0.55	2.3	clea	
1200	0.35	3.15	0.07	14.67	5.24	28.90	764	0.53	2.5		
1205	0.35	3.5	0.07	14.67	5.25	28.89	768	0.51	2.3	Clea	r 11.3
			-								
	-										
_											
										-	
	PACITY (Gallons					6; 2 " = 0.16;			5 " = 1.02;	6" = 1.47;	12" = 5.88
UBING IN	SIDE DIA. CAP	ACITY (Gal./	Ft.): 1/8" = 0.0	0006; 3/16"	' = 0.0014;	1/4" = 0.0026	5/16" = 0.	004; 3/8" = 0	.006; 1/2	2" = 0.010;	5/8" = 0.016
UBING IN		ACITY (Gal./	Ft.): 1/8" = 0.0		' = 0.0014; Pump; E	1/4" = 0.0026 SP = Electric S	5/16" = 0. ubmersible Pur	004; 3/8" = 0		2" = 0.010;	
UBING IN URGING	NSIDE DIA. CAP	ACITY (Gal./F DDES: B	Ft.): 1/8" = 0.0 = Bailer; E	0006; 3/16" BP = Bladder F	' = 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0. ubmersible Pur	004; 3/8" = 0 mp; PP = Pe	.006; 1/2	2" = 0.010; mp; O = C	5/8" = 0.016 Other (Specify)
URGING IN PURGING	BY (PRINT) / AF	ACITY (Gal./f DDES: B FILIATION:	Ft.): 1/8" = 0.0 = Bailer; E	0006; 3/16"	' = 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0. ubmersible Pur	004; 3/8" = 0 mp; PP = Pe SAMPLING	.006; 1/2 eristaltic Pur	2" = 0.010; np; O = C	5/8" = 0.016 Other (Specify)
CUBING IN PURGING SAMPLED toe Terry / PUMP OR	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING	ACITY (Gal./F DDES: B	Ft.): 1/8" = 0.0 = Bailer; E	0006; 3/16" 3P = Bladder F SAMPLER(S) TUBING	' = 0.0014; Pump; E SAMP SIGNATURI	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.1 ubmersible Pur TA	004; 3/8" = 0 mp; PP = Pe	12.006; 1/2 eristaltic Pur	2" = 0.010; np; O = C	5/8" = 0.016 Other (Specify) NG AT: /225
CUBING II PURGING SAMPLED loe Terry / PUMP OR DEPTH IN	NSIDE DÍA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet):	ACITY (Gal./F DDES: B FILIATION: Jon Laka	Ft.): 1/8" = 0.(= Bailer; E = /Pwsi ² C	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	' = 0.0014; Pump; E SAMP SIGNATURI ODE: PE	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S)}}$	5/16" = 0. ubmersible Pur TA FIELD	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' FILTERED: Y on Equipment Ty	1/2/0 T: / 2/0 T: / 2/0 Pe:	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE:μm
SAMPLED Joe Terry / PUMP OR DEPTH IN	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING	ACITY (Gal./F DDES: B FILIATION: Jon Laka	Ft.): 1/8" = 0.0 = Bailer; E	0006; 3/16" 3P = Bladder F SAMPLER(S) TUBING	' = 0.0014; Pump; E SAMP SIGNATURI ODE: PE	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0. ubmersible Pur TA FIELD	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A FILTERED: Y	1/2/0 T: / 2/0 T: / 2/0 Pe:	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: /225
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE	ACITY (Gal // DDES: B FILIATION: IO Laka 19 N: PUM R SPECIFICA	Et.): 1/8" = 0.(= Bailer; E = PWSIPC IP No ATION	0006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB	" = 0.0014; Pump; E SAMP 0 SIGNATURI 0 DE: PE ING No SAMPLE PF	1/4" = 0.0026 SP = Electric S LING DA E(S): Just ((replaced)) RESERVATION	5/16" = 0. ubmersible Pur TA FIELD Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' INITIATED: Y FILTERED: Y DUPLICATE INTENDE	1/2 eristaltic Pur T: / 2/0 pe: or EQUIPME	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING	5/8" = 0.016 Other (Specify) NG AT: <i>J</i> .2.2.5 SIZE:μm Y N SAMPLE PUMP
SAMPLED DOE TERRY / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	NSIDE DIA. CAP EQUIPMENT CC PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE #	ACITY (Gal./F DDES: B FILIATION: Ton Laka N: PUM R SPECIFICA MATERIAL	Et.): 1/8" = 0.(= Bailer; E = PWSIPC IP No ATION	30006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	' = 0.0014; Pump; E SAMP 0 SIGNATURI ODE: PE ING No SAMPLE PF IVE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE	1/2 eristaltic Pur T: / 2/0 Nor EQUIPME ED ND/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK:	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE: μm Y N
SAMPLED COMPLED COMPLED COMPOR COMPLED COMPLED COMPLE COMPLE COMPLE	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE	ACITY (Gal // DDES: B FILIATION: IO Laka 19 N: PUM R SPECIFICA	Ft.): 1/8" = 0.(= Bailer; E 2 /PWSI ³ C	30006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	' = 0.0014; Pump; E SAMP 0 SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m)	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A" FILTERED: Y pon Equipment Ty DUPLICATE INTENDI ANALYSIS A	1/2 eristaltic Pur T: / 2/0 Nor EQUIPME ED ND/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE: μm Y N SAMPLE PUMP FLOW RATE
SAMPLED COMPORT COMPOR COMPOR COMPOR COMPOR COMPLE COMPLE COMPLE	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	ACITY (Gal./F DDES: B FILIATION: Jon Laka N: PUM R SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0.0 = Bailer; E # /Pwsi>c IP IP No NTION VOLUME 40mL IP	0006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	' = 0.0014; Pump; E SAMP 0 SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Jue (replaced) RESERVATION TOTAL VOL D IN FIELD (m) efilled by lab	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE INTENDE ANALYSIS A METHO 8260	1/2 eristaltic Pur T: / 2/0 Nor EQUIPME ED ND/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
FUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DÍA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3	ACITY (Gal./F DDES: B FFILIATION: IGO Lufe IQ N: PUM R SPECIFICA MATERIAL CODE CG CG	Ft.): 1/8" = 0.0 = Bailer; E = Bailer; E # /Pwsi>c E # /Pwsi>c E # PNo NO NTION VOLUME 40mL 40mL	0006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	* = 0.0014; Pump; E SAMP 0 SIGNATUR 0 DE: PE ING No SAMPLE PF IVE ADDE Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m) efilied by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe INITIATED A' FILTERED: Y DUPLICATE INTENDE ANALYSIS A METHO 8260 8011	1/2 eristaltic Pur T: / 2/ 0 pe: or EQUIPME ED ND/OR D	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
CUBING IN PURGING SAMPLED loe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE D CODE	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1	ACITY (Gal./f DDES: B FILIATION: To Lake N: PUM R SPECIFICA MATERIAL CODE CG CG PE	Ft.): 1/8" = 0.0 = Bailer; E = Bailer; E # /P WSIPC IP No MTION VOLUME 40mL 40mL 500mL IP No	0006; 3/16" SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT USED HCL None HNO ₃	' = 0.0014; Pump; E SAMP 0 SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE Pre PUE PUE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m) efilled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe INITIATED A' INITIATED C FILTERED: Y DUPLICATE INTENDI ANALYSIS A METHO 8260 8011	1/2 eristaltic Pur T: / 2/ 0 pe: or EQUIPME ED ND/OR D	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 280
SAMPLED COMPORT COMPOR COMPOR COMPOR COMPOR COMPLE COMPLE COMPLE	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1	ACITY (Gal // DDES: B FILIATION: IODES: B FILIATION: IODE GCODECGCGPEPEPE	Ft.): 1/8" = 0.0 = Bailer; Bailer; = Bailer; Bailer; # /Pwsi>c # P No ATION VOLUME 40mL 40mL 500mL 125mL	30006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	' = 0.0014; Pump; E SAMP 0 SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE Pre PUE PUE	1/4" = 0.0026 SP = Electric S LING DA E(S): Jue (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A FILTERED: Y DUPLICATE INTENDI ANALYSIS A METHO 8260 8011 Metals NH ₃	1/2 eristaltic Pur T: / 2/ 0 pe: Dor EQUIPME ED ND/OR D	2" = 0.010; mp; O = C SAMPLIN ENDED A FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <280 280
SAMPLED COMPORTORY / COMPOR COMPOR COMPOR SAMPLE D CODE CODE	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 3 1	ACITY (Gal./f DDES: B FILIATION: ICO Luta N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0.0 = Bailer; E = Bailer; E # /P wsi>c E # /P No NO NTION VOLUME 40mL 500mL 125mL 250mL	0006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None		1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe INITIATED A' FILTERED: Y DUPLICATE INTENDI ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, I	1/2 eristaltic Pur eristaltic Pur T: / 2/ 0 ND/OR E D ND/OR E ND/OR E ND/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 280 280 280 280
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE AW 3A	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1	ACITY (Gal./f DDES: B FILIATION: ICO Luta N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0.0 = Bailer; E = Bailer; E # /P wsi>c E # /P No NO NTION VOLUME 40mL 500mL 125mL 250mL	0006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None		1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe INITIATED A' FILTERED: Y DUPLICATE INTENDI ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, I	1/2 eristaltic Pur eristaltic Pur T: / 2/ 0 ND/OR E D ND/OR E ND/OR E ND/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: <i>J.2.25</i> SIZE:µm Y N SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 2.80 2.80 2.80
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE AW 3A REMARKS	NSIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1	ACITY (Gal./f DDES: B FILIATION: IGO Lufe IQ N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE AG	Ft.): 1/8" = 0.0 = Bailer; Bailer; = Bailer; Bailer; # /Pwsi>c # P No ATION VOLUME 40mL 40mL 500mL 125mL	30006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄		1/4" = 0.0026 SP = Electric S LING DA E(S): Jue (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A FILTERED: Y DUPLICATE INTENDI ANALYSIS A METHO 8260 8011 Metals NH ₃	1/2 eristaltic Pur eristaltic Pur T: / 2/ 0 ND/OR E D ND/OR E ND/OR E ND/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED A FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <280 280
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE AW 3A REMARKS weather: C odor:	NSIDE DIA. CAP EQUIPMENT CO PUSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ACITY (Gal./f DDES: B FILIATION: To Lake N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE AG	Ft.): 1/8" = 0.0 = Bailer; E = Bailer; E # /P No IP No ATION VOLUME 40mL 500mL 125mL 250mL 250mL 250mL	0006; 3/16" SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	' = 0.0014; Pump; E SAMP SIGNATURI ODE: PE ING NO SAMPLE PF IVE ADDE Pri Pri Pri	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic FINAL PH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' INITIATED: Y DUPLICATE INTENDI ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, Total Phe	.006; 1/2 eristaltic Pur T: / 2/0 pe: 0 pe: 0 D ED ND/OR E S 0 NO3 nols	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <280 280 280 280 280 280
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE AW 3A SAMPLE ID CODE AW 3A REMARKS weather: C odor: MATERIA	NSIDE DIA. CAP EQUIPMENT CO PUSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ACITY (Gal./f DDES: B FILIATION: IGO Lufe Q N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE AG AG = Amber (Ft.): 1/8" = 0.0 = Bailer; E = Bailer; E # /P No IP No ATION VOLUME 40mL 500mL 125mL 250mL 250mL 250mL	0006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄ Clear Glass;	' = 0.0014; Pump; E SAMP 0 SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE Pri Pri Pri Pri Pri Pri Pri Pri Pri Pri	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab None efilled by lab None	5/16" = 0. ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' INITIATED: Y DUPLICATE INTENDI ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, Total Phe	.006; 1/2 eristaltic Pur T: / 2/0 pe: 0 por EQUIPME ED ND/OR D S NO3 nols	2" = 0.010; mp; O = C SAMPLIN ENDED/ FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: /225 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 280 280 280 280

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

		Cs Facility ID	: 89544)	CAMPLE			Omni Way, St	Cloud, Osceola		12 Can	
WELL NO.	MW-3	B		SAMPLE	ID: MW				DATE:	B May 2014	
						SING DAT	1				
WELL DIAMETER	(inches): 2.0	TUBIN	G TER (inches):		LL SCREEN		STATIC D	EPTH R (feet): 14.5		JRGE PUMP 1 R BAILER:	PPE peristaltic
				TAL WELL DEF	PTH - STA	TIC DEPTH TO	WATER) X	WELL CAPACI	TY	A DAILER.	pensiallic
(only fill out	if applicable)		= (feet -		feet) X	0.16	allogg/fact	1.0	a all an a
	T VOLUME PL	JRGE: 1 EQ		. = PUMP VOI	LUME + (TUB	ING CAPACIT	X TL	0.16 g JBING LENGTH)	+ FLOW C		gallons
(only fill out	if applicable)			= 0.0 c	allons + (0.	0026 gallon	s/foot X	50 feet)	+ 0.12	gallons =	0.3 gallons
INITIAL PU	MP OR TUBING		FINAL PU	MP OR TUBIN		PURGING	June 1	PURGING	0.12	TOTAL VO	
DEPTH IN	WELL (feet):	43		WELL (feet):	43		AT: 1105	ENDED AT:	1140		gallons): 2.45
-	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pH	TEMP.	COND.	DISSOLVED	TURBID	ITY COLO	OR ORP
TIME	PURGED	PURGED	RATE	WATER	(standard units)	(°C)	(µS/cm)	(mg/L)	(NTUs		
1130	(gallons)	(gallons)	(gpm)	(feet)		07 70	1369	- 72	-		21.0
	1.75	1.75	,07	14,63	4.04	27.79		0.72	0	7 Clear	
1135	0:35	2.1	.07	14.63	4.07	27.8	1389	0.64	0.2		
1140	0.35	2.45	.07	14.63	4.09	27.78	1395	0.56	0-61	cles	r 26.9
					1					_	2
_											
									-		
			-								
		_									
	ACITY (Gallons				1.25 " = 0.06				5" = 1.02;	6 " = 1.47;	12" = 5.88
TUBING IN	SIDE DIA. CAP	ACITY (Gal.	/Ft.): 1/8" = 0	.0006; 3/16"	= 0.0014;	1/4" = 0.0026;	5/16" = 0.0	004; 3/8" = 0.	.006; 1/	2" = 0.010;	5/8" = 0.016
TUBING IN		ACITY (Gal.			' = 0.0014; Pump; E	1/4" = 0.0026; SP = Electric S	5/16" = 0.0	004; 3/8" = 0.		2" = 0.010;	
TUBING IN PURGING I	SIDE DIA. CAP EQUIPMENT C	ODES: E	/Ft.): 1/8" = 0	.0006; 3/16"	' = 0.0014; Pump; E	1/4" = 0.0026;	5/16" = 0.0	004; 3/8" = 0. np; PP = Pe	.006; 1/	2" = 0.010; mp; O = C	5/8" = 0.016 Other (Specify)
TUBING IN PURGING I SAMPLED	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI	ODES: E	/Ft.): 1/8" = 0 3 = Bailer;	.0006; 3/16" BP = Bladder F	e = 0.0014; Pump; Es SAMP	1/4" = 0.0026; SP = Electric S	5/16" = 0.0	004; 3/8" = 0. mp; PP = Pe SAMPLING	006; 1/. eristaltic Pur	2" = 0.010; mp; O = C	5/8" = 0.016 Other (Specify)
TUBING IN PURGING I SAMPLED Joe Terry /	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL	ODES: E	/Ft.): 1/8" = 0	.0006; 3/16" BP = Bladder F SAMPLER(S)	e = 0.0014; Pump; Es SAMP	1/4" = 0.0026; SP = Electric S LING DA	5/16" = 0.0 ubmersible Pun TA	004; 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT	006; 1/. eristaltic Pur	2" = 0.010; mp; O = C SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT: 1200
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL	ODES: E	/Ft.): 1/8" = 0 3 = Bailer;	.0006; 3/16" BP = Bladder F	SAMP	1/4" = 0.0026; SP = Electric S LING DA	5/16" = 0.0 ubmersible Pun TA Ty FIELD-	004; 3/8" = 0. mp; PP = Pe SAMPLING	006; 1/ eristaltic Pur : 1145	2" = 0.010; mp; O = C	5/8" = 0.016 Other (Specify) NG AT: 1,200 SIZE:μm
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING	FFILIATION: Son 14t 43	/Ft.): 1/8" = 0 3 = Bailer;	.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	* = 0.0014; Pump; E: SAMP SIGNATURE ODE: PE	1/4" = 0.0026; SP = Electric S LING DA	5/16" = 0.0 ubmersible Pun TA Ty FIELD-	SAMPLING INITIATED AT	006; 1/ ristaltic Pur : 1145 N pe:	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER \$	5/8" = 0.016 Other (Specify) NG AT: 1200
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet):	ACITY (Gal. ODES: E FFILIATION: ゴロー 141 ノフ い: PUM	/Ft.): 1/8" = 0 3 = Bailer; 2 / PWSFL	.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	* = 0.0014; Pump; Es SAMP USIGNATURE ODE: PE ING No ()	$\frac{1}{4} = 0.0026;$ SP = Electric S LING DA	5/16" = 0.0 ubmersible Pun TA Ty FIELD-	3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Yon Equipment Typ DUPLICATE c INTENDE	006; 1// eristaltic Pur : 1145 	2" = 0.010; mp; O = C SAMPLII ENDED; FILTER \$ ENT BLANK: SAMPLING	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE #	ACITY (Gal. ODES: E FFILIATION: ICon Inf UN: PUM R SPECIFIC, MATERIAL	(Ft.): 1/8" = 0 3 = Bailer; :::/PWSFL MP No ATION	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	* = 0.0014; Pump; Es SAMP SIGNATURE ODE: PE ING No (i) SAMPLE PR IVE T	1/4" = 0.0026; SP = Electric S LING DA (S): 000 (S): 000 replaced) ESERVATION OTAL VOL	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE of INTENDE ANALYSIS AN	11/2 eristaltic Pur eristaltic Pur eristalt	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP FLOW RATE
TUBING IN PURGING I Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE # CONTAINERS	ACITY (Gal. ODES: E FFILIATION: ICon Inf M N: PUM R SPECIFIC, MATERIAL CODE	(Ft.): 1/8" = 0 3 = Bailer; <i>L PWSFL</i> MP No ATION VOLUME	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	' = 0.0014; Pump; Es SAMP SIGNATURE ODE: PE ING No (i SAMPLE PR IVE T ADDE	1/4" = 0.0026; SP = Electric S LING DA (S): replaced) ESERVATION OTAL VOL D IN FIELD (m)	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI	11/2 eristaltic Pur eristaltic Pur eristalt	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: 1,200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	FFILIATION: Son Tak Material CODE CG	(Ft.): 1/8" = 0 3 = Bailer; 2 / <i>PWSFL</i> MP NO ATION VOLUME 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	' = 0.0014; Pump; Es SAMP SIGNATURE ODE: PE ING No (i SAMPLE PR IVE T ADDE	1/4" = 0.0026; SP = Electric S LING DA (S): (S): replaced) ESERVATION OTAL VOL D IN FIELD (milefilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI 8260	11/2 eristaltic Pur eristaltic Pur eristalt	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: 1,200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 3	FFILIATION: Ton Int MATERIAL CODE CG CG	(Ft.): 1/8" = 0 3 = Bailer; 22 / PWSFL MP No ATION VOLUME 40mL 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	* = 0.0014; Pump; ES SAMP SIGNATURE ODE: PE ING No (SAMPLE PR IVE T ADDE Pre	1/4" = 0.0026; SP = Electric S LING DA (S): Doc replaced) ESERVATION OTAL VOL D IN FIELD (ml sfilled by lab None	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011	11/2 eristaltic Pur eristaltic Pur eristalt	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
TUBING IN PURGING I Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	FFILIATION: Son Tak Material CODE CG	(Ft.): 1/8" = 0 3 = Bailer; 3 MP NO ATION VOLUME 40mL 40mL 500mL 500mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	* = 0.0014; Pump; ES SAMP SIGNATURE ODE: PE ING No (SAMPLE PR IVE T ADDE Pre	1/4" = 0.0026; SP = Electric S LING DA (S): (S): replaced) ESERVATION OTAL VOL D IN FIELD (milefilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED T FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals 11	11/2 eristaltic Pur eristaltic Pur eristalt	2" = 0.010; mp; O = C SAMPLII ENDED, FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 280
SAMPLED Joe Terry / DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3	FFILIATION: Ton Int MATERIAL CODE CG CG	(Ft.): 1/8" = 0 3 = Bailer; 22 / PWSFL MP No ATION VOLUME 40mL 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	* = 0.0014; Pump; Es SAMP SIGNATURE ODE: PE ING No (SAMPLE PR IVE T ADDE Pre	1/4" = 0.0026; SP = Electric S LING DA (S): Doc replaced) ESERVATION OTAL VOL D IN FIELD (ml sfilled by lab None	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011	11/2 eristaltic Pur eristaltic Pur eristalt	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
SAMPLED Joe Terry / DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 1	REPECTION: ACTIVE (Gal. ODES: E FFILIATION: Ton Inf MATERIAL CODE CG CG PE	(Ft.): 1/8" = 0 3 = Bailer; 3 MP NO ATION VOLUME 40mL 40mL 500mL 500mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	* = 0.0014; Pump; Es SAMP SIGNATURE ODE: PE ING No (SAMPLE PR IVE T ADDE Pre	1/4" = 0.0026; SP = Electric S LING DA (S): replaced) ESERVATION OTAL VOL D IN FIELD (ml sfilled by lab None sfilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED T FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals 11	11/2 eristaltic Puri eristaltic Puri	2" = 0.010; mp; O = C SAMPLII ENDED, FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <280 280 280
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1	FFILIATION: Son Internation: Son Internation: Son Internation: MATERIAL CODE CG CG PE PE	(Ft.): 1/8" = 0 B = Bailer; C. / PWSFL MP No ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	* = 0.0014; Pump; ES SAMP SIGNATURE ODE: PE ING No (SAMPLE PR IVE T ADDE Pre Pre	1/4" = 0.0026; SP = Electric S LING DA (S): De (S): D	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH3	11/45 eristaltic Pur eristaltic Pur eristal	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 280 280
SAMPLED DOE Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE A W-3 JS REMARKS.	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 1 1 1 1 1	RECITY (Gal. ODES: E FFILIATION: In: Jon 144 N: PUM R SPECIFIC. MATERIAL CODE CG CG PE PE PE PE	/Ft.): 1/8" = 0 3 = Bailer; 3 3 = Bailer; 3 MP No No ATION VOLUME 40mL 500mL 125mL 250mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	* = 0.0014; Pump; ES SAMP SIGNATURE ODE: PE ING No (SAMPLE PR IVE T ADDE Pre Pre	1/4" = 0.0026; SP = Electric S LING DA (S): (S): Teplaced) ESERVATION OTAL VOL D IN FIELD (mill offilled by lab filled by lab filled by lab filled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y PON Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	11/45 eristaltic Pur eristaltic Pur eristal	2" = 0.010; mp; O = C SAMPLII ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <280 280 280
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE N W-313 REMARKS	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1	RECITY (Gal. ODES: E FFILIATION: In: Jon 144 N: PUM R SPECIFIC. MATERIAL CODE CG CG PE PE PE PE	/Ft.): 1/8" = 0 3 = Bailer; 3 3 = Bailer; 3 MP No No ATION VOLUME 40mL 500mL 125mL 250mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	* = 0.0014; Pump; ES SAMP SIGNATURE ODE: PE ING No (SAMPLE PR IVE T ADDE Pre Pre	1/4" = 0.0026; SP = Electric S LING DA (S): (S): Teplaced) ESERVATION OTAL VOL D IN FIELD (mill offilled by lab filled by lab filled by lab filled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y PON Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	11/45 eristaltic Pur eristaltic Pur eristal	2" = 0.010; mp; O = C SAMPLII ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <280 280 280
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE NW-315 REMARKS: weather: C odor:	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	REPERENTIAL	(Ft.): 1/8" = 0 3 = Bailer; 2 / PWSFL MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	Pump; Es SAMP SIGNATURE ODE: PE ING No (SAMPLE PR IVE AT ADDE Pre Pre Pre Pre Pre Pre	1/4" = 0.0026; SP = Electric S LING DA (S): replaced) ESERVATION OTAL VOL D IN FIELD (m) offilled by lab None offilled by lab None	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio FINAL pH	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATEDE: Y m Equipment Typ DUPLICATE c ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006: 1/. eristaltic Pur eristaltic Pur eris	2" = 0.010; mp; O = C SAMPLIN ENDED, FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <280 280 280 280 280 280
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE NW-313 REMARKS: weather: C	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	ACITY (Gal. ODES: E FFILIATION: Son: PUN R SPECIFIC. MATERIAL CODE CG CG PE PE PE AG AG = Amber	(Ft.): 1/8" = 0 3 = Bailer; 3 = Bailer; ATION VOLUME 40mL 500mL 125mL 250mL 250mL 6lass; CG	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	* = 0.0014; Pump; Es SIGNATURE ODE: PE ING No (r SAMPLE PR IVE T ADDE! Pre Pre Pre Pre Pre	1/4" = 0.0026; SP = Electric S LING DA (S): (S	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATEDE: Y m Equipment Typ DUPLICATE c ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; 1// aristaltic Pur be: be: brittic Pur britin Pur britin P	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 1200 SIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <280 280 280

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-4	Cs Facility ID:		SAMPLE	ID: MW			t. Cloud, Osceola		B May 2014	
		/1				SING DA	ТА			0	
WELL	D. S.C.A.	TUBING		WEI	LL SCREEN	INTERVAL	STATIC D	DEPTH	F P	URGE PUMP	TYPE
	(inches): 2.0	DIAME	TER (inches):	0.25 DEP	TH: 13 fe	et to 23 fe	eet TO WATE	ER (feet): 15.	52 0		peristaltic
(only fill out	if applicable)							WELL CAPAC			
SOUIPMEN	T VOLUME PL	IDOE: 1 FO		23.1	feet -	15.5	TY X TL	0.16	alions/foot	= /.	3 gallons
(only fill out	if applicable)	RGE: 1 Euro	JIPMENT VOL					JBING LENGTH) + FLOW	CELL VOLUME	
			1			0026 gallo		feet)) + 0.1	2 gallons =	gallons
INITIAL PUN DEPTH IN V	MP OR TUBING WELL (feet):	20		MP OR TUBING WELL (feet):	20	PURGIN	G DAT: 1310	PURGING ENDED AT:	1410	TOTAL VO PURGED	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBII (NTU		
1350	2	2	0.05	15,84	4.67	28.89	1225	0.52	15.	8 clea	n 12.2
1355	0.25	2.25	0.05		4.85	28.84	1174	0.51	16	Clea	
1400	0.25	2.5	0.05				1050	0.5	11-	clea	
1405	0.25	2.75						0.5	11. 1 8.	Cle	
1410	0.25	3	0.05				1054	0.51	7.2		
1.1		-	0.00	10.0	5.0	-0.05	10-1	0.01	1.0		w -10.0
								- marine			
TUBING INS	ACITY (Gallons SIDE DIA. CAP EQUIPMENT CO	ACITY (Gal./F	(Ft.): 1/8" = 0.0	1" = 0.04; 0006; 3/16" BP = Bladder Pr	= 0.0014; ump; E\$	1/4" = 0.0026 SP = Electric S	6; 5/16" = 0.0 Submersible Pun	004; 3/8'' = 0	5" = 1.02; .006; 1 eristaltic Pu	/2" = 0.010;	12 " = 5.88 5/8 " = 0.016 Other (Specify)
TUBING INS PURGING E SAMPLED B	SIDE DIA. CAPA EQUIPMENT CO BY (PRINT) / AF	PACITY (Gal./F ODES: B FFILIATION:	/Ft.): 1/8" = 0.0	0006; 3/16" BP = Bladder Pl	= 0.0014; ump; ES SAMPI	1/4" = 0.0026 SP = Electric S	6; 5/16" = 0.0 Submersible Pun	004; 3/8" = 0 mp; PP = Pe	eristaltic Pu	/2" = 0.010; imp; O = 0 SAMPLI	5/8" = 0.016 Other (Specify)
TUBING INS PURGING E SAMPLED B Joe Terry / P	SIDE DIA. CAPA EQUIPMENT CO BY (PRINT) / AF PWSFL	PACITY (Gal./F ODES: B	/Ft.): 1/8" = 0.0	0006; 3/16" BP = Bladder Pl SAMPLER(S) :	= 0.0014; ump; ES SAMPI	1/4" = 0.0026 SP = Electric S	6: 5/16" = 0.0 Submersible Pun	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT	1.006; 1 eristaltic Pu T: 14/10	2" = 0.010; mp; O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT: 1425
TUBING INS PURGING E SAMPLED B	SIDE DIA. CAPA EQUIPMENT CO BY (PRINT) / AF PWSFL	PACITY (Gal./F ODES: B FFILIATION:	/Ft.): 1/8" = 0.0 B = Bailer; E	0006; 3/16" BP = Bladder Pl	= 0.0014; ump; ES SAMPI SIGNATURE	1/4" = 0.0026 SP = Electric S	6: 5/16" = 0.0 Submersible Pun	SAMPLING INITIATED AT FILTERED: Yon Equipment Type	1.006; 1 eristaltic Pu T: /4//0 N pe:	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: 1425
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W	SIDE DIA. CAPA EQUIPMENT CO BY (PRINT) / AF PWSFL	PACITY (Gal./F ODES: B FFILIATION: Jon Luke/ 20	/Ft.): 1/8" = 0.0 B = Bailer; E	0006; 3/16" BP = Bladder Pl SAMPLER(S) S TUBING	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE	1/4" = 0.0026 SP = Electric S	6: 5/16" = 0.0 Submersible Pun	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT	1.006; 1 eristaltic Pu T: /4//0 N pe:	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: 1425
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): ONTAMINATION LE CONTAINEF	FFILIATION: 500 Luke/ 20 N: PUM R SPECIFICA	(Ft.): 1/8" = 0.(3 = Bailer; E <i>PWSFL</i> /PNO ATION	0006; 3/16" BP = Bladder Pr SAMPLER(S) : TUBING MATERIAL CC TUBIN	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r	1/4'' = 0.0026 SP = Electric S LING DA	6: 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED TO Y FILTERED: Y DUPLICATE of INTENDE	1.006; 1 eristaltic Pu T: /4//0 pe: or ROUIPM	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING	5/8" = 0.016 Other (Specify) NG AT: 1425 SIZE:μm VN SAMPLE PUMP
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC SAMPLE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): ONTAMINATION LE CONTAINEF	PACITY (Gal./F ODES: B FFILIATION: Jon Luke/ 20 DN: PUM	(Ft.): 1/8" = 0.(3 = Bailer; E <i>PWSFL</i> /PNO ATION	0006; 3/16" BP = Bladder Pr SAMPLER(S) : TUBING MATERIAL CC TUBIN	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE T	1/4" = 0.0026 SP = Electric S LING DA (S): Cre replaced) ESERVATION	6: 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of	T: / 4//0 Pristaltic Pu T: / 4//0 Pe: Pristaltic Pu N Por ROUIPM ED ND/OR	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK:	5/8" = 0.016 Other (Specify) NG AT: 1425 SIZE:μm (ΥN
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC SAMPLE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL	ACITY (Gal./F ODES: B FFILIATION: Jon Luke/ 20 DN: PUM R SPECIFICA MATERIAL	(Ft.): 1/8" = 0.(3 = Bailer; E <i>PWSFL</i> /PNO ATION	0006; 3/16" BP = Bladder Pr SAMPLER(S) : TUBING MATERIAL CC TUBIN SPRESERVATIN	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE ADDEL	1/4" = 0.0026 SP = Electric S LING DA E(S): Cree replaced) ESERVATION	6: 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE of INTENDE ANALYSIS AT	T: / 4//0 Pristaltic Pu T: / 4//0 Pe: Pristaltic Pu N Por ROUIPM ED ND/OR	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: 1425 SIZE: μm SIZE: μm SAMPLE PUMP FLOW RATE
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL	ACITY (Gal./F ODES: B FFILIATION: Jon Luke/ 20 DN: PUM R SPECIFICA MATERIAL CODE	(Ft.): 1/8" = 0.(3 = Bailer; E PWSFL MP No ATION VOLUME	0006; 3/16" BP = Bladder Pr SAMPLER(S) : TUBING MATERIAL CC TUBIN S PRESERVATIN USED	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE ADDEL	1/4" = 0.0026 SP = Electric S LING DA (S): (S)	6: 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE of ANALYSIS AT METHOD	T: / 4//0 Pristaltic Pu T: / 4//0 Pe: Pristaltic Pu N Por ROUIPM ED ND/OR	/2" = 0.010; mp; 0 = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: 1425 SIZE: μm SIZE: μm SAMPLE PUMP FLOW RATE (mL per minute)
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING NELL (feet): ONTAMINATION LE CONTAINERS 3	ACITY (Gal./F ODES: B FFILIATION: Jon Luke/ 20 N: PUM R SPECIFICA MATERIAL CODE CG	(Ft.): 1/8" = 0.(3 = Bailer; E / PWSFL MP No ATION VOLUME 40mL	0006; 3/16" BP = Bladder Pr SAMPLER(S) S TUBING MATERIAL CC TUBIN S PRESERVATIN USED HCL	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDEL Pre	1/4" = 0.0026 SP = Electric S LING DA (S): Cre replaced) ESERVATION OTAL VOL D IN FIELD (m efilled by lab	6; 5/16" = 0.0 Submersible Pun TA FIELD- FIELD- Filtratio N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: FILTERED: Y DUPLICATE of ANALYSIS AT METHO 8260	1.006; 1 eristaltic Pu r: /4//0 pe: or RQUIPM ED ND/OR D	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: 1425 SIZE: μm SIZE: μm SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC SAMPLE ID CODE	SIDE DIA. CAPA EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING WELL (feet): ONTAMINATION LE CONTAINERS 3 3 3	ACITY (Gal./F ODES: B FFILIATION: Jon Lake/ 20 DN: PUM R SPECIFICA MATERIAL CODE CG CG	/Ft.): 1/8" = 0.0 3 = Bailer; E /PWSFL Image: Provide the second s	0006; 3/16" BP = Bladder Pr SAMPLER(S) ; TUBING MATERIAL CO TUBIN S PRESERVATIN USED HCL None	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDEL Pre Pre	1/4" = 0.0026 SP = Electric S LING DA (S): (S): (S): (S): (S): (C)	6; 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio N FINAL pH	004; 3/8" = 0 mp; PP = Pe INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE of INTENDE ANALYSIS AN METHO 8260 8011	1.006; 1 eristaltic Pu T: /4//0 pe: or RQUIPM ED ND/OR D	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: 14/25 SIZE: μm V N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC SAMPLE ID CODE WW-44	SIDE DIA. CAPI EQUIPMENT CO BY (PRINT) / AF PWSFL	ACITY (Gal./F ODES: B FFILIATION: Jon Luke/ 20 N: PUM R SPECIFICA MATERIAL CODE CG CG PE	/Ft.): 1/8" = 0.(3 = Bailer; 8 / PWSFL 1 //PNO 1 MPNO 1 ATION 1 VOLUME 40mL 40mL 500mL	0006; 3/16" BP = Bladder Pr SAMPLER(S) : TUBING MATERIAL CC TUBIN S PRESERVATIN USED HCL None HNO ₃	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDEL Pre Pre	1/4" = 0.0026 SP = Electric S LING DA (S): Cree replaced) ESERVATION OTAL VOL D IN FIELD (m efilled by lab None	6: 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE of ANALYSIS AT METHOD 8260 8011 Metals	1.006; 1 eristaltic Pu r: / 4//0 pe: or ROUIPM ED ND/OR D	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: 1425 SIZE:μm V N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC SAMPLE ID CODE	SIDE DIA. CAP/ EQUIPMENT CO BY (PRINT) / AF PWSFL TUBING NELL (feet): ONTAMINATION LE CONTAINERS 3 3 1 1 1	ACITY (Gal./F ODES: B FFILIATION: Jon Lake/ 20 N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE	/Ft.): 1/8" = 0.(3 = Bailer; E /PWSFL I /PNO I ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16" BP = Bladder Pr SAMPLER(S) : TUBING MATERIAL CC TUBIN S PRESERVATIN USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; ump: ES SIGNATURE SIGNATURE DDE: PE NG No (r SAMPLE PR VE T ADDEL Pre Pre Pre	1/4" = 0.0026 SP = Electric S LING DA (S): (S): (S): (C)	6: 5/16" = 0.0 Submersible Pun TA FIELD- FIELD- Filtratio N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT Pe FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHO 8260 8011 Metals NH ₃ TDS, CI, N Total Phen	noo6; 1 eristaltic Pu nor RQUIPM D ND/OR D NO ₃ nols	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 14/25 SIZE: μm V N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC SAMPLE ID CODE WW-44 REMARKS: weather: C I odor: S J H	SIDE DIA. CAPI EQUIPMENT CO BY (PRINT) / AF PWSFL	ACITY (Gal./F ODES: B FFILIATION: Jon Luke/ 20 N: PUM R SPECIFICA MATERIAL CODE CG CG CG PE PE PE PE AG	(Ft.): 1/8" = 0.0 8 = Bailer; 8 8 = Bailer; 8 19 WS FL 1 MP No 1 ATION VOLUME 40mL 40mL 500mL 125mL 250mL 2	0006; 3/16"; $BP = Bladder Pladder Pladder$	= 0.0014; ump; ES SIGNATURE SIGNATURE DDE: PE NG No (r SAMPLE PR VE ADDET Pre Pre Pre Pre	1/4" = 0.0026 SP = Electric S LING DA (S): Cree replaced) ESERVATION OTAL VOL D IN FIELD (m efilled by lab None efilled by lab None efilled by lab None efilled by lab None	6: 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio N FINAL pH FINAL pH Coo	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y DUPLICATE of ANALYSIS AT METHOD 8260 8011 Metals NH₃ TDS, CI, I Total Phen Y40 Y40	1.006; 1 eristaltic Pu r: /4//0 pe: or ROUIPN ED ND/OR D S NO ₃ nols 1/2/8 - J 6	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP APP APP APP APP	5/8" = 0.016 Dther (Specify) NG AT: 1425 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 DT ως 464
TUBING INS PURGING E SAMPLED B Joe Terry / P PUMP OR T DEPTH IN W FIELD DECC SAMPLE ID CODE ID	SIDE DIA. CAPI EQUIPMENT CO BY (PRINT) / AF PWSFL	ACITY (Gal./F ODES: B FFILIATION: Jon Lake/ 20 DN: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE AG	(Ft.): 1/8" = 0.0 8 = Bailer; 8 8 = Bailer; 8 19 WS FL 1 MP No 1 ATION VOLUME 40mL 40mL 500mL 125mL 250mL 2	0006; 3/16"; $BP = Bladder Pladder Pladder$	= 0.0014; ump; ES SIGNATURE DDE: PE NG No (r SAMPLE PR VE ADDET Pre Pre Pre Pre	1/4" = 0.0026 SP = Electric S LING DA (S): (S): (S): (S): (C)	6: 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio N FINAL pH FINAL pH Coo	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AT METHOI 8260 8011 Metals NH ₃ TDS, CI, N Total Phene Y40 ω/	1.006; 1 eristaltic Pu r: /4//0 pe: or ROUIPM ED ND/OR D ND/OR D ND/OR D S NO ₃ nols //4 5 S	2" = 0.010; mp; 0 = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP APP APP APP COL Sop1:ed	5/8" = 0.016 Dther (Specify) NG AT: 1435 SIZE:µm V N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-4	В		SAMP	PLE ID: 1	1W - 1	1B			DATE:	B	May 2014	
					PL	JRGIN	G DAT	A					
WELL DIAMETE	R (inches): 2.0	TUBIN	G TER (inches):		WELL SCR		RVAL 47 fee	STATIC D	EPTH R (feet): 15,1				TYPE peristaltic
NELL VO	LUME PURGE:	1 WELL VO	LUME = (TOT	TAL WELL D	DEPTH -	STATIC I	DEPTH TO	WATER) X	WELL CAPACI	TY	ONE	AILEN.	pensiallic
	it if applicable)		= (feet -			feet) X	0.16 g	allons/f	foot =	S. C	gallons
	NT VOLUME PU	URGE: 1 EQU	JIPMENT VOL	. = PUMP V	OLUME +	(TUBING	CAPACITY		BING LENGTH	+ FLO	W CEL	L VOLUME	gailons
only nil oc	at in applicable)		1.1	= 0.0	gallons +	+ (0.0026	gallons	foot X	feet)	+	0.12	gallons =	gallons
	JMP OR TUBIN	GUO	FINAL PU	MP OR TUB	ING II		PURGING	10.0	PURGING			TOTAL VO	DLUME
JEPTHIN	WELL (feet):	42 CUMUL	DEPTHIN	WELL (feet)			INITIATED	AT: 1310	ENDED AT:	135	0	PURGED ((gallons): 2
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (stand	dard	EMP. ([°] C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)		BIDITY TUs)	COLC (descri	
1340	1.5	1.5	0.05	15.6	4 3.	70 2	8.91	1882	0.91	2.	38	clea.	r 129.8
1345	0.25	1.75	0.05	15.6	5.0		8.94	1863	0.74		92	cles	
1350	0.25	2.0	0.05				8.92	1844	0.65		51	cle.	
		-			1		V . 1-	1011	V.02	6.		CIE	164.5
					1						-		
												-	
										-	-		
						-						-	
			-	-	-					-	_	-	
			-		-	-				-		-	
				-	-	-	-	_					
VELL CAR	PACITY (Gallons	s Per Foot): (0.75 " = 0.02;	1" = 0.04;	1.25" :	= 0.06;	2" = 0.16:	3 " = 0.37:	4 " = 0.65:	5" = 1.0	2: 6	i" = 1 47:	12" = 5.88
UBING IN	SIDE DIA. CAP	ACITY (Gal./	Ft.): 1/8" = 0.	0006; 3/1	16" = 0.001	14; 1/4"	2 " = 0.16; = 0.0026;	5/16" = 0.0	04; 3/8" = 0.		1/2" :	i" = 1.47; = 0.010;	12 " = 5.88 5/8 " = 0.016
UBING IN	PACITY (Gallons ISIDE DIA. CAP EQUIPMENT C	ACITY (Gal./	Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/1 BP = Bladde	16" = 0.001 er Pump;	14: 1/4" ESP =	= 0.0026; Electric Su	5/16" = 0.0	04; 3/8" = 0.	006;	1/2" :	= 0.010;	
UBING IN URGING	ISIDE DIA. CAP	ODES: B	Ft.): 1/8" = 0.	0006; 3/1	16" = 0.001 er Pump;	14: 1/4" ESP =	= 0.0026;	5/16" = 0.0	04; 3/8" = 0.	006;	1/2" :	= 0.010; O = C	5/8" = 0.016 Other (Specify)
URGING IN PURGING	EQUIPMENT C	PACITY (Gal./I ODES: B	Ft.): 1/8" = 0. = Bailer;	0006; 3/1	16" = 0.001 er Pump; SA	ESP =	= 0.0026; Electric Su G DAT	5/16" = 0.0 omersible Pur	04; 3/8" = 0.	006; ristaltic	1/2" = Pump;	= 0.010; 0 = 0	5/8" = 0.016 Other (Specify)
CUBING IN PURGING AMPLED oe Terry /	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL	PACITY (Gal./ ODES: B FFILIATION: Jon Lute	Ft.): 1/8" = 0. = Bailer;	0006; 3/1 BP = Bladde	16" = 0.001 er Pump; SA	ESP =	= 0.0026; Electric Su G DAT	5/16" = 0.0 pmersible Purr A	04; 3/8" = 0.	006; ristaltic : 13	1/2" = Pump; 55	= 0.010; O = C SAMPLIN ENDED A	5/8" = 0.016 Other (Specify) NG AT: 1408
CUBING IN PURGING CAMPLED oe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet):	PACITY (Gal./I ODES: B FFILIATION: Jon Late 42	Ft.): 1/8" = 0. = Bailer; /PWSR	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	16" = 0.001 er Pump; SA (S) SIGNA (S) SIGNA	14; 1/4" ESP = MPLIN TURE(S):	= 0.0026; Electric Su G DAT Que C	5/16" = 0.0 omersible Purr A FIELD-I	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ	006; ristaltic 13 oe.	1/2" = Pump: 55	O = C SAMPLIN ENDED A FILTER S	5/8" = 0.016 Other (Specify) NG AT: 140β SIZE:μm
CUBING IN PURGING CAMPLED oe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING	PACITY (Gal./I ODES: B FFILIATION: Jon Late 42	Ft.): 1/8" = 0. = Bailer;	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	(S) SIGNA	14: 1/4" ESP = MPLIN TURE(S):	= 0.0026; Electric Su G DAT Que C	5/16" = 0.0 omersible Purr A FIELD-I	04: 3/8" = 0. np: PP = Pe SAMPLING INITIATED AT FILTERED: Y	006; ristaltic 13 oe.	1/2" = Pump: 55	O = C SAMPLIN ENDED A FILTER S	5/8" = 0.016 Other (Specify) NG AT: 1408
CUBING IN PURGING SAMPLED oe Terry / PUMP OR DEPTH IN TIELD DEC SAMP	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE	R SPECIFICA	Ft.): 1/8" = 0. = Bailer; 1 /PWSR	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU	16" = 0.001 er Pump; SA (S) SIGNA (S) SIGNA (S) SIGNA (S) SIGNA (S) SIGNA	14; 1/4" ESP = MPLIN TURE(S):	= 0.0026; Electric Su G DAT We C	5/16" = 0.0 omersible Purr A FIELD-I	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE o INTENDE	006; ristaltic : 13 me: D	1/2" = Pump; 55 PMENT SA	= 0.010; O = C SAMPLIN FILTER S T BLANK: MPLING	5/8" = 0.016 Other (Specify) NG AT: 14/08 SIZE: μm Y N SAMPLE PUMP
AMPLED OOE Terry / PUMP OR DEPTH IN TIELD DEC SAMPLE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE #	ACITY (Gal./I ODES: B FFILIATION: 500 Lacker 42 NN: PUM R SPECIFICA MATERIAL	Ft.): 1/8" = 0. = Bailer; 1 /PWSR	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA	16" = 0.001 er Pump; SA (S) SIGNA (S) SIGNA (S) SIGNA (S) SIGNA (S) SIGNA (S) SIGNA (S) SIGNA	14: 1/4" ESP = MPLIN TURE(S): E No (repla E PRESE TOTA	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL	5/16" = 0.0 pomersible Purr A FIELD-1 Filtratio	04: 3/8" = 0. pp: PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of	006; ristaltic : 13 	1/2" = Pump; 55 PMENT SA EQU	O = C SAMPLIN ENDED A FILTER S	5/8" = 0.016 Other (Specify) NG AT: 14/0B SIZE:μm Υ
AMPLED COMPORTER	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE	R SPECIFICA	Ft.): 1/8" = 0. = Bailer; 1 /PWSR P No TION	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED	16" = 0.001 er Pump; SA (S) SIGNA' .CODE: PE JBING SAMPL ATIVE	14: 1/4" ESP = MPLIN TURE(S): E No (repla E PRESE TOTA	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL FIELD (mL)	5/16" = 0.0 pomersible Purr A FIELD-1 Filtratio	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD	006; ristaltic : 13 	1/2" = Pump; 55 PMENT SA EQU	SAMPLIN ENDED A FILTER S T BLANK: MPLING UIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: 1 4/0B SIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute)
CUBING IN PURGING SAMPLED loe Terry / PUMP OR DEPTH IN FIELD DEC	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE # CONTAINERS 3	FILIATION: Son Lacke HJ2 N: PUM R SPECIFICA MATERIAL CODE CG	Et.): 1/8" = 0. = Bailer; 1 / PWSFL IP No TION VOLUME 40mL	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL	16" = 0.001 er Pump; SA (S) SIGNA (S) SIGNA (S	14: 1/4" ESP = MPLIN TURE(S): E No (repla E PRESE TOTA ADDED IN Prefilled	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL FIELD (mL) d by lab	5/16" = 0.0 pomersible Purr A FIELD-1 Filtratio	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260	006; ristaltic : 13 	1/2" = Pump: 55 PMENT SA EQU	SAMPLIN SAMPLING UPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: 1 4/0β SIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100
CUBING IN PURGING SAMPLED oe Terry / PUMP OR DEPTH IN TIELD DEC SAMPLE D CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3	FFILIATION: Son Lacke HJ2 N: PUM R SPECIFICA MATERIAL CODE CG CG	P No VOLUME 40mL	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None	16" = 0.001 er Pump; SA (S) SIGNA (S) SIGNA (S	14: 1/4" ESP = MPLIN TURE(S): E No (repla E PRESE TOTA ADDED IN Prefilled No	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL FIELD (mL) d by lab ne	5/16" = 0.0 pomersible Purr A FIELD-1 Filtratio	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011	006; ristaltic : 13 pe: D ID/OR	1/2" = Pump: 55 PMEN SA EQU () F	SAMPLIN SAMPLIN ENDED A FILTER S T BLANK: MPLING UIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: / 4/0B SIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
CUBING IN PURGING SAMPLED oe Terry / PUMP OR DEPTH IN TIELD DEC SAMPLE D CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 1	ACITY (Gal./I ODES: B FFILIATION: 500 Lacker 42 NN: PUM R SPECIFICA MATERIAL CODE CG CG PE	Et.): 1/8" = 0. = Bailer; 1 P WSA P No TION VOLUME 40mL 40mL 500mL	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None HNO	16" = 0.001 er Pump; SA (S) SIGNA' (S) SIGNA' (S) SIGNA' (S) SIGNA' SAMPL ATIVE ATIVE ATIVE A	14: 1/4" ESP = MPLIN TURE(S): E No (repla E PRESE TOTA DDED IN Prefilled Prefilled	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL FIELD (mL) d by lab ne d by lab	5/16" = 0.0 pomersible Purr A FIELD-1 Filtratio	04: 3/8" = 0. ap: PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals	006; ristaltic : 13 pe: D ID/OR	1/2" = Pump: 55 PMENT SA EQU (F	SAMPLIN ENDED / FILTER S T BLANK: MPLING UIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: 140B SIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200
AMPLED COMPORTER	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1	FFILIATION: Son Lacke HJ2 N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE	Ft.): 1/8" = 0. = Bailer; II / P WSFL II /P No III ATION VOLUME 40mL 500mL 125mL III	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None HNO3 H ₂ SO	16" = 0.001 er Pump; SA (S) SIGNA .CODE: PE JBING SAMPL ATIVE	14: 1/4" ESP = MPLIN TURE(S): E No (repla E PRESE TOTA ADDED IN Prefilled Prefilled	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL FIELD (mL) d by lab ne d by lab	5/16" = 0.0 pomersible Purr A FIELD-1 Filtratio	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃	006; ristaltic : 13 	1/2" = Pump: 55 PMEN SA EQU ((F	SAMPLIN ENDED A FILTER S T BLANK: MPLING UIPMENT CODE RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: / 4/0B SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200
CUBING IN PURGING CAMPLED OCOTETTY / PUMP OR DEPTH IN IELD DEC SAMPLE D CODE W-11B	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3 3 1	ACITY (Gal./I ODES: B FFILIATION: Son Lacke 42 N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0. = Bailer; 1 P No 1 XTION VOLUME 40mL 40mL 500mL 125mL 250mL 1	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None HNO3 H ₂ SO None	16" = 0.001 er Pump; SA (S) SIGNA' .CODE: PE JBING SAMPL ATIVE A	14: 1/4" ESP = MPLIN TURE(S): No (repla E PRESE TOTA DDED IN Prefilled Prefilled No	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL FIELD (mL) d by lab ne d by lab ne	5/16" = 0.0 pomersible Purr A FIELD-1 Filtratio	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃ TDS, CI, N	006; ristaltic : 13 pe: 13 r EQUI D ID/OR D ID/OR	1/2" =	O = 0.010; O = 0 SAMPLIN ENDED A FILTER S T BLANK: MPLING UIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: / 4/0B SIZE:µm Y ① SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200
AMPLED CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: Son Lacke HJ2 N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE	Ft.): 1/8" = 0. = Bailer; II / P WSFL II /P No III ATION VOLUME 40mL 500mL 125mL III	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None HNO3 H ₂ SO	16" = 0.001 er Pump; SA (S) SIGNA' .CODE: PE JBING SAMPL ATIVE A	14: 1/4" ESP = MPLIN TURE(S): E No (repla E PRESE TOTA ADDED IN Prefilled Prefilled	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL FIELD (mL) d by lab ne d by lab ne	5/16" = 0.0 pomersible Purr A FIELD-1 Filtratio	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃	006; ristaltic : 13 pe: 13 r EQUI D ID/OR D ID/OR	1/2" =	SAMPLIN ENDED A FILTER S T BLANK: MPLING UIPMENT CODE RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: / 4/0B SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200
AMPLED CODE CODE CODE CODE CODE CODE CODE CO	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1	ACITY (Gal./I ODES: B FFILIATION: Son Lacke 42 N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0. = Bailer; 1 P No 1 XTION VOLUME 40mL 40mL 500mL 125mL 250mL 1	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None HNO3 H ₂ SO None	16" = 0.001 er Pump; SA (S) SIGNA' .CODE: PE JBING SAMPL ATIVE A	14: 1/4" ESP = MPLIN TURE(S): No (repla E PRESE TOTA DDED IN Prefilled Prefilled No	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL FIELD (mL) d by lab ne d by lab ne	5/16" = 0.0 pomersible Purr A FIELD-1 Filtratio	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃ TDS, CI, N	006; ristaltic : 13 pe: 13 r EQUI D ID/OR D ID/OR	1/2" =	O = 0.010; O = 0 SAMPLIN ENDED A FILTER S T BLANK: MPLING UIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: / 4/0B SIZE:µm Y ① SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200
CUBING IN CURGING CAMPLED COPETH IN IELD DEC SAMPLE D CODE W-4B CODE W-4B CEMARKS reather: C	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1 1	ACITY (Gal./I ODES: B FFILIATION: Son Lacke 42 N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Ft.): 1/8" = 0. = Bailer; 1 P No 1 XTION VOLUME 40mL 40mL 500mL 125mL 250mL 1	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None HNO3 H ₂ SO None	16" = 0.001 er Pump; SA (S) SIGNA' .CODE: PE JBING SAMPL ATIVE A	14: 1/4" ESP = MPLIN TURE(S): No (repla E PRESE TOTA DDED IN Prefilled Prefilled No	= 0.0026; Electric Su G DAT We C ced) RVATION L VOL FIELD (mL) d by lab ne d by lab ne	5/16" = 0.0 pomersible Purr A FIELD-1 Filtration FINAL pH	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃ TDS, CI, N Total Pher	006; ristaltic : 13 pe: 10 pe:	1/2" = Pump: 555 PMENT SA EQU () F	O = 0.010; O = C SAMPLIN ENDED / FILTER S T BLANK: MPLING UIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: / 4/0B SIZE:µm Y ① SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200
CUBING IN PURGING CAMPLED OC Terry / PUMP OR DEPTH IN CODE DEPTH IN CODE DECODE W-LIB W-LIB CODE W-LIB CODE W-LIB CODE W-LIB CODE W-LIB CODE W-LIB CODE W-LIB CODE CODE W-LIB CODE CODE CODE CODE CODE CODE CODE CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1	ACITY (Gal./I ODES: B FFILIATION: Son Lacke 42 N: PUM R SPECIFICA MATERIAL CODE CG CG PE PE PE PE	Et.): 1/8" = 0. = Bailer; 1 P WSA P No TION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None HNO3 H ₂ SO None	16" = 0.001 er Pump; SAI (S) SIGNA' (S) SIGNA' CODE: PE JBING SAMPL ATIVE ATIVE A 3 4 4 9 4	14: 1/4" ESP = MPLIN TURE(S): No (repla E PRESE TOTA DDED IN Prefilled Prefilled No	= 0.0026; Electric Su G DAT Ced) RVATION L VOL FIELD (mL) d by lab ne d by lab ne d by lab	5/16" = 0.0 pomersible Purr A FIELD-1 Filtration FINAL pH	04: 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃ TDS, CI, N	006; ristaltic : 13 	1/2" = Pump: 55 PMENT SA EQU () F F - St	SAMPLIN ENDED A FILTER S T BLANK: MPLING UIPMENT CODE RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: / 4/0B SIZE:µm Y ① SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200
CUBING IN PURGING CAMPLED CONTROL C	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1	ACITY (Gal./I ODES: B FFILIATION: Son Lacke 42 N: PUM R SPECIFICA MATERIAL CODE CG CG CG PE PE PE PE AG AG = Amber (CODES: A	Et.): 1/8" = 0. = Bailer; 1 P WSA P No TION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None HNO3 H ₂ SO None H ₂ SO	16" = 0.001 er Pump; SAI (S) SIGNA' .CODE: PE JBING SAMPL ATIVE A	14: 1/4" ESP = MPLIN TURE(S): E No (repla E PRESE TOTA DDED IN Prefilled Prefilled No Prefilled Prefilled	= 0.0026; Electric Su G DAT Que C ced) RVATION L VOL FIELD (mL) d by lab ne d by lab ne d by lab ne d by lab ne BP = Bla	5/16" = 0.0 pmersible Purr A FIELD-I Filtration FINAL pH Coc = Polypropyle dder Pump;	04: 3/8" = 0. pp: PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃ TDS, CI, N Total Pher	006; ristaltic 13 r EQUI D ID/OR 0 10/08 10	1/2" = Pump: 55 PMENT SA EQU () F F - - - - - - - - - - - - -	SAMPLIN ENDED A FILTER S T BLANK: MPLING UIPMENT CODE RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 140B SIZE:µm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200 200

	E.D. SWMF (WAG): 89544)			SITE LOCATION: 150	1 Omni Way, S	t. Cloud, Osceola	a County, Florid	ia, 34773	
WELL NO	MW-5	A		SAMPL	EID: M	W-5A			DATE: 13	May 2014	
					PU	RGING DA	TA		12		
WELL VO	R (inches): 2.0	TUBIN DIAME	ETER (inches):	0.25 DE	PTHIDS	EN INTERVAL feet to 22,5 fe TATIC DEPTH T	STATIC I TO WAT O WATER) X	DEPTH ER (feet): /6. WELL CAPAC	10 ORB	GE PUMP TY AILER: pe	PE ristaltic
ONLY fill OU	it if applicable)		= (22.5 = PUMP VC	feet – DLUME + (T	16.10 UBING CAPACIT	feet) X TY X T	0.16 g UBING LENGTH	gallons/foot =) + FLOW CEL	L VOLUME	gallons
	JMP OR TUBING WELL (feet):	20		WP OR TUBIN WELL (feet):		0.0026 gallo		PURGING ENDED AT:	_	gallons = TOTAL VOLL	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE	DEPTH TO WATER (feet)	pH (standar units)	TEMP	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUS)	PURGED (ga COLOR (describe	ORP
1015	2.4	2.4	.08	16.47	5.2	0 25.30	380	1.3	30.1	inght Yellow	N -1.4
1020	0.4	2.8	.08	16.47	5 2:		368	0.96	24.7	light jelle	
1025	0.4	3.2	. 08	16.47			361	0.85	19.1	light Yells	-
1035	0.3	4	0.08	-			370	0.74	18.7	light yelle	
UBING IN	PACITY (Gallons ISIDE DIA. CAP/ EQUIPMENT CC	ACITY (Gal./	(Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16 BP = Bladder	" = 0.0014; Pump;	0.06; 2" = 0.16 1/4" = 0.0026 ESP = Electric S PLING DA	5; 5/16" = 0. Submersible Pu	.004; 3/8" = 0		= 0.010; 5/	2" = 5.88 8" = 0.016 er (Specify)
AMPLED	BY (PRINT) / AF PWSFL		ce/puspe	SAMPLER(S		IRE(S): Que		SAMPLING INITIATED AT	1035	SAMPLING ENDED AT	Incia
PUMP OR DEPTH IN		20	1	TUBING MATERIAL C	ODE: PE			-FILTERED: Y on Equipment Ty	(N)		E:μm
IELD DEC	CONTAMINATIO	N: PUN	MP No	TUE	BING N	lo (replaced)		DUPLICATE	or EQUIPMENT	T BLANK:	
SAMPLE	PLE CONTAINER	MATERIAL	ATION VOLUME	PRESERVA	TIVE	PRESERVATION TOTAL VOL	FINAL	INTENDE ANALYSIS AI METHO	ND/OR EQU	JIPMENT	SAMPLE PUM FLOW RATE (mL per minute
D CODE	CONTAINERS 3	CODE	40mL	USED		DED IN FIELD (m Prefilled by lab	nL) pH	8260		REPP	<100
1	3	CG	40mL	None		None	-	8011		REPP	<100
	1	PE	500mL	HNO ₃		Prefilled by lab		Metals		APP	300
	1	PE	125mL	H ₂ SO ₄		Prefilled by lab		NH ₃		APP	300
	1	PE	250mL	None		None	-	TDS, CI, I		APP	309
V				0.000		11 - 21	-				
odor: Sulf	sunny, liz	AG L+ brecze	250mL , B0°1 [±]	H₂SO₄		Prefilled by lab		Total Phe	nois	APP	328_
SAMPLING	EQUIPMENT C	F	APP = After Pe RFPP = Revers		; B = E altic Pump;	Bailer; BP = I SM = Straw I		ESP = Electr Gravity Drain);	ic Submersible O = Other (\$	Pump;	er (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

25-18-14

WELL NO:	D. SWMF (WA		0: 89544)				1 Omni Way, St	. Cloud, Osceola	County, F	lorida, 3477	73	
	MW-5	B		SAMPLE	ID: MW		and the second		DATE: /	3 May 20	014	
					PUR	GING DAT	ГА					
DIAMETER	R (inches): 2.0	TUBIN	IG ETER (inches			INTERVAL	STATIC D	DEPTH	P	URGE PUN		
WELL VOI	LUME PURGE:	1 WELL VO	DLUME = (TO	DTAL WELL DEP	TH - ST	ATIC DEPTH TO	OWATER) X	ER (feet): /6.2 WELL CAPACI		R BAILER:	peri	istaltic
(only fill ou	t if applicable)		= (feet -							C. mark
EQUIPMEN	NT VOLUME P	URGE: 1 EQ	UIPMENT VO	L. = PUMP VOL	UME + (TU	BING CAPACIT	Y X TL	0.16 g JBING LENGTH)	+ FLOW (ELL VOLU	ME	gallons
(only fill ou	t if applicable)			= 0.0 g	allons + ((0.0026 gallor	ns/foot X	50 feet)	+ 0.1	aallons	= A	3 gallons
	MP OR TUBIN	G		JMP OR TUBING		PURGING	6	PURGING		TOTAL		
DEPTHIN	WELL (feet):	H2 CUMUL	DEPTH II	N WELL (feet):	42	INITIATE	DAT: 0945	ENDED AT:	1010	PURGE	ED (gall	lons): 1.75
TIME	VOLUME PURGED (gallons)	VOLUME PURGED		TO WATER	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIE (NTU		OLOR escribe)	ORP (mV)
1000	1.05	(gallons)	0.07	(feet) 16.32	3.79	25.59	01-7	1.79	20	. 1	-	ine
1005	0.35	1.4	0.07	16.32	2.81	25,49	952		2.8		en	69.5
	0.35	1.75	0.01		3.81		941	1.46			lear	68.8
1010	0.33	113	V. U I	16.32	3.01	25.54	945	1.37	2.	6,	lew	68.7
			-	-								-
				-			-					
			-							-		-
												-
			-									
												-
					1.25" = 0.0				s" = 1.02;	6" = 1.47		" = 5.88
TUBING IN	SIDE DIA. CAR	PACITY (Gal.	/Ft.): 1/8" = (0.0006; 3/16"	= 0.0014;	1/4" = 0.0026	5/16" = 0.0	3/8" = 0.	006; 1/	2" = 0.010;	5/8	8" = 0.016
TUBING IN		PACITY (Gal.			= 0.0014; ump; E	1/4" = 0.0026 SP = Electric S	5/16" = 0.0 ubmersible Pun	3/8" = 0.		2" = 0.010;	5/8	
TUBING IN PURGING I	ISIDE DIA. CAN EQUIPMENT C	ODES: E	/Ft.): 1/8" = (0.0006; 3/16" BP = Bladder P	= 0.0014; ump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 ubmersible Pun	004; 3/8" = 0. np; PP = Pe	006; 1/	2" = 0.010; mp; O	5/8 = Othe	8" = 0.016
TUBING IN PURGING	BY (PRINT) / A	ODES: E	/Ft.): 1/8" = (0.0006; 3/16"	= 0.0014; ump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 ubmersible Pun	3/8" = 0.	006; 1/ ristaltic Pu	2" = 0.010; mp; 0 SAMF	5/8 = Othe PLING	9" = 0.016 er (Specify)
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR	ISIDE DIA. CAR EQUIPMENT C BY (PRINT) / A PWSFL TUBING	PACITY (Gal.	/Ft.): 1/8" = (D.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING	= 0.0014; ump; E SAMP SIGNATUR	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 ubmersible Pun TA	3/8" = 0. mp: PP = Pe SAMPLING INITIATED AT FILTERED: Y	006; 1/ ristaltic Pu 1015	2" = 0.010; mp; 0 SAMF ENDE	5/8 = Othe PLING	8" = 0.016 (Specify) 1030
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet):	FFILIATION:	/Ft.): 1/8" = 0 3 = Bailer;	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC	= 0.0014; ump; E SAMP SIGNATUR DDE: PE	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$	5/16" = 0.0 ubmersible Pun TA	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y in Equipment Typ	006; 1/ ristaltic Pu : 1015 	2" = 0.010; mp; 0 SAMF ENDE FILTE	5/8 = Othe PLING ED AT: R SIZE	B" = 0.016 rr (Specify) /030 Ε:μm
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO	FFILIATION: 42 CODES: E FFILIATION: 42 CN: PUM	/Ft.): 1/8" = (3 = Bailer; //P No	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG No	1/4" = 0.0026 SP = Electric S LING DA $E(S): \int c_{x} c_{y}^{x} c_{y}^{x}$ (replaced)	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	3/8" = 0. pp: PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of	1006; 1/ ristaltic Pu 1015 pe. r EQUIPM	2" = 0.010; mp; 0 SAMF ENDE FILTE ENT BLANI	5/8 = Othe PLING ED AT: R SIZE K: Y	B" = 0.016 rr (Specify) 1030 Ε΄μm (Ν)
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMP	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet):	FFILIATION: 42 CODES: E FFILIATION: 42 CN: PUM	/Ft.): 1/8" = (3 = Bailer; //P No ATION	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; E SIGNATUR DDE: PE NG No SAMPLE PF	1/4" = 0.0026 SP = Electric S LING DA E(S): Jac (replaced) RESERVATION	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE o INTENDE ANALYSIS AN	006; 1/ ristaltic Pu : /0/5 	2" = 0.010; mp; 0 SAMF ENDE FILTE ENT BLANI SAMPLINC EQUIPMEN	5/8 = Othe PLING ED AT: R SIZE K: Y G S	B" = 0.016 rr (Specify) 1030 μm Φ SAMPLE PUMP FLOW RATE
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	ISIDE DIA. CAR EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: FFILIATION: UN: PUN R SPECIFIC, MATERIAL CODE	/Ft.): 1/8" = (3 = Bailer; //P No ATION VOLUME	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI USED	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Jule (replaced) RESERVATION TOTAL VOL ED IN FIELD (ml	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE o INTENDE ANALYSIS AN METHOD	006; 1/ ristaltic Pu : /0/5 	2" = 0.010; mp; O SAMF ENDE FILTE ENT BLANI SAMPLING EQUIPMEN CODE	5/8 = Othe PLING ED AT: R SIZE K: Y G S	B" = 0.016 rr (Specify) <i>1030</i> E:μm (Ν) EAMPLE PUMP
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMP SAMPLE ID CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAINATIC PLE CONTAINERS 3	FFILIATION: FFILIATION: CODES: E FFILIATION: CODE CG CG	/Ft.): 1/8" = (3 = Bailer; //P No ATION VOLUME 40mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI USED HCL	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL ED IN FIELD (milled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD 8260	006; 1/ ristaltic Pu : /0/5 	2" = 0.010; mp; 0 SAMF ENDE FILTE ENT BLANI SAMPLINC EQUIPMEN CODE RFPP	5/8 = Othe PLING ED AT: R SIZE K: Y G S	B" = 0.016 rr (Specify)
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMP SAMPLE ID CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3	FFILIATION: FFILIATION: CODES: E FFILIATION: CODE CODE CG CG	/Ft.): 1/8" = (3 = Bailer; //P No ATION VOLUME 40mL 40mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBIN PRESERVATI USED HCL None	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL ED IN FIELD (ml efilled by lab None	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011	006; 1/ ristaltic Pu : /0/5 	2" = 0.010; mp; 0 SAMF ENDE FILTE ENT BLANI SAMPLINC EQUIPMEN CODE RFPP RFPP	5/8 = Othe PLING ED AT: R SIZE K: Y G S	B" = 0.016 rr (Specify) <i>1030</i> E:μm <i>Γ</i> MPLE PUMP FLOW RATE mL per minute)
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMP SAMPLE ID CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1	FFILIATION: FFILIATION: DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE	/Ft.): 1/8" = (3 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI USED HCL None HNO ₃	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL ED IN FIELD (milled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE o ANALYSIS AN METHOD 8260 8011 Metals	006; 1/ ristaltic Pu : /0/5 	2" = 0.010; mp; O SAMF ENDE FILTE ENT BLANI SAMPLINC EQUIPMEN CODE RFPP RFPP APP	5/8 = Othe PLING ED AT: R SIZE K: Y G S	B" = 0.016 rr (Specify)
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 3 1 1	FFILIATION: FFILIATION: CODES: E FFILIATION: CODE CG CG PE PE PE	/Ft.): 1/8" = (3 = Bailer; 4P No ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBIN PRESERVATI USED HCL None	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG NO SAMPLE PF VE ADDE Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL ED IN FIELD (ml efilled by lab None	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals NH3	006; 1/ ristaltic Pu / 0/5 	2" = 0.010; mp; 0 SAMF ENDE FILTE ENT BLANI SAMPLINC EQUIPMEN CODE RFPP RFPP	5/8 = Othe PLING ED AT: R SIZE K: Y G S	B" = 0.016 rr (Specify) <i>1030</i> Eμm M FLOW RATE mL per minute) <100 <100
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMP SAMPLE ID CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1	FFILIATION: FFILIATION: DN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE	/Ft.): 1/8" = (3 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI USED HCL None HNO ₃	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG NO SAMPLE PF VE ADDE Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Juic ((replaced) RESERVATION TOTAL VOL D IN FIELD (mil efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE o ANALYSIS AN METHOD 8260 8011 Metals	006; 1/ ristaltic Pu / 0/5 	2" = 0.010; mp; O SAMF ENDE FILTE ENT BLANI SAMPLINC EQUIPMEN CODE RFPP RFPP APP	5/8 = Othe PLING ED AT: R SIZE K: Y G S	B" = 0.016 rr (Specify)
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE SAMPLE ID CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: FFILIATION: CODES: E FFILIATION: CODE CG CG PE PE PE	/Ft.): 1/8" = (3 = Bailer; 4P No ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBIN PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que C (replaced) RESERVATION TOTAL VOL ED IN FIELD (mill efilled by lab efilled by lab efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals NH3	ID/OR	2" = 0.010; mp; 0 SAMF ENDE FILTE ENT BLANI SAMPLING EQUIPMEN CODE RFPP APP APP	5/8 = Othe PLING ED AT: R SIZE K: Y G S	Image: a = 0.016 Image: a = 0.016
TUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE SAMPLE ID CODE	ISIDE DIA. CAF	FFILIATION: FFILIATION: CODES: E FFILIATION: CODE CODE CG CG PE PE PE AG	 /Ft.): 1/8" = (Bailer; Bailer; Bailer; ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 250mL 	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI' USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Jac (replaced) RESERVATION TOTAL VOL ED IN FIELD (mil efilled by lab None efilled by lab None	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3	ID/OR	2" = 0.010; mp; O SAMF ENDE FILTE ENT BLANI SAMPLINC EQUIPMEN CODE RFPP APP APP APP	5/8 = Othe PLING ED AT: R SIZE K: Y G S	B" = 0.016 rr (Specify)
TUBING IN PURGING IN SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE SAMPLE ID CODE SAMPLE SAMPLED SAMPLED SAMPLED SAMPLED SAMP SAMPLED SAMP SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLE ID CODE SAMPLE ID CODE SAMPL	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: FFILIATION: CODES: E FFILIATION: CODE CODE CG CG PE PE PE AG	 /Ft.): 1/8" = (Bailer; Bailer; Bailer; ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 250mL 	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI' USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG No SAMPLE PF VE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Jac (replaced) RESERVATION TOTAL VOL ED IN FIELD (mil efilled by lab None efilled by lab None	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3	ID/OR	2" = 0.010; mp; O SAMF ENDE FILTE ENT BLANI SAMPLINC EQUIPMEN CODE RFPP APP APP APP	5/8 = Othe PLING ED AT: R SIZE K: Y G S	B" = 0.016 rr (Specify)
TUBING IN PURGING IN SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE SAMPLE ID CODE SAMPLE SAMPLED SAMPLED SAMPLED SAMP SAMPLED SAMP SAMPLED SAMP SAMPLE ID CODE SAMPLE ID CODE SAMPLE SAMPLE ID CODE SAMPLE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 5 Synny, Leg	FFILIATION: FFILIATION: U CODES: E FFILIATION: U CODE CG CG CG CG CG PE PE PE PE AG COE CG CG CG CG CG CG CG CG CG CG	/Ft.): 1/8" = (3 = Bailer; 4P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 250mL 250mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBII PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG NO SAMPLE PF VE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Gue C (replaced) RESERVATION TOTAL VOL D IN FIELD (mil efilled by lab None efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃ TDS, CI, N Total Pher	ID/OR	2" = 0.010; mp; O SAMF ENDE FILTE ENT BLANI SAMPLING EQUIPMEN CODE RFPP RFPP APP APP APP APP	5/8 = Othe PLING ED AT: :R SIZE K: Y 3 SIT (1	B" = 0.016 rr (Specify)
TUBING IN PURGING IN SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE SAMPLE ID CODE SAMPLE SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES ID CODE SAMPLE ID CODE SAMPLES SAMPLE SAMPLES SAMPLES SAMPLE SAMPLES	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 5 Synny, Leg	ACITY (Gal. CODES: E FFILIATION: FFILIATION: CODE CG CG PE PE PE PE AG AG = Amber	/Ft.): 1/8" = (3 = Bailer; 3 = Bailer; AP No ATION VOLUME 40mL 500mL 125mL 250mL 250mL 250mL 250mL 9, 0.0 °F Glass; CG	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI' USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; ump; E SAMP SIGNATUR DDE: PE NG NO SAMPLE PF VE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que C (replaced) RESERVATION TOTAL VOL DIN FIELD (ml efilled by lab None efilled by lab None efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃ TDS, CI, N Total Pher	006; 1/ ristaltic Pu : / 0/5 	2" = 0.010; mp; 0 SAMF ENDE FILTE ENT BLANI SAMPLINC EQUIPMEN CODE RFPP APP APP APP APP APP APP	5/8 = Othe PLING ED AT: :R SIZE K: Y 3 SIT (1	B" = 0.016 rr (Specify)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

-	mw-6					SING DAT	A		/	3 May 2014	
	(inches): 2.0	TUBIN	TER (inches)	:0.25	DEPTH: 12.5 fe	et to 225 fee	STATIC I	ER (feet): 16	54 0	R BAILER:	YPE peristaltic
(only fill out	if applicable)			22.6 L. = PUMP \	DEPTH – STA feet – 1(VOLUME + (TUB 0 gallons + (0.	NG CAPACITY	feet) X Y X T	WELL CAPACI 0.16 g JBING LENGTH) feet)	allons/foot + FLOW (gallor
	MP OR TUBING	20		MP OR TUE	BING	PURGING		PURGING ENDED AT:	1150	2 gallons = TOTAL VO	gallon LUME gallons): 2,
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH	H pH R (standard	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIE (NTU:	DITY COLO	R OF
1140	2	2	.08	16.5		26.07	488	1.46	0.88	clean	12
1145	0.4	2.4	. 28	16.	54 4.90	26.02	482	1.18	0.54		
1150	0.1(2.8	. 08	16.4		26.05	473	1.06	0.45		
TUBING IN PURGING E	ACITY (Gallons SIDE DIA. CAP EQUIPMENT CO	ACITY (Gal./ DDES: B		.0006; 3/ BP = Bladd	16" = 0.0014; er Pump; Es SAMPI	SP = Electric St	5/16" = 0. ubmersible Put	004; 3/8" = 0. mp; PP = Pe	5" = 1.02; 006; 1/ ristaltic Pu	/2" = 0.010; mp; O = O	12" = 5.88 5/8" = 0.016 ther (Specify
Joe Terry / I		in Lake/P	WSFL		R(S) SIGNATURE	(S): Goe L	1	SAMPLING INITIATED AT			T: 1205
PUMP OR T	WELL (feet):	20	ID No		L CODE: PE	and and		FILTERED: Y on Equipment Typ DUPLICATE of	be.		Y (N)
	UNIAMINATIO	H. FUN	IP No			ESERVATION		INTENDE		SAMPLING	Y N SAMPLE F
FIELD DEC		SPECIEIC	TION							EQUIPMENT	FLOW R
FIELD DEC SAMP SAMPLE	LE CONTAINER # CONTAINERS	MATERIAL		PRESERV	ATIVE T	OTAL VOL	FINAL	ANALYSIS AN METHOD		CODE	
FIELD DEC SAMP SAMPLE ID CODE	and the second second second			PRESERV USE HCL	ATIVE T D ADDEI					CODE RFPP	(mL per mi
FIELD DEC SAMP SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	USE	ATIVE T D ADDEI	OTAL VOL D IN FIELD (mL		METHO			(mL per mi <100
FIELD DEC SAMP SAMPLE ID CODE	# CONTAINERS 3	MATERIAL CODE CG	VOLUME 40mL	USE	ATIVE T D ADDEI L Pre	OTAL VOL D IN FIELD (mL filled by lab		METHO: 8260		RFPP	(mL per mi <100
FIELD DEC SAMP SAMPLE	# CONTAINERS 3 3	MATERIAL CODE CG CG	VOLUME 40mL 40mL	USE HCI Non	VATIVE T D ADDEI L Pre e D ₃ Pre	OTAL VOL D IN FIELD (mL filled by lab None		METHOR 8260 8011		RFPP RFPP	(mL per mi <100 <100
FIELD DEC SAMP SAMPLE ID CODE	# CONTAINERS 3 3 1	MATERIAL CODE CG CG PE	VOLUME 40mL 40mL 500mL	USE HCI Non HNC	ATIVE T D ADDEI L Pre e	OTAL VOL D IN FIELD (mL filled by lab None filled by lab		METHON 8260 8011 Metals	>	RFPP RFPP APP	(mL per mi <100 <100 კ იQ
FIELD DEC SAMP SAMPLE ID CODE MW 6A	# CONTAINERS 3 3 1 1 1	MATERIAL CODE CG CG PE PE	VOLUME 40mL 40mL 500mL 125mL	USE HCI Non HNC H ₂ SC	ATIVE T D ADDEI L Pre 03 Pre D4 Pre	OTAL VOL D IN FIELD (mL filled by lab None filled by lab		METHOL 8260 8011 Metals NH ₃	0 103	RFPP RFPP APP APP	(mL per mi <100 <100 300 309
FIELD DEC SAMP SAMPLE ID CODE MW 6.4	# CONTAINERS 3 3 1 1 1 1 . Sunny, Ving	MATERIAL CODE CG CG PE PE PE AG	VOLUME 40mL 500mL 125mL 250mL 250mL	USE HCI Non HNC H ₂ SC Non	ATIVE T D ADDEI L Pre 03 Pre D4 Pre	OTAL VOL D IN FIELD (mL filled by lab None filled by lab filled by lab None		METHOU 8260 8011 Metals NH ₃ TDS, CI, N	0 103	RFPP RFPP APP APP APP	(mL per m <100 <100 300 300 300

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECU

518

	MW-6	0			DIR	SING DAT	ГА		DATE: 13	May 2014	
WELL		TUBIN	G	WE	LL SCREEN		STATIC	DEDTH	DUD		VDE
	R (inches): 2.0		TER (inches)				et TO WAT	ER (feet): 16.		RGE PUMP T	eristaltic
WELL VO (only fill ou	LUME PURGE: it if applicable)	1 WELL VO		TAL WELL DEF	PTH - STA	TIC DEPTH TO	OWATER) X	WELL CAPACI	TY		
EQUIPME (only fill ou	NT VOLUME P it if applicable)	URGE: 1 EQ	= (UIPMENT VO	L. = PUMP VOI	feet – LUME + (TUR gallons + (0			0.16 g UBING LENGTH) 53 feet)		LL VOLUME	gallo
	JMP OR TUBIN WELL (feet):	1G 42		IMP OR TUBINO		PURGING	3 1110	PURGING	. 0.12	TOTAL VOI PURGED (g	LUME
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet) 07	pH (standard	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)		R C
1200	36	3.6	0.08	Nobilito	4.83	26.39	115	0.76	0	clear	- 25
12-05	0.4	U	0.09	16.64	4.83	26.41	95	0.79	0	clea	
1210	0.4	4.4	0.08	16.64	41.75	26.36	93	0.8	0	Clei	
1215	0.4	41.8	0.08	16.64	4.79	26.40	95	0.78	0	Cleo	
TUBING IN PURGING	EQUIPMENT	PACITY (Gal.) CODES: E	0.75" = 0.02; Ft.): 1/8" = 0 B = Bailer;	1" = 0.04; 0.0006; 3/16" BP = Bladder F	= 0.0014; Pump; E	5; 2" = 0.16; 1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0. Submersible Pu	.004; 3/8" = 0. mp; PP = Pe		= 0.010; b; 0 = 01	ther (Specif
TUBING IN PURGING SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	PACITY (Gal.) CODES: E	Ft.): 1/8" = 0 8 = Bailer;	0.0006; 3/16" BP = Bladder F SAMPLER(S)	= 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0. Submersible Pur TA	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT	006; 1/2" ristaltic Pump	= 0.010; ;; 0 = 0 SAMPLIN ENDED A	5/8" = 0.01 ther (Specif G .T: /23
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet):	SODES: E SFFILIATION: Jon Late 42	Ft.): 1/8" = 0 B = Bailer; /PwsFL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	SIGNATUR	$\frac{1}{4} = 0.0026$ $\frac{SP}{SP} = \text{Electric S}$ $\frac{LING DA}{S}$ $\frac{S}{S} = \frac{1}{5}$	5/16" = 0. Submersible Pur TA	004: 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ	006; 1/2" ristaltic Pump /2/5	= 0.010; b; O = 0 SAMPLIN ENDED A FILTER SI	5/8" = 0.010 ther (Specif G .T: /23 IZE:
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO	PACITY (Gal. CODES: E Son Late 42 DN: PUM	Ft.): 1/8" = 0 B = Bailer; /PWSFL	BP = Bladder F SAMPLER(S) TUBING	= 0.0014; Pump; E SAMP SIGNATURI ODE: PE ING No	1/4" = 0.0026 SP = Electric S LING DA E(S): free (5/16" = 0. Bubmersible Pur TA FIELD Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE c	12" ristaltic Pump 12/5 N Dr EQUIPMEN	= 0.010; p; O = O: SAMPLIN ENDED A FILTER SI NT BLANK:	5/8" = 0.010 ther (Specif G.T: /23 IZE: Y N
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet):	PACITY (Gal. CODES: E Son Late 42 DN: PUM	Ft.): 1/8" = 0 B = Bailer; /PWSFL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E SIGNATURI SIGNATURI ODE: PE ING No SAMPLE PF IVE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL	5/16" = 0. Submersible Pur TA FIELD FILD Filtration	004: 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ	1215 1215 1215 1215 00 EQUIPMEN ED SJ ND/OR EQ	= 0.010; b; O = 0 SAMPLIN ENDED A FILTER SI	5/8" = 0.01 ther (Specif G T: /23 IZE: Y N SAMPLE FLOW F
TUBING IM PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE #	AFFILIATION: Jon Lake UN: PUM ER SPECIFIC/ MATERIAL	Ft.): 1/8" = 0 B = Bailer; /PWSEL MP No ATION	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	= 0.0014; Pump; E SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA' E(S): Que (replaced) RESERVATION	5/16" = 0. Submersible Pur TA FIELD FILD Filtration	004: 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE c INTENDE ANALYSIS AN	1215 1215 1215 1215 00 EQUIPMEN ED SJ ND/OR EQ	= 0.010; p; O = O SAMPLIN ENDED A FILTER SI NT BLANK: AMPLING QUIPMENT	5/8" = 0.010 ther (Specification of the second seco
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINE # CONTAINERS	AFFILIATION: Jon Late 47 DN: PUM ER SPECIFIC/ MATERIAL CODE	Ft.): 1/8" = 0 B = Bailer; /PWSFL MP No ATION VOLUME	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	= 0.0014; Pump; E SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): free (replaced) RESERVATION TOTAL VOL D IN FIELD (m	5/16" = 0. Submersible Pur TA FIELD FILD Filtration	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI	1215 1215 1215 1215 00 EQUIPMEN ED SJ ND/OR EQ	= 0.010; o; O = O SAMPLIN ENDED A FILTER SI NT BLANK: AMPLING UIPMENT CODE	5/8" = 0.011 ther (Specif G IZE:
TUBING IM PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	AFFILIATION: Jon Lake UP DN: PUN ER SPECIFIC/ MATERIAL CODE CG	Ft.): 1/8" = 0 B = Bailer; /PWSEL MP No ATION VOLUME 40mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING NO SAMPLE PF IVE ADDE Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): (S	5/16" = 0. Submersible Pur TA FIELD FILD Filtration	004: 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI 8260	1215 1215 1215 1215 006: 1/215 007 1215 1215	= 0.010; p; O = O SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP	5/8" = 0.011 ther (Specif G IZE:
TUBING IM PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT O BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 3	AFFILIATION: Jon Lata 42 N: PUM ER SPECIFIC/ MATERIAL CODE CG CG	Ft.): 1/8" = 0 B = Bailer; /PW5FL MP No ATION VOLUME 40mL 40mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	= 0.0014; Pump; E SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Jule (replaced) RESERVATION OTAL VOL D IN FIELD (m efilled by lab None	5/16" = 0. Submersible Pur TA FIELD FILD Filtration	004: 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011	1215 1215 1215 1215 006: 1/215 007 1215 1215	= 0.010; p; O = O SAMPLIN ENDED A FILTER SI NT BLANK: AMPLING QUIPMENT CODE RFPP RFPP	5/8" = 0.011 ther (Specif G T: /23 IZE: Y N SAMPLE FLOW R (mL per m <10 <10
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1	AFFILIATION: Jon Laka AFFILIATION: Jon Laka U/J DN: PUM ER SPECIFIC/ MATERIAL CODE CG CG PE	Ft.): 1/8" = 0 B = Bailer; IP No ATION VOLUME 40mL 500mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	= 0.0014; Pump; E SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): See (replaced) RESERVATION OTAL VOL D IN FIELD (m afilled by lab None afilled by lab	5/16" = 0. Submersible Pur TA FIELD FILD Filtration	004: 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals	1215 1215 1215 1215 1215 0 SJ 10/OR EQ 10/OR EQ 10/OR EQ	= 0.010; o; O = O SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP	5/8" = 0.010 ther (Specif G T.: /23 IZE: Y N SAMPLE FLOW F (mL per m <100 <100 300
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	ISIDE DIA. CAI EQUIPMENT O BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 3 1 1	ACITY (Gal.) CODES: E STFILIATION: Son Late 47 ON: PUN ER SPECIFIC/ MATERIAL CODE CG CG PE PE PE	Ft.): 1/8" = 0 B = Bailer; / PWSFL AP No ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): (S	5/16" = 0. Submersible Pur TA FIELD FILD Filtration	004: 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃	1215 ristaltic Pump ristaltic Pump	= 0.010; p; O = O SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING DUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.010 ther (Specif G T: /23 IZE: Y (N SAMPLE FLOW F (mL per m <100 <100 300
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE MW-613 MW-613 EEMADES	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ACITY (Gal.) CODES: E AFFILIATION: Son Lata 47 ON: PUM ER SPECIFIC/ MATERIAL CODE CG CG PE PE PE PE AG	Ft.): 1/8" = 0 B = Bailer; / PWSFL MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 250mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA (S): Second (S): Second (S): Second (C) (C) (C) (C) (C) (C) (C) (C)	Submersible Pur TA FIELD FILT FINAL L) FINAL	004: 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; 1/2" rristaltic Pump ristaltic Pump r 2/5 vor EQUIPMEN ED S/ ND/OR EQ NO3 nols	= 0.010; o; O = O SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP APP APP APP	5/8" = 0.016 ther (Specified G.T.: /23 IZE: Y N SAMPLE I FLOW R (mL per m <100 <100 300 300 300

	: MW -7					SING DA	TA		DATE: 13	May 2014	
WELL DIAMETE	R (inches): 2.0		TER (inches):0.25 DE	PTH: 13 fe	INTERVAL eet to 23 f	STATIC TO WAT	FR (feet): 17	16 OR	RGE PUMP T BAILER: p	YPE
EQUIPME	ENT VOLUME P		= (223	feet -	1716	feet) X	0.16 CUBING LENGTH	allons/foot		gallor
(only fill o	ut if applicable)			= 0.0 g	allons + (0	.0026 gallo		feet			gallo
	UMP OR TUBIN			UMP OR TUBIN	G	PURGIN	G	PURGING		TOTAL VOI	
DEPTHIN	WELL (feet):	20 CUMUL	DEPTHI	N WELL (feet):	20	INITIATE	DAT: 1255	ENDED AT: DISSOLVED	1330	PURGED (g	gallons): 2
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO (describ	
1315	1.2	1.2	0.06	-	4.35	25.84	248	0.74	0.6	clea	1 50
1320	0.3	1.5	0.00		4.66	25.85	287	0.67	0.6	clea	
1325	0.3	1.8	0.0	6 17.25	4.69	25.86	280	0.64	0.6	Clean	
1330	0.3	2.1	0.06	17.25	41.67	25.85	284	0.63	0.7	clear	
TUBING I	PACITY (Gallon NSIDE DIA. CAP	s Per Foot): PACITY (Gal./	Ft.): 1/8" =	0.0006; 3/16"		5; 2" = 0.16 1/4" = 0.0026					12" = 5.88
Portointo	EQUIPMENT	ODES: E	s = Bailer;	BP = Bladder F			Submersible Pu		eristaltic Pump		
SAMPLED Joe Terry) BY (PRINT) / A / PWSFL	FFILIATION:	PWSFL	SAMPLER(S)	SAMP	LING DA		SAMPLING	eristaltic Pump	SAMPLIN	ther (Specify
SAMPLED Joe Terry PUMP OR DEPTH IN) BY (PRINT) / A / PWSFL TUBING WELL (feet):	FFILIATION: Jon Luke 20	JPWSFL	SAMPLER(S) TUBING MATERIAL CO	SAMP SIGNATURE	LING DA	Submersible Pu TA FIELD	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ	eristaltic Pump	SAMPLIN ENDED A FILTER SI	G T: / 3 45 ZE:
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE) BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIO	SFFILIATION: Jon-Luke 20 DN: PUN	JPWSFL 1P No	SAMPLER(S) TUBING	SAMP SIGNATURE DDE: PE ING No ((S) Jose (Submersible Pu TA H FIELD Filtratio	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of	eristaltic Pump 1330 N perior EQUIPMEN	SAMPLIN ENDED A FILTER SI	G T: / 3 45 ZE: Y (N
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE) BY (PRINT) / A / PWSFL TUBING WELL (feet):	SFFILIATION: Jon-Luke 20 DN: PUN	JPWSFL 1P No	SAMPLER(S) TUBING MATERIAL CO	SAMP SIGNATURE DDE: PE ING No (SAMPLE PR	LING DA	Submersible Pu TA FIELD Filtration	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ	r: 1330 pe: Dor EQUIPMEN ED S/ ND/OR EQ	SAMPLIN ENDED A FILTER SI	G T: /345 ZE: Y (N SAMPLE F FLOW R
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE) BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	FFILIATION: Jon Luke 20 DN: PUN ER SPECIFIC/ MATERIAL	PWSFL IP NO ATION	SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT	SAMP SIGNATURE DDE: PE NG No (SAMPLE PR IVE T ADDE	LING DA	Submersible Pu TA FIELD Filtration	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of INTENDE ANALYSIS AN	eristaltic Pump T: 1330 D: 13300 D: 13300 D	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING DUIPMENT	G T: 1345 ZE: Y N SAMPLE F FLOW R (mL per m
SAMPLED Joe Terry , PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE) BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	Ton Luke Jon Luke 20 DN: PUN ER SPECIFIC/ MATERIAL CODE	IP NO ATION VOLUME	SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT USED	SAMP SIGNATURE DDE: PE NG No (SAMPLE PR IVE T ADDE	LING DA	Submersible Pu TA FIELD Filtration	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOL	eristaltic Pump T: 1330 De: Dor EQUIPMEN ED S/ ND/OR EQ D	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UUPMENT CODE	G T: / 3 4/s ZE: SAMPLE I FLOW R (mL per m <100
SAMPLED Joe Terry , PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE) BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	SFFILIATION: Jo Juke 20 DN: PUN ER SPECIFIC/ MATERIAL CODE CG	IP NO ATION VOLUME 40mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL	SAMP SIGNATURE DDE: PE ING No (SAMPLE PR IVE T ADDE Pre	ESERVATION TAL VOL D IN FIELD (m filled by lab	Submersible Pu TA FIELD Filtration	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOL 8260	r: 1330 pe: N pe: N D D D D D D D D D D D D D	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP	G G T: / 3 4/s ZE: Y N SAMPLE F FLOW R (mL per m <100 <100
SAMPLED Joe Terry , PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE) BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 3	SFFILIATION: Jon Luka 20 DN: PUN ER SPECIFIC/ MATERIAL CODE CG CG	IP No ATION VOLUME 40mL 40mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None	SAMP SIGNATURE DDE: PE ING No (SAMPLE PR IVE T ADDE Pre	LING DA	Submersible Pu TA FIELD Filtration	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011	r: 1330 pe: N pe: N D D D D D D D D D D D D D	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING DUIPMENT CODE RFPP RFPP	G T: / 3 4/5 ZE: Y N SAMPLE F FLOW R (mL per m <100 <100
SAMPLED Joe Terry , PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1	FFILIATION: Jon Lake 20 DN: PUN ER SPECIFIC/ MATERIAL CODE CG CG PE	IP NO ATION VOLUME 40mL 40mL 500mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃	SAMP SIGNATURE DDE: PE ING No (SAMPLE PR IVE T ADDE Pre	LING DA	Submersible Pu TA FIELD Filtration	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals	eristaltic Pump T: 1330 D: 13300 D: 1330 D: 13300 D: 13300 D: 13300 D: 13300 D: 13300 D: 1330	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UUPMENT CODE RFPP RFPP APP	G T: / 3 45 ZE: SAMPLE F FLOW R (mL per m <100 <100 225
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-7A	D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1	SFFILIATION: Jon Luka 20 DN: PUN ER SPECIFIC/ MATERIAL CODE CG CG CG PE PE PE	IP No ATION VOLUME 40mL 500mL 125mL	SAMPLER(S) TUBING MATERIAL CI TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	SAMP SIGNATURE DDE: PE ING No (SAMPLE PR IVE T ADDE Pre Pre	LING DA	Submersible Pu TA FIELD Filtration N FINAL pH	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃	Pristaltic Pump Pristaltic Pump Prista	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP APP APP	T: / 3 45 ZE: Y N SAMPLE F FLOW R (mL per mi <100 <100 <205
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-7A	D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1	AG	IP No ATION VOLUME 40mL 500mL 125mL 250mL 250mL	SAMPLER(S) TUBING MATERIAL CI TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	SAMP SIGNATURE DDE: PE ING No (SAMPLE PR IVE T ADDE Pre Pre	LING DA	Submersible Pu TA FIELD Filtration N FINAL pH	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	Pristaltic Pump Pristaltic Pump Prista	SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING UIPMENT CODE RFPP APP APP APP	G G T: / 3 4/s ZE: Y N SAMPLE F FLOW R (mL per m <100 205 205
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-7A	D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 5 CONTAINERS 3 3 2 1 1 1 1 2 CONTAINERS 3 3 1 1 1 2 CONTAINERS 3 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 3 2 2 CONTAINERS 2 CONTAINERS 3 2 2 CONTAINERS 2 CONTAINERS 3 2 2 CONTAINERS CONTAINERS CONTAINES CONTAINERS CONTA	AG	1P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 250mL 250mL	SAMPLER(S) TUBING MATERIAL CI TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	SAMP SIGNATURE DDE: PE ING No (SAMPLE PR IVE T ADDE Pre Pre	LING DA	Submersible Pu TA FIELD Filtration N FINAL pH	mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE of ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N Total Pher	eristaltic Pump eristaltic Pump or EQUIPMEN D ND/OR D NO ₃ nols	O = OI SAMPLIN ENDED A FILTER SI IT BLANK: AMPLING IUIPMENT CODE RFPP RFPP APP APP APP	G T: / 3 4/s ZE: Y N SAMPLE F FLOW RJ (mL per mil) <100

VELL NO.	MW-71		: 89544)	0.000			1 Omni Way, S	t. Cloud, Osceola			
WELL NO.	110.11	3		SAMPL		vw-7B			DATE:	3 May 2014	
WELL		TUDIN	0	14/5		GING DA					6.1743.8
	R (inches): 2.0	TUBIN	TER (inches):0	0.25 DE	PTH:375	feet to 47.5 fe	STATIC I	ER (feet): 16	91- 6	OR BAILER:	TYPE peristaltic
WELL VOL	UME PURGE:			AL WELL DE	PTH - ST	ATIC DEPTH T	O WATER) X	WELL CAPAC	ITY	IN DAILER.	pensiallic
(only fill out	t if applicable)		= (feet -		feet) X	0.16	gallons/foo		aalloos
EQUIPMEN	NT VOLUME PU	JRGE: 1 EQ		. = PUMP VO	LUME + (TU	BING CAPACIT	TY X T	UBING LENGTH			gallons
only nil out	t if applicable)			= 0.0	gallons + (0.0026 gallo	ns/foot X	55 feet) + 0.1	2 gallons =	D.J gallons
	MP OR TUBIN	G 112		P OR TUBIN	G	PURGIN	3	PURGING		TOTAL VO	DLUME
DEPTHIN	WELL (feet):	43 CUMUL	DEPTH IN	WELL (feet): DEPTH	43	INITIATE	DAT: 1255	ENDED AT:	1300	PURGED	(gallons): 3, 3
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBII (NTU		
1340	2.7	2.7	0.06	17.21	4.22	24.84	815	1.63	0.3	cle	w 43.3
13:15	0.3	3	0.06	17.21	4.31	24.89	829	1.5	0	cle	
1350	0.3	3.3	0.06	17.21	4.30	24.91	827	1.52	0		ew 34.0
1.1.2			0.00	11101	1.50	111	0.1	1.10	U	C/0	51.0
					-				-		
			-								
			-		-				-		
				-					-		
									-		
		-		-	-						
					1 Mar				-		
NELL CAP	ACITY (Gallons	s Per Foot)	0.75" = 0.02 [.]	1" = 0.04	1.25" = 0	06: 2 " = 0.16	3" = 0.37	4 " = 0.65	5" = 1.02	6" = 1 47·	12" = 5.88
UBING IN	COLLEGE COLLEGE COLLEGE	ACITY (Gal./			1.25 " = 0. " = 0.0014;	06; 2 " = 0.16 1/4 " = 0.0026			5 " = 1.02; 0.006; 1	6" = 1.47; / 2" = 0.010;	12 " = 5.88 5/8" = 0.016
UBING IN		ACITY (Gal./	Ft.): 1/8" = 0.0		" = 0.0014; Pump;	1/4" = 0.0026 ESP = Electric S	5/16" = 0. Submersible Pu	.004; 3/8" = 0		/2" = 0.010;	
TUBING IN PURGING I	SIDE DIA. CAF EQUIPMENT C	ODES: B	Ft.): 1/8" = 0.0	0006; 3/16'	" = 0.0014; Pump;	1/4" = 0.0026	5/16" = 0. Submersible Pu	004; 3/8" = 0 mp; PP = Pe	.006; 1	/2" = 0.010; ump; O = 0	5/8" = 0.016 Other (Specify)
FUBING IN PURGING I	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A	PACITY (Gal./ ODES: B FFILIATION:	Ft.): 1/8" = 0.0	0006; 3/16'	" = 0.0014; Pump; SAMI	1/4" = 0.0026 ESP = Electric S PLING DA	5/16" = 0. Submersible Pu	004; 3/8" = 0 mp; PP = Pe SAMPLING	0.006; 1 eristaltic Pu	/2" = 0.010; ump; O = 0 SAMPLI	5/8" = 0.016 Other (Specify) NG
FUBING IN PURGING I SAMPLED Joe Terry /	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL	PACITY (Gal./ ODES: B FFILIATION: Son Late	Ft.): 1/8" = 0.0	0006; 3/16' BP = Bladder I SAMPLER(S)	" = 0.0014; Pump; SAMI	1/4" = 0.0026 ESP = Electric S PLING DA	5/16" = 0. Submersible Pu TA	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A	1.006; 1 eristaltic Pr T: 1357	/2" = 0.010; ump; O = 0 SAMPLI ENDED	5/8" = 0.016 Other (Specify) NG AT: 1405
SAMPLED PURGING IN SAMPLED Joe Terry /	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL	PACITY (Gal./ ODES: B FFILIATION:	Ft.): 1/8" = 0.0	0006; 3/16' 3P = Bladder I	" = 0.0014; Pump; SAMI) SIGNATUR	1/4" = 0.0026 ESP = Electric S PLING DA	5/16" = 0. Submersible Pu TA FIELD	004; 3/8" = 0 mp; PP = Pe SAMPLING	0.006; 1 eristaltic Pu T: 1357	/2" = 0.010; ump; O = 0 SAMPLI	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE:μm
SAMPLED Joe Terry / PUMP OR T DEPTH IN V	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING	FFILIATION: Son Late 43	Ft.): 1/8" = 0.0	30006; 3/16' 3P = Bladder I SAMPLER(S) TUBING	" = 0.0014; Pump; SAMI) SIGNATUR :ODE: PE	1/4" = 0.0026 ESP = Electric S PLING DA	5/16" = 0. Submersible Pu TA FIELD	004; 3/8" = 0 mp; PP = Pr SAMPLING INITIATED A -FILTERED: Y on Equipment Ty	0.006; 1 eristaltic Pr T: /357 T: /357 pe:	/2" = 0.010; ump; O = 0 SAMPLI ENDED	5/8" = 0.016 Other (Specify) NG AT: 1405
FUBING IN PURGING I SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet):	PACITY (Gal./ ODES: B FFILIATION: Son Late 43 DN: PUN	Ft.): 1/8" = 0.(= Bailer; E /PWS/52 IP No	3716' 3P = Bladder I SAMPLER(S) TUBING MATERIAL C	" = 0.0014; Pump; SAMI) SIGNATUF :ODE: PE BING No	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Jue	5/16" = 0. Submersible Pu TA FIELD FIELD	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE INTENDE	T: 1357 T: 13577 T: 135777 T: 135777 T: 135777 T: 1357777 T: 1357777 T: 135777777777777777777777777777777777777	//2" = 0.010; Jmp; O = 0 SAMPLI ENDED FILTER \$ MENT BLANK: SAMPLING	5/8" = 0.016 Other (Specify) NG AT: <u>/4/05</u> SIZE:μm Y SAMPLE PUMP
FUBING IN PURGING I SAMPLED Joe Terry / I PUMP OR DEPTH IN FIELD DEC SAMPLE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): ::ONTAMINATIC PLE CONTAINE #	ACITY (Gal./ ODES: B FFILIATION: Son Lalce 43 NN: PUN R SPECIFICA MATERIAL	Ft.): 1/8" = 0.(= Bailer; E /PWS/52 IP No	30006; 3/16 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	" = 0.0014; Pump; SAMI) SIGNATUF CODE: PE BING NO SAMPLE F TIVE	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Jue ((replaced) PRESERVATION TOTAL VOL	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pr SAMPLING INITIATED A" -FILTERED: Y on Equipment Ty DUPLICATE	T: 1357 T: 13577 T: 135777 T: 135777 T: 135777 T: 135777 T: 135777 T: 135777 T: 1357777 T: 1357777 T: 13577777 T: 135777777777777777777777777777777777777	//2" = 0.010; JIMP; O = 0 SAMPLI ENDED FILTER : MENT BLANK:	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE:μm Υ
AMPLED SAMPLED Joe Terry / I DEPTH IN FIELD DEC SAMPLE D CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	ACITY (Gal./ ODES: B FFILIATION: Son Lalce 43 DN: PUN R SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0.0 a = Bailer; E /PWS/FL IP IP No ATION VOLUME	30006; 3/16 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	" = 0.0014; Pump; SAMI) SIGNATUF CODE: PE BING NO SAMPLE F TIVE ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Jue ((replaced) PRESERVATION TOTAL VOL ED IN FIELD (m	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pr SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE INTENDI ANALYSIS A	T: 1357 Pre: or EQUIPN ED ND/OR D	//2" = 0.010; Jmp; O = 0 SAMPLI ENDED FILTER : MENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE: μm Y NS SAMPLE PUMP FLOW RATE
SAMPLED Joe Terry / I DUMP OR T DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE CONTAINERS 3	FFILIATION: Son Laice 43 N: PUN R SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0.0 I = Bailer; II /PWS/FL III IP No IIII ATION VOLUME 40mL IIII	0006; 3/16' 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	" = 0.0014; Pump; SAMI) SIGNATUF CODE: PE BING NO SAMPLE F TIVE ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): <i>free</i> (replaced) RESERVATION TOTAL VOL ED IN FIELD (m refilled by lab	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pr SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE INTENDI ANALYSIS A METHO 8260	T: 1357	1/2" = 0.010; ump; O = 0 SAMPLI ENDED FILTER : MENT BLANK: SAMPLING EQUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED Joe Terry / I DUMP OR T DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3	FFILIATION: Son Late H3 N: PUN R SPECIFICA MATERIAL CODE CG CG	Ft.): 1/8" = 0.0 I = Bailer; II /PWS)=L III IP No IIIION VOLUME 40mL 40mL 100mL	0006; 3/16' 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	" = 0.0014; Pump; SAMI) SIGNATUF :ODE: PE SING NO SAMPLE F TIVE ADD P	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): <i>Just</i> (replaced) PRESERVATION TOTAL VOL ED IN FIELD (m refilled by lab None	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pr SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE INTENDI ANALYSIS A METHO 8260 8011	T: 1357 T:	//2" = 0.010; Jmp; 0 = 0 SAMPLI ENDED FILTER 3 MENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
TUBING IN PURGING I Joe Terry / I PUMP OR T DEPTH IN V FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1	ACITY (Gal./ ODES: B FFILIATION: Son Lalce 43 DN: PUN R SPECIFICA MATERIAL CODE CG CG CG PE	Ft.): 1/8" = 0.0 a = Bailer; Bailer; b = Bailer; Bailer; lP No ATION VOLUME 40mL 40mL 500mL	0006; 3/16 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	" = 0.0014; Pump; SAMI) SIGNATUF CODE: PE BING No SAMPLE F TIVE ADD P P	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Jue ((replaced) PRESERVATION TOTAL VOL ED IN FIELD (m refilled by lab None	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals	T: 1357 T:	1/2" = 0.010; JIMP; O = 0 SAMPLI ENDED FILTER : MENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: /4/05' SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED Joe Terry / I DUMP OR T DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1 1 1	FFILIATION: Son Late 43 N: PUN R SPECIFICA MATERIAL CODE CG CG PE PE	Ft.): 1/8" = 0.0 I = Bailer; II IP No ATION VOLUME 40mL 40mL 500mL 125mL	3006; 3/16' 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	" = 0.0014; Pump; SAMI) SIGNATUF CODE: PE BING No SAMPLE F TIVE ADD P P	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): June ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m refilled by lab refilled by lab	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pr SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE INTENDI ANALYSIS A METHO 8260 8011 Metals NH3 NH3	T: 1357 T: 1357 T: 1357 T: 1357 T: 1357 N T: 1357 T: 1357 N T: 1	1/2" = 0.010; ump; O = 0 SAMPLI ENDED FILTER : MENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE:µm Y NS SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <22 Γ 22 5
SAMPLED Joe Terry / I DUMP OR T DEPTH IN N FIELD DEC SAMPLE ID CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1	ACITY (Gal./ ODES: B FFILIATION: Son Lalee 43 NN: PUN R SPECIFICA MATERIAL CODE CG CG CG PE PE PE PE	Ft.): 1/8" = 0.0 I = Bailer; II /PWS/FL III IP No IIII ATION VOLUME 40mL 500mL 125mL 250mL	0006; 3/16 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014; Pump; SAMI) SIGNATUF :ODE: PE SING No SAMPLE F TIVE ADD P P P	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): <i>Just</i> (replaced) PRESERVATION TOTAL VOL ED IN FIELD (m refilled by lab refilled by lab Refilled by lab	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pr SAMPLING INITIATED A' INITIATED A' .FILTERED: FILTERED: Y DUPLICATE . INITENDI ANALYSIS A METHO . 8260 . NH3 . TDS, CI, .	T: 1357 T:	1/2" = 0.010; JMP; O = 0 SAMPLI ENDED FILTER S MENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE:µm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <22 Γ 22 5 32 5
AMPLED COMPORT COMP	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: Son Late 43 N: PUN R SPECIFICA MATERIAL CODE CG CG PE PE	Ft.): 1/8" = 0.0 I = Bailer; II IP No ATION VOLUME 40mL 40mL 500mL 125mL	3006; 3/16' 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	" = 0.0014; Pump; SAMI) SIGNATUF :ODE: PE SING No SAMPLE F TIVE ADD P P P	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): June ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m refilled by lab refilled by lab	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pr SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE INTENDI ANALYSIS A METHO 8260 8011 Metals NH3 NH3	T: 1357 T:	1/2" = 0.010; ump; O = 0 SAMPLI ENDED FILTER : MENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE:µm Y NS SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <22 Γ 22 5
SAMPLED Joe Terry / DEPTH IN FIELD DEC SAMP SAMPLE D CODE AW -7B REMARKS: weather: A	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1	FFILIATION: Son Late 43 N: PUN R SPECIFICA MATERIAL CODE CG CG PE PE PE PE AG	Ft.): 1/8" = 0.0 I = Bailer; II I = Bailer; II IP No II ATION VOLUME 40mL 500mL 125mL 250mL	0006; 3/16' 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	" = 0.0014; Pump; SAMI) SIGNATUF :ODE: PE SING No SAMPLE F TIVE ADD P P P	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): <i>Just</i> (replaced) PRESERVATION TOTAL VOL ED IN FIELD (m refilled by lab refilled by lab Refilled by lab	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pr SAMPLING INITIATED A' INITIATED A' .FILTERED: FILTERED: Y DUPLICATE . INITENDI ANALYSIS A METHO . 8260 . NH3 . TDS, CI, .	T: 1357 T:	1/2" = 0.010; JMP; O = 0 SAMPLI ENDED FILTER S MENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE:µm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <22 Γ 22 5 32 5
TUBING IN PURGING I SAMPLED Joe Terry / I PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW 7B REMARKS: weather: Modor: Machine	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 1 2 5 1 Cloubly) S	ACITY (Gal./ ODES: B FFILIATION: Son Lalee 43 DN: PUN R SPECIFICA MATERIAL CODE CG CG CG PE PE PE PE AG	Ft.): 1/8" = 0.0 a = Bailer; Bailer; b = Bailer; Bailer; = Bailer;	0006; 3/16 SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014; Pump; SAMI) SIGNATUF CODE: PE BING No SAMPLE F TIVE ADD P P P P	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Jue ((replaced) PRESERVATION TOTAL VOL ED IN FIELD (m refilled by lab None refilled by lab None refilled by lab	Submersible Pu TA FIELD FIELD FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, Total Phe	D.006; 1 eristaltic Port T: /3572 Nor EQUIPM ED ND/OR D S NO ₃	1/2" = 0.010; JMP; O = 0 SAMPLI ENDED FILTER: MENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: /4/05 ⁻ SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <22 Γ 22 5 22 5 22 5 22 5 22 5
TUBING IN PURGING I SAMPLED Joe Terry / I PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-7B SAMPLE ID CODE MW-7B REMARKS: weather: M ATERIAL	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 1 2 5 1 Cloubly) S	ACITY (Gal./ ODES: B FFILIATION: Son Lalee 43 N: PUN R SPECIFICA MATERIAL CODE CG CG PE PE PE AG Shight brea	Ft.): 1/8" = 0.0 a = Bailer; Bailer; b = Bailer; Bailer; = Bailer;	0006; 3/16' 3P = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄ Clear Glass;	" = 0.0014; Pump; SAMI) SIGNATUF :ODE: PE SING NG SAMPLE F TIVE ADD P P P P P P P	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): June ((replaced) PRESERVATION TOTAL VOL ED IN FIELD (m refilled by lab None refilled by lab None refilled by lab	5/16" = 0. Submersible Pu TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE ANALYSIS A METHO 8260 8011 Metals NH ₃ TDS, CI, Total Phe	D.006; 1 eristaltic Port T: / 3 S Z N pe: or EQUIPN ED ND/OR D S NO ₃ mols	1/2" = 0.010; Jmp; 0 = 0 SAMPLI ENDED FILTER 3 MENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP APP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: /4/05 SIZE:µm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <22 Γ 22 5 32 5

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE		ODES: B FFILIATION: 20 DN: PUMI	P No	BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	Pump; Es SAMPI SIGNATURE DDE: PE NG No (I SAMPLE PR VE T ADDE Pre Pre	LING DA	Submersible Pur TA Cuy FIELD- Filtratic		ristaltic Pum r: /000 pe: or EQUIPME ED S ND/OR E D	SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG AT: /0/5 FIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1 1	ODES: B FFILIATION: DN: PUMI R SPECIFICA MATERIAL CODE CG CG CG PE PE PE	P No TION VOLUME 40mL 40mL 500mL 125mL	BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	Pump; Es SAMPI SIGNATURE DDE: PE NG No ((SAMPLE PR ADDE Pre Pre	SP = Electric S LING DA ((S): Que replaced) ESERVATION OTAL VOL D IN FIELD (n efilled by lab None efilled by lab	Submersible Pur TA Cuy FIELD- Filtratic	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals NH ₃	ristaltic Purr pe: or EQUIPME D ND/OR E D	Imp; O = O SAMPLIN ENDED A FILTER S NT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP APP APP	IG IG IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200
SAMPLED loe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE D CODE	BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 1	ODES: B FFILIATION:	P No TION VOLUME 40mL 40mL 500mL	BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃	Pump; Es SAMPI SIGNATURE DDE: PE NG No ((SAMPLE PR ADDE Pre Pre	SP = Electric S LING DA (S): Que replaced) ESERVATION OTAL VOL D IN FIELD (n efilled by lab None	Submersible Pur TA Cuy FIELD- Filtratic	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AI METHO 8260 8011 Metals	T: /000 pe: or EQUIPME DD/OR E D	Imp; 0 = 0 SAMPLIN ENDED A FILTER S NT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP APP	Her (Specify) IG IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 QQQ
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3	FFILIATION:	P No TION VOLUME 40mL 40mL	BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None	Pump; ES SAMPI SIGNATURE DDE: PE NG No (1) SAMPLE PR IVE T ADDE Pre	SP = Electric S LING DA ((S): Other replaced) ESERVATION OTAL VOL D IN FIELD (IN stilled by lab None	Submersible Pur TA Cuy FIELD- Filtratic	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of INTENDE ANALYSIS AI METHO 8260 8011	T: /000 pe: or EQUIPME DD/OR E D	RFPP	IG IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / AI PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3	ODES: B FFILIATION:	P No TION VOLUME 40mL	BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL	Pump; ES SAMP SIGNATURE DDE: PE ING No (i SAMPLE PR IVE T ADDE	SP = Electric S LING DA ((S): Que replaced) ESERVATION OTAL VOL D IN FIELD (m sfilled by lab	Submersible Pur TA Cuy FIELD- Filtratic	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AI METHO 8260	ristaltic Purr Pe: pe: pr EQUIPME ED S ND/OR E	P; O = O SAMPLIN ENDED A FILTER S NT BLANK: SAMPLING QUIPMENT CODE RFPP	IG IZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	ODES: B FFILIATION: 20 NN: PUMI R SPECIFICA MATERIAL CODE	P No TION VOLUME	BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED	Pump; ES SAMP SIGNATURE DDE: PE ING No (i SAMPLE PR IVE T ADDE	SP = Electric S LING DA (S): (S): (C): (C): (C): (C): (C): (C): (C): (C):	Submersible Pur TA Cuy FIELD- Filtratic	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AT METHO	ristaltic Purr Pe: pe: pr EQUIPME ED S ND/OR E	SAMPLIN ENDED A FILTER S NT BLANK: SAMPLING QUIPMENT CODE	Her (Specify)
SAMPLED loe Terry PUMP OR DEPTH IN FIELD DE SAM	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	ODES: B FFILIATION: ∂D DN: PUMI R SPECIFICA	P No TION	BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI	Pump; ES SAMP SIGNATURE DDE: PE NG No (i SAMPLE PR	SP = Electric S LING DA ((S): Just replaced) ESERVATION	Submersible Pur TA Cuy FIELD- Filtratic	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE o INTENDE ANALYSIS AI	ristaltic Purr Pe: pe: pr EQUIPME ED S ND/OR E	P; O = O SAMPLIN ENDED A FILTER S NT BLANK: SAMPLING QUIPMENT	IG IZE:µM Y N SAMPLE PUMP FLOW RATE
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC	ODES: B FFILIATION: 20 DN: PUMI	P No	BP = Bladder F SAMPLER(S) TUBING MATERIAL CO	SIGNATURE	SP = Electric S LING DA S(S): Que replaced)	Submersible Pur TA Cuy FIELD- Filtratic	SAMPLING INITIATED AT FILTERED: Y DUPLICATE of	Pristaltic Purr	SAMPLIN SAMPLIN ENDED A FILTER S	Her (Specify)
SAMPLEE Joe Terry PUMP OR DEPTH IN	BY (PRINT) / A PWSFL TUBING WELL (feet):	ODES: B FFILIATION: ∂^{D}	= Bailer; I	BP = Bladder F SAMPLER(S) TUBING MATERIAL CO	SIGNATURE	SP = Electric S LING DA S(S): Que	Submersible Pur TA Cuy FIELD-	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty	r: /000	SAMPLIN ENDED A FILTER S	Her (Specify)
SAMPLED Joe Terry	BY (PRINT) / A PWSFL	ODES: B	-	BP = Bladder F SAMPLER(S)	SAMP	SP = Electric S	Submersible Pur TA	SAMPLING	r: /000	SAMPLIN ENDED A	IG AT: /0/5
PURGING	EQUIPMENT C		-		ump; Es	SP = Electric S	Submersible Pur				
	PACITY (Gallons			1" = 0.04;	1.25" = 0.06				5 " = 1.02;	6 " = 1.47; " = 0.010;	12 " = 5.88
0955	0.25	2.75	0.05	16.80	4.29	24.89	1698	0.69	0.3	clei	r 18.3
0950	0.25	2.5	0.05	16.00	4.29	24.90	1696	0.70	0.6	Cleu	
0945	2.25	2.75	0.05	16.80	4.29	24.89	1694	0.69	0.5	c len	
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDI (NTUs)	TY COLO	DR ORP be) (mV)
	UMP OR TUBING WELL (feet):	3 20		VELL (feet):	20	PURGIN	DAT: 0900	PURGING ENDED AT:	8955	TOTAL VO PURGED (LUME gallons): 2.75
(only fill or	NT VOLUME PL it if applicable)				ume + (TUB allons + (0.		TY X TU	JBING LENGTH) feet)			gallons
(only fill or	it if applicable)		= (22.5	feet -	16.26	feet) X	0.16 g	allons/foot	= 1.0	gallons
	R (inches): 2.0		ER (inches):	0.25 DEF	TH: 2.5 fe	et to 22.5Te	TO WATER	WELL CAPACI		BAILER: p	peristaltic
	S	TUBING			LL SCREEN		STATIC D	EPTH	, PU	RGE PUMP T	YPE
					PURG	ING DA	ТА			5 1109 2011	
WELL	: MW-9				ID: Mh	0.1				May 2014	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-8	ACs Facility IE		SAMPLE			on Online way, Si	t. Cloud, Osceola	and the second	1	
	1	15		Sruth LL	DI DE	J- BIS	ТА		DATE: /	5 May 2014	
WELL		TUBIN	IG	WE	LL SCREEN		STATIC	DEDTH	PI	JRGE PUMP	
	R (inches): 2.0	DIAM	ETER (inches):	0.25 DEF	PTH: 24 5 fe	et to 49.5%	eet TO WATE	ER (feet): 16.	25 01		peristaltic
(only fill ou	LUME PURGE: ut if applicable)	1 WELL VO	DLUME = (TO	TAL WELL DEP	PTH - STA	TIC DEPTH T	O WATER) X	WELL CAPAC	ITY		
			= (E. H. F. L. K.	feet -		feet) X		allons/foot		gallons
(only fill ou	NT VOLUME P it if applicable)	URGE: 1 EQ	UIPMENT VOI	L. = PUMP VOL	LUME + (TUE	BING CAPACI	τγ χ τι	UBING LENGTH) + FLOW C	ELL VOLUME	
					gallons + (0		ns/foot X	55 feet	+ 0.12	gallons =	0.3 gallons
	JMP OR TUBIN WELL (feet):	G 45		MP OR TUBING WELL (feet):	3 45	PURGIN	G AT: 0900	PURGING ENDED AT:	0925	TOTAL VC	gallons): 1,25
	VOLUME	CUMUL.	La sumai	DEPTH	pH		COND.	DISSOLVED	01005	FORGED	gallons). 1 y 25
TIME	PURGED	VOLUME PURGED		WATER	(standard	TEMP. (°C)	(µS/cm)	OXYGEN (mg/L)	TURBID (NTUs		
0.1	(gallons)	(gallons)	(gpm)	(feet)	units)	0.1.1.2					
0915	0.15	0.75	0.05	16.78	4.44	24.43	466	1.43	1.6	Clea	
0920	0.25	125	0.05	16.78	4.44	24.44	467	1.37	1.5	Llen	
0975	0.25	1.75	0.05	16.78	4.43	24.47	465	1.34	1.8	Llea	1 34.1
	-		-							_	
	-		-	-							
				-							
						the second second					
		-									
WELL CAI	PACITY (Gallon	s Per Foot): PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0.	1" = 0.04; .0006; 3/16"	1.25 " = 0.00 = 0.0014;	6; 2" = 0.16 1/4" = 0.0026			5" = 1.02; .006; 1/2	6" = 1.47; 2" = 0.010:	12 " = 5.88 5/8 " = 0.016
TUBING IN	PACITY (Gallon ISIDE DIA. CAI	PACITY (Gal.	/Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16" BP = Bladder F	= 0.0014;	1/4" = 0.0026		004; 3/8" = 0		2" = 0.010;	12" = 5.88 5/8" = 0.016 Other (Specify)
TUBING IN	SIDE DIA. CAR	PACITY (Gal.	/Ft.): 1/8" = 0.	0006; 3/16"	= 0.0014; Pump; E	1/4" = 0.0026	6; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0	.006; 1/2	2" = 0.010;	5/8" = 0.016
TUBING IN PURGING SAMPLED	BY (PRINT) / A	PACITY (Gal. ODES: E	/Ft.): 1/8" = 0.	.0006; 3/16" BP = Bladder F	= 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S	6; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0 mp; PP = Pe	.006; 1/2 eristaltic Pur	2" = 0.010; np; O = C SAMPLIN	5/8" = 0.016 Other (Specify)
TUBING IN PURGING SAMPLED Joe Terry /	BY (PRINT) / A PWSFL	PACITY (Gal. ODES: E	/Ft.): 1/8" = 0.	0006; 3/16" BP = Bladder F SAMPLER(S)	= 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S	5; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT	.006; 1/2 eristaltic Pur	2" = 0.010; np; O = C SAMPLIN ENDED	5/8" = 0.016 Other (Specify) NG AT: 0938
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR	BY (PRINT) / A PWSFL	PACITY (Gal. ODES: E	/Ft.): 1/8" = 0.	.0006; 3/16" BP = Bladder F	= 0.0014; Pump; E SAMP SIGNATURI	1/4" = 0.0026 SP = Electric S	5: 5/16" = 0.0 Submersible Pur TA	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y	.006; 1/2 eristaltic Pur : 09.25	2" = 0.010; np; O = C SAMPLIN	5/8" = 0.016 Other (Specify) NG AT: 0938
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	BY (PRINT) / A PWSFL	FFILIATION:	/Ft.): 1/8" = 0.	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE	1/4" = 0.0026 SP = Electric S	5: 5/16" = 0.0 Submersible Pur TA	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT	.006; 1/2 eristaltic Pur T: 0925 OP pe:	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:μm
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet):	PACITY (Gal. CODES: E FFILIATION: 4/5 DN: PUN	/Ft.): 1/8" = 0. 3 = Bailer; //P No	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI	= 0.0014; Pump; E SIGNATURI SIGNATURI DDE: PE NG No (1/4" = 0.0026 SP = Electric S LING DA E(S): Que (5; 5/16" = 0.0 Submersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED TO TO FILTERED: Y DUPLICATE of	11/2 eristaltic Pur U 9.25 N De: Dr EQUIPME	2" = 0.010; np; O = C SAMPLIN ENDED FILTER S ENT BLANK:	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:μm ΥN
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	FFILIATION: 4/5 DN: PUN R SPECIFIC, MATERIAL	/Ft.): 1/8" = 0. 3 = Bailer; //P No ATION	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI	= 0.0014; Pump; E SIGNATURI SIGNATURI DDE: PE ING No (SAMPLE PF	1/4" = 0.0026 SP = Electric S LING DA $E(S): \int def$	5; 5/16" = 0.0 Submersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE c INTENDE ANALYSIS AN	1/2 eristaltic Pur tr: U 9.25 vi vi vi vi vi vi vi vi vi vi vi vi vi	2" = 0.010; np; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:μm Y N SAMPLE PUMP FLOW RATE
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINE # CONTAINERS	FFILIATION: FFILIATION: 4/5 DN: PUM R SPECIFIC, MATERIAL CODE	/Ft.): 1/8" = 0. 3 = Bailer; //P No ATION VOLUME	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL D IN FIELD (m	5: 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE of ANALYSIS AN METHOD	1/2 eristaltic Pur tr: U 9.25 vi vi vi vi vi vi vi vi vi vi vi vi vi	2" = 0.010; mp; O = C SAMPLIN ENT BLANK: SAMPLING: QUIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ASIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	FFILIATION: 	/Ft.): 1/8" = 0. 3 = Bailer; //P No ATION VOLUME 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): (replaced) RESERVATION TOTAL VOL D IN FIELD (m afilled by lab	5: 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Tyr DUPLICATE c INTENDE ANALYSIS AT METHOD 8260	1/2 eristaltic Pur tr: U 9.25 vi vi vi vi vi vi vi vi vi vi vi vi vi	2" = 0.010; np; 0 = 0 SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING QUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3	FFILIATION: 	/Ft.): 1/8" = 0. 3 = Bailer; MP No ATION VOLUME 40mL 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE Pro-	1/4" = 0.0026 SP = Electric S LING DA E(S): (replaced) RESERVATION OTAL VOL D IN FIELD (m efilled by lab None	5: 5/16" = 0.1 Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011	1/2 eristaltic Pur T: U 9.25 T: U 9.	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1	FFILIATION: CODES: E FFILIATION: CODES: E CODES: E PE	/Ft.): 1/8" = 0. 3 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE Pro-	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) EESERVATION OTAL VOL D IN FIELD (m efilled by lab None	5: 5/16" = 0.1 Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT Type DUPLICATE of INTENDE ANALYSIS AT METHOD 8260 8011 Metals 11	1/2 eristaltic Pur T: U 9.25 T: U 9.	2" = 0.010; mp; 0 = 0 SAMPLIN ENT BLANK: SAMPLING: QUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE: µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1	FFILIATION: 	/Ft.): 1/8" = 0. 3 = Bailer; /P No ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE Pro-	1/4" = 0.0026 SP = Electric S LING DA E(S): (replaced) RESERVATION OTAL VOL D IN FIELD (m efilled by lab None	5: 5/16" = 0.1 Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: FILTERED: Y DUPLICATE of ANALYSIS AT METHOD 8260 8011 Metals NH3	1/2 eristaltic Pur T: U 9,25 D D D D D D D D D D D D D D D D	2" = 0.010; np; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0.9.38 SIZE: µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1	FFILIATION: CODES: E FFILIATION: CODES: E CODES: E PE	/Ft.): 1/8" = 0. 3 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE Pro-	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) EESERVATION OTAL VOL D IN FIELD (m efilled by lab None	5: 5/16" = 0.1 Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT Type DUPLICATE of INTENDE ANALYSIS AT METHOD 8260 8011 Metals 11	1/2 eristaltic Pur T: U 9,25 D D D D D D D D D D D D D D D D	2" = 0.010; mp; 0 = 0 SAMPLIN ENT BLANK: SAMPLING: QUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200
TUBING IM PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE AW-& G	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: 	/Ft.): 1/8" = 0. 3 = Bailer; /P No ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE Pro- Pro- Pro-	1/4" = 0.0026 SP = Electric S LING DA E(S): (replaced) ESERVATION OTAL VOL D IN FIELD (m efilled by lab efilled by lab	Submersible Pur Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: FILTERED: Y DUPLICATE of ANALYSIS AT METHOD 8260 8011 Metals NH3	1/2 eristaltic Pur eristaltic	2" = 0.010; np; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0.9.38 SIZE: µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE AW-BIS	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: FFILIATION: FFILIATION: 4/5 DN: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE PE PE AG	/Ft.): 1/8" = 0. 3 = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE Pro- Pro- Pro-	1/4" = 0.0026 SP = Electric S LING DA E(S): (replaced) RESERVATION OTAL VOL D IN FIELD (m efilled by lab efilled by lab efilled by lab	Submersible Pur Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT Peres FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N TDS, CI, N	1/2 eristaltic Pur eristaltic	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE AW-& B REMARKS weather: p	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5	FFILIATION: FFILIATION: FFILIATION: 4/5 DN: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE PE PE AG	/Ft.): 1/8" = 0. 3 = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE Pro- Pro- Pro-	1/4" = 0.0026 SP = Electric S LING DA E(S): (replaced) RESERVATION OTAL VOL D IN FIELD (m efilled by lab efilled by lab efilled by lab	Submersible Pur Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT Peres FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N TDS, CI, N	1/2 eristaltic Pur eristaltic	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE AW-B (S AW-B (S AW-B (S) AW-B (ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 5 5 5 5 1 0 1 1 1 1 1 1 1 1	FFILIATION: FFILIATION: 4/5 DN: PUN R SPECIFIC, MATERIAL CODE CG CG CG PE PE PE PE AG 76°F	 //Ft.): 1/8" = 0. B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE Pro- Pro- Pro- Pro- Pro-	1/4" = 0.0026 SP = Electric S LING DA E(S): We (replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab None efilled by lab	Si 5/16" = 0.0 Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT TON Equipment Typ DUPLICATE of INTENDE ANALYSIS AT METHOD 8260 8011 Metals NH3 TDS, CI, N Total Phene	.006; 1/2 eristaltic Pur eristalting eristaltic Pur <	2" = 0.010; mp; 0 = 0 SAMPLIN ENT BLANK: SAMPLING: QUIPMENT CODE RFPP APP APP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE AW-BIS AW-BIS CODE CODE AW-BIS CODE CODE AW-BIS CODE CODE AW-BIS CODE CODE CODE CODE CODE CODE CODE CODE	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 5 5 5 5 1 0 1 1 1 1 1 1 1 1	ACITY (Gal. CODES: E FFILIATION: 4/5 DN: PUN CODE CG CG PE PE PE AG 76°F AG = Amber	 //Ft.): 1/8" = 0. B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL Glass; CG = 	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; Pump; E SAMP SIGNATURI DDE: PE ING No (SAMPLE PF IVE ADDE Pro- Pro- Pro-	1/4" = 0.0026 SP = Electric S LING DA E(S): (replaced) RESERVATION OTAL VOL D IN FIELD (n efilled by lab None efilled by lab None efilled by lab	Submersible Pur Submersible Pur TA FIELD- FIELD- Filtratic N FINAL pH	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED AT TON Equipment Typ DUPLICATE of INTENDE ANALYSIS AT METHOD 8260 8011 Metals NH3 TDS, CI, N Total Phene	.006; 1/2 eristaltic Pur eristaltiter eristaltic Pur	2" = 0.010; mp; 0 = 0 SAMPLIN ENT BLANK: SAMPLING QUIPMENT CODE RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0938 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200

DIAMETER (ir VELL VOLUM only fill out if a	iches): 2.0	TUBIN	IG			w-9A RGING DA	TA	_		DATE:	5 May 2014	
DIAMETER (ir VELL VOLUM only fill out if a		1.35.5	IG	1	PU	RGING DA	TA					
only fill out if a		1.35.5	IG				IA					
VELL VOLUM only fill out if a			ETER (inches):			EN INTERVAL		TATIC D			URGE PUMP	
only fill out if a	LI OROL.			AL WELL DE	EPTH -	feet to 22 f	O WATE	ER) X	WELL CAPACI		R BAILER:	peristaltic
				22.4	feet -	16.5	-	1211			= 1.0	
		RGE: 1 EQ	UIPMENT VOL	. = PUMP VC	DLUME + (TUBING CAPACI	TY)	eet) X X TU	BING LENGTH	allons/foot) + FLOW		gallons
only fill out if a	applicable)			= 0.0	gallons +	(0.0026 gallo	ons/foot)	x	feet)	+ 0.1	2 gallons =	gallons
NITIAL PUMP	OR TUBINO	3	FINAL PU	MP OR TUBI	-	PURGIN			PURGING	0.11	TOTAL VC	
DEPTH IN WE	ELL (feet):	20	DEPTH IN	WELL (feet):	20		DAT: L	0710	ENDED AT:	0815	PURGED	gallons):4,55
	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER	pH (standa units		CON (µS/d	C	DISSOLVED OXYGEN (mg/L)	TURBIE (NTU		
1805	3,85	3.85		(feet) 16.81	41.9	3 25.77	310	3	0.67	8.	1 11	v. 26.8
0810	0.35	4.2	0.01	16.81			30		0.66	B.		
0815	0.35	4.55					310		0.66			
0015	0.00	-1.33	0.01	10.0	1.01	1 \$5.05	510		0.00	8.	B clei	v 22.2
_												
						C. Land			and the second		- June	
						0.06; 2" = 0.16 4; 1/4" = 0.002		= 0.37; 16" = 0.0		5" = 1.02; 006: 1	6" = 1.47; /2" = 0.010;	12 " = 5.88 5/8 " = 0.016
URGING EQ				BP = Bladder		ESP = Electric				eristaltic Pu		Other (Specify)
					SAM	IPLING DA	TA					
AMPLED BY oe Terry / PW		FFILIATION:		SAMPLER(S	S) SIGNAT	URE(S): Que	Tim	1	SAMPLING INITIATED AT	· 1427	SAMPLI	NG AT: 0832
UMP OR TU				TUBING		/**	1	FIELD-	FILTERED: Y	N	FILTER	
EPTH IN WE		20		MATERIAL	CODE: PE				n Equipment Ty	-		
IELD DECON	TAMINATIO	N: PUN	MP No	TU	BING	No (replaced)			DUPLICATE	or EQUIPM	ENT BLANK:	Y
SAMPLE	CONTAINE	R SPECIFIC	ATION		SAMPLE	PRESERVATIO	N		INTENDE		SAMPLING	SAMPLE PUMP
SAMPLE	# INTAINERS	MATERIAL	VOLUME	PRESERVA		TOTAL VOL		FINAL pH	ANALYSIS AN METHO		EQUIPMENT CODE	FLOW RATE (mL per minute)
w94	3	CODE	40mL	HCL		Prefilled by lab		pri	8260		RFPP	<100
1	3	CG	40mL	None	-	None			8011		RFPP	<100
	1	PE	500mL	HNO ₃		Prefilled by lab			Metals	3	APP	275
	1	PE	125mL	H ₂ SO ₄		Prefilled by lab			NH ₃		APP	275
	1	PE	250mL	None		None			TDS, CI, I	NO ₃	APP	275
V	1	AG	250mL	H ₂ SO ₄		Prefilled by lab			Total Phe		APP	275
EMARKS:		AO	Zounit	112002		- remied by lab			i otarr ne		7.4.1	010

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	J.E.D. SWMF (WA		: 89544)			SITE LOCATION: 15	01 Omni V	Vay, St.	Cloud, Osceola	County, I	lorida,	34773	
WELL N	0: MW - 91	3		SAMP	LE ID: Mh	2-9B				DATE:	15 Ma	ay 2014	
					PUF	RGING DA	TA						
WELL	ER (inches): 2.0	TUBIN				N INTERVAL		ATIC DE				PUMP T	
	OLUME PURGE:	1 WELL VO	TER (inches): DLUME = (TO	TAL WELL D	EPTH - S	feet to LG f	O WATER	R) X	WELL CAPACI		OR BAIL	ER: p	peristaltic
	out if applicable)		= (feet -			1					
	ENT VOLUME P	URGE: 1 EQ	UIPMENT VOI	L. = PUMP V	OLUME + (TI	UBING CAPACI	TY X	et) X TUE	0.16 g BING LENGTH)	+ FLOW	CELL V	OLUME	gallons
(only fill	out if applicable)			= 0.0	gallons + (0.0026 gallo	ons/foot X		55- feet)	+ 0.1	2 gal	lons = /	0.3 gallons
	PUMP OR TUBIN		FINAL PU	MP OR TUBI	NG .	PURGIN	G		PURGING	ALC: N. 12	ТО	TAL VOL	LUME
DEPTH	IN WELL (feet):	CUMUL.	DEPTH IN	DEPTH		INITIATE	DAT: 0	7/0	ENDED AT:	0745	PU	RGED (g	gallons): /. 75
TIME	VOLUME	VOLUME	PURGE	TO	pH (standar	TEMP.	CONI (µS/cr		DISSOLVED	TURBI	YTIC	COLO	R ORP
	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	(feet)	units)	(°C)	(µO/Cl		(mg/L)	(NTU	ls)	(describ	be) (mV)
0730) /	1	0.05	1	41.10	25.86	149	2	0.95	0.0	,	clea	- 63.9
0 740	0.5	1.5	0.05	16.89		25.90	142		0.83	0		clen	1
0745		1.75	0.05	16.80			143		0.80	0		clea	1
				10	111	231/2	112		0.00			0,000	0,
												-	
	APACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04:	1 25" = 0	06: 2" = 0 1	3" =	0.37	4" = 0.65;	" = 1 02·	6" =	1 47	12" = 5.88
		DACITY (Cal											
			/Ft.): 1/8" = 0	.0006; 3/1	6" = 0.0014;	1/4" = 0.002	6; 5/16	5" = 0.00	04; 3/8" = 0.	006;	/2" = 0.	010;	5/8" = 0.016
	G EQUIPMENT C				6" = 0.0014; r Pump;	1/4" = 0.002 ESP = Electric	6; 5/16 Submersit	5" = 0.00	04; 3/8" = 0.		/2" = 0.	010;	
PURGIN		ODES: E	/Ft.): 1/8" = 0	.0006; 3/1 BP = Bladde	6" = 0.0014; r Pump; SAM	1/4" = 0.002 ESP = Electric PLING DA	6; 5/16 Submersit	5" = 0.00	04; 3/8" = 0. p; PP = Pe SAMPLING	006; 1 ristaltic P	/2" = 0. ump;	010;	5/8" = 0.016 ther (Specify)
PURGIN	G EQUIPMENT C	ODES: E	/Ft.): 1/8" = 0	.0006; 3/1 BP = Bladde	6" = 0.0014; r Pump; SAM	1/4" = 0.002 ESP = Electric	6; 5/16 Submersit	5" = 0.00	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT	006; eristaltic P	/2" = 0. ump; 5 E	010; 0 = Of AMPLIN	5/8" = 0.016 ther (Specify) IG IT: 0755
SAMPLE Joe Terr	G EQUIPMENT O	ODES: E	/Ft.): 1/8" = 0	.0006; 3/1 BP = Bladde SAMPLER(TUBING	6" = 0.0014; rr Pump; SAM S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	6; 5/16 Submersit	S" = 0.00 ple Pump FIELD-F	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT ILTERED: Y	006; ristaltic P 074	/2" = 0. ump; 5 E	010; 0 = Of AMPLIN	5/8" = 0.016 ther (Specify)
PURGIN SAMPLE Joe Terr PUMP O DEPTH I	G EQUIPMENT O D BY (PRINT) / A y / PWSFL	SODES: E	/Ft.): 1/8" = 0	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	6" = 0.0014; rr Pump; SAM S) SIGNATU CODE: PE	1/4" = 0.002 ESP = Electric PLING DA	6; 5/16 Submersit	S" = 0.00 ple Pump FIELD-F	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT	006; ristaltic P 074, 074, 024	/2" = 0. ump; 5 E F	010; 0 = Of AMPLIN NDED A ILTER SI	5/8" = 0.016 ther (Specify) IG IT: 0755
SAMPLE Joe Terr PUMP O DEPTH I FIELD D	G EQUIPMENT O D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATIO	SODES: E	/Ft.): 1/8" = 0 3 = Bailer; //P No	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	6" = 0.0014; rr Pump; S SIGNATU CODE: PE JBING No	1/4" = 0.002 ESP = Electric PLING DA RE(S): <i>Que</i> o (replaced)	6; 5/16 Submersit	S" = 0.00 ple Pump FIELD-F	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT ILTERED: Y beguipment Typ DUPLICATE of	006; rristaltic P 074, 074, 0 0 0 0 0 0 0 0 0 0 0 0 0	/2" = 0. ump; 5 E F MENT B	010; 0 = 01 CAMPLIN NDED A ILTER SI LANK:	5/8" = 0.016 ther (Specify) IG IT: 0755 IZE:μm Y Ν
SAMPLE Joe Terr PUMP O DEPTH I FIELD D	G EQUIPMENT C D BY (PRINT) / A y / PWSFL R TUBING N WELL (feet):	SODES: E	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	6" = 0.0014; r Pump; S) SIGNATU CODE: PE JBING NA SAMPLE I	1/4" = 0.002 ESP = Electric PLING DA RE(S): Jue	6; 5/16 Submersit	S" = 0.00 ple Pump FIELD-F	D4; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT ILTERED: Y Equipment Typ DUPLICATE of INTENDE ANALYSIS AN	006; 1 rristaltic P 074/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IZ" = 0. JIMP; SF E F MENT B SAMP EQUIP	010; 0 = 01 AMPLIN NDED A ILTER SI LANK: LING MENT	5/8" = 0.016 ther (Specify) IG IZE: μm Y Ν SAMPLE PUMF FLOW RATE
PURGIN SAMPLE Joe Terr PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT O	CODES: E	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED	6" = 0.0014; ar Pump; S SIGNATU CODE: PE JBING No SAMPLE I ATIVE ADE	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r	6; 5/16 Submersit TA (Ly) N N FI	S" = 0.00 DIE Pump FIELD-F Filtration	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD	006; 1 rristaltic P 074/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/2" = 0. Jmp; S E F MENT B SAMP EQUIP COI	010; 0 = 01 CAMPLIN NDED A ILTER SI LANK: LING MENT DE	5/8" = 0.016 ther (Specify) IG IZE:μm Y N SAMPLE PUMF FLOW RATE (mL per minute)
PURGIN SAMPLE Joe Terr PUMP O DEPTH I FIELD D SA	G EQUIPMENT C D BY (PRINT) / A Y PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINERS CONTAINERS 3	SODES: E	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME 40mL	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL	6" = 0.0014; r Pump; S AM S) SIGNATU CODE: PE JBING No SAMPLE I ATIVE ADD F	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab	6; 5/16 Submersit TA (Ly) N N FI	S" = 0.000 ble Pump FIELD-F Filtration	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT ILTERED: Y Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOI 8260	006; 1 rristaltic P 074/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/2" = 0. JIMP; F MENT B SAMP EQUIP COL RFI	010; 0 = 01 CAMPLIN ENDED A ILTER SI LANK: LING MENT DE PP	5/8" = 0.016 ther (Specify) IG IZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
PURGIN SAMPLE Joe Terr PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINERS 3 3 3	SODES: E	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL None	6" = 0.0014; rr Pump; S SIGNATU CODE: PE JBING NA SAMPLE I ATIVE F B	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab None	6; 5/16 Submersite TA Cury I I N N FI	S" = 0.000 ble Pump FIELD-F Filtration	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT ILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011	006; 1 rristaltic P 074/ N 020: 074/ 0 074/ 0 0 0 0 0 0 0 0 0 0 0 0 0	/2" = 0. Jmp; F MENT B SAMP EQUIP COI RFI	010; 0 = 01 CAMPLIN NDED A ILTER SI LANK: LING MENT DE PP PP	5/8" = 0.016 ther (Specify) IG IZE:μm Y No SAMPLE PUMF FLOW RATE (mL per minute) <100 <100
PURGIN SAMPLE Joe Terr PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT O	CODES: E	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL None HNO3	6" = 0.0014; ar Pump; S SIGNATU CODE: PE JBING No SAMPLE I ATIVE ADE 3 F	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab	6: 5/16 Submersite TA Tay I I N N FI	S" = 0.000 ble Pump FIELD-F Filtration	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT INITIATED T Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals	006; 1 rristaltic P 074/ N 020: 074/ 0 074/ 0 0 0 0 0 0 0 0 0 0 0 0 0	12" = 0. JMP; ST E F MENT B SAMP EQUIP COI RFI RFI AF	010; 0 = 01 CAMPLIN SAMPLIN SAMPLIN SAMPLIN ILTER SI LANK: LING MENT DE PP PP PP	5/8" = 0.016 ther (Specify) IG IZE:μm Y N SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 200
PURGIN SAMPLE Joe Terr PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT O	SODES: E SFFILIATION: UN: PUN ER SPECIFIC MATERIAL CODE CG CG CG PE PE PE	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL None HNO ₃ H ₂ SO	6" = 0.0014; rr Pump; S SIGNATU CODE: PE JBING NA SAMPLE I ATIVE ADD F 3 F 4 F	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab	6: 5/16 Submersite TA Tay I I N N FI	S" = 0.000 ble Pump FIELD-F Filtration	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃	006; rristaltic Pr 074/2 N 0 0 0 0 0 0 0 0 0 0 0 0 0	IZT = 0. IMP; IENT B SAMP EQUIP COI RFI AF AF	010; 0 = 01 CAMPLIN NDED A ILTER SI LANK: LING MENT DE PP PP PP	5/8" = 0.016 ther (Specify) IG IZE:μm Y No SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 200 200
PURGIN SAMPLE Joe Terr PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT O	CODES: E	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL None HNO3 H ₂ SO None	6" = 0.0014; rr Pump; S SIGNATU CODE: PE JBING NA SAMPLE I ATIVE ATIVE ATIVE F 	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab Prefilled by lab	6; 5/16 Submersite TA Cury I N N FI	S" = 0.000 ble Pump FIELD-F Filtration	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT ILTERED: Y Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; 1 rristaltic P 074/ N 020: 074/ 0 074/ 0 0 0 0 0 0 0 0 0 0 0 0 0	12" = 0. JMP; SF E F MENT B SAMP EQUIP COI RFI AF AF AF	010; 0 = 01 CAMPLIN NDED A ILTER SI LANK: LING MENT DE PP PP PP	5/8" = 0.016 ther (Specify) IG IZE:µm Y No SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 200 200 200
PURGIN SAMPLE Joe Term PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT C	SODES: E SFFILIATION: UN: PUN ER SPECIFIC MATERIAL CODE CG CG CG PE PE PE	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL None HNO ₃ H ₂ SO	6" = 0.0014; rr Pump; S SIGNATU CODE: PE JBING NA SAMPLE I ATIVE ATIVE ATIVE F 	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab	6; 5/16 Submersite TA Cury I N N FI	S" = 0.000 ble Pump FIELD-F Filtration	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃	006; 1 rristaltic P 074/ N 020: 074/ 0 074/ 0 0 0 0 0 0 0 0 0 0 0 0 0	IZT = 0. IMP; IENT B SAMP EQUIP COI RFI AF AF	010; 0 = 01 CAMPLIN NDED A ILTER SI LANK: LING MENT DE PP PP PP	5/8" = 0.016 ther (Specify) IG IZE:μm Y No SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 200 200
PURGIN SAMPLE Joe Tem PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT O	SODES: E AFFILIATION: UN: PUN ER SPECIFIC MATERIAL CODE CG CG CG PE PE PE AG	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL None HNO3 H ₂ SO None	6" = 0.0014; rr Pump; S SIGNATU CODE: PE JBING NA SAMPLE I ATIVE ATIVE ATIVE F ATIVE ATIVE ATIVE ATIVE ATIVE ADD ADD ADD ADD ADD ADD ADD AD	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab Prefilled by lab	6; 5/16 Submersite TA Cury I N N FI	S" = 0.000 ble Pump FIELD-F Filtration	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT ILTERED: Y Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; 1 rristaltic P 074/ N 020: 074/ 0 074/ 0 0 0 0 0 0 0 0 0 0 0 0 0	12" = 0. JMP; SF E F MENT B SAMP EQUIP COI RFI AF AF AF	010; 0 = 01 CAMPLIN NDED A ILTER SI LANK: LING MENT DE PP PP PP	5/8" = 0.016 ther (Specify) IG IZE:µm Y No SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 200 200 200
PURGIN SAMPLE Joe Terr PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT O	SODES: E AFFILIATION: UN: PUN ER SPECIFIC MATERIAL CODE CG CG CG PE PE PE AG	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL None HNO3 H ₂ SO None	6" = 0.0014; rr Pump; S SIGNATU CODE: PE JBING NA SAMPLE I ATIVE ATIVE ATIVE F ATIVE ATIVE ATIVE ATIVE ATIVE ADD ADD ADD ADD ADD ADD ADD AD	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab Prefilled by lab	6; 5/16 Submersite TA Cury I N N FI	S" = 0.000 ble Pump FIELD-F Filtration	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT ILTERED: Y Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; 1 rristaltic P 074/ N 020: 074/ 0 074/ 0 0 0 0 0 0 0 0 0 0 0 0 0	12" = 0. JMP; SF E F MENT B SAMP EQUIP COI RFI AF AF AF	010; 0 = 01 CAMPLIN NDED A ILTER SI LANK: LING MENT DE PP PP PP	5/8" = 0.016 ther (Specify) IG IZE:µm Y No SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 200 200 200
PURGIN SAMPLE Joe Terr PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT O	SODES: E	 /Ft.): 1/8" = 0 B = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERV/ USED HCL None HNO ₃ H ₂ SO, None H ₂ SO,	6" = 0.0014; ar Pump; S SIGNATU CODE: PE JBING No SAMPLE 1 ATIVE ADD F ATIVE ADD ATIVE ADD AT	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab Prefilled by lab Prefilled by lab	6: 5/16 Submersite TA TA Tay I I I I I I I I I I I I I I I I I I I	S" = 0.00 ple Pump FIELD-F Filtration NAL pH	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT ILTERED: Y Equipment Typ DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; 1 rristaltic Pr 074/ N 0 0 0 0 0 0 0 0 0 0 0 0 0	12" = 0. JMP; ST E F MENT B SAMP EQUIP COI RFI AF AF AF AF	010; 0 = 01 CAMPLIN NDED A ILTER SI LANK: LING MENT DE PP PP PP PP PP	5/8" = 0.016 ther (Specify) IG IZE:µm Y No SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 200 200 200
PURGIN SAMPLE Joe Tem PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	G EQUIPMENT O	SODES: E AFFILIATION: UN: PUN ER SPECIFIC. MATERIAL CODE CG CG CG CG PE PE PE PE AG AG = Amber	 /Ft.): 1/8" = 0 B = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 	.0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL TU PRESERVA USED HCL None HNO3 H ₂ SO None H ₂ SO	6" = 0.0014; rr Pump; S SIGNATU CODE: PE JBING NA SAMPLE I ATIVE ADD F SAMPLE I ATIVE ADD SAMPLE I ATIVE ADD SAMPLE I SAMPLE I ATIVE ADD SAMPLE I SAMPLE I ADD SAMPLE I ATIVE ADD SAMPLE I ADD SAMPLE I SAMPLE I SAM	1/4" = 0.002 ESP = Electric PLING DA RE(S): Que o (replaced) PRESERVATIO TOTAL VOL DED IN FIELD (r Prefilled by lab Prefilled by lab	6: 5/16 Submersite Submersite Submersite Submersite Submersite PP = Poly Bladder P	Propyler	04; 3/8" = 0. p; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N Total Pher	006; 1 rristaltic Pr 074/- 0 074/- 0 0 0 0 0 0 0 0 0 0 0 0 0	12" = 0. JMP; S F MENT B SAMP EQUIP COI RFI AF AF AF AF AF Teflon;	010; 0 = 01 0 = 01 0 = 01 0 = 01 0 = 0 0 = 0	5/8" = 0.016 ther (Specify) IG IZE:µm Y N SAMPLE PUMF FLOW RATE (mL per minute) <100 <100 200 200 200 200 200

	.E.D. SWMF (WA		: 89544)		LC	OCATION: 1501	Omni Way, St	. Cloud, Osceola	County, Flo	orida, 34773	
WELL N	0: MW-10	0.4		SAMPLE	ID: MW	· 10A			DATE: /	4 May 2014	
					PURC	SING DAT	A			1	
	ER (inches): 2.0 OLUME PURGE:		TER (inches)	:0.25 DEP	TH: 12 fe	et to 22 fee	STATIC C TO WATE	R (feet): 18.	19 01	JRGE PUMP 1 R BAILER:	TYPE peristaltic
(only fill	ENT VOLUME PI		= (22	feet -	18.19	feet) X	0.16 g	allons/foot	= .6	gallons
only fill	but if applicable)	UNGE. TEQ			allons + (0.		Y X TU s/foot X	JBING LENGTH) feet)			gallons
	PUMP OR TUBIN N WELL (feet):	G 19.7		MP OR TUBING	19.7	PURGING	AT: 1415	PURGING ENDED AT:	1500	TOTAL VC	(gallons): 3, 15
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet) of	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDI (NTUs	TY COLO	OR ORP
1450		2.45	0.07	18 37 12	4.74	25.06	257	0.85	2.3	cke	v 51.2
14/53		2.9	0.07	1	4,80	25.06	248	0,84	1.9	c/c	
1500	0.35	3.15	0.07	18.77	4.01	25.04	249	0.83	1.7	clei	~ 42.3
	-										
			-	-							
	-			-						-	
NELLC											
	APACITY (Gallon: INSIDE DIA. CAP				1.25 " = 0.06 = 0.0014;	5; 2 " = 0.16; 1/4 " = 0.0026;			5" = 1.02; 006; 1/ 2	6 " = 1.47; 2 " = 0.010;	12" = 5.88 5/8" = 0.016
UBING		PACITY (Gal./			= 0.0014; ump; E	1/4" = 0.0026; SP = Electric Si	5/16" = 0.0	004; 3/8" = 0.		2" = 0.010;	
UBING PURGIN	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A	PACITY (Gal./ ODES: B	Ft.): 1/8" = 0	0.0006; 3/16 "	= 0.0014; ump; Es SAMP	1/4" = 0.0026; SP = Electric St LING DA	5/16" = 0.0	004; 3/8" = 0. mp; PP = Pe SAMPLING	006; 1/2 ristaltic Pur	2" = 0.010; np; O = C SAMPLIN	5/8" = 0.016 Other (Specify)
CUBING PURGIN CAMPLE oe Terry PUMP O	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING	PACITY (Gal./ ODES: B	Ft.): 1/8" = 0	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING	= 0.0014; ump; ES SAMPI SIGNATURE	1/4" = 0.0026; SP = Electric St LING DA	5/16" = 0.0 ubmersible Pur TA FIELD-	SAMPLING INITIATED AT	006; 1/2 ristaltic Pur	2" = 0.010; np; O = C SAMPLIN ENDED	5/8" = 0.016 Other (Specify)
AMPLE BAMPLE Joe Terry PUMP O DEPTH I	INSIDE DIA. CAF 3 EQUIPMENT C D BY (PRINT) / A / PWSFL	PACITY (Gal./ ODES: B FFILIATION:	Ft.): 1/8" = 0	0.0006; 3/16" BP = Bladder P SAMPLER(S)	= 0.0014; ump; ES SAMP SIGNATURE DDE: PE	1/4" = 0.0026; SP = Electric St LING DA	5/16" = 0.0 ubmersible Pur TA FIELD-	3/8" = 0. np; PP = Pe SAMPLING INITIATED AT	006; 1/2 ristaltic Pur	2" = 0.010; mp; O = C SAMPLIN ENDED A FILTER S	5/8" = 0.016 Other (Specify) NG AT: /57/0
SAMPLE Doe Terry PUMP O DEPTH I	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet):	FFILIATION:	Ft.): 1/8" = 0 8 = Bailer; 1P No	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (1)	$\frac{1}{4} = 0.0026;$ $\frac{1}{8} = \text{Electric Si}$ $\frac{1}{8} = \frac{1}{8} = \frac{1}{8}$	5/16" = 0.0 ubmersible Pur TA FIELD-	3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Yon Equipment Typ DUPLICATE o INTENDE	006; 1/2 ristaltic Pur	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING	5/8" = 0.016 Other (Specify) NG AT: /57/0 SIZE:μm
CUBING PURGIN SAMPLE SAMPLE SAMPLE	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATIO	FFILIATION:	Ft.): 1/8" = 0 8 = Bailer; 1P No	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI	= 0.0014; ump; ES SAMP SIGNATURE DDE: PE NG No (1) SAMPLE PR VE T	1/4" = 0.0026; SP = Electric Si LING DAT E(S): Give (replaced)	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE o	006; 1/2 ristaltic Pur 500 000 r EQUIPME D ID/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK:	5/8" = 0.016 Other (Specify) NG AT: /570 SIZE: μm Y
PURGIN SAMPLE loe Terry PUMP O DEPTH I FIELD DI SAMPLE D CODE	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINER # CONTAINERS	FFILIATION: Q.T. DN: PUN R SPECIFICA MATERIAL	Ft.): 1/8" = 0 B = Bailer; MP No ATION	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI	= 0.0014; ump; ES SAMP SIGNATURE DDE: PE NG No (1) SAMPLE PR VE T ADDE	1/4" = 0.0026; SP = Electric Si LING DAT (S): Gue (replaced) ESERVATION OTAL VOL	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE o INTENDE ANALYSIS AN	006; 1/2 ristaltic Pur 500 000 r EQUIPME D ID/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: /5-7-0 SIZE: μm Y D SAMPLE PUMP FLOW RATE
PURGIN SAMPLE Joe Terry PUMP O DEPTH I FIELD DI SAMPLE ID CODE	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINER # CONTAINERS	FFILIATION: A.T. DN: PUN R SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 B = Bailer; IP No ATION VOLUME	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED	= 0.0014; ump; ES SAMP SIGNATURE DDE: PE NG No (1) SAMPLE PR VE T ADDE	1/4" = 0.0026; SP = Electric Si LING DAT (S): Gue (replaced) ESERVATION OTAL VOL D IN FIELD (ml	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Yon Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD	006; 1/2 ristaltic Pur 500 000 r EQUIPME D ID/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: /5-70 SIZE: μm Y SAMPLE PUMP FLOW RATE (mL per minute)
PURGIN SAMPLE Joe Terry PUMP O DEPTH I FIELD DI SAMPLE ID CODE	INSIDE DIA. CAF 3 EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINERS 3	FFILIATION: PACITY (Gal./ ODES: B FFILIATION: COL R SPECIFIC/ MATERIAL CODE CG	Ft.): 1/8" = 0 B = Bailer; MP No ATION VOLUME 40mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL	= 0.0014; ump; ES SAMP SIGNATURE DDE: PE NG No ((SAMPLE PR VE T ADDE! Pre	1/4" = 0.0026; SP = Electric SI LING DAT E(S): Que ((S): Que (ESERVATION OTAL VOL D IN FIELD (ml sfilled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE o UPLICATE o INTENDE ANALYSIS AN METHOD 8260	006; 1/2 ristaltic Pur JSDO De: Tr EQUIPME DD/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING QUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: /5-70 SIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLE Joe Terry PUMP O DEPTH I FIELD DI	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINERS 3 3	FFILIATION: CA.T DN: PUN R SPECIFICA MATERIAL CODE CG CG	Ft.): 1/8" = 0 B = Bailer; IP No ATION VOLUME 40mL 40mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (i) SAMPLE PR VE T ADDE: Pre	1/4" = 0.0026; SP = Electric SI LING DAT (S): Gue (C replaced) ESERVATION OTAL VOL D IN FIELD (ml sfilled by lab None	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DIPLICATE of DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011	006; 1/2 ristaltic Pur JSDO De: Tr EQUIPME DD/OR E	2" = 0.010; mp; O = C SAMPLIN ENDED A FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: /5-70 SIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
SAMPLE CONTROLOGIAN CONTROLOGIA	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINERS 3 3 1 1 1	FFILIATION: TATION: TATION: TATION: PUN R SPECIFICA MATERIAL CODE CG CG PE	Ft.): 1/8" = 0 B = Bailer; MP No ATION VOLUME 40mL 40mL 500mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃	= 0.0014; ump; ES SAMPI SIGNATURE DDE: PE NG No (i) SAMPLE PR VE T ADDE: Pre	1/4" = 0.0026; SP = Electric Si LING DA (S): Gue ((S): Gue (ESERVATION OTAL VOL D IN FIELD (ml efilled by lab None	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE o NTENDE ANALYSIS AN METHOD 8260 8011 Metals	006; 1/2 ristaltic Pur	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: /570 SIZE:μm Y D SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 2.80
SAMPLE Joe Terry PUMP O DEPTH I FIELD DI SAMPLE ID CODE	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINERS 3 3 1 1 1	FFILIATION: PACITY (Gal./ ODES: B FFILIATION: PILIATION: PUN R SPECIFIC/ MATERIAL CODE CG CG CG PE PE	Ft.): 1/8" = 0 B = Bailer; AP No ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; ump; ES SAMP SIGNATURE DDE: PE NG No ((SAMPLE PR VE T ADDE Pre Pre	1/4" = 0.0026; SP = Electric Si LING DAT (S): Que (C) (S): Que (C)	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃	006; 1/2 ristaltic Pur 5 / 5 00 000 000 000 000 000 000 000 000 00	2" = 0.010; mp; O = C SAMPLIN ENDED A FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: /5-70 SIZE:µm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 280 289
TUBING PURGIN SAMPLE Joe Terry PUMP O DEPTH I FIELD DI SAMPLE ID CODE	INSIDE DIA. CAP G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINERS 3 3 1 1 1 5: CV CC Cut 5 C	FFILIATION: TALE FFILIATION: TALE FFILIATION: PUN FR SPECIFICA MATERIAL CODE CG CG PE PE PE AG	Ft.): 1/8" = 0 B = Bailer; AP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; ump; ES SAMP SIGNATURE DDE: PE NG No (() SAMPLE PR VE T ADDE Pre Pre Pre	1/4" = 0.0026; SP = Electric Si LING DAT (S): Gue (C) (S): Gue (C) ESERVATION OTAL VOL D IN FIELD (ml efilled by lab None efilled by lab filled by lab filled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE o DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N	006; 1/2 ristaltic Pur 5 / 5 00 000 000 000 000 000 000 000 000 00	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: /570 SIZE:µm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 2.80 2.80 2.80 2.80
TUBING PURGIN SAMPLE Joe Terry PUMP O DEPTH I FIELD DI SAIPLE ID CODE	INSIDE DIA. CAF G EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINERS 3 1 1 1 5: 0 V C C C C C C C C C C C C C C C C C C	FFILIATION: TALE FFILIATION: TALE FFILIATION: PUN FR SPECIFICA MATERIAL CODE CG CG PE PE PE AG	Ft.): 1/8" = 0 B = Bailer; ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 250mL	0.0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; ump; ES SAMP SIGNATURE DDE: PE NG No (() SAMPLE PR VE T ADDE Pre Pre Pre	1/4" = 0.0026; SP = Electric Si LING DAT (S): Gue (replaced) ESERVATION OTAL VOL D IN FIELD (ml offilled by lab None offilled by lab None offilled by lab None	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of NTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N Total Pher	006; 1/2 ristaltic Pur 2 / S D o 00: 00: 00: 00: 00: 00: 00: 00: 00: 00	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: /570 SIZE:µm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 2.80 2.80 2.80 2.80

-	MW-10				PURG	ING DAT	A				
	R (inches): 2.0	TUBIN	ETER (inches)	:0.25	VELL SCREEN I DEPTH: 30 fee	et to 419 fee	STATIC D	ER (feet):) 8	U OR	RGE PUMP T BAILER: p	YPE peristaltic
(only fill ou	t if applicable)		= (EPTH – STA feet – OLUME + (TUB		feet) X	WELL CAPACI	allons/foot	=	gallo
	t if applicable)	UNDE. TEQ	UPWENT VO		gallons + (0.			JBING LENGTH)		gallons =	10.7 galle
	JMP OR TUBIN WELL (feet):	¹⁶ 43		MP OR TUB	ING	PURGING		PURGING ENDED AT:	1440	TOTAL VO PURGED (LUME
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	E DEPTH TO WATER (feet)	PH (standard	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLO	OR C
1430	1.2	1.2	.08		4.14	Z5.39	878	8.07	0.80	clea	r 5
1435	0.4	1-6	.08			25.42	878	3.35	0.40	clea	
1440	0.4	2	.08	18.2	1 4.10	25.38	869	1.17	0.33	Clea	
											_
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMP	EQUIPMENT O BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO	AFFILIATION: Jon Lu 43 ON: PUN ER SPECIFIC.	/Ft.): 1/8" = (B = Bailer; /ke/pws.Pa	0.0006; 3/4 BP = Bladde SAMPLER TUBING MATERIAL	16" = 0.0014; er Pump; ES SAMPI (S) SIGNATURE . CODE: PE JBING No (r SAMPLE PR	SP = Electric S LING DA (S): Que (replaced) ESERVATION	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE c INTENDE	006; 1/2' eristaltic Pum F: 1445 pe: 0 por EQUIPMEI ED S	SAMPLIN ENDED A FILTER S NT BLANK: AMPLING	5/8" = 0.01 ther (Specif NG AT: /Spic SIZE: Y N SAMPLE
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS	AFFILIATION: Jon La AFFILIATION: Jon La AG ON: PUM ER SPECIFIC MATERIAL CODE	/Ft.): 1/8" = (B = Bailer; //FWSFA MP No ATION VOLUME	D.0006; 3/4 BP = Bladde SAMPLER TUBING MATERIAL TI PRESERV USEL	16" = 0.0014; er Pump; Es SAMPI (S) SIGNATURE . CODE: PE JBING No (r SAMPLE PR ATIVE T ADDEL ADDEL	1/4" = 0.0026; SP = Electric Si LING DA (S): Source (S): Source replaced) ESERVATION OTAL VOL D IN FIELD (ml	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DIPLICATE of OUPLICATE of ANALYSIS AN METHOD	006; 1/2' eristaltic Pum F: 1445 pe: 0 or EQUIPMENT ED S ND/OR EC	Y = 0.010; p; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE	5/8" = 0.01 Ther (Specified Specified Specifi
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	AFFILIATION: Jon Lu AFFILIATION: Jon Lu LG MATERIAL CODE CG	/Ft.): 1/8" = 0 B = Bailer; /Ke/PuSP MP No ATION VOLUME 40mL	0.0006; 3/4 BP = Bladde SAMPLER TUBING MATERIAL TU PRESERV USEL HCL	I6" = 0.0014; ar Pump; Es SAMPI (S) SIGNATURE CODE: PE JBING No (r) SAMPLE PR ATIVE T O ADDEI Pre	1/4" = 0.0026; SP = Electric S LING DA (S): Que (S): Que (S): Control (S): Contr	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260	006; 1/2' eristaltic Pum F: 1445 pe: 0 or EQUIPMENT ED S ND/OR EC	* = 0.010; p; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP	Her (Specif AT: /SpC SIZE: SAMPLE FLOW F (mL per n <10
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3	AFFILIATION: Son La 43 ON: PUM ER SPECIFIC. MATERIAL CODE CG CG	/Ft.): 1/8" = 0 B = Bailer; /Ke / Pus Pa MP No ATION VOLUME 40mL 40mL	D.0006; 3/4 BP = Bladde SAMPLER TUBING MATERIAL TU PRESERV USEL HCL None	16" = 0.0014; er Pump; Es SAMPI (S) SIGNATURE . CODE: PE JBING No (r SAMPLE PR ATIVE T . Pre	1/4" = 0.0026; SP = Electric S LING DA (S): Que ((S): Que (replaced) ESERVATION OTAL VOL D IN FIELD (ml filled by lab None	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOD 8260 8011	006; 1/2' eristaltic Pum F: 1/4/5 pe: 0 or EQUIPMEI ED S ND/OR EC	r = 0.010; p; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: CODE RFPP RFPP	5/8" = 0.01 Ther (Specified of the specified of the spec
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1	AFFILIATION: Jon 43 ON: PUM ER SPECIFIC MATERIAL CODE CG CG PE	/Ft.): 1/8" = 0 B = Bailer; //Ft.): 1/8" = 0 B = Bailer; //Ft.): 1/8" = 0 B = 0 MP No ATION VOLUME 40mL 40mL 500mL	D.0006; 3/4 BP = Bladde SAMPLER TUBING MATERIAL TI PRESERV USEL HCL None HNO	16" = 0.0014; er Pump; Es SAMPI (S) SIGNATURE (S) SIGNATURE . CODE: PE JBING No (r SAMPLE PR ATIVE T . ODE: PE JBING No (r SAMPLE PR ATIVE T	1/4" = 0.0026; SP = Electric Si LING DAT (S): Que (C) replaced) ESERVATION OTAL VOL D IN FIELD (mil filled by lab None filled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals	006; 1/2' eristaltic Pum F: 1/4/5 pe: 0 or EQUIPMEI ED S ND/OR EC	Y = 0.010; p; O = O SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP RFPP APP	5/8" = 0.01 Ther (Specif AG AT: /SPC DIZE: Y N SAMPLE FLOW F (mL per m <10 <10 3.00
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-J0ß	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 3 1 1	AFFILIATION: Jon: PUN ER SPECIFIC: MATERIAL CODE CG CG PE PE PE	/Ft.): 1/8" = 0 3 = Bailer; /Ke/PuSP MP No ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/4 BP = Bladde SAMPLER TUBING MATERIAL TU PRESERV USET HCL None HNO H2SC	16" = 0.0014; er Pump; ES SAMPI (S) SIGNATURE . CODE: PE JBING No (r SAMPLE PR ATIVE T Pre Pre Pre Pre Pre	1/4" = 0.0026; SP = Electric S LING DA (S): (S	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃	006; 1/2' eristaltic Pum F: 1/14/5 pe: 0 po: 0 po: 0 po: 0 po: 0 po: 0 po: 0	* = 0.010; p; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.01 Ther (Specif NG AT: /SPC SIZE: Y N SAMPLE FLOW F (mL per m <10 <10 300
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 3 1	AFFILIATION: Son La AFFILIATION: Son La 43 ON: PUM ER SPECIFIC. MATERIAL CODE CG CG PE PE PE	/Ft.): 1/8" = 0 3 = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	D.0006; 3/4 BP = Bladde SAMPLER TUBING MATERIAL TU PRESERV USEL HCL None HNO H2SC	16" = 0.0014; er Pump; Es SAMPI (S) SIGNATURE . CODE: PE JBING No (r SAMPLE PR ATIVE T . ODE: PE JBING No (r SAMPLE PR ATIVE T . OP ADDEI	1/4" = 0.0026; SP = Electric Si LING DAT (S): Que (C) (S): Que (C)	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals	006; 1/2' eristaltic Pum F: 1/4/5 pe: 0 or EQUIPMEI ED S ND/OR EC D 0 NO3 0	Y = 0.010; p; O = O SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP RFPP APP	5/8" = 0.011 Ther (Specif NG AT: /SPC SAMPLE FLOW F (mL per n <10 <10 300 300 300
TUBING IN PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-J0B MW-J0B REMARKS	ISIDE DÍA. CAI EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 2 2	PACITY (Gal. CODES: E AFFILIATION: Son La 43 ON: PUM ER SPECIFIC MATERIAL CODE CG CG PE PE PE AG	 (Ft.): 1/8" = 0 B = Bailer; B = Bailer;	D.0006; 3/4 BP = Bladde SAMPLER TUBING MATERIAL TI PRESERV USEL HCL None HNO H ₂ SC	16" = 0.0014; er Pump; Es SAMPI (S) SIGNATURE (S) SIGNATURE CODE: PE JBING No (r SAMPLE PR ATIVE T O ADDET 'a Pre O Pre O Pre O Pre O Pre O Pre O Pre	1/4" = 0.0026; SP = Electric Si LING DAT (S): Control (S): Control	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratic	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of NNTENDE ANALYSIS AN METHOI 8260 8011 Metals NH3 TDS, CI, N Total Phen	006; 1/2' eristaltic Pum F: 1/4/5 pe: 0 or EQUIPMEI ED S ND/OR EC D 0 NO3 0	' = 0.010; p; O = O samplin ENDED # FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP APP APP APP APP APP	5/8" = 0.016 other (Specify NG AT: /SDO

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

	Mw-11)	Cs Facility ID	200 (1)	SAMPLE			Shini Way, St.	Cloud, Osceola	DATE:	1 L May 2014	
	/*/00 */1/	/+		1.07.020	/011	N-11A GING DAT	•		Drife.		
WELL		TUBIN	G	WE	LL SCREEN		STATIC D	EPTH	P	URGE PUMP	TYPE
	R (inches): 2.0		TER (inches):0	.25 DEF	PTH: 12.510	et to 22.5 Te	t TO WATE	R (feet): 15.	65 0		peristaltic
	LUME PURGE: it if applicable)	1 WELL VO	LUME = (TOT	AL WELL DEF	FTH - STA	TIC DEPTH TO			ITY allons/foot	= 1.5	2 gallons
	NT VOLUME PL it if applicable)	JRGE: 1 EQU	JIPMENT VOL	= PUMP VOL		BING CAPACIT	Y X TU	BING LENGTH	+ FLOW (CELL VOLUME	guiono
			_	= 0.0 g	gallons + (0	.0026 gallon	s/foot X	feet)	+ 0.12	2 gallons =	gallons
	UMP OR TUBING WELL (feet):	G 19		IP OR TUBING WELL (feet):	3 20	PURGING	AT: 1215	PURGING ENDED AT:	1220	TOTAL VO	(gallons): 3,75
		CUMUL.		DEPTH	pH		COND.	DISSOLVED	1.1.1		
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	(standard units)	C ^O C)	(µS/cm)	OXYGEN (mg/L)	TURBID (NTU:		
1320	3.75	3.25	0.05	16.55	41.84	26.05	427	0.62	3.6	o cleo	+ 28.0
1325	0.25	3.5	0.05	16.55	41.86	26.10	428	0.61	4).1	- cle	
1330	0.25	3.75	0.08	16.55	4.88		428	0.60	41.	LI LIE	~ 24.6
			-	-						-	
	1										
							01 - 0.07	41 - 0.05			101 - 5 00
WELL CA	PACITY (Gallons	s Per Foot): PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0.0	1" = 0.04; 0006; 3/16"		6; 2 " = 0.16; 1/4 " = 0.0026			5" = 1.02; .006; 1/	6" = 1.47; (2" = 0.010;	12 " = 5.88 5/8 " = 0.016
TUBING I	PACITY (Gallon: NSIDE DIA. CAP EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0.0	1" = 0.04; 0006; 3/16" 3P = Bladder F	' = 0.0014; Pump; E	1/4" = 0.0026 SP = Electric S	5/16" = 0.0 ubmersible Pun	004; 3/8" = 0		2" = 0.010;	
TUBING II PURGING	NSIDE DIA. CAF	PACITY (Gal./ ODES: E	Ft.): 1/8" = 0.0	0006; 3/16"	' = 0.0014; Pump; E	1/4" = 0.0026	5/16" = 0.0 ubmersible Pun	004; 3/8" = 0 np; PP = Pe	.006; 1	12" = 0.010; mp; O = 0	5/8" = 0.016 Other (Specify)
TUBING IN PURGING	BY (PRINT) / A	PACITY (Gal./ ODES: E	Ft.): 1/8" = 0.0	0006; 3/16"	e = 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 ubmersible Pun	004; 3/8" = 0 np; PP = Pe SAMPLING	.006; 1/ eristaltic Pu	2" = 0.010; mp; O = 0 SAMPLI	5/8" = 0.016 Dther (Specify)
TUBING II PURGING SAMPLED Joe Terry / PUMP OR	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING	PACITY (Gal./ CODES: E	Ft.): 1/8" = 0.(30006; 3/16" BP = Bladder F SAMPLER(S) TUBING	SIGNATUR	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 ubmersible Pun TA FIELD-	3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y	.006; 1/ eristaltic Pu	2" = 0.010; mp; O = 0 SAMPLI	5/8" = 0.016 Other (Specify) NG AT: / 34/7
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A 'PWSFL TUBING WELL (feet):	PACITY (Gal./ PODES: E FFILIATION:	Ft.): 1/8" = 0.(b = Bailer; 1	30006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C	2 = 0.0014; 2 ump; E SAMP SIGNATUR ODE: PE	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S): Put}}$	5/16" = 0.0 ubmersible Pun TA FIELD-	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y in Equipment Ty	.006; 1/ eristaltic Pu 1: 1337 pe.	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: / 34/7 SIZE:μm
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC	FFILIATION:	Ft.): 1/8" = 0.() = Bailer; 1))) 1P No	30006; 3/16" BP = Bladder F SAMPLER(S) TUBING	2 = 0.0014; 2 = 0.0014; E = 0	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced)	5/16" = 0.0 ubmersible Pun TA FIELD-	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y in Equipment Ty DUPLICATE of	006; 1/ eristaltic Pu f: 1337 pe. or EQUIPM	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK:	5/8" = 0.016 Dther (Specify) NG AT: / 34/7 SIZE:μm ΥN
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	FFILIATION: CODES: E FFILIATION: CON: PUN CR SPECIFIC/ MATERIAL	Ft.): 1/8" = 0.() = Bailer; 1))) 1P No	3006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING NO SAMPLE PF IVE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y in Equipment Ty	1.006; 1/ eristaltic Pu F: 1332 pe Dr EQUIPM	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: / 34/7 SIZE:μm
SAMPLED SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	FFILIATION: CODES: E FFILIATION: CON: PUN CR SPECIFIC/	Ft.): 1/8" = 0.(B = Bailer; B D III O IIII ATION IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	30006; 3/16" 3P = Bladder P SAMPLER(S) TUBING MATERIAL C TUB	= 0.0014; Pump; E SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE (INTENDE ANALYSIS AT	1.006; 1/ eristaltic Pu F: 1332 pe Dr EQUIPM	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: / 34/7 SIZE:μm Y N SAMPLE PUMP FLOW RATE
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: CODES: E FFILIATION: CON: PUN CODE CODE	Ft.): 1/8" = 0.(B = Bailer; I B = Bailer; I D I D I ATION VOLUME	3006; 3/16" 3P = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	= 0.0014; Pump; E SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	3/8" = 0 np; PP = Pe SAMPLING INITIATED A1 FILTERED: Y Equipment Tyj DUPLICATE c ANALYSIS A1 METHO	1.006; 1/ eristaltic Pu f: 1332 pe Dr EQUIPM	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	5/8" = 0.016 Dther (Specify) NG AT: / 3 4 7 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
SAMPLED SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A 'PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3	FFILIATION: CODES: E FFILIATION: CODE CODE CG	Ft.): 1/8" = 0.0 B = Bailer; II D III O IIII O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	30006; 3/16" SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	2 = 0.0014; 2 ump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y INTERDE DUPLICATE C INTENDE ANALYSIS AI METHO 8260	1.006; 1/ eristaltic Pu F: 1337 pe. Dr EQUIPM DD/OR D	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: / 3 4/ 7 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3	ACITY (Gal./ CODES: E FFILIATION: 2 DN: PUN R SPECIFIC/ MATERIAL CODE CG CG	Ft.): 1/8" = 0.0 B = Bailer; 1 B = Bailer; 1 D 1 MP No ATION VOLUME 40mL 40mL	D006; 3/16" SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	= 0.0014; Pump; E SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab None	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE of INTENDE ANALYSIS AT METHO 8260 8011	1.006; 1/ eristaltic Pu F: 1337 pe. Dr EQUIPM DD/OR D	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: / 3 4/ 7 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
SAMPLED Joe Terry / PURGING Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1	FFILIATION: FFILIATION: PUN: R SPECIFIC/ MATERIAL CODE CG CG PE	Ft.): 1/8" = 0.0 B = Bailer; I B = Bailer; I D I MP No ATION VOLUME 40mL 40mL 500mL 500mL	D006; 3/16" SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	= 0.0014; Pump; E SIGNATURI ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AI METHO 8260 8011 Metals	006; 1/ eristaltic Pu f: 1337 pe. Dr EQUIPM DD ND/OR D	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: / 34/7 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE AW - 11/4	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A 'PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1	ACITY (Gal./ CODES: E FFILIATION: PUN: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE	Ft.): 1/8" = 0.0 B = Bailer; If B = Bailer; If ATION ATION VOLUME 40mL 40mL 500mL 125mL 125mL	30006; 3/16" SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que (replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Tyj DUPLICATE of ANALYSIS AT METHO 8260 8011 Metals NH ₃	1330 Pristaltic Puristaltic P	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: / 34/7 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE WW - 11/4	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: FFILIATION: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE PE AG	Ft.): 1/8" = 0.0 B = Bailer; I B = Bailer; I D I IP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	D006; 3/16" SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab efilled by lab efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	3/8" = 0 np; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AT METHO 8260 8011 Metals NH3 TDS, CI, I	1330 Pristaltic Puristaltic P	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: / 34/7 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200
TUBING II PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE MW - 11/4 CODE MW - 11/4 CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 2 1 2 2 2 2 2	FFILIATION: FFILIATION: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE PE AG	Ft.): 1/8" = 0.0 B = Bailer; I IP No No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 7 & 0 F	0006; 3/16" SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO₄ None H ₂ SO₄	Pump; E SAMP SIGNATUR ODE: PE ING NO SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT INITIATED AT INITIATED AT FILTERED: Y DUPLICATE of ANALYSIS AT METHO 8260 8011 Metals NH3 TDS, CI, I Total Phe	1330 Pristaltic Puristaltic P	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP APP	5/8" = 0.016 Dther (Specify) NG AT: / <u>3</u> 4 7 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 20 ⁰ 200 200 200 200
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE WW - 1(A WW - 1(A CODE WW - 1(A CODE WW - 1(A CODE CODE CODE CODE CODE CODE CODE CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 2 1 2 2 2 2 2	ACITY (Gal./ CODES: E FFILIATION: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE PE AG AG = Amber	Ft.): 1/8" = 0.0 B = Bailer; I IP No No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 7 & 0 F	2006; 3/16" SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	Pump; E SAMP SIGNATUR ODE: PE ING NO SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Que ((replaced) RESERVATION TOTAL VOL D IN FIELD (m efilled by lab None efilled by lab None efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pun TA FIELD- Filtratio	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED AT INITIATED AT INITIATED AT FILTERED: Y DUPLICATE of ANALYSIS AT METHO 8260 8011 Metals NH3 TDS, CI, I Total Phe	.006; 1/ eristaltic Pu eristaltic Pu f: 1/3/37 pe: P pr EQUIPM ED ND/OR D P S P NO3 P nols P	2" = 0.010; mp; 0 = 0 SAMPLII ENDED FILTER 3 ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: / 34/7 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200

	MW-1	ACs Facility IE		SAMPLE	ID: MM		Onini Way, S	t. Cloud, Osceola	DATE:	ILI May	1100	
	1	D				GING DAT	•		DATE.	14 Way	2014	
WELL		TUBIN	IG	WE	LL SCREEN		STATIC	DEPTH		PURGE PL		25
	R (inches): 2.0	DIAM	ETER (inches)	:0.25 DEI	PTH: 37.5 fe	et to 47.5 fee	t TO WATE	ER (feet): 15.	85 0	OR BAILER		ristaltic
NELL VOI	t if applicable)	1 WELL VO	DLUME = (TC	TAL WELL DEP	PTH - STA	TIC DEPTH TO	WATER) X	WELL CAPACI	ITY			
		Sec. 22.6	= (feet -		feet) X	0.16 g	allons/foo	t =		gallons
Only fill out	t if applicable)	URGE: 1 EQ	UIPMENT VO	L. = PUMP VOL	UME + (TUE	BING CAPACITY	X TI	UBING LENGTH)	+ FLOW	CELL VOL	LUME	
	in approacie)	-		= 0.0 g	allons + (0	.0026 gallons	s/foot X	50 feet)	+ 0.1	2 gallon	ns = Ø	3 gallons
NITIAL PU	JMP OR TUBIN WELL (feet):	^{IG} 43		MP OR TUBIN		PURGING	- 171	PURGING			AL VOLU	
	1000	CUMUL.	DEPTHI	DEPTH	43	INITIATED	AT: 1215	ENDED AT: DISSOLVED	1300	PURC	GED (ga	110ns): 3. 6
TIME	VOLUME	VOLUME		ТО	pH (standard	TEMP.	COND. (µS/cm)	OXYGEN	TURBI		COLOR	ORP
	(gallons)	PURGED (gallons)	RATE (gpm)	WATER (feet)	units)	(°C)	(action)	(mg/L)	(NTU	ls) (0	describe) (mV)
250	2-8	2.0	0.08	15,98	4.63	25.80	119	1.06	2-(2 (cken	58.6
1255	0.4	3.2	0.08		4.62	25.80	118	1.05	2.1		leur	
1300	0.4	3.6	0.08	1-10	4.62	25.80	117	1.05	2.		leur	
	U.						. /	10 5	A	. 0	icu	5110
												-
										-		
				-								
			-	-							_	
			-	-						-		
VELL CAP	ACITY (Gallon	s Per Foot):	0.75" = 0.02:	1" = 0.04	1.25" = 0.06	2 " = 0.16:	3" = 0.37	4 " = 0.65;	5" = 1.02:	6" = 1	47: 4	2" - 5.98
UBING IN		PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0	1" = 0.04; 0.0006; 3/16"	1.25 " = 0.06 = 0.0014;	6; 2 " = 0.16; 1/4 " = 0.0026;	3 " = 0.37; 5/16" = 0.		5" = 1.02; 006; 1	6" = 1.4		2 " = 5.88 8 " = 0.016
UBING IN	PACITY (Gallon ISIDE DIA. CAR EQUIPMENT C	PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0 3 = Bailer;	1" = 0.04; 0.0006; 3/16" BP = Bladder F	= 0.0014; Pump; E	1/4" = 0.0026; SP = Electric Su	5/16" = 0.1 bmersible Pur	004; 3/8'' = 0.	the second s	/2" = 0.01	0; 5/	
UBING IN URGING	ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal. CODES: E	/Ft.): 1/8" = 0	0.0006; 3/16"	= 0.0014; Pump; E	1/4" = 0.0026;	5/16" = 0.1 bmersible Pur	004; 3/8" = 0. mp; PP = Pe	006; 1	/2" = 0.01	0; 5/	8" = 0.016
UBING IN URGING	ISIDE DIA. CAI EQUIPMENT C BY (PRINT) / A	PACITY (Gal. CODES: E	/Ft.): 1/8" = 0	0.0006; 3/16"	= 0.0014; Pump; E SAMP	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.1 bmersible Pur	004; 3/8" = 0. mp; PP = Pe	.006; 1 eristaltic Pu	/2" = 0.01	0; 5/ 0 = Othe	8" = 0.016 er (Specify)
CUBING IN CURGING CAMPLED ON Terry /	ISIDE DIA. CAN EQUIPMENT C BY (PRINT) / A PWSFL	PACITY (Gal., CODES: E	/Ft.): 1/8" = 0	0.0006; 3/16" BP = Bladder F SAMPLER(S)	= 0.0014; Pump; E SAMP	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.1 bmersible Pur	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT	006; 1 eristaltic Pu : 130	() SAM ENI	0; 5/ 0 = Othe MPLING DED AT:	8" = 0.016 er (Specify) /3/3
CUBING IN CURGING CAMPLED OC Terry /	ISIDE DIA. CAN EQUIPMENT C BY (PRINT) / A PWSFL	PACITY (Gal. CODES: E	/Ft.): 1/8" = 0	0.0006; 3/16" BP = Bladder F	= 0.0014; Pump; E SAMP SIGNATURE	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.1 bmersible Pur A	004; 3/8" = 0. mp; PP = Pe	006; 1 eristaltic Pu : 130	() SAM ENI	0; 5/ 0 = Othe	8" = 0.016 er (Specify) /3/3
CUBING IN PURGING I CAMPLED oe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAN EQUIPMENT C BY (PRINT) / A PWSFL TUBING	PACITY (Gal. CODES: E AFFILIATION: 43	/Ft.): 1/8" = 0	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	= 0.0014; Pump; E SAMP SIGNATURE	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.1 bmersible Pur A	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y	130 130 130 006; 1	(2" = 0.01 ump; () SAM ENI FILT	0; 5/ 0 = Othe MPLING DED AT: TER SIZI	8" = 0.016 er (Specify) /3/3
CUBING IN PURGING CAMPLED oe Terry / PUMP OR DEPTH IN TIELD DEC	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet):	PACITY (Gal. CODES: E SFFILIATION: 43 DN: PUM	/Ft.): 1/8" = 0 3 = Bailer; //P No	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI	= 0.0014; Pump; E SIGNATURE DDE: PE NG No (1/4" = 0.0026; SP = Electric Su LING DAT $E(S): Gai T$	5/16" = 0.1 bmersible Pur A	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Type DUPLICATE o INTENDE	006; 1 ristaltic Pu 130 De: D	12" = 0.011 Jmp; 0 SAM ENI FILT MENT BLAI SAMPLIN	0; 5/ 0 = Othe MPLING DED AT: TER SIZI NK: Y NG \$	8" = 0.016 er (Specify) /3/3 Ε:μm
AMPLED OCE Terry / OUMP OR DEPTH IN IELD DEC SAMPLE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	PACITY (Gal. CODES: E FFILIATION: 43 DN: PUM ER SPECIFIC, MATERIAL	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT	= 0.0014; pump; E SIGNATURE DDE: PE NG No (SAMPLE PR VE T	$\frac{1}{4} = 0.0026;$ $SP = Electric Su$ $LING DAT$ $E(S): Journal (S)$ $replaced)$ $RESERVATION$ $TOTAL VOL$	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DEQUIPMENT Typ DUPLICATE of INTENDE ANALYSIS AN	006; 1 rristaltic Pu ristaltic Pu ristalt	12" = 0.011 JMP; JAPPER SAM ENT FILT MENT BLA SAMPLIN EQUIPME	0; 5/ 0 = Other MPLING DED AT: TER SIZI NK: N NG S ENT	8" = 0.016 er (Specify) /3/3 Ε:μm cN SAMPLE PUMP FLOW RATE
AMPLED OCEPTH IN IELD DEC SAMPLE SAMPLE CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	PACITY (Gal. CODES: E AFFILIATION: 43 ON: PUM ER SPECIFIC/ MATERIAL CODE	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED	= 0.0014; Pump; E SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE	$\frac{1}{4} = 0.0026;$ $SP = Electric Su$ $LING DAT$ $E(S): \qquad \qquad$	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DIPLICATE of UPLICATE of ANALYSIS AN METHOD	006; 1 rristaltic Pu ristaltic Pu ristalt	2" = 0.011 JMP; JANE JANE SAMPLIN EQUIPME CODE	0; 5/ 0 = Othe MPLING DED AT: TER SIZI NK: 1 NK: 1 NG \$ ENT (8" = 0.016 er (Specify) /3/3 E:μm C N SAMPLE PUMP FLOW RATE (mL per minute)
AMPLED COMPLED COMPLED COMPOR COMPOR COMPLE COMPLE COMPLE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAINERS CONTAINERS 3	PACITY (Gal. CODES: E SFFILIATION: 43 DN: PUN ER SPECIFIC, MATERIAL CODE CG	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME 40mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C(TUBI PRESERVAT USED HCL	= 0.0014; Pump; E SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE	1/4" = 0.0026; SP = Electric Su LING DAT E(S): Quit (S): Quit	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of NALYSIS AN METHOD 8260	006; 1 rristaltic Pu ristaltic Pu ristalt	12" = 0.011 JMP; JAN SAM ENIT FILT MENT BLAI SAMPLIN EQUIPME CODE RFPP	0; 5// 0 = Othe MPLING DED AT: TER SIZI NK: 1) NG ENT :	8" = 0.016 er (Specify) /3/3 E:μm (
AMPLED COMPLED COMPLED COMPOR COMPOR COMPLE COMPLE COMPLE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3	PACITY (Gal. CODES: E AFFILIATION: UN: PUM ER SPECIFIC, MATERIAL CODE CG CG	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME 40mL 40mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None	= 0.0014; Pump; E SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE Pre	1/4" = 0.0026; SP = Electric Su LING DAT E(S): Jac replaced) RESERVATION TOTAL VOL D IN FIELD (mL efilled by lab None	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Type DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011	130 130 130 130 130 130 130 130	2" = 0.011 JMP; JAN SAM ENI FILT MENT BLA SAMPLIN EQUIPME CODE RFPP RFPP	0; 5// 0 = Other MPLING DED AT: TER SIZE NK:) NG S ENT () 0	8" = 0.016 er (Specify) /3/3 E:μm c SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
AMPLED COMPLED COMPLED COMPOR COMPOR COMPLE COMPLE COMPLE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1	PACITY (Gal. CODES: E AFFILIATION: 4 3 DN: PUM ER SPECIFIC, MATERIAL CODE CG CG PE	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃	= 0.0014; Pump; E SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE Pre	1/4" = 0.0026; SP = Electric Su LING DAT E(S): Journal replaced) ESERVATION TOTAL VOL D IN FIELD (mL efilled by lab None efilled by lab	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals	130 130 130 130 130 130 130 130	1/2" = 0.011 JMP; JANE JA	0; 5// 0 = Other MPLING DED AT: TER SIZI NK: 1) NG ENT () 0 0 0 0 0 0 0 0 0 0 0 0 0	8" = 0.016 er (Specify) /3/3 E:μm / SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
CUBING IN PURGING COMPLED COE Terry / PUMP OR CEPTH IN TIELD DEC SAMPLE D CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 3 1 1 1	PACITY (Gal. CODES: E SFFILIATION: US PUN ER SPECIFIC, MATERIAL CODE CG CG PE PE PE	/Ft.): 1/8" = 0 3 = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C(TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; Pump; E SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE Pre	1/4" = 0.0026; SP = Electric Su LING DAT E(S): Quit replaced) RESERVATION OTAL VOL D IN FIELD (mL efilled by lab None efilled by lab	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃	006; 1 ristaltic Pu ristaltic Pu ristalti	12" = 0.011 JMP; JANN SAM ENIT FILT MENT BLAI SAMPLIN EQUIPME CODE RFPP APP APP	0; 5// 0 = Other MPLING DED AT: TER SIZI NK: 10 NG \$ ENT \$ 0 0 0	8" = 0.016 er (Specify) /3 /3 E:μm (Ν) SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300
AMPLED DOE Terry / UMP OR EPTH IN IELD DEC SAMPLE CODE W-11B	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1	PACITY (Gal. CODES: E AFFILIATION: UT CODE CO CG CG CG PE PE PE PE	/Ft.): 1/8" = 0 3 = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; Pump; E SIGNATURE SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE Pre Pre	1/4" = 0.0026; SP = Electric Su LING DAT (S): Jack (S): Jack	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of NNTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N	130 ristaltic Pu ristaltic P	12" = 0.011 Jmp; J SAM ENI FILT MENT BLAI SAMPLIN EQUIPME CODE RFPP RFPP APP APP APP	0; 5// 0 = Other MPLING DED AT: TER SIZE NK:) NG S ENT () 0 0 0 0 0 0 0 0 0 0 0 0 0	8" = 0.016 er (Specify) / 3 / 3 E:µm / N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <100 300 300
AMPLED Dee Terry / UMP OR EPTH IN IELD DEC SAMPLE CODE W-11B	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1	PACITY (Gal. CODES: E SFFILIATION: US PUN ER SPECIFIC, MATERIAL CODE CG CG PE PE PE	/Ft.): 1/8" = 0 3 = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C(TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	= 0.0014; Pump; E SIGNATURE SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE Pre Pre	1/4" = 0.0026; SP = Electric Su LING DAT E(S): Quit replaced) RESERVATION OTAL VOL D IN FIELD (mL efilled by lab None efilled by lab	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃	130 ristaltic Pu ristaltic P	12" = 0.011 JMP; JANN SAM ENIT FILT MENT BLAI SAMPLIN EQUIPME CODE RFPP APP APP	0; 5// 0 = Other MPLING DED AT: TER SIZE NK:) NG S ENT () 0 0 0 0 0 0 0 0 0 0 0 0 0	8" = 0.016 er (Specify) / 3 / 3 E:µm / N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <100 300 300 300
AMPLED CODE	ISIDE DIA. CAF	PACITY (Gal. CODES: E AFFILIATION: UN: PUN ER SPECIFIC, MATERIAL CODE CG CG PE PE PE PE AG	/Ft.): 1/8" = 0 3 = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; Pump; E SIGNATURE SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE Pre Pre	1/4" = 0.0026; SP = Electric Su LING DAT (S): Jack (S): Jack	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of NNTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N	130 ristaltic Pu ristaltic P	12" = 0.011 Jmp; J SAM ENI FILT MENT BLAI SAMPLIN EQUIPME CODE RFPP RFPP APP APP APP	0; 5// 0 = Other MPLING DED AT: TER SIZE NK:) NG S ENT () 0 0 0 0 0 0 0 0 0 0 0 0 0	8" = 0.016 er (Specify) / 3 / 3 E:µm / N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <100 300 300 300
AMPLED DOE Terry / DUMP OR DEPTH IN IELD DEC SAMPLE D CODE W-11B W-11B EMARKS: reather: 0	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1	PACITY (Gal. CODES: E AFFILIATION: UN: PUN ER SPECIFIC, MATERIAL CODE CG CG PE PE PE PE AG	/Ft.): 1/8" = 0 3 = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; Pump; E SIGNATURE SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE Pre Pre	1/4" = 0.0026; SP = Electric Su LING DAT (S): Jack (S): Jack	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of NNTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N	130 ristaltic Pu ristaltic P	12" = 0.011 Jmp; J SAM ENI FILT MENT BLAI SAMPLIN EQUIPME CODE RFPP RFPP APP APP APP	0; 5// 0 = Other MPLING DED AT: TER SIZE NK:) NG S ENT () 0 0 0 0 0 0 0 0 0 0 0 0 0	8" = 0.016 er (Specify) /3/3 E:μm (Ν) SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300
CUBING IN PURGING CAMPLED COE Terry / PUMP OR DEPTH IN COMP OR DEPTH IN COMP OR SAMPLE D CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 2 4 0077415 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACITY (Gal. CODES: E FFILIATION: 43 DN: PUM ER SPECIFIC COE CG CG CG PE PE PE PE AG	/Ft.): 1/8" = 0 3 = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; Pump; E SIGNATURE DDE: PE NG No (SAMPLE PR VE AT ADDE Pre Pre Pre	1/4" = 0.0026; SP = Electric Su LING DAT E(S): Journal replaced) ESERVATION OTAL VOL D IN FIELD (mL efilled by lab None efilled by lab None efilled by lab	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N Total Pher	130 Paristaltic Puriodic Puri	1/2" = 0.011 JMP; JANNN JANN JANN JANN JANN JANN JANN JAN	0; 5// 0 = Other MPLING DED AT: TER SIZI NK: 1) NG ENT 0 0 0 0 0 0 0 0 0 0 0 0 0	8" = 0.016 er (Specify) /3/3 E:μm (Ν SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <100 300 300 300
CUBING IN PURGING IN COMPLED COC Terry / PUMP OR DEPTH IN TIELD DEC SAMPLE D CODE N/V - 11B CODE N/V - 11B CODE N/V - 11B CODE N/V - 11B CODE N/V - 11B CODE CODE N/V - 11B CODE CODE CODE CODE CODE CODE CODE CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 2 4 0077415 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AG = Amber	/Ft.): 1/8" = 0 B = Bailer; //P No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 250mL 250mL	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	= 0.0014; Pump; E SIGNATURE SIGNATURE DDE: PE NG No (SAMPLE PR VE T ADDE Pre Pre	1/4" = 0.0026; SP = Electric Su LING DAT (S): Journal (S): Journal	5/16" = 0. bmersible Pur A FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals NH ₃ TDS, CI, N Total Pher	006; 1 rristaltic Pu ristaltic Pu r 130 voe: r EQUIPN ED ND/OR D NO3 nols ne; T =	1/2" = 0.011 JMP; SAM ENI FILT MENT BLAN SAMPLIN EQUIPME CODE RFPP APP APP APP APP APP APP	0; 5/ 0 = Other MPLING DED AT: TER SIZI NK: 1) NG \$ ENT (0 0 = Other 0 = Other	8" = 0.016 er (Specify) / 3 / 3 E:µm / N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <100 300 300 300

	E.D. SWMF (WA	the second se	09044)	2.000			Omni Way, St	t. Cloud, Osceola			
WELL NO	- MW-12	A		SAMPLI	EID: MW				DATE: 14	May 2014	
						GING DAT	A				
WELL	R (inches): 2.0	TUBIN	IG ETER (inches):		LL SCREEN		STATIC E			RGE PUMP T	
		1 WELL VC	DLUME = (TO	TAL WELL DE	PTH - STA	ATIC DEPTH TO	WATER) X	ER (feet): 17.	TY OR	BAILER:	peristaltic
(only fill o	ut if applicable)		= (23		7				1 00	
EQUIPME	ENT VOLUME P	URGE: 1 EQ	UIPMENT VO	L. = PUMP VO	LUME + (TU	BING CAPACITY	feet) X Y X TL	0.16 g JBING LENGTH	+ FLOW CE		gallons
(only fill o	ut if applicable)			= 0.0	gallons + (0	0026 gallon	s/foot X				
INITIAL P	UMP OR TUBIN	G	FINAL PU	MP OR TUBIN		PURGING	ALC ADDING NOT	feet) PURGING	+ 0.12	gallons = TOTAL VO	gallons
	WELL (feet):	20		WELL (feet):	20		AT: 1045	ENDED AT:	1135		gallons): L/
THAT	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pH	TEMP.	COND.	DISSOLVED OXYGEN	TURBIDIT	Y COLC	
TIME	PURGED (gallons)	PURGED	RATE	WATER	(standard units)	(⁰ C)	(µS/cm)	(mg/L)	(NTUs)	(descri	
1125	(galions) 3.2	(gallons) 3.2	(gpm) 0.09	(feet)		0107	170	007	0		
1120		3.6	0.00	17.33	4.26	26.93	178	0.87	0	cleu	
	0.4				4.21	26.96	101	0.79	0	clea	
135	0.4	4	0.08	17.33	4.29	26.92	180	0.78	D	clea	60.4
			-	-	1º				-		
			-	-					1	_	
			-							_	
			-	1							
			1								
									-		
NELL CA	PACITY (Gallons	s Per Foot)	A 751 - 0.00	_	A REAL PROPERTY.	and the second sec					
			0.75" = 0.02;	1" = 0.04;	1.25" = 0.0	6; 2 " = 0.16;				6" = 1.47;	12" = 5.88
		PACITY (Gal.	/Ft.): 1/8" = 0	.0006; 3/16'	= 0.0014;	1/4" = 0.0026;	5/16" = 0.0	004; 3/8" = 0.	006; 1/2"	= 0.010;	5/8" = 0.016
	EQUIPMENT C	PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0 3 = Bailer;	1" = 0.04; .0006; 3/16' BP = Bladder I	' = 0.0014; Pump; E	1/4" = 0.0026; SP = Electric Su	5/16" = 0.0	004; 3/8" = 0.		= 0.010;	
PURGING	EQUIPMENT C	ODES: E	/Ft.): 1/8" = 0	.0006; 3/16' BP = Bladder F	^e = 0.0014; ^{Pump;} E SAMP	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.0	004; 3/8" = 0. np; PP = Pe	006; 1/2"	= 0.010; b; O = O	5/8" = 0.016 other (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:	/Ft.): 1/8" = 0 3 = Bailer;	.0006; 3/16'	^e = 0.0014; ^{Pump;} E SAMP	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.0	004; 3/8" = 0.	006; 1/2" ristaltic Pump	= 0.010;	5/8" = 0.016 other (Specify)
SAMPLED Joe Terry	BY (PRINT) / A PWSFL	FFILIATION:	/Ft.): 1/8" = 0	.0006; 3/16' BP = Bladder f SAMPLER(S) TUBING	SIGNATUR	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.0 ubmersible Pur TA FIELD-	3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y	006; 1/2" ristaltic Pump	= 0.010; b; O = O SAMPLIN	5/8" = 0.016 ther (Specify)
SAMPLEE loe Terry PUMP OR DEPTH IN	BY (PRINT) / A / PWSFL TUBING WELL (feet):	FFILIATION:	/Ft.): 1/8" = 0 3 = Bailer; 	.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	SIGNATUR	$\frac{1}{4} = 0.0026;$ SP = Electric Su LING DAT E(S): La (5/16" = 0.0 ubmersible Pur TA FIELD-	3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ	eristaltic Pump	= 0.010; (); O = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG AT: //4/5 IZE:μm
SAMPLED Joe Terry PUMP OR DEPTH IN	BY (PRINT) / A PWSFL	FFILIATION:	/Ft.): 1/8" = 0 3 = Bailer;	.0006; 3/16' BP = Bladder f SAMPLER(S) TUBING	SIGNATUR	1/4" = 0.0026; SP = Electric Su LING DAT	5/16" = 0.0 ubmersible Pur TA FIELD-	3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y	eristaltic Pump	= 0.010; (); O = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify)
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM	D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC	FFILIATION: Son La 20 DN: PUN R SPECIFIC	/Ft.): 1/8" = 0 3 = Bailer; /ce/PUSFC //P No	.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB	2 = 0.0014; Pump; E SIGNATUR SIGNATUR ODE: PE ING No SAMPLE PF	$\frac{1}{4} = 0.0026;$ SP = Electric Su LING DAT E(S): La (5/16" = 0.0 ubmersible Pur TA FIELD-	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE c INTENDE	006; 1/2" aristaltic Pump aristaltic Pump aristaltic Pump aristaltic Pump br aristaltic Pump br br c c c br c	= 0.010; p; O = 0 SAMPLIN ENDED A FILTER S NT BLANK: AMPLING	5/8" = 0.016 ther (Specify) AG AT: //4/5 PIZE:μm Y SAMPLE PUMP
SAMPLED loe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE	BEQUIPMENT C DBY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC IPLE CONTAINE #	ACITY (Gal./ ODES: E FFILIATION: Jon: Lu R SPECIFIC/ MATERIAL	/Ft.): 1/8" = 0 3 = Bailer; /ce/PUSFC //P No	.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING NO SAMPLE PF IVE	1/4" = 0.0026; SP = Electric SL LING DAT E(S): (replaced) RESERVATION TOTAL VOL	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE c	006; 1/2" aristaltic Pump	= 0.010; p; 0 = 0 SAMPLIN ENDED A FILTER S NT BLANK:	5/8" = 0.016 ther (Specify) IG AT: //4/5 HZE:μm Υ
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE D CODE	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: Son La 20 N: PUM R SPECIFIC/ MATERIAL CODE	/Ft.): 1/8" = 0 3 = Bailer; 	.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE	1/4" = 0.0026; SP = Electric SL LING DAT E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (mL	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE c ANALYSIS AN METHOD	006; 1/2" aristaltic Pump	= 0.010; o; O = O SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE	5/8" = 0.016 ther (Specify) AG AT: //4/5 FIZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute)
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	B EQUIPMENT C D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3	FFILIATION: Son La 20 DN: PUN R SPECIFIC MATERIAL CODE CG	(Ft.): 1/8" = 0 3 = Bailer; MP NO ATION VOLUME 40mL	0006; 3/16' BP = Bladder H SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (mL efilled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI 8260	006; 1/2" aristaltic Pump	= 0.010; p; O = O SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE RFPP	5/8" = 0.016 ther (Specify) IG IZE:μm Y SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	B EQUIPMENT C D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3	FFILIATION: Son La FFILIATION: Son La 20 N: PUN R SPECIFICA CODE CG CG	(Ft.): 1/8" = 0 B = Bailer; MP No ATION VOLUME 40mL 40mL	0006; 3/16' BP = Bladder H SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	2 = 0.0014; 2 ump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION TOTAL VOL DIN FIELD (mL efilled by lab None	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT INITIATED T Yon Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOD 8260 8011	006; 1/2" aristaltic Pump III35 ND De: DD ND/OR D	= 0.010; o; O = O SAMPLIN ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP RFPP	5/8" = 0.016 ther (Specify) AG AT: //4/5 AZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1	FFILIATION: Jon La FFILIATION: Jon La 20 DN: PUM R SPECIFICA MATERIAL CODE CG CG PE	(Ft.): 1/8" = 0 3 = Bailer; MP No ATION VOLUME 40mL 40mL 500mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	2 = 0.0014; Pump; E SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (mL efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals	006; 1/2" aristaltic Pump III35 ND De: DD ND/OR D	= 0.010; o; O = O SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP	5/8" = 0.016 ther (Specify) AG AT: //4/5 AZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 30 <i>P</i>
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1	FFILIATION: Son Lon FFILIATION: Son Lon 20 N: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE	(Ft.): 1/8" = 0 3 = Bailer; MP No ATION VOLUME 40mL 500mL 125mL	0006; 3/16' BP = Bladder H SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	2 = 0.0014; Pump; E SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (mL efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of NNTENDE ANALYSIS AN METHOI 8260 8011 Metals NH3	006; 1/2" aristaltic Pump : 1/35 : N	= 0.010; o; O = O SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 ther (Specify) IG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <00 300 300
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE D CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1	FFILIATION: Son La FFILIATION: Son La 20 N: PUN R SPECIFIC/ MATERIAL CODE CG CG PE PE PE	(Ft.): 1/8" = 0 B = Bailer; A = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0006; 3/16' BP = Bladder H SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (mL efilled by lab None efilled by lab None	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; 1/2" aristaltic Pump br aristaltic Pump br br <t< td=""><td>= 0.010; o; O = O SAMPLIN ENDED A FILTER S AT BLANK: AMPLING QUIPMENT CODE RFPP APP APP APP</td><td>5/8" = 0.016 ther (Specify) NG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300</td></t<>	= 0.010; o; O = O SAMPLIN ENDED A FILTER S AT BLANK: AMPLING QUIPMENT CODE RFPP APP APP APP	5/8" = 0.016 ther (Specify) NG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300
SAMPLED SAMPLED DEPTH IN TELD DE SAMPLE D CODE	B EQUIPMENT C D BY (PRINT) / A / PWSFL TUBING I WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: Son Lon FFILIATION: Son Lon 20 N: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE	(Ft.): 1/8" = 0 3 = Bailer; MP No ATION VOLUME 40mL 500mL 125mL	0006; 3/16' BP = Bladder H SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (mL efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of NNTENDE ANALYSIS AN METHOI 8260 8011 Metals NH3	006; 1/2" aristaltic Pump br aristaltic Pump br br <t< td=""><td>= 0.010; o; O = O SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP APP</td><td>5/8" = 0.016 ther (Specify) IG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <00 300 300 300 300</td></t<>	= 0.010; o; O = O SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 ther (Specify) IG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <00 300 300 300 300
SAMPLED loe Terry PUMP OR DEPTH IN TIELD DE SAMPLE D CODE	B EQUIPMENT C D BY (PRINT) / A / PWSFL TUBING I WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: Son La FFILIATION: Son La 20 N: PUN R SPECIFIC MATERIAL CODE CG CG PE PE PE AG	(Ft.): 1/8" = 0 B = Bailer; AP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0006; 3/16' BP = Bladder H SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (mL efilled by lab None efilled by lab None	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; 1/2" aristaltic Pump br aristaltic Pump br br <t< td=""><td>= 0.010; o; O = O SAMPLIN ENDED A FILTER S AT BLANK: AMPLING QUIPMENT CODE RFPP APP APP APP</td><td>5/8" = 0.016 ther (Specify) IG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <00 300 300 300 300</td></t<>	= 0.010; o; O = O SAMPLIN ENDED A FILTER S AT BLANK: AMPLING QUIPMENT CODE RFPP APP APP APP	5/8" = 0.016 ther (Specify) IG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <00 300 300 300 300
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE WW 1,24 AW 1,24 AW 1,24 REMARKS weather: (BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 5: Summers	FFILIATION: Son La FFILIATION: Son La 20 N: PUN R SPECIFIC MATERIAL CODE CG CG PE PE PE AG	(Ft.): 1/8" = 0 B = Bailer; AP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0006; 3/16' BP = Bladder H SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	2 = 0.0014; Pump; E SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (mL efilled by lab None efilled by lab None	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; 1/2" aristaltic Pump br aristaltic Pump br br <t< td=""><td>= 0.010; o; O = O SAMPLIN ENDED A FILTER S AT BLANK: AMPLING QUIPMENT CODE RFPP APP APP APP</td><td>5/8" = 0.016 ther (Specify) NG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300</td></t<>	= 0.010; o; O = O SAMPLIN ENDED A FILTER S AT BLANK: AMPLING QUIPMENT CODE RFPP APP APP APP	5/8" = 0.016 ther (Specify) NG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 300 300 300
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE YW 1,24 AW 1,24 AW 1,24 REMARKS weather: /	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 5: Summers	FFILIATION: Son La FFILIATION: Son La 20 N: PUN R SPECIFIC MATERIAL CODE CG CG PE PE PE AG	 (Ft.): 1/8" = 0 Bailer; Bailer; Are fruste MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL → brectee 	0006; 3/16' BP = Bladder H SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	Pump; E SAMP SIGNATUR ODE: PE ING NO SAMPLE PF IVE ADDE Pr Pr Pr	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION TOTAL VOL ED IN FIELD (mL efilled by lab None efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y m Equipment Typ DUPLICATE c ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N Total Pher	006; 1/2" iristaltic Pump iristaltic Pump <t< td=""><td>= 0.010; o; O = O SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP APP APP</td><td>5/8" = 0.016 ther (Specify) IG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <00 300 300 300 300</td></t<>	= 0.010; o; O = O SAMPLIN ENDED A FILTER S IT BLANK: AMPLING UIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 ther (Specify) IG AT: //4/5 IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <00 300 300 300 300
PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE WW 1,24 WW 1,24 AW 1,24 REMARKS weather: / pdor: /pgn MATERIA	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 1 1 1 1 1 5 Support, Ga	ACITY (Gal.) ODES: E FFILIATION: Jon: PUM R SPECIFIC/ MATERIAL CODE CG CG CG PE PE PE PE PE AG CG CG CG CG CG CG CG CG CG C	 (Ft.): 1/8" = 0 Bailer; Bailer; Bailer; Arefewsre MP No ATION VOLUME 40mL 40mL 40mL 500mL 125mL 250mL 250mL 250mL 250mL 350mL 125mL 250mL 360000 40000 4000 4000	0006; 3/16' BP = Bladder H SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	Pump; E SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr Pr	1/4" = 0.0026; SP = Electric Su LING DAT E(S): (replaced) RESERVATION ROTAL VOL DIN FIELD (mL efilled by lab None efilled by lab None efilled by lab None efilled by lab	5/16" = 0.0 ubmersible Pur TA FIELD- Filtratio FINAL pH P = Polypropyle adder Pump;	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE c ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N Total Pher ene; S = Silico	006; 1/2" iristaltic Pump iristaltic Pump <	= 0.010; • • • • • • • • • • • • • • • • • • •	5/8" = 0.016 ther (Specify) AG AT: //4/5 HZE:µm Y SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <00 300 300 300 300 300

	: MW.12	13		SAMP	PLE ID:	MW-	IZB				DATE:	14	May 2014	
							ING DAT	Α				"		
	R (inches): 2.0	TUBIN	TER (inches):	0.25	DEPTH: 2	G fee	TERVAL	t T	STATIC D	R (feet): 17.0	23	1000	GE PUMP T AILER: p	YPE peristaltic
	ULUME PURGE: ut if applicable)	1 WELL VC)LUME = (TO	TAL WELL D	DEPTH -		IC DEPTH TO		TER) X		TY allons/fo	ot -		college
	Ut if applicable)	URGE: 1 EQ			OLUME	+ (TUBI		()	х ти	BING LENGTH)	+ FLOV	V CELI		gallons
	UMP OR TUBIN WELL (feet):	G 44	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MP OR TUB		4	PURGING INITIATED			PURGING ENDED AT:	+ 0		gallons = , TOTAL VOI PURGED (0	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	R (sta	oH ndard hits)	TEMP. (°C)	co		DISSOLVED OXYGEN (mg/L)	TURE	BIDITY Us)		R ORP
1100	1.2	1.2	.08	17.2	0 -	1.36	26.72	12	20	1.12	0.	42	clea	r 99.3
1105	0.4	1.4	. 08	17.2		1.36	26.72	119	9	0.97	P	.50	clea	1
1110	0.4	2.0	. 08	17.2	.0 L	t-38	26.74	12	20	0.82	0	.17	clea	
				_									_	
PURGING		PACITY (Gal.) ODES: E	/Ft.): 1/8" = 0 3 = Bailer;	BP = Bladd	16" = 0.0 er Pump; S/		1/4" = 0.0026; P = Electric Su ING DA	5/ ubmers	= 0.37; / 16" = 0.0 rsible Purr	104; 3/8" = 0.		1/2" =	0 = 0	12" = 5.88 5/8" = 0.016 ther (Specify)
	NSIDE DIA. CAR	FFILIATION:	/Ft.): 1/8" = 0 3 = Bailer;	.0006; 3/ BP = Bladd	16" = 0.0 er Pump; S/	O14; ES	1/4" = 0.0026; P = Electric Su	5/ ubmers	/16" = 0.0	004; 3/8" = 0.	006; ristaltic l	1/2" = Pump;	0.010;	5/8" = 0.016 ther (Specify)
SAMPLEI Doe Terry	NSIDE DIA. CAN EQUIPMENT O D BY (PRINT) / A	FFILIATION:	/Ft.): 1/8" = 0 3 = Bailer;	.0006; 3/ BP = Bladd	16" = 0.0 er Pump; S/ R(S) SIGN	014; ES AMPL	1/4" = 0.0026; P = Electric Su ING DA	5/ ubmers	/16" = 0.0 rsible Purr	3/8" = 0. pp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Tyr	006; eristaltic I : 112 (N) De:	1/2" = Pump; 2 0	O = O SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG IZE:μm
SAMPLEI Joe Terry PUMP OF DEPTH IN	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING	SEFFILIATION: Jon Lake	/Ft.): 1/8" = 0 3 = Bailer;	.0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL	16" = 0.0 er Pump; S/ R(S) SIGN	014; ES AMPL IATURE(PE	1/4" = 0.0026; P = Electric Su ING DA	5/ ubmers	/16" = 0.0 rsible Purr	3/8" = 0. pp: PP = Pe SAMPLING INITIATED AT FILTERED: Y	006; eristaltic I : 112 (N) De:	1/2" = Pump; 2 0	O = O SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG MT: // <i>32</i> IZE:μm YN
FUBING I PURGING SAMPLEI Joe Terry PUMP OF DEPTH IN FIELD DE SAM SAMPLE	NSIDE DIA. CAI E EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING WELL (feet): CONTAMINATIC IPLE CONTAINE #	FFILIATION: Jon: PUM ER SPECIFIC, MATERIAL	/Ft.): 1/8" = 0 3 = Bailer; / PWSFL MP NO ATION	.0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL T PRESERV	16" = 0.0 er Pump; S/ (S) SIGN L CODE: TUBING SAMI VATIVE	014: ES AMPL NATURE(PE No (ru PLE PRE	1/4" = 0.0026; P = Electric Su ING DAT S): Ore Ca eplaced) ESERVATION DTAL VOL		FIELD-I FIELD-I Filtratio	104: 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of INTENDE ANALYSIS AN	006; rristaltic I rristaltic I ristaltic	1/2" = Pump; ? 0 PMENT SA EQU	SAMPLIN SAMPLIN ENDED A FILTER S T BLANK: MPLING UIPMENT	5/8" = 0.016 ther (Specify) IG IZE:μm Y N SAMPLE PUMP FLOW RATE
FUBING I PURGING SAMPLE Ioe Terry PUMP OF DEPTH IN FIELD DE SAM SAMPLE D CODE	NSIDE DIA. CAI E EQUIPMENT C D BY (PRINT) / A PWSFL R TUBING WELL (feet): CONTAMINATIC IPLE CONTAINERS	SEFFILIATION: Jon Laka UM DN: PUN ER SPECIFIC.	/Ft.): 1/8" = 0 3 = Bailer; / PWSFC	.0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL T	16" = 0.0 er Pump; S/ S(S) SIGN L CODE: UBING SAMI VATIVE D	014: ES AMPL NATURE(PE No (re PLE PRE TC ADDED	1/4" = 0.0026; P = Electric Su ING DAT S): Ore Ca eplaced) ESERVATION		/16" = 0.0 rsible Purr FIELD-I Filtratio	104: 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE c INTENDE	006; rristaltic I rristaltic I ristaltic	1/2" = Pump; 2 0 PMENT SA EQU	O = O SAMPLIN ENDED A FILTER S BLANK: MPLING	5/8" = 0.016 ther (Specify) IG IZE:μm Y Ν SAMPLE PUMP
FUBING I PURGING SAMPLE Ioe Terry PUMP OF DEPTH IN FIELD DE SAM SAMPLE D CODE	NSIDE DIA. CAI E EQUIPMENT C D BY (PRINT) / A PWSFL R TUBING WELL (feet): CONTAMINATIC IPLE CONTAINERS	FFILIATION: Jon Lake UN: PUN ER SPECIFIC MATERIAL CODE	/Ft.): 1/8" = 0 3 = Bailer; / PWSFC MP No ATION VOLUME	.0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL T PRESERV USE	16" = 0.0 er Pump; S/ R(S) SIGN L CODE: UBING SAMI /ATIVE D L	014: ES AMPL NATURE(PE No (re PLE PRE TC ADDED	1/4" = 0.0026; P = Electric Su ING DAT S): Color Ca eplaced) ESERVATION DTAL VOL D IN FIELD (mL		FIELD-I FIELD-I Filtratio	104: 3/8" = 0. np; PP = Pe INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE c INTENDE ANALYSIS AN METHOI	006; rristaltic I rristaltic I ristaltic	1/2" = Pump: 2 0 PMENT SA EQU	SAMPLIN ENDED A FILTER S FBLANK: MPLING JIPMENT CODE	5/8" = 0.016 ther (Specify) IG IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute)
FUBING I PURGING SAMPLE Ioe Terry PUMP OF DEPTH IN FIELD DE SAM SAMPLE D CODE	NSIDE DIA. CAN BEQUIPMENT C D BY (PRINT) / A / PWSFL RTUBING WELL (feet): CONTAMINATION IPLE CONTAINERS 3	STACITY (Gal.) SODES: E John Lake UM DN: PUM ER SPECIFIC, MATERIAL CODE CG	<pre>/Ft.): 1/8" = 0 B = Bailer; /PWSFL /PWSFL MP No ATION VOLUME 40mL</pre>	.0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL T PRESERV USE HCL	16" = 0.0 er Pump; S/ S(S) SIGN L CODE: UBING SAMI (ATIVE D L e	014: ES AMPL NATURE(PE No (re PLE PRE TC ADDEC Pres	1/4" = 0.0026; P = Electric Su ING DAT S): S: Exercise Exervation DTAL VOL DIN FIELD (mL filled by lab		FIELD-I FIELD-I Filtratio	ID4: 3/8" = 0. hp: PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE C INTENDE ANALYSIS AN METHOL 8260	006; ristaltic I r: 112 De: r EQUIF D/OR D	1/2" = Pump; 2 0 PMENT SA EQU	SAMPLIN ENDED A FILTER S FBLANK: MPLING JIPMENT CODE RFPP	5/8" = 0.016 ther (Specify) IG IZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
FUBING I PURGING SAMPLE Joe Terry PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAN BEQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING WELL (feet): CONTAMINATION MPLE CONTAINERS 3 3 3	FFILIATION: Jon Lake UN: PUN ER SPECIFIC. MATERIAL CODE CG CG	<pre>//Ft.): 1/8" = 0 B = Bailer; //PWSFC //PWSFC //PWSFC MP No ATION VOLUME 40mL 40mL</pre>	.0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL T PRESERV USEL HCL Non-	16" = 0.0 er Pump; S/ R(S) SIGN L CODE: 'UBING SAMI /ATIVE D L e e D ₃	014: ES AMPL ATURE(PE No (rr PLE PRE TC ADDED Pret	1/4" = 0.0026; P = Electric Su ING DAT S): Dec Ca eplaced) ESERVATION DTAL VOL IN FIELD (mL filled by lab None		FIELD-I FIELD-I Filtratio	104: 3/8" = 0. hp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011	006; ristaltic I r: 112 De: r EQUIF D/OR D	1/2" = Pump: 2 0 PMENT SA EQU	SAMPLIN ENDED A FILTER S T BLANK: MPLING JIPMENT CODE RFPP RFPP	5/8" = 0.016 ther (Specify) IG IZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
FUBING I PURGING SAMPLE Joe Terry PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DÍA. CAR EQUIPMENT O D BY (PRINT) / A / PWSFL R TUBING WELL (feet): CONTAMINATION IPLE CONTAINERS 3 3 1	FFILIATION: Jon Lake USA	<pre>//Ft.): 1/8" = 0 B = Bailer; //PWSFC //PWSFC //PNO ATION VOLUME 40mL 40mL 500mL</pre>	0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL T PRESERV USE HCL Non-	16" = 0.0 er Pump; S/ S(S) SIGN L CODE: UBING SAMI /ATIVE D L e e D_ 2 3 D_4	014: ES AMPL ATURE(PE No (rr PLE PRE TC ADDED Pret	1/4" = 0.0026; P = Electric Su ING DAT S): Color eplaced) ESERVATION DTAL VOL DIN FIELD (mL filled by lab None filled by lab		FIELD-I FIELD-I Filtratio	104: 3/8" = 0. np; PP = Pe SAMPLING INITIATED AT INITIATED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals Intels	006; ristaltic I r: 112 De: r EQUIF D/OR D	1/2" = 1 Pump: ? 0 PMENT SA EQU () F	SAMPLIN ENDED A FILTER S FILTER S FILTE	5/8" = 0.016 ther (Specify) IG NT: //32 IZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 3 0.0
SAMPLEI Joe Terry PUMP OF DEPTH IN FIELD DE SAMPLE ID CODE	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A / PWSFL R TUBING WELL (feet): CONTAMINATION IPLE CONTAINERS 3 3 1 1 1 1	ACITY (Gal.) CODES: E SFFILIATION: Jon Lake UY ON: PUN ER SPECIFIC. MATERIAL CODE CG CG PE PE PE	(Ft.): 1/8" = 0 B = Bailer; AP NO ATION VOLUME 40mL 500mL 125mL	.0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL T PRESERV USE HCL Non- HNC H2SC	16" = 0.0 er Pump; S/ R(S) SIGN L CODE: UBING SAMI /ATIVE D L e e D ₃ D ₄ e	014: ES AMPL NATURE(PE No (re PLE PRE TC ADDEC Pres	1/4" = 0.0026; P = Electric Su ING DAT S): Def C eplaced) ESERVATION DIN FIELD (mL filled by lab filled by lab		FIELD-I FIELD-I Filtratio	104: 3/8" = 0. hp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals NH3	006; ristaltic I ristaltic I	1/2" = Pump; ? O PMENT SA EQU (F	O = 0 SAMPLIN ENDED A FILTER S FILTER S	5/8" = 0.016 ther (Specify) IG IZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 3 Δ Φ 3 Δ Φ
SAMPLEI Joe Terry PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAN BEQUIPMENT O D BY (PRINT) / A / PWSFL R TUBING WELL (feet): CONTAMINATION IPLE CONTAINERS 3 3 1 1 1 1 1 5: m.SUNTA, E	ACITY (Gal.) CODES: E SEFFILIATION: Jon Lake UY ON: PUN ER SPECIFIC. MATERIAL CODE CG CG PE PE PE PE AG	<pre>//Ft.): 1/8" = 0 B = Bailer; //PWSFC //PW</pre>	.0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL T PRESERV USE HCL Non- HNC H2SC Non- H2SC	16" = 0.0 er Pump; S/ R(S) SIGN L CODE: UBING SAMI /ATIVE D L e e D ₃ D ₄ e	014: ES AMPL NATURE(PE No (re PLE PRE TC ADDEC Pres	1/4" = 0.0026; P = Electric Su ING DAT S): Dec Ca eplaced) ESERVATION DTAL VOL DIN FIELD (mL filled by lab None filled by lab None		FIELD-I FIELD-I Filtratio	104: 3/8" = 0. hp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N	006; ristaltic I ristaltic I	1/2" = Pump; ? O PMENT SA EQU (F	O = 0 SAMPLIN ENDED A FILTER S T BLANK: MPLING JIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 ther (Specify) IG IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 3 α.0 3 α.0 3 α.0
TUBING I PURGING SAMPLEI Joe Terry PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE UW-1203 REMARK weather: odor: n2	NSIDE DIA. CAN BEQUIPMENT O D BY (PRINT) / A / PWSFL R TUBING WELL (feet): CONTAMINATION IPLE CONTAINERS 3 3 1 1 1 1 1 5: m.SUNTA, E	ACITY (Gal.) CODES: E SEFFILIATION: Jon Lake UY ON: PUN ER SPECIFIC. MATERIAL CODE CG CG PE PE PE PE AG	(Ft.): 1/8" = 0 3 = Bailer; AP NO ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL 250mL 250mL	.0006; 3/ BP = Bladd SAMPLER TUBING MATERIAL T PRESERV USE HCL Non- HNC H2SC Non- H2SC	16" = 0.0 er Pump; S/ (S) SIGN L CODE: UBING SAMI /ATIVE D L e e D ₃ D ₄ e e D ₄	014: ES AMPL NATURE(PE No (re PLE PRE TC ADDEC Pres	1/4" = 0.0026; P = Electric Su ING DAT S): Or C eplaced) ESERVATION DTAL VOL DIN FIELD (mL filled by lab None filled by lab None filled by lab None		FIELD-I FIELD-I Filtratio	104: 3/8" = 0. hp; PP = Pe SAMPLING INITIATED AT INITIATED AT FILTERED: Y DUPLICATE C INTENDE ANALYSIS AN METHOI 8260 8011 Metals NH ₃ TDS, CI, N Total Phene	006; rristaltic I rristaltic I ristaltic I rristaltic	1/2" = Pump: ? 0 PMENT SA EQL (F F = Tefld	0.010; 0 = 0 SAMPLIN ENDED A FILTER S FILTER S BLANK: MPLING JIPMENT CODE SAPP RFPP APP APP APP APP APP APP APP APP APP	5/8" = 0.016 ther (Specify) IG IZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 3 α.0 3 α.0 3 α.0

	LLL HO.	MW-13	A		SAWPLE	ID: MW				DATE: /	/ May 2014	
						PUR	GING DA	TA				
		(inches): 2.0	TUBING				INTERVAL	STATIC D			IRGE PUMP T	
W	ELL VOL	UME PURGE: if applicable)	1 WELL VO	TER (inches): LUME = (TOT = (AL WELL DEF	TH - STA	ATIC DEPTH	feet TO WATE TO WATER) X	WELL CAPAC	ITY		peristaltic
		IT VOLUME P if applicable)	URGE: 1 EQU		= PUMP VOL		BING CAPAC	ITY X TU	0.16 g JBING LENGTH feet)) + FLOW C	= 0,9 ELL VOLUME gallons =	gallons
		MP OR TUBIN WELL (feet):	G 20		MP OR TUBING		PURGIN		PURGING		TOTAL VO	
	TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDI (NTUS	TY COLO	DR ORP
0	940	2.4	2.4	0.08	17.09	4.95	26.44	489	0.72	0	clea	47.7
_	00	0.4	2.6	0.08	17.09	4.97	26.46	531	0.63	0	c lear	the second se
-	201	0.4	3.2	0.08	17.09	5.07	27.14	541	0.6	0	Cler	
_	10	0.4	3.6	0.08	17.09		27.16	545	0.6	0	cles	
-	15	0.4	4	0.08	17.09	5.08	27.10	545	0.6	0	clei	
_												
	BING IN				1" = 0.04; 0006; 3/16"					5" = 1.02; .006: 1/2	6 " = 1.47; 2 " = 0.010;	12" = 5.88 5/8" = 0.016
PU		COFMENT C	ODES: B	= Bailer;	BP = Bladder F	Pump; E	and the set of the	Submersible Pun		eristaltic Pur		the second second
PU			ODES: B	= Bailer;	BP = Bladder F		and the set of the	Submersible Pun				Other (Specify)
SA	MPLED I e Terry / I	BY (PRINT) / A PWSFL	FFILIATION:	= Bailer; GPWSFL	SAMPLER(S)	SAMP		Submersible Pun ATA	SAMPLING	r: 1015	SAMPLIN ENDED	NG AT: 10:30
SA Joe PU	MPLED I Terry / I MP OR 1	BY (PRINT) / A PWSFL FUBING	FFILIATION:	-		SAMP		Submersible Pun ATA Tup FIELD-	SAMPLING INITIATED AT	r: 1015	np; O = C	NG AT: 10:30
SA Joe PU DE	MPLED I Terry / I MP OR T PTH IN V	BY (PRINT) / A PWSFL	Son Lat 20	-	SAMPLER(S) TUBING	SAMP SIGNATUR ODE: PE		Submersible Pun ATA Tup FIELD-	SAMPLING	r: 1015 pe:	np; O = C SAMPLIN ENDED / FILTER S	NG AT: 10:30
SA Joe PU DE	MPLED I Terry / I MP OR 1 PTH IN V ELD DEC	BY (PRINT) / A PWSFL FUBING WELL (feet):	Son Lat 20 20 DN: PUM	eprosec	SAMPLER(S) TUBING MATERIAL CO	SAMP SIGNATUR ODE: PE ING No	SP = Electric LING D	Submersible Pun ATA Two FIELD- Filtratio	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty	r: /0/5 pe: pe: pr EQUIPME	np; O = C SAMPLIN ENDED / FILTER S	Other (Specify) NG AT: <u>/030</u> SIZE: μm
SA Joe PU DE FIE	MPLED I Terry / I MP OR 1 PTH IN V ELD DEC	BY (PRINT) / A PWSFL TUBING WELL (feet): ONTAMINATIO	Son Lat 20 20 DN: PUM	P NO	SAMPLER(S) TUBING MATERIAL CO	SAMP SIGNATUR ODE: PE ING No SAMPLE PF	E(S): Just (replaced)	Submersible Pun ATA FIELD- Filtratio	SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE O ANALYSIS AI METHO	eristaltic Pur T: /0/5 pe: D ND/OR E	SAMPLIN FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	NG AT: 1030 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
SA Joe PU DE FIE SA	MPLED I Terry / I MP OR T PTH IN V ELD DEC SAMP MPLE	BY (PRINT) / A PWSFL TUBING WELL (feet): ONTAMINATIO LE CONTAINERS 3	Son Lab Jon Lab 20 DN: PUM ER SPECIFICA MATERIAL	P NO	SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT	SAMP SIGNATUR ODE: PE ING NO SAMPLE PI IVE ADDE	(replaced) RESERVATIO	Submersible Pun ATA FIELD- Filtratio	ANALYSIS A	eristaltic Pur T: /0/5 pe: D ND/OR E	SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	NG AT: 10 3 0 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SA Joe PU DE FIE SA	MPLED I Terry / I MP OR T PTH IN V ELD DEC SAMP MPLE CODE	BY (PRINT) / A PWSFL FUBING WELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS	Son Lat 20 DN: PUM ER SPECIFICA MATERIAL CODE	P No TION VOLUME	SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT USED	SAMP SIGNATUR ODE: PE ING NO SAMPLE PI IVE ADDE	(replaced) RESERVATIO	Submersible Pun ATA FIELD- Filtratio	SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE O ANALYSIS AI METHO	eristaltic Pur T: /0/5 pe: D ND/OR E	SAMPLIN FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	NG AT: 1030 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
SA Joe PU DE FIE SA	MPLED I Terry / I MP OR T PTH IN V ELD DEC SAMP MPLE CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): ONTAMINATIO LE CONTAINERS 3	STATERIAL CODE CG	P No TION VOLUME 40mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL	SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr	(replaced) RESERVATION TOTAL VOL efilled by lat	Submersible Pun ATA FIELD- Filtratio	ANALYSIS A	r: 10/5 pe: or EQUIPME DD/OR D	SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	NG AT: 10 3 0 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SA Joe PU DE FIE SA	MPLED I Terry / I MP OR T PTH IN V ELD DEC SAMP MPLE CODE	BY (PRINT) / A PWSFL TUBING NELL (feet): ONTAMINATIO TLE CONTAINERS 3 3	SFFILIATION: Jon Lat 20 DN: PUM ER SPECIFICA MATERIAL CODE CG CG	P No TION VOLUME 40mL 40mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None	SAMP SIGNATUR ODE: PE ING NO SAMPLE PF IVE ADDE Pr	ISP = Electric LING D/ E(S): Jue (replaced) RESERVATIO TOTAL VOL D IN FIELD (efilled by lat None	Submersible Pun ATA FIELD- Filtratio	np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE of INTENDI ANALYSIS AI METHO 8260 8011	r: 10/5 pe: or EQUIPME DD/OR D	AMPLIN SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	NG AT: /0.30 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SA Joe PU DE FIE SA	MPLED I Terry / I MP OR T PTH IN V ELD DEC SAMP MPLE CODE	BY (PRINT) / A PWSFL FUBING WELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS 3 3 1	AFFILIATION: Jon Lat 20 DN: PUM ER SPECIFICA MATERIAL CODE CG CG PE	P No TION VOLUME 40mL 40mL 500mL	SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT USED HCL None HNO ₃	SAMP SIGNATUR ODE: PE ING NO SAMPLE PF IVE ADDE Pr	SP = Electric LING D/ E(S): Jvs (replaced) RESERVATIO TOTAL VOL ED IN FIELD (efilled by lat None efilled by lat	Submersible Pun ATA FIELD- Filtratio	ANALYSIS AI ANALYSIS AI METHO BERNING INITIATED AT FILTERED: Y INTENDE ANALYSIS AI METHO 8260 8011 Metals	eristaltic Pur T: /0/5 pe: Dor EQUIPME ED ND/OR D	NP: O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	NG AT: 10 30 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SA Joe FIE SA ID	MPLED I Terry / I PTH IN V CLD DEC SAMP MPLE CODE	BY (PRINT) / A PWSFL TUBING NELL (feet): ONTAMINATIO LE CONTAINERS 3 3 3 1 1	AFFILIATION: Jon Lat 20 DN: PUM ER SPECIFICA MATERIAL CODE CG CG CG PE PE	P No TION VOLUME 40mL 500mL 125mL	SAMPLER(S) TUBING MATERIAL CO TUBI PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr	ISP = Electric LING D/ E(S): 200 (replaced) RESERVATIC TOTAL VOL ED IN FIELD (efilled by lat None efilled by lat efilled by lat	Submersible Pun ATA FIELD- Filtratio	np; PP = Pe SAMPLING INITIATED AT FILTERED: Y in Equipment Ty DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals NH ₃	r: /0/5 pe: Dr EQUIPME ED ND/OR D S NO ₃	APP	NG AT: /0.30 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <3∞ 3∞ 3∞0 3∞0 3∞0
SA Joe FIE SA ID RE we odd	MPLED I Terry / I MP OR T PTH IN V ELD DEC SAMP MPLE CODE 13.4 	BY (PRINT) / A PWSFL TUBING NELL (feet): ONTAMINATION LE CONTAINERS 3 3 3 1 1 1 1 1 1 1	AG	P No TION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL b/ec 22	SAMPLER(S) TUBING MATERIAL CO TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	SAMP SIGNATUR ODE: PE ING No SAMPLE PF IVE ADDE Pr Pr Pr Pr Pr	SP = Electric LING D/ E(S): 2ve (replaced) RESERVATIO TOTAL VOL ED IN FIELD (efilled by lat None efilled by lat None	Submersible Pun ATA FIELD- Filtratio	np; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE 0 INTENDE ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I Total Phe	r: /0/5 pe: Dr EQUIPME ED ND/OR D S NO ₃	NP: 0 = 0 SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP APP APP APP APP	NG AT: /0.30 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 3∞ 3∞ 3∞ 3∞ 3∞0 3∞0 3∞0

	MW-1	3B		SAMPL	EID: M	W-13B			Cloud, Osceola	DATE:	14 May 2014	
	· · · ·	2.12				RGING D	ATA				· /	
WELL	6.000	TUBIN	G	W		EN INTERVAL		STATIC D	EPTH	PI	URGE PUMP 1	TYPE
	R (inches): 2.0		TER (inches)		PTH: 37	feet to 47	feet	TO WATE	R (feet): /6 6	32 0		peristaltic
only fill ou	ut if applicable)	1 WELL VC	COME = (10	TAL WELL DE	PTH - :	STATIC DEPTH	TO WAT	TER) X	WELL CAPACI	ITY		
FOUIPME	NT VOLUME P				feet -		VTI	feet) X X TL	0.16 g JBING LENGTH	allons/foot		gallons
only fill ou	ut if applicable)	UNCE. TEQ								+ FLOW C	ELL VOLUME	
		0				(0.0026 gal		X 5	feet)	+ 0.12	gallons =	
	UMP OR TUBIN WELL (feet):	47		MP OR TUBIN WELL (feet):	42	PURGI	NG ED AT:	0925	PURGING ENDED AT:	09.50	TOTAL VO	(gallons): 2
	VOLUME	CUMUL.	1	DEPTH	pH		1	ND.	DISSOLVED			
TIME	PURGED	VOLUME PURGED	PURGE	TO WATER	(standa			S/cm)	OXYGEN (mg/L)	TURBID (NTUS		
	(gallons)	(gallons)	(gpm)	(feet)	units)						
0940	1.2	1.2	.08	16.88	4.2		13	17	0.67	0.6:		
0945		1.6	. 08	16.88	4.40		-	38	0.62	0.19		r 71.2
0950	0.4	z.0	.08	16.88	4.4	2 26.11	14	10	0.53	0.30	o ilea	r 66.1
	-			-	-							
_												
				1				-				
_							-					
			-									
	PACITY (Gallon NSIDE DIA. CAR									5" = 1.02;	6" = 1.47; 2" = 0.010;	12" = 5.88
1						$1 \cdot 1/4" = 0.00$	26 5					5/8'' = 0.016
URGING	EQUIPMENT C		B = Bailer;	BP = Bladder						eristaltic Pu		5/8" = 0.016 Other (Specify)
PURGING	and an and a state of the				Pump;	ESP = Electric APLING D	Subme					
SAMPLED	BY (PRINT) / A	FFILIATION:	B = Bailer;	BP = Bladder	Pump;	ESP = Electric	Submer	rsible Pur	np; PP = Pe	eristaltic Pu	mp; 0 = 0	Other (Specify)
SAMPLED Joe Terry	BY (PRINT) / A	FFILIATION:		BP = Bladder	Pump;	ESP = Electric	Submer	rsible Pur	SAMPLING	eristaltic Pu	SAMPLIN ENDED	NG AT: 1012
SAMPLED Joe Terry J PUMP OR	BY (PRINT) / A PWSFL	FFILIATION: Jon Lat	B = Bailer;	BP = Bladder SAMPLER(S TUBING	Pump; SAN S) SIGNAT	ESP = Electric MPLING D. URE(S): June	Submer	7 FIELD-	SAMPLING INITIATED AT	eristaltic Pu 	mp; 0 = 0	NG AT: 1012
SAMPLED Joe Terry / PUMP OR DEPTH IN	BY (PRINT) / A	FFILIATION: Jon bat	B = Bailer;	BP = Bladder SAMPLER(S TUBING MATERIAL (Pump; SAN S) SIGNAT	ESP = Electric MPLING D. URE(S):	Submer	7 FIELD-	SAMPLING INITIATED AT FILTERED: Y In Equipment Typ	eristaltic Pu 	SAMPLIN SAMPLIN ENDED FILTER S	Dther (Specify) NG AT: <u>/0/2</u> SIZE:μm
SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIO	FFILIATION: Jon bat リス DN: PUM	B = Bailer; ペレークルシップレ MP No	BP = Bladder SAMPLER(S TUBING MATERIAL (Pump; SAN 5) SIGNAT CODE: PE BING	ESP = Electric MPLING D. URE(S): June No (replaced)	ATA	7 FIELD-	PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE c	eristaltic Pu 	MP; O = C SAMPLIN ENDED FILTER S ENT BLANK:	Dther (Specify) NG AT: <u>/0/2</u> SIZE:μm YN
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE SAM	BY (PRINT) / A PWSFL TUBING WELL (feet):	FFILIATION: Jon bal リス DN: PUN R SPECIFIC,	a = Bailer; دو الملاية المر MP No ATION	BP = Bladder SAMPLER(S TUBING MATERIAL (Pump; SAN S) SIGNAT CODE: PE BING SAMPLE	ESP = Electric MPLING D. URE(S):	ATA	7 FIELD-	PP PP SAMPLING INITIATED AT FILTERED: Y IN Equipment Tyj DUPLICATE C INTENDE ANALYSIS AT	eristaltic Pu 0955 pe: Dr EQUIPM ED ND/OR	MP; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT	Other (Specify) NG AT: / 0 / 2 SIZE: μm Y N SAMPLE PUMP FLOW RATE
SAMPLED loe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINE	FFILIATION: Jon Lad リラ DN: PUN R SPECIFIC, MATERIAL CODE	a = Bailer; دو الملاية المر MP No ATION	BP = Bladder SAMPLER(S TUBING MATERIAL (TUI PRESERVA USED	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE	ESP = Electric MPLING D. URE(S): Dree No (replaced) E PRESERVATION	ATA ATA Curron	FIELD- Filtratic	PP = Pe SAMPLING INITIATED AT FILTERED: Yon Equipment Tyj DUPLICATE of INTENDE ANALYSIS AT METHO	eristaltic Pu 0955 pe: Dr EQUIPM ED ND/OR	MP; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	Dther (Specify) NG AT: /0/2 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIONE PLE CONTAINE #	FFILIATION: Jon Lat リラ DN: PUM R SPECIFIC. MATERIAL	a = Bailer; دو الملاية المر MP No ATION	BP = Bladder SAMPLER(S TUBING MATERIAL (TUB PRESERVA	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE	ESP = Electric MPLING D. URE(S): No (replaced) E PRESERVATIO TOTAL VOL	Submer ATA Curr DN (mL)	FINAL	PP PP SAMPLING INITIATED AT FILTERED: Y IN Equipment Tyj DUPLICATE C INTENDE ANALYSIS AT	eristaltic Pu 0955 pe: Dr EQUIPM ED ND/OR	MP; O = C SAMPLIN FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	Other (Specify) NG AT: / 0 / 2 SIZE: μm Y N SAMPLE PUMP FLOW RATE
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIONE PLE CONTAINE # CONTAINERS	FFILIATION: Jon Lad リラ DN: PUN R SPECIFIC, MATERIAL CODE	a = Bailer; دو المحدة عر MP No ATION VOLUME	BP = Bladder SAMPLER(S TUBING MATERIAL (TUI PRESERVA USED	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE	ESP = Electric MPLING D. URE(S): No (replaced) E PRESERVATION TOTAL VOL DDED IN FIELD	Submer ATA Curr DN (mL)	FINAL	PP = Pe SAMPLING INITIATED AT FILTERED: Yon Equipment Tyj DUPLICATE of INTENDE ANALYSIS AT METHO	eristaltic Pu 0955 pe: Dr EQUIPM ED ND/OR	MP; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	Dther (Specify) NG AT: /0/2 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	FFILIATION: 도아니라 신구 DN: PUN R SPECIFIC, MATERIAL CODE CG	a = Bailer; دو المريزية MP No ATION VOLUME 40mL	BP = Bladder SAMPLER(S TUBING MATERIAL (TU PRESERVA USED HCL	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE AL	ESP = Electric MPLING D. URE(S): Deve No (replaced) E PRESERVATION TOTAL VOL DDED IN FIELD Prefilled by la	Submer ATA Curr DN (mL) b	FINAL	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y in Equipment Tyj DUPLICATE of ANALYSIS AI METHO 8260	Pristaltic Pu Pri 0955 pe: N pe: N pe: N D/OR D	MP; O = C SAMPLIN FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	Dther (Specify) NG AT: /0/2 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 3	FFILIATION: 「ATERIAL CODE CG CG	a = Bailer; (المجمع المحمد المحم المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم محمد المحمد المحمد محمد المحمد المحم محمد المحمد المحم	BP = Bladder SAMPLER(S TUBING MATERIAL (TUBING MATERIAL (TUBING	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE AL	ESP = Electric APLING D. URE(S): Area No (replaced) E PRESERVATIO TOTAL VOL DDED IN FIELD Prefilled by la None	Submer ATA Curr DN (mL) b b	FINAL	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y in Equipment Tyj DUPLICATE of INTENDE ANALYSIS AT METHO 8260 8011	Pristaltic Pu Pri 0955 pe: N pe: N pe: N D/OR D	MP; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	Other (Specify) NG AT: / 0 / 2 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED loe Terry / PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1	FFILIATION: Jon Lat ローフ PUR R SPECIFIC MATERIAL CODE CG CG PE	a = Bailer; (المحمد المحمد المحم المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم المحمد المحمد المحم المحمد المحمد المحم المحمد المحمد المحم المحمد ا	BP = Bladder SAMPLER(S TUBING MATERIAL O TUI PRESERVA USED HCL None HNO ₃	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE AL	ESP = Electric MPLING D. URE(S): No (replaced) E PRESERVATIO TOTAL VOL DDED IN FIELD Prefilled by la None Prefilled by la	Submer ATA Curr DN (mL) b b	FINAL	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE C INTENDE ANALYSIS AT METHO 8260 8011 Metals	eristaltic Pu Pi 0955 pe: Dor EQUIPM DD/OR D	MP: O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	Dther (Specify) NG AT: /0/2 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 32-0
SAMPLED IOO TERTY / PUMP OR DEPTH IN FIELD DE SAM SAMPLE D CODE	EQUIPMENT C D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1	FFILIATION: Son Lak UZ DN: PUN R SPECIFIC, MATERIAL CODE CG CG PE PE PE	B = Bailer; Ce PUST NP NO ATION VOLUME 40mL 40mL 500mL 125mL	BP = Bladder SAMPLER(S TUBING MATERIAL (TU PRESERVA USED HCL None HNO ₃ H ₂ SO ₄	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE AL	ESP = Electric MPLING D. URE(S): Jone No (replaced) E PRESERVATION TOTAL VOL DDED IN FIELD Prefilled by la Prefilled by la Prefilled by la	Submer ATA Curr DN (mL) b b b b	FINAL	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE of ANALYSIS AT METHO 8260 8011 Metals NH ₃	Pristaltic Pu Pi 0955 pe: Nor EQUIPM ED ND/OR D	MP; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	Other (Specify) NG AT: /0/2 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED loe Terry / PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	EQUIPMENT C DBY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1	FFILIATION: Son Gal UZ DN: PUN R SPECIFIC, MATERIAL CODE CG CG CG PE PE PE PE AG	3 = Bailer;	BP = Bladder SAMPLER(S TUBING MATERIAL (TUBING MATERIAL (TUBING	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE AL	ESP = Electric APLING D. URE(S): Area No (replaced) E PRESERVATIO TOTAL VOL DDED IN FIELD Prefilled by la None Prefilled by la	Submer ATA Curr DN (mL) b b b b	FINAL	np; PP = Pe SAMPLING INITIATED AT FILTERED: Y IN Equipment Tyj DUPLICATE O INTENDE ANALYSIS AT METHO 8260 8011 Metals NH ₃ TDS, CI, I	Pristaltic Pu Pi 0955 pe: Nor EQUIPM ED ND/OR D	MP; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP	Other (Specify) NG AT: /0/2 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED Joe Terry J PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	EQUIPMENT C D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1	FFILIATION: Son Gal UZ DN: PUN R SPECIFIC, MATERIAL CODE CG CG CG PE PE PE PE AG	3 = Bailer;	BP = Bladder SAMPLER(S TUBING MATERIAL (TUBING MATERIAL (TUBING	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE AL	ESP = Electric APLING D. URE(S): Area No (replaced) E PRESERVATIO TOTAL VOL DDED IN FIELD Prefilled by la None Prefilled by la	Submer ATA Curr DN (mL) b b b b	FINAL	np; PP = Pe SAMPLING INITIATED AT FILTERED: Y IN Equipment Tyj DUPLICATE O INTENDE ANALYSIS AT METHO 8260 8011 Metals NH ₃ TDS, CI, I	Pristaltic Pu Pi 0955 pe: Nor EQUIPM ED ND/OR D	MP; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP	Other (Specify) NG AT: /0/2 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED Joe Terry J PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE W 1313 W 1313 REMARKS weather: W odor: N 6	EQUIPMENT O DBY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 5: Au SUADY 1 S	FFILIATION: Jon Cal UJ DN: PUN R SPECIFIC, MATERIAL CODE CG CG CG PE PE PE AG 30°F; 159	B = Bailer; Ce / PUSIFL MP NO ATION VOLUME 40mL 40mL 500mL 1250mL 250mL 250mL → bree 21	BP = Bladder SAMPLER(S TUBING MATERIAL (TU PRESERVA USED HCL None HNO ₃ H ₂ SO ₄ None H ₂ SO ₄	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE AL	ESP = Electric MPLING D. URE(S): No (replaced) E PRESERVATION TOTAL VOL DDED IN FIELD Prefilled by la None Prefilled by la None Prefilled by la	Submer ATA Curr ON (mL) b b b b b	Fible Pur	mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyj DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I Total Phen	Pristaltic Pu	mp; O = C SAMPLIN ENDED/ FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP APP	Other (Specify) NG AT: /0/2 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED Joe Terry J PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE W-1313 REMARKS weather: V Dodor: N & MATERIA	EQUIPMENT O BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 5: M:SUATY 1	FFILIATION: 50° Cal 412 DN: PUN R SPECIFIC. R SPECIFIC. CG CG CG CG PE PE PE PE AG $30^{\circ}F_{1}$ 159 AG = Amber	B = Bailer; Ce / Pussie ΛP No ATION VOLUME 40mL 500mL 125mL 250mL -250mL -+ bree st Glass; CG	BP = Bladder SAMPLER(S TUBING MATERIAL (TUBING MATERIAL (TUBING	Pump; SAN S) SIGNAT CODE: PE BING SAMPLE TIVE AL 	ESP = Electric APLING D. URE(S): Area No (replaced) E PRESERVATIO TOTAL VOL DDED IN FIELD Prefilled by la None Prefilled by la None Prefilled by la None Prefilled by la None	Submer ATA Curr ON (mL) b b b b b	rsible Pur	np; PP = Pe SAMPLING INITIATED AT FILTERED: Y IN Equipment Tyj DUPLICATE O INTENDE ANALYSIS AT METHO 8260 8011 Metals NH ₃ TDS, CI, I	Pristaltic Pu Pi 0955 pe: ND FEQUIPM D ND/OR D NO ₃ nols nols T = 1	mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP	Other (Specify) NG AT: /0/2 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100

DIAMETER (inc VELL VOLUMI only fill out if ap QUIPMENT V only fill out if ap NITIAL PUMP (DEPTH IN WEL	E PURGE: oplicable) OLUME PU oplicable)	1 WELL VO	TER (inches): LUME = (TO	0.25 DEI	LL SCREEN	GING DAT	T A		/	/ May 2014	
(only fill out if ap EQUIPMENT V (only fill out if ap INITIAL PUMP DEPTH IN WEL	E PURGE: oplicable) OLUME PU oplicable)	DIAME	TER (inches): LUME = (TO	0.25 DEI TAL WELL DEF	TH: 13.51	INTERVAL	A				
WELL VOLUMI (only fill out if ap EQUIPMENT V (only fill out if ap INITIAL PUMP DEPTH IN WEL	E PURGE: oplicable) OLUME PU oplicable)	1 WELL VO	LUME = (TO	TAL WELL DEP	TH: 13,51		STATIC D		T PUI	RGE PUMP T	YPE
(only fill out if ap EQUIPMENT V (only fill out if ap INITIAL PUMP DEPTH IN WEL	oplicable) OLUME PU oplicable)					TIC DEPTH TO		WELL CAPACIT	D OR	BAILER:	peristaltic
(only fill out if ap INITIAL PUMP DEPTH IN WEL	oplicable)	RGE: 1 EQU	= (1	2
(only fill out if ap INITIAL PUMP DEPTH IN WEL	oplicable)		IPMENT VOI	. = PUMP VOI	.UME + (TU	BING CAPACIT	y x TL	0.16 gi JBING LENGTH)	+ FLOW CF		< gallons
	OR TUBING										
				MP OR TUBING		0.0026 gallon PURGING		feet) PURGING	+ 0.12		gallons
V		20		WELL (feet):	20		AT: 0755	ENDED AT:	0850	TOTAL VO PURGED (gallons): 2.7.
	OLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pН	TEMP.	COND.	DISSOLVED	TUDDIDIT		
	URGED	PURGED	RATE	WATER	(standard units)	(°C)	(µS/cm)	OXYGEN (mg/L)	TURBIDIT (NTUs)	Y COLC (descri	
	gallons)	(gallons)	(gpm)	(feet)		25 - 20		0	0.1	-	
	2.25	2.75	0.05	16.78	5.39	25.70	166	1.18	2.5	Clea	
	1.25	2.5	0.05	16.78	5.37	25.20	164	116	2.1	cleu	
0850 0	.75	2.75	0.05	16.78	5.37	25.15	164	1.18	2.3	clear	- 34.7
		_						1.			
						-				_	
WELL CAPACI				1" = 0.04;	1.25" = 0.0	6; 2 " = 0.16;	3 " = 0.37;	4" = 0.65; 5		6 " = 1.47;	12" = 5.88
PURGING EQU				BP = Bladder F		1/4" = 0.0026; SP = Electric S			ristaltic Pum	= 0.010;	5/8" = 0.016
Unto EQU	in mettin oc		- Daller,	Dr - Diaddei r		LING DA		np, FF-Fe	Istallic Fulli	p, 0 -0	other (Specify)
SAMPLED BY (PRINT) / AF	FILIATION								-	
Joe Terry / PWS								SAMPLING		CAMPLIN	10
				SAMPLER(S)				SAMPLING INITIATED AT	0850	SAMPLIN ENDED A	
PUMP OR TUB	NG			TUBING	SIGNATUR		FIELD-	INITIATED AT	N		AT: 09/0
PUMP OR TUBI	NG L (feet):	20		TUBING MATERIAL CO	SIGNATUR	E(S):	FIELD-	INITIATED AT FILTERED: Y	e:	FILTER S	AT: 09/0 SIZE:μm
PUMP OR TUBI DEPTH IN WEL FIELD DECONT	NG L (feet): AMINATIOI	20 N: PUM	P No	TUBING	SIGNATUR DDE: PE NG No	E(S): (replaced)	FIELD-	INITIATED AT		ENDED A FILTER S	AT: 09/0 SIZE:μm ΥN
PUMP OR TUBI DEPTH IN WEL FIELD DECONT SAMPLE (NG L (feet): AMINATIOI	20 N: PUM R SPECIFICA	TION	TUBING MATERIAL CO TUBI	SIGNATUR DDE: PE NG No SAMPLE PI	E(S): (replaced) RESERVATION	FIELD- Filtratio	INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE o INTENDE		ENDED A FILTER S NT BLANK: AMPLING	AT: 09/0 SIZE:μm Y N SAMPLE PUMP
PUMP OR TUBI DEPTH IN WEL FIELD DECONT SAMPLE O	NG L (feet): AMINATIOI CONTAINEF #	20 N: PUM R SPECIFICA MATERIAL		TUBING MATERIAL CO TUBI PRESERVAT	SIGNATUR DDE: PE NG No SAMPLE PI	E(S): (replaced) RESERVATION	FIELD- Filtratio	INITIATED AT FILTERED: Y in Equipment Typ DUPLICATE o	e: r EQUIPMEN D S D/OR EC	ENDED A FILTER S	AT: 09/0 SIZE:μm ΥN
PUMP OR TUBI DEPTH IN WEL FIELD DECONT SAMPLE (SAMPLE ID CODE CON	NG L (feet): AMINATIOI	20 N: PUM R SPECIFICA	TION	TUBING MATERIAL CO TUBI	SIGNATUR DDE: PE NG No SAMPLE PI VE ADDE	E(S): (replaced) RESERVATION	FIELD- Filtratio	INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE o INTENDE ANALYSIS AN	e: r EQUIPMEN D S D/OR EC	ENDED A FILTER S NT BLANK: AMPLING QUIPMENT	AT: 09/0 DIZE:μm Y N SAMPLE PUMP FLOW RATE
PUMP OR TUBI DEPTH IN WEL FIELD DECONT SAMPLE O	NG L (feet): CAMINATION CONTAINER # ITAINERS	20 N: PUM R SPECIFICA MATERIAL CODE	TION VOLUME	TUBING MATERIAL CO TUBI PRESERVAT USED	SIGNATUR DDE: PE NG No SAMPLE PI VE ADDE	E(S): (replaced) RESERVATION TOTAL VOL :D IN FIELD (ml	FIELD- Filtratio	INITIATED AT FILTERED: Y IN Equipment Typ DUPLICATE O INTENDE ANALYSIS AN METHOD	e: r EQUIPMEN D S D/OR EC	ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE	AT: 09/C DIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
PUMP OR TUBI DEPTH IN WEL FIELD DECONT SAMPLE (SAMPLE ID CODE CON	NG L (feet): CAMINATIOI CONTAINER # ITAINERS 3	20 N: PUM R SPECIFICA MATERIAL CODE CG	TION VOLUME 40mL 40mL	TUBING MATERIAL CO TUB PRESERVAT USED HCL None	SIGNATUR DDE: PE NG No SAMPLE PI VE ADDE PI	E(S): (replaced) RESERVATION TOTAL VOL D IN FIELD (mil efilled by lab None	FIELD- Filtratio	INITIATED AT FILTERED: Y IN Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011	e: r EQUIPMEN D S D/OR EC	ENDED A FILTER S NT BLANK: AMPLING QUIPMENT CODE RFPP RFPP	AT: 09/0 DIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
PUMP OR TUBI DEPTH IN WEL FIELD DECONT SAMPLE (SAMPLE ID CODE CON	NG L (feet): AMINATION CONTAINER # ITAINERS 3 3 1	20 N: PUM R SPECIFICA MATERIAL CODE CG CG PE	TION VOLUME 40mL 40mL 500mL	TUBING MATERIAL CO TUB PRESERVAT USED HCL None HNO ₃	SIGNATUR DDE: PE NG No SAMPLE PI VE ADDE Pr	E(S): (replaced) RESERVATION TOTAL VOL :D IN FIELD (mi efilled by lab None efilled by lab	FIELD- Filtratio	INITIATED AT FILTERED: Y IN Equipment Typ DUPLICATE O INTENDE ANALYSIS AN METHOD 8260 8011 Metals	e: r EQUIPMEN D S D/OR EC	ENDED A FILTER S NT BLANK: AMPLING DUIPMENT CODE RFPP RFPP APP	AT: 09/C DIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200
PUMP OR TUBI DEPTH IN WEL FIELD DECONT SAMPLE (SAMPLE ID CODE CON	NG L (feet): CAMINATION CONTAINER # ITAINERS 3 3 3 1 1 1	20 N: PUM R SPECIFICA MATERIAL CODE CG CG CG PE PE PE	TION VOLUME 40mL 40mL 500mL 125mL	TUBING MATERIAL CO TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	SIGNATUR DDE: PE NG No SAMPLE PI VE ADDE Pr	E(S): (replaced) RESERVATION TOTAL VOL :D IN FIELD (mil efilled by lab None efilled by lab efilled by lab	FIELD- Filtratio	INITIATED AT FILTERED: Y n Equipment Typ DUPLICATE o INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH ₃	e: r EQUIPMEN D D/OR D/OR EC	ENDED A FILTER S T BLANK: AMPLING QUIPMENT CODE RFPP RFPP APP APP	AT: 09/C SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200
PUMP OR TUBI DEPTH IN WEL FIELD DECONT SAMPLE (SAMPLE ID CODE CON	NG L (feet): AMINATION CONTAINER # ITAINERS 3 3 1	20 N: PUM R SPECIFICA MATERIAL CODE CG CG PE	TION VOLUME 40mL 40mL 500mL	TUBING MATERIAL CO TUB PRESERVAT USED HCL None HNO ₃	SIGNATUR DDE: PE NG No SAMPLE PI VE ADDE Pr Pr Pr Pr	E(S): (replaced) RESERVATION TOTAL VOL :D IN FIELD (mi efilled by lab None efilled by lab	FIELD- Filtratio	INITIATED AT FILTERED: Y IN Equipment Typ DUPLICATE O INTENDE ANALYSIS AN METHOD 8260 8011 Metals	e: r EQUIPME! D/OR EC	ENDED A FILTER S NT BLANK: AMPLING DUIPMENT CODE RFPP RFPP APP	AT: 09/C DIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

MW-16	0 1	: 89544)			DCATION: 1501	Omni Way, St.	Cloud, Osceola	County, F	orida, 34773		
	ND		SAMPL	EID: MW		20		DATE: /	4 May 2014		
				PURC	GING DAT	'A		_			
(inches): 2.0	TUBIN DIAME 1 WELL VO	TER (inches):	0.25 DE	PTH - STA	et to 46. Sfee	et STATIC D TO WATE D WATER) X	R (feet): 14	57 0	URGE PUMP 1 R BAILER:	TYPE peristaltic	
	RGE: 1 EQU	= (JIPMENT VOI	L. = PUMP VO			Y X TU	JBING LENGTH)	+ FLOW (CELL VOLUME		
MP OR TUBING WELL (feet):	42		MP OR TUBIN		PURGING	;	PURGING		TOTAL VO		
VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBID	TY COLO	OR ORP	
0.75	0.75	0.05	16.63	4.88	24.67	95	1.56	10	cle	a- 39.5	
0.25	1.0	0.05	16.63	4.88							
0.25	1.25	0.05			24.71	93	1.28	12	ile		
SIDE DIA. CAPA	ACITY (Gal./ DES: B	Ft.): 1/8" = 0.		" = 0.0014; Pump; E: SAMP	1/4" = 0.0026; SP = Electric Si LING DA	5/16" = 0.0 ubmersible Pur	004; 3/8" = 0.	.006; 1/	mp; O = C	12" = 5.88 5/8" = 0.016 Other (Specify)	
BY (PRINT) / AFI PWSFL TUBING	1000		TUBING		E(S): You C		INITIATED AT	N	FILTER S	AT: 0835	
PWSFL	42	IP No	TUBING MATERIAL C	ODE: PE	(replaced)		INITIATED AT	N)	FILTER S	AT: 0835	
PWSFL TUBING WELL (feet):	42 N: PUN		TUBING MATERIAL C	CODE: PE BING No (/	Filtratio	INITIATED AT FILTERED: Y	De: Dr EQUIPM	FILTER S	AT: 0835 SIZE:µm	
PWSFL TUBING WELL (feet): ONTAMINATION PLE CONTAINER	42 N: PUN		TUBING MATERIAL C	CODE: PE BING No (SAMPLE PR TIVE T ADDE	(replaced) RESERVATION FOTAL VOL D IN FIELD (ml	Filtratio	INITIATED AT FILTERED: Y in Equipment Typ DUPLICATE of	N Dr EQUIPM ED ND/OR	FILTER S	AT: 0835 SIZE:µm Y N	
PWSFL TUBING WELL (feet): ONTAMINATION PLE CONTAINER #	12 N: PUN SPECIFICA MATERIAL	ATION VOLUME 40mL	TUBING MATERIAL C TUB PRESERVAT	CODE: PE BING No (SAMPLE PR TIVE T ADDE	(replaced) RESERVATION	Filtratio	INITIATED AT FILTERED: Y IN Equipment Typ DUPLICATE C INTENDE ANALYSIS AN	N Dr EQUIPM ED ND/OR	FILTER S ENT BLANK: SAMPLING EQUIPMENT	AT: 0835 SIZE: μm Y N SAMPLE PUMP FLOW RATE	
PWSFL TUBING WELL (feet): ONTAMINATION PLE CONTAINER # CONTAINERS	H2 N: PUN SPECIFICA MATERIAL CODE	ATION VOLUME	TUBING MATERIAL C TUB PRESERVAT USED HCL None	CODE: PE BING No (SAMPLE PR TIVE T ADDE Pre	(replaced) RESERVATION TOTAL VOL D IN FIELD (ml efilled by lab None	Filtratio	INITIATED AT FILTERED: Y IN Equipment Tyj DUPLICATE C INTENDE ANALYSIS AN METHOL	N Dr EQUIPM ED ND/OR	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	AT: 0835 SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute)	
PWSFL TUBING WELL (feet): ONTAMINATION PLE CONTAINER # CONTAINERS 3	H2 N: PUN SPECIFICA MATERIAL CODE CG	ATION VOLUME 40mL	TUBING MATERIAL C TUB PRESERVAT USED HCL	CODE: PE BING No (SAMPLE PR TIVE T ADDE Pre	(replaced) RESERVATION FOTAL VOL D IN FIELD (ml efilled by lab	Filtratio	INITIATED AT FILTERED: Y in Equipment Tyj DUPLICATE o INTENDE ANALYSIS AN METHOD 8260	ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	AT: <u>0835</u> SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100	
PWSFL TUBING WELL (feet): ONTAMINATION PLE CONTAINER # CONTAINERS 3 3	H2 N: PUN SPECIFICA MATERIAL CODE CG CG	ATION VOLUME 40mL 40mL	TUBING MATERIAL C TUB PRESERVAT USED HCL None	CODE: PE BING No (SAMPLE PR TIVE T ADDE Pre	(replaced) RESERVATION TOTAL VOL D IN FIELD (ml efilled by lab None	Filtratio	INITIATED AT FILTERED: Y IN Equipment Tyj DUPLICATE C INTENDE ANALYSIS AN METHOD 8260 8011	ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	AT: <u>0835</u> SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100	
PWSFL TUBING WELL (feet): ONTAMINATION PLE CONTAINER # CONTAINERS 3 3 1	42 N: PUN SPECIFICA MATERIAL CODE CG CG PE	ATION VOLUME 40mL 40mL 500mL	TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	CODE: PE BING No (SAMPLE PR TIVE T ADDE Pre	(replaced) RESERVATION FOTAL VOL ED IN FIELD (ml efilled by lab None efilled by lab	Filtratio	INITIATED AT FILTERED: Y in Equipment Tyj DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals	ED ND/OR D	FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	AT: <u>0835</u> SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200	
	ACITY (Gallons SIDE DIA. CAPA	if applicable) NT VOLUME PURGE: 1 EQU if applicable) MP OR TUBING WELL (feet): 4 2 VOLUME CUMUL. PURGED PURGED (gallons) (gallons) Ø · 75 Ø · 75 Ø · 25 1 · 25 ACITY (Gallons Per Foot): SIDE DIA. CAPACITY (Gal./	If applicable) = (NT VOLUME PURGE: 1 EQUIPMENT VOL if applicable) MP OR TUBING I 2 WELL (feet): I 2 VOLUME PURGE PURGED (gallons) (gallons) (gallons) 0.75 0.75 0.75 1.25 0.05 0.25 1.25 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	If applicable)= (\mathcal{H}_{c} (\mathcal{L} 3TVOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLif applicable)= 0.0 gMP OR TUBING WELL (feet):VOLUME PURGED (gallons)VOLUME PURGED (gallons)(UNUL VOLUME PURGED (gallons)DEPTH IN WELL (feet):DEPTH TO PURGED (gallons)(Gallons)(gallons) <td cols<="" th=""><th>If applicable)= (46.63 feet -NT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUEif applicable)= 0.0 gallons + (0.MP OR TUBING WELL (feet):VOLUME PURGED (gallons)(DALL OR TUBING DEPTH IN WELL (feet):URGE PURGED RATE (gallons)(DALL OR TUBING DEPTH IN WELL (feet):UPURGE PURGED (gallons)(gallons)(gallons)(gallons)(gallons)(gallons)(gallons)(gallons)(J. 2(J. 2(J. $2$0.05/ 6.63/ $1.25$$0.05$/ 6.63(J. 80OOOOOOOOOOOOOOOOOOOOOOOOO</th><th>$= (46.63 \text{ feet} - \frac{1}{125} \text{ feet} - \frac{1}{12$</th><th>E (46.63 feet -feet) xT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TU= 0.0 gallons + (0.0026 gallons/foot XMP OR TUBING WELL (feet): $4/2$PURGING INITIATED AT: 0750VOLUME VOLUME PURGED (gallons)DEPTH IN WELL (feet): $4/2$PURGING INITIATED AT: 0750VOLUME VOLUME PURGED (gallons)PURGE RATE (feet)PURGE MATER (feet)PURGING INITIATED AT: 0750VOLUME VOLUME PURGED (gallons)PURGE RATE (gallons)PURGE (feet)PURGEN (feet)0.75< $0.75$$0.05$/$6.63$$4.66$$24.67$$95$$0.75$$0.75$$0.05$$/6.63$$4.66$$24.70$$93$$0.25$$1.25$$0.05$$/6.63$$4.60$$24.71$$93$$0.25$$1.25$$0.05$$/6.63$$4.60$$24.71$$93$$0.25$$1.25$$0.05$$16.63$$4.60$$24.71$$93$$0.25$$1.25$$0.05$$16.63$$4.60$$24.71$$93$$0.25$$1.25^{\circ}=0.02$$1^{\circ}=0.04$$1.25^{\circ}=0.06$$2^{\circ}=0.16$$3^{\circ}=0.37$SUDE DIA. CAPACITY (Gal./FL):$1/8^{\circ}=0.0006$$3/16^{\circ}=0.0014$$1/4^{\circ}=0.0026$$5/16^{\circ}=0.014$</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>if applicable) = $(46.63 \text{ feet} - \frac{\text{feet}}{\text{feet}} \times 0.16 \text{ gallons/foot} =$ TV OLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME if applicable) = 0.0 gallons + (0.0026 gallons/foot X 50 feet) + 0.12 gallons = MP OR TUBING UCUML DEPTH IN WELL (feet): U2 INITIATED AT: 0750 ENDED AT: 06.15 TOTAL VC PURGED PURGED RATE WATER (standard units) CC) (uS/CM) OXYGEN (mg/L) (NTUS) (descrift) (gallons) (gpm) (feet) (feet): U2 INITIATED AT: 0750 INITIATED AT: 0750 (mg/L) (NTUS) (descrift) 0.75 0.75 0.05 16.63 4/.68 24/.67 95 1.55 10 C.16 0.05 16.63 4/.68 24/.68 24/.67 95 1.55 10 C.16 0.75 0.05 16.63 4/.68 24/.69 24/.71 93 1.34 12 C.16 0.75 1.25 1.25 16.65 16.63 4/.69 24/.71 93 1.28 12 C.16 0.75 1.25 1.25 16.65 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 1.25 16.65 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 1.25 16.65 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.05 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.05 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.05 16.65 4.128 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; SDE DIA. CAPACITY (Gal/FL): 18" = 0.0006; 316" = 0.0014; 14" = 0.0026; 516" = 0.004; 38" = 0.006; 12" = 0.010; EQUIPMENT CODES: B = Baller, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; 0 = 0</br></th></td>	<th>If applicable)= (46.63 feet -NT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUEif applicable)= 0.0 gallons + (0.MP OR TUBING WELL (feet):VOLUME PURGED (gallons)(DALL OR TUBING DEPTH IN WELL (feet):URGE PURGED RATE (gallons)(DALL OR TUBING DEPTH IN WELL (feet):UPURGE PURGED (gallons)(gallons)(gallons)(gallons)(gallons)(gallons)(gallons)(gallons)(J. 2(J. 2(J. $2$0.05/ 6.63/ $1.25$$0.05$/ 6.63(J. 80OOOOOOOOOOOOOOOOOOOOOOOOO</th> <th>$= (46.63 \text{ feet} - \frac{1}{125} \text{ feet} - \frac{1}{12$</th> <th>E (46.63 feet -feet) xT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TU= 0.0 gallons + (0.0026 gallons/foot XMP OR TUBING WELL (feet): $4/2$PURGING INITIATED AT: 0750VOLUME VOLUME PURGED (gallons)DEPTH IN WELL (feet): $4/2$PURGING INITIATED AT: 0750VOLUME VOLUME PURGED (gallons)PURGE RATE (feet)PURGE MATER (feet)PURGING INITIATED AT: 0750VOLUME VOLUME PURGED (gallons)PURGE RATE (gallons)PURGE (feet)PURGEN (feet)0.75< $0.75$$0.05$/$6.63$$4.66$$24.67$$95$$0.75$$0.75$$0.05$$/6.63$$4.66$$24.70$$93$$0.25$$1.25$$0.05$$/6.63$$4.60$$24.71$$93$$0.25$$1.25$$0.05$$/6.63$$4.60$$24.71$$93$$0.25$$1.25$$0.05$$16.63$$4.60$$24.71$$93$$0.25$$1.25$$0.05$$16.63$$4.60$$24.71$$93$$0.25$$1.25^{\circ}=0.02$$1^{\circ}=0.04$$1.25^{\circ}=0.06$$2^{\circ}=0.16$$3^{\circ}=0.37$SUDE DIA. CAPACITY (Gal./FL):$1/8^{\circ}=0.0006$$3/16^{\circ}=0.0014$$1/4^{\circ}=0.0026$$5/16^{\circ}=0.014$</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>if applicable) = $(46.63 \text{ feet} - \frac{\text{feet}}{\text{feet}} \times 0.16 \text{ gallons/foot} =$ TV OLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME if applicable) = 0.0 gallons + (0.0026 gallons/foot X 50 feet) + 0.12 gallons = MP OR TUBING UCUML DEPTH IN WELL (feet): U2 INITIATED AT: 0750 ENDED AT: 06.15 TOTAL VC PURGED PURGED RATE WATER (standard units) CC) (uS/CM) OXYGEN (mg/L) (NTUS) (descrift) (gallons) (gpm) (feet) (feet): U2 INITIATED AT: 0750 INITIATED AT: 0750 (mg/L) (NTUS) (descrift) 0.75 0.75 0.05 16.63 4/.68 24/.67 95 1.55 10 C.16 0.05 16.63 4/.68 24/.68 24/.67 95 1.55 10 C.16 0.75 0.05 16.63 4/.68 24/.69 24/.71 93 1.34 12 C.16 0.75 1.25 1.25 16.65 16.63 4/.69 24/.71 93 1.28 12 C.16 0.75 1.25 1.25 16.65 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 1.25 16.65 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 1.25 16.65 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.05 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.05 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.05 16.65 4.128 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; SDE DIA. CAPACITY (Gal/FL): 18" = 0.0006; 316" = 0.0014; 14" = 0.0026; 516" = 0.004; 38" = 0.006; 12" = 0.010; EQUIPMENT CODES: B = Baller, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; 0 = 0</br></th>	If applicable)= (46.63 feet -NT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUEif applicable)= 0.0 gallons + (0.MP OR TUBING WELL (feet):VOLUME PURGED (gallons)(DALL OR TUBING DEPTH IN WELL (feet):URGE PURGED RATE (gallons)(DALL OR TUBING DEPTH IN WELL (feet):UPURGE PURGED (gallons)(gallons)(gallons)(gallons)(gallons)(gallons)(gallons)(gallons)(J. 2 (J. 2 (J. 2 0.05/ 6.63 / 1.25 0.05 / 6.63 (J. 80 OOOOOOOOOOOOOOOOOOOOOOOOO	$= (46.63 \text{ feet} - \frac{1}{125} \text{ feet} - \frac{1}{12$	E (46.63 feet -feet) xT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TU= 0.0 gallons + (0.0026 gallons/foot XMP OR TUBING WELL (feet): $4/2$ PURGING INITIATED AT: 0750VOLUME VOLUME PURGED (gallons)DEPTH IN WELL (feet): $4/2$ PURGING INITIATED AT: 0750VOLUME VOLUME PURGED (gallons)PURGE RATE (feet)PURGE MATER (feet)PURGING INITIATED AT: 0750VOLUME VOLUME PURGED (gallons)PURGE RATE (gallons)PURGE (feet)PURGEN (feet)0.75< 0.75 0.05 / 6.63 4.66 24.67 95 0.75 0.75 0.05 $/6.63$ 4.66 24.70 93 0.25 1.25 0.05 $/6.63$ 4.60 24.71 93 0.25 1.25 0.05 $/6.63$ 4.60 24.71 93 0.25 1.25 0.05 16.63 4.60 24.71 93 0.25 1.25 0.05 16.63 4.60 24.71 93 0.25 $1.25^{\circ}=0.02$ $1^{\circ}=0.04$ $1.25^{\circ}=0.06$ $2^{\circ}=0.16$ $3^{\circ}=0.37$ SUDE DIA. CAPACITY (Gal./FL): $1/8^{\circ}=0.0006$ $3/16^{\circ}=0.0014$ $1/4^{\circ}=0.0026$ $5/16^{\circ}=0.014$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	if applicable) = $(46.63 \text{ feet} - \frac{\text{feet}}{\text{feet}} \times 0.16 \text{ gallons/foot} =$ TV OLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME if applicable) = 0.0 gallons + (0.0026 gallons/foot X 50 feet) + 0.12 gallons = MP OR TUBING UCUML DEPTH IN WELL (feet): U2 INITIATED AT: 0750 ENDED AT: 06.15 TOTAL VC PURGED PURGED RATE WATER (standard units) CC) (uS/CM) OXYGEN (mg/L) (NTUS) (descrift) (gallons) (gpm) (feet) (feet): U2 INITIATED AT: 0750 INITIATED AT: 0750 (mg/L) (NTUS) (descrift) 0.75 0.75 0.05 16.63 4/.68 24/.67 95 1.55 10 C.16 0.05 16.63 4/.68 24/.68 24/.67 95 1.55 10 C.16 0.75 0.05 16.63 4/.68 24/.69 24/.71 93 1.34 12 C.16 0.75 1.25 1.25 16.65 16.63 4/.69 24/.71 93 1.28 12 C.16 0.75 1.25 1.25 16.65 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 1.25 16.65 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 1.25 16.65 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.25 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.05 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.05 16.65 4.189 24/.71 93 1.28 12 C.16 0.25 1.25 0.05 16.65 4.128 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; SDE DIA. CAPACITY (Gal/FL): 18" = 0.0006; 316" = 0.0014; 14" = 0.0026; 516" = 0.004; 38" = 0.006; 12" = 0.010;

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-771	RA		SAMPLE	ID: MI	1-22RA	1 Omni Way, St.			May 2014	
	/ ///					SING DAT					
	(inches): 2.0		TER (inches)		L SCREEN	NTERVAL et to 23 fe	STATIC DI	R (feet): 141,	89 OR	RGE PUMP T BAILER: p	YPE peristaltic
(only fill out	if applicable)		= (feet -	14.89	feet) X		allons/foot	= ELL VOLUME	gallons
(= 0.0 g	allons + (0.	0026 gallon	s/foot X	feet)	+ 0.12	gallons =	gallons
	MP OR TUBING WELL (feet):	19		MP OR TUBING	19	PURGING	DAT: 0725	PURGING ENDED AT:	0825	TOTAL VO PURGED (LUME gallons): 3. 6
TIME	VOLUME PURGED (gallons)	CUMÚL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDI (NTUs)		
0815	3	3	0.06	15.08	5.12	22.70	360	0.77	1	clea	- 44,3
0820	0.3	3.3	0.06		5.14	22.68	355	0.71	1.1	clea	
0.675	0.3	3.6	0.00			22.68	357	0.67	0.6	c /er	
TUBING IN		ACITY (Gal./		1" = 0.04; 0.0006; 3/16" BP = Bladder P	= 0.0014; ump; E	1/4" = 0.0026 SP = Electric S	5/16" = 0.0 ubmersible Pum	04; 3/8" = 0	5" = 1.02; .006; 1/2 eristaltic Pum	6 " = 1.47; " = 0.010; p; O = C	12" = 5.88 5/8" = 0.016 ther (Specify)
PURGING E					SAMP	LING DA	ТА				
SAMPLED I Joe Terry / I		FFILIATION:		SAMPLER(S)		00	in	SAMPLING INITIATED AT	Let B		AT: 0840
SAMPLED I Joe Terry / I PUMP OR 1	TUBING	FFILIATION:		SAMPLER(S) TUBING MATERIAL CO	SIGNATURE	00	FIELD-F	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty	Q	SAMPLIN ENDED / FILTER S	AT: 0840
SAMPLED I Joe Terry / I PUMP OR 1 DEPTH IN V	TUBING	19	IP No	TUBING	SIGNATURE	00	FIELD-F	INITIATED AT	pe:	ENDED A	AT: 0840
SAMPLED I Joe Terry / I PUMP OR T DEPTH IN V FIELD DEC	PWSFL TUBING WELL (feet):	19 DN: PUN		TUBING MATERIAL CO TUBI	SIGNATURE DDE: PE NG No (i	(S): Joe U	FIELD-F Filtration	INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE O INTENDE	pe: or EQUIPME	ENDED A FILTER S NT BLANK: SAMPLING	AT: 0840 IZE:μm Y ① SAMPLE PUMP
SAMPLED I Joe Terry / I PUMP OR 1 DEPTH IN V FIELD DEC SAMP	PWSFL TUBING VELL (feet): ONTAMINATIC	N: PUN		TUBING MATERIAL CO TUBI	SIGNATURE DDE: PE NG No (i SAMPLE PR VE T	(S): Que (replaced) ESERVATION	FIELD-F Filtration	INITIATED AT FILTERED: Y n Equipment Tyj DUPLICATE (INTENDE ANALYSIS AT METHO	Dr EQUIPME	ENDED A FILTER S	AT: <u>0840</u> HZE:μm Υ (Φ
SAMPLED I Joe Terry / I PUMP OR 1 DEPTH IN V FIELD DEC SAMPLE ID CODE	PWSFL TUBING WELL (feet): ONTAMINATIC LE CONTAINE #	DN: PUN R SPECIFICA MATERIAL	ATION	TUBING MATERIAL CO TUBI PRESERVATI	SIGNATURE DDE: PE NG No (I SAMPLE PR VE T ADDE	replaced) ESERVATION OTAL VOL	FIELD-F Filtration	INITIATED AT	Dr EQUIPME	ENDED A FILTER S NT BLANK: GAMPLING QUIPMENT	AT: 0840 IZE:µm Y (Ф SAMPLE PUMP FLOW RATE
SAMPLED I Joe Terry / I PUMP OR 1 DEPTH IN V FIELD DEC SAMPLE ID CODE	PWSFL TUBING VELL (feet): ONTAMINATIC LE CONTAINE # CONTAINERS	DN: PUN R SPECIFIC/ MATERIAL CODE	ATION VOLUME	TUBING MATERIAL CO TUBI PRESERVATI USED	SIGNATURE DDE: PE NG No (I SAMPLE PR VE T ADDE	replaced) ESERVATION OTAL VOL D IN FIELD (m	FIELD-F Filtration	INITIATED AT FILTERED: Y n Equipment Tyj DUPLICATE (INTENDE ANALYSIS AT METHO	Dr EQUIPME	ENDED A FILTER S NT BLANK: GAMPLING QUIPMENT CODE	AT: 0840 IZE:μm Y D SAMPLE PUMP FLOW RATE (mL per minute)
SAMPLED B Joe Terry / F PUMP OR T DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	PWSFL TUBING VELL (feet): ONTAMINATIC LE CONTAINE CONTAINERS 3	DN: PUN R SPECIFIC/ MATERIAL CODE CG	ATION VOLUME 40mL	TUBING MATERIAL CO TUBI PRESERVATI USED HCL	SIGNATURE DDE: PE NG No () SAMPLE PR VE T ADDE Pre	(S): Que (replaced) ESERVATION OTAL VOL D IN FIELD (m filled by lab	FIELD-F Filtration	INITIATED AT FILTERED: Y In Equipment Tyj DUPLICATE o INTENDE ANALYSIS AT METHO 8260	DE: DF EQUIPME ED S ND/OR E D	ENDED A FILTER S NT BLANK: GAMPLING QUIPMENT CODE RFPP	AT: 0840 IZE:μm Y ① SAMPLE PUMP FLOW RATE (mL per minute) <100
SAMPLED B Joe Terry / F PUMP OR T DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	PWSFL TUBING VELL (feet): ONTAMINATIC LE CONTAINE CONTAINERS 3 3 3	N: PUN R SPECIFIC/ MATERIAL CODE CG CG	ATION VOLUME 40mL 40mL	TUBING MATERIAL CO TUBI PRESERVATI USED HCL None	SIGNATURE DDE: PE NG No () SAMPLE PR VE ADDE Pre Pre	(S): Que (replaced) ESERVATION OTAL VOL D IN FIELD (m filled by lab None	FIELD-F Filtration	INITIATED AT FILTERED: Y n Equipment Tyj DUPLICATE (ANALYSIS AT METHO 8260 8011	DE: DF EQUIPME ED S ND/OR E D	ENDED / FILTER S NT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP	AT: 0840 IZE:μm Y ① SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
SAMPLED B Joe Terry / F PUMP OR T DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	PWSFL TUBING NELL (feet): ONTAMINATIO LE CONTAINE CONTAINERS 3 3 1	N: PUN R SPECIFIC/ MATERIAL CODE CG CG PE	ATION VOLUME 40mL 40mL 500mL	TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃	SIGNATURE DDE: PE NG No () SAMPLE PR VE ADDE Pre Pre	(S): Que (replaced) ESERVATION OTAL VOL D IN FIELD (m filled by lab None	FIELD-F Filtration	INITIATED AT FILTERED: Y IN Equipment Tyj DUPLICATE C INTENDE ANALYSIS AT METHO 8260 8011 Metals	DDE DDE DD/OR E D	ENDED / FILTER S NT BLANK: GAMPLING QUIPMENT CODE RFPP RFPP APP	AT: 0840 IZE:μm Y ① SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 225
SAMPLED I Joe Terry / I PUMP OR T DEPTH IN V FIELD DEC SAMPLE ID CODE WW-77%/ REMARKS:	PWSFL TUBING VELL (feet): ONTAMINATIO LE CONTAINERS 3 3 1 1 1 1 1	DN: PUM R SPECIFIC/ MATERIAL CODE CG CG PE PE PE	ATION VOLUME 40mL 40mL 500mL 125mL	TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄	SIGNATURE DDE: PE NG No () SAMPLE PR VE T ADDE Pre Pre	(S): Que (replaced) ESERVATION OTAL VOL D IN FIELD (m filled by lab filled by lab	FIELD-F Filtration	INITIATED AT FILTERED: Y In Equipment Tyj DUPLICATE of ANALYSIS AT METHO 8260 8011 Metals NH ₃	NO ₃	ENDED / FILTER S NT BLANK: GAMPLING QUIPMENT CODE RFPP RFPP APP APP	AT: 0840 IZE:μm Y ① SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <225 225 225
SAMPLED I Joe Terry / I PUMP OR T DEPTH IN V FIELD DEC SAMPLE ID CODE MW-73%/ REMARKS:	PWSFL TUBING VELL (feet): ONTAMINATIC LE CONTAINERS 3 3 1 1 1 1 1 1 4 CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	N: PUN R SPECIFIC/ MATERIAL CODE CG CG CG PE PE PE PE	ATION VOLUME 40mL 500mL 125mL 250mL 250mL	TUBING MATERIAL CO TUBI PRESERVATI USED HCL None HNO ₃ H ₂ SO ₄ None	SIGNATURE DDE: PE NG No () SAMPLE PR VE T ADDE Pre Pre	(S): Que (replaced) ESERVATION OTAL VOL D IN FIELD (m filled by lab None filled by lab filled by lab None	FIELD-F Filtration	INITIATED AT FILTERED: Y In Equipment Tyj DUPLICATE C INTENDE ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I Total Phen	NO ₃	ENDED / FILTER S NT BLANK: CAMPLING QUIPMENT CODE RFPP APP APP APP APP	AT: 0840 IZE:μm Y ① SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 <225 225 225

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Sec. 6 1 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6		ACs Facility ID	: 89544)	1000		LOCATION: 150	1 Omni Way, S	t. Cloud, Osceola	County, Fl	orida, 34773	
WELL NO	: MW-72	RB		SAMPL	E IDMARZ	- mw - 2	2KB		DATE:	6 May 2014	
					PUF	GING DA	TA				
WELL	R (inches): 2.0	TUBIN	IG ETER (inches):			N INTERVAL	STATIC	DEPTH ER (feet): 14.	15 PL	JRGE PUMP T	
		1 WELL VO	DLUME = (TO	TAL WELL DE	PTH - 5	feet to 46 fe	OWATER) X	WELL CAPACI		R BAILER:	peristaltic
	ut if applicable)		= (feet -					5	
EQUIPME	NT VOLUME P	URGE: 1 EQ	UIPMENT VOI	. = PUMP VO	LUME + (TI	JBING CAPACIT	feet) X TY X T	0.16 g UBING LENGTH)	+ FLOW C		gallons
(only fill or	ut if applicable)			= 0.0	gallons + (0.0026 gallo	ns/foot X	55 feet)	+ 0.12	gallons =	gallons
INITIAL P	UMP OR TUBIN		FINAL PU	MP OR TUBIN	G	PURGINO		PURGING		TOTAL VO	
DEPTH IN	WELL (feet):	41	DEPTH IN	WELL (feet):	41	INITIATE	DAT: 0720		0755	PURGED (gallons): 1,75
TIME	VOLUME PURGED	CUMUL. VOLUME PURGED	PURGE RATE	DEPTH TO WATER	pH (standar	TEMP.	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBID (NTUs		
	(gallons)	(gallons)	(gpm)	(feet)	units)					, (
0745	1.25	1.25	0.05	14.89	4.40	22.97	105	0.99	2.6	Cler	and the second sec
0750	0.25	1.5	0.05	14.89	4.40		106	1.06	2.2	C leus	- 41.2
0755	0.75	1.75	0.05	14.89	4.40	22.91	106	1.05	2.1	Clea	v 40.6
				-							
TUBING I	PACITY (Gallon NSIDE DIA. CAF	PACITY (Gal.)		1" = 0.04; .0006; 3/16' BP = Bladder	1.25 " = 0 " = 0.0014; Pump;		6; 5/16" = 0	.004; 3/8" = 0	5" = 1.02; .006; 1/. eristaltic Put	6" = 1.47; 2" = 0.010; mp; O = C	12" = 5.88 5/8" = 0.016 Other (Specify)
TUBING I	NSIDE DIA. CAR	PACITY (Gal.)	/Ft.): 1/8" = 0	.0006; 3/16	" = 0.0014; Pump;	1/4" = 0.0026	5; 5/16" = 0. Submersible Pu	.004; 3/8" = 0	.006; 1/	2" = 0.010;	5/8" = 0.016
TUBING II PURGING SAMPLED	BY (PRINT) / A	PACITY (Gal.) ODES: E	/Ft.): 1/8" = 0	.0006; 3/16 BP = Bladder	" = 0.0014; Pump; SAM	1/4" = 0.0026 ESP = Electric \$	6; 5/16" = 0. Submersible Pu	.004; 3/8" = 0	.006; 1/. eristaltic Pur	2" = 0.010; mp; O = C	5/8" = 0.016 Other (Specify)
SAMPLED Doe Terry	NSIDE DIA. CAR EQUIPMENT C BY (PRINT) / A PWSFL TUBING	PACITY (Gal.) ODES: E	/Ft.): 1/8" = 0	0006; 3/16 BP = Bladder SAMPLER(S TUBING	" = 0.0014; Pump; SAM) SIGNATU	1/4" = 0.0026 ESP = Electric S PLING DA	5; 5/16" = 0 Submersible Pu TA Tay FIELD	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y	.006; 1/. eristaltic Pur 1:0755 (N)	2" = 0.010; mp; O = C SAMPLIN ENDED	5/8" = 0.016 Other (Specify)
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL	PACITY (Gal.,	/Ft.): 1/8" = 0	.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C	" = 0.0014; Pump; SAM) SIGNATU :ODE: PE	1/4" = 0.0026 ESP = Electric S PLING DA	5; 5/16" = 0 Submersible Pu TA Tay FIELD	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT	006; 1/ eristaltic Pur 0753 N pe:	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: <u>0 B/0</u> SIZE:μm
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE	NSIDE DIA. CAF EQUIPMENT C B BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIO	PACITY (Gal.) CODES: E FFILIATION: DN: PUM	/Ft.): 1/8" = 0 3 = Bailer; // MP No	.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C	" = 0.0014; Pump; SAM) SIGNATU ::ODE: PE BING N	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe	5: 5/16" = 0. Submersible Pu TA Ta FIELD Filtrati	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y on Equipment Typ DUPLICATE of	11/2006; 11/2007 Pristaltic Purion Price 0 7555 (N) Price 2007 Price 2007	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK:	5/8" = 0.016 Other (Specify) NG AT: 0.8/0 SIZE:μm Υ Ν
CUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	ACITY (Gal.) CODES: E AFFILIATION: DN: PUM ER SPECIFIC MATERIAL	/Ft.): 1/8" = 0 3 = Bailer; // / MP No ATION	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUB PRESERVAT	" = 0.0014; Pump; SAM) SIGNATU : : : : : : : : : : : : :	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL	5; 5/16" = 0. Submersible Pu TA Ta FIELD Filtrati	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ODEQUIPMENT Tyj DUPLICATE C INTENDE ANALYSIS AT	1006; 1/ eristaltic Pur D 255 Nor EQUIPMI ED ND/OR	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: 08/00 SIZE:μm Y N SAMPLE PUMP FLOW RATE
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	ACITY (Gal.) CODES: E FFILIATION: DN: PUM ER SPECIFIC, MATERIAL CODE	/Ft.): 1/8" = 0 B = Bailer; // MP No ATION VOLUME	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUB PRESERVAT USED	" = 0.0014; Pump; SAM) SIGNATU CODE: PE BING N SAMPLE FIVE ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m	5; 5/16" = 0. Submersible Pu TA Ta FIELD FIELD FILTRATI N FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT INITIATED AT O D-FILTERED: Y INTENDE ANALYSIS AT METHOD	1006; 1/ eristaltic Pur D 255 (N) pe: or EQUIPMI ED ND/OR	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: 08/00 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute)
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS CONTAINERS 3	ACITY (Gal.) CODES: E DEFILIATION: DN: PUM ER SPECIFIC MATERIAL CODE CG	/Ft.): 1/8" = 0 3 = Bailer; // // No ATION VOLUME 40mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUE PRESERVAT USED HCL	" = 0.0014; Pump; SAM) SIGNATU CODE: PE BING N SAMPLE FIVE ADD	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m Prefilled by lab	5; 5/16" = 0. Submersible Pu TA Ta FIELD FIELD FILTRATI N FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT P-FILTERED: Y on Equipment Tyr DUPLICATE of ANALYSIS AN METHOD 8260	1006; 1/ eristaltic Pur D 255 (N) pe: or EQUIPMI ED ND/OR	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP	5/8" = 0.016 Other (Specify) NG AT: 08/0 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3	ACITY (Gal.) CODES: E SFFILIATION: DN: PUM ER SPECIFIC/ MATERIAL CODE CG CG	/Ft.): 1/8" = 0 3 = Bailer; // / MP No ATION VOLUME 40mL 40mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUE PRESERVAT USED HCL None	" = 0.0014; Pump; SAM) SIGNATU :ODE: PE SING N SAMPLE TIVE ADD F	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (rr Prefilled by lab None	5; 5/16" = 0. Submersible Pu TA Ta FIELD Filtrati N FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ODELICATE C INTENDE ANALYSIS AN METHOD 8260 8011	1006; 1/ eristaltic Pur Pr: 0 255 (N) pe: or EQUIPMI ED ND/OR D	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: 08/00 SIZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
FUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1	ACITY (Gal.) CODES: E FFILIATION: DN: PUM ER SPECIFIC, MATERIAL CODE CG CG PE	/Ft.): 1/8" = 0 3 = Bailer; // P No ATION VOLUME 40mL 40mL 500mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUE PRESERVAT USED HCL None HNO ₃	" = 0.0014; Pump; SAM) SIGNATU : : : : : : : : : : : : :	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m Prefilled by lab Prefilled by lab	5; 5/16" = 0. Submersible Pu TA Tay FIELD FILTATI N FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y on Equipment Typ DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals	1006; 1/ eristaltic Pur Pr: 0 255 (N) pe: or EQUIPMI ED ND/OR D	2" = 0.010; mp; O = C SAMPLIN ENDED, FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: 0 8/00 SIZE: µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1	ACITY (Gal./ CODES: E SEFILIATION: DN: PUM ER SPECIFIC/ MATERIAL CODE CG CG CG PE PE	/Ft.): 1/8" = 0 3 = Bailer; // // No ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUE PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	" = 0.0014; Pump; SAM) SIGNATU : : : : : : : : : : : : :	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m Prefilled by lab Prefilled by lab	5; 5/16" = 0. Submersible Pu TA Tay FIELD FILTATI N FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT >-FILTERED: Y On Equipment Typ DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals NH3	11/2015	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0.08/00 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
FUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1	PACITY (Gal./ CODES: E SFFILIATION: DN: PUM ER SPECIFIC/ MATERIAL CODE CG CG PE PE PE PE	<pre>//Ft.): 1/8" = 0 B = Bailer; // // MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL</pre>	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUE PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014; Pump; SAM) SIGNATU :ODE: PE SING N SAMPLE I TIVE ADD F F	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (rr Prefilled by lab Prefilled by lab Prefilled by lab	S; 5/16" = 0. Submersible Pu TA Tay FIELD Filtrati	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals NH ₃ TDS, CI, I	NO ₃	2" = 0.010; mp; O = C SAMPLIN ENDED / FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 08/00 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE WW JJRI KEMARKS	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A / PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	ACITY (Gal.) CODES: E SEFILIATION: DN: PUM ER SPECIFIC MATERIAL CODE CG CG CG PE PE	/Ft.): 1/8" = 0 3 = Bailer; // // No ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUE PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	" = 0.0014; Pump; SAM) SIGNATU :ODE: PE SING N SAMPLE I TIVE ADD F F	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m Prefilled by lab Prefilled by lab	S; 5/16" = 0. Submersible Pu TA Tay FIELD Filtrati	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT >-FILTERED: Y On Equipment Typ DUPLICATE of ANALYSIS AN METHOD 8260 8011 Metals NH3	NO ₃	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0.08/00 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE WW-72RI WW-72RI REMARKS weather: odor: ~000	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2	PACITY (Gal./ CODES: E SFFILIATION: DN: PUM ER SPECIFIC/ MATERIAL CODE CG CG PE PE PE PE	<pre>//Ft.): 1/8" = 0 B = Bailer; // // MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL</pre>	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUE PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014; Pump; SAM) SIGNATU :ODE: PE BING N SAMPLE I TIVE ADI F F F	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m Prefilled by lab Prefilled by lab Prefilled by lab Prefilled by lab	S; 5/16" = 0 Submersible Pu TA Tay FIELD FILTATI N FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT INITIATED AT DUPLICATE OF DUPLICATE OF INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N Total Phene	.006; 1/. eristaltic Pure eristaltic Pure r: 0.7555 pe: or EQUIPMI D D ND/OR D S NO3 nols	2" = 0.010; mp: O = C SAMPLIN ENDED, FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: <u>0</u> B/C SIZE:µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 200 200 200
TUBING II PURGING SAMPLED Joe Terry PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE WW-72RI WW-72RI REMARKS weather: odor: ~000	NSIDE DIA. CAF EQUIPMENT C PBY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1 1 3 : CONTAINERS 5 3 3	PACITY (Gal./ CODES: E SFFILIATION: DN: PUM ER SPECIFIC/ MATERIAL CODE CG CG PE PE PE PE	(Ft.): 1/8" = 0 B = Bailer; MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL 250mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C TUE PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014; Pump; SAM) SIGNATU :ODE: PE BING N SAMPLE I TIVE ADI F F F	1/4" = 0.0026 ESP = Electric S PLING DA RE(S): Joe o (replaced) PRESERVATION TOTAL VOL DED IN FIELD (m Prefilled by lab Prefilled by lab Prefilled by lab Prefilled by lab	S; 5/16" = 0. Submersible Pu TA Tay FIELD Filtrati	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT INITIATED AT DUPLICATE OF DUPLICATE OF INTENDE ANALYSIS AN METHOD 8260 8011 Metals NH3 TDS, CI, N Total Phene	.006; 1/. eristaltic Pure eristaltic Pure r: 0.253 pe: pr ED ND/OR D NO3 nols	2" = 0.010; mp; O = C SAMPLIN ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 08/0 SIZE: μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DIAMETER	R (inches): 2.0	DIAME	IG ETER (inches):		PTH: 17 f	eet to 27 fe	et TO WATE	DEPTH ER (feet): / 7. 4		RGE PUMP T	YPE
	t if applicable)	1 WELL VC	DLUME = (TOT = (TAL WELL DEF	PTH - ST	ATIC DEPTH TO	OWATER) X feet) X	WELL CAPAC	ITY	= 1-6	gallons
	NT VOLUME PU t if applicable)	URGE: 1 EQ	UIPMENT VOL		LUME + (TU	BING CAPACIT	Y X TI	UBING LENGTH) + FLOW C	ELL VOLUME	
	UMP OR TUBINO WELL (feet):	G 23		MP OR TUBINO WELL (feet):	G 23	PURGING	DAT: 09/0	PURGING ENDED AT:	0955	TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDI (NTUs	TY COLC	R ORP
0945	1.75	1.75	0.05	17.83	5.25	25.56	639	0,86	2.2	cle	4 2.0
0950	0.25	2	0.05	17.83	5.74	25.56	658	0.77	1.5	clew	- 0
0955	0.25	2,25	0.05	17.83	5.26	25.64	651	0.66	1.5	cleur	
OURGING IN PURGING SAMPLED	PACITY (Gallon: ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL / Jo TUBING	FFILIATION:	/Ft.): 1/8" = 0. 3 = Bailer;	BP = Bladder F SAMPLER(S)	SAMP	1/4" = 0.0026 SP = Electric S PLING DA	5/16" = 0. Submersible Pur TA	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT	eristaltic Pur	SAMPLIN ENDED A	AT: 1010
SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL / Jo TUBING WELL (feet):	FFILIATION: Lake P 23	/Ft.): 1/8" = 0. 3 = Bailer; ωSFL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	e = 0.0014; Pump; I SAMF SIGNATUR ODE: PE	1/4" = 0.0026 ESP = Electric S PLING DA E(S): Join (5/16" = 0. Submersible Pur TA	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty	r: 0955	2" = 0.010; mp; O = O SAMPLIN ENDED A FILTER S	5/8" = 0.016 Other (Specify) IG AT: [D]O DIZE:μm
SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL / Jo TUBING	FFILIATION: Lake P 23 DN: PUN	/Ft.): 1/8" = 0. 3 = Bailer; いらFし MP No	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	2 = 0.0014; Pump; I SAMF SIGNATUR ODE: PE ING No	1/4" = 0.0026 SP = Electric S PLING DA	5/16" = 0. Submersible Pur TA FIELD Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y	1/2 eristaltic Pur T: 0955 pe: or EQUIPME	2" = 0.010; mp; O = O SAMPLIN ENDED A FILTER S	5/8" = 0.016 Other (Specify) IG AT: [0]0
SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL / Jo TUBING WELL (feet): CONTAMINATIO	FFILIATION: Lake P 23 DN: PUN	/Ft.): 1/8" = 0. 3 = Bailer; いらFし MP No	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	2 = 0.0014; Pump; I SAMF SIGNATUR ODE: PE ING No SAMPLE P IVE	1/4" = 0.0026 ESP = Electric S PLING DA E(S): Joint (replaced)	5/16" = 0. Submersible Pur TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE of	1/2 eristaltic Pur T: 0955 Nor EQUIPME ED ND/OR E	" = 0.010; mp; O = O SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) NG AT: [0]0 SIZE:μm ΥN
PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL / Jo TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	FFILIATION: CODES: E FFILIATION: CARE P 23 DN: PUN ER SPECIFIC. MATERIAL	/Ft.): 1/8" = 0. 3 = Bailer; ωSFL MP No ATION	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	2 = 0.0014; Pump; I SAMF SIGNATUR ODE: PE ING No SAMPLE P IVE ADD	1/4" = 0.0026 ESP = Electric S PLING DA E(S): Que ((replaced) RESERVATION TOTAL VOL	5/16" = 0. Submersible Pur TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE o INTENDE ANALYSIS A	1/2 eristaltic Pur r: 0955 vor EQUIPME ED ND/OR D	2" = 0.010; mp; O = O SAMPLIN ENT BLANK: SAMPLING QUIPMENT	5/8" = 0.016 ther (Specify) NG AT: 1010 SIZE:μm Y N SAMPLE PUMP FLOW RATE
CUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL / Jo TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS	FFILIATION: CALAKE P 23 DN: PUM R SPECIFIC. MATERIAL CODE	(Ft.): 1/8" = 0. 3 = Bailer; WSFL MP No ATION VOLUME	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED	2 = 0.0014; Dump; I SIGNATUR SIGNATUR ODE: PE ING No SAMPLE P IVE ADDI P	1/4" = 0.0026 ESP = Electric S PLING DA E(S): Dec (replaced) RESERVATION TOTAL VOL ED IN FIELD (m refilled by lab None	5/16" = 0. Submersible Pur TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AI METHO	1/2 eristaltic Pur r: 0955 vor EQUIPME ED ND/OR D	2" = 0.010; mp; O = O SAMPLIN ENT BLANK: SAMPLING QUIPMENT CODE RFPP RFPP	5/8" = 0.016 ther (Specify) NG AT: 1010 SIZE:μm Y
CUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL / Joh TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3	FFILIATION: CALAKE P 23 DN: PUN R SPECIFIC MATERIAL CODE CG CG PE	(Ft.): 1/8" = 0. 3 = Bailer; WSFL MP No ATION VOLUME 40mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	2 = 0.0014; Pump; I SAMF SIGNATUR ODE: PE ING No SAMPLE P IVE ADD P IVE P	1/4" = 0.0026 ESP = Electric S PLING DA E(S): Quic ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m refilled by lab None	5/16" = 0. Submersible Pur TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals	1/2 eristaltic Pur r: 0955 vor EQUIPME ED ND/OR D	2" = 0.010; mp; O = O SAMPLIN ENDED # FILTER S ENT BLANK: SAMPLING: QUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 ther (Specify) AG AT: [D]O DZE:μm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
CUBING IN PURGING CAMPLED loe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE D CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL / Jo TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3	FFILIATION: CALL CALL P CALL CALL P CODES: E FFILIATION: CALL CALL FFILIATION: CODE CG CG	<pre>/Ft.): 1/8" = 0. 3 = Bailer; WSFL MP No ATION VOLUME 40mL 40mL</pre>	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	2 = 0.0014; Pump; I SAMF SIGNATUR ODE: PE ING No SAMPLE P IVE ADD P IVE P	1/4" = 0.0026 ESP = Electric S PLING DA E(S): Dec (replaced) RESERVATION TOTAL VOL ED IN FIELD (m refilled by lab None	5/16" = 0. Submersible Pur TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals NH ₃	1/2 eristaltic Pur r: 0955 nor EQUIPME ED ND/OR D	2" = 0.010; mp; 0 = 0 SAMPLIN ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP	5/8" = 0.016 other (Specify) MG AT: [O]O DZE: µm Y N SAMPLE PUMP FLOW RATE (mL per minute) <100
CUBING IN PURGING CAMPLED OOE Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE D CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL / Jo TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1	FFILIATION: CALAKE P 23 DN: PUN R SPECIFIC MATERIAL CODE CG CG PE	(Ft.): 1/8" = 0. 3 = Bailer; ωSFL MP No ATION VOLUME 40mL 500mL	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	2 = 0.0014; Pump; I SAMF SIGNATUR ODE: PE ING No SAMPLE P IVE ADD P IVE P	1/4" = 0.0026 ESP = Electric S PLING DA E(S): Quic ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m refilled by lab None	5/16" = 0. Submersible Pur TA FIELD FIELD Filtration	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals	1/2 eristaltic Pur r: 0955 nor EQUIPME ED ND/OR D	2" = 0.010; mp; O = O SAMPLIN ENDED # FILTER S ENT BLANK: SAMPLING: QUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 other (Specify) NG Y N SAMPLE PUMP FLOW RATE (mL per minute) <100

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

VVELL INUT	MW-23	Cs Facility ID	. 09044)	SAMPLE	EID: MU	and the second second second	1 Omni Way, St.	Cloud, Osceola	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	6 May 2014	
	MW-25	IS		O/ WIT EL		GING DA			DATE.	6 Way 2014	
WELL		TUBIN	G	WE	LL SCREEN		STATIC D	EDTU	P	URGE PUMP 1	VDE
DIAMETER	R (inches): 2.0	DIAME	TER (inches):0	0.25 DE	PTH: 32 fe	et to 4,2 fe	et TO WATE	R (feet): 17.4	5 0		peristaltic
	t if applicable)	1 WELL VO	LUME = (TOT	AL WELL DE	PTH - STA	TIC DEPTH TO	WATER) X	WELL CAPACI	TY		
			= (feet -		feet) X		allons/foot		gallons
	NT VOLUME PL t if applicable)	JRGE: 1 EQ	UIPMENT VOL	= PUMP VO	LUME + (TUE	BING CAPACIT	Y X TU	JBING LENGTH)	+ FLOW (CELL VOLUME	
(0111) 111 00	th applicable)			= 0.0 g	gallons + (0	.0026 gallor	ns/foot X	50 feet)	+ 0.12	gallons =	0.3 gallons
	WELL (feet):	^G 37		WELL (feet):		PURGIN	DAT: 0905	PURGING	1425	TOTAL VO	
DEFININ		CUMUL.		DEPTH	37		COND.	ENDED AT: DISSOLVED	0755	PURGED	gallons): 1, 5
TIME	VOLUME PURGED	VOLUME PURGED	PURGE RATE	TO WATER	pH (standard	TEMP. (°C)	(µS/cm)	OXYGEN (mg/l)	TURBIC		
	(gallons)	(gallons)	(gpm)	(feet)	units)	(0)		(mg/L)	(NTU	s) (descri	be) (mV)
0925	1	1	2.05	17.45	4.14	24.95	405	1.49	0.0		v 54.1
0930	0.25	1.25	0.05	17.45	4.07	24.91	406	1.02	Q.L	clea	v 69.5
0935	0.25	1.5	0.05	17.45	4.09	25.04	407	0.89	0,1		
						/					
								-			
				-					-		
			-	-							
_											
WELL CAP	PACITY (Gallons	s Per Foot):	0.75 " = 0.02;	1" = 0.04;	1.25 " = 0.0	6; 2 " = 0.16	; 3" = 0.37;	4 " = 0.65;	5 " = 1.02;	6 " = 1.47;	12 " = 5.88
TUBING IN	ISIDE DIA. CAP	ACITY (Gal.	(Ft.): 1/8" = 0.	0006; 3/16'	= 0.0014;	1/4" = 0.0026	5/16" = 0.0	004; 3/8" = 0	.006; 1	2" = 0.010;	5/8'' = 0.016
TUBING IN		ACITY (Gal.	(Ft.): 1/8" = 0.		" = 0.0014; Pump; E	1/4" = 0.0026 SP = Electric S	5/16" = 0.0	004; 3/8" = 0		2" = 0.010;	
TUBING IN PURGING	ISIDE DIA. CAP EQUIPMENT C	ODES: E	(Ft.): 1/8" = 0.	0006; 3/16'	" = 0.0014; Pump; E	1/4" = 0.0026	5/16" = 0.0	004; 3/8" = 0 np; PP = Pe	.006; 1	'2'' = 0.010; mp; O = 0	5/8" = 0.016 Other (Specify)
TUBING IN PURGING SAMPLED	BY (PRINT) / A	ODES: E	(Ft.): 1/8" = 0.	0006; 3/16'	" = 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0	004; 3/8" = 0	.006; 1. eristaltic Pu	2" = 0.010; mp; 0 = 0 SAMPLII	5/8" = 0.016 Other (Specify)
TUBING IN PURGING SAMPLED Joe Terry /	ISIDE DÍA. CAF EQUIPMENT C BY (PRINT) / A PWSFL	PACITY (Gal.) ODES: E	(Ft.): 1/8" = 0.	0006; 3/16' BP = Bladder I	" = 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 Submersible Pun TA	004; 3/8" = 0 mp; PP = Pe SAMPLING	.006; 1. eristaltic Pu	2" = 0.010; mp; 0 = 0 SAMPLII	5/8" = 0.016 Other (Specify) NG AT: 0450
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DÍA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet):	ODES: E	(Ft.): 1/8" = 0. 3 = Bailer;	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	" = 0.0014; Pump; E SAMP) SIGNATUR	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$	5/16" = 0.0 Submersible Pun TA	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Typ	1.006; 1 eristaltic Pu T: 0935 pe:	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER \$	5/8" = 0.016 Other (Specify) NG AT: 0450 SIZE:μm
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN	ISIDE DÍA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING	ODES: E	(Ft.): 1/8" = 0.	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	" = 0.0014; Pump; E SAMP) SIGNATUR	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 Submersible Pun TA	SAMPLING INITIATED AT	1.006; 1 eristaltic Pu T: 0935 pe:	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER \$	5/8" = 0.016 Other (Specify) NG AT: 0450
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAM	ISIDE DÍA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet):	PACITY (Gal., ODES: E FFILIATION: 37 DN: PUN R SPECIFIC.	/Ft.): 1/8" = 0. 3 = Bailer; 1 //P No	0006; 3/16' BP = Bladder SAMPLER(S) TUBING MATERIAL C TUB	" = 0.0014; Pump; E SAMP) SIGNATUR :ODE: PE SING NO SAMPLE PF	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION	5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE	1.006; 1. eristaltic Pu T: 0935 pe: pr EQUIPM ED	2" = 0.010; mp; O = C SAMPLII ENDED, FILTER S ENT BLANK: SAMPLING	5/8" = 0.016 Other (Specify) NG AT: 0.950 SIZE:μm Υ SAMPLE PUMP
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	ACITY (Gal. ODES: E FFILIATION: 37 DN: PUM R SPECIFIC. MATERIAL	/Ft.): 1/8" = 0. 3 = Bailer; 1 //P No	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT	" = 0.0014; Pump; E SAMP) SIGNATUR :0DE: PE SING NO SAMPLE PF TVE	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL	5/16" = 0.0 Submersible Pun TA FIELD- FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty; DUPLICATE c	006; 1. eristaltic Pu T: 0935 pe: or EQUIPM ED ND/OR	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK:	5/8" = 0.016 Other (Specify) NG AT: 0.9550 SIZE:μm Υ Ω
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAF EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	PACITY (Gal., ODES: E FFILIATION: 37 DN: PUN R SPECIFIC.	/Ft.): 1/8" = 0. 3 = Bailer; 1 MP No ATION	0006; 3/16' BP = Bladder SAMPLER(S) TUBING MATERIAL C TUB	" = 0.0014; Pump; E SAMP) SIGNATURI :00DE: PE SING NO SAMPLE PF TIVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION	5/16" = 0.0 Submersible Pun TA FIELD- FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A1 FILTERED: Y n Equipment Ty; DUPLICATE of INTENDE ANALYSIS AI	006; 1. eristaltic Pu T: 0935 pe: or EQUIPM ED ND/OR	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: 0.950 SIZE: μm Y (y) SAMPLE PUMP FLOW RATE
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3	FFILIATION: 37 DN: PUN R SPECIFIC, MATERIAL CODE CG	/Ft.): 1/8" = 0. 3 = Bailer; 1 //P No ATION VOLUME 40mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL	" = 0.0014; Pump; E SAMP) SIGNATURI :00DE: PE SING NO SAMPLE PF TIVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab	5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Tyj DUPLICATE of ANALYSIS AI METHO 8260	006; 1. eristaltic Pu T: 0935 pe: or EQUIPM ED ND/OR	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: 0.950 SIZE:μm Y ΩV SAMPLE PUMP FLOW RATE (mL per minute)
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DÍA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3	FFILIATION: 37 DN: PUN R SPECIFIC. MATERIAL CODE CG CG	(Ft.): 1/8" = 0. B = Bailer; 1 MP No ATION VOLUME 40mL 40mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None	" = 0.0014; Pump; E SAMP) SIGNATUR : : : : : : : : : : : : :	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab None	5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty; DUPLICATE of INTENDE ANALYSIS AI METHO 8260 8011 1	1.006; 1. eristaltic Pu F: 0935 pe: or EQUIPM ED ND/OR D	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP	5/8" = 0.016 Other (Specify) NG AT: 0.950 SIZE:μm Y ΩV SAMPLE PUMP FLOW RATE (mL per minute) <100 <100
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 1	FFILIATION: 37 DN: PUN R SPECIFIC. MATERIAL CODE CG CG PE	//Ft.): 1/8" = 0. B = Bailer; I MP No ATION VOLUME 40mL 40mL 500mL 500mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃	" = 0.0014; Pump; E SAMP) SIGNATURI :00DE: PE SAMPLE PF TIVE ADDE Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab None efilled by lab	5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals	1.006; 1. eristaltic Pu F: 0935 pe: or EQUIPM ED ND/OR D	2" = 0.010; mp; O = C SAMPLII ENDED; FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP	5/8" = 0.016 Other (Specify) NG AT: 0.950 SIZE:μm Y
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 3 1 1	FFILIATION: 37 SPECIFIC. MATERIAL CODE CG CG PE PE	/Ft.): 1/8" = 0. 3 = Bailer; 1 AP No ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	" = 0.0014; Pump; E SAMP) SIGNATURI :00DE: PE SAMPLE PF TIVE ADDE Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab None efilled by lab	5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Ty; DUPLICATE of NNTENDE ANALYSIS AI METHO 8260 8011 Metals NH3	1.006; 1. Pristaltic Puter Pristaltic Puter Pristaltic Puter Pristaltic Puter Pristaltic Puter Pristaltic Puter Pu	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0.950 SIZE:μm Y
SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE # CONTAINERS 3 3 1	FFILIATION: FFILIATION: 37 DN: PUM R SPECIFIC. MATERIAL CODE CG CG PE PE PE PE	/Ft.): 1/8" = 0. 3 = Bailer; 1 MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014; Pump; E SAMP) SIGNATUR : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : · · · · · · · · · · · · ·	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab None efilled by lab None	5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I	1.006; 1. eristaltic Puteristaltic Puterist	2" = 0.010; mp; O = C SAMPLII ENDED, FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0'95'0 SIZE:µm Y V SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 300 300
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW -238	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: 37 SPECIFIC. MATERIAL CODE CG CG PE PE	/Ft.): 1/8" = 0. 3 = Bailer; 1 AP No ATION VOLUME 40mL 40mL 500mL 125mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄	" = 0.0014; Pump; E SAMP) SIGNATUR : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : · · · · · · · · · · · · ·	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab None efilled by lab	5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Ty; DUPLICATE of NNTENDE ANALYSIS AI METHO 8260 8011 Metals NH3	1.006; 1. eristaltic Puteristaltic Puterist	2" = 0.010; mp; O = C SAMPLII ENDED FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0.950 SIZE:μm Y
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE WW -23'B	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS 3 3 1 1 1 1 1	FFILIATION: 37 SPECIFIC MATERIAL CODE CG CG PE PE PE AG	/Ft.): 1/8" = 0. 3 = Bailer; 1 MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014; Pump; E SAMP) SIGNATUR : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : · · · · · · · · · · · · ·	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab None efilled by lab None	5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I	1.006; 1. eristaltic Puteristaltic Puterist	2" = 0.010; mp; O = C SAMPLII ENDED, FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0'95'0 SIZE:µm Y V SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 300 300
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE NW -23B REMARKS Weather: C	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1 1 1 1 1 1 1 1	FFILIATION: 37 SPECIFIC MATERIAL CODE CG CG PE PE PE AG	/Ft.): 1/8" = 0. 3 = Bailer; 1 MP No ATION VOLUME 40mL 40mL 500mL 125mL 250mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014; Pump; E SAMP) SIGNATUR : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : ODE: PE : · · · · · · · · · · · · ·	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab None efilled by lab None	5/16" = 0.0 Submersible Pun TA FIELD- FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE of INTENDE ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I	1.006; 1. eristaltic Puteristaltic Puterist	2" = 0.010; mp; O = C SAMPLII ENDED, FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0'95'0 SIZE:µm Y V SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 300 300
TUBING IN PURGING SAMPLED Joe Terry / PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE WW -23'B	ISIDE DIA. CAP EQUIPMENT C BY (PRINT) / A PWSFL TUBING WELL (feet): CONTAMINATIC PLE CONTAINE CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1	FFILIATION: 37 SPECIFIC MATERIAL CODE CG CG PE PE PE AG	//Ft.): 1/8" = 0. B = Bailer; I MP No ATION VOLUME 40mL 500mL 1250mL 250mL	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C TUB PRESERVAT USED HCL None HNO ₃ H ₂ SO ₄ None	" = 0.0014; Pump; E SAMP) SIGNATURI ODE: PE SIGNATURI ODE: PE SAMPLE PF TIVE ADDE Pr Pr Pr	1/4" = 0.0026 SP = Electric S LING DA E(S): Jour ((replaced) RESERVATION TOTAL VOL ED IN FIELD (m efilled by lab None efilled by lab None efilled by lab	5/16" = 0.0 Submersible Pun TA FIELD- FIELD- Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT INITIATED: Y on Equipment Tyj DUPLICATE of ANALYSIS AI METHO 8260 8011 Metals NH ₃ TDS, CI, I Total Phe	1.006; 1. eristaltic Pu eristaltic	2" = 0.010; mp; O = C SAMPLII ENDED, FILTER S ENT BLANK: SAMPLING EQUIPMENT CODE RFPP RFPP APP APP APP APP	5/8" = 0.016 Other (Specify) NG AT: 0'95'0 SIZE:µm Y V SAMPLE PUMP FLOW RATE (mL per minute) <100 <100 200 200 300 300

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP-SOP-001/01 FT 1100 Field Measurement of Hydrogen Ion Activity (pH)

		PARAMETER	DATE	TIME	TOTAL DEPTH	SAMPLE DEPTH	WATER TEMP	DO	%SAT DO	COND	SALINITY	PH	TURBIDITY	C
TATION UMBER	STATION DESCRIPTION	UNIT	yy/mm/dd	hr:min	feet	feet	Celsius	mg/L	%	μS/cm	ppt	su	NTU	1
		STORET CODE	73672		81903	68	10	299	301	94	480	400	82078	
W-3	Bull Creek	(downstreen)	14/05/09	09:20	1.0	0.5	23.31	2.65	31	196	0.1	5.76	1.0	"
_													-	1
_														
							-	-						
	NDITIONS FOR ST	$\frac{5}{5}$	AT TIM			ON:		73.0		IDAL STAG	F.	N4		
	RAINFALL:	0						0				NA		

DEP-SOP-001/01 FT 1100 Field Measurement of Hydrogen Ion Activity (pH)

Form FD 9000-7: Field Parameter Data Sheet for Surface Water

SUR	VEY/PROJECT	: JED			SAMPL	ERS:	Soe Ter	m, 5	on Lal	te	METER #	#_SU	2-4	
57.57		PARAMETER	DATE	TIME	TOTAL DEPTH	SAMPLE DEPTH	WATER TEMP	DO	%SAT DO	COND	SALINITY	PH	TURBIDITY	ORP
STATION NUMBER	STATION DESCRIPTION	UNIT	yy/mm/dd	hr:min	feet	feet	Celsius	mg/L	%	μS/cm	ppt	su	NTU	N
		STORET CODE	73672		81903	68	10	299	301	94	480	400	82078	
SW-21	Bull Creek	(upstream)	14/05/09	10:10	1.0	0.5	21.19	6.67	75	171	0.09	3.79	1.1	235.6
														1
														6
_														
													-	2.
										-				
									-					
FIELD CON	DITIONS FOR ST	ATION# Sw-1		E_/0/0		waterel	evation	77.3	5'					
CLOUD CO	VER (%):	5		WIN		<u>ON</u> :				IDAL STAG	<u>E:</u>	4		
PREVIOUS	Rainfall:	0		WIN	DSPEED	MPH/KNOT	<u>s)</u> :	0	<u> </u>	AVE CON	DITIONS:	NA		

Note: This Sheet is used for recording Sample Data – Calibration information must also be documented

APPENDIX C

Field Instrument Calibration Logs

JEDSWMF Site:

Date: _ 4 May 2014

Water Quality Instrument Make: YSI	Instrument Model Number:	556	Instrument Serial Number:	06A2173AM

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME12953

Time: 1730

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrate 49	Transf	C PL C
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
3AH355	Aug 2015	pH = 4.00	3.85	0.15	0.2	Y	C	OT
C358930	Feb 7, 2015	pH = 7.00	6.96	0.04	0.2	Ý	C	OT
C256078	Oct 2014	pH = 10.00			0.2	/		1
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%	0		
C364881	June 2015	Turbidity = 10 NTU	10.23	2.3	10%	Y	C	9T
3AJ929	Oct 2014	Conductivity = 84μ S/cm	86	2.4	5%	Ý	C	OT
4AA137	Jan 2015	Conductivity = 500μ S/cm	501	0,2	5%	V	C	OT
4AA941	Jan 2015	Conductivity = $1,000 \mu$ S/cm	1003	0.3	5%	V	Ć.	OT
	Per Table →	D.O. =8.5/4mg/L @23.4°C	8,55	0.04	0.2 mg/l	Ý	Ŧ	ØT

Date: 6 May 2014

Time: 0530

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated 9	Tune of	Calibration
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	3.92	0.08	0.2	Y	C	QT.
C358930	Feb 7, 2015	pH = 7.00	6.98	0.02	0.2	v	2	97
C256078	Oct 2014	pH = 10.00	(0.2	/		
		Turbidity = 0.0 NTU		1				
		Turbidity = 1.0 NTU			10%			
C364881	June 2015	Turbidity = 10 NTU	10.01	0.1	10%	V	C	QT-
3AJ929	Oct 2014	Conductivity = 84μ S/cm	84	0	5%	Ý	C	OT
4AA137	Jan 2015	Conductivity = 500μ S/cm	502	0.4	5%	Ý	C	AT
4AA941	Jan 2015	Conductivity = $1,000 \mu$ S/cm	1005	0.5	5%	Y	4	AT
	Per Table →	D.O. = 8.4 mg/L @ 24, 1°C	8,43	0.03	0.2 mg/l	Ý	I	01

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

te:[ED				Date:	7 May	2014	
ater Quality Ins	trument Make:	YSI Instr	ument Model Numb	er: 556	Inst	rument Serial N	umber: 06A2173	SAM
urbidity Instrum	ent Make:	LaMotte Ins	strument Model Nur	mber: 2020e	Inst	rument Serial N	umber: M	E12953
Time:	1815 Calibi	ration Standard		Percent				1
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By
3AH355	Aug 2015	pH = 4.00	3.93	0.07	0.2	V	C	OT
C358930	Feb 7, 2015	pH = 7.00	6.96	0.04	0.2	Ý	C	OT
C256078	Oct 2014	pH = 10.00			0.2	/		1
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C364881	June 2015	Turbidity = 10 NTU	9.85	1.5	10%	Y	C	07
3AJ929	Oct 2014	Conductivity = 84 µS/cm	84	0	5%	×	C	01

0.4

0.6

0.03

5%

5%

0.2 mg/l

C

C

T

502

1006

8.58

Date: 9 May 2014 Time: 0550

Conductivity = 500 µS/cm

Conductivity = 1,000 µS/cm

D.O. = 8.55 mg/L @ 23.2°C

Jan 2015

Jan 2015

Per Table →

4AA137

4AA941

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrate 49	Town	C.P. C
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By
C359207	Feb 15, 2015	pH = 4.00	3.96	0.04	0.2	V	C	GT .
C358930	Feb 7, 2015	pH = 7.00	7.00	0.00	0.2	V	C	0 A
C256078	Oct 2014	pH = 10.00			0.2	/		0
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			1
C364881	June 2015	Turbidity = 10 NTU	9.89	1.1	10%	Y	C	9T
3AJ929	Oct 2014	Conductivity = 84μ S/cm	86	2.4	5%	Ý	C	OT
4AA137	Jan 2015	Conductivity = 500 µS/cm	503	0.6	5%	Ý	C	T
4AA941	Jan 2015	Conductivity = 1,000 µS/cm	1004	0.4	5%	4	6	AT
	Per Table →	D.O. = 8.45 mg/L @ 23.8°C	8.16	0.01	0.2 mg/l	Ŷ	C	AT

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Site: JED		Date: 12 May 2014
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

Time: 1800

	Calibra	ation Standard	Instrument	Percent	Allowable	Callbarts 19	Transf	0.13
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
3AH355	Aug 2015	pH = 4.00	4.02	0	0.2	V	I	OT
C358930	Feb 7, 2015	pH = 7.00	7.00	0	0.2	Ý	Ĺ	OT
C256078	Oct 2014	pH = 10.00			0.2	/		0
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C364881	June 2015	Turbidity = 10 NTU	10.12	1.2	10%	Y	C	OT
3AJ929	Oct 2014	Conductivity = 84μ S/cm	84	0	5%	×	C	01
4AA137	Jan 2015	Conductivity = 500μ S/cm	501	0.2	5%	Ý	C	OT
4AA941	Jan 2015	Conductivity = 1,000 µS/cm	1010	1.0	5%	Ý	C	OT
	Per Table →	D.O. = 7.454mg/L @27,1°C	7.99	0.04	0.2 mg/l	ý	I	OT

Date: 14 May 2014 Time: 0600

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibratad9	Turnef	Calibration
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	4.07	0.02	0.2	Y	C	QT
C358930	Feb 7, 2015	pH = 7.00	6.91	0.09	0.2	Ý	C	OT
C256078	Oct 2014	pH = 10.00			0.2			1
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C364881	June 2015	Turbidity = 10 NTU	9.92	0.8	10%	Y	C	OF
3AJ929	Oct 2014	Conductivity = 84 µS/cm	86	2.4	5%	Y	C	ØT
4AA137	Jan 2015	Conductivity = 500μ S/cm	503	0,6	5%	¥	C	DT
4AA941	Jan 2015	Conductivity = $1,000 \mu$ S/cm	1014	1.4	5%	Y	C	ØT
	Per Table →	D.O. = 0.60mg/L @ 22.4 °C	8.70	0.02	0.2 mg/l	(I	91

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

JED SWIDF Site:

Date: 15 May 2014

Water Quality Instrument Make	: YSI	Instrument Model Number:	556	Instrument Serial Number: 06	A2173AM	
Turbidity Instrument Make:	LaMotte	Instrument Model Number:	2020e	Instrument Serial Number:	ME12953	

Time: 0530

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Tump of	Calibration
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
3AH355	Aug 2015	pH = 4.00	4,04	0.04	0.2	Y	С	27
C358930	Feb 7, 2015	pH = 7.00	7.00	0	0.2	Y	C	AT
C256078	Oct 2014	pH = 10.00			0.2			
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C364881	June 2015	Turbidity = 10 NTU	10.16	1.6	10%	Y	C	QT
3AJ929	Oct 2014	Conductivity = 84μ S/cm	87	3.6	5%	Y	C	2T
4AA137	Jan 2015	Conductivity = 500μ S/cm	510	2	5%	Ý	С	ØT
4AA941	Jan 2015	Conductivity = 1,000 µS/cm	1003	0.3	5%	Y	C	91
	Per Table →	D.O. = 8.71 mg/L @ 22.2°C	8.72	0.01	0.2 mg/l	ý	I	OT

Date: 16 May 2014 Time: 08/5

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Tunn of	Calibration
Lot No.	Expiration Date	Standard Value	Instrument Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C359207	Feb 15, 2015	pH = 4.00	4.02	0.02	0.2	Y	C	QT
C358930	Feb 7, 2015	pH = 7.00	7,03	0.03	0.2	Ý	C	OT
C256078	Oct 2014	pH = 10.00	-		0.2	/		0
		Turbidity = 0.0 NTU						
	1	Turbidity = 1.0 NTU			10%		1	
C364881	June 2015	Turbidity = 10 NTU	10.22	2.2	10%	Y	C	01
3AJ929	Oct 2014	Conductivity = 84μ S/cm	87	3.6	5%	× V	C	OF
4AA137	Jan 2015	Conductivity = 500μ S/cm	512	2.4	5%	Ý	C	9T OT
4AA941	Jan 2015	Conductivity = 1,000 µS/cm	1015	1.5	5%	Ý	C	OT
	Per Table →	D.O. = 8,403mg/L @ 24,1 °C	8.42	0.02	0.2 mg/l	Y	C	91

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

APPENDIX D

Chain-of-Custody Forms

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE /

SR#

OF

CAS Contract

Project Name JED SWDF	Project Number						A	NALYS	IS RE	QUES	TED (Include	e Meth	od Nu	mber	and C	ontain	er Pre	eservat	ive)		
Project Manager SDR TRIFY	Email Address	e prograsileur	uste con	PRES	SERVAT	TIVE	I	0	2	2	0		-		1							
Company/Address	7	epiop conten		VINERS		/	1	7	7	1	J.	El al	5	/	7	1	7	/	7	/ /	Preserva 0. NONI 1. HCL 2. HNO 3. H ₂ SC 4. NaOH	E
11457 C.R. 67 Riversiew, FL Phone #				NUMBER OF CONTAINERS	/	09	Z	E	Cher 1	13	4	15	//	//	//	/ /	//	/ /	1	/	 H2SC NaOH Zn. A MeOH NaHS 	cetate H
E13-993-B632 Sampler's Signature	Sampler's Printed Name			NUMBER		7	0	Y.	J.	I.	H	/	/	/	/	1.	/	/	/		8. Other	
yoe in	Joe Te	SAMPLING		2	1	/	(-	(\vdash	17	1	(-	(\vdash	-	(\vdash	(A		TE DESCR	
CLIENT SAMPLE ID		DATE TIME	MATRIX			2								_		_						
MW-IA	5.		6w	10	3	3	1	1	1		-				_	-	_					
MW-1B		1120	-			-	1							_			-					
MW-22RA		0825		+		-								_		-			-			
	MW-22RB MW-22A			1		+					-			_		-	_		+			
	MW-23A			V	43	NG	Y	X	V	Y				_		-	-		+	-		_
	MW-23B			10	2	2	1	1		1				-		-			+			_
Try Block-Z	2	16.14 0000 1	OFH20	1	1	-								-	-			-	+			
														-					-			
						-								-		-	-		-	_		
- Ar				-					-					-					-			
SPECIAL I NSTRUCTIONS/COMMENTS						Т	URNAR	ROUND	REQU	IREME	NTS	-	BEPO	ORT R	EQUIRE	EMENT	S	-	IN	VOICE IN	FORMAT	ION
Cooler D: 14126	-JEN						RUS	H (SURC		S APPLY		1	_ I. Result	ts Only								
						-	STAN	NDARD				~	LCS, D		/MSD as		d)	PO	•			
						REQU	IESTED	FAX DAT	TE			-	_ III. Resu		C and C	alibratio	n	BIL	L TO:			
						REQU	ESTED	REPORT				_	_ IV. Data		ion Repo	ort with I	Raw Dat	a				
See QAPP												-	_ V. Spec	ialized	Forms /	Custom	Report					
SAMPLE RECEIPT: CONDITION/CO		CLIST	TODY SEA	IS Y	N							-	Edata	_	Yes	-	No					
RELINQUISHED BY	QUISHED					RECE	IVED B	Y			R	ELINQ	UISHED	BY		T		RECE	VED BY			
Signature Signature Signature						Signati	ure					Signa	ture					Sig	nature			
Printed Name Joe Terry	Printed Name Soe Terry Printed Name Printed Name					Printed	d Name					Printe	d Name					Prin	nted Name	è		
Firm PWSFL	Firm	Firm				Firm						Firm						Fim	n			
Date/Time 5-6-14/12415	Date/Time	Date/Time				Date/T	īme					Date/	Time					Dat	te/Time			

Distribution: White - Return to Originator; Yellow - Retained by Client

Copyright 2012 by ALS Group

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#

ALCO REALES

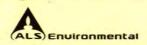
9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE _____OF ____OF

CAS Contract

Project Name JED SWDF	Project Number							A	NALYS	SIS RE	QUES	TED (Includ	e Meth	od Nu	umber	and C	ontain	er Pre	servati	ve)		
Project Manager DOR TRIN	Email Address	000	Ware Lafter	where a	PRE	SERV	ATIVE	1	0	7	2	0	2										
Company/Address PWSPL	joseph.terry	hope ag	ressiveux	ise.com	JERS		/	+	1	7	7	1	a/s	de la	1	/	7	/	/	7	1	Preserva 0. NON 1. HCL	ative Key IE 03 04
11457 C.R. 672 RNEANER FC	33529				NUMBER OF CONTAINERS		100	1		1	12	1	ŧ,	/ /	/ ,	/	/ ,	/	/	/ /	/	5. Zn. A 6. MeO	Acetate H
RNUVIEN, Fl Phone # 813-943-8633					MBER O	/	00	S.	J.	2 est	7	H	/	/	/	/	1.	/	/	/		7. NaH 8. Othe	
Sampler's Signature	Sampler's Printed Nar	Terry	/		N	V	/	/		YA	TF	1								/ A		EMARKS	
CLIENT SAMPLE ID	LABID	SA	MPLING	MATRIX																			
MW-2A		5.8.1		GW	10	3	3	1	1	1	1												
MW-2B			1010		1	(1																
MW-3A			1210																				
MW-3B			1145																				
MW-4A			1410													_							
MW-41B																							
Duotiute			0000	GW	V	4	V	10	1	V	J												
Equipment Black			1440	DIHO	10	3	3	1	1	1	1												
Trip Black-2		V	0000	DEHO	1	1	1																
Trip Bluck-3		5.8.	14 0000	NTHU	1	1	1																
Cooler INSTRUCTIONS/COMMENTS	TEN.7						T 		H (SUR		IREMEI		-	_ I. Resu	ilts Only		EMENT	S		INV	OICE I	FORMA	TION
								STAI	NDARD				×	LCS, E			aries s require	d)	PO	•			
14128-	150-2						REQU	JESTED	FAX DA	TE				_ III. Res Summa		C and C	alibration	n	BILL	. TO:			
							REQU	UESTED	REPOR	T DATE			-	_ IV. Data	a Validat	tion Rep	ort with F	Raw Dat	a				
See QAPP							-						-	_ V. Spec	cialized	Forms /	Custom	Report					
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP:		CU	STODY SEA	ALS:	YN	1						1	Edat	a	_Yes	_	No					
RELINQUISHED BY RECEIVED BY RELINQUISH									RECE	IVED B	Y			R	ELINQ	UISHEI	DBY				RECE	IVED BY	
Signature for the	Signature Signature Signature						Signa	ture					Signa	iture					Sign	ature			
Printed Name Soe Ferry	rinted Name Sog Terry Printed Name Printed Name						Printe	d Name					Printe	ed Name					Print	ted Name			
Firm PWSFL	Firm		Firm				Firm						Firm						Firm				
Date/Time 5.9.14/1545	Date/Time		Date/Time				Date/	Time					Date	Time					Date	/Time			

Distribution: White - Return to Originator; Yellow - Retained by Client

Copyright 2012 by ALS Group



9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE OF

SR#

CAS Contract

Project Name JED SUDF	Project Number					A	NALYS	SIS RE	QUES	TED (nclud	e Meth	od Nu	Imber	and C	contair	ner Pr	eserva	ive)		
Project Manager	Email Address		PRE	SERVA	ATIVE		D	7		0	-										1
Joe Terry	Joseph + Erry @ Brogh	essive wester con		1			10	5	2	U	3										the Mary
Company/Address PWSFL			\$		/	/ /	/	/	/	/	5/	3/	/	/	/	/	1	/ /	/	0. NON	E
11457 C.R. 672	6		NUMBER OF CONTAINERS		1		/	1	13	STI	the		/	/	/	/	/	/	/	1. HCL 2. HNO 3. H ₂ SC 4. NaOł	tive Key E 3 04 H
Rivervieu, FL :	33569		OF CC		2	3	X	has	at	E	1	/ /	1	/ /	/ /	/ /	/	/ /	/	5. Zn. A 6. MeO 7. NaHS	H
Phone # 813-943-8633	FAX #		ABER	1/	y	5	Y	12	4	H	/	/	/	/	1.	/	/	/		8. Othe	
Sampler's Signature	Sampler's Printed Name Joe Terry		NUN	V	/	/	/	1E	14	5	/	/	/	/	/	/	/	/		EMARKS/	
7000		AMPLING		[ſ	ſ	ſ		(!			ſſ				ſ	ſ	1			
CLIENT SAMPLE ID	LAB ID DAT				-										-			-			_
MW-5A	5.13.		10	3	3	1		1								-					_
MW-SB		1015																-			
MW-6A		1150																-			
MW-6B		1215									_										
MW-7A		1330 J	10	4	4	J	1	V	Y												
MW-7R					3	1	1	1	1												
Tip Black-5	5.13.	14 0000 DEH20	1	1																	
		-																			
																-					
YOT																	1				
SPECIAL INSTRUCTIONS/COMMENTS					- T		ROUND				_	_ I. Resul	Its Only			rs		IN	VOICE II	FORMAT	ION
Cooler ID: 14133-JED					->	STA	NDARD					LCS. D		C Summ S/MSD a		ed)	PC				
Cooler IS. MISS-202					REQU	UESTED	FAX DA	TE			-		ults + Q	IC and C			BI	L TO:			
					REQ	UESTED	REPOR	T DATE			_	_ IV. Data	a Validat	tion Rep	ort with	Raw Dat	ta				
See OAPP					_						-	_ V. Spec	cialized	Forms /	Custon	n Report					
	See QAPP SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY										1	Edata	a	Yes		No					
RELINQUISHED BY	RELINQUISHED					RECE	IVED B	Y			R	ELINQ	UISHEI	D BY		T		RECE	IVED BY		
Signature Que Tuy	Signature	Signature			Signa	iture					Signa	sture					Sig	inature			
Printed Name Joe Terry	Printed Name	Printed Name			Printe	ed Name					Printe	ed Name					Pri	nted Nam	e		
Fim PWSFL	Firm	Firm			Firm						Firm						Fin	m			
Date/Time 5-12-14 / 1500	Date/Time	Date/Time			Date/	Time					Date	Time			-		Da	te/Time			

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE ____ OF ___

SR#

CAS Contract

Project Name JED SWDF	Project Number					A	NALY	SIS RE	QUEST	ED (In	nclude	Metho	d Nu	mber	and C	ontain	er Pre	servati	ve)		
Project Manager Sol Terry	Email Address	Scorress in waster a	PR	ESERV	ATIVE	1	0	3	2	0											
Company/Address	0. 10	1000 - 23, 17 Contra - C			/	/	/	1	1	y	1	1	1	1	7	/	/	7	/ 9	Preservati 0. NONE 1. HCL 2. HNO ₃ 3. H ₂ SO	
11457 C.R. 67 Riveview, F			NUMBER OF CONTAINERS		260	10	X	et 1	10/	//	//	//	/	//	//	//	//	//	4501	4. NaOH 5. Zn. Ac 6. MeOH 7. NaHS	cetate I O4
913-943-9633 Sampler's Signatüre	Sampler's Printed Name	riy	NUMBE	V	1	1	Y	TR	71	/ ,	/	/ /	/	/	1.	/	/		RE	B. Other EMARKS/ TE DESCRI	
CLIENT SAMPLE ID		SAMPLING DATE TIME MATE	IX																		
MW-10A		14.14 1500 GU		3	3)	1	1													-
MW-10B		1445	1	Í	T	T	T	1													
MW-11A		1330																			
MW-11B		1300				1															
MW-12A		1135																			
MW-12B		1120																			
MW-13A		1015	1														-				
MW-13B		0955		1																	
MW-16RA		0850 1	V	V	11	16	V	1													
MW-16RB		1 0815 GL	29	3	3	1	1	P								1					- 1
Trib Blunk-6	5.	14-14 0000 DF	0 1	1																	
SPECIAL I INSTRUCTIONS/COMMENTS					-	RUS	H (SUR	CHARGE	S APPLY)	TS		I. Results	s Only		MENT	S		INV	OICE IN	FORMATI	ON
Cooler JD. 14134-7	760						NDARD					II. Result (LCS, DU				d)	PO				
					REQU	JESTED	FAX DA	ATE				III. Resul Summar		C and Ca	alibration	1	BILL	. TO:			
					REQU	JESTED	REPOR	RT DATE			_	IV. Data	Validati	on Repo	ort with F	Raw Dat	a			_	
See QAPP					-						-	V. Specia	alized F	forms /	Custom	Report					
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP:	CUSTODY	SEALS:	YN	-							Edata	-	_Yes		No					
RELINQUISHED BY	IED BY				RECE	EIVED B	Y			RE	LINQU	JISHED	BY				RECE	VED BY			
Signature Que Un	Signature (we try Signature Signature										Signatu	ure					Sign	ature			
Printed Name JOE TElly	y										Printed	i Name						ed Name			
Firm PWSFL	Firm	Firm			Firm						Firm						Firm				
Date/Time 5.14.14/1618	Date/Time	Date/Time			Date/	Time					Date/T	ime					Date	/Time			

Distribution: White - Return to Originator; Yellow - Retained by Client

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE _____OF ____

SR#

CAS Contract

Project Name SED SWDF	Project Number	ANALYSIS REQUESTED (Include Method Number and Container Preservative)																					
Project Manager Sol Terry Email Address Jose Terry Joseph. terry p progressive wish in					TIVE	1	0	3	2	0													
Company/Address PWSFL 11457 C.R. 67						/	1	1	P		7	7	/	7	7	/	7	7	Preserva 0. NON 1. HCL 2. HNC 3. H ₂ S/ 4. NaO	ative Key NE D ₃ O4 NH			
Rivervien, F Phone# 813-443-8633		NUMBER OF CONTAINERS	/	8	100	121	4eta	17					/			//	1	/	5. Zn. / 6. MeO 7. NaH 8. Othe	Acetate)H ISO4			
Sampler's Signature	Y		V	/	/		YE	F,		/	/	/	/			/	/		REMARKS				
CLIENT SAMPLE ID	5	SAMPLING				ſ	ſ													TE DEGO			
MW-8A	5.15		9	3	3	1	1	1					-										
MW-83	1	0925 GW	a	T	Í	i	İ	Ť					-										
MW-9A	0820 60	G								-													
MW-9B		0745 GW	G	3	3	I	1	T											_				
Trip Black-7	5.15		1	1																			
				1																			
																			-				
																					-		
3 (h																							
SPECIAL INSTRUCTIONS/COMMENTS	TURNAROUND REQUIREMENTS								REPORT REQUIREMENTS							INVOICE INFORMATION							
Cooler 25: 14135-3	SED		STANDARD REQUESTED FAX DATE							II. Results + QC Summaries (LCS, DUP, MS/MSD as required)							PO #						
									III. Results + QC and Calibration Summaries						BIL	BILL TO:							
			REQUESTED REPORT DATE							IV. Data Validation Report with Raw Data						a							
See QAPP								V. Specialized Forms / Custom Report															
SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEAL						ALS: Y N							Edata Yes No										
RELINQUISHED BY RECEIVED BY RELINQUISHED B													RELINQUISHED BY						RECEIVED BY				
Signature Cher Tan		Signature							Signa	Signature							Signature						
Printed Name Soe Terry Printed Name Printed Name						Printed Name											Prin	Printed Name					
Fim PWSFL	Firm	Firm		Firm							Firm						Fim	Firm					
Date/Time 5.15.14/1130 Date/Time Date/Time					Date/Time							Date/Time							Date/Time				

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE OF

SR#

CAS Contract

JED SWDF					ANALYSIS REQUESTED (Include Method Number and Container Preservative)																				
Project Manager DOR TRIA	Email Address					SERVA	ATIVE	1	0	1	3	3	2	D	0	0	B						ł		
Company/Address PWSFL							/	+-/	1	1	TB	7	1	2/	1	A	1 al	/	/	1	/	Preservative K 0. NONE 1. HCL 2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH 5. Zp. Acetati	ley		
11457 C.K. 672 R.M. 1994 EL 72579							60			K	El ST	1-2/2	12	201 A	(ca)	T.	7		/	/	/	 A. H103 A. H2SO4 A. NaOH J. Zn. Acetate MeOH 	е		
Phone # B13-9443-B633 FAX#							00/0	00	P)	H	Jasa .	Ter	- 10×10	7.	14/0	- Cere		/	1	//		7. NaHSO4 8. Other	_		
Sampler's Signature	Sampler's Printed Nam	Ter	14		NUMBER OF CONTAINERS	1		1	11	1SA	1	15	1×	A		1			1	1		REMARKS/ ATE DESCRIPTIO	N		
CLIENT SAMPLE ID	LAB ID	AB ID SAMPLING DATE TIME MATRIX							ľ																
500-3		5.9.1		SW	14	X	×	×	×	X	X	X	×	×	×										
Sw-4		5.9.1		SW	14	X	×	X	IK.	×	×	×	×	×	×					-			_		
Trip Black-4 5.9.14			4 0000	DIHO	1	X			2-2			_		-			-		-	-					
			-		-		-	-	17						-	-		-	-	-					
									in	-										+					
							-													1			-		
lat																									
28																			4						
SPECIAL I NSTRUCTIONS/COMMENTS	TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY)							-	REPORT REQUIREMENTS							INVOICE INFORMATION									
Cooler ID: 14/129	- JED								ANDARD				II. Results + QC Summaries (LCS, DUP, MS/MSD as required)					PC	PO #						
							REQUESTED FAX DATE				-	III. Results + QC and Calibration Summaries						BILL TO:							
					REQUESTED REPORT						PORT DATE				IV. Data Validation Report with Raw Data										
See QAPP													-	V. Specialized Forms / Custom Report											
SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEA							ALS: Y N							EdataYesNo											
RELINQUISHED BY RELINQUISHED BY RELINQUISHED BY						BY RECEIVED BY								RELINQUISHED BY						RECEIVED BY					
Signature Que Up Signature Signature Signature							Signature						Signa	Signature							Signature				
Printed Name Joe Terry	Printed Name	14 20	Printed Name				Printe	ed Name					Print	ed Name	9				Pri	Printed Name					
Fim PLUSEL	Firm ALS	(Firm			Firm							Firm						Fin	Firm					
Date/Time 5-9-14/1200 Date/Time a 10 1200 Date/Time						Date/Time							Date	Date/Time							Date/Time				

APPENDIX E

CD Containing Analytical Laboratory Reports